WO2012085969A1 - 空気調和システム及び調湿装置 - Google Patents

空気調和システム及び調湿装置 Download PDF

Info

Publication number
WO2012085969A1
WO2012085969A1 PCT/JP2010/007430 JP2010007430W WO2012085969A1 WO 2012085969 A1 WO2012085969 A1 WO 2012085969A1 JP 2010007430 W JP2010007430 W JP 2010007430W WO 2012085969 A1 WO2012085969 A1 WO 2012085969A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat exchanger
moisture adsorption
desorption
humidity control
Prior art date
Application number
PCT/JP2010/007430
Other languages
English (en)
French (fr)
Inventor
伊藤 慎一
正樹 豊島
畝崎 史武
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2010/007430 priority Critical patent/WO2012085969A1/ja
Priority to CN201080070357.7A priority patent/CN103221752B/zh
Priority to EP18155631.7A priority patent/EP3339757B1/en
Priority to US13/882,614 priority patent/US9644875B2/en
Priority to EP10860919.9A priority patent/EP2657620B1/en
Priority to EP18155629.1A priority patent/EP3339756B1/en
Priority to JP2012549479A priority patent/JP5631415B2/ja
Publication of WO2012085969A1 publication Critical patent/WO2012085969A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0008Control or safety arrangements for air-humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1429Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant alternatively operating a heat exchanger in an absorbing/adsorbing mode and a heat exchanger in a regeneration mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/02Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures

