WO2023085327A1 - 加湿装置および空気調和装置 - Google Patents
加湿装置および空気調和装置 Download PDFInfo
- Publication number
- WO2023085327A1 WO2023085327A1 PCT/JP2022/041746 JP2022041746W WO2023085327A1 WO 2023085327 A1 WO2023085327 A1 WO 2023085327A1 JP 2022041746 W JP2022041746 W JP 2022041746W WO 2023085327 A1 WO2023085327 A1 WO 2023085327A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- moisture
- humidity control
- indoor
- outdoor
- Prior art date
Links
- 239000003463 adsorbent Substances 0.000 claims abstract description 29
- 238000010438 heat treatment Methods 0.000 claims abstract description 21
- 238000010977 unit operation Methods 0.000 claims abstract description 14
- 239000003507 refrigerant Substances 0.000 claims description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 238000005057 refrigeration Methods 0.000 claims description 5
- 238000004378 air conditioning Methods 0.000 description 34
- 230000009471 action Effects 0.000 description 23
- 238000001179 sorption measurement Methods 0.000 description 17
- 238000001816 cooling Methods 0.000 description 13
- 230000004048 modification Effects 0.000 description 13
- 238000012986 modification Methods 0.000 description 13
- 238000004891 communication Methods 0.000 description 12
- 238000010521 absorption reaction Methods 0.000 description 11
- 238000011144 upstream manufacturing Methods 0.000 description 11
- 230000003750 conditioning effect Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000008929 regeneration Effects 0.000 description 6
- 238000011069 regeneration method Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000007791 dehumidification Methods 0.000 description 4
- RWRIWBAIICGTTQ-UHFFFAOYSA-N difluoromethane Chemical group FCF RWRIWBAIICGTTQ-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000007599 discharging Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 238000007664 blowing Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000002594 sorbent Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0035—Indoor units, e.g. fan coil units characterised by introduction of outside air to the room
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0083—Indoor units, e.g. fan coil units with dehumidification means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0087—Indoor units, e.g. fan coil units with humidification means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/02—Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
- F24F1/037—Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing with humidification means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/46—Component arrangements in separate outdoor units
- F24F1/48—Component arrangements in separate outdoor units characterised by air airflow, e.g. inlet or outlet airflow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
Definitions
- the present disclosure relates to humidifiers and air conditioners.
- Patent Literature 1 discloses an air conditioning system equipped with this humidifier.
- the rotor member rotates while traversing the adsorption-side air passage and the regeneration-side air passage.
- the air flowing through the adsorption-side air passage passes through the rotor member, and moisture contained in the air is adsorbed by the rotor member.
- the air flowing through the air passage on the regeneration side is heated by the heater and then passes through the rotor member, and moisture desorbed from the rotor member is added to the air.
- the humidifier humidifies the room by supplying the air humidified by the rotor member into the room.
- the portion of the rotor member that traverses the air passage on the regeneration side comes into contact with the air heated by the heater, so it reaches a high temperature (for example, 100°C or higher).
- a high temperature for example, 100°C or higher.
- the portion of the rotor member that has been positioned in the regeneration side air passage moves to the adsorption side air passage.
- the temperature of the adsorption rotor drops while moving through the air passage on the adsorption side, but is still relatively high (for example, about 60° C.).
- the temperature of the air contacting the rotor member in the air passage on the adsorption side increases, and the relative humidity of the air decreases.
- the amount of moisture adsorbed by the rotor member is reduced, and the amount of moisture added to the air (the amount of humidification) is reduced.
- An object of the present disclosure is to improve the humidifying capacity of a humidifying device provided with a rotor member.
- a first aspect of the present disclosure has a first passageway (27) through which the first air flows, a second passageway (62) through which the second air flows, and an adsorbent that adsorbs moisture in the air.
- a rotor member (22) that rotates across the first passageway (27) and the second passageway (62), and a heater that heats the first air sent to the rotor member (22). (25), and humidifies the room by supplying the first air humidified by the rotor member (22) into the room.
- the humidifier (20) of this aspect has an intermittent humidification mode in which a unit operation of performing a moisture releasing operation after performing a moisture capturing operation is repeated, and the moisture capturing operation is performed by the heater (25).
