JP6197479B2 - 蓄電システム及び蓄電装置の満充電容量推定方法 - Google Patents

蓄電システム及び蓄電装置の満充電容量推定方法 Download PDF

Info

Publication number
JP6197479B2
JP6197479B2 JP2013173525A JP2013173525A JP6197479B2 JP 6197479 B2 JP6197479 B2 JP 6197479B2 JP 2013173525 A JP2013173525 A JP 2013173525A JP 2013173525 A JP2013173525 A JP 2013173525A JP 6197479 B2 JP6197479 B2 JP 6197479B2
Authority
JP
Japan
Prior art keywords
full charge
charge capacity
period
estimated
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013173525A
Other languages
English (en)
Other versions
JP2015040832A (ja
Inventor
浩治 有留
浩治 有留
純太 泉
純太 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013173525A priority Critical patent/JP6197479B2/ja
Priority to PCT/IB2014/001575 priority patent/WO2015025212A1/en
Publication of JP2015040832A publication Critical patent/JP2015040832A/ja
Application granted granted Critical
Publication of JP6197479B2 publication Critical patent/JP6197479B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Description

本発明は、車両に搭載され、走行用モータに電力を供給する蓄電装置の満充電容量を推定する技術に関する。
二次電池は、経年変化により劣化して満充電容量が低下することが知られている。二次電池の満充電容量が低下すると、使用可能な電力量が低くなるので電力を用いた車両走行(EV走行等)の走行距離が短くなる。このため、使用環境下にある二次電池の満充電容量を精度よく把握できないと、例えば、満充電容量を低く見積もってしまい、経年変化による満充電容量の低下に応じた走行距離以上に、電力を用いた車両走行距離が短くなってしまう。
また、二次電池のSOC(State of Charge)は、満充電容量に対する現在の充電容量の割合を示すものであり、SOCに基づいて二次電池の充放電が制御されるが、満充電容量が変化してしまうとSOCも変化してしまう。このため、二次電池の満充電容量を精度よく把握できないと、使用可能な電力量に対して過度の充放電制御が行われてしまうおそれがある。
二次電池の満充電容量の精度良く推定する方法として、例えば、特許文献1に記載のようなものがある。特許文献1では、安定した充電電流が供給され、かつSOC変動が少ない外部充電時に、電流積算値、充電開始時及び充電終了時の各SOCを算出することで、満充電容量推定精度を向上させている。
特開2011−7564号公報
特許文献1のように、外部充電の際に二次電池の満充電容量推定処理を行うことで、満充電容量を精度良く推定できるが、外部充電が行われないと(外部充電という特定のタイミングでないと)、満充電容量を推定できない。このため、外部充電が行われない期間が長くなると、使用環境に応じて経年劣化する二次電池の満充電容量を適切に把握できない。
つまり、満充電容量自体の推定精度のみならず、経年変化により低下する満充電容量の推定処理の機会(頻度)が少ないと、使用環境下にある二次電池の満充電容量を適切に把握することができない。
そこで、本発明は、蓄電装置の使用期間中の任意のタイミングで前回満充電容量を基準に現在の満充電容量を精度良く推定できるようにし、満充電容量の推定頻度(機会)を増加させて満充電容量を適切に把握することができる蓄電システム及び蓄電装置の満充電容量推定方法を提供することにある。
本願第1の発明は、充放電を行う蓄電装置と、満充電容量推定処理を遂行するコントローラと、を有する車両に搭載される蓄電システムである。コントローラは、蓄電装置の経過期間に応じて予め規定された初期満充電容量からの低下率に基づいて、現在の満充電容量を算出する。このとき、コントローラは、前回満充電容量が算出されたときから現在まで満充電容量が推定されていない期間の平均SOC及び平均電池温度と、平均SOC及び平均電池温度に応じて変化する低下率が予め規定された低下率マップとを用いて、満充電容量が推定されていない期間中の低下率を算出し、満充電容量が推定されていない期間中の低下率と初期満充電容量とに基づいて前回満充電容量が算出されたときの蓄電装置の第1経過期間を算出する。そして、第1経過期間と満充電容量が推定されていない期間とから算出される蓄電装置の現在の第2経過期間、期間中の低下率、及び初期満充電容量に基づいて、現在の満充電容量を算出する。このとき、コントローラは、満充電容量が推定されていない期間が所定期間を超える場合に、上記推定処理を遂行すると共に、前回満充電容量の大きさに応じて所定期間を変更可能に制御し、前回満充電容量の大きさが大きい程、上記所定期間を短く設定し、満充電容量の大きさが小さくなるにつれて上記所定期間を長く設定する。
本願第1の発明によれば、前回満充電容量から変化する現在の満充電容量が、前回満充電容量が推定された後から現在まで満充電容量が推定されなかった期間の使用環境(平均SOC及び平均電池温度)に基づいて推定される。このため、蓄電装置の使用期間中の任意のタイミングで前回満充電容量を基準に現在の満充電容量を精度良く推定することができ、蓄電装置の使用期間に対して特定のタイミングに限らずに満充電容量を推定することができる。したがって、満充電容量を精度良く推定しつつ、満充電容量の推定頻度を向上させることができる。
ここで、コントローラは、満充電容量が推定されていない期間が所定期間を超える場合に、推定処理を遂行することができ、前回満充電容量に応じて所定期間を変更することができる。このように構成することで、満充電容量が推定されていない期間がトリガーとなって任意のタイミングで満充電容量を推定することができ、満充電容量が推定されていない期間が長くなること、言い換えれば、経年変化する満充電容量を把握できない期間が長くなることを抑制することができる。また、満充電容量が大きい状態ではその低下量が多くなるので、例えば、満充電容量が大きいほど満充電容量が推定されていない期間の許容期間である所定期間を小さく(短く)し、満充電容量の推定頻度を増やして満充電容量の変化を正確に把握できるようにすることができる。
また、コントローラは、前回満充電容量の大きさが小さくなるにつれて上記所定期間を長く設定するとともに、前回満充電容量の大きさが所定の閾値よりも小さい領域では上記所定期間が一定となるように設定することができる。
コントローラは、外部電源から供給される電力が蓄電装置に充電される外部充電前後のSOC差と外部充電中の充電電流積算値とに基づいて蓄電装置の満充電容量を算出する第1推定処理を遂行することができる。コントローラは、第1推定処理によって推定された満充電容量を前回満充電容量として、外部充電の際に満充電容量が算出されたときから現在までの満充電容量が推定されていない期間中に推定処理を遂行することができる。このように構成することで、外部充電が行われない期間でも満充電容量を精度良く推定できると共に、満充電容量を推定する機会を増加させて蓄電装置の満充電容量を適切に把握することができる。
コントローラは、車両走行中又は車両停車中にかかわらずに、満充電容量が推定されていない期間中の蓄電装置のSOC及び電池温度を所定のタイミングで複数取得することができる。取得されたSOC及び電池温度は、満充電容量が推定されていない期間の経過時間と共に所定の記憶領域に記憶することができる。このように構成することで、満充電容量が低下する要因となる使用環境を精度良く把握することができ、満充電容量の推定精度が向上する。