Definitions

  • the present invention relates to an air conditioning system that performs air conditioning by including an air conditioner that performs indoor temperature adjustment (hereinafter referred to as temperature control) and a humidity control device that performs indoor humidity adjustment (hereinafter referred to as humidity control). It is.
  • one or a plurality of outdoor units and one or a plurality of indoor units are connected by pipes to constitute a refrigerant circuit in which a refrigerant is circulated to perform a vapor compression refrigeration cycle.
  • the humidity controller of this system has a refrigerant circuit separate from the air conditioner and functions as a ventilator to control humidity using a high-efficiency refrigeration cycle using outside air.
  • the humidity control device also functions as a ventilation device, the air volume is limited by the ventilation volume compared to a normal indoor unit, the power consumption increases due to the need to lower the evaporation temperature, etc. The energy efficiency was getting worse to secure.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air conditioning system and the like that can efficiently control temperature and humidity.
  • the air conditioning system includes one or more outdoor units having a compressor, a flow path switching device, and an outdoor heat exchanger, and one or more units having a first expansion device and a first indoor heat exchanger.
  • the refrigerant circuit is configured by pipe-connecting the heat exchanger, the first expansion device, the first indoor heat exchanger, the second expansion device, and the second indoor heat exchanger.
  • the first and second moisture adsorption / desorption devices are arranged, for example, in the moisture adsorption / desorption device upstream of the second indoor heat exchanger with respect to the air flow.
  • FIG. 1 It is a figure showing the structure of the air conditioning system which concerns on Embodiment 1 of this invention. It is a figure showing the structure of the refrigerant circuit in the system which concerns on Embodiment 1 of this invention. It is a figure showing the structure of the humidity control apparatus 30 which concerns on Embodiment 1 of this invention. It is a figure showing the relationship between the relative humidity of the air which concerns on Embodiment 1, and an equilibrium adsorption amount. 3 is a moist air diagram during dehumidifying operation according to Embodiment 1.
  • FIG. It is a figure of the temperature at the time of the dehumidification operation which concerns on Embodiment 1, and absolute humidity.
  • FIG. 1 is a diagram showing the configuration of an air conditioning system according to Embodiment 1 of the present invention.
  • the outdoor unit 10a, the indoor unit 20, the humidity control apparatus 30, and the controller 40 are provided.
  • the outdoor unit 10a, the indoor unit 20, and the humidity control device 30 are connected by piping so that the refrigerant can be circulated by the liquid side main pipe 102, the liquid side branch pipe 104, the gas side main pipe 103, and the gas side branch pipe 105.
  • communication connection is established by a transmission line 101 so that signals can be transmitted and received.
  • the outdoor unit 10 a and the controller 40 are also connected by the transmission line 101.
  • FIG. 1 is a diagram showing the configuration of an air conditioning system according to Embodiment 1 of the present invention.
  • the outdoor unit 10a, the indoor unit 20, the humidity control apparatus 30, and the controller 40 are provided.
  • the outdoor unit 10a, the indoor unit 20, and the humidity control device 30 are connected by piping so that the refrigerant can be circulated by the liquid side main pipe
  • the number of indoor units 20 and humidity control devices 30 connected to the outdoor unit 10 a is one each, but the number is not limited.
  • the number of connected units can be changed according to the outdoor functional force, the required dehumidification amount, etc. (the same applies hereinafter).
  • FIG. 2 is a diagram illustrating devices and the like constituting the refrigerant circuit in the air-conditioning system according to Embodiment 1 of the present invention.
  • the outdoor unit 10 a includes a compressor 11, an outdoor heat exchanger 12, a four-way valve 13, and an accumulator 14.
  • the compressor 11 in the present embodiment is a variable capacity compressor (fluid device) whose capacity can be changed by an inverter circuit based on an instruction from the outdoor unit control means 16. For example, various types such as a reciprocating type, a rotary type, a scroll type, and a screw type are applicable.
  • the outdoor heat exchanger 12 performs heat exchange between the refrigerant and air (outdoor air).
  • the accumulator 14 is a tank that prevents the liquid refrigerant (liquid refrigerant) from passing through and prevents the liquid refrigerant from flowing into the compressor 11.
  • the outdoor unit 20 has an indoor unit expansion valve 21 and an indoor unit heat exchanger 22.
  • the indoor unit expansion valve (throttle device, flow rate adjusting device) 21 as the first expansion device performs refrigerant pressure adjustment and the like by changing the opening degree based on an instruction from the indoor unit control means 24. In the present embodiment, it is assumed that the valve opening can be finely controlled using a stepping motor.
  • the indoor unit heat exchanger 22 which is the first indoor heat exchanger performs heat exchange with air in the room (air-conditioning area, air-conditioning target space) particularly for temperature control. It functions as a condenser during heating operation, and functions as an evaporator during cooling operation.
  • the humidity control device 30 includes a humidity control device expansion valve 31 and a humidity control device heat exchanger 32.
  • the humidity control device expansion valve 31 which is the second expansion device adjusts the pressure of the refrigerant by changing the opening degree based on an instruction from the humidity control device control means 36.
  • the humidity control device heat exchanger 32 which is the second indoor heat exchanger, performs heat exchange with indoor air especially for humidity control.
  • it functions as an evaporator.
  • the refrigerant used in the refrigerant circuit is not particularly limited.
  • a natural refrigerant such as carbon dioxide, hydrocarbon, or helium can be used.
  • a chlorine-free refrigerant such as HFC410A or HFC407C, or a fluorocarbon refrigerant such as R22 or R134a used in existing products can be used.
  • the outdoor unit 10a is provided with an outdoor blower 15 for flowing air to the outdoor heat exchanger 12, in addition to the devices constituting the refrigerant circuit. Moreover, the outdoor unit control means 16 which controls the apparatus of the outdoor unit 10a based on the control signal from the controller 40 is provided.
  • the indoor unit 20 is provided with an indoor unit air blowing means 23 that allows air from the air conditioning area to pass through the indoor unit heat exchanger 22 and blows air to the air conditioning area (humidity control target space). Further, an indoor unit control means 24 for controlling the equipment of the indoor unit 20 based on a control signal from the controller 40 is provided.
  • the humidity control device 30 is provided with a humidity control device blower 35 for passing the air from the air conditioning area through the air passage of the main body 37 from the suction port 38 of the humidity control device 30 and sending the air from the discharge port 39 to the air conditioning area.
  • a humidity control device blower 35 for passing the air from the air conditioning area through the air passage of the main body 37 from the suction port 38 of the humidity control device 30 and sending the air from the discharge port 39 to the air conditioning area.
  • it has two moisture adsorption / desorption devices (first and second moisture adsorption / desorption devices) 33a and 33b having a function of adsorbing moisture from the passing air and desorbing (releasing) moisture to the passing air. Yes.
  • air flow path switching means 34a, 34b for switching the air path in the air path.
  • the humidity control apparatus control means 36 which controls the apparatus of the humidity control apparatus 30 based on the control signal from the controller 40 is provided.
  • the humidity control device 30 can be configured by adding the main body 37, the moisture adsorption / desorption devices 33a and 33b, and the air flow path switching units 34a and 34b to the configuration of the indoor unit 20. Details of the configuration and operation of the humidity control device 30 will be described later.
  • the air volume can be adjusted and controlled, for example, the air volume can be set according to the air condition. It is assumed to be a blowing means.
  • the air volume control can be realized by controlling the rotation speed when a DC motor is used as a motor for rotating the fan. Further, when an AC motor is used, it can be realized by changing the number of revolutions by changing the power supply frequency by inverter control.
  • a discharge pressure sensor 1 a is provided on the discharge side of the compressor 11.
  • a suction pressure sensor 1b is provided on the suction side.
  • the indoor unit 20 and the humidity control device 30 are provided with a liquid pipe temperature sensor 2a and a gas pipe temperature sensor 2b, respectively.
  • An outdoor air temperature sensor 2 c is provided on the air inflow side of the outdoor heat exchanger 12.
  • a suction air temperature sensor 2 d is provided on the air suction side of the indoor unit heat exchanger 22 of the indoor unit 20.
  • the temperature / humidity sensor 3 is provided in the inlet 38 side of the humidity control apparatus 30 mentioned later.
  • the refrigerant that has flowed into the indoor unit 20 and the humidity control device 30 is reduced in pressure in the indoor unit expansion valve 21 and the humidity control device expansion valve 32, and then flows to the indoor unit heat exchanger 22 and the humidity control device heat exchanger 32. .
  • the gas is evaporated by heat exchange with air and flows out from the indoor unit 20 and the humidity control device 30 side.
  • the refrigerant that has flowed out flows through the gas side branch pipe 105 and the gas side main pipe 103 and flows into the outdoor unit 10a.
  • the refrigerant that has flowed in passes through the four-way valve 13 and the accumulator 14 and is sucked into the compressor 11 again.
  • the flow of refrigerant in the refrigerant circuit during heating will be described with reference to FIG.
  • the four-way valve 13 is switched during heating so that the flow of the refrigerant changes during cooling.
  • the refrigerant discharged from the compressor 11 flows out from the outdoor unit 10a side through the four-way valve 13.
  • the refrigerant that has flowed out flows through the gas side main pipe 103, branches to the gas side branch pipe 105, and flows into the indoor unit 20 and the humidity control apparatus 30 side.
  • the refrigerant that has flowed into the indoor unit 20 and the humidity controller 30 flows to the indoor unit heat exchanger 22 and the humidity controller heat exchanger 32, respectively.
  • the liquid In the indoor unit heat exchanger 22 and the humidity controller heat exchanger 32, the liquid is condensed and liquefied by heat exchange with air. And after decompressing in the indoor unit expansion valve 21 and the humidity control apparatus expansion valve 31, it flows out from the indoor unit 20 and the humidity control apparatus 30 side.
  • the refrigerant that has flowed out flows through the liquid side branch pipe 104 and the liquid side main pipe 102 and flows into the outdoor unit 10a.
  • the refrigerant that has flowed flows into the outdoor heat exchanger 12.
  • the gas In the outdoor heat exchanger 12, the gas is evaporated by heat exchange with air. Then, it passes through the four-way valve 13 and the accumulator 14 and is sucked into the compressor 11 again.
  • FIG. 3 is a diagram for explaining the operation of the humidity control apparatus 30 according to the first embodiment. Next, the dehumidifying operation performed by the humidity control apparatus 30 will be described. Here, it is assumed that the air conditioning system performs a cooling operation.
  • the air path A is a path through which air passes in the order of the moisture adsorption / desorption device 33a, the humidity controller heat exchanger 32, and the moisture adsorption / desorption device 33b.
  • the air path can be switched by operating the air flow path switching means 34a, 34b constituted by, for example, a damper. Further, it is possible to control the switching time by controlling the rotation operation of a motor or the like used for switching.
  • the air path switching means 34a is disposed upstream of the moisture adsorption / desorption devices 33a and 33b and the humidity control device heat exchanger 32 with respect to the air flow.
  • the air path switching means 34b is disposed downstream of the moisture adsorption / desorption devices 33a and 33b and the humidity control device heat exchanger 32.
  • the return air RA is sucked (introduced) from the suction port 38 and passes through the moisture adsorption / desorption device 33 a in the main body 37.
  • the adsorbent of the moisture adsorption / desorption device 33a desorbs to release moisture into the air and humidifies the passing air.
  • the air that has passed through the moisture adsorption / desorption device 33a passes through the humidity control device heat exchanger 32.
  • the humidity control device heat exchanger 32 functioning as an evaporator cools the air to the dew point temperature or lower and dehumidifies it.
  • the air that has passed through the humidity control device heat exchanger 32 passes through the moisture adsorption / desorption device 33b.
  • the moisture adsorption / desorption device 33b dehumidifies by further adsorbing moisture in the air by the adsorbent.
  • the air that has passed through the moisture adsorption / desorption device 33b passes through the humidity control device blower 35, exits from the discharge port 39, and is supplied into the room (air conditioning target space) as the supply air SA.
  • the air path B is a path through which air passes in the order of the moisture adsorption / desorption device 33b, the humidity controller heat exchanger 32, and the moisture adsorption / desorption device 33a.
  • the return air RA is sucked from the suction port 38 and passes through the moisture adsorption / desorption device 33b.
  • the adsorbent of the moisture adsorption / desorption device 33b undergoes a desorption reaction, moisture is released into the air and the passing air is humidified.
  • the air that has passed through the moisture adsorption / desorption device 33 b passes through the humidity control device heat exchanger 32.
  • the humidity control device heat exchanger 32 functioning as an evaporator cools the air to the dew point temperature or lower and dehumidifies it.
  • the air that has passed through the humidity control device heat exchanger 32 passes through the moisture adsorption / desorption device 33a.
  • the moisture adsorption / desorption device 33a dehumidifies by further adsorbing moisture in the air by the adsorbent.
  • the air that has passed through the moisture adsorption / desorption device 33a passes through the humidity control device blower 35, exits the discharge port 39, and is supplied into the room as the supply air SA.
  • the moisture adsorption / desorption devices 33a and 33b of the present embodiment have a polygonal porous flat plate along the air passage cross section so that a large air cross section can be taken with respect to the air passage cross section of the device. It is configured so that air can pass in the thickness direction.
  • the surface of the porous flat plate has a characteristic of adsorbing moisture from air with relatively high humidity, such as zeolite, silica gel, activated carbon, etc., and desorbing moisture with respect to air with relatively low humidity.
  • zeolite such as zeolite, silica gel, activated carbon, etc.
  • FIG. 4 is a diagram showing the relationship between the air relative humidity and the equilibrium adsorption amount.
  • FIG. 4 shows the amount of moisture (equilibrium adsorption amount) that the adsorbent used in the moisture adsorption / desorption devices 33a and 33b can adsorb to the air relative humidity.
  • the equilibrium adsorption amount generally increases as the air relative humidity increases.
  • an adsorbent having a large difference between the equilibrium adsorption amount when the air relative humidity is 80% or more and the equilibrium adsorption amount when the air relative humidity is 40 to 60% should be used.
  • the air flow rate passing through the moisture adsorption / desorption devices 33a and 33b also changes. Since the moisture transfer speed between the air and the adsorbent during the adsorption and desorption of the moisture adsorption / desorption devices 33a and 33b increases as the air flow rate increases, the dehumidification / humidification capability can be increased.
  • the humidity control device blower 35 is disposed on the most downstream side (air discharge port 39 side) in FIG. 3, but if the target air volume can be obtained in the two air paths, the most upstream (air suction) It may be arranged on the side of the mouth 38). Further, a plurality of them may be arranged on the upstream side and the downstream side. Thus, the arrangement position, the number, and the like of the humidity control device blowing means 35 are not limited.
  • FIG. 5 is a moist air diagram showing the change in the air state in the dehumidifying operation of the humidity control apparatus 30.
  • states 1 to 4 indicating the air state in FIG. 5 correspond to the air states at positions (1) to (4) in FIG. 3, respectively.
  • FIG. 6 is a diagram showing the temperature and absolute humidity of the passing air in each state at a predetermined position of the humidity control apparatus 30.
