WO2012140776A1 - 充電制御装置 - Google Patents

充電制御装置 Download PDF

Info

Publication number
WO2012140776A1
WO2012140776A1 PCT/JP2011/059408 JP2011059408W WO2012140776A1 WO 2012140776 A1 WO2012140776 A1 WO 2012140776A1 JP 2011059408 W JP2011059408 W JP 2011059408W WO 2012140776 A1 WO2012140776 A1 WO 2012140776A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
charging
unit
soc
charge
Prior art date
Application number
PCT/JP2011/059408
Other languages
English (en)
French (fr)
Inventor
亮平 中尾
洋平 河原
彰彦 工藤
江守 昭彦
啓 坂部
Original Assignee
日立ビークルエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ビークルエナジー株式会社 filed Critical 日立ビークルエナジー株式会社
Priority to PCT/JP2011/059408 priority Critical patent/WO2012140776A1/ja
Priority to JP2013509721A priority patent/JP5784108B2/ja
Publication of WO2012140776A1 publication Critical patent/WO2012140776A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery

Definitions

  • the present invention relates to a charge control device for a secondary battery.
  • Battery systems installed in electric vehicles (EVs), plug-in hybrid vehicles (PHEVs), and hybrid vehicles (HEVs) are used to safely use the batteries that make up the battery system and maximize battery performance.
  • a battery control device that detects the voltage, temperature, and current of the battery and calculates the state of charge (State of charge: SOC) of the battery based on the detected voltage, temperature, and current.
  • SOC state of charge
  • As a method for calculating the SOC of the battery there is a current integration method in which the current values flowing through the battery are integrated and the SOC is calculated based on the integrated capacity value and the full charge capacity of the battery.
  • the correlation between battery SOC and OCV is generally non-linear, and SOC and OCV are not proportional. Therefore, even if the difference (that is, error) between the OCV value obtained from the SOC calculation result by the current integration method and the OCV value detected at no load is the same, the SOC difference corresponding to the OCV difference is It depends on the OCV level (or SOC level). For this reason, the conventional method described above cannot accurately extract an error that occurs in the SOC calculation result.
  • the charge control device includes a voltage detection unit that detects a voltage of the secondary battery, a current detection unit that detects a current of the secondary battery, and a current detected by the current detection unit. Based on the integrated capacity value obtained by integration and the fully charged capacity value of the secondary battery, a charge state calculation unit that calculates the SOC of the secondary battery, and a correlation that represents the relationship between the SOC and open circuit voltage of the secondary battery A selection unit that selects two points on the curve so that the difference between the slopes of the curves at the two points is minimized, and a charge stop that sets the open-circuit voltage at the two points selected by the selection unit as the charge pause voltage, respectively.
  • the charging control unit for temporarily stopping charging, and the temporary charging by the charging control unit
  • the voltage at the time of the pause A charge state change calculation unit that calculates an SOC based on the detected voltage value and the correlation curve of the output unit and calculates a difference between the two SOCs, and an integrated capacity from the first pause to the second pause
  • a correction unit that corrects the SOC calculated by the charge state calculation unit based on the SOC change based on the value and the difference calculated by the charge state change calculation unit.
  • the charge stop voltage setting unit is only the other point.
  • the open state voltage at the point is set as the charging suspension voltage
  • the charging state change calculation unit is configured to calculate the SOC based on the voltage detected by the voltage detection unit and the correlation curve at the time of suspension by the charging control unit, and before charging is started.
  • Each of the SOCs based on the voltage detected by the voltage detector and the correlation curve is obtained, the difference between the two SOCs is calculated, and the correction unit changes the SOC based on the integrated capacity value from the start of charging to the temporary stop.
  • the SOC calculated by the charge state calculation unit is corrected based on the difference calculated by the charge state change calculation unit.
  • the charge stop voltage setting unit is only the other point.
  • the open-circuit voltage at the point is set as the charging suspension voltage
  • the charge state change calculation unit is configured to use the SOC based on the voltage detected by the voltage detection unit and the correlation curve during the suspension by the charging control unit, and after the end of charging.
  • Each of the SOCs based on the voltage detected by the voltage detection unit and the correlation curve is obtained, and the difference between the two SOCs is calculated.
  • the correction unit changes the SOC based on the accumulated capacity value from the pause to the end of charging,
  • the SOC calculated by the charge state calculation unit is corrected based on the difference calculated by the charge state change calculation unit.
  • the temperature detection unit that detects the temperature of the secondary battery, and the voltage detection by the voltage detection unit from the temporary stop.
  • an idle time setting unit that sets an idle time until the operation is performed based on the state of charge at at least one point and the temperature of the secondary battery at the time of primary stop.
  • a temperature detection unit that detects a temperature of the secondary battery, and a memory in which the polarization characteristic information of the secondary battery is stored in advance.
  • Each pause time until the voltage detection by the voltage detector is performed based on at least the SOC at the time of the pause and the end of charging, and the temperature and polarization characteristic information of the secondary battery at the time.
  • a pause time setting unit that sets the polarization error included in the voltage detected by the voltage detection unit at the time of suspension and the end of charging to be the same.
  • the charge control device includes a voltage detection unit that detects a voltage of each secondary battery in a group of secondary batteries in which a plurality of secondary batteries are connected in series, and a secondary battery.
  • a current detection unit that detects a current flowing through the group, a discharge circuit having a bypass resistor and a bypass switch connected in parallel to the secondary battery for each secondary battery of the secondary battery group, and a current detection unit
  • a charge state calculation unit that calculates the SOC of each secondary battery, and the relationship between the SOC and open circuit voltage of the secondary battery
  • a charge stop voltage setting unit that sets the open-circuit voltage at the one point as a charging temporary stop voltage of the corresponding secondary battery, and a plurality of voltages detected by the voltage detection unit during charging of the secondary battery When it becomes equal to the highest charge suspend voltage among the charge suspend voltages, the charge control unit that suspends charge and other secondary batteries except for the secondary battery set with the highest charge suspend voltage , Until the battery voltage reaches the charge suspend voltage set for each secondary battery, the discharge controller that discharges by the discharge circuit, and the voltage detector detects when the charge controller pauses and when the discharge ends And an SOC based on the correlation curve and the voltage detected by the voltage detector before the start of charging, and an SOC based on the correlation curve, respectively, and the difference between the two SOCs Based on the charge state change calculation unit calculated for each battery, the SOC change based on the accumulated capacity value from the start of charging to the temporary stop or the end of discharge, and the difference calculated by the charge state change calculation unit, A correction unit that corrects the
  • FIG. 2 is a diagram illustrating a configuration of an assembled battery control unit 150.
  • FIG. It is a figure which shows the correlation between SOC and OCV. It is a figure explaining a CCCV charge system. It is a figure explaining a pulse charge system. It is a figure explaining the method of integrating
  • 2nd Embodiment It is a figure explaining 2nd Embodiment. It is a flowchart which shows the charge operation in 2nd Embodiment. It is a figure explaining charge operation and discharge operation. It is a figure which shows the voltage change of the cell 111-1, the cell 111-2, and the cell 111-3. It is a flowchart which shows the charging operation at the time of utilizing the said discharge by a discharge circuit. It is a block diagram which shows the structure of the assembled battery control part 150 in 3rd Embodiment. It is a figure which shows the mode of the change of the battery voltage after a charge stop. It is a figure explaining the charging operation of 3rd Embodiment.
  • PHEV plug-in hybrid vehicle
  • passenger cars such as electric vehicles (EV) and mobile phones are also included. It can also be applied to battery systems such as consumer devices.
  • a lithium ion battery is applied to a battery constituting the battery system
  • a nickel metal hydride battery, a lead battery, or the like can also be used as the battery.
  • FIG. 1 is a diagram illustrating a configuration example of a power storage device of a plug-in hybrid vehicle.
  • the battery 100 includes an assembled battery 110 composed of a plurality of single cells 111, a single cell management unit 120 that monitors the state of the single cell 111, a current detection unit 130 that detects a current flowing through the battery 100, and the assembled battery 110.
  • a voltage detector 140 that detects the total voltage of the battery pack and a battery pack controller 150 that controls the battery pack 110.
  • the battery 100 is connected to the inverter 400 via the relay 300 and is connected to the charger 420 via the relay 310.
  • a motor generator 410 is connected to the inverter 400, and the motor generator 410 is driven by the energy of the assembled battery 110.
  • the assembled battery 110 is configured by electrically connecting a plurality of unit cells 111 (lithium ion batteries) capable of storing and releasing electrical energy (charging and discharging DC power) in series.
  • the single battery 111 has an output voltage of 3.0 to 4.2 V (average output voltage: 3.6 V).
  • OCV Open Circuit Voltage
  • SOC Charge State SOC
  • the unit cells 111 constituting the assembled battery 110 are grouped into a predetermined number of units when managing and controlling the battery state.
  • the grouped unit cells 111 are electrically connected in series to form a unit cell group 112.
  • the predetermined number of units may be an equal division such as 1, 4, 6,..., Or may be a composite division in which 4 and 6 are combined.
  • the assembled battery 110 includes four unit cells 111 electrically connected in series to form unit cell groups 112a and 112b.
  • the unit cell group 112b is electrically connected in series, and a total of eight unit cells 111 are provided.
  • the single cell management unit 120 monitors the state of the single cells 111 constituting the assembled battery 110.
  • the unit cell management unit 120 includes a plurality of unit cell control units 121a and 121b.
  • the unit cell control unit 121a is allocated to the unit cell group 112a
  • the unit cell control unit 121b is allocated to the unit cell group 112b.
  • Each unit cell control unit 121a, 121b operates by receiving power from the unit cell group 112a, 112b to which each unit cell is assigned, and monitors the state of each unit cell 111 constituting each unit cell control unit 121a, 121b. And control.
  • the assembled battery control unit 150 includes the battery voltage and temperature of the unit cell 111 transmitted from the unit cell management unit 120, the current value transmitted from the current detection unit 130, and the total number of the assembled battery 110 transmitted from the voltage detection unit 140. Each voltage value is input.
  • the assembled battery control unit 150 detects the state of the assembled battery 110 based on the input information. In addition, the result of the process performed by the assembled battery control unit 150 is transmitted to the unit cell management unit 120 and the vehicle control unit 200.
  • the vehicle control unit 200 controls the inverter 400 and the charger 420 based on information from the assembled battery control unit 150. While the vehicle is traveling, battery 100 is connected to inverter 400, and motor generator 410 is driven based on the energy stored in battery pack 110. When charging is performed by the charger 420, the battery 100 is connected to the charger 420 via the relay 310, and the charger 420 is controlled based on the charging end voltage and charging current information from the assembled battery control unit 150. Then, the battery 100 is charged by the external power source. In addition, although mentioned later for details, in this invention, the vehicle control part 200 suspends the charge by the charger 420 based on the charge stop voltage determined by the assembled battery control part 150, and performs recharge after that. The charger 420 is controlled as follows.
  • the charger 420 charges the battery 100 based on information transmitted from the vehicle control unit 200.
  • Examples of the charging method include CCCV charging (Constant-Current Constant-Voltage) as shown in FIG. 4 and pulse charging method as shown in FIG. 5.
  • CCCV charging Constant-Current Constant-Voltage
  • pulse charging method as shown in FIG. 5.
  • CCCV charging method shown in FIG. 4 charging is performed in a constant current mode from the start of charging, and charging is performed in a constant voltage mode when reaching a target voltage for charging.
  • pulse charging shown in FIG. 5 a pulse current is input at every predetermined time, and charging is performed up to a target voltage for charging.
  • the assembled battery control unit 150 and the single cell management unit 120 perform signal transmission / reception by the signal communication means 160 via an insulating element 170 such as a photocoupler.
  • the reason why the insulating element 170 is provided is that the assembled battery control unit 150 and the unit cell management unit 120 have different operating power sources. That is, the cell management unit 120 operates with the power from the assembled battery 110, whereas the assembled battery control unit 150 uses a battery for in-vehicle auxiliary equipment (not shown) (for example, a 14V battery) as a power source. Yes.
  • the insulating element 170 may be mounted on a circuit board that constitutes the unit cell management unit 120 or may be mounted on a circuit board that constitutes the assembled battery control unit 150. Note that the insulating element 170 may be omitted depending on the system configuration.
  • the unit cell control units 121a and 121b described above are connected in series according to the order of potential of the unit cell groups 112a and 112b monitored by each unit.
  • the signal transmitted by the assembled battery control unit 150 is input to the single cell control unit 121a via the signal communication unit 160 and the insulating element 170.
  • a signal communication unit 160 is provided between the output of the unit cell control unit 121a and the input of the unit cell control unit 121b, and signals are transmitted by the signal communication unit 160.