低下率マップは、平均SOC及び平均電池温度が高いほど、低下率が大きくなるように設定することができる。このように構成することで、蓄電装置の満充電容量が低下する要因となる使用環境の因子が高い場合に、満充電容量の低下率も高く設定されるので、蓄電装置の使用環境に応じて精度良く満充電容量を推定できる。
本願第2の発明は、車両に搭載される蓄電装置の経過期間に応じて予め規定された初期満充電容量からの低下率に基づいて、現在の満充電容量を算出する満充電容量推定方法である。本満充電容量推定方法は、前回満充電容量が算出されたときから現在まで満充電容量が推定されていない期間の平均SOC及び平均電池温度を算出するステップと、平均SOC及び平均電池温度に応じて変化する低下率が予め規定された低下率マップを用いて、満充電容量が推定されていない期間中の低下率を算出するステップと、満充電容量が推定されていない期間中の低下率と初期満充電容量とに基づいて前回満充電容量が算出されたときの蓄電装置の第1経過期間を算出するステップと、第1経過期間と満充電容量が推定されていない期間とから算出される蓄電装置の現在の第2経過期間、満充電容量が推定されていない期間中の低下率、及び初期満充電容量に基づいて、現在の満充電容量を算出するステップと、を含む。ここで、満充電容量が推定されていない期間が所定期間を超える場合に上記各ステップに基づく推定処理を遂行するように制御されるとともに、上記所定期間は、前回満充電容量の大きさに応じて変更可能であり、前回満充電容量の大きさが大きい程、上記所定期間を短く設定し、前回満充電容量の大きさが小さくなるにつれて上記所定期間を長く設定するステップをさらに含むように構成することができる。本願第2の発明によれば、上記本願第1の発明と同様の効果を得ることができる。
電池システムの構成を示す図である。 外部充電動作及び外部充電時の満充電容量の演算処理を示すフローチャートである。 二次電池の使用期間と満充電容量の低下との関係を示す図である。 二次電池の使用環境毎の満充電容量の低下量の変化(低下率)を説明するための図である。 使用環境と満充電容量の低下率(傾き)の関係を示す図であり、満充電容量が推定されていない期間の二次電池の平均SOC及び平均電池温度と満充電容量の低下率との関係を示す図である。 前回推定された満充電容量に基づいて、その後の満充電容量が推定されていない期間中の二次電池の満充電容量を推定する方法を説明するための図である。 前回満充電容量が推定された後の満充電容量が推定されていない期間の許容日数を示す図である。 前回満充電容量が推定された後の満充電容量が推定されていない期間に、二次電池の使用環境に基づいて現在(今回)の満充電容量を推定する処理を示すフローチャートである。 図8に続く、満充電容量の推定処理を示すフローチャートである。
以下、本発明の実施例について説明する。
図1は、本実施例の電池システムの構成を示す図である。図1に示す電池システムは、例えば、車両に搭載することができる。車両としては、例えば、PHV(Plug-in Hybrid Vehicle)やEV(Electric Vehicle)がある。
PHVでは、車両を走行させるための動力源として、後述する組電池に加えて、エンジン又は燃料電池といった他の動力源を備えている。また、PHVでは、外部電源からの電力を用いて組電池を充電することができる。さらに、エンジンを備えたPHVでは、エンジンによって生成された運動エネルギを電気エネルギに変換することにより、この電気エネルギを用いて、組電池を充電することができる。
EVは、車両の動力源として、組電池だけを備えており、外部電源からの電力供給を受けて、組電池を充電することができる。外部電源とは、車両の外部において、車両とは別に設置された電源(例えば、商用電源)である。
組電池(蓄電装置に相当する)100は、直列に接続された複数の単電池(蓄電素子に相当する)10を有する。単電池10としては、ニッケル水素電池やリチウムイオン電池といった二次電池を用いることができる。また、二次電池の代わりに、電気二重層キャパシタを用いることができる。
単電池10の数は、組電池100の要求出力などに基づいて、適宜設定することができる。本実施例の組電池100では、すべての単電池10が直列に接続されているが、組電池100には、並列に接続された複数の単電池10が含まれていてもよい。
監視ユニット200は、組電池100の端子間電圧を検出したり、各単電池10の端子間電圧を検出したりし、検出結果をECU(Electric Control Unit)300に出力する。
温度センサ201は、組電池100(単電池10)の温度を検出し、検出結果をECU300に出力する。ここで、温度センサ201は、組電池100の一箇所に設けることもできるし、組電池100のうち、互いに異なる複数の箇所に設けることもできる。複数の温度センサ201によって検出された温度が互いに異なるときには、例えば、複数の検出温度の中央値を、組電池100の温度として用いることができる。
電流センサ202は、組電池100に流れる電流を検出し、検出結果をECU300に出力する。本実施例では、組電池100を放電しているときに電流センサ202によって検出された電流値を正の値としている。また、組電池100を充電しているときに電流センサ202によって検出された電流値を負の値としている。
本実施例では、組電池100の正極端子と接続された正極ラインPLに電流センサ202を設けているが、電流センサ202は、組電池100に流れる電流を検出できればよく、電流センサ202を設ける位置は適宜設定することができる。例えば、組電池100の負極端子と接続された負極ラインNLに電流センサ202を設けることができる。なお、複数の電流センサ202を用いることもできる。
ECU(コントローラに相当する)300は、メモリ301を有しており、メモリ301は、ECU300が所定の処理(例えば、本実施例で説明する処理)を行うための各種の情報を記憶している。本実施例では、メモリ301が、ECU300に内蔵されているが、メモリ301を、ECU300の外部に設けることもできる。
正極ラインPL及び負極ラインNLには、システムメインリレーSMR−B,SMR−Gがそれぞれ設けられている。システムメインリレーSMR−B,SMR−Gは、ECU300からの制御信号を受けることにより、オンおよびオフの間で切り替わる。システムメインリレーSMR−Gには、システムメインリレーSMR−Pおよび電流制限抵抗203が並列に接続され、システムメインリレーSMR−Pおよび電流制限抵抗203は、直列に接続されている。
組電池100をインバータ204(負荷)と接続するとき、ECU300は、まず、システムメインリレーSMR−Bをオフからオンに切り替えるとともに、システムメインリレーSMR−Pをオフからオンに切り替える。これにより、電流制限抵抗203に電流が流れることになる。つまり、電流制限抵抗203は、組電池100をインバータ204と接続するときに、突入電流が流れることを抑制するために用いられる。
次に、ECU300は、システムメインリレーSMR−Gをオフからオンに切り替えた後に、システムメインリレーSMR−Pをオンからオフに切り替える。これにより、組電池100およびインバータ204の接続が完了し、図1に示す電池システムは、起動状態(Ready−On)となる。ECU300には、車両のイグニッションスイッチのオン/オフ(IG−ON/IG−OFF)に関する情報が入力され、ECU300は、イグニッションスイッチがオフからオンに切り替わることに応じて、電池システムを起動する。
一方、イグニッションスイッチがオンからオフに切り替わったとき、ECU300は、システムメインリレーSMR−B,SMR−Gをオンからオフに切り替える。これにより、組電池100およびインバータ204の接続が遮断され、電池システムは、停止状態(Ready−Off)となる。
インバータ204は、組電池100から出力された直流電力を交流電力に変換し、交流電力をモータ・ジェネレータ205に出力する。モータ・ジェネレータ205としては、例えば、三相交流モータを用いることができる。モータ・ジェネレータ205は、インバータ204から出力された交流電力を受けて、車両を走行させるための運動エネルギを生成する。モータ・ジェネレータ205によって生成された運動エネルギを、車輪に伝達することにより、車両を走行させることができる。
車両を減速させたり、停止させたりするとき、モータ・ジェネレータ205は、車両の制動時に発生する運動エネルギを電気エネルギ(交流電力)に変換する。インバータ204は、モータ・ジェネレータ205が生成した交流電力を直流電力に変換し、直流電力を組電池100に出力する。これにより、組電池100は、回生電力を蓄えることができる。