  • FIG. 6 shows a change in the case of the air path A.
  • the positional relationship between the moisture adsorption / desorption device 33a and the moisture adsorption / desorption device 33b is switched.
  • the return air RA (state 1) passes through the moisture adsorption / desorption device 33a.
  • the return air RA introduced from the room often has a relative humidity of 40 to 60% in the indoor environment.
  • the moisture adsorption / desorption device 33a generates moisture according to the moisture content by the desorption reaction of the adsorbent.
  • the temperature of the humidified air is lower than when it is introduced (in the state 1), and the relative humidity is increased.
  • condensation tends to occur.
  • Humidified air passes through the humidity control device heat exchanger 32 and is cooled to a dew point temperature or lower to become dehumidified air (dehumidified air) (state 3). At this time, the relative humidity of the dehumidified air is as high as about 70 to 90%. For this reason, the adsorbent of the moisture adsorption / desorption device 33b easily adsorbs moisture.
  • the dehumidified air passes through the moisture adsorption / desorption device 33b. At this time, moisture is adsorbed by the adsorption reaction in the adsorbent of the moisture adsorption / desorption device 33b, and the air is further dehumidified.
  • the dehumidified air becomes the supply air SA (state 4) and is supplied indoors.
  • the return air RA (state 1) passes through the moisture adsorption / desorption device 33b.
  • the return air RA introduced from the room often has a relative humidity of 40 to 60% in the indoor environment.
  • the moisture adsorption / desorption device 33b generates moisture according to the moisture content by the desorption reaction of the adsorbent.
  • the temperature of the humidified air is lower than when it is introduced (in the state 1), and the relative humidity is increased.
  • the dew point temperature rises due to the increase in absolute humidity condensation tends to occur.
  • Humidified air passes through the humidity control device heat exchanger 32 and is cooled to a dew point temperature or lower to become dehumidified air (dehumidified air) (state 3). At this time, the relative humidity of the dehumidified air is as high as about 70 to 90%. For this reason, the adsorbent of the moisture adsorption / desorption device 33a easily adsorbs moisture.
  • the dehumidified air passes through the moisture adsorption / desorption device 33a. At this time, moisture is adsorbed by the adsorption reaction in the adsorbent of the moisture adsorption / desorption device 33a, and the air is further dehumidified.
  • the dehumidified air becomes the supply air SA (state 4) and is supplied indoors.
  • the adsorbent of the moisture adsorption / desorption device 33b that has been performing the adsorption reaction in the air path A performs the desorption reaction in the air path B. It will be. Conversely, since the moisture adsorption / desorption device 33a that has been desorbing in the air path A performs an adsorption reaction in the air path B, the adsorbent is not in an equilibrium state and can be dehumidified continuously.
  • FIG. 7 is a diagram showing the relationship between the wind speed (passing wind speed) of the air passing through the moisture adsorption / desorption devices 33a and 33b and the adsorption and desorption speed.
  • the adsorption and desorption speeds of the adsorbents used in the moisture adsorption / desorption devices 33a and 33b are different depending on the wind speed (depending on the wind speed).
  • the humidity control device blower 35 adjusts the air volume to change in order to increase the capacity of the moisture adsorption / desorption devices 33a, 33b related to adsorption / desorption.
  • it also has temperature dependency, and the higher the temperature, the higher the adsorption and desorption speed.
  • FIG. 8 is a diagram illustrating the configuration of the control relationship in the air conditioning system.
  • a controller 40 having an operation instruction input unit such as a user controls the entire system.
  • Pressure sensors 1a and 1b discharge pressure sensor 1a and suction pressure sensor 1b
  • temperature sensors 2a to 2d liquid pipe temperature sensor 2a, gas pipe temperature sensor 2b, outside air temperature sensor 2c, intake air temperature sensor 2d
  • the humidity sensor 3 transmits signals related to the detected pressure, temperature, and humidity to the controller 40.
  • the controller 40 transmits control signals to the outdoor unit control means 16, the indoor unit control means 24, and the humidity controller control means 36 based on these pressures, temperatures, and humidity. Based on this control signal, the compressor 11, the indoor unit expansion valve 21, the humidity control device expansion valve 31, the outdoor blower 15, the indoor blower 23, the humidity control blower 35, the air flow path switching means 34a, 34b, etc. It is possible to control the operation.
  • FIG. 9 is a diagram showing the relationship between the refrigerant evaporation temperature and the dehumidification amount in the indoor unit 20 and the humidity control apparatus 30.
  • the moisture adsorbing / desorbing device 33a or 33b makes the humidified air and then passes the humidity control device heat exchanger 32.
  • the dew point temperature of the humidified air increases. For this reason, as shown in FIG. 9, even if the evaporation temperature of the refrigerant is increased, the dehumidification amount can be secured.
  • FIG. 10 is a diagram showing the relationship between the evaporation temperature of the refrigerant and the energy efficiency. As shown in FIG. 10, the system efficiency increases as the evaporation temperature of the refrigerant increases. Since the air-conditioning system of Embodiment 1 can raise the evaporation temperature of the refrigerant
  • the outdoor unit 10a, the outdoor unit 20 and the humidity control device 30 are connected by piping to form a refrigerant circuit, and it is not necessary to configure an independent refrigerant circuit for humidity control, such as mounting a compressor. Therefore, the entire system can be reduced in weight.
  • the humidity control apparatus 30 since the humidity control apparatus 30 does not have a desorption heat source, it can be connected to the same piping as a conventional indoor unit, and can be easily replaced from a conventional air conditioning system.
  • the moisture adsorption / desorption devices 33a and 33b and the humidity control device heat exchanger 32 are arranged so as to be substantially in series in the air flow direction in either of the air paths A and B.
  • the wet device heat exchanger 32 is provided between the moisture adsorption / desorption device 33a and the moisture adsorption / desorption device 33b. Since the moisture adsorption / desorption devices 33a and 33b and the humidity control device heat exchanger 32 are arranged so that the surfaces through which the air passes are opposed to each other, these devices can be accommodated in a small space of the main body 37.
  • the dehumidifying device 30 can be downsized.
  • the term “opposite” may mean that the moisture adsorption / desorption devices 33a and 33b and the humidity control device heat exchanger 32 are not positioned in parallel and the same effect can be obtained. .
  • the moisture adsorption / desorption devices 33a and 33b using the adsorbent having a large adsorption equilibrium adsorption amount in the high humidity region are used, the moisture content of the moisture adsorption / desorption devices 33a and 33b Desorption is possible only by the difference in the amount of equilibrium adsorption determined by the air relative humidity. For this reason, a heating means can be omitted. Therefore, it is possible to reduce the size of the apparatus.
  • the adsorption and desorption speeds in the adsorbents of the moisture adsorption / desorption devices 33a and 33b have temperature dependence in addition to wind speed dependence, so that the higher the temperature, the faster the adsorption and desorption speed. Therefore, when the temperature difference between the air temperature when desorbed and the air temperature when adsorbed is large, the difference between the adsorption and desorption speeds also increases. However, the total amount of moisture movement during adsorption and desorption is balanced at the slower adsorption and desorption rate.
  • the dehumidifying device 30 in the system of the first embodiment does not require a heating means as a desorption heat source, the difference between the temperature of the air in the adsorption and the temperature of the air in the desorption is smaller than that in the case of having the heating means. The difference in desorption speed is also reduced. For this reason, the adsorption and desorption rates are nearly uniform, and the adsorbent potential can be utilized with high efficiency.
  • the temperature difference between the moisture adsorption / desorption devices 33a and 33b becomes small even when the air path is switched. Further, since the temperature difference with the passing air temperature is also reduced, the heat resistance of the adsorbent generated by the temperature difference between the adsorbent of the moisture adsorption / desorption devices 33a and 33b and the passing air is small, and dehumidification is performed with high efficiency. It becomes possible.
  • the moisture adsorption / desorption devices 33a and 33b are fixed in the air passage and are stationary without performing any operation.
  • the shape is not limited to perform operations such as rotation like a desiccant rotor, and the ventilation area of the moisture adsorption / desorption devices 33a and 33b can be matched to the shape of the air path. And it becomes possible to reduce a pressure loss by ensuring many ventilation areas and reducing a wind speed.
  • it is possible to increase the amount of adsorption / desorption by increasing the contact area with air in the adsorbent of the moisture adsorption / desorption devices 33a, 33b.
  • the moisture adsorption / desorption devices 33a and 33b can reverse the air inflow direction at the time of adsorption and desorption, and the ventilation direction at the time of adsorption and desorption is reversed, so that the dehumidification / humidification efficiency can be increased.
  • FIG. FIG. 11 is a diagram showing a configuration of an air conditioning system according to Embodiment 2 of the present invention.
  • the outdoor unit 10a and the indoor unit 20 are connected by the liquid side main pipe 102 and the gas side main pipe 103, and comprise a refrigerant circuit.
  • the outdoor unit 10b and the humidity control device 30 are connected by piping to form another refrigerant circuit.
  • the outdoor unit 10a, the outdoor unit 10b, the indoor unit 20, the humidity control device 30, and the controller 40 are communicatively connected by the transmission line 101, and can perform coordinated control as a system.
  • Dehumidification in the indoor unit 20 and the humidity control device 30, control of the evaporation temperature of the refrigerant, and the like are the same as those described in the first embodiment.
  • the humidity controller 30 and the indoor unit 20 are individually connected to the outdoor units 10a and 10b, whereby the refrigerant on the humidity controller 30 side is evaporated.
  • the indoor unit 20 can set the evaporation temperature of the refrigerant for the purpose of temperature control only. For this reason, in the indoor unit 20, the evaporation temperature can be further increased, and high efficiency can be achieved.
  • FIG. FIG. 12 is a diagram showing a configuration of an air conditioning system according to Embodiment 3 of the present invention.
  • the air conditioning system in the present embodiment further includes an outside air processing device 50.
  • the refrigerant can be circulated by the liquid side main pipe 102 and the liquid side branch pipe 104, and the gas side main pipe 103 and the gas side branch pipe 105. Piping is connected so as to make a refrigerant circuit.
  • the outside air processing device 50 is also connected for communication by a transmission line 101 so that signals can be transmitted and received.
  • the outside air processing device 50 includes an outside air processing device expansion valve (third expansion device) 51, an outside air processing device heat exchanger (third indoor heat exchanger) 52, a total heat exchanger 53, a humidifying means 54, and an air supply device. It is assumed that a blower 55, an exhaust blower 56, and an outside air processing device controller 57 are provided.
  • the outdoor air processing device expansion valve 51 can finely control the valve opening using a stepping motor, for example, as with the indoor unit expansion valve 21.
  • the outside air processing device heat exchanger 52 exchanges heat between the refrigerant and the outside air OA.
  • the total heat exchanger 53 performs total heat exchange between the outside air OA and the return air RA.
  • the humidifying means 54 is means for humidifying the air that has passed through the outside air processing device heat exchanger 52 and sending it into the room as the supply air SA.
  • the supply air blowing means 55 is a means for forming a flow of air that is supplied to the room as supply air SA by passing the outside air OA through the total heat exchanger 53, the outside air processing device heat exchanger 52, and the humidifying means 54.
  • the exhaust air blowing means 56 is a means for forming a flow of air through which the return air RA passes through the total heat exchanger 53 and is discharged to the outside as exhaust EA.
  • the outside air processing device control means 57 controls each device of the outside air processing device 50 based on a control signal from the controller 40.
  • the outside air OA passes through the total heat exchanger 53, the outside air processing device indoor heat exchanger 52, and the humidifying means 54 in this order, and is supplied indoors as the supply air SA.
  • the return air RA passes through the total heat exchanger 53 and is discharged to the outside as exhaust EA.
  • the operation related to temperature control and humidity control by the outdoor unit 10a, the indoor unit 20, and the humidity control device 30 is the same as that described in the first embodiment.
  • the outside air processing device 50 is provided, and the total heat exchanger 53 can exchange total heat with the outside air OA and the return air RA.
  • the generated load can be reduced, and driving of the compressor 11 and the like can be reduced.
  • the outdoor unit 10a when the outside air is hotter and humid than the room air (the outdoor unit 10a is in cooling operation), the outside air after passing through the total heat exchanger 53 is hotter and humider than the room air. Therefore, the difference between the evaporating temperature of the refrigerant flowing through the outside air processing device heat exchanger 52 and the passing air temperature increases as compared with the temperature of the indoor air, and heat treatment can be performed with high efficiency.
  • the outside air has a lower temperature and lower humidity than the room air (the outdoor unit 10a is in a heating operation)
  • the outside air after passing through the total heat exchanger 53 has a lower temperature and humidity than the room air. Therefore, the difference between the condensing temperature of the refrigerant flowing through the outdoor air processing device heat exchanger 52 and the temperature of the passing air increases as compared with the temperature of the room air, and heat treatment can be performed with high efficiency.
  • the humidifying means 54 uses a water supply type moisture permeable membrane, and an ultrasonic humidifier can humidify the passing air.
  • the outside air processing device 50 is not equipped with the compressor 11, the indoor unit 20, the humidity control device 30, and the devices arranged on the back of the ceiling of the outside air treatment device 50 do not need to be equipped with the compressor 11, and are lightweight and small. Is possible.
  • FIG. 13 is a diagram illustrating a configuration of an air-conditioning system according to Embodiment 4 of the present invention.
  • FIG. 13 is obtained by adding an outside air processing device 50 to the configuration of FIG. 11 described in the second embodiment.
  • the outdoor unit 10a, the indoor unit 20, and the outside air processing device 50 are connected by a liquid side main pipe 102 and a liquid side branch pipe 104, and a gas side main pipe 103 and a gas side branch pipe 105 to constitute a refrigerant circuit.
  • the outdoor unit 10b and the humidity control device 30 are connected by the liquid side main pipe 102 and the gas side main pipe 103 to form another refrigerant circuit.
  • the outdoor unit 10a, the outdoor unit 10b, the indoor unit 20, the humidity control device 30, the controller 40, and the outside air processing device 50 are connected by communication via the transmission line 101, and can perform control linked to the system.
  • Dehumidification in the indoor unit 20 and the humidity control device 30, control of the evaporation temperature of the refrigerant, and the like are the same as those described in the first and second embodiments.
  • the humidity controller 30, the outside air processing device 50, and the indoor unit 20 are individually connected to the outdoor units 10 a and 10 b, thereby the humidity controller 30.
  • the indoor unit 20 can set the evaporation temperature of the refrigerant for the purpose of temperature control only. For this reason, in the indoor unit 20, the evaporation temperature can be further increased, and high efficiency can be achieved.
  • Embodiment 5 FIG.
  • the outdoor unit 10b and the humidity control device 30 are connected by piping to form a refrigerant circuit.
  • the outdoor unit 10b and the humidity control device 30 are integrated. You may make it comprise a humidity control apparatus.