- the second air is supplied to the rotor member (22) to remove moisture in the second air from the rotor member. (22), and the moisture releasing operation sends the first air heated by the heater (25) to the rotor member (22), and humidifies the first air with the rotor member (22). This is the operation of supplying the first air into the room.
- the humidifier (20) has an intermittent humidification mode.
- the humidifier (20) repeats unit operations.
- the rotor member (22) imparts moisture taken from the secondary air in the moisture collecting operation to the primary air in the moisture releasing operation.
- the heating of the primary air by the heater (25) is stopped, so the temperature of the rotor member (22) is kept low.
- the temperature rise of the secondary air passing through the rotor member (22) is suppressed, and as a result, the relative humidity of the secondary air passing through the rotor member (22) is reduced. decrease can be suppressed.
- the rotor member (22) is The amount of moisture adsorbed from the secondary air increases. As a result, the amount of moisture imparted to the primary air by the rotor member (22) in the moisture release operation increases, thereby improving the humidification capability of the humidifier (20).
- the intermittent humidification mode is an operation mode in which the humidifier (20) alternately and repeatedly performs the moisture collection operation and the moisture release operation.
- the humidifying device (20) starts the water releasing operation when the water collecting operation ends, and starts the next water collecting operation when the water releasing operation ends.
- the humidifying device (20) ends the moisture collecting operation when a first termination condition is satisfied during execution of the moisture collecting operation.
- the first termination condition is a condition that the duration of the moisture collection operation reaches the first reference time.
- the humidifying device (20) determines whether the first termination condition is satisfied based on the duration of the moisture collection operation.
- the humidifying device (20) performs the moisture releasing operation when a second termination condition is satisfied during execution of the moisture releasing operation. is terminated, and the second termination condition is a condition that the duration of the moisture releasing operation reaches a second reference time, or the humidity of the first air humidified in the rotor member (22) is higher than a predetermined humidity. condition that it is low.
- the humidifying device (20) determines whether or not the second termination condition is satisfied based on the duration of the moisture release operation or the humidity of the first air humidified in the rotor member (22). .
- the humidifying device (20) performs the second Stopping the flow of the second air in the passageway (62).
- the first air heated by the heater (25) is released into the rotor member ( 22). Therefore, in this state, the temperature of the entire rotor member (22) is kept higher than when both the first air and the second air are sent to the rotor member (22). Therefore, in this aspect, the heating amount of the heater (25) can be kept low.
- a sixth aspect of the present disclosure is a humidifier (20) according to any one of the first to fifth aspects, and an outdoor unit (10) connected to each other by refrigerant pipes (3, 4) to perform a refrigeration cycle. and an indoor unit (30).
- the air conditioner (1) is composed of the humidifier (20), the outdoor unit (10), and the indoor unit (30).
- FIG. 1 is a schematic overall configuration diagram of an air conditioner according to an embodiment.
- FIG. 2 is a configuration diagram showing refrigerant piping and air flow of an air conditioner.
- FIG. 3 is a longitudinal sectional view of the air conditioning indoor unit.
- FIG. 4 is a block diagram including the main elements of the air conditioner.
- FIG. 5 is a diagram showing the state of the second switching damper inside the damper casing and the flow of air during the air supply operation.
- FIG. 6 is a diagram showing the state of the second switching damper and the flow of air inside the damper casing during exhaust operation.
- FIG. 7 is a timing chart showing operations of the humidity control unit, heater, first fan, and second fan in the intermittent humidification mode.
- FIG. 1 is a schematic overall configuration diagram of an air conditioner according to an embodiment.
- FIG. 2 is a configuration diagram showing refrigerant piping and air flow of an air conditioner.
- FIG. 3 is a longitudinal sectional view of the air conditioning indoor unit.
- FIG. 4 is
- FIG. 8 is a timing chart showing operations of the humidity control unit, the heater, the first fan, and the second fan in the intermittent humidification mode of the first modified example.
- FIG. 9 is a timing chart showing operations of the humidity control unit, the heater, the first fan, and the second fan in the intermittent humidification mode of the first modified example.
- the air conditioner (1) regulates the temperature and humidity of the air in the room (I).