本実施例では、組電池100をインバータ204に接続しているが、これに限るものではない。具体的には、組電池100を昇圧回路に接続するとともに、昇圧回路をインバータ204に接続することができる。昇圧回路を用いることにより、組電池100の出力電圧を昇圧することができる。また、昇圧回路は、インバータ204から組電池100への出力電圧を降圧することができる。
正極ラインPLおよび負極ラインNLには、充電器206が接続されている。具体的には、充電器206は、組電池100の正極端子及びシステムメインリレーSMR−Bを接続する正極ラインPLと、組電池100の負極端子及びシステムメインリレーSMR−Gを接続する負極ラインNLとに接続されている。充電器206には、インレット(コネクタ)207が接続されている。
充電器206およびラインPL,NLを接続するラインには、充電リレーRch1,Rch2が設けられている。充電リレーRch1,Rch2は、ECU300からの制御信号を受けることにより、オンおよびオフの間で切り替わる。
インレット207には、外部電源208から延設された充電プラグ(コネクタ)が接続される。充電プラグをインレット207に接続することにより、外部電源208からの電力を、充電器206を介して組電池100に供給することができる。これにより、外部電源208を用いて、組電池100を充電することができる。外部電源208が交流電力を供給するとき、充電器206は、外部電源からの交流電力を直流電力に変換し、直流電力を組電池100に供給する。ECU300は、充電器206の動作を制御することができる。
外部電源208の電力を組電池100に供給するとき、充電器206は、電圧を変換することもできる。ここで、車両停止中に外部電源208の電力を組電池100に供給して、組電池100を充電することを外部充電という。本実施例の電池システムでは、充電リレーRch1,Rch2がオンであるときに、外部電源208からの電力が組電池100に供給されるようになっている。外部充電を行うとき、組電池100には一定の電流を供給することができ、定電流の下で、組電池100を充電することができる。なお、外部充電中は、システムメインリレーSMR−B,SMR−Gは、オフとすることができる。
外部電源208の電力を組電池100に供給するシステムは、図1に示すシステムに限るものではない。例えば、充電器206は、システムメインリレーSMR−B,SMR−P,SMR−Gを介して、組電池100と接続することができる。具体的には、充電器206は、システムメインリレーSMR−B及びインバータ204を接続する正極ラインPLと、システムメインリレーSMR−G及びインバータ204を接続する負極ラインNLとに対して、充電リレーRch1,Rch2を介して接続することができる。この場合には、充電リレーRch1,Rch2及びステムメインリレーSMR−B,SMR−Gをオフからオンに切り替えることにより、外部充電を行うことができる。
本実施例では、充電プラグをインレット207に接続することにより、外部充電を行うようにしているが、これに限るものではない。具体的には、いわゆる非接触方式の充電システムを用いることにより、外部電源208の電力を組電池100に供給することができる。非接触方式の充電システムでは、電磁誘導や共振現象を利用することにより、ケーブルを介さずに電力を供給することができる。非接触方式の充電システムとしては、公知の構成を適宜採用することができる。
本実施例では、充電器206が車両に搭載されているが、これに限るものではない。すなわち、充電器206は、車両の外部において、車両とは別に設置されていてもよい。この場合には、ECU300および充電器206の間の通信によって、ECU300は、充電器206の動作を制御することができる。
ECU300は、監視ユニット200によって検出された電圧値、温度センサ201によって検出された電池温度、電流センサ202によって検出された電流値に基づいて、組電池100のSOCを算出(推定)し、算出されたSOC及び満充電容量推定値に基づいて、組電池100の充放電制御を行うことができる。ECU300は、SOC推定部、満充電容量演算部、及び外部充電制御部としての各機能が含まれるように構成することができる。
組電池100のSOCは、組電池10の満充電容量に対して現在の充電容量の割合(充電状態)を示すものであり、満充電容量はSOCの上限値である。SOCは、組電池100の開放電圧(OCV:Open Circuit Voltage)から特定することができる。例えば、組電池100のOCVとSOCとの対応関係をOCV−SOCマップとして予めメモリ301に記憶しておく。ECU300は、監視ユニット200によって検出される電圧(CCV:Closed Circuit Voltage)から組電池100のOCVを算出し、OCV−SOCマップからSOCを算出することができる。
なお、組電池100のOCVとSOCの対応関係は、電池温度に応じて変化するので、OCV−SOCマップを電池温度毎にメモリ301に記憶させておき、組電池100のOCVからSOCを推定する際の電池温度に応じてSOC−OCVマップを切り換えて(選択して)、組電池100のSOCを推定するようにしてもよい。
したがって、ECU300は、充放電中の監視ユニット200によって検出された電圧値(CCV)を監視することにより、組電池100の過充電状態や過放電状態を把握することができる。例えば、算出されたSOCが満充電容量に対する所定の上限SOCよりも高くならないように組電池100の充電を制限したり、下限SOCよりも低くならないように放電を制限する充放電制御を行うことができる。
なお、ECU300は、インバータ204およびモータ・ジェネレータ205毎に設けることも可能であり、SOC推定処理、満充電容量推定処理及び外部充電処理を行うための別途のECUを、車両制御と独立して設けることも可能である。つまり、車両全体の制御を司る中央制御装置が、各部を制御したり、各部の制御毎の個別のECUを設けて中央制御装置が個別の各ECUと接続される構成であってもよい。
組電池100の満充電容量は、下記式1に基づいて算出することができる。
(式1)
満充電容量=電流積算値(ΣI)÷(SOC_e−SOC_s)×100
上記式1において、満充電容量は、監視ユニット200や電流センサ202等の実測値に基づく組電池100の満充電容量である。SOC_s(充電開始SOC)は、外部充電において電流積算を開始する際の組電池100のSOCであり、SOC_eは、電流積算を終了した際の組電池100のSOCである。電流積算値は、SOC_sを算出してからSOC_eが算出されるまでの間の組電池100の外部充電電流を積算した値である。SOC_eからSOC_sを差し引いた値は、外部充電前後のSOCの変化(SOC差=ΔSOC)を表すものであり、SOCの変化に対する電流量の割合から、組電池100の満充電容量を算出することができる。
なお、外部充電時のSOC推定処理は、負荷や充電器206に接続される直前又は直後の状態において組電池10の端子間電圧を監視ユニット200で検出することで、監視ユニット200で検出された電圧値を、OCVとして用い、OCV−SOCマップからSOCを算出することができる。
図2は、本実施例の外部充電動作及び満充電容量の演算処理を示すフローチャートである。図2に示すように、ECU300は、外部充電に伴って満充電容量演算処理を行うことができる。ECU300は、外部電源208と接続される充電プラグが、インレット207に接続されたか否かを検出し(S101)、充電プラグの接続が検出された場合に、外部充電を開始することができる(S102)。
ECU300は、まず、組電池100が充電される充電開始時点のSOCを、充電開始時に監視ユニット200で検出された電圧値OCV1から算出し、算出したSOC1をSOC_sとしてメモリ301に記憶する(S103)。その後、ECU300は、充電器208を介して外部電源208の電力を組電池100に供給する充電電力の入力を開始するとともに、組電池100に流れる充電電流の積算処理を開始する(S104)。ECU300は、組電池100の電圧値を監視し、充電終了に応じた所定のSOC上限値に対応する電圧値になったときに、外部電源208から組電池100への電力供給を終了し(S105のYES)、充電電流の積算処理を終了する。
次に、ECU300は、充電終了時に監視ユニット200で検出された電圧値OCV2から充電終了時点のSOC2を算出し、充電終了後の算出されたSOC2をSOC_eとして、メモリ301に記憶する(S106)。