Abstract

温調と調湿を効率よく行える空気調和システムを提供する。 圧縮機11、四方弁13及び室外熱交換器12を有する1台以上の室外機10aと、室内機膨張弁21及び室内機熱交換器22を有する1台以上の室内機20と、調湿装置膨張弁31及び調湿装置熱交換器32及び第一及び第二の水分吸脱着装置33a、33bを有する1台以上の調湿装置30とを備え、圧縮機11、四方弁13、室外熱交換器12、室内機膨張弁21、室内機熱交換器22、調湿装置膨張弁31及び調湿装置熱交換器32を配管接続して、冷媒回路を構成するものである。

Description

空気調和システム及び調湿装置
 本発明は、室内の温度調整(以下、温調という)を行う空調装置と室内の湿度調整(以下、調湿という)を行う調湿装置とを備えて空気調和を行う空気調和システム等に関するものである。
 従来の空気調和システムにおいては、1又は複数の室外機と1又は複数の室内機とを配管接続し、冷媒が循環して蒸気圧縮式冷凍サイクルが行われる冷媒回路を構成している。
 ここで、室内の空気調和を行う場合に、温調を行う場合と調湿を行う場合とがある。そして、室内の温調と調湿とを個別に処理することによって、温調側の冷媒回路の冷媒蒸発温度を上昇させて消費電力を削減するシステムが提案されている。(例えば特許文献1参照)。
 このシステムの調湿装置は空調装置とは別の冷媒回路を持ち、換気装置として機能することで、外気を利用した高効率冷凍サイクルによる調湿を行っている。
特開2010-121912号公報(請求項1、第1図)
 上記の特許文献1の調湿装置は換気装置であるため、通常は天井裏に配置される。しかし、冷媒回路を換気装置が単独で構成することによって装置の重量が増加していた。
 そして、調湿装置が換気装置を兼ねるために、通常の室内機と比較すると風量が換気量によって制限されてしまい、蒸発温度を低くしなければならない等して消費電力が多くなり、除湿量を確保するためにエネルギー効率が悪くなっていた。
 本発明は、上記のような課題を解決するためになされたものであり、その目的は、温調と調湿を効率よく行える空気調和システム等を提供することにある。
 本発明に係る空気調和システムは、圧縮機、流路切替装置及び室外熱交換器を有する1台以上の室外機と、第一の膨張装置及び第一の室内熱交換器を有する1台以上の室内機と、第二の膨張装置及び第二の室内熱交換器並びに第一及び第二の水分吸脱着装置を有する1台以上の調湿装置とを備え、圧縮機、流路切替装置、室外熱交換器、第一の膨張装置、第一の室内熱交換器、第二の膨張装置、第二の室内熱交換器を配管接続して、冷媒回路を構成するものである。
 本発明によれば、調湿装置において、第一及び第二の水分吸着脱着装置を配置して、例えば、空気の流れに対して第二の室内熱交換器の上流側の水分吸着脱着装置において加湿等して、第二の室内熱交換器に流入する空気の露点温度を上昇させることより、冷媒の蒸発温度を高くしても除湿量を確保することが可能となる。このため、例えば換気装置によって除湿量を確保しなくてもよく、快適性を確保したまま、消費電力を抑える等、エネルギー効率を高めることが可能となる。
本発明の実施の形態1に係る空気調和システムの構成を表す図である。 本発明の実施の形態1に係るシステム内の冷媒回路の構成を表す図である。 本発明の実施の形態1に係る調湿装置30の構成を表す図である。 実施の形態1に係る空気の相対湿度と平衡吸着量の関係を表す図である。 実施の形態1に係る除湿運転時における湿り空気線図である。 実施の形態1に係る除湿運転時における温度と絶対湿度の図である。 実施の形態1に係る風速と吸着剤の吸着、脱着速度の関係を表す図である。 本発明の実施の形態1に係る空気調和システムの制御関係を表す図である。 室内機20と調湿装置30の蒸発温度と除湿量の関係を表す図である。 空気調和システムの蒸発温度とエネルギー効率の関係を表す図である。 本発明の実施の形態2に係る空気調和システムの構成を表す図である。 本発明の実施の形態3に係る空気調和システムの構成を表す図である。 本発明の実施の形態4に係る空気調和システムの構成を表す図である。
実施の形態1.
 《システム構成》
 図1は本発明の実施の形態1に関わる空気調和システムの構成を表す図である。本実施の形態では、室外機10a、室内機20、調湿装置30及びコントローラ40を備えている。室外機10aと室内機20、調湿装置30の間は、液側主管102及び液側分岐管104並びにガス側主管103及びガス側分岐管105により、冷媒を循環させることができるように配管接続されている。また、信号の送受信ができるように伝送線101により通信接続されている。そして、室外機10aとコントローラ40との間も伝送線101で接続されている。ここで、図1では、室外機10aに対して室内機20、調湿装置30が接続している台数が各1台であるが、台数を限定するものではない。例えば室外機能力、必要除湿量等に応じて接続台数を変化させることができる(以下同じ)。
《冷媒回路構成》
 図2は本発明の実施の形態1に関わる空気調和システムにおける冷媒回路を構成する機器等を表す図である。冷媒回路を構成する機器として、室外機10aは、圧縮機11、室外熱交換器12、四方弁13、アキュムレータ14を有している。本実施の形態における圧縮機11は、室外機制御手段16からの指示に基づいてインバータ回路により、容量を変化させることができる容量可変型の圧縮機(流体機器)である。例えばレシプロタイプ、ロータリータイプ、スクロールタイプ、スクリュータイプ等の各種タイプが適用可能である。室外熱交換器12は、冷媒と空気(室外の空気)との熱交換を行う。例えば暖房運転時においては蒸発器として機能し、冷媒を蒸発気化させる。また、冷房運転時においては凝縮器として機能し、冷媒を凝縮液化させる。流路切替装置となる四方弁13は、室外機制御手段16からの指示に基づいて冷房運転時と暖房運転時とによって冷媒の流れを切り換える。アキュムレータ14は、液状の冷媒(液冷媒)の通過を防止し、圧縮機11に液冷媒が流入しないようにするためのタンクである。
 また、室外機20は、室内機膨張弁21及び室内機熱交換器22を有している。第一の膨張装置である室内機膨張弁(絞り装置、流量調整装置)21は、室内機制御手段24からの指示に基づいて開度を変化させることで、冷媒の圧力調整等を行う。本実施の形態では、弁開度をステッピングモータを用いて細かく制御できるものとする。第一の室内熱交換器である室内機熱交換器22は、特に温調のために室内(空調エリア、空調対象空間)の空気との熱交換を行う。暖房運転時においては凝縮器として機能し、冷房運転時においては蒸発器として機能する。
 調湿装置30は、調湿装置膨張弁31及び調湿装置熱交換器32を有している。第二の膨張装置である調湿装置膨張弁31は、調湿装置制御手段36からの指示に基づいて開度を変化させることで、冷媒の圧力調整等を行う。本実施の形態では、室内機膨張弁21の弁開度を細かく制御できるものとする。第二の室内熱交換器である調湿装置熱交換器32は、特に調湿のために室内の空気との熱交換を行う。ここでは、冷房運転時において除湿を行うためには蒸発器として機能するものとする。
 冷媒回路において使用される冷媒は、特に限定するものではないが、例えば、二酸化炭素、炭化水素又はヘリウムのような自然冷媒を用いることができる。また、HFC410A又はHFC407C等の塩素を含まない冷媒、既存の製品に使用されているR22又はR134a等のフロン系冷媒等を用いることができる。
 《システム構成機器》
 室外機10aには、冷媒回路を構成する機器の他に、室外熱交換器12に空気を流すための室外送風手段15が設けられている。また、コントローラ40からの制御信号に基づいて室外機10aの機器を制御する室外機制御手段16が設けられている。
 また、室内機20には空調エリアからの空気を室内機熱交換器22に通過させて空調エリア(調湿対象空間)に送風する室内機送風手段23が設けられている。また、コントローラ40からの制御信号に基づいて室内機20の機器を制御する室内機制御手段24が設けられている。
 さらに、調湿装置30には空調エリアからの空気を調湿装置30の吸込口38から本体37の風路を通過させて吐出口39から空調エリアに送風する調湿装置送風手段35が設けられている。また、通過する空気から水分を吸着、通過する空気に水分を脱着(放出)可能な機能を有する2つの水分吸着脱着装置(第一及び第二の水分吸着脱着装置)33a、33bを有している。さらに、風路における空気経路を切り替えるための空気流路切替手段34a、34bを有している。吸込口38に近い上流側の空気流路切替手段34aが第一の分岐部となり、吐出口39に近い下流側の空気流路切替手段34bが第二の分岐部となる。そして、コントローラ40からの制御信号に基づいて調湿装置30の機器を制御する調湿装置制御手段36が設けられている。以上のように、室内機20の構成に、本体37、水分吸着脱着装置33a、33b及び空気流路切替手段34a、34bを追加することで、調湿装置30を構成することができる。調湿装置30の構成、動作等の詳細については後述する。
 ここで、室外送風手段15、室内機送風手段23及び調湿装置送風手段35については、風量を調整制御することが可能であり、例えば空気条件に応じて風量を設定したりすることが可能な送風手段であるものとする。風量制御については、ファンを回転させるモータにDCモータを用いた場合には回転数を制御することで実現が可能となる。またACモータを用いた場合には、インバータ制御により電源周波数を変化させて回転数を変化させることにより実現が可能となる。
 《システム内センサ配置》
 圧縮機11の吐出側には吐出圧力センサ1aが設けられている。また、吸入側には吸入圧力センサ1bが設けられている。そして、室内機20、調湿装置30には、それぞれ液管温度センサ2aとガス管温度センサ2bが設けられている。また、室外熱交換器12の空気流入側には外気温度センサ2cが設けられている。室内機20の室内機熱交換器22の空気吸込み側に吸込み空気温度センサ2dが設けられている。また、後述する調湿装置30の吸込口38側に温湿度センサ3が設けられている。
 《冷凍サイクル動作》
[冷房運転]
 次に図2に基づいて、冷房時における冷媒回路内の冷媒の流れ等について説明する。室外機10aの圧縮機11が吐出した冷媒は四方弁13を介して室外熱交換器12へと流れる。室外熱交換器12では、空気との熱交換により凝縮液化して室外機10a側から流出する。流出した冷媒は液側主管102を流れて液側分岐管104へと分岐し、室内機20、調湿装置30側に流入する。室内機20、調湿装置30側に流入した冷媒は、それぞれ室内機膨張弁21、調湿装置膨張弁32において減圧された後、室内機熱交換器22、調湿装置熱交換器32に流れる。室内機熱交換器22、調湿装置熱交換器32では空気との熱交換により蒸発ガス化して室内機20、調湿装置30側から流出する。流出した冷媒はガス側分岐管105、ガス側主管103を流れて室外機10a側に流入する。流入した冷媒は、四方弁13、アキュムレータ14を通過して再び圧縮機11に吸入される。
[暖房運転]