- the air conditioner (1) has an air conditioner outdoor unit (10) and an air conditioner indoor unit (30).
- the air conditioning outdoor unit (10) is installed outdoors, and the air conditioning indoor unit (30) is installed indoors.
- the air conditioner (1) is a pair type having one air conditioner indoor unit (30) and one air conditioner outdoor unit (10).
- An air conditioner (1) has a humidity control unit (20) as a humidity control element.
- An air conditioner (1) has a function of humidifying and dehumidifying air.
- the air conditioner (1) further has a function of ventilating the room (I).
- the air conditioner (1) has a hose (2), a liquid connection pipe (3), and a gas connection pipe (4).
- the air conditioning indoor unit (30) and the humidity control unit (20) are connected to each other via a hose (2).
- the air conditioning indoor unit (30) and the air conditioning outdoor unit (10) are connected to each other via a liquid communication pipe (3) and a gas communication pipe (4).
- the refrigerant circuit (R) is filled with refrigerant.
- the refrigerant is difluoromethane. However, the refrigerant is not limited to difluoromethane.
- the refrigerant circuit (R) performs a vapor compression refrigeration cycle.
- the refrigerant circuit (R) mainly has a compressor (12), an outdoor heat exchanger (14), an expansion valve (15), a four-way switching valve (16), and an indoor heat exchanger (34). .
- the refrigerant circuit (R) performs the first refrigerating cycle and the second refrigerating cycle according to switching of the four-way switching valve (16).
- the first refrigerating cycle is a refrigerating cycle in which the indoor heat exchanger (34) functions as an evaporator and the outdoor heat exchanger (14) functions as a radiator.
- the second refrigerating cycle is a refrigerating cycle in which the indoor heat exchanger (34) functions as a radiator and the outdoor heat exchanger (14) functions as an evaporator.
- Air conditioner outdoor unit (10) is an outdoor unit that constitutes the air conditioner (1).
- the air conditioning outdoor unit (10) includes an outdoor casing (11), a compressor (12), an outdoor fan (13), an outdoor heat exchanger (14), an expansion valve (15) and a four-way switching valve (16).
- a partition plate (18) is provided inside the outdoor casing (11).
- the partition plate (18) partitions the interior of the outdoor casing (11) into a first space (S1) and a second space (S2).
- a compressor (12) and an outdoor heat exchanger (14) are provided in the first space (S1).
- the first space (S1) is provided with a compressor (12), an outdoor fan (13), an outdoor heat exchanger (14), an expansion valve (15), and a four-way switching valve (16).
- the outdoor casing (11) is formed with an outdoor suction port (11a), an outdoor outlet (11b), a moisture absorption side intake port (61a), and a moisture absorption side exhaust port (61b).
- the outdoor suction port (11a) is formed on the rear side of the outdoor casing (11).
- the outdoor air inlet (11a) is an opening for sucking outdoor air (outdoor air).
- the outdoor outlet (11b) is formed on the front side of the outdoor casing (11).
- the outdoor air outlet (11b) is an opening for blowing out the air that has passed through the outdoor heat exchanger (14).
- An outdoor air passageway (11c) is formed inside the outdoor casing (11) from the outdoor inlet (11a) to the outdoor outlet (11b).
- the compressor (12) sucks and compresses low-pressure gas refrigerant.
- the compressor (12) is driven by a first motor (M1).
- the compressor (12) is a variable displacement compressor in which power is supplied from an inverter circuit to the first motor (M1).
- the compressor (12) is configured such that its operating capacity can be changed by adjusting the operating frequency (rotational speed) of the first motor (M1).
- the compressor (12) is of a so-called high-pressure dome type filled with high-pressure refrigerant. During operation of the compressor (12), heat generated from the compressor (12) is released to its surroundings.
- the outdoor fan (13) is arranged in the outdoor air passage (11c).
- the outdoor fan (13) is rotated by driving the second motor (M2). Air carried by the outdoor fan (13) is sucked into the outdoor casing (11) through the outdoor suction port (11a). This air flows through the outdoor air passageway (11c) and is blown out of the outdoor casing (11) from the outdoor outlet (11b).