  • the insulating element 170 is not provided between the single cell control unit 121a and the single cell control unit 121b, but the insulating element 170 may be provided.
  • the output of the cell control unit 121b is transmitted to the input of the battery pack control unit 150 via the insulating element 170 and the signal communication means 160.
  • the assembled battery control unit 150 and the unit cell control units 121a and 121b are connected in a loop by the signal communication means 160.
  • This loop connection is referred to as a daisy chain connection, a daisy chain connection, or a twisted connection.
  • the configuration of the assembled battery control unit 150 will be described with reference to FIG.
  • the assembled battery control unit 150 includes a battery state detection unit 151, a charge state inclination determination unit 152, and a charge stop voltage determination unit 153.
  • the battery state detection unit 151 includes a measurement value of the battery voltage and temperature of the unit cell 111 output from the unit cell management unit 120, a diagnosis result of whether the unit cell 111 is overcharged or overdischarged, and a unit cell management unit 120.
  • the signal output from is input.
  • the battery state detection unit 151 performs SOC calculation and voltage equalization control of the unit cell 111 based on the input information and the previously stored internal resistance of the unit cell 111 and the relationship between the SOC and the OCV. Calculations, calculations for controlling the charge / discharge amount, and the like are executed. And a calculation result and the instruction
  • the charging state inclination determination unit 152 determines the inclination of the OCV according to the SOC before the charging by the charger 420 is started, and temporarily performs the charging by the charger 420 according to the determined OCV. Estimate the SOC to be stopped.
  • the charge stop voltage determining unit 153 determines a charge stop voltage for temporarily stopping charging based on the SOC estimated by the charge state inclination determining unit 152.
  • the SOC of the unit cell 111 is calculated by integrating the current value flowing through the battery pack 110 as shown in the following equation (1).
  • SOC0 is the SOC at the start of charge / discharge, and is determined based on the OCV detected at the start of charge / discharge and the SOC-OCV correlation (see FIG. 3).
  • the SOC at the start is an SOC based on OCV when charging / discharging immediately before starting charging / discharging is stopped.
  • Ic is the charging current [A]
  • Id is the discharging current [A]
  • Qmax is the full charge capacity [Ah] of the unit cell 111
  • is the charging efficiency
  • is the integral symbol.
  • SOC SOC0 + ( ⁇ Ic ⁇ ⁇ dt- ⁇ Id dt) / Qmax ⁇ 100 [%] (1)
  • FIG. 6A shows changes in the current value detected by the current detection unit 130 in FIG. 1, where the vertical axis represents the current value and the horizontal axis represents time.
  • the current value in the case of charging is positive
  • the current value in the case of discharging is negative
  • FIG. 6B shows a change in SOC accompanying charging / discharging.
  • the black circle marks indicate the charging / discharging start time, and current integration starts from this time.
  • the errors that occur in the SOC calculation by the current integration method include the error at the time of detecting SOC0, the error of the full charge capacity Qmax, and the error caused by the current detection unit 130 (effect of gain error and offset error) in the equation (1). is there.
  • the error at the time of detecting SOC0 is caused by a voltage measurement error included in the measurement value of the unit cell management unit 120 or the voltage detection unit 140 when the SOC is estimated from the OCV and the SOC-OCV correlation (FIG. 3).
  • the second term of Equation (1) includes an error of Qmax and an error related to current integration (the influence of a gain error and an offset error of the current detection unit 130).
  • the error that can occur in the second term of the equation (1) changes according to the SOC change amount and the charge / discharge time (integration time). Therefore, the SOC detection error increases as the SOC change amount increases or the integration time increases.
  • a curve L1 indicates the SOC-OCV correlation (correlation curve) of the unit cell 111.
  • a curve L2 represents the reciprocal of the slope at each SOC in the SOC-OCV correlation curve L1, that is, dSOC / dOCV which is a ratio of the SOC change dSOC and the voltage change dOCV.
  • dSOC / dOCV is small in the region where the SOC is low and in the region close to the fully charged state, and dSOC / dOCV is large in the region between them.
  • FIG. 8 shows the relationship between the voltage detection error included in the detected battery voltage (OCV) and the SOC detection error that can occur corresponding to the voltage detection error.
  • OCV detected battery voltage
  • the charge state inclination determination unit 152 determines SOCs having the same inclination or SOCs having the smallest difference in inclination. Below, the case where the SOC which becomes equal is determined is demonstrated.
  • FIG. 10 is a diagram showing the relationship between the SOC at the start of charging (charging start SOC) and the SOC at the time of stopping charging (charging stopping SOC).
  • dSOC / dOCV at the start of charge and dSOC / dOCV at the time of charge stop are equal (or the difference between the two is small)
  • Such an SOC may be selected as the charge stop SOC.
  • SOC1 SOC11 having substantially the same dSOC / dOCV may be selected as the charge stop SOC.
  • SOC21 of FIG. 10 is selected as the charge stop SOC
  • SOC3 SOC31 of FIG. 10 is selected as the charge stop SOC. .
  • the charging state inclination determination unit 152 estimates SOC1 immediately before the start of charging based on the voltage (OCV) acquired at no load immediately before the start of charging and the SOC-OCV correlation (curve L1 in FIG. 10). Then, dSOC / dOCV in this SOC1 is estimated based on the dSOC / dOCV curve L2 shown in FIG. Thereafter, a point having dSOC / dOCV equal to the estimated dSOC / dOCV is found from the dSOC / dOCV curve L2, and the SOC 11 at that point is selected as the SOC at the time of charging stop. Thereafter, the selected SOC (SOC11) is transmitted to the charge stop voltage determining unit 153.
  • a memory such as an EEPROM provided in the assembled battery control unit 150 in advance. It may be stored in the means, or the relationship between SOC and OCV may be approximated by a function, and dSOC / dOCV may be calculated based on this.
  • the charge stop voltage determination unit 153 determines the charge stop voltage (OCVt) based on the SOC 11 and the SOC-OCV correlation selected by the charge state inclination determination unit 152. Thereafter, charging by the charger 420 is started, and when the average voltage (voltage per unit cell 111) of the assembled battery 110 reaches the determined charging stop voltage OCVt, a signal for temporarily stopping the charger 420 is sent to the vehicle control unit. 200. When vehicle control unit 200 receives the temporary stop signal, vehicle control unit 200 temporarily stops charging by charger 420.
  • the charging stop voltage OCVt is set to a value (OCV + I ⁇ R) obtained by adding the voltage change due to the internal resistance of the unit cell 111 to the OCV value. Also good. Furthermore, the charge stop voltage OCVt may be determined in consideration of the voltage change due to polarization.
  • FIG. 11 is a flowchart for explaining the operation procedure from the start of charging to the end of charging. The operation of FIG. 11 will be described with reference to the correlation shown in FIG. 10 and the actual change of the assembled battery voltage shown in FIG.
  • step S100 a voltage (OCV) at no load before the start of charging is detected and acquired by the voltage detection unit 140, and based on the voltage OCV and the SOC-OCV correlation as shown in FIG. Estimate SOC1 (SOC1 at the start of charging) corresponding to the voltage OCV.
  • SOC1 will be described as an example.
  • step S110 based on SOC1 estimated in step S100, the charge state inclination determination unit 152 determines an SOC (charge stop voltage SOCt) for temporarily stopping the charge.
  • SOC charge stop voltage SOCt
  • dSOC / dOCV in SOC1 is obtained from SOC1 and curve L2, a point having dSOC / dOCV equal to the dSOC / dOCV is estimated, and SOC11 at that point is obtained.
  • This SOC11 is the charge stop voltage SOCt.
  • step S140 it is determined whether the average voltage of the assembled battery 110 has reached the charge stop voltage (OCVt). If it determines with having reached the charge stop voltage, it will progress to step S150 and will stop charge.
  • the detected voltage value is reduced by the internal resistance, and then the polarization is gradually reduced.
  • the voltage detector 140 described as OCV ′ in FIG. 12
  • the SOC ⁇ Based on the OCV correlation (curve L1), the SOC (SOC ′ in FIG. 12) corresponding to OCV ′ is estimated.
  • step S160 charging by the charger 420 is restarted, and charging is performed until charging is completed.
  • step S170 it is determined whether charging of the assembled battery 110 has been completed. If charging has not been completed, charging is continued. If charging is completed, charging by the charger 420 is stopped.
  • the SOC at the two points are the SOC before the charge start and the charge after the charge pause.
  • SOC it is not limited to these two points.
  • the SOC at the end of charging is adopted as one of the two points as shown in FIG.
  • the other point is a point having dSOC / dOCV equal to dSOC / dOCV at the end of charging, and the OCV corresponding to the SOC at that point is defined as a charge stop voltage OCVt.
  • FIG. 15A shows the SOC-OCV correlation and dSOC / dOCV in each SOC.
  • FIG. 15 (b) shows the reference value of dSOC / dOCV at the start of charging when the SOC at the start of charging is changed to 20%, 40%, and 60% when there is a relationship as shown in FIG. 15 (a).
  • FIG. 6 is a diagram showing how the value of dSOC / dOCV after the start of charging changes.
  • the horizontal axis represents the SOC change ( ⁇ SOC) from the start of charging, and the vertical axis represents the difference between the dSOC / dOCV value when the change is ⁇ SOC and the dSOC / dOCV of the charging start SOC.
  • Charging may be temporarily stopped when the difference in dSOC / dOCV is minimized. Since the detection error of the SOC change ⁇ SOC is proportional to the difference of dSOC / dOCV, when the ⁇ SOC detection error is illustrated, a graph having a tendency similar to that in FIG. 15B is obtained as illustrated in FIG.
  • FIG. 16A is a diagram showing the ratio of ⁇ SOC error to the true value of ⁇ SOC.
  • the error rate tends to decrease as ⁇ SOC increases.
  • ⁇ SOC 30% is the smallest. This corresponds to the fact that the value is small in the vicinity of 30% in FIG.
  • the SOC change ⁇ SOC can be accurately obtained with a very small error. Then, by using the ⁇ SOC, it is possible to improve the calculation accuracy of the SOC calculated by the current integration method of Expression (1). For example, the full charge capacity Qmax of the battery can be accurately obtained using ⁇ SOC.
  • the full charge capacity Qmax of the battery can be calculated as in Expression (2) using the amount of change in SOC ( ⁇ SOC) and the amount of electricity ⁇ Idt that has changed in the meantime.
  • ⁇ SOC used here is the SOC difference between the two points described above, and ⁇ Idt is the amount of electricity charged between the two points. Therefore, if the amount of electricity ⁇ Idt is detected with high accuracy, the full charge capacity Qmax can be calculated with high accuracy using the equation (2).
  • Qmax ( ⁇ Idt / ⁇ SOC) ⁇ 100 (2)
  • FIG. 16 (b) shows the full charge capacity Qmax calculated based on the result shown in FIG. 15 (b) and the equation (2).
  • the error included in ⁇ SOC tends to decrease as ⁇ SOC increases
  • the error generated in the detection of the full charge capacity also has the same tendency. That is, if two points are selected such that ⁇ SOC is large and the difference between dSOC / dOCV is small, the error of the full charge capacity can be greatly reduced.
  • ⁇ SOC1 ( ⁇ Ic ⁇ ⁇ dt) / Qmax ⁇ 100 based on the SOC obtained by the SOC calculation using the equation (1), By comparing ⁇ SOC obtained by temporarily stopping charging, an error generated in the current detection unit 130 can be corrected. In this case, by using ⁇ SOC / ⁇ SOC1 as a correction coefficient in the SOC calculation, a current detection error included in the SOC calculation can be corrected.
  • the above-described correction coefficient ⁇ SOC / ⁇ SOC1 can be considered as a correction coefficient for the error of the charging efficiency ⁇ .
  • ⁇ SOC obtained as described above can be used as a correction coefficient for the SOC calculation according to Equation (1). It can. That is, based on the SOC calculated by the equation (1), the SOC change (referred to as ⁇ SOC1) from the start of charging to the temporary stop of charging in FIG. 12 is obtained, and the above-described ratio ⁇ SOC / ⁇ SOC1 between ⁇ SOC and ⁇ SOC1 is corrected. It is a coefficient. Then, the corrected SOC can be obtained by multiplying the SOC calculated by the equation (1) by the correction coefficient ⁇ SOC / ⁇ SOC1.
  • the SOC change amount can be calculated with high accuracy.
  • the SOC change amount with high accuracy it becomes possible to correct the full charge capacity, the charging efficiency, and the current detection error, and a battery system with high SOC calculation accuracy can be realized.
  • FIG. 17 is a diagram illustrating the configuration of the cell control unit 121a and the cell control unit 121b.
  • Each unit cell control unit 121a, 121b includes a bypass switch 123, a BSW drive circuit 125 that drives the bypass switch 123, a voltage detection circuit 124 that measures the battery voltage of a plurality of unit cells 111 to be managed, and a unit cell.
  • the control circuit 127 that controls the cell control units 121a and 121b, and the battery control unit 150 or adjacent
  • a signal input / output circuit 128 that transmits and receives signals to and from the matching cell control unit 121 is provided.
  • a bypass resistor 122 is provided outside the unit cell control units 121a and 121b, and the bypass resistor 122 and the bypass switch 123 constitute a discharge circuit.
  • the control circuit 127 receives the voltage acquisition command and the information on the equalization control transmitted from the assembled battery control unit 150 via the signal input / output circuit 128, and based on the battery voltage detected by the voltage detection circuit 124 and the same. Information is output to the signal input / output circuit 128.
  • the plurality of single cells 111 constituting the assembled battery 110 may vary in SOC due to the influence of individual differences of the single cells 111. Therefore, for the single battery 111 whose SOC at the start of charging is SOC1 shown in FIG. 10, it is preferable to use the OCV corresponding to SOC11 as the charge stop voltage, and for the single battery 111 whose SOC at the start of charging is SOC2. It is preferable that the OCV corresponding to the SOC21 be the charge stop voltage.
  • the charger 420 is controlled based on the battery voltage of each unit cell 111 acquired by each unit cell control unit 121a, 121b at the start of charging. It is characterized by that. That is, a charge stop voltage is set for each unit cell 111, and after the start of charging, charging is temporarily stopped at each charge stop voltage, and the SOC and OCV of the corresponding unit cell 111 are estimated. This can be said that the charge control shown in FIG. 12 of the first embodiment is individually applied to each unit cell 111. In the following, in order to simplify the description, the number of unit cells 111 constituting the assembled battery 110 is two as shown in FIG.