 さらに図2に基づいて暖房時における冷媒回路内の冷媒の流れ等について説明する。ここで、暖房時は四方弁13を切り替えて冷房時と冷媒の流れが変わるようにする。圧縮機11が吐出した冷媒は四方弁13を介して室外機10a側から流出する。流出した冷媒は、ガス側主管103を流れてガス側分岐管105へと分岐し、室内機20、調湿装置30側に流入する。室内機20、調湿装置30側に流入した冷媒は、それぞれ室内機熱交換器22、調湿装置熱交換器32に流れる。室内機熱交換器22、調湿装置熱交換器32では空気との熱交換により凝縮液化する。そして、室内機膨張弁21、調湿装置膨張弁31において減圧された後、室内機20、調湿装置30側から流出する。流出した冷媒は液側分岐管104、液側主管102を流れて室外機10a側に流入する。流入した冷媒は室外熱交換器12へと流れる。室外熱交換器12では空気との熱交換により蒸発ガス化する。そして、四方弁13、アキュムレータ14を通過して再び圧縮機11に吸入される。
《除湿装置30の除湿動作》
 図3は実施の形態1に係る調湿装置30の動作を説明するための図である。次に調湿装置30が行う除湿動作について説明する。ここで、空気調和システムでは冷房運転を行っているものとする。
 まず、図3(a)を用いて空気経路Aにおける動作について説明する。空気経路Aは水分吸着脱着装置33a、調湿装置熱交換器32、水分吸着脱着装置33bの順に空気が通過する経路である。ここで、空気経路は例えばダンパなどで構成する空気流路切替手段34a、34bを操作して、切り替えることができる。また、切り替えに用いるモータ等の回転動作を制御することによって切り替え時間を制御することが可能となる。空気の流れに対して、空気経路切替手段34aは水分吸着脱着装置33a、33b及び調湿装置熱交換器32の上流側に配置されている。また、空気経路切替手段34bは水分吸着脱着装置33a、33b及び調湿装置熱交換器32の下流側に配置されている。
 調湿装置送風手段35を駆動することにより、還気RAは吸込口38から吸い込まれて(導入されて)本体37内の水分吸着脱着装置33aを通過する。このとき、水分吸着脱着装置33aの吸着剤が脱着反応することによって空気中に水分を放出し、通過する空気を加湿する。水分吸着脱着装置33aを通過した空気は調湿装置熱交換器32を通過する。このとき、蒸発器として機能する調湿装置熱交換器32は、空気を露点温度以下まで冷却して除湿する。調湿装置熱交換器32を通過した空気は水分吸着脱着装置33bを通過する。このとき、水分吸着脱着装置33bは、吸着剤が空気中の水分をさらに吸着することによって除湿する。水分吸着脱着装置33bを通過した空気は、調湿装置送風手段35を経て、吐出口39から出て、給気SAとして室内(空調対象空間)へ給気される。
 次に図3(b)を用いて空気経路Bにおける動作について説明する。空気経路Bは、水分吸着脱着装置33b、調湿装置熱交換器32、水分吸着脱着装置33aの順に空気が通過する経路である。
 調湿装置送風手段35を駆動することにより、還気RAは吸込口38から吸い込まれて水分吸着脱着装置33bを通過する。このとき、水分吸着脱着装置33bの吸着剤が脱着反応することによって空気中に水分を放出し、通過する空気を加湿する。水分吸着脱着装置33bを通過した空気は調湿装置熱交換器32を通過する。このとき、蒸発器として機能する調湿装置熱交換器32は、空気を露点温度以下まで冷却して除湿する。調湿装置熱交換器32を通過した空気は水分吸着脱着装置33aを通過する。このとき、水分吸着脱着装置33aは、吸着剤が空気中の水分をさらに吸着することによって除湿する。水分吸着脱着装置33aを通過した空気は、調湿装置送風手段35を経て、吐出口39から出て、給気SAとして室内へ給気される。
 ここで、本実施の形態の水分吸着脱着装置33a、33bは、装置の風路断面積に対して多くの通風断面積を多くとれるように、風路断面に沿った多角形の多孔質平板などになっており、厚さ方向に空気が通過できるように構成したものである。そして、多孔質平板の表面には、ゼオライト、シリカゲル、活性炭等のような、相対的に湿度の高い空気から水分を吸着し、相対的に湿度の低い空気に対して水分を脱着する特性を有する吸着剤を塗布、表面処理、含浸したものを使用する。ここでは水分吸着脱着装置33a、33bが四角形(長方形、正方形)であるものとして説明を行ったが、同様の効果が得られるのであれば四角形に限定するものではない。
 図4は、空気相対湿度と平衡吸着量との関係を示す図である。図4では、水分吸着脱着装置33a、33bに用いられる吸着剤が空気相対湿度に対して吸着できる水分量(平衡吸着量)を示している。平衡吸着量は一般に空気相対湿度が高くなると増加する。本実施の形態で使用する吸着剤について、前述したように、空気相対湿度が80%以上における平衡吸着量と空気相対湿度が40~60%における平衡吸着量との差が大きい吸着剤を用いることにより、水分吸着脱着装置33a、33b吸着、脱着能力を上昇させることが可能である。
 また、調湿装置送風手段35の風量が変化すると水分吸着脱着装置33a、33bを通過する空気流速も変化する。水分吸着脱着装置33a、33bの吸着、脱着時の空気と吸着剤間の水分移動速度は、空気流速が増加すると増加するため、除加湿能力を上昇させることが可能となる。
 調湿装置送風手段35は、図3においては最下流(空気の吐出口39側)に配置されているが、二つの空気経路において目標とする風量を得ることができれば、最上流(空気の吸込口38側)などに配置してもよい。さらに、上流側と下流側に複数配置してもよい。このように、調湿装置送風手段35の配置位置、数等について限定するものではない。
 図5は調湿装置30の除湿動作における空気状態の変化を示す湿り空気線図である。ここで、図5において空気状態を示す状態1~状態4は、図3における(1)~(4)の位置の空気状態にそれぞれ対応している。また、図6は調湿装置30の所定の位置での各状態における通過空気の温度及び絶対湿度を表す図である。ここで、図6は空気経路Aの場合の変化を示している。空気経路Bの場合は、水分吸着脱着装置33aと水分吸着脱着装置33bとの位置関係が入れ替わったものとなる。
 《空気の状態説明》
 (空気経路A)
 次に除湿運転時における空気状態について図4~図6を用いて詳細に説明する。上述した調湿装置30における空気経路Aでは、還気RA(状態1)は水分吸着脱着装置33aを通過する。室内から導入される還気RAは、室内環境的に相対湿度が40~60%であることが多く、上述したように水分吸着脱着装置33aが吸着剤の脱着反応により水分含量に応じて水分を放出するため、加湿された空気(加湿空気)となる(状態2)。このとき、加湿空気は、導入されたとき(状態1のとき)より温度は低くなり、相対湿度は高くなる。また、絶対湿度が高くなることで露点温度が上昇するために凝縮しやすくなる。
 加湿空気が調湿装置熱交換器32を通過し、露点温度以下に冷却されることによって水分が除湿された空気(除湿空気)となる(状態3)。このとき除湿空気の相対湿度は70~90%程度と高くなっている。このため、水分吸着脱着装置33bの吸着剤は水分を吸着しやすくなる。そして、除湿空気は、水分吸着脱着装置33bを通過する。このとき水分吸着脱着装置33bの吸着剤における吸着反応により水分が吸着され、空気がさらに除湿される。除湿された空気が給気SA(状態4)となり室内に供給される。
 (空気経路B)
 続いて、空気経路Bについて説明する。空気経路Bでは、還気RA(状態1)は水分吸着脱着装置33bを通過する。室内から導入される還気RAは、室内環境的に相対湿度が40~60%であることが多く、上述したように水分吸着脱着装置33bが吸着剤の脱着反応により水分含量に応じて水分を放出するため、加湿された空気(加湿空気)となる(状態2)。このとき、加湿空気は、導入されたとき(状態1のとき)より温度は低くなり、相対湿度は高くなる。また、絶対湿度が高くなることで露点温度が上昇するために凝縮しやすくなる。
 加湿空気が調湿装置熱交換器32を通過し、露点温度以下に冷却されることによって水分が除湿された空気(除湿空気)となる(状態3)。このとき除湿空気の相対湿度は70~90%程度と高くなっている。このため、水分吸着脱着装置33aの吸着剤は水分を吸着しやすくなる。そして、除湿空気は、水分吸着脱着装置33aを通過する。このとき水分吸着脱着装置33aの吸着剤における吸着反応により水分が吸着され、空気がさらに除湿される。除湿された空気が給気SA(状態4)となり室内に供給される。
 そして、空気経路切替手段34a、34bを動作させて空気経路AとBを切り替えることによって、空気経路Aで吸着反応をしていた水分吸着脱着装置33bの吸着剤が空気経路Bでは脱着反応を行うことになる。逆に空気経路Aで脱着反応をしていた水分吸着脱着装置33aが空気経路Bでは吸着反応を行うため、吸着剤が平衡状態にならず、連続的に除湿を行うことができる。
 図7は水分吸着脱着装置33a、33bを通過する空気の風速(通過風速)と吸着、脱着速度との関係を表す図である。水分吸着脱着装置33a、33bで使用される吸着剤の吸着、脱着速度は風速によって吸着、脱着速度が異なる(風速依存性がある)。調湿装置送風手段35は水分吸着脱着装置33a、33bの吸脱着に係る能力を上昇等させるために風量を変化させるように調整する。また、図7に示すように温度依存性も有しており、温度が高いほど吸着、脱着速度が高くなる。
 《システム制御方法》
 図8は空気調和システムにおける制御関係の構成を表す図である。本実施の形態では、利用者等の操作指示の入力手段を有するコントローラ40がシステム全体の制御を行うものとする。上述した圧力センサ1a、1b(吐出圧力センサ1a、吸入圧力センサ1b)、温度センサ2a~2d(液管温度センサ2a、ガス管温度センサ2b、外気温度センサ2c、吸込み空気温度センサ2d)及び温湿度センサ3は、それぞれ検出した圧力、温度、湿度に係る信号をコントローラ40に送信する。コントローラ40ではこれらの圧力、温度、湿度に基づいて、室外機制御手段16、室内機制御手段24、調湿装置制御手段36に制御信号を送信する。この制御信号に基づいて、圧縮機11、室内機膨張弁21、調湿装置膨張弁31、室外送風手段15、室内送風手段23、調湿装置送風手段35、空気流路切替手段34a、34b等の動作制御を行うことが可能である。
《実施の形態1における効果》
 図9は室内機20と調湿装置30における冷媒の蒸発温度と除湿量との関係を表す図である。以上のように、実施の形態1の空気調和システムによれば、冷房運転時において、水分吸着脱着装置33a又は33bにより加湿空気にしてから調湿装置熱交換器32を通過させるようにしているので、加湿空気の露点温度が上昇する。このため、図9に示すように、冷媒の蒸発温度を高くしても除湿量を確保することが可能となる。
 図10は冷媒の蒸発温度とエネルギー効率との関係を表す図である。図10に示すように、冷媒の蒸発温度が高くなるほどシステム効率が上昇する。実施の形態1の空気調和システムは、上述したように室内機20と調湿装置30における冷媒の蒸発温度を高くすることができるため、システム効率を高くすることができ、消費電力を低減させることが可能となる。