ECU300は、外部充電前後のSOC差(SOC_e−SOC_s)と外部充電中の充電電流積算値とに基づいて、上述した式1に示したように、組電池100の満充電容量を算出する(S107)。ECU300は、外部充電による満充電容量の推定処理終了に伴い、次回外部充電時の満充電容量推定処理が行われるまでに満充電容量が推定されていない期間の計測等を開始し、満充電容量が推定されていない期間中において外部充電時以外で行う満充電容量推定処理のための準備処理を行う(S108)。
外部充電時は、一定の充電電流が組電池100に流れるため、電流積算値を精度良く算出できる。また、車両停止中に行われる外部充電では、組電池100の大きなSOC変動が抑制されている状態であるため、充電開始時のSOC1及び充電終了時のSOC2それぞれを精度良く算出できる。したがって、外部充電の際の充放電履歴に基づいて満充電容量を精度良く推定できることになる。
しかしながら、上述したように、満充電容量を推定する頻度が少ないと、経年変化によって低下(劣化)する現時点の満充電容量を適切に把握することができない。つまり、満充電容量が推定された後から次回に満充電容量が推定されるまでの期間(満充電容量が推定されていない期間。以下、未推定期間という)が長いと、満充電容量が適切に把握できていない状態で組電池100の充放電が制御されることになる。
例えば、現時点の満充電容量が前回推定された満充電容量よりも小さい状態であるにもかかわらず、前回推定された満充電容量を基準に充放電制御が行われると、充電された電力に対してSOCが低く算出され、放電された電力に対してSOCが高く算出される。充電された電力に対してSOCが低く見積もられれば、使用可能な電力が低くなり、組電池100の電力を用いた車両走行(EV走行)の距離が短くなる。また、放電された電力に対してSOCが高く見積もられれば、SOC下限値を超えた過放電となる。
このように、経年変化により低下する満充電容量の推定処理の機会(頻度)が低下すると、使用環境下にある二次電池の現時点の満充電容量を精度良く把握できていない状態となる。特に、満充電容量の推定処理が、外部充電という特定のタイミングを契機に行われる場合、外部充電が行われないと満充電容量を推定できず、満充電容量の推定機会が減少してしまうため、満充電容量を適切に把握した状態で充放電を制御できない。
そこで、本実施例では、前回満充電容量が推定された後の未推定期間において組電池100の使用環境に応じて低下する満充電容量を推定できるようにし、外部充電が頻繁に行われなくても、言い換えれば、外部充電に伴う充放電履歴による満充電容量の推定処理が頻繁に行われなくても、前回満充電容量を算出した後から次回満充電容量を推定するまでの間に組電池100の使用環境に基づく満充電容量の推定を行い、満充電容量の推定機会を増加させて満充電容量を適切かつ精度良く把握できるようにする。
図3は、組電池100の使用期間と満充電容量の低下との関係を示す図である。図3において、横軸は、組電池100の使用期間(例えば、日数)であり、縦軸は、満充電容量である。C0は、組電池100の製造初期の満充電容量である。
組電池100の満充電容量低下(電池劣化)に影響を及ぼす要因として、組電池100の使用環境下の電池温度、SOC(電圧)、経過時間がある。したがって、劣化に影響を及ぼす要因に応じた組電池100の使用環境、例えば、使用期間中にどのような電池温度の環境下で使用されていたのか、どのようなSOC状態の環境下で使用されていたのかを把握することで、組電池100の使用期間と満充電容量の低下との把握することができ、現時点の使用期間から満充電容量を把握することができる。
なお、使用期間とは、製造初期の段階から現時点までの期間である。また、使用期間には、充放電動作を行っている状態(例えば、車両のイグニッションスイッチがオン状態)と充放電動作を行っていない状態(例えば、車両のイグニッションスイッチがオフ状態)のそれぞれが含まれる。充放電動作を行っていなくても、例えば、電池温度が高い状態やSOCが高い状態の環境下では、組電池100の劣化が促進されてしまうからである。
図3に示すように、組電池100の満充電容量及びその時点の使用期間を複数プロットすると、使用期間が長くなるほど製造初期の満充電容量C0から満充電容量が低下していることが分かる。図3に示す劣化曲線は、現在までの経過時間に対する組電池100の満充電容量の低下量、言い換えれば、製造初期の満充電容量C0に対する現在の満充電容量の低下量(劣化度)を示している。
図3において、曲線で示される第1劣化推移と第2劣化推移は、それぞれ使用環境が異なる状態での劣化推移であり、例えば、使用期間中の組電池100の平均電池温度や平均SOCに応じて異なる劣化曲線となっている。これは、上述したように、満充電容量の経年変化は、劣化に影響を及ぼす要因(組電池100の使用環境)毎に異なる劣化推移マップとなるからである。
図4は、組電池100の使用環境毎の使用期間と満充電容量の低下量の変化(低下率)との関係を示す図である。図4において、横軸は、各使用環境での経過時間の平方根(√使用期間)であり、縦軸は、組電池100の満充電容量である。また、各直線は、図3に示した第1劣化推移,第2劣化推移にそれぞれ対応している。
図4に示すように、組電池100の経過時間に対する満充電容量の低下率は、図3とは異なり、縦軸の経過時間を平方根とすることで、製造初期の満充電容量C0を基準としたマイナスの傾きを有する直線で表すことができる。つまり、組電池100の満充電容量の変化は、経過時間に対して電池温度及びSOC毎に異なる所定の傾き(低下率)を有する推移となる。図4に示した電池温度及びSOC毎に異なる経過時間に対する満充電容量の低下率は、予め実験等によって求めておくことができ、電池温度及びSOC毎に異なる劣化推移マップとしてメモリ301に保持することができる。
図4において、例えば、前回推定した際の満充電容量をC1とすると、製造初期の満充電容量C0に対し、組電池100の満充電容量は、ΔC(=C0−C1)分低下する。図4に示すような満充電容量の低下率が分かれば、前回満充電容量を推定した時点から現時点までの経過時間に応じた満充電容量の低下量を把握することができ、現時点の満充電容量を算出することができる。
しかしながら、上述のように、組電池100の使用環境が異なると、満充電容量C0から満充電容量C1となるまでの低下率が異なる。第1劣化推移よりも第2劣化推移の方が傾き(低下率)が大きいため、組電池100の使用期間に対して第1劣化推移よりも早く満充電容量C1に到達することになる。つまり、図4に示すように、同じ満充電容量C1でもX点から第1劣化推移に沿う低下率(第1の傾き)と、Y点から第2劣化推移に沿う低下率(第2の傾き)とで、現時点までの組電池100の経過時間に対する満充電容量の低下量が異なる。
このように、前回満充電容量を推定した時点からどのような満充電容量の低下率で現在の満充電容量に至っているのか、言い換えれば、どのような傾きで組電池100の満充電容量が低下しているのかが把握できないと、組電池100の使用期間に対する満充電容量の低下量を正確に把握することができない。
そこで、本実施例では、外部充電時の充放電履歴基づいて満充電容量が推定された後から今回満充電容量を算出するまでの間の組電池100の平均電池温度及び平均SOC、すなわち、組電池100の使用環境に基づいて満充電容量の低下率を把握し、前回算出された満充電容量から今回満充電容量を算出する現時点までに至る低下推移を、組電池100の使用環境を考慮して推定する。
図5は、組電池100の平均電池温度及び平均SOCと満充電容量の低下率との関係を示す図(低下率マップに相当する)である。ここで、平均電池温度とは、所定間隔毎に測定される組電池100の電池温度を、電池温度の測定頻度や時間、日数等で平均した値である。例えば、所定間隔毎に測定される各電池温度を加算し、加算した電池温度(Σ電池温度)の時間平均を算出することで、平均電池温度を算出することができる。
また、平均SOCは、平均電池温度と同様に、所定間隔毎(電池温度と同じ検出タイミング又は異なるタイミング)で測定される組電池100のSOCを、SOC測定の頻度や時間、日数等で平均した値である。例えば、所定間隔毎に測定される各SOCを加算し、加算したSOC(ΣSOC)の時間平均を算出することで、平均SOCを算出することができる。