  • the single cell 111 having a high SOC is defined as a single cell 111-1
  • the single cell 111 having a low SOC is defined as a single cell 111-2.
  • the charge state inclination determination unit 152 and the charge stop voltage determination unit 153 have the charge stop corresponding to the single cell 111-1.
  • a voltage (first charge stop voltage) and a charge stop voltage (second charge stop voltage) corresponding to the cell 111-2 are obtained.
  • Charging by the charger 420 is started, and a charge stop signal is transmitted from the assembled battery control unit 150 to the vehicle control unit 200 every time the battery voltage of the unit cell 111 reaches the determined charge stop voltage.
  • the vehicle control unit 200 receives a charge stop signal from the assembled battery control unit 150, the vehicle control unit 200 temporarily stops charging by the charger 420. Then, the OCV of the single cell 111 corresponding to the charge stop voltage is acquired, converted to SOC, and the change amount of the SOC is calculated for each single cell 111.
  • the OCV at the start of charging is higher in the unit cell 111-2, so the second charge stop voltage for the unit cell 111-2 is the first charge for the unit cell 111-1. It is higher than the stop voltage.
  • the first charge stop is performed. Executed.
  • the OCV21 and SOC21 of the cell 111-2 are obtained.
  • the charging is resumed, and when the voltage of the single cell 111-1 becomes the first charge stop voltage, the second charge stop is executed, and the OCV11 and SOC11 of the single cell 111-1 are obtained in the same manner. Thereafter, charging is resumed and charging is performed until the end of charging.
  • ⁇ SOC SOC11 ⁇ SOC1 is used for error correction
  • ⁇ SOC SOC21 ⁇ SOC2 is used for error correction.
  • the number of charge stop is one as in the case of the first embodiment.
  • the charge stop voltage of the single cell 111-1 and the charge stop voltage of the single cell 111-2 fall within a predetermined threshold, the number of charge stops by the charger 420 is set to one, and the OCV11, You may make it acquire SOC11, OCV21, and SOC21.
  • the predetermined threshold is a range corresponding to a range in which an error included in the obtained SOC change is sufficiently small.
  • the battery charger 420 may be set to stop at the value of. By doing so, the number of times charging is stopped can be reduced.
  • FIG. 19 is a flowchart showing the charging operation in the second embodiment.
  • step S200 the no-load voltage (OCV) before the start of charging of each unit cell 111 is acquired and converted to SOC using the SOC-OCV correlation.
  • step S201 based on the SOC of each single cell 111 acquired in step S200, the charge state inclination determination unit 152 determines an SOC (SOCt) for temporarily stopping charging for each single cell 111, and determines the charge stop voltage.
  • SOCt SOC
  • the charge stop voltage determining unit 153 determines the charge stop voltage (OCVt) based on the SOCt and the SOC-OCV correlation transmitted by the charge state inclination determining unit 152.
  • charging by the charger 420 is started in step S203.
  • step S208 it is determined whether all the unit cells 111 constituting the assembled battery 110 have reached the charge stop voltage set for each unit cell 111. If it is determined that it has not reached, the process returns to step S204, and the processing up to step S207 is repeated. When all the unit cells 111 reach the charge stop voltage set for each unit cell 111, the process proceeds to step S209. In step S209, it is determined whether the battery has reached full charge due to the restarted charge after the charge is temporarily stopped. If it is determined in step S209 that the battery has been fully charged, charging by the charger 420 is terminated.
  • the charging is controlled to be temporarily stopped at each of a plurality of charging stop voltages from the start of charging to the end of charging. Therefore, as the number of the single cells 111 increases, the number of times of stopping charging increases and the charging time becomes longer. Therefore, in the example shown below, charging control is described in which the number of times of charging stop is only one regardless of the number of the single cells 111.
  • the unit cell controllers 121 a and 121 b include a discharge circuit including a bypass resistor 122 and a bypass switch 123.
  • This discharge circuit is provided to adjust the variation in charge capacity of the plurality of single cells 111.
  • control is performed such that the number of times of charge stoppage is one. This will be described below with reference to FIGS.
  • the number of unit cells 111 constituting the assembled battery 110 is three.
  • the charge state inclination determination unit 152 and the charge stop setting unit 153 obtain OCV1, OCV2, and OCV3 of the plurality of single cells 111-1 to 111-3 that constitute the assembled battery 110 at the start of charging. Based on the OCV1, OCV2, and OCV3 of the single cells 111-1 to 111-3, the charge stop voltages of the single cells 111-1 to 111-3 (first charge stop voltage, second charge stop voltage, third Charge stop voltage). Then, charging by the charger 420 is started, and when all the battery voltages of the single cells 111 reach the set charging stop voltage during charging, the charging by the charger 420 is temporarily stopped.
  • the OCVs for the charge stoppages SOC1, SOC2, and SOC3 of the cells 111-1 to 111-3 increase in the order of OCV3, OCV2, and OCV1. That is, the first charge stop voltage is the highest, followed by the second charge stop voltage and the third charge stop voltage. Therefore, the battery voltage of each unit cell 111 reaches the set charge stop voltage only when the voltage of the unit cell 111-1 reaches the first charge stop voltage as shown in FIG. is there. At this time, the voltages of the single cells 111-2 and 111-3 are higher than the respective charge stop voltages. Then, when the battery voltage of the cell 111-1 that has the slowest reaching the charge stop voltage reaches the set charge stop voltage, the charging by the charger 420 is temporarily stopped.
  • the unit cells 111-2 and 111-3 other than the unit cell 111-1 that has reached the last charge stop voltage are set as the unit cells 111 to be discharged, and a bypass switch corresponding to the unit cell 111 to be discharged. 123 is turned on to discharge the discharge circuit (FIG. 21).
  • the discharge circuit FIG. 21
  • the SOCs of the single battery 111-2 and the single battery 111-3 are reduced, and the battery voltages of the single battery 111-2 and the single battery 111-3 are set to the second values as shown in FIG.
  • the discharge is stopped. This discharge is performed for each unit cell 111. In the example shown in FIG. 21, the discharge of the unit cell 111-2 ends first, and then the discharge of the unit cell 111-3 ends.
  • FIG. 22 is a flowchart showing a charging operation when the above discharge by the discharge circuit is used.
  • a no-load voltage (OCV) before starting charging of each unit cell 111 is acquired and converted into SOC.
  • the charge state inclination determination unit 152 determines an SOC (SOCt) for temporarily stopping charging for each unit cell 111, and transmits it to the charge stop voltage determination unit 153.
  • step S212 the charge stop voltage determination unit 153 determines the charge stop voltage (OCVt) based on the SOCt and the SOC-OCV correlation transmitted by the charge state inclination determination unit 152. Thereafter, charging by the charger 420 is started in step S213. In step S214, it is determined whether the battery voltage of each unit cell 111 has reached the charge stop voltage set for each unit cell 111. When it is determined that all the unit cells 111 constituting the assembled battery 110 have reached the charge stop voltage set for each unit cell 111, the process proceeds to step S215, and the charging by the charger 420 is temporarily stopped.
  • OCVt charge stop voltage
  • step S216 the unit cell 111 other than the slowest unit cell 111 that reaches the charge stop voltage is set as a discharge target to the discharge circuit including the bypass resistor 122 and the bypass switch 123, and the unit cell to be discharged.
  • the bypass switch connected in parallel to 111 is turned on to start discharging.
  • step S217 it is determined whether or not the discharge of all the unit cells 111 that are the discharge targets is completed. If it is determined that the discharge has ended, the process proceeds to step S218.
  • the time (pause time) until the battery voltage of the assembled battery 110 or the single battery 111 is acquired after the charging by the charger 420 is temporarily stopped is the change (polarization) of the battery voltage after the temporary stop. It is characterized in that it is determined in consideration of a change in voltage.
  • FIG. 23 is a block diagram showing the configuration of the assembled battery control unit 150 in the present embodiment.
  • a pause time setting unit 154 is further added to the assembled battery control unit 150 shown in FIG.
  • the downtime setting unit 154 calculates the SOC difference between the two points in consideration of the change in the battery voltage during the stop period.
  • FIG. 24 shows how the battery voltage changes after charging is stopped.
  • the battery voltage changes exponentially as shown in FIG. 24 after the charging is stopped, and approaches the value of OCV.
  • the time to reach the OCV value varies depending on the battery condition and how the battery is used.
  • FIG. 24 shows, as an example, how the polarization relaxation time changes according to the SOC. The smaller the SOC, the longer the polarization relaxation time.
  • the polarization relaxation time also varies depending on the battery temperature, input current value, and current application time.
  • the polarization characteristics of the unit cell 111 as shown in FIG. 24 can be obtained by actually measuring in advance, and such information is stored in advance in the storage unit of the assembled battery control unit 150.
  • two SOCs are determined so that the difference in dSOC / dOCV in the SOC-OCV correlation is small, and the charger 420 is controlled as described in the first and second embodiments.
  • the SOC is obtained from the voltage after the charging is temporarily stopped, and the SOC change amount during the charging is extracted.
  • the conversion to SOC is performed using the battery voltage OCV before the polarization voltage is fully relaxed. In the converted SOC, an error corresponding to the remaining polarization voltage cannot be relaxed.
  • the suspension period of the charger 420 is set so that the remaining polarization voltage components that cannot be relaxed are equal. That is, as shown in FIG. 25, if a pause time is set such that ⁇ V1 and ⁇ V2 are equal, an error that may be caused by the polarization voltage at the two points is canceled when the difference between the two SOCs is calculated. It is possible to accurately extract the amount of change.
  • the pause time is determined based on the two SOCs determined based on the charge state inclination determination unit 152, the energization time until the determined two SOCs are reached, and the temperature of the unit cell 111. .
  • the set pause time is determined in advance based on the measurement result of the polarization voltage corresponding to the temperature and the energization time, and is stored in the pause time setting unit 154.
  • the two SOCs determined by the charging state inclination determination unit 152 are transmitted to the suspension time setting unit 154.
  • the rest time setting unit 154 determines the energization time based on the two SOCs and determines the rest time.
  • the time from reaching the charge stop voltage until the charge stop voltage is measured may be determined, and the time to reach the charge stop voltage may be determined as the energization time until the two SOCs described above are reached. Then, the energization time t may be predicted from the following equation (3).
  • SOC1 is SOC [%] before the start of energization
  • SOC2 is the charging target SOC [%]
  • Qmax is the full charge capacity [Ah] of the unit cell 111
  • Ic is the charging current [A].
  • t (SOC2-SOC1) / 100 ⁇ Qmax / Ic (3)
  • the charge control device includes the single battery management unit 120 that detects the voltage of the single battery 111 that is a secondary battery, the current detection unit 140 that detects the current flowing through the single battery 111, and the current detection unit 140.
  • the battery pack controller 150 that calculates the state of charge SOC of the battery cell 111 based on the accumulated capacity value obtained by integrating the current detected in step S1 and the full charge capacity value Qmax of the battery cell 111;
  • a cell 111 selects the two points on the correlation curve representing the relationship between the state of charge SOC and the open circuit voltage OCV so that the difference in the slope of the curve between the two points is minimized, and the unit cell 111.
  • a charge stop voltage determining unit 153 that sets open circuit voltages at the two points as charge stop voltages, respectively.
  • the assembled battery control unit 150 suspends charging when the voltage detected by the unit cell management unit 120 becomes equal to each of the charging stop voltages during charging of the unit cell 111, and for each temporary stop,
  • the charge state SOC is calculated based on the voltage detection value of the single cell management unit 120 and the correlation curve at the time of the temporary stop, and a difference ⁇ SOC between the two charge state SOCs is calculated. Based on the change in the state of charge based on the accumulated capacity value until the pause and the calculated difference, the error included in the state of charge SOC calculated is corrected.
  • One of the two points on the correlation curve may be a charging start point or a weight end point.
  • Such charge control may be performed for each single cell 111 included in the assembled battery 110, or the assembled battery 110 is regarded as one secondary battery, and the assembled battery is detected using a voltage detected by the voltage detection unit 140.
  • the above-described charging control may be applied to the entire 110.
  • a pause time from the suspension until the voltage is detected is set.
  • the polarization characteristic information of the unit cell 111 is stored in advance in a storage unit (not shown) of the assembled battery control unit 150, and is included in the voltage detected at the time of suspension and charging based on the polarization characteristic information.
  • the pause time may be set so that the polarization errors are the same.
  • the assembled battery control unit 150 temporarily stops charging when the voltage detected by the voltage detection unit becomes equal to the highest charge stop voltage among the plurality of charge stop voltages during charging of the secondary battery. . Thereafter, the control circuit 127 discharges the other unit cells 111 except the unit cell 111 for which the highest charge stop voltage is set until the battery voltage becomes the set charge stop voltage for each unit cell 111. Discharge by circuit. Therefore, the ⁇ SOC can be obtained for all the unit cells 111 by only temporarily stopping charging for the plurality of unit cells 111.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 組電池制御部150には、単電池111のSOC とOCV との関係を表す相関曲線上の2点を、それら2点における曲線の傾きの差が最小となるように選択する充電状態傾き判定部と、単電池111で選択された2点における開放電圧を充電停止電圧としてそれぞれ設定する充電停止電圧決定部とが設けられている。組電池制御部150は、充電中に、単電池管理部120で検出される電圧が充電停止電圧の各々と等しくなった時、充電をそれぞれ一時停止し、各一時停止毎に、該一時停止時における各単電池111のSOCを相関曲線を用いてそれぞれ求める。そして、それら2つのSOC の差分ΔSOCを算出し、1回目の一時停止から2回目の一時停止までの積算容量値に基づくSOC変化、および、算出した差分ΔSOCに基づいて、演算によるSOCを補正する。