- the outdoor fan (13) conveys outdoor air so as to pass through the outdoor heat exchanger (14).
- the outdoor heat exchanger (14) is arranged upstream of the outdoor fan (13) in the outdoor air passage (11c).
- the outdoor heat exchanger (14) of this example is a fin-and-tube heat exchanger.
- the outdoor heat exchanger (14) exchanges heat between refrigerant flowing therein and outdoor air conveyed by the outdoor fan (13).
- the expansion valve (15) reduces the pressure of the refrigerant.
- the expansion valve (15) is an electrically operated expansion valve whose degree of opening is adjustable.
- the decompression mechanism may be a temperature-sensitive expansion valve, an expander, a capillary tube, or the like.
- the expansion valve (15) may be connected to the liquid line of the refrigerant circuit (R), and may be provided in the air conditioning indoor unit (30).
- the four-way switching valve (16) has a first port (P1), a second port (P2), a third port (P3) and a fourth port (P4).
- the first port (P1) is connected to the discharge of the compressor (12).
- the second port (P2) is connected to the intake of the compressor (12).
- the third port (P3) is connected to the gas end of the outdoor heat exchanger (14).
- the fourth port (P4) is connected to the gas communication pipe (4).
- the four-way switching valve (16) is switched between a first state (shown by solid lines in FIG. 2) and a second state (shown by dashed lines in FIG. 2).
- the four-way switching valve (16) in the first state allows communication between the first port (P1) and the third port (P3) and communication between the second port (P2) and the fourth port (P4).
- the four-way switching valve (16) in the second state allows communication between the first port (P1) and the fourth port (P4) and communication between the second port (P2) and the third port (P3).
- the humidity control unit (20) is installed outdoors.
- the humidity control unit (20) of this example is integrated with the air conditioner outdoor unit (10).
- the humidity control unit (20) sends the humidity-controlled air to the air conditioning indoor unit (30).
- the humidity control unit (20) is a humidifier that humidifies the room (I).
- the humidity control unit (20) includes an outdoor casing (11), a humidity control rotor (22), a first fan (26), a second fan (23), a heater (25), and a first switching damper ( 24) and a second switching damper (29) (see FIG. 5).
- the outdoor casing (21) is shared by the air conditioning outdoor unit (10) and the humidity control unit (20).
- the above-described second space (S2) is defined inside the outdoor casing (11).
- a humidity control rotor (22) and a heater (25) are provided in the second space (S2).
- the second space (S2) includes a humidity control rotor (22), a first fan (26), a second fan (23), a heater (25), a first switching damper (24), and a second A switching damper (29) is provided.
- the outdoor casing (11) is formed with an intake/exhaust port (21a), a connection port (21b), and an outdoor exhaust port (21c).
- the intake/exhaust port (21a) is an opening through which outdoor air and indoor air flow.
- a first passageway (27) extending from the intake/exhaust port (21a) to the connection port (21b) is formed inside the outdoor casing (11).
- a second passageway (62) extending from the moisture absorption side inlet (61a) to the moisture absorption side exhaust port (61b) is formed inside the outdoor casing (11).
- a hose (2) is connected to the connection port (21b).
- An exhaust passage (28) is connected to the first passage (27).
- the exhaust passageway (28) extends from the middle portion of the first passageway (27) to the outdoor exhaust port (21c).
- the inflow end of the exhaust passageway (28) is connected to the downstream side of the humidity control rotor (22) in the first passageway (27) (strictly speaking, the downstream side of the first fan (26)).
- the downstream is the direction in which air flows during air supply operation (the direction indicated by the solid arrow in FIG. 2)
- the upstream is the direction in which air flows during air supply operation. Upstream in the direction.
- the air flowing through the first passageway (27) passes through the humidity control rotor (22).
- the humidity control rotor (22) is a rotor member that adsorbs moisture in the air.
- the humidity control rotor (22) is, for example, a disk-shaped humidity control rotor having a honeycomb structure.
- the humidity control rotor (22) is provided so as to cross each of the first passageway (27) and the second passageway (62).
- the humidity control rotor (22) holds an adsorbent made of a hygroscopic polymeric material.