図5に示すように、平均電池温度が高ければ高いほど、満充電容量の低下率が大きくなり、また、平均SOCが高ければ高いほど、満充電容量の低下率が大きくなっている。つまり、上述したように、使用環境下の組電池100の劣化要因(満充電容量の低下要因)が大きく影響していれば、満充電容量の低下率(傾き)が大きく設定される。一方、平均電池温度が低く、かつ平均SOCが低い場合、使用環境下の組電池100の劣化要因が小さい影響していれば、満充電容量の低下率が小さく設定される。このように構成することで、組電池100の使用環境に応じて精度良く満充電容量を推定できる。なお、図5に示した組電池100の平均電池温度及び平均SOCと満充電容量の低下率との関係は、予め実験等によって求めておくことができ、メモリ301に保持することができる。
図6は、前回外部充電時に推定された満充電容量に基づいて、その後の未推定期間中の組電池100の満充電容量を推定する方法を説明するための図である。図6において、横軸は、各使用環境での経過時間の平方根(√使用期間)であり、縦軸は、組電池100の満充電容量である。
まず、外部充電の際に推定された前回の満充電容量をC1とする。図6においてX点が前回満充電容量C1を示しているが、満充電容量C1と今回満充電容量を算出する現時点までの満充電容量低下率との関係が分からないため、X点は、満充電容量C1と関連付いているものの、組電池100の√使用期間とは関連付いていない。
このため、前回満充電容量が推定された後、現時点まで満充電容量がどのような推移で低下しているのかを把握するために、組電池100の平均電池温度及び平均SOCと満充電容量の低下率との関係を予め規定したマップから(図5参照)、組電池100の使用期間に対して変化する満充電容量の低下率を特定(算出)する。組電池100の平均電池温度及び平均SOCは、上述したように、前回満充電容量が推定された後から現時点までの満充電容量が推定されていない期間中に測定された電池温度及びSOCそれぞれの平均値である。
特定された満充電容量の低下率が特定されると、製造初期の満充電容量C0を基準とした組電池100の使用期間に応じた満充電容量の低下推移を特定することができる。図6に示すように、未推定期間の平均電池温度及び平均SOCに応じた第3劣化推移として、第3の傾きの低下率で表される直線を把握することができる。
次に、第3の傾きの劣化推移に前回満充電容量C1を関連付ける。図6に示すように、満充電容量C1とX点の二点間で規定される横軸に平行な直線と、満充電容量C0と第3の傾きで規定される直線との交点Yが、第3の傾きの低下率で満充電容量が低下する満充電容量C1となる。Y点によって、第3の傾きで規定される満充電容量の変化と使用期間の関係において、満充電容量C1に対応する組電池100の「√使用期間T1」を算出することができる。
つまり、満充電容量C1に対応する組電池100の「√使用期間T1」は、前回満充電容量C1が推定された際の組電池100の経過時間に対応しており、例えば、前回満充電容量は「C1=C0−Q×√使用期間T1」となる。Qは、平均電池温度及び平均SOCから特定される満充電容量の低下率(第3の傾き)である。
このとき、「C1=C0−Q×√使用期間T1」を「√使用期間T1」で変形すると、「√使用期間T1=(C0−C1)÷Q」となる。製造初期の満充電容量C0、低下率Q、前回満充電容量C1はそれぞれ予め把握できるので、「√使用期間T1」を算出することができる。
そして、算出された前回満充電容量C1に対応する「√使用期間T1」に未推定期間を加算することで、今回満充電容量を算出する現時点での「√使用期間T2」を算出することができる。現時点の「√使用期間T2」が算出されることで、第3の傾きで規定される満充電容量の低下率Qに応じた現時点の満充電容量C2を算出することができる。図6の例で説明すると、「√使用期間T2」が算出されることで第3の傾きを有する満充電容量の直線上の点Zを特定でき、点Zに対応する満充電容量C2を算出することができる。このような関係から、例えば、現在の満充電容量C2は「C2=C0−Q×√使用期間T2」の式で算出することができる。
なお、「√使用期間T2」に対応する使用期間は、前回推定された満充電容量C1に対応する「√使用期間T1」の二乗値と未推定期間とを加算することで算出することができる。算出された値の平方根を算出することで、第3の傾きに対応する「√使用期間T2」を算出することができる。
図7は、前回満充電容量が推定された後の満充電容量が推定されていない期間の許容日数を示す図である。図7において、縦軸が、満充電容量が推定されていない間の許容期間、横軸が満充電容量である。
許容期間は、前回満充電容量が推定された後からどのくらいの期間で満充電容量を推定すべきかを規定したものである。本実施例では、外部充電の際の満充電容量推定の後に、未推定期間の経過時間をトリガーとして、外部充電が行われなくても満充電容量推定を定期的に行い、満充電容量の推定機会を確保しながら、精度良く満充電容量を把握する。
図7に示すように、許容期間は、製造初期の満充電容量C0を基準に、満充電容量が低下するにつれて許容期間が長くなり、閾値C_th(<C0)よりも満充電容量が小さくなると、一定の許容期間が設定される。これは、満充電容量が大きい状態では低下量が大きくため、許容期間を短く設定して満充電容量の推定処理の間隔を短くし、満充電容量を適切に把握できるようにするためである。図3の例に示すように、製造初期の満充電容量C0から組電池100の使用期間が経過するにつれて、経年変化によって満充電容量が低下するが、満充電容量が大きい状態であればあるほど、使用期間に対する満充電容量の低下量が大きく、満充電容量が小さくなるにつれて、使用期間に対する満充電容量の低下量が小さい。したがって、図7に示すように、許容期間Bが設定される満充電容量の大きさは、許容期間Bよりも長い期間の許容期間Aが設定される満充電容量C2よりも大きい状態であり、組電池100の満充電容量が小さくなるにつれて許容期間を長く設定して満充電容量の推定処理の間隔を大きくしている。
このように、本実施例では、未推定期間の経過時間がトリガーとなって前回満充電容量推定後の任意のタイミングで満充電容量を精度推定することができ、未推定期間が長くなること、言い換えれば、経年変化する満充電容量を把握できない期間が長くなることを抑制することができる。そして、前回満充電容量が大きい状態であればあるほど、未推定期間に対する許容期間を小さくし、満充電容量の推定頻度を増やして満充電容量の変化を正確に把握できるようにしている。
この許容期間は、外部充電時の満充電推定処理後に設定することができる。図2に示した外部充電時の満充電容量推定処理において、ECU300は、ステップS107を遂行する。ステップS107の準備処理において、図7に示したマップを用いて外部充電時に推定された最新の満充電容量から許容期間を算出し、満充電容量推定後の未推定期間に対する許容期間を設定することができる。
なお、準備処理は、外部充電時に限らず、許容期間をトリガーに遂行される満充電容量推定処理後にも遂行される。つまり、外部充電の際の満充電容量が推定される度に又は外部充電に限らず満充電容量が推定される度に、ECU300は、準備処理を遂行し、満充電容量推定後の未推定期間中に所定のタイミングで、満充電容量を推定することができるようにしている。
図8は、前回満充電容量が推定された後の未推定期間に、組電池100の使用環境に基づいて現在(今回)の満充電容量を推定する処理を示すフローチャートである。図9は、図8に続く、満充電容量の推定処理を示すフローチャートである。
図8及び図9に示す処理は、車両のイグニッションスイッチがオン/オフ状態、又は外部充電時に限らず、ECU300によって遂行される。
ECU300は、前回満充電容量が推定された後から未推定期間の計測処理を行い、1時間経過する度に、組電池100の電池温度及びSOCを計測する。ECU300は、1分毎に1時間計時カウンタC_1hをインクリメントする(S301)。ECU300は、1時間が経過したか否か、言い換えれば、1時間計時カウンタC_1hが60を超えたか否かを判定し(S302)、1時間経過していない場合は、ステップS301の1分毎の1時間計時カウンタC_1hのインクリメント処理を遂行する。
ECU300は、ステップS302において1時間が経過したと判定された場合、未推定時間カウンタC_24hをインクリメントする(S303)。未推定時間カウンタC_24hは、1時間計時カウンタC_1hに対応する1時間単位のカウンタであり、前回満充電容量が推定された後から1時間経過する度にインクリメントされる。
ECU300は、前回満充電容量が推定された後から1時間経過する度に、組電池100の電圧及び電池温度の各検出値を監視ユニット200,温度センサ201から取得する(S304)。ECU300は、ステップS305において、検出された電圧値に基づいてSOC推定処理を行い、推定されたSOCを用いてΣSOCを算出するSOC積算処理を行う。同様に、ECU300は、ステップS306において、検出された電池温度を用いてΣ電池温度を算出する電池温度積算処理を行う。
本実施例では、車両走行中又は車両停車中にかかわらずに、未推定期間中の組電池100のSOC及び電池温度を所定のタイミングで複数取得しており、取得されたSOC及び電池温度は、未推定期間の経過時間と共にメモリ301に記憶される。このため、満充電容量が低下する要因となる使用環境を精度良く把握することができ、平均SOC及び平均電池温度に基づく満充電容量の推定精度が向上する。
なお、1時間計時カウンタC_1h,未推定時間カウンタC_24h、ΣSOC及びΣ電池温度は、ステップS107の準備処理でそれぞれ初期化(=0)される。つまり、満充電容量が推定された後の時間計測処理及び使用環境の把握処理に用いられ、最新の満充電容量が推定される度に、未推定期間中の満充電容量推定処理のために新たに算出されることになる。
ECU300は、ステップS107の準備処理で設定された許容期間Aを取得し(S307)、未推定時間カウンタC_24hのインクリメント処理、SOC積算処理及び電池温度積算処理に伴って、現時点での未推定期間が許容期間を超えているか否かを判別する(S308)。例えば、許容期間Aの単位が「日」である場合、許容期間A×24が、未推定時間カウンタC_24hの値と同じか又は超えているかを判定することができる。
ECU300は、前回満充電容量を推定した後の経過時間が許容期間を超えていると判別された場合、使用環境に基づく満充電容量の推定処理を開始する。
ECU300は、前回満充電容量を推定した後の未推定期間(経過時間)中の組電池100の平均SOC及び平均電池温度を算出する(S309)。平均SOC及び平均電池温度は、ステップS305のSOC積算処理で算出されたΣSOC、ステップS306の電池温度積算処理で算出されたΣ電池温度それぞれを、未推定時間カウンタC_24hで除算することで算出することができる。
ECU300は、ステップS310において、1時間計時カウンタC_1h,未推定時間カウンタC_24h、ΣSOC及びΣ電池温度を初期化する。ステップS310の初期化処理は、図2のステップS107の準備処理と同様の目的としており、組電池100の使用環境に基づく次回の満充電容量の推定処理の準備処理として、各カウンタ及びパラメータを初期化する。
ECU300は、前回満充電容量を推定した後の未推定期間(経過時間)中の現在までの組電池100の平均SOC及び平均電池温度を算出すると、図5に示した組電池100の平均電池温度及び平均SOCと満充電容量の低下率との関係を予め規定したマップを参照し、組電池100の経過時間に対して変化する満充電容量の低下率を算出する(S311)。
ECU300は、前回満充電容量を推定した後の未推定期間(経過時間)中における現在までの組電池100の平均電池温度及び平均SOCから満充電容量の低下率が特定されると、前回満充電容量が推定された際の組電池100の経過時間に対応した「√使用期間T1」を算出する(S312)。「√使用期間T1」は、「√使用期間T1=(製造初期の満充電容量(C0)−前回満充電容量(C1)÷低下率(Q)」で算出することができる。
そして、ECU300は、今回満充電容量を算出する現時点での組電池100の「√使用期間T2」に対応する使用期間を算出する(S313)。ECU300は、ステップS312で算出された「√使用期間T1」の二乗値と未推定期間Aとを加算し、「√使用期間T2」に対応する使用期間を算出することができる。続いて、ECU300は、算出された「√使用期間T1」の二乗値と未推定期間Aとの和の平方根を算出し、第3の傾きに対応する「√使用期間T2」を算出する(S314)。そして、今回(現在)の満充電容量を、「今回満充電容量(C2)=製造初期の満充電夜用(C0)−低下率(Q)×√使用期間T2」で算出する。
ECU300は、算出された今回満充電容量(C2)をメモリ301に記憶すると共に、組電池100の使用環境に基づく次回の満充電容量の推定処理の準備処理として、今回満充電容量に対応する許容期間(A)を、前回満充電容量が推定された後の未推定期間の許容日数が規定されたマップから算出し、算出された許容日数を許容期間として設定する。
このように本実施例の満充電容量推定処理は、組電池100の経過期間に応じて予め規定された初期満充電容量(C0)からの低下率に基づいて、現在の満充電容量を算出する。このとき、ECU300は、まず、前回満充電容量が算出されたときから現在までに満充電容量が推定されていない期間の平均SOC及び平均電池温度と、平均SOC及び平均電池温度に応じて変化する低下率が予め規定された低下率マップとを用いて、満充電容量が推定されていない期間中の低下率(Q)を算出する。次に、満充電容量が推定されていない期間中の低下率(Q)と初期満充電容量(C0)とに基づいて前回満充電容量が算出されたときの第1経過期間(√使用期間T1)を算出する。そして、第1経過期間(√使用期間T1)と満充電容量が推定されていない期間(A)とから算出される組電池100の現在の第2経過期間(√使用期間T2)、満充電容量が推定されていない期間中の低下率(Q)、及び初期満充電容量(C0)に基づいて、現在の満充電容量を算出する。
このように構成されることで、組電池100の使用期間中の任意のタイミングで前回満充電容量を基準に現在の満充電容量を精度良く推定することができ、組電池100の使用期間に対して特定のタイミングに限らずに、満充電容量を推定することができる。したがって、満充電容量を精度良く推定しつつ、満充電容量の推定頻度を向上させることができる。
特に、満充電容量の推定処理が外部充電のときに行われる場合であっても、外部充電が行われない期間に満充電容量を精度良く推定できると共に、満充電容量を推定する機会を増加させることができ、蓄電装置の満充電容量を適切に把握することができる。
なお、組電池100の使用期間中の任意のタイミングで前回満充電容量を基準に現在の満充電容量を精度良く推定する本実施例の満充電容量推定処理は、満充電容量が推定されていない期間中に複数回行うことができる。この場合、前回満充電容量として本実施例の使用環境に基づく満充電容量推定処理によって得られた満充電容量を用い、現在の満充電容量を算出することができる。つまり、前回満充電容量が外部充電の際の充放電履歴に基づいて算出されたものでなくても、組電池100の使用期間中の任意のタイミングで前回満充電容量を基準に現在の満充電容量を、前回満充電容量が算出された後から現在までの平均SOC及び平均電池温度に基づいて、精度良く推定することができる。
また、図8及び図9に示す満充電容量推定処理は、外部充電の際の充放電履歴に基づく満充電容量推定処理によって満充電容量が算出される度に初期化されるように構成されている。これは、外部充電の際の充放電履歴に基づく満充電容量推定処理によって算出された満充電容量は、上述したように推定精度が高いので、満充電容量が推定されていない期間中に行われる平均SOC及び平均電池温度に基づく満充電容量の推定精度も向上するからである。
また、本実施例では、逐次算出される満充電容量を時系列に学習した満充電容量学習値を用いて、組電池100の充放電制御を行うことができる。例えば、今回算出された満充電容量と前回算出された前回満充電容量学習値とから、「満充電容量学習値=前回満充電容量学習値×(1−K)+満充電容量(実測値)×K」と算出することができる。Kは、今回算出される満充電容量学習値に含まれる実測値の満充電容量と前回満充電容量学習値との比率を決定する反映係数(学習パラメータ)である。Kは、0〜1の範囲の値であり、任意の値を適用して満充電容量学習値を算出することができる。
この場合、満充電容量が推定されていない期間中の組電池100の使用環境に基づく現在(今回)の満充電容量推定処理では、前回満充電容量に最新の満充電容量学習値を適用すると共に、使用環境に応じて推定された現在の満充電容量を満充電容量実測値として満充電容量学習値に反映するように構成することができる。
10:単電池、100:組電池、200:監視ユニット、201:温度センサ、202:電流センサ、203:電流制限抵抗、204:インバータ、205:モータ・ジェネレータ、206:充電器、207:インレット、208:外部電源、300:ECU、301:メモリ、SMR−B,SMR−P,SMR−G:システムメインリレー、PL:正極ライン、NL:負極ライン

Claims (6)

  1. 車両に搭載される蓄電システムであって、
    充放電を行う蓄電装置と、
    前記蓄電装置の経過期間に応じて予め規定された初期満充電容量からの低下率に基づいて、現在の満充電容量を算出する推定処理を遂行するコントローラと、を有し、
    前記コントローラは、
    前回満充電容量が算出されたときから現在まで満充電容量が推定されていない期間の平均SOC及び平均電池温度と、前記平均SOC及び平均電池温度に応じて変化する前記低下率が予め規定された低下率マップとを用いて、前記満充電容量が推定されていない期間中の低下率を算出し、前記満充電容量が推定されていない期間中の低下率と前記初期満充電容量とに基づいて前回満充電容量が算出されたときの前記蓄電装置の第1経過期間を算出し、
    前記第1経過期間と前記満充電容量が推定されていない期間とから算出される前記蓄電装置の現在の第2経過期間、前記満充電容量が推定されていない期間中の低下率、及び前記初期満充電容量に基づいて、現在の満充電容量を算出し、
    前記コントローラは、前記満充電容量が推定されていない期間が所定期間を超える場合に、前記推定処理を遂行すると共に、前回満充電容量の大きさに応じて前記所定期間を変更可能に制御し、
    前回満充電容量の大きさが大きい程、前記所定期間を短く設定し、前回満充電容量の大きさが小さくなるにつれて前記所定期間を長く設定することを特徴とする蓄電システム。
  2. 前記コントローラは、前回満充電容量の大きさが小さくなるにつれて前記所定期間を長く設定するとともに、前回満充電容量の大きさが所定の閾値よりも小さい領域では前記所定期間が一定となるように設定することを特徴とする請求項1に記載の蓄電システム。
  3. 前記コントローラは、外部電源から供給される電力が前記蓄電装置に充電される外部充電前後のSOC差と外部充電中の充電電流積算値とに基づいて前記蓄電装置の満充電容量を算出する第1推定処理を遂行し、
    前記第1推定処理によって推定された満充電容量を前回満充電容量として、外部充電の際に満充電容量が算出されたときから現在までの前記満充電容量が推定されていない期間中に前記推定処理を遂行することを特徴とする請求項1又は2に記載の蓄電システム。
  4. 前記コントローラは、車両走行中又は車両停車中にかかわらずに、前記満充電容量が推定されていない期間中の蓄電装置のSOC及び電池温度を所定のタイミングで複数取得し、前記満充電容量が推定されていない期間の経過時間と共に所定の記憶領域に記憶することを特徴とする請求項1から3のいずれか1つに記載の蓄電システム。
  5. 前記低下率マップは、前記平均SOC及び平均電池温度が高いほど、前記低下率が大きくなるように設定されていることを特徴とする請求項1から4のいずれか1つに記載の蓄電システム。
  6. 車両に搭載される蓄電装置の経過期間に応じて予め規定された初期満充電容量からの低下率に基づいて、現在の満充電容量を算出する満充電容量推定方法であって、
    前回満充電容量が算出されたときから現在まで満充電容量が推定されていない期間の平均SOC及び平均電池温度を算出するステップと、
    前記平均SOC及び平均電池温度に応じて変化する前記低下率が予め規定された低下率マップを用いて、前記満充電容量が推定されていない期間中の低下率を算出するステップと、
    前記満充電容量が推定されていない期間中の低下率と前記初期満充電容量とに基づいて前回満充電容量が算出されたときの前記蓄電装置の第1経過期間を算出するステップと、
    前記第1経過期間と前記満充電容量が推定されていない期間とから算出される前記蓄電装置の現在の第2経過期間、前記満充電容量が推定されていない期間中の低下率、及び前記初期満充電容量に基づいて、現在の満充電容量を算出するステップと、を含み、
    前記満充電容量が推定されていない期間が所定期間を超える場合に前記各ステップに基づく推定処理を遂行するように制御されるとともに、前記所定期間は、前回満充電容量の大きさに応じて変更可能であり、
    前回満充電容量の大きさが大きい程、前記所定期間を短く設定し、前回満充電容量の大きさが小さくなるにつれて前記所定期間を長く設定するステップをさらに含むことを特徴とする満充電容量推定方法。
JP2013173525A 2013-08-23 2013-08-23 蓄電システム及び蓄電装置の満充電容量推定方法 Active JP6197479B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013173525A JP6197479B2 (ja) 2013-08-23 2013-08-23 蓄電システム及び蓄電装置の満充電容量推定方法
PCT/IB2014/001575 WO2015025212A1 (en) 2013-08-23 2014-08-20 Electric storage system and full charge capacity estimation method for electric storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013173525A JP6197479B2 (ja) 2013-08-23 2013-08-23 蓄電システム及び蓄電装置の満充電容量推定方法

Publications (2)

Publication Number Publication Date
JP2015040832A JP2015040832A (ja) 2015-03-02
JP6197479B2 true JP6197479B2 (ja) 2017-09-20

Family

ID=51659957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013173525A Active JP6197479B2 (ja) 2013-08-23 2013-08-23 蓄電システム及び蓄電装置の満充電容量推定方法

Country Status (2)

Country Link
JP (1) JP6197479B2 (ja)
WO (1) WO2015025212A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102459682B1 (ko) * 2021-10-13 2022-10-27 주식회사 피엠그로우 전기 자동차의 배터리에 대한 수명을 예측하는 배터리 수명 예측 방법 및 장치

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6728903B2 (ja) * 2015-04-10 2020-07-22 株式会社豊田自動織機 蓄電装置及び蓄電方法
CN104779670B (zh) * 2015-04-16 2017-10-10 东南大学 一种检测蓄电池是否充满的方法
JP6868976B2 (ja) * 2015-12-17 2021-05-12 ローム株式会社 充電式のバッテリの劣化推定方法、劣化推定回路、およびそれを用いた電子機器、自動車
CN105539180B (zh) * 2015-12-28 2018-02-27 青岛大学 一种田字型电动汽车混合电源控制方法
US10224579B2 (en) 2015-12-31 2019-03-05 Robert Bosch Gmbh Evaluating capacity fade in dual insertion batteries using potential and temperature measurements
US10263447B2 (en) 2016-01-29 2019-04-16 Robert Bosch Gmbh Secondary battery management system
US10686321B2 (en) 2016-01-29 2020-06-16 Robert Bosch Gmbh Secondary battery management
US10243385B2 (en) 2016-01-29 2019-03-26 Robert Bosch Gmbh Secondary battery management system
JP6686761B2 (ja) * 2016-07-22 2020-04-22 株式会社豊田自動織機 充電器
JP6828339B2 (ja) * 2016-09-21 2021-02-10 株式会社豊田自動織機 蓄電装置
US10447046B2 (en) 2016-09-22 2019-10-15 Robert Bosch Gmbh Secondary battery management system with remote parameter estimation
JP7172599B2 (ja) * 2016-09-29 2022-11-16 株式会社Gsユアサ 蓄電素子のsoc推定装置、蓄電装置、蓄電素子のsoc推定方法
CN108572320B (zh) * 2017-03-09 2020-02-14 郑州宇通客车股份有限公司 电池最小单体及系统有效容量、健康状态估算方法及装置
KR102437477B1 (ko) * 2017-12-26 2022-08-26 주식회사 엘지에너지솔루션 배터리의 만충전 용량을 산출하기 위한 배터리 관리 시스템 및 방법
JP7198284B2 (ja) * 2018-09-06 2022-12-28 株式会社日立製作所 鉄道車両
EP3872506A4 (en) 2018-10-26 2023-01-11 Vehicle Energy Japan Inc. BATTERY MONITORING DEVICE
JP7087957B2 (ja) * 2018-11-26 2022-06-21 トヨタ自動車株式会社 電池制御装置
US11714136B2 (en) * 2019-11-13 2023-08-01 Electric Power Research Institute, Inc. Method of determining battery degradation
JP7234957B2 (ja) * 2020-02-03 2023-03-08 トヨタ自動車株式会社 バッテリー制御装置、方法、プログラム、及び車両
KR20220047472A (ko) * 2020-10-08 2022-04-18 주식회사 엘지에너지솔루션 배터리 퇴화도 산출 방법 및 배터리 퇴화도 산출 장치
WO2024084702A1 (ja) * 2022-10-21 2024-04-25 三菱電機ビルソリューションズ株式会社 監視装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006191A (ja) * 2002-06-02 2004-01-08 Fuji Heavy Ind Ltd 組電池システム
US7550946B2 (en) * 2006-06-07 2009-06-23 Gm Global Technology Operations, Inc. Method and apparatus for real-time life estimation of an electric energy storage device in a hybrid electric vehicle
JP2008308122A (ja) * 2007-06-18 2008-12-25 Mazda Motor Corp 車両用バッテリの制御装置
JPWO2009025307A1 (ja) * 2007-08-22 2010-11-25 株式会社ジーエス・ユアサコーポレーション 航空機、及び航空機の使用法
JP5504657B2 (ja) * 2009-03-18 2014-05-28 日産自動車株式会社 二次電池の総容量推定装置
JP4978662B2 (ja) * 2009-06-24 2012-07-18 トヨタ自動車株式会社 充電状態推定装置および充電状態推定方法
WO2011135609A1 (ja) * 2010-04-26 2011-11-03 トヨタ自動車株式会社 蓄電素子の劣化推定装置および劣化推定方法
JP5777303B2 (ja) * 2010-08-05 2015-09-09 三菱重工業株式会社 電池劣化検知装置および電池劣化検知方法ならびにそのプログラム
JP5599375B2 (ja) * 2010-11-24 2014-10-01 三菱電機株式会社 蓄電装置の劣化監視方法、及びその劣化監視装置
JP5453232B2 (ja) * 2010-12-24 2014-03-26 本田技研工業株式会社 電動車両
US20130311119A1 (en) * 2011-01-31 2013-11-21 Shigeto Tamezane Method of detecting battery full-charge capacity
JP5852399B2 (ja) * 2011-10-17 2016-02-03 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation バッテリの状態予測システム、方法及びプログラム
JP5741389B2 (ja) * 2011-11-09 2015-07-01 トヨタ自動車株式会社 蓄電装置の満充電容量推定方法及び蓄電システム。

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102459682B1 (ko) * 2021-10-13 2022-10-27 주식회사 피엠그로우 전기 자동차의 배터리에 대한 수명을 예측하는 배터리 수명 예측 방법 및 장치
WO2023063476A1 (ko) * 2021-10-13 2023-04-20 주식회사 피엠그로우 전기 자동차의 배터리에 대한 수명을 예측하는 배터리 수명 예측 방법 및 장치

Also Published As

Publication number Publication date
WO2015025212A1 (en) 2015-02-26
JP2015040832A (ja) 2015-03-02

Similar Documents

Publication Publication Date Title
JP6197479B2 (ja) 蓄電システム及び蓄電装置の満充電容量推定方法
JP5812032B2 (ja) 蓄電システム及び蓄電装置の満充電容量推定方法
JP5673654B2 (ja) 蓄電システムおよび満充電容量算出方法
AU2017263851B2 (en) Battery state detection system and method
JP5708668B2 (ja) 蓄電システム
JP5621818B2 (ja) 蓄電システムおよび均等化方法
JP5179047B2 (ja) 蓄電装置の異常検出装置、蓄電装置の異常検出方法及びその異常検出プログラム
US10090686B2 (en) Electrical storage system
US10209317B2 (en) Battery control device for calculating battery deterioration based on internal resistance increase rate
JP5616254B2 (ja) 組電池の状態検出方法および制御装置
JP5784108B2 (ja) 充電制御装置
JP2013158087A (ja) 蓄電システム及び充電状態推定方法
CN103809123A (zh) 状态推定装置、状态推定方法
JP2014147222A (ja) 電池システム
CN105008945A (zh) 充电状态估计装置和充电状态估计方法
JP2020065424A (ja) 表示装置およびそれを備える車両
JP5862478B2 (ja) 蓄電システムおよび制御方法
JP7174327B2 (ja) 二次電池の状態判定方法
EP3872506A1 (en) Battery control device
JP2014233183A (ja) 蓄電システム及び制御方法
JP6434245B2 (ja) 充電率推定装置及び電源システム
JP5772615B2 (ja) 蓄電システム
JP2014155401A (ja) 蓄電システム
CN104871023B (zh) 用于确定充电状态的方法
JP2014085118A (ja) 蓄電システムおよび異常判別方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170807

R151 Written notification of patent or utility model registration

Ref document number: 6197479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151