Description

充電制御装置
 本発明は、二次電池の充電制御装置に関する。
 電気自動車(EV)やプラグインハイブリッド自動車(PHEV)、ハイブリッド自動車(HEV)に搭載する電池システムには、電池システムを構成する電池を安全に使用し、かつ電池の性能を最大限に引き出すために、電池の電圧や温度、電流を検出し、これらに基づいて電池の充電状態(State of Charge:SOC)を演算する電池制御装置を備えている。電池のSOCを演算する方式には、電池を流れる電流値を積算し、積算した容量値と電池の満充電容量に基づいてSOCを演算する電流積算方式がある。
 しかし、上述した電流積算方式でSOCを演算した場合、検出した電流値や電池の満充電容量の値に含まれる誤差により、SOC演算結果に誤差が生じる。そこで、電池のSOCと開放電圧(Open Circuit Voltage:OCV)との相関関係を利用して、SOCの演算結果に生じる誤差を補正する方式が提案されている(例えば、特許文献1参照)。具体的には、検出した電流値に基づいて演算したSOCから求めたOCVと、検出した無負荷時の電圧(つまりOCV)を比較し、この比較結果に基づいて誤差の補正を行うものである。
日本国特開2002-369391号公報
 しかしながら、電池のSOCとOCVとの相関関係は、一般に非線形であってSOCとOCVとが比例関係にあるわけではない。従って、電流積算方式によるSOCの演算結果から求めたOCVの値と、無負荷時に検出したOCVの値との差(すなわち誤差)が同じであっても、そのOCV差に対応するSOC差は、OCVのレベル(またはSOCのレベル)によって異なることになる。そのため、上述した従来の方法では、SOC演算結果に生じる誤差を正確に抽出することが出来ない。
 本発明の第1の態様によると、充電制御装置は、二次電池の電圧を検出する電圧検出部と、二次電池の電流を検出する電流検出部と、電流検出部で検出される電流を積算して得られる積算容量値と二次電池の満充電容量値とに基づいて、二次電池のSOCを演算する充電状態演算部と、二次電池のSOCと開放電圧との関係を表す相関曲線上の2点を、それら2点における曲線の傾きの差が最小となるように選択する選択部と、選択部で選択された2点における開放電圧を充電一時停止電圧としてそれぞれ設定する充電停止電圧設定部と、二次電池の充電中に、電圧検出部で検出される電圧が充電一時停止電圧の各々と等しくなった時、充電をそれぞれ一時停止する充電制御部と、充電制御部による一時停止毎に、該一時停止時における電圧検出部の電圧検出値と相関曲線とに基づくSOCをそれぞれ求めて、それら2つのSOCの差分を算出する充電状態変化算出部と、1回目の一時停止から2回目の前記一時停止までの積算容量値に基づくSOC変化、および、充電状態変化算出部で算出した差分に基づいて、充電状態演算部で演算されるSOCを補正する補正部と、を備えている。
 本発明の第2の態様によると、第1の態様の充電制御装置において、充電停止電圧設定部は、選択部により選択された2点の一方が充電開始点であった場合、他方の点のみに関して、該点における開放電圧を充電一時停止電圧として設定し、充電状態変化算出部は、充電制御部による一時停止時に電圧検出部により検出される電圧と相関曲線とに基づくSOCと、充電開始前に電圧検出部により検出される電圧と相関曲線とに基づくSOCとをそれぞれ求めて、それら2つのSOCの差分を算出し、補正部は、充電開始から一時停止までの積算容量値に基づくSOC変化、および、充電状態変化算出部で算出した差分に基づいて、充電状態演算部で演算されるSOCを補正するようにしたものである。
 本発明の第3の態様によると、第1の態様の充電制御装置において、充電停止電圧設定部は、選択部により選択された2点の一方が充電終了点であった場合、他方の点のみに関して、該点における開放電圧を充電一時停止電圧として設定し、充電状態変化算出部は、充電制御部による一時停止時に電圧検出部により検出される電圧と相関曲線とに基づくSOCと、充電終了後に電圧検出部により検出される電圧と相関曲線とに基づくSOCとをそれぞれ求めて、それら2つのSOCの差分を算出し、補正部は、一時停止から充電終了までの積算容量値に基づくSOC変化、および、充電状態変化算出部で算出した差分に基づいて、充電状態演算部で演算されるSOCを補正するようにしたものである。
 本発明の第4の態様によると、第1乃至3のいずれか一の態様に記載の充電制御装置において、二次電池の温度を検出する温度検出部と、一時停止から電圧検出部による電圧検出が行われるまでの休止時間を、少なくとも1点における充電状態および一次停止時の二次電池の温度に基づいて設定する休止時間設定部と、を備えたものである。
 本発明の第5の態様によると、第1または3の態様に記載の充電制御装置において、二次電池の温度を検出する温度検出部と、二次電池の分極特性情報が予め記憶された記憶部と、一時停止および充電終了から電圧検出部による電圧検出が行われるまでの各休止時間を、少なくとも一時停止および充電終了の時点におけるSOCと前記時点の二次電池の温度および分極特性情報に基づいて、一時停止および充電終了において電圧検出部により検出される電圧に含まれる分極誤差が同一となるように設定する休止時間設定部と、を備えたものである。
 本発明の第6の態様によると、充電制御装置は、二次電池が複数個直列に接続された二次電池群の、各二次電池の電圧をそれぞれ検出する電圧検出部と、二次電池群を流れる電流を検出する電流検出部と、二次電池に並列に接続されたバイパス抵抗およびバイパススイッチを、二次電池群の二次電池毎に有する放電回路と、電流検出部で検出される電流を積算して得られる積算容量値と二次電池の満充電容量値とに基づいて、各二次電池のSOCを演算する充電状態演算部と、二次電池のSOCと開放電圧との関係を表す相関曲線上の1点を、その1点における曲線の傾きと相関曲線上の充電開始点における曲線の傾きとの差が最小となるように選択する処理を、複数の二次電池のそれぞれに対して行う選択部と、複数の二次電池に対して選択された前記1点における開放電圧を、対応する二次電池の充電一時停止電圧としてそれぞれ設定する充電停止電圧設定部と、二次電池の充電中に、電圧検出部で検出される電圧が複数の充電一時停止電圧の内の最も高い充電一時停止電圧と等しくなった時、充電を一時停止する充電制御部と、最も高い充電一時停止電圧が設定された二次電池を除く他の二次電池を、電池電圧が各々の二次電池に対して設定された充電一時停止電圧となるまで、放電回路により放電させる放電制御部と、充電制御部による一時停止時および放電の終了時に電圧検出部により検出される電圧と相関曲線とに基づくSOCと、充電開始前に電圧検出部により検出される電圧と相関曲線とに基づくSOCとをそれぞれ求めて、それら2つのSOCの差分を複数の二次電池毎に算出する充電状態変化算出部と、充電開始から一時停止または放電終了までの積算容量値に基づくSOC変化、および、充電状態変化算出部で算出した差分に基づいて、充電状態演算部で演算されるSOCを複数の二次電池毎に補正する補正部と、を備える。
 本発明によれば、SOC演算における誤差をより低減することができる。
プラグインハイブリッド自動車の蓄電装置の構成例を示す図である。 組電池制御部150の構成を示す図である。 SOCとOCVとの相関関係を示す図である。 CCCV充電方式を説明する図である。 パルス充電方式を説明する図である。 電流値を積算してSOCを演算する方法を説明する図である。 SOC-OCV相関曲線およびdSOC/dOCVを示す図である。 電圧検出誤差と、その電圧検出誤差に対応して生じ得るSOC検出誤差との関係を示す図である。 SOCの差分を説明する図である。 充電開始時のSOC(充電開始SOC)と充電停止時のSOC(充電停止SOC)との関係を示す図である。 充電動作を説明するフローチャートである。 充電制御を適用した場合の、実際の組電池電圧の変化を示す図である。 SOC-OCV相関曲線上の2点の選び方を説明する図である。 SOC-OCV相関曲線上の2点の選び方を説明する図である。 SOC変化(ΔSOC)を検出する際に生じる誤差を説明する図である。 満充電容量を演算した場合に生じる誤差を説明する図である。 単電池制御部121a及び単電池制御部121bの構成を示す図である。 第2の実施形態を説明する図である。 第2の実施の形態における充電動作を示すフローチャートである。 充電動作と放電動作とを説明する図である。 単電池111-1、単電池111-2、単電池111-3の電圧変化を示す図である。 放電回路による上記放電を利用した場合の充電動作を示すフローチャートである。 第3の実施の形態における組電池制御部150の構成を示すブロック図である。 充電停止後の電池電圧の変化の様子を示す図である。 第3の実施の形態の充電動作を説明する図である。
 以下、図を参照して本発明を実施するための形態について説明する。なお、以下では、プラグインハイブリッド自動車(PHEV)の電源を構成する蓄電装置に対して本発明を適用した場合を例に説明するが、電気自動車(EV)などの乗用車や携帯電話を始めとした民生用機器等の電池システムにも適用することができる。
 また、以下に説明する実施例では、電池システムを構成する電池にリチウムイオン電池を適用した場合を例に挙げて説明する。蓄電器としては、他にもニッケル水素電池や鉛電池などを用いることもできる。
-第1の実施形態-
 本発明の第1実施例を図1から図16に基づいて説明する。図1は、プラグインハイブリッド自動車の蓄電装置の構成例を示す図である。
 まず、バッテリ100の構成について説明する。バッテリ100は、複数の単電池111から構成される組電池110と、単電池111の状態を監視する単電池管理部120と、バッテリ100に流れる電流を検知する電流検知部130と、組電池110の総電圧を検知する電圧検知部140と、組電池110の制御を行う組電池制御部150と、を備えている。バッテリ100はリレー300を介してインバータ400に接続され、リレー310を介して充電器420に接続されている。インバータ400にはモータジェネレータ410が接続されており、組電池110のエネルギーによりモータジェネレータ410を駆動する。
 組電池110は、電気エネルギーの蓄積及び放出(直流電力の充放電)が可能な複数の単電池111(リチウムイオン電池)を電気的に直列に接続して構成される。1つの単電池111は、出力電圧が3.0~4.2V(平均出力電圧:3.6V)であり、以下では、単電池111の開放電圧OCV(Open Circuit Voltage)と充電状態SOC(State of Charge)との間に図3に示すような相関関係がある場合を例に挙げて説明するが、これ以外の電圧仕様のものでも構わない。
 組電池110を構成する単電池111は、電池の状態の管理・制御を行う上で、所定の単位数にグループ分けが行われている。グループ分けされた単電池111は、電気的に直列に接続され、単電池群112を構成する。所定の単位数は、例えば1個、4個、6個・・・というような数で等区分とする場合もあれば、4個と6個とを組み合わせるような複合区分とする場合もある。本実施の形態では、説明を簡単にするために、組電池110は、4個の単電池111を電気的に直列に接続して単電池群112a及び112bを構成し、さらに単電池群112aと単電池群112bとを電気的に直列に接続し、合計8個の単電池111を備えるものとした。
 単電池管理部120は、組電池110を構成する単電池111の状態を監視する。単電池管理部120は複数の単電池制御部121a、121bから構成されており、単電池制御部121aは単電池群112aに割り当てられ、単電池制御部121bは単電池群112bに割り当てられている。各単電池制御部121a、121bは、各々が割り当てられている単電池群112a,112bからの電力を受けて動作し、各単電池制御部121a、121bを構成する各単電池111の状態を監視及び制御する。
 組電池制御部150には、単電池管理部120から送信される単電池111の電池電圧や温度、電流検知部130から送信される電流値、電圧検知部140から送信される組電池110の総電圧値が、それぞれ入力される。組電池制御部150は、入力された情報をもとに組電池110の状態検知などを行う。また、組電池制御手段150で行われる処理の結果は、単電池管理部120や車両制御部200に送信される。
 車両制御部200は、組電池制御部150からの情報に基づいてインバータ400及び充電器420の制御を行う。車両走行中にはバッテリ100はインバータ400と接続され、組電池110が蓄えているエネルギーをもとに、モータジェネレータ410が駆動される。充電器420で充電を行う場合には、バッテリ100がリレー310を介して充電器420と接続され、組電池制御部150からの充電終了電圧や充電電流の情報をもとに充電器420を制御し、外部電源によるバッテリ100の充電が行われる。なお、詳細は後述するが、本発明では、車両制御部200は、組電池制御部150が決定した充電停止電圧をもとに、充電器420による充電を一時停止させ、その後、再充電を行うように充電器420を制御する。