 また、室外機10a、室外機20及び調湿装置30を配管接続して冷媒回路を構成しており、圧縮機を搭載する等、調湿のために独立した冷媒回路を構成する必要がないので、システム全体として軽量化が可能となる。
 また、調湿装置30においては、脱着熱源を持たないために従来の室内機と同様の配管接続が可能であり、従来の空気調和システムからの交換を容易に行うことができる。
 また、水分吸着脱着装置33a、33bと調湿装置熱交換器32は、空気経路A、Bのどちらの空気経路の場合においても空気の流れる方向に略直列になるように配置されており、調湿装置熱交換器32は水分吸着脱着装置33aと水分吸着脱着装置33bとの間に設けられている。水分吸着脱着装置33a、33bと調湿装置熱交換器32を、それぞれの空気が通過する面が対向するように配置することにより、これらの装置を本体37の小さなスペース内に収めることができるので、除湿装置30を小型化することが可能となる。ここで、対向とは、厳密に水分吸着脱着装置33a、33bと調湿装置熱交換器32とが平行に位置されておらず同様の効果が得られるのであれば少々角度がずれたものでもよい。
 室外機10aに対して複数の室内機20が接続されている場合には、室内機20と調湿装置30の設置台数のバランスを変更して、除湿能力を環境に応じて変更することが可能となる。
 さらに、図4に示すように、高湿域で吸平衡吸着量の多い吸着剤を用いた水分吸着脱着装置33a、33bを用いるようにしたので、水分吸着脱着装置33a、33bの水分含有量と空気相対湿度で決定する平衡吸着量の差のみで脱着が可能になる。このため、加熱手段を省略することができる。したがって、装置小型化をはかることが可能となる。
 このとき、相対湿度が80%以上で特に平衡吸着量が多い吸着剤を使用することにより、上述したように、脱着熱源となる加熱手段を特別に設けることなく脱着による空気の加湿を行うことができるので、加熱手段による熱量の処理を行わなくてすみ、調湿装置熱交換器32においては還気RAの熱処理のみをすることで、省エネルギー化をはかることができる。
 また、図7に示すように、水分吸着脱着装置33a、33bの吸着剤における吸着、脱着速度は風速依存性に加えて温度依存性があるため、温度が高いほど吸着、脱着速度が速くなる。そのため、脱着されるときの空気の温度と吸着されるときの空気の温度との温度差が大きい場合には吸着、脱着速度の差も大きくなる。しかし、吸着、脱着での水分移動の合計量は吸着、脱着速度の遅い方で平衡してしまうことになる。実施の形態1のシステムにおける除湿装置30では脱着熱源となる加熱手段を設けなくてすむので、吸着における空気の温度と脱着における空気の温度差は加熱手段を有する場合に比べて小さいため、吸着と脱着の速度の差も小さくなる。そのため、吸着、脱着速度が均一に近くなり、高効率に吸着剤のポテンシャルを利用することが可能となる。
 また、脱着熱源となる加熱手段を設けなくてすむので、空気経路を切り替えた場合でも水分吸着脱着装置33aと33bとの温度差が小さくなる。また、通過空気温度との温度差も小さくなるため、水分吸着脱着装置33aと33bの吸着剤の温度と通過する空気との温度差によって発生する吸着剤の熱抵抗が少なく、高効率で除湿が可能となる。
 さらに、水分吸着脱着装置33a、33bは風路内に固定され、動作等を行わずに静止している。このため、例えばデシカントローターのように回転などの動作を行うために形状が限定されることがなく、水分吸着脱着装置33a、33bの通風面積を風路の形状に合わせることが可能である。そして、通風面積を多く確保して風速を減少させることで圧力損失を低減させることが可能となる。また、水分吸着脱着装置33a、33bの吸着剤において空気との接触面積を増やし吸脱着量を増加させることが可能となる。
 また、水分吸着脱着装置33a、33bは吸着時と脱着時とでは空気の流入方向が逆となり、吸着時と脱着時の通風方向が反転するため、除加湿効率を上昇させることが可能となる。
実施の形態2.
 図11は本発明の実施の形態2に関わる空気調和システムの構成を表す図である。本実施の形態では、室外機10aと室内機20とが、液側主管102及びガス側主管103により接続されて冷媒回路を構成する。同様に、室外機10bと調湿装置30とが配管接続されて別の冷媒回路を構成する。
 ここで、室外機10a、室外機10b、室内機20、調湿装置30、コントローラ40は伝送線101で通信接続されており、システムとして連携した制御を行うことができる。室内機20、調湿装置30における除湿、冷媒の蒸発温度の制御等については、実施の形態1で説明したことと同様である。
《実施の形態2における効果》
 以上のように、実施の形態2の空気調和システムによれば、調湿装置30と室内機20とが個別に室外機10a、10bに接続されることによって、調湿装置30側の冷媒の蒸発温度と、室内機側の冷媒の蒸発温度とを変更し、室内機20は温調のみを目的とした冷媒の蒸発温度を設定することができる。このため、室内機20においてはさらに蒸発温度を上昇させることができ、高効率化を図ることが可能となる。
実施の形態3.
 図12は本発明の実施の形態3に関わる空気調和システムの構成を表す図である。本実施の形態における空気調和システムは、さらに外気処理装置50を有するものである。室外機10aと室内機20、調湿装置30、外気処理装置50の間は、液側主管102及び液側分岐管104並びにガス側主管103及びガス側分岐管105により、冷媒を循環させることができるように配管接続され、冷媒回路を構成する。また、外気処理装置50についても、信号の送受信ができるように伝送線101により通信接続されている。
 外気処理装置50は、外気処理装置膨張弁(第三の膨張装置)51、外気処理装置熱交換器(第三の室内熱交換器)52、全熱交換器53、加湿手段54、給気用送風手段55、排気用送風手段56、外気処理装置制御手段57を有しているものとする。
 外気処理装置膨張弁51は、例えば、室内機膨張弁21と同様に、ステッピングモータを用いて細かく弁開度を制御することができる。外気処理装置熱交換器52は冷媒と外気OAとを熱交換する。全熱交換器53は外気OAと還気RAとを全熱交換する。加湿手段54は、外気処理装置熱交換器52を通過した空気を加湿して給気SAとして室内に送り込むための手段である。
 給気用送風手段55は、外気OAを、全熱交換器53、外気処理装置熱交換器52、加湿手段54を通過させて給気SAとして室内に供給する空気の流れを形成する手段である。排気用送風手段56は、還気RAを、全熱交換器53を通過させて排気EAとして室外に排出する空気の流れを形成する手段である。外気処理装置制御手段57はコントローラ40からの制御信号に基づいて外気処理装置50の各機器を制御する。
 ここで、外気処理装置50の内部では外気OAは全熱交換器53、外気処理装置室内熱交換器52、加湿手段54の順で通過し、給気SAとして室内に供給される。
 また、外気処理装置50の内部では還気RAは全熱交換器53を通過し、排気EAとして室外に排出される。
 室外機10a、室内機20、調湿装置30による温調、調湿に係る動作当については、実施の形態1等で説明したことと同様である。
《実施の形態3における効果》
 以上のように、実施の形態3の空気調和システムによれば、外気処理装置50を備え、全熱交換器53により外気OAとで還気RAとにより全熱交換が可能であるため、換気によって発生する負荷を低減することができ、圧縮機11の駆動等を低減することが可能となる。
 また、外気が室内空気より高温高湿の場合(室外機10aは冷房運転とする)、全熱交換器53通過後の外気は室内空気よりも高温高湿である。従って、外気処理装置熱交換器52を流れる冷媒の蒸発温度と通過空気温度との差は室内空気の温度と比較して増加し、高効率に熱処理することが可能となる。
 さらに、外気が室内空気より低温低湿の場合(室外機10aは暖房運転とする)、全熱交換器53通過後の外気は室内空気よりも低温低湿である。従って、外気処理装置熱交換器52を流れる冷媒の凝縮温度と通過空気温度との差は室内空気の温度と比較して増加し、高効率に熱処理することが可能となる。
 冬期に暖房加湿運転を行う場合には加湿手段54を用いることにより、室内を加湿することが可能となる。加湿手段54には給水型の透湿膜を使用したもの、超音波加湿器等により通過空気の加湿が可能となる。
 外気処理装置50は圧縮機11を搭載していないため、室内機20、調湿装置30、外気処理装置50の天井裏に配置する機器が全て圧縮機11を搭載する必要がなく軽量で小型化が可能となる。
実施の形態4.
 図13は本発明の実施の形態4に関わる空気調和システムの構成を表す図である。図13は、実施の形態2において説明した図11の構成に、外気処理装置50を追加したものである。本実施の形態では、室外機10a、室内機20、外気処理装置50が、液側主管102及び液側分岐管104並びにガス側主管103及びガス側分岐管105により接続されて冷媒回路を構成する。室外機10bと調湿装置30とが、液側主管102及びガス側主管103により接続されて別の冷媒回路を構成する。
 ここで、室外機10a、室外機10b、室内機20、調湿装置30、コントローラ40、外気処理装置50は伝送線101で通信接続されており、システムとして連携した制御を行うことができる。室内機20、調湿装置30における除湿、冷媒の蒸発温度の制御等については、実施の形態1、2等で説明したことと同様である。
《実施の形態4における効果》
 以上のように、実施の形態4の空気調和システムによれば、調湿装置30、外気処理装置50と室内機20とが個別に室外機10a、10bに接続されることによって、調湿装置30側の冷媒の蒸発温度と、室内機側の冷媒の蒸発温度とを変更し、室内機20は温調のみを目的とした冷媒の蒸発温度を設定することができる。このため、室内機20においてはさらに蒸発温度を上昇させることができ、高効率化を図ることが可能となる。
実施の形態5.
 上述の実施の形態2、4においては、室外機10bと調湿装置30とを配管接続して冷媒回路を構成するようにしたが、例えば、室外機10bと調湿装置30とを一体にした調湿装置を構成するようにしてもよい。
 1a 吐出圧力センサ、1b 吸入圧力センサ、2a 液管温度センサ、2b ガス管温度センサ、2c 外気温度センサ、2d 吸込み空気温度センサ、3 温湿度センサ、10a,10b 室外機、11 圧縮機、12 室外熱交換器、13 四方弁、14 アキュムレータ、15 室外機送風手段、16 室外機制御手段、20 室内機、21 室内機膨張弁、22 室内機熱交換器、23 室内機送風手段、24 室内機制御手段、30 調湿装置、31 調湿装置膨張弁、32 調湿装置熱交換器、33a,33b 水分吸着脱着装置、34a,34b 空気流路切替手段、35 調湿装置送風手段、36 調湿装置制御手段、37 本体、38 吸込口、39 吐出口、40 コントローラ、50 外気処理装置、51 外気処理装置膨張弁、52 外気処理装置熱交換器、53 全熱交換器、54 加湿手段、55 給気用送風手段、56 排気用送風手段、57 外気処理装置制御手段、101 伝送線、102 液側主管、103 ガス側主管、104 液側分岐管、105 ガス側分岐管、OA 外気、RA 還気、SA 給気、EA 排気。