- This hygroscopic polymeric material is a kind of so-called sorbent.
- An adsorbent made of a hygroscopic polymeric material causes both a phenomenon in which water vapor in the air is adsorbed on the surface of the adsorbent and a phenomenon in which water vapor is absorbed inside the adsorbent.
- the adsorbent held by the humidity control rotor (22) may be an inorganic material such as silica gel, zeolite, or alumina.
- the adsorbent has the property of adsorbing moisture in the air. Moisture absorbents have the property of desorbing adsorbed moisture when heated.
- the humidity control rotor (22) is driven by the third motor (M3) and rotates around its central axis.
- M3 the third motor
- the portion of the humidity control rotor (22) that was positioned in the first passageway (27) moves to the second passageway (62), and the humidity control rotor (22) moves to the second passageway (62).
- the portion positioned in the second passageway (62) moves to the first passageway (27).
- the humidity control rotor (22) has a humidity control area (22A) located in the first passageway (27). In the humidity control region (22A), a regeneration operation for desorbing moisture adsorbed on the adsorbent into the air and an adsorption operation for adsorbing moisture in the air on the adsorbent are performed.
- the first fan (26) is arranged downstream of the humidity control area (22A) in the first passageway (27).
- the first fan (26) conveys outdoor air so as to pass through the humidity control area (22A) of the humidity control rotor (22).
- the first fan (26) is rotated by driving the fourth motor (M4).
- the first fan (26) is configured to be able to switch the air volume in a plurality of steps by adjusting the rotational speed of the fourth motor (M4).
- the heater (25) is arranged upstream of the humidity control area (22A) in the first passageway (27).
- the heater (25) is a heater that heats the air flowing through the first passageway (27).
- the heater (25) has a variable output. The temperature of the air passing through the heater (25) changes according to the output of the heater (25).
- the second fan (23) is arranged in the second passageway (62).
- the second fan (23) is rotated by driving the sixth motor (M6).
- the second fan (23) conveys outdoor air through the second passageway (62).
- the outdoor air conveyed by the second fan (23) is sent into the second passageway (62) through the moisture absorption side inlet (61a) and is discharged to the outside of the room through the moisture absorption side outlet (61b).
- the adsorption region (22C) of the humidity control rotor (22) and the second fan (23) are arranged in the second passageway (62) in this order from the upstream side to the downstream side of the air flow.
- the first switching damper (24) is provided at a connecting portion of the first passageway (27) to the exhaust passageway (28).
- the channel switching mechanism may be composed of a channel switching valve, a shutter, or the like.
- the first switching damper (24) switches between a third state (a state indicated by solid lines in FIG. 2) and a fourth state (a state indicated by broken lines in FIG. 2).
- the first switching damper (24) in the third state allows communication between the first passageway (27) and the interior of the hose (2) and blocks communication between the first passageway (27) and the exhaust passageway (28).
- the first switching damper (24) in the fourth state isolates the first passageway (27) from the inside of the hose (2) and allows the first passageway (27) to communicate with the exhaust passageway (28).
- the state of the first switching damper (24) is switched by driving a power source such as a motor.
- the second switching damper (29) is arranged in the first passageway (27). As shown in FIGS. 5 and 6, the second switching damper (29) is provided inside the damper casing (29A). A space (S31) inside the second switching damper (29), a space (S32) in which the second switching damper (29) is arranged, and a space (S33) are provided in the damper casing (29A). .
- the second switching damper (29) is slidably provided in the space (S32).
- the damper casing (29A) is provided with a first entrance (29a) and a second entrance (29b) that communicate the space (S32) with the outside of the damper casing (29A).
- the first inlet/outlet (29a) communicates with the intake/exhaust port (21a) through the first passageway (27).
- the second inlet/outlet (29b) communicates with the hose (2) connection port (21b) in the outdoor casing (11) through the first passageway (27).
- the second doorway (29b) communicates with the outdoor exhaust port (21c) through the first passageway (27) and the exhaust passageway (28).
- the damper casing (29A) is provided with a first communication port (29c) and a second communication port (29d) that communicate the space (S32) and the space (S33).
- the second switching damper (29) is switched between the fifth state and the sixth state by sliding within the space (S32).