 充電器420は、車両制御部200から送信される情報をもとに、バッテリ100の充電を行う。充電方式には、図4に示すようなCCCV充電(Constant-Current Constant-Voltage:定電流―定電圧充電)や図5に示すようなパルス充電方式が挙げられる。図4に示すCCCV充電方式は、充電開始から定電流モードで充電を行い、充電の目標とする電圧に到達したならば定電圧モードで充電を行う。また、図5のパルス充電では、ある所定の時間毎にパルス電流を入力し、充電の目標とする電圧まで充電を行う。
 組電池制御部150と単電池管理部120は、フォトカプラのような絶縁素子170を介して、信号通信手段160により信号の送受信を行う。絶縁素子170を設けるのは、組電池制御部150と単電池管理部120とで、動作電源が異なるためである。すなわち、単電池管理部120は、組電池110からの電力で動作するのに対して、組電池制御部150は、不図示の車載補機用のバッテリ(例えば14V系バッテリ)を電源として用いている。絶縁素子170は、単電池管理部120を構成する回路基板に実装しても良いし、組電池制御部150を構成する回路基板に実装しても良い。なお、システム構成によっては、絶縁素子170を省略することも可能である。
 上述した単電池制御部121a,121bは、それぞれが監視する単電池群112a,112bの電位の高い順に従って直列に接続されている。組電池制御部150が送信した信号は、信号通信手段160および絶縁素子170を介して単電池制御部121aに入力される。単電池制御部121aの出力と単電池制御部121bの入力との間にも、同様に信号通信手段160が設けられ、信号通信手段160により信号の伝送が行われる。
 尚、本実施形態では、単電池制御部121aと単電池制御部121bとの間には絶縁素子170が設けられていないが、絶縁素子170を設けるようにしても良い。単電池制御部121bの出力は、絶縁素子170および信号通信手段160を介して、組電池制御部150の入力に伝送される。このように、組電池制御部150と単電池制御部121a,121bとは、信号通信手段160によりループ状に接続されている。このループ接続は、デイジーチェーン接続あるいは数珠繋ぎ接続もしくは芋づる式接続と呼ばれる。
 組電池制御部150の構成について図2に基づいて説明する。組電池制御部150は、電池状態検知部151と充電状態傾き判定部152及び充電停止電圧決定部153を備えている。
 電池状態検知部151には、単電池管理部120から出力される単電池111の電池電圧や温度の計測値、単電池111が過充電もしくは過放電であるかの診断結果や単電池管理部120に通信エラーなどが発生した場合に出力される異常信号、電流検知部130からの電流値、電圧検出部140から出力される組電池110の総電圧値、上位の制御装置である車両制御部200から出力された信号などが入力される。電池状態検知部151は、入力された情報と、予め記憶されている単電池111の内部抵抗やSOCとOCVとの関係に基づいて、単電池111のSOC演算や電圧均等化制御を行うための演算、充放電量を制御するための演算などを実行する。そして、演算結果やこれに基づく指令を、単電池管理部120や車両制御部200に出力する。
 充電状態傾き判定部152は、後述するように、充電器420による充電が開始される前のSOCに応じたOCVの傾きを判定し、判定されたOCVに応じて、充電器420による充電を一時停止させるSOCを推定する。充電停止電圧決定部153は、充電状態傾き判定部152で推定されたSOCに基づいて、充電を一時停止させる充電停止電圧を決定する。
 続いて、図2に示した電池状態検知部151、充電状態傾き判定部152、充電停止電圧決定部153の動作について説明する。
 まず、電池状態検知部151でのSOC演算方法について説明する。単電池111のSOCは、次式(1)に示すように、組電池110に流れる電流値を積算することで演算する。式(1)において、SOC0は充放電開始時のSOCであり、充放電開始時に検出されたOCVとSOC-OCV相関関係(図3参照)に基づいて決定される。ここで、開始時のSOCとは、充放電を開始する直前の充放電が停止されているときのOCVに基づくSOCのことである。Icは充電電流[A]、Idは放電電流[A]、Qmaxは単電池111の満充電容量[Ah]、ηは充電効率、∫は積分記号である。
 SOC = SOC0 + (∫Ic×ηdt - ∫Id dt)/Qmax × 100 [%]   …(1)
 図6(a)は図1の電流検知部130で検出される電流値の変化を示しており、縦軸は電流値で横軸は時間である。図6(a)では、充電の場合の電流値をプラスとし、放電の場合の電流値をマイナスとしている。また、図6(b)は、充放電に伴うSOCの変化を示したものである。黒丸印は充放電開始時点を示しており、この時点から電流積分を開始する。
 電流積算方式によるSOC演算において生じる誤差には、式(1)における、SOC0検出時の誤差や、満充電容量Qmaxの誤差、電流検知部130に起因する誤差(ゲイン誤差やオフセット誤差の影響)がある。SOC0検出時の誤差は、OCVとSOC-OCV相関関係(図3)とからSOCを推定する際において、単電池管理部120若しくは電圧検知部140の測定値に含まれる電圧計測誤差により生じる。式(1)の第2項には、Qmaxの誤差と、電流積算にかかわる誤差(電流検知部130の有するゲイン誤差やオフセット誤差の影響)とが含まれる。そして、式(1)の第2項において生じ得る誤差は、SOCの変化量や充放電時間(積分時間)に応じて変化する。そのため、SOCの変化量が大きい程、若しくは積分時間が長い程、SOCの検出誤差は大きくなる。
 充電状態傾き判定部152について、図7~10を参照して説明する。図7において、曲線L1は単電池111のSOC-OCV相関関係(相関曲線)を示している。曲線L2は、SOC-OCV相関曲線L1における各SOCでの傾きの逆数、すなわち、SOCの変化量dSOCと電圧の変化量dOCVとの比であるdSOC/dOCVを表している。図7から分かるように、SOCが低い領域および満充電状態に近い領域ではdSOC/dOCVは小さく、それらの間の領域ではdSOC/dOCVは大きくなっている。
 また、図8は、検出された電池電圧(OCV)に含まれる電圧検出誤差と、その電圧検出誤差に対応して生じ得るSOC検出誤差との関係を示したものである。図8に示すように、曲線L1のdSOC/dOCVが小さい範囲では、電圧検出誤差によるSOC検出誤差は小さいが、逆に、dSOC/dOCVが大きい範囲では電圧検出誤差によるSOC検出誤差は大きい。
 しかし、図9に示すように、dSOC/dOCVが等しい範囲では、電圧検出時の検出誤差が等しければ、検出電圧(OCV)からSOCを推定した際のSOCに含まれる誤差は等しくなる。縦軸の白丸は誤差が無い場合の検出電圧であり、横軸の白丸は検出電圧に誤差が含まれていない場合のSOCである。実際には検出誤差に相当する誤差が推定されるSOCには含まれるが、推定された2つのSOCに含まれる誤差が等しい場合には、その2つのSOCの差分は誤差を含まないSOCの差分と等しくなる。すなわち、誤差の等しいSOC同士の差を取ることにより、SOCの変化(ΔSOC)を精度良く求めることが可能となる。
 本実施の形態では、充電器420で組電池110を充電する際に、SOC-OCV相関曲線において傾きが等しい(すなわち、dSOC/dOCVが等しい)ところで充電を停止し、または、傾きの差が最小となるようなところで充電を停止し、そのときに得られるSOCの差を取ってSOCの変化ΔSOCを精度良く求めることで、例えば、そのΔSOCを用いて電流積算法によるSOC演算を精度良く行えるようにした。充電状態傾き判定部152では、傾きが等しくなるSOC、または傾きの差が最小となるSOCの判定が行われる。以下では、等しくなるSOCを判定する場合について説明する。
 図10は、充電開始時のSOC(充電開始SOC)と充電停止時のSOC(充電停止SOC)との関係を示す図である。充電開始SOCと充電停止SOCとの間の変化量(ΔSOC)を正確に求めるためには、充電開始時のdSOC/dOCVと充電停止時のdSOC/dOCVとが等しく(または、2つの差が小さく)なるようなSOCを充電停止SOCとして選択すれば良い。例えば、充電開始SOCがSOC1であった場合には、dSOC/dOCVがほぼ等しいSOC11を充電停止SOCに選択すれば良い。同様に、充電開始SOCがSOC2であった場合には図10のSOC21を充電停止SOCに選択し、充電開始SOCがSOC3であった場合には図10のSOC31を充電停止SOCに選択すれば良い。
 充電状態傾き判定部152は、充電開始直前の無負荷時に取得された電圧(OCV)とSOC-OCV相関関係(図10の曲線L1)とに基づいて、充電開始直前のSOC1を推定する。そして、このSOC1におけるdSOC/dOCVを図10に示すdSOC/dOCV曲線L2に基づいて推定する。その後、推定したdSOC/dOCVと等しいdSOC/dOCVを有する点をdSOC/dOCV曲線L2から見つけ、その点のSOC11を充電停止時SOCに選択する。その後、選択したSOC(SOC11)を充電停止電圧決定部153に送信する。なお、SOCに応じたdSOC/dOCVの値については(すなわち、図10の曲線L2で示すSOCとdSOC/dOCVとの相関関係)、予め組電池制御部150に設けられているEEPROMのような記憶手段に記憶しておいても良いし、SOCとOCVの関係を関数で近似し、これに基づいて、dSOC/dOCVを算出するようにしても良い。
 充電停止電圧決定部153は、充電状態傾き判定部152により選択されたSOC11とSOC-OCV相関関係とに基づいて充電停止電圧(OCVt)を決定する。その後、充電器420による充電が開始され、組電池110の平均電圧(単電池111当たりの電圧)が上記決定された充電停止電圧OCVtに到達したら、充電器420を一時停止させる信号を車両制御部200に送信する。車両制御部200は、一時停止信号を受信したならば、充電器420による充電を一時停止させる。
 なお、充電停止電圧OCVtの設定方法としては、上述した方法に加えて、OCVの値に単電池111の内部抵抗による電圧変化分を加算した値(OCV+I×R)に設定するようにしても良い。さらには、分極による電圧変化の分も考慮して充電停止電圧OCVtを決定するようにしても良い。
 図11は、充電開始から充電が終了されるまでの動作手順を説明するフローチャートである。図11の動作について、図10に示す相関関係および図12に示す実際の組電池電圧の変化を参照しながら説明する。
 まず、ステップS100で、充電開始前の無負荷時における電圧(OCV)を電圧検知部140により検出して取得し、その電圧OCVと図10に示すようなSOC-OCV相関関係とに基づいて、電圧OCVに対応するSOC1(充電開始時のSOC1)を推定する。ここでは、SOC1を例に説明する。ステップS110では、ステップS100で推定されたSOC1に基づいて、充電状態傾き判定部152により、充電を一時停止させるSOC(充電停止電圧SOCt)を決定する。上述したように、SOC1と曲線L2とからSOC1におけるdSOC/dOCVを求め、そのdSOC/dOCVと等しいdSOC/dOCVを有する点を推定し、その点のSOC11を求める。このSOC11が充電停止電圧SOCtである。充電停止電圧SOCt(=SOC11)は充電停止電圧決定手段153に送信される。
 ステップS120では、充電停止電圧決定部153は、充電状態傾き判定手段152から送信された充電停止電圧SOCt(=SOC11)とSOC-OCV相関関係(曲線L1)とに基づいて、充電停止電圧SOCtに対応する充電停止電圧(OCVt)を決定する。その後、ステップS130へ進み充電器420による充電を開始する。
 ステップS140では、組電池110の平均電圧が充電停止電圧(OCVt)に到達したかどうかを判定する。充電停止電圧に到達したと判定するとステップS150に進んで充電を停止する。充電を停止すると、検出される電圧値は内部抵抗分だけ低下し、その後、分極分が徐々に低下する。充電停止後の電圧変化が落ち着く所定時間休止後、電圧(すなわち無負荷時の電圧OCV)を電圧検知部140で検出して取得し(図12ではOCV'と記載)、図10に示すSOC-OCV相関関係(曲線L1)に基づいて、OCV'に対応するSOC(図12のSOC')を推定する。
 ステップS160では、充電器420による充電を再スタートして、充電が完了するまで充電を行う。ステップS170では、組電池110の充電が完了したかどうかを判定し、充電が完了していない場合は、充電を続行する。充電が完了していれば、充電器420による充電を停止する。
 図11、12では図4に示すCCCV充電を例に説明を行ったが、図5に示すようなパルス充電による充電制御方法でも、図11に示すフローチャートと同様の制御を行うことで、充電開始時から充電を一時停止するまでのSOC変化(=ΔSOC)を精度良く検出することが可能である。なお、充電を一時停止させた後の休止時間は、電池の分極特性に基づいて決定される。具体的には、SOCや温度に応じた休止時間を予め測定により計測しておき、計測した結果に基づいて決定する。
 図11,12に示した例では、SOC変化量(=ΔSOC)を検出するための2点(SOC-OCV相関曲線上の2点)のSOCを、充電開始前のSOCと充電一時停止後のSOCとしたが、この2点に限定されるものではない。例えば、充電開始時のdSOC/dOCVと等しい傾きが曲線L2の充電開始以降になかった場合には、図13のように、充電終了時のSOCを上記2点の内の一方に採用する。そして、他の1点は充電終了時のdSOC/dOCVと等しいdSOC/dOCVを有する点とし、その点のSOCに対応するOCVを充電停止電圧OCVtとする。
 また、図13に示すように行っても、充電終了時と同じdSOC/dOCVを有する点が見つからなかった場合には、図14に示すような2点を採用しても良い。この場合、充電開始と充電終了との間からdSOC/dOCVが等しい2点を選び、それぞれのOCVを充電停止電圧とする。そのため、充電開始から充電終了までに一時的な充電停止を2回行うことになり、それぞれで得られたSOCを用いてSOC変化(=ΔSOC)を算出する。
 図15(a)は、SOC-OCV相関関係と各SOCにおけるdSOC/dOCVを示した図である。図15(b)は、図15(a)のような関係がある場合に、充電開始時のSOCを20%、40%、60%と変化させ、充電開始時のdSOC/dOCVの値を基準として充電開始後のdSOC/dOCVの値がどのように変化するかを示した図である。横軸は充電開始からのSOC変化(ΔSOC)を表し、縦軸はΔSOCだけ変化したときのdSOC/dOCVの値と充電開始SOCのdSOC/dOCVとの差を表す。dSOC/dOCVの差が最も小さくなる時点で充電を一時停止すれば良い。SOC変化ΔSOCの検出誤差はdSOC/dOCVの差に比例するので、ΔSOC検出誤差を図示すると図15(c)のように、図15(b)と同様な傾向を有する図となる。
 さらに、図16(a)は、ΔSOCの真値に対するΔSOC誤差の割合を示す図である。この場合には、ΔSOC誤差をΔSOCの真値で割っているので、誤差の割合はΔSOCが大きくなるにつ入れて小さくなる傾向にあるが、充電開始時のSOCが40%の場合には、ΔSOC=30%付近が最も小さくなっている。これは、図15(b)の30%付近で値が小さくなっていることに対応している。
 本実施の形態では、上述したようにSOC変化ΔSOCを非常に小さな誤差で精度良く求めることができる。そして、そのΔSOCを利用して、式(1)の電流積算方式で算出されるSOCの算出精度の向上を図ることができる。例えば、ΔSOCを用いて電池の満充電容量Qmaxを精度良く求めることができる。
 電池の満充電容量Qmaxは、SOCの変化量(ΔSOC)と、その間に変化した電気量∫Idtとを用いて式(2)のように算出することができる。ここで用いるΔSOCは上述した2点間のSOC差であり、∫Idtは2点間の間に充電された電気量である。そのため、電気量∫Idtが精度良く検出されていれば、式(2)により満充電容量Qmaxを精度良く算出することができる。
Qmax=(∫Idt/ΔSOC)× 100          …(2)
 図16(b)は、図15(b)に示す結果と式(2)とに基づいて算出された満充電容量Qmaxを示したものである。図16(a)に示したように、ΔSOC中に含まれる誤差は、ΔSOCが大きくなればなるほど小さくなる傾向が見られるので、満充電容量の検出に生じる誤差も同様の傾向がある。すなわち、ΔSOCが大きく、かつ、dSOC/dOCVの差が小さくなるような2点を選択すれば、満充電容量の誤差を大幅に低減できる。
 ここでは、誤差の小さなΔSOCを利用した満充電容量Qmaxの精度向上について説明したが、電流検知部130で生じる誤差や、電池の充電効率ηの誤差を補正することができる。
 例えば、満充電容量Qmaxとして精度の良い値が記憶されている状態であれば、式(1)を用いたSOC演算で得られるSOCに基づくΔSOC1=(∫Ic×ηdt )/Qmax × 100と、充電の一時停止によって得られるΔSOCとを比較することによって、電流検知部130で生じる誤差を補正することができる。この場合、ΔSOC/ΔSOC1をSOC演算における補正係数として用いることで、SOC演算に含まれる電流検出誤差を補正することができる。
 また、充電効率ηについては、電流検知部130の検出誤差が無視できるぐらい小さければ、上述した補正係数ΔSOC/ΔSOC1は、充電効率ηの誤差に対する補正係数と考えることができる。
 さらに、満充電容量の誤差や電流検知部130の誤差などが混在している場合でも、上述のようにして求めたΔSOCを、式(1)によるSOC演算のための補正係数として利用することができる。すなわち、式(1)により算出されるSOCに基づき、図12の充電開始から充電を一時停止するまでのSOC変化(ΔSOC1とする)を求め、上述したΔSOCとΔSOC1との比ΔSOC/ΔSOC1を補正係数とする。そして、式(1)で算出されたSOCに補正係数ΔSOC/ΔSOC1を乗ずることで、補正されたSOCを得ることができる。
 上述したように、本実施の形態によれば、SOC変化量を精度良く算出できる。そして、その精度良いSOC変化量を用いることによって、満充電容量や充電効率や電流検出誤差の補正を行うことが可能となり、SOC演算精度の高い電池システムを実現することができる。
 第1の実施の形態では、複数の単電池111のそれぞれが同一の状態であることを仮定し、電圧検知部140で検出される総電圧を単電池111の数で割って得られる平均電圧を用いて充電を制御している。そのため、単電池111に関するSOC-OCV相関関係、SOC演算値、Qmax等を、組電池110に対応するものと置き換えて考えれば、組電池110の充電方法と考えることができる。逆に、一つの単電池111に的を絞って見れば、この平均電圧は単電池制御部121a,121bで取得される電池電圧に対応しており、上述した第1実施形態における充電制御を、一つの単電池111の充電制御と見なすこともできる。
-第2の実施の形態-
 本発明における第2の実施例について、図17から図22に基づいて説明する。上述した第1の実施の形態では、電圧検知部140で検出された総電圧に基づく平均電圧(単電池111当たりの電圧)を用いて、充電を一時停止させるようにした。すなわち、複数の単電池111のSOCのばらつきを考慮せず充電制御を行った。一方、以下に説明する第2の実施の形態では、複数の単電池111のSOCばらつきを考慮して、充電制御を行うようにしている。
 なお、本実施形態におけるプラグインハイブリッド自動車の蓄電装置の構成例は、図1と同様である。また、組電池制御部150の構成は、上述した図2と同様である。図17は、単電池制御部121a及び単電池制御部121bの構成を示す図である。
 各単電池制御部121a,121bは、バイパススイッチ123と、バイパススイッチ123を駆動するBSW駆動回路125と、管理対象とする複数の単電池111の電池電圧を計測する電圧検出回路124と、単電池制御部121a及び121bを動作させるための電源126と、組電池制御部150からの情報をもとに、単電池制御部121a及び121bの制御を行う制御回路127と、組電池制御部150または隣り合う単電池制御部121との信号の送受信を行う信号入出力回路128とを備えている。単電池制御部121a,121bの外部にはバイパス抵抗122が設けられ、このバイパス抵抗122とバイパススイッチ123とから放電回路が構成されている。
 制御回路127は、組電池制御部150から送信された電圧取得命令や均等化制御に関する情報を、信号入出力回路128を介して受信し、電圧検出回路124で検出された電池電圧やこれに基づく情報を信号入出力回路128に出力する。
 組電池110を構成する複数個の単電池111には、単電池111の個体差の影響によりSOCにばらつきが生じ得る。そのため、充電開始時SOCが図10に示すSOC1であるような単電池111については、SOC11に対応したOCVを充電停止電圧とするのが好ましく、充電開始時SOCがSOC2である単電池111については、SOC21に対応したOCVを充電停止電圧とするのが好ましい。
 そこで、本実施形態では、上述した電圧検知部140の検出電圧に代えて、充電開始時に各単電池制御部121a,121bが取得する各単電池111の電池電圧に基づき、充電器420を制御することを特徴としている。すなわち、各単電池111毎に充電停止電圧を設定し、充電開始後は各充電停止電圧において充電を一時停止し、対応する単電池111のSOCをおよびOCVを推定するようにした。これは、第1実施形態の図12に示す充電制御を、単電池111毎に個別に適用したものと言いえる。なお、以下では、説明を簡単にするために、図18に示すように組電池110を構成する単電池111の個数を2個とした。
 ここでは、充電開始時に組電池110を構成する単電池111のうち、SOCの高い単電池111を単電池111-1とし、SOCの低い単電池111を単電池111-2とする。このとき、充電開始時のSOCは単電池111-1と単電池111-2とで異なるため、充電状態傾き判定部152及び充電停止電圧決定部153は、単電池111-1に対応する充電停止電圧(第1の充電停止電圧)と単電池111-2に対応する充電停止電圧(第2の充電停止電圧)をそれぞれ求める。
 充電器420による充電を開始し、単電池111の電池電圧が求めた充電停止電圧に到達する度に、組電池制御部150から車両制御部200に充電停止信号を送信する。車両制御部200は、組電池制御部150から充電停止信号を受信したら、充電器420による充電を一時停止させる。そして、充電停止電圧に対応した単電池111のOCVを取得し、SOCに変換後、単電池111ごとにSOCの変化量を算出する。
 図18に示す例では、充電開始時のOCVは単電池111-2の方が高いので、その単電池111-2に関する第2の充電停止電圧の方が単電池111-1に関する第1の充電停止電圧よりも高くなっている。しかし、充電開始後、単電池111-2の電圧の方が先に充電停止電圧に達するため、単電池111-2の電圧が第2の充電停止電圧となったときに1回目の充電停止が実行される。この充電停止時に単電池111-2のOCV21およびSOC21が求まる。その後、充電を再開し、単電池111-1の電圧が第1の充電停止電圧となったときに2回目の充電停止が実行され、同様にして単電池111-1のOCV11およびSOC11を求める。その後、再び充電を再開し充電終了まで充電を行う。
 そして、単電池111-1に関してはΔSOC=SOC11-SOC1を誤差補正に使用し、単電池111-2に関してはΔSOC=SOC21-SOC2を誤差補正に使用する。このように、単電池111ごとに充電停止電圧を設定して充電器420を制御することで、単電池111ごとにSOCの変化量を正確に抽出することができる。
 なお、単電池111-1の充電停止電圧と単電池111-2の充電停止電圧とが等しい場合には、第1の実施形態の場合と同じように充電停止回数は1回となる。また、単電池111-1の充電停止電圧と単電池111-2の充電停止電圧とが所定の閾値以内におさまる場合は、充電器420による充電の停止回数を1回とし、そのときにOCV11,SOC11およびOCV21,SOC21を取得するようにしても良い。所定の閾値以内とは、得られるSOC変化に含まれる誤差が満足できる程度に小さくなる範囲に対応する範囲である。
 また、単電池111の個数が10個、20個・・・と多い場合には、充電開始時に求めた各単電池111の充電停止電圧のヒストグラムをとり、単電池111の個数が多い充電停止電圧の値で充電器420を停止させるように設定しても良い。そうすることで、充電停止回数を減らすことができる。
 なお、図18では、第1実施形態の図12に示す制御方法を単電池111の各々に適用したが、図13や図14に示す制御方法を適用しても良い。
 図19は、第2の実施の形態における充電動作を示すフローチャートである。まず、ステップS200で、各単電池111の充電開始前の無負荷電圧(OCV)を取得し、SOC-OCV相関関係を用いてSOCに変換する。ステップS201では、ステップS200で取得された各単電池111のSOCに基づいて、充電状態傾き判定部152により、充電を一時停止させるSOC(SOCt)を単電池111毎に決定し、充電停止電圧決定部153に送信する。ステップS202で、充電停止電圧決定部153は、充電状態傾き判定部152により送信されたSOCtとSOC-OCV相関関係とに基づいて、充電停止電圧(OCVt)を決定する。その後、ステップS203で充電器420による充電を開始する。
 ステップS204では、各単電池制御部121a,121bで取得される各単電池111の電池電圧が、各単電池111毎に設定された充電停止電圧に到達したかを判定する。何れか一つの電圧が充電停止電圧に到達したら、ステップS205に進み、充電を一時停止させる。ステップS206では、到達した充電停止電圧に対応する単電池111のOCV’を取得し、SOC’に変換する。そして、充電開始前のSOCとの差(ΔSOC=SOC’-SOC)を算出し、ステップS207で充電を再開する。
 続いて、ステップS208では、組電池110を構成する全ての単電池111が、各単電池111ごとに設定された充電停止電圧に到達したかを判定する。到達していないと判定された場合は、ステップS204に戻り、ステップS207までの処理を繰り返す。全ての単電池111が各単電池111に対して設定された充電停止電圧に到達したら、ステップS209に進む。ステップS209では、充電が一時停止された後に、再スタートした充電により満充電まで到達したかどうかを判定する。ステップS209で満充電まで到達したと判定されれば、充電器420による充電を終了する。
 なお、上述した例では、図18に示すように充電開始から充電終了までの間に、複数の充電停止電圧のそれぞれにおいて充電を一時的に停止するように制御した。そのため、単電池111の数が多くなればなるほど充電停止回数が多くなり、充電時間が長くなることになる。そこで、以下に示す例では、単電池111の個数に関係なく充電停止回数が1回で済むような充電制御について説明する。
 図17に示したように、単電池制御部121a,121bは、バイパス抵抗122及びバイパススイッチ123からなる放電回路を備えている。この放電回路は、複数の単電池111の充電容量のばらつきを調整するために設けられているものである。ここでは、この放電回路を利用することにより、充電停止回数を1回とするような制御を実現している。以下、図20~図22を用いて説明する。なお、簡単のため、図20及び図21では、組電池110を構成する単電池111の個数を3個とした。
 まず、充電状態傾き判定部152および充電停止設定手段153により、充電開始時に組電池110を構成する複数個の単電池111-1~111-3のOCV1,OCV2,OCV3を取得し、取得した各単電池111-1~111-3のOCV1,OCV2,OCV3に基づいて、単電池111-1~111-3の各充電停止電圧(第1の充電停止電圧、第2の充電停止電圧、第3の充電停止電圧)を求める。そして、充電器420による充電を開始し、充電中、各単電池111の電池電圧が全て、設定した充電停止電圧に到達したら、充電器420による充電を一時停止させる。
 図20に示す例では、図20(b)のように、単電池111-1~111-3の充電停止SOC1,SOC2,SOC3に対するOCVは、OCV3,OCV2,OCV1の順に高くなっている。すなわち、第1の充電停止電圧が最も高く、順に第2の充電停止電圧、第3の充電停止電圧となっている。そのため、各単電池111の電池電圧が全て設定した充電停止電圧に到達するのは、図20(a)に示すように単電池111-1の電圧が第1の充電停止電圧に達したときである。このとき、単電池111-2、111-3の電圧はそれぞれの充電停止電圧よりも高くなっている。そして、充電停止電圧に到達するのが一番遅い単電池111-1の電池電圧が、設定された充電停止電圧に到達したとき、充電器420による充電を一時停止させる。
 その後、一番最後に充電停止電圧に到達した単電池111-1以外の単電池111-2,111-3を放電対象の単電池111とし、放電対象となった単電池111に対応するバイパススイッチ123をONし、放電回路へ放電させる(図21)。この放電によって、単電池111-2及び単電池111-3のSOCは減少し、図20(b)のように、単電池111-2及び単電池111-3の電池電圧が、それぞれ第2の充電停止電圧、第3の充電停止電圧と等しい電圧となった時点で、放電を各々停止する。この放電は各単電池111ごとに行われ、図21に示す例では、単電池111-2の放電が先に終了し、次いで単電池111-3の放電が終了する。
 単電池111-3の放電が終了したならば、所定の休止時間を置いた後に、単電池111-1、単電池111-2、単電池111-3のOCV11,OCV21,OCV31を取得し、それぞれSOC11,SOC21,SOC31に変換する。その後、単電池111ごとにSOCの変化量を算出する。OCV11,OCV21,OCV31が取得されたならば、図21に示すように充電を再開し、充電終了となるまで充電を行う。
 図22は、放電回路による上記放電を利用した場合の充電動作を示すフローチャートである。まず、ステップS210で、各単電池111の充電開始前の無負荷電圧(OCV)を取得し、SOCに変換する。ステップS211では、各単電池111のSOCに基づいて、充電状態傾き判定部152により、充電を一時停止させるSOC(SOCt)を単電池111毎に決定し、充電停止電圧決定部153に送信する。
 ステップS212で、充電停止電圧決定部153は、充電状態傾き判定部152により送信されたSOCtとSOC-OCV相関関係とに基づいて、充電停止電圧(OCVt)を決定する。その後、ステップS213で充電器420による充電を開始する。ステップS214では、各単電池111の電池電圧が、各単電池111毎に設定された充電停止電圧に到達したかを判定する。組電池110を構成する全ての単電池111が各単電池111ごとに設定された充電停止電圧に到達したと判断された場合、ステップS215に進み、充電器420による充電を一時停止させる。
 ステップS216では、充電停止電圧に到達するのが、一番遅い単電池111以外の単電池111をバイパス抵抗122及びバイパススイッチ123から構成される放電回路への放電対象とし、放電対象となる単電池111に並列に接続されているバイパススイッチをONにして放電を開始する。ステップS217では、放電対象となった全ての単電池111の放電が終了したかを判定する。放電が終了したと判定された場合は、ステップS218へ進む。
 ステップS218では、到達した充電停止電圧に対応する単電池111のOCV’を全単電池分取得し、SOC’に変換する。そして、充電開始前のSOCとの差(ΔSOC=SOC’-SOC)を算出後、ステップS219へ進み充電を再開する。ステップS219では、充電を再スタートし、ステップS220で再充電により満充電まで到達したかどうかを判定する。ステップS220で満充電まで到達したと判定されれば、充電器420による充電を終了する。
 このような充電動作を行うことで、各単電池111ごとに誤差の少ないSOC変化ΔSOCを抽出することができる、そのため、第1の実施の形態で行った誤差補正と同様の補正を、組電池110を構成する単電池111ごとに行うことが可能となり、組電池110のSOC演算誤差を高精度に補正することができる。SOC変化量に基づいた満充電容量や充電効率の補正も、第1の実施の形態の場合と同様に行うことができる。
-第3の実施の形態-
 次に、本発明の第3の実施の形態について、図23から図25に基づいて説明する。本実施の形態は、充電器420による充電を一時停止させた後の組電池110もしくは単電池111の電池電圧を取得するまでの時間(休止時間)を、一時停止後の電池電圧の変化(分極電圧の変化)を考慮に入れて決定することを特徴とする。
 図23に本実施形態における組電池制御部150の構成を示すブロック図を示す。本実施形態では、図2に示す組電池制御部150に、さらに休止時間設定部154を加える。休止時間設定部154は、停止期間中の電池電圧の変化を考慮に入れて、2点間のSOC差を算出することを特徴とする。
 図24、図25に基づいて、本実施形態における充電停止後の休止時間の設定方法を説明する。図24は、充電停止後の電池電圧の変化の様子を表している。電池の電圧は、充電停止後に図24に示すように指数関数的に変化し、OCVの値へと近づいていく。OCVの値に到達するまでの時間は、電池の状態や電池の使われ方に応じて変化する。図24では、一例としてSOCに応じた分極緩和時間の変化の様子を表しており、SOCが小さい程、分極緩和時間は長くなる傾向を表している。また、分極緩和時間は、電池の温度や入力電流値、電流印加時間に応じても変化する。図24に示すような単電池111の分極特性については、予め実測することで取得することができ、それらの情報は予め組電池制御部150の記憶部に記憶されている。
 上述した実施の形態では、SOC-OCV相関関係におけるdSOC/dOCVの差が小さくなるような2点のSOCを決定し、実施例1や実施例2で説明したように充電器420を制御し、充電が一時停止したのちの電圧からSOCを求め、充電中に変化したSOC変化量を抽出するようにしている。しかし、充電が一時停止した後の電池電圧には、図24に示したような分極電圧による影響が残るため、分極電圧が緩和しきる前の電池電圧OCVを用いてSOCへの変換を行った場合、変換後のSOCには、緩和しきれずに残っている分極電圧分の誤差が生じてしまう。
 そこで、本実施形態では、2点のSOCを求める際に、緩和しきれずに残っている分極電圧分が等しくなるように、充電器420の一時停止期間を設定する。つまり、図25に示すように、ΔV1とΔV2が等しくなるような休止時間を設定すれば、2点のSOCの差を算出したときに、2点の分極電圧により生じ得る誤差が打ち消され、SOCの変化量を精度良く抽出できることになる。
 休止時間は、充電状態傾き判定部152に基づいて判定された2点のSOCと、判定された2点のSOCに到達するまでの通電時間と、単電池111の温度とに基づいて決定される。設定される休止時間は、予め温度や通電時間に応じた分極電圧の測定結果に基づいて決定し、休止時間設定部154に記憶しておく。充電開始前に、充電状態傾き判定部152が決定した2点のSOCを、休止時間設定部154に送信する。そして、休止時間設定部154は、2点のSOCに基づいて通電時間を決定し、休止時間を決定する。
 充電開始から充電停止電圧に到達するまでの時間を計測しておき、その充電停止電圧に到達するまでの時間を上述した2点のSOCに到達するまでの通電時間として決定するようにしても良いし、以下に示す式(3)から通電時間tを予測するようにしても良い。ここで、SOC1は通電開始前のSOC[%]、SOC2は充電目標SOC[%]、Qmaxは単電池111の満充電容量[Ah]、Icは充電電流[A]である。
  t=(SOC2-SOC1)/100×Qmax/Ic           …(3)
 上述したように、決定した休止時間、休止を置くことで分極の緩和を考慮に入れた充電器420の制御が可能となるため、SOC変化量を精度よく抽出することが可能となる。そして、そのSOC変化量を利用することで、上述した第1の実施形態及び第2の実施形態の場合と同様の効果を得ることができる。
 以上説明したように、充電制御装置は、二次電池である単電池111の電圧を検出する単電池管理部120と、単電池111を流れる電流を検出する電流検知部140と、電流検知部140で検出される電流を積算して得られる積算容量値と単電池111の満充電容量値Qmaxとに基づいて、単電池111の充電状態SOCを演算する組電池制御部150と、単電池111の充電状態SOCと開放電圧OCVとの関係を表す相関曲線上の2点を、それら2点における曲線の傾きの差が最小となるように選択する充電状態傾き判定部152と、単電池111で選択された2点における開放電圧を充電停止電圧としてそれぞれ設定する充電停止電圧決定部153と、を備える。組電池制御部150は、単電池111の充電中に、単電池管理部120で検出される電圧が充電停止電圧の各々と等しくなった時、充電をそれぞれ一時停止し、各一時停止毎に、該一時停止時における単電池管理部120の電圧検出値と相関曲線とに基づく充電状態SOCをそれぞれ求めて、それら2つの充電状態SOCの差分ΔSOCを算出し、1回目の一時停止から2回目の前記一時停止までの積算容量値に基づく充電状態変化、および、算出した差分に基づいて、演算による充電状態SOCに含まれる誤差を補正する。
 上述のように、曲線の傾きの差が最小となるように相関曲線上の2点を選択しているので、差分ΔSOCに含まれる誤差は非常に小さくなり、SOC演算を精度良く補正することができる。相関曲線上の2点としては、一方が充電開始点や重量終了点であっても良い。このような充電制御は、組電池110に含まれる単電池111毎に行っても良いし、組電池110を一つの二次電池とみなし、電圧検知部140で検出される電圧を用いて組電池110全体に対して上述の充電制御を適用しても良い。
 また、少なくとも充電が一時停止される点での充電状態SOCと単電池管理部120で検出される単電池111の温度とに基づいて、一時停止から電圧検出が行われるまでの休止時間を設定することで、分極の影響が小さくなった時点で電圧測定を行うことができる。その結果、ΔSOCに含まれる分極による誤差を小さくすることができる。
 さらに、単電池111の分極特性情報が予め組電池制御部150の記憶部(不図示)に記憶しておき、この分極特性情報に基づいて、一時停止および充電終了において検出される電圧に含まれる分極誤差が同一となるように休止時間を設定するようにしても良い。その結果、ΔSOCの演算を行うことで各々の分極誤差がキャンセルされ、ΔSOCの演算精度がより向上する。
 単電池111が複数個直列に接続された電池群を含む組電池110の場合、単電池111に並列に接続されたバイパス抵抗122およびバイパススイッチ123を、単電池111毎に有する放電回路と、制御回路127とを備える。そして、組電池制御部150は、二次電池の充電中に、電圧検出部で検出される電圧が複数の充電停止電圧の内の最も高い充電停止電圧と等しくなった時、充電を一時停止する。その後、制御回路127は、最も高い充電停止電圧が設定された単電池111を除く他の単電池111を、電池電圧が各々の単電池111に対して設定された充電停止電圧となるまで、放電回路により放電させる。そのため、複数の単電池111に関して充電の一時停止を一回行うだけで、全ての単電池111に対して上記ΔSOCを得ることができる。
 上記では、種々の実施の形態および変形例を説明したが、各実施形態はそれぞれ単独に、あるいは組み合わせて用いても良い。それぞれの実施形態での効果を単独あるいは相乗して奏することができるからである。また、本発明の特徴を損なわない限り、本発明は上記実施の形態に何ら限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。

Claims (6)

  1.  二次電池の電圧を検出する電圧検出部と、
     前記二次電池の電流を検出する電流検出部と、
     前記電流検出部で検出される電流を積算して得られる積算容量値と前記二次電池の満充電容量値とに基づいて、前記二次電池のSOCを演算する充電状態演算部と、
     前記二次電池のSOCと開放電圧との関係を表す相関曲線上の2点を、前記2点における曲線の傾きの差が最小となるように選択する選択部と、
     前記選択部で選択された2点における開放電圧を充電一時停止電圧としてそれぞれ設定する充電停止電圧設定部と、
     前記二次電池の充電中に、前記電圧検出部で検出される電圧が前記充電一時停止電圧の各々と等しくなった時、充電をそれぞれ一時停止する充電制御部と、
     前記充電制御部による一時停止毎に、該一時停止時における前記電圧検出部の電圧検出値と前記相関曲線とに基づいてSOCをそれぞれ求め、それら2つのSOCの差分を算出する充電状態変化算出部と、
     1回目の前記一時停止から2回目の前記一時停止までの前記積算容量値に基づくSOC変化、および、前記充電状態変化算出部で算出した差分に基づいて、前記充電状態演算部で演算されるSOCを補正する補正部と、を備えた充電制御装置。
  2.  請求項1に記載の充電制御装置において、
     前記充電停止電圧設定部は、前記選択部により選択された2点の一方が充電開始点であった場合、他方の点のみに関して、該点における開放電圧を前記充電一時停止電圧として設定し、
     前記充電状態変化算出部は、前記充電制御部による一時停止時に前記電圧検出部により検出される電圧と前記相関曲線とに基づくSOCと、充電開始前に前記電圧検出部により検出される電圧と前記相関曲線とに基づくSOCとをそれぞれ求めて、それら2つのSOCの差分を算出し、
     前記補正部は、充電開始から前記一時停止までの前記積算容量値に基づくSOC変化、および、前記充電状態変化算出部で算出した差分に基づいて、前記充電状態演算部で演算されるSOCを補正する、充電制御装置。
  3.  請求項1に記載の充電制御装置において、
     前記充電停止電圧設定部は、前記選択部により選択された2点の一方が充電終了点であった場合、他方の点のみに関して、該点における開放電圧を前記充電一時停止電圧として設定し、
     前記充電状態変化算出部は、前記充電制御部による一時停止時に前記電圧検出部により検出される電圧と前記相関曲線とに基づくSOCと、充電終了後に前記電圧検出部により検出される電圧と前記相関曲線とに基づくSOCとをそれぞれ求めて、それら2つのSOCの差分を算出し、
     前記補正部は、前記一時停止から充電終了までの前記積算容量値に基づくSOC変化、および、前記充電状態変化算出部で算出した差分に基づいて、前記充電状態演算部で演算されるSOCを補正する、充電制御装置。
  4.  請求項1乃至3のいずれか一項に記載の充電制御装置において、
     前記二次電池の温度を検出する温度検出部と、
     前記一時停止から前記電圧検出部による電圧検出が行われるまでの休止時間を、少なくとも前記1点における充電状態および前記一次停止時の前記二次電池の温度に基づいて設定する休止時間設定部と、を備えた充電制御装置。
  5.  請求項1または3に記載の充電制御装置において、
     前記二次電池の温度を検出する温度検出部と、
     前記二次電池の分極特性情報が予め記憶された記憶部と、
     前記一時停止および前記充電終了から前記電圧検出部による電圧検出が行われるまでの各休止時間を、少なくとも前記一時停止および前記充電終了の時点におけるSOCと前記時点の前記二次電池の温度と前記分極特性情報とに基づいて、前記一時停止および前記充電終了において前記電圧検出部により検出される電圧の分極誤差が同一となるように設定する休止時間設定部と、を備えた充電制御装置。
  6.  二次電池が複数個直列に接続された二次電池群の、各二次電池の電圧をそれぞれ検出する電圧検出部と、
     前記二次電池群を流れる電流を検出する電流検出部と、
     前記二次電池に並列に接続されたバイパス抵抗およびバイパススイッチを、前記二次電池群の二次電池毎に有する放電回路と、
     前記電流検出部で検出される電流を積算して得られる積算容量値と前記二次電池の満充電容量値とに基づいて、前記各二次電池のSOCを演算する充電状態演算部と、
     二次電池のSOCと開放電圧との関係を表す相関曲線上の1点を、該1点における曲線の傾きと前記相関曲線上の充電開始点における曲線の傾きとの差が最小となるように選択する処理を、前記複数の二次電池のそれぞれに対して行う選択部と、
     前記複数の二次電池に対して選択された前記1点における開放電圧を、対応する二次電池の充電一時停止電圧としてそれぞれ設定する充電停止電圧設定部と、
     前記二次電池の充電中に、前記電圧検出部で検出される電圧が前記複数の充電一時停止電圧の内の最も高い充電一時停止電圧と等しくなった時、充電を一時停止する充電制御部と、
     前記最も高い充電一時停止電圧が設定された二次電池を除く他の二次電池を、電池電圧が各々の二次電池に対して設定された充電一時停止電圧となるまで、前記放電回路により放電させる放電制御部と、
     前記充電制御部による一時停止時および前記放電の終了時に前記電圧検出部により検出される電圧と前記相関曲線とに基づくSOCと、充電開始前に前記電圧検出部により検出される電圧と前記相関曲線とに基づくSOCとをそれぞれ求めて、それら2つのSOCの差分を前記複数の二次電池毎に算出する充電状態変化算出部と、
     充電開始から前記一時停止または放電終了までの前記積算容量値に基づくSOC変化、および、前記充電状態変化算出部で算出した差分に基づいて、前記充電状態演算部で演算されるSOCを前記複数の二次電池毎に補正する補正部と、を備えた充電制御装置。
PCT/JP2011/059408 2011-04-15 2011-04-15 充電制御装置 WO2012140776A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/059408 WO2012140776A1 (ja) 2011-04-15 2011-04-15 充電制御装置
JP2013509721A JP5784108B2 (ja) 2011-04-15 2011-04-15 充電制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/059408 WO2012140776A1 (ja) 2011-04-15 2011-04-15 充電制御装置

Publications (1)

Publication Number Publication Date
WO2012140776A1 true WO2012140776A1 (ja) 2012-10-18

Family

ID=47008978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059408 WO2012140776A1 (ja) 2011-04-15 2011-04-15 充電制御装置

Country Status (2)

Country Link
JP (1) JP5784108B2 (ja)
WO (1) WO2012140776A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015114105A (ja) * 2013-12-06 2015-06-22 トヨタ自動車株式会社 蓄電システム
JP2015121444A (ja) * 2013-12-20 2015-07-02 トヨタ自動車株式会社 蓄電システム
CN105510832A (zh) * 2014-10-14 2016-04-20 福特全球技术公司 使用老化补偿的电动车辆电池荷电状态监控
JP2016531270A (ja) * 2013-06-25 2016-10-06 コミッサリア ア レネルジー アトミーク エ オ エナジーズ アルタナティブス バッテリの充電状態を評価する方法
JP2017223537A (ja) * 2016-06-15 2017-12-21 本田技研工業株式会社 電池状態推定装置および電池状態推定方法
CN107800176A (zh) * 2017-12-07 2018-03-13 合肥国盛电池科技有限公司 基于充电曲线更换的锂电池管理系统
WO2019206623A1 (de) * 2018-04-26 2019-10-31 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum erfassen von wenigstens einem ruhespannungswert eines hochvoltspeichers
CN110658456A (zh) * 2018-06-29 2020-01-07 株式会社理光 蓄电元件及蓄电系统
KR20200078229A (ko) * 2018-12-21 2020-07-01 주식회사 엘지화학 이차 전지의 스텝 충전 제어 장치 및 방법
US10712393B2 (en) 2016-01-15 2020-07-14 Gs Yuasa International Ltd. Energy storage device management apparatus, energy storage device module, vehicle, and energy storage device management method
CN111742461A (zh) * 2018-03-13 2020-10-02 松下知识产权经营株式会社 管理装置、蓄电系统
CN113602147A (zh) * 2021-08-05 2021-11-05 肇庆小鹏汽车有限公司 电池故障检测方法及电池故障检测装置
CN117154268A (zh) * 2023-09-14 2023-12-01 上海融和元储能源有限公司 一种基于水系钠离子储能电池柜的soc校正方法、装置、设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116699448B (zh) * 2023-08-09 2023-12-26 合肥工业大学 一种磷酸锂电池平台期soc修正方法、装置和系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763830A (ja) * 1993-08-24 1995-03-10 Toyota Motor Corp ハイブリッド車用電池残存容量検出装置
JP2004301783A (ja) * 2003-03-31 2004-10-28 Yazaki Corp バッテリ状態監視方法およびその装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100766982B1 (ko) * 2006-09-05 2007-10-15 삼성에스디아이 주식회사 배터리 관리 시스템 및 그의 구동 방법
JP4772137B2 (ja) * 2009-06-02 2011-09-14 トヨタ自動車株式会社 バッテリ使用機器の制御装置
JP5638779B2 (ja) * 2009-08-24 2014-12-10 三洋電機株式会社 二次電池の特性検出方法および二次電池装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763830A (ja) * 1993-08-24 1995-03-10 Toyota Motor Corp ハイブリッド車用電池残存容量検出装置
JP2004301783A (ja) * 2003-03-31 2004-10-28 Yazaki Corp バッテリ状態監視方法およびその装置

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016531270A (ja) * 2013-06-25 2016-10-06 コミッサリア ア レネルジー アトミーク エ オ エナジーズ アルタナティブス バッテリの充電状態を評価する方法
US10090686B2 (en) 2013-12-06 2018-10-02 Toyota Jidosha Kabushiki Kaisha Electrical storage system
JP2015114105A (ja) * 2013-12-06 2015-06-22 トヨタ自動車株式会社 蓄電システム
JP2015121444A (ja) * 2013-12-20 2015-07-02 トヨタ自動車株式会社 蓄電システム
CN106030893A (zh) * 2013-12-20 2016-10-12 丰田自动车株式会社 蓄电系统
US10286806B2 (en) 2013-12-20 2019-05-14 Toyota Jidosha Kabushiki Kaisha Electrical storage system
DE112014005924B4 (de) 2013-12-20 2024-03-14 Toyota Jidosha Kabushiki Kaisha Elektrisches Speichersystem
CN105510832B (zh) * 2014-10-14 2020-03-20 福特全球技术公司 使用老化补偿的电动车辆电池荷电状态监控
CN105510832A (zh) * 2014-10-14 2016-04-20 福特全球技术公司 使用老化补偿的电动车辆电池荷电状态监控
US10712393B2 (en) 2016-01-15 2020-07-14 Gs Yuasa International Ltd. Energy storage device management apparatus, energy storage device module, vehicle, and energy storage device management method
JP2017223537A (ja) * 2016-06-15 2017-12-21 本田技研工業株式会社 電池状態推定装置および電池状態推定方法
CN107800176A (zh) * 2017-12-07 2018-03-13 合肥国盛电池科技有限公司 基于充电曲线更换的锂电池管理系统
CN111742461A (zh) * 2018-03-13 2020-10-02 松下知识产权经营株式会社 管理装置、蓄电系统
WO2019206623A1 (de) * 2018-04-26 2019-10-31 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum erfassen von wenigstens einem ruhespannungswert eines hochvoltspeichers
CN110658456A (zh) * 2018-06-29 2020-01-07 株式会社理光 蓄电元件及蓄电系统
CN110658456B (zh) * 2018-06-29 2022-05-03 株式会社理光 蓄电元件及蓄电系统
KR102392399B1 (ko) 2018-12-21 2022-04-28 주식회사 엘지에너지솔루션 이차 전지의 스텝 충전 제어 장치 및 방법
KR20200078229A (ko) * 2018-12-21 2020-07-01 주식회사 엘지화학 이차 전지의 스텝 충전 제어 장치 및 방법
CN113602147A (zh) * 2021-08-05 2021-11-05 肇庆小鹏汽车有限公司 电池故障检测方法及电池故障检测装置
CN113602147B (zh) * 2021-08-05 2023-05-16 肇庆小鹏汽车有限公司 电池故障检测方法及电池故障检测装置
CN117154268A (zh) * 2023-09-14 2023-12-01 上海融和元储能源有限公司 一种基于水系钠离子储能电池柜的soc校正方法、装置、设备及存储介质

Also Published As

Publication number Publication date
JP5784108B2 (ja) 2015-09-24
JPWO2012140776A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
JP5784108B2 (ja) 充電制御装置
US11124072B2 (en) Battery control device and electric motor vehicle system
CN105510832B (zh) 使用老化补偿的电动车辆电池荷电状态监控
US9252602B2 (en) Electric storage cell control circuit
JP5621818B2 (ja) 蓄電システムおよび均等化方法
US9362759B2 (en) Battery control circuit and battery device
JP4884945B2 (ja) 充電状態予測プログラム、架線レス交通システム及びその充電方法
JP6197479B2 (ja) 蓄電システム及び蓄電装置の満充電容量推定方法
EP2857854B1 (en) Cell control device
US9438059B2 (en) Battery control apparatus and battery control method
JP5673654B2 (ja) 蓄電システムおよび満充電容量算出方法
EP2033003B1 (en) Determination of battery predictive power limits
EP3410558A1 (en) Battery control device
JP5419831B2 (ja) バッテリの劣化度推定装置
US20130311119A1 (en) Method of detecting battery full-charge capacity
US20120161709A1 (en) Secondary-battery control apparatus
US20200126516A1 (en) Display device and vehicle including the same
CN103403565A (zh) 剩余寿命判定方法
JP2018179684A (ja) 二次電池の劣化状態推定装置並びにそれを備えた電池システム及び電動車両
US20220219567A1 (en) Systems and Methods for Maintaining Battery Health

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013509721

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11863354

Country of ref document: EP

Kind code of ref document: A1