Claims (11)

  1.  圧縮機、流路切替装置及び室外熱交換器を有する1台以上の室外機と、
     第一の膨張装置及び第一の室内熱交換器を有する1台以上の室内機と、
     第二の膨張装置、第二の室内熱交換器並びに第一及び第二の水分吸脱着装置を有する1台以上の調湿装置とを備え、
     前記圧縮機、前記流路切替装置、前記室外熱交換器、前記第一の膨張装置、前記第一の室内熱交換器、前記第二の膨張装置及び前記第二の室内熱交換器を配管接続して、冷媒回路を構成することを特徴とする空気調和システム。
  2.  第三の膨張装置及び第三の室内熱交換器を有する1台以上の外気処理装置をさらに備えて、第三の膨張装置及び第三の室内熱交換器をさらに配管接続して前記冷媒回路を構成することを特徴とする請求項1に記載の空気調和システム。
  3.  第一の圧縮機、第一の流路切替装置及び第一の室外熱交換器を有する1台以上の第一の室外機と、
     第二の圧縮機、第二の流路切替装置及び第二の室外熱交換器を有する1台以上の第二の室外機と、
     第一の膨張装置及び第一の室内熱交換器を有する1台以上の室内機と、
     第二の膨張装置及び第二の室内熱交換器及び水分吸脱着装置を有する1台以上の調湿装置とを備え、
     前記第一の圧縮機、前記第一の流路切替装置、前記第一の室外熱交換器、前記第一の膨張装置及び前記第一の室内熱交換器を配管接続して第一の冷媒回路を構成し、
     前記第二の圧縮機、前記第二の流路切替装置、前記第二の室外熱交換器、前記第二の膨張装置及び前記第二の室内熱交換器を配管接続して第二の冷媒回路を構成することを特徴とする空気調和システム。
  4.  第三の膨張装置及び第三の室内熱交換器を有する1台以上の外気処理装置をさらに備えて、第三の膨張装置及び第三の室内熱交換器をさらに配管接続して前記第一の冷媒回路を構成することを特徴とする請求項3に記載の空気調和システム。
  5.  前記調湿装置において、
     前記第一及び第二の水分吸着脱着装置は、調湿対象空間から空気が流入する吸込口と該調湿対象空間へ空気を流出するための吐出口とを連通する風路内に配置され、相対湿度が40~100%の空気に対する平衡吸着量が、相対湿度の上昇に対して略直線的に増加する吸着剤を有し、相対的に湿度の低い空気には水分を放出し、相対的に湿度の高い空気からは水分を吸収し、
     前記第二の室内熱交換器は、前記風路内において、前記第一の水分吸着脱着装置と前記第二の水分吸着脱着装置との間に配置され、
     さらに、前記吸込口から流入した空気を、前記第一の水分吸着脱着装置、前記第二の室内熱交換器、前記第二の水分吸着脱着装置の順に通過させる経路と、前記第二の水分吸着脱着装置、前記第二の室内熱交換器、前記第一の水分吸着脱着装置の順に通過させる経路とに切り替える切替装置を備えることを特徴とする請求項1~請求項4のいずれかに記載の空気調和システム。
  6.  前記第一の水分吸着脱着装置及び前記第二の水分吸着脱着装置は、調湿対象空間から空気が流入する吸込口と該調湿対象空間へ空気を流出するための吐出口とを連通する風路内で固定され静止していることを特徴とする請求項1~請求項5に記載の空気調和システム。
  7.  前記第一の水分吸着脱着装置及び前記第二の水分吸着脱着装置は、多数の小透孔を有する通風体であることを特徴とする請求項1~請求項6に記載の空気調和システム。
  8.  前記第二の室内熱交換器は、調湿対象空間から空気が流入する吸込口と該調湿対象空間へ空気を流出するための吐出口とを連通する風路内において、前記第一の水分吸着脱着装置と前記第二の水分吸着脱着装置との間に配置され、
     前記第一の水分吸着脱着装置及び前記第二の水分吸着脱着装置は、それぞれの空気の通過面を前記第二の室内熱交換器の空気の通過面に対向するように配置されていることを特徴とする請求項1~請求項7のいずれかに記載の空気調和システム。
  9.  前記第二の室内熱交換器は、調湿対象空間から空気が流入する吸込口と該調湿対象空間へ空気を流出するための吐出口とを連通する風路内において、前記第一の水分吸着脱着装置と前記第二の水分吸着脱着装置との間に配置され、
     前記風路内の空気経路の切り替えによって、前記第一の水分吸着脱着装置、前記第二の室内熱交換器および前記第二の水分吸着脱着装置を通過する空気の方向が反転するように配置されたことを特徴とする請求項1~請求項7のいずれかに記載の空気調和システム。
  10.  前記切替装置は、
     前記第一の水分吸着脱着装置および前記第二の水分吸着脱装置の上流側に設けられ、前記風路を二方向に分岐する第一の分岐部と、
     前記第一の水分吸着脱着装置および前記第二の水分吸着脱装置の下流側に設けられ、前記を二方向に分岐する第二の分岐部と
    を有することを特徴とする請求項5~請求項9のいずれかに記載の空気調和システム。
  11.  圧縮機と、
     凝縮器と、
     膨張装置と、
     調湿対象空間から空気が流入する吸込口と該調湿対象空間へ空気を流出するための吐出口とを連通する風路内に配置され、相対湿度が40~100%の空気に対する平衡吸着量が、相対湿度の上昇に対して略直線的に増加する吸着剤を有し、相対的に湿度の低い空気には水分を放出し、相対的に湿度の高い空気からは水分を吸収する第一及び第二の水分吸着脱着装置と、
     前記風路内において、前記第一の水分吸着脱着装置と前記第二の水分吸着脱着装置との間に配置された蒸発器と、
     前記吸込口から流入した空気を、前記第一の水分吸着脱着装置、前記蒸発器、前記第二の水分吸着脱着装置の順に通過させる経路と、前記第二の水分吸着脱着装置、前記蒸発器、前記第一の水分吸着脱着装置の順に通過させる経路とに切り替える切替装置と
    を備えることを特徴とする調湿装置。
PCT/JP2010/007430 2010-12-22 2010-12-22 空気調和システム及び調湿装置 WO2012085969A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2010/007430 WO2012085969A1 (ja) 2010-12-22 2010-12-22 空気調和システム及び調湿装置
CN201080070357.7A CN103221752B (zh) 2010-12-22 2010-12-22 空气调节系统和调湿装置
EP18155631.7A EP3339757B1 (en) 2010-12-22 2010-12-22 Air-conditioning system and humidity control device
US13/882,614 US9644875B2 (en) 2010-12-22 2010-12-22 Air-conditioning system and humidity control device
EP10860919.9A EP2657620B1 (en) 2010-12-22 2010-12-22 Air-conditioning system and humidity adjustment device
EP18155629.1A EP3339756B1 (en) 2010-12-22 2010-12-22 Air-conditioning system and humidity control device
JP2012549479A JP5631415B2 (ja) 2010-12-22 2010-12-22 空気調和システム及び調湿装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/007430 WO2012085969A1 (ja) 2010-12-22 2010-12-22 空気調和システム及び調湿装置

Publications (1)

Publication Number Publication Date
WO2012085969A1 true WO2012085969A1 (ja) 2012-06-28

Family

ID=46313275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007430 WO2012085969A1 (ja) 2010-12-22 2010-12-22 空気調和システム及び調湿装置

Country Status (5)