- the second switching damper (29) in the fifth state has a first inlet/outlet (29a) as an inlet for sucking air and a second inlet/outlet (29b) as an outlet for discharging air.
- the second switching damper (29) in the sixth state has a second inlet/outlet (29b) as an inlet for sucking air and a first inlet/outlet (29a) as an outlet for discharging air.
- the state of the second switching damper (29) is switched by driving a power source such as a motor.
- the air conditioner indoor unit (30) is an indoor unit that constitutes the air conditioner (1).
- the air conditioning indoor unit (30) is installed indoors.
- the air conditioning indoor unit (30) is a wall-mounted type installed on the wall (WL) of the room forming the room (I).
- the air conditioning indoor unit (30) includes an indoor casing (31), an indoor fan (32), an air filter (33), an indoor heat exchanger (34), a drain pan (35), and a wind direction adjusting section (36). and
- the indoor casing (31) houses an indoor fan (32), an air filter (33), an indoor heat exchanger (34) and a drain pan (35).
- the indoor casing (31) is formed with an indoor suction port (31a) and an indoor outlet (31b).
- the indoor suction port (31a) is arranged above the indoor casing (31).
- the indoor air intake (31a) is an opening for sucking indoor air.
- the indoor outlet (31b) is arranged below the indoor casing (31).
- the indoor air outlet (31b) is an opening for blowing off heat-exchanged air or humidity-conditioning air.
- the interior of the indoor casing (31) is provided with an indoor air passageway (31c) extending from the indoor air inlet (31a) to the indoor air outlet (31b).
- the indoor fan (32) is arranged substantially in the center of the indoor air passage (31c).
- the indoor fan (32) is, for example, a cross-flow fan.
- the indoor fan (32) is rotated by driving the fifth motor (M5).
- the indoor fan (32) takes indoor air into the indoor air passageway (31c) and conveys it.
- the air carried by the indoor fan (32) is sucked into the indoor casing (31) through the indoor suction port (31a). This air flows through the indoor air passageway (31c) and is blown out of the indoor casing (31) from the indoor outlet (31b).
- the indoor fan (32) conveys indoor air so as to pass through the indoor heat exchanger (34).
- the air blown out from the indoor air outlet (31b) is supplied to the room (I).
- the indoor fan (32) is configured such that the air volume can be switched in a plurality of steps by adjusting the rotation speed of the fifth motor (M5).
- the air filter (33) is arranged upstream of the indoor heat exchanger (34) in the indoor air passage (31c).
- the air filter (33) is attached to the indoor casing (31) so that substantially all of the air supplied to the indoor heat exchanger (34) passes through.
- the air filter (33) collects dust in the air sucked through the indoor air inlet (31a).
- the indoor heat exchanger (34) is arranged upstream of the indoor fan (32) in the indoor air passage (31c).
- the indoor heat exchanger (34) of this example is a fin-and-tube heat exchanger.
- the indoor heat exchanger (34) exchanges heat between the refrigerant therein and indoor air conveyed by the indoor fan (32).
- the drain pan (35) is arranged on the lower front side and the lower rear side of the indoor heat exchanger (34).
- the drain pan (35) receives condensed water generated inside the indoor casing (31) of the air conditioning indoor unit (30). Condensed water generated on the surface of the fins of the indoor heat exchanger (34) flows down due to its own weight along the surface and is received by the drain pan (35).
- the wind direction adjusting section (36) adjusts the direction of the air blown out from the indoor outlet (31b).
- the wind direction adjusting part (36) has a flap (37).
- the flap (37) is shaped like a long plate extending along the longitudinal direction of the indoor outlet (31b).
- the flap (37) is rotated by being driven by a motor.
- the flap (37) opens and closes the indoor outlet (31b) as it rotates.
- the flap (37) is configured so that the tilt angle can be changed stepwise.
- the positions to which the flap (37) in this example is adjusted include six positions. These six positions include a closed position and five open positions. The five open positions include the generally horizontal blow position shown in FIG.
- the flap (37) in the closed position substantially closes the indoor outlet (31b). A gap may be formed between the flap (37) in the closed position and the indoor outlet (31b).
- the air conditioning indoor unit (30) is connected to the humidity control unit (20) via the hose (2).
- the end of the hose (2) connected to the air conditioning indoor unit (30) communicates upstream of the indoor heat exchanger (34) in the indoor air passageway (31c).
- the air sent from the humidity control unit (20) to the air conditioning indoor unit (30) passes through the hose (2) and is supplied upstream of the indoor heat exchanger (34) in the indoor air passageway (31c).
- Air sent from the air conditioning indoor unit (30) to the humidity control unit (20) flows into the hose (2) from upstream of the indoor heat exchanger (34) in the indoor air passageway (31c).
- the remote controller (40) is placed indoors at a position where the user can operate it.
- the remote controller (40) has a display section (41) and an input section (42).
- the display (41) displays predetermined information.
- the display section (41) is composed of, for example, a liquid crystal monitor.
- the predetermined information is information indicating the operating state, set temperature, and the like of the air conditioner (1).
- An input unit (42) receives an input operation for performing various settings from a user.
- the input section (42) is composed of, for example, a plurality of physical switches. The user can set the operation mode, target temperature, target humidity, etc. of the air conditioner (1) by operating the input section (42) of the remote controller (40).
- the air conditioner (1) has a plurality of sensors.
- the plurality of sensors includes a sensor for refrigerant and a sensor for air.
- the refrigerant sensor includes a sensor that detects the temperature and pressure of the high-pressure refrigerant and a sensor that detects the temperature and pressure of the low-pressure refrigerant (not shown).
- the air sensors include an outside air temperature sensor (51), an outside air humidity sensor (52), an inside air temperature sensor (53), an inside air humidity sensor (54), and a humidity sensor (55).
- the outside air temperature sensor (51) is provided in the air conditioning outdoor unit (10).
- the outdoor air temperature sensor (51) detects the temperature of outdoor air.
- the outside air humidity sensor (52) is provided in the second passageway (62) and positioned upstream of the humidity control rotor (22) (for example, around the moisture absorption side suction port (61a)).
- the outdoor air humidity sensor (52) may be provided around the outdoor air inlet (11a) of the outdoor casing (11), similar to the outdoor air temperature sensor (51).
- the outside air humidity sensor (52) detects the humidity of the outside air.
- the outdoor air humidity sensor (52) of this example detects the relative humidity of the outdoor air, but may also detect the absolute humidity.
- the inside air temperature sensor (53) and the inside air humidity sensor (54) are provided in the air conditioning indoor unit (30).
- the inside air temperature sensor (53) detects the temperature of the inside air.
- a room air humidity sensor (54) detects the humidity of the room air.
- the room air humidity sensor (54) detects the relative humidity of the room air, but may also detect the absolute humidity.
- the humidity sensor (55) of this example is provided in the first passageway (27).
- the humidity sensor (55) is located between the second inlet/outlet (29b) of the second switching damper (29) and the connection port (21b) of the outdoor casing (11).
- a humidity sensor (55) detects the humidity of the air flowing through the first passageway (27).
- the humidity sensor (55) of this example detects the relative humidity of the air, but may detect the absolute humidity.
- the air conditioner (1) has a control section (C).
- the controller (C) controls the operation of the refrigerant circuit (R).
- the control section (C) controls operations of the air conditioner outdoor unit (10), the humidity control unit (20), and the air conditioner indoor unit (30).
- the controller (C) includes an outdoor controller (OC), an indoor controller (IC), and a remote controller (40).
- the outdoor controller (OC) is provided in the air conditioner outdoor unit (10).
- the indoor controller (IC) is provided in the air conditioner indoor unit (30).
- Each of the indoor controller (IC) and the outdoor controller (OC) includes an MCU (Micro Control Unit), an electric circuit, and an electronic circuit.
- the MCU includes a CPU (Central Processing Unit), a memory, and a communication interface. Various programs for the CPU to execute are stored in the memory.
- the outdoor temperature sensor (51) detection value, the outdoor air humidity sensor (52) detection value, and the humidity sensor (55) detection value are input to the outdoor control unit (OC).
- the outdoor control unit (OC) is connected to the compressor (12), outdoor fan (13), expansion valve (15) and four-way switching valve (16).
- the outdoor control unit (OC) sends control signals for executing and stopping the operation of the air conditioning outdoor unit (10) to the compressor (12), the outdoor fan (13), the expansion valve (15), and the four-way switching valve. Output to (16).
- the outdoor control unit (OC) controls the operating frequency of the first motor (M1) of the compressor (12), the rotation speed of the second motor (M2) of the outdoor fan (13), the state of the four-way switching valve (16), and the expansion Controls the opening of the valve (15).
- the outdoor controller (OC) is further connected to the humidity control rotor (22), first fan (26), second fan (23), heater (25), and first switching damper (24).
- the outdoor control unit (OC) sends control signals for executing and stopping the operation of the humidity control unit (20) to the humidity control rotor (22), the first fan (26), the second fan (23), the heater (25), and the first switching damper (24).
- the outdoor control unit (OC) controls the third motor (M3) of the humidity control rotor (22), the fourth motor (M4) of the first fan (26), and the sixth motor (M6) of the second fan (23). It controls the rotation speed, the operation of the humidity control rotor (22) and the first switching damper (24), and the output of the heater (25).
- the detection value of the inside air temperature sensor (53) and the detection value of the inside air humidity sensor (54) are input to the indoor control unit (IC).
- the indoor control unit (IC) is communicably connected to the remote controller (40).
- the indoor controller (IC) is connected to the indoor fan (32).
- the indoor controller (IC) outputs a control signal to the indoor fan (32) to start and stop the operation of the air conditioning indoor unit (30).
- the indoor controller (IC) controls the rotation speed of the fifth motor (M5) of the indoor fan (32).
- the indoor controller (IC) is communicably connected to the outdoor controller (OC).
- the remote controller (40) is communicably connected to the indoor control unit (IC).
- the remote controller (40) transmits an instruction signal instructing the operation of the air conditioner (1) to the indoor controller (IC) according to the user's operation on the input section (42).
- the indoor controller (IC) Upon receiving an instruction signal from the remote controller (40), the indoor controller (IC) transmits the instruction signal to the outdoor controller (OC).
- the indoor controller (IC) controls the operation of each device of the air conditioning indoor unit (30) according to the instruction signal.
- the outdoor controller (OC) receives an instruction signal from the indoor controller (IC), it controls the operation of each device of the air conditioning outdoor unit (10) and the humidity control unit (20).
- the operation modes executed by the air conditioner (1) include cooling operation, heating operation, air supply operation, exhaust operation, dehumidification operation, humidification operation, dehumidification cooling operation, and humidification heating operation.
- the controller (C) executes these operations based on instruction signals from the remote controller (40).
- Cooling operation is an operation in which indoor air is cooled by the indoor heat exchanger (34) functioning as an evaporator.
- the humidity control unit (20) is stopped.
- the controller (C) operates the compressor (12), the outdoor fan (13), and the indoor fan (32).
- the controller (C) sets the four-way switching valve (16) to the first state.
- the control section (C) appropriately adjusts the degree of opening of the expansion valve (15).
- a first refrigeration cycle is performed in which the compressed refrigerant releases heat in the outdoor heat exchanger (14) and evaporates in the indoor heat exchanger (34).
- the controller (C) adjusts the target evaporation temperature of the indoor heat exchanger (34) so that the room temperature detected by the inside air temperature sensor (53) converges to the set temperature.
- the control section (C) controls the rotation speed of the compressor (12) such that the evaporation temperature of the refrigerant in the indoor heat exchanger (34) converges to the target evaporation temperature.
- the air conveyed by the indoor fan (32) is cooled as it passes through the indoor heat exchanger (34).
- the air cooled by the indoor heat exchanger (34) is supplied to the room (I) from the indoor outlet (31b) of the air conditioning indoor unit (30).
- the heating operation is an operation in which indoor air is heated by the indoor heat exchanger (34) functioning as a radiator.
- the humidity control unit (20) is stopped.
- the controller (C) operates the compressor (12), the outdoor fan (13), and the indoor fan (32).
- the controller (C) sets the four-way switching valve (16) to the second state.
- the control section (C) appropriately