Country Link
US (1) US9644875B2 (ja)
EP (3) EP3339756B1 (ja)
JP (1) JP5631415B2 (ja)
CN (1) CN103221752B (ja)
WO (1) WO2012085969A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014118871A1 (ja) * 2013-01-29 2014-08-07 三菱電機株式会社 除湿装置
WO2019069579A1 (ja) * 2017-10-05 2019-04-11 株式会社デンソー 調湿装置
CN109695917A (zh) * 2019-02-12 2019-04-30 珠海格力电器股份有限公司 空调系统
WO2020261794A1 (ja) * 2019-06-26 2020-12-30 ダイキン工業株式会社 外気処理装置及び空調システム
JP2021004724A (ja) * 2019-06-26 2021-01-14 ダイキン工業株式会社 空調システム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234667B2 (en) * 2010-12-02 2016-01-12 Mitsubishi Electric Corporation Dehumidifying system
JP6138336B2 (ja) * 2014-02-20 2017-05-31 三菱電機株式会社 空気調和装置、及び、空気調和装置の制御方法
CN104279652A (zh) * 2014-08-12 2015-01-14 中国科学院广州能源研究所 一种利用湿度差除湿的空气处理系统及方法
KR101655370B1 (ko) * 2014-11-24 2016-09-08 한국과학기술연구원 제습냉방 시스템
US11596113B2 (en) * 2015-10-08 2023-03-07 Harvest Air, LLC Controlled agricultural system with energy wheel for treating recirculating air and method of using same
CN107576087B (zh) * 2017-08-29 2023-07-04 珠海格力电器股份有限公司 空调系统
JP2020200985A (ja) * 2019-06-10 2020-12-17 ダイキン工業株式会社 調湿ユニット、及び調湿システム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001173992A (ja) * 1999-12-14 2001-06-29 Denso Corp 空調方法および空調装置
JP2003232538A (ja) * 2002-02-07 2003-08-22 Daikin Ind Ltd 調湿装置
JP2005049059A (ja) * 2003-07-31 2005-02-24 Daikin Ind Ltd 空気調和システム
JP2005283075A (ja) * 2004-03-31 2005-10-13 Daikin Ind Ltd 調湿装置
JP2007240128A (ja) * 2006-03-13 2007-09-20 Mitsubishi Electric Corp 熱交換器用フィン、熱交換器及び空気調和装置
JP2010084970A (ja) * 2008-09-30 2010-04-15 Daikin Ind Ltd 空調システムおよび熱交換ユニット
JP2010107059A (ja) * 2008-10-28 2010-05-13 Mitsubishi Electric Corp 冷凍空調装置
JP2010121912A (ja) 2008-11-21 2010-06-03 Daikin Ind Ltd 空調システム
JP2010249485A (ja) * 2009-03-24 2010-11-04 Mitsubishi Electric Corp 空気調和装置及び空気調和システム

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2257478A (en) * 1938-10-22 1941-09-30 Honeywell Regulator Co Air conditioning system
US2700537A (en) * 1951-06-29 1955-01-25 Robert H Henley Humidity changer for air-conditioning
US3359706A (en) * 1964-05-28 1967-12-26 Mc Graw Edison Co Adsorption gasd treating method and apparatus
US4173924A (en) * 1978-03-01 1979-11-13 Schweitzer Industrial Corporation Paint spray booth with air supply system
US4771707A (en) * 1983-05-12 1988-09-20 Haden Schweitzer Corporation Fume incineration system for paint drying oven
JPS6172964A (ja) * 1984-09-14 1986-04-15 株式会社デンソー 冷凍サイクル制御装置
US4719761A (en) 1986-05-30 1988-01-19 Cromer Charles J Cooling system
US4769053A (en) * 1987-03-26 1988-09-06 Semco Mfg., Inc. High efficiency sensible and latent heat exchange media with selected transfer for a total energy recovery wheel
US4841733A (en) * 1988-01-07 1989-06-27 Dussault David R Dri-Pc humidity and temperature controller
US4982575A (en) * 1988-02-05 1991-01-08 Besik Ferdinand K Apparatus and a method for ultra high energy efficient dehumidification and cooling of air
US5082173A (en) * 1989-02-22 1992-01-21 Mcmaster University Environmental controller for a sealed structure
US5230719A (en) * 1990-05-15 1993-07-27 Erling Berner Dehumidification apparatus
AU641083B2 (en) * 1991-03-05 1993-09-09 Matsushita Electric Industrial Co., Ltd. Humidity control apparatus
US5512083A (en) * 1993-10-25 1996-04-30 Uop Process and apparatus for dehumidification and VOC odor remediation
SE9504564L (sv) * 1995-12-20 1997-01-20 Saab Automobile Klimatanläggning och förfarande för reglering av klimatanläggning
US5758508A (en) * 1996-02-05 1998-06-02 Larouche Industries Inc. Method and apparatus for cooling warm moisture-laden air
US5950442A (en) * 1996-05-24 1999-09-14 Ebara Corporation Air conditioning system
US5983986A (en) * 1996-09-04 1999-11-16 Macintyre; Kenneth Reid Regenerative bed heat exchanger and valve therefor
US5879764A (en) * 1996-11-06 1999-03-09 W. R. Grace & Co.-Conn. Desiccation using polymer-bound desiccant beads
US5975288A (en) * 1997-03-28 1999-11-02 49 Cigar, Llc Humidity altering device
JP2968241B2 (ja) * 1997-10-24 1999-10-25 株式会社荏原製作所 除湿空調システム及びその運転方法
US5826443A (en) * 1997-12-06 1998-10-27 Ares; Roland Heat pump with heat-pipe enhancement and with primary system reheat
US6199388B1 (en) * 1999-03-10 2001-03-13 Semco Incorporated System and method for controlling temperature and humidity
JP2001241738A (ja) * 2000-03-02 2001-09-07 Sanyo Electric Co Ltd 冷凍空調装置及びその制御方法
JP2003097825A (ja) * 2001-07-18 2003-04-03 Daikin Ind Ltd 空気調和装置
JP3744409B2 (ja) * 2001-11-14 2006-02-08 ダイキン工業株式会社 熱交換器ユニット
AU2004230976B2 (en) * 2003-04-11 2007-03-15 Daikin Industries, Ltd. Air conditioning system
JP4513380B2 (ja) 2004-03-31 2010-07-28 ダイキン工業株式会社 空気調和システム
AU2005230498B2 (en) * 2004-03-31 2008-08-14 Daikin Industries, Ltd. Air conditioning system
JP4169747B2 (ja) * 2005-03-09 2008-10-22 三洋電機株式会社 空気調和機
JP3992051B2 (ja) * 2005-05-30 2007-10-17 ダイキン工業株式会社 空調システム
JPWO2008117817A1 (ja) * 2007-03-28 2010-07-15 三菱電機株式会社 熱交換器及び冷凍サイクル装置
JP2009293837A (ja) * 2008-06-03 2009-12-17 Denso Corp 除加湿装置
US9234667B2 (en) 2010-12-02 2016-01-12 Mitsubishi Electric Corporation Dehumidifying system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001173992A (ja) * 1999-12-14 2001-06-29 Denso Corp 空調方法および空調装置
JP2003232538A (ja) * 2002-02-07 2003-08-22 Daikin Ind Ltd 調湿装置
JP2005049059A (ja) * 2003-07-31 2005-02-24 Daikin Ind Ltd 空気調和システム
JP2005283075A (ja) * 2004-03-31 2005-10-13 Daikin Ind Ltd 調湿装置
JP2007240128A (ja) * 2006-03-13 2007-09-20 Mitsubishi Electric Corp 熱交換器用フィン、熱交換器及び空気調和装置
JP2010084970A (ja) * 2008-09-30 2010-04-15 Daikin Ind Ltd 空調システムおよび熱交換ユニット
JP2010107059A (ja) * 2008-10-28 2010-05-13 Mitsubishi Electric Corp 冷凍空調装置
JP2010121912A (ja) 2008-11-21 2010-06-03 Daikin Ind Ltd 空調システム
JP2010249485A (ja) * 2009-03-24 2010-11-04 Mitsubishi Electric Corp 空気調和装置及び空気調和システム

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014118871A1 (ja) * 2013-01-29 2014-08-07 三菱電機株式会社 除湿装置
CN104955548A (zh) * 2013-01-29 2015-09-30 三菱电机株式会社 除湿装置
GB2525112A (en) * 2013-01-29 2015-10-14 Mitsubishi Electric Corp Dehumidifier
JP6021953B2 (ja) * 2013-01-29 2016-11-09 三菱電機株式会社 除湿装置
DE112013006529B4 (de) * 2013-01-29 2017-12-14 Mitsubishi Electric Corporation Entfeuchter
GB2525112B (en) * 2013-01-29 2021-02-24 Mitsubishi Electric Corp Dehumidifier
WO2019069579A1 (ja) * 2017-10-05 2019-04-11 株式会社デンソー 調湿装置
JP2019066153A (ja) * 2017-10-05 2019-04-25 株式会社デンソー 調湿装置
CN109695917A (zh) * 2019-02-12 2019-04-30 珠海格力电器股份有限公司 空调系统
WO2020261794A1 (ja) * 2019-06-26 2020-12-30 ダイキン工業株式会社 外気処理装置及び空調システム
JP2021004724A (ja) * 2019-06-26 2021-01-14 ダイキン工業株式会社 空調システム
US11428422B2 (en) 2019-06-26 2022-08-30 Daikin Industries, Ltd. Air conditioning system

Also Published As

Publication number Publication date
EP3339757A1 (en) 2018-06-27
EP3339756A1 (en) 2018-06-27
EP3339757B1 (en) 2019-10-30
US9644875B2 (en) 2017-05-09
CN103221752B (zh) 2016-06-29
EP2657620B1 (en) 2019-06-12
JP5631415B2 (ja) 2014-11-26
EP2657620A4 (en) 2018-03-14
EP2657620A1 (en) 2013-10-30
EP3339756B1 (en) 2019-11-06
US20130213079A1 (en) 2013-08-22
JPWO2012085969A1 (ja) 2014-05-22
CN103221752A (zh) 2013-07-24

Similar Documents

Publication Publication Date Title
JP5631415B2 (ja) 空気調和システム及び調湿装置
JP5822931B2 (ja) 調湿装置、空気調和システム及び調湿装置の制御方法
JP6494765B2 (ja) 空気調和システム
JP4835688B2 (ja) 空気調和装置、空調システム
WO2014167660A1 (ja) 除湿装置
US20230022397A1 (en) Air quality adjustment system
JP7113659B2 (ja) 空気調和装置
JP5868416B2 (ja) 冷凍空調装置及び調湿装置
JP2018115821A (ja) 空調システム
JP2005195285A (ja) 空気調和機
JP5127870B2 (ja) 空気調和装置
JP2013092339A (ja) 空気調和装置
JP2002018228A (ja) 調湿装置
JP7126611B2 (ja) 空気調和装置
JP4513380B2 (ja) 空気調和システム
JP4513381B2 (ja) 空気調和システム
WO2023085327A1 (ja) 加湿装置および空気調和装置
JP2024013040A (ja) 空気調和機及び空調システム
JP2020012603A (ja) 空気調和システム
JP6085468B2 (ja) 除湿システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860919

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13882614

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012549479

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010860919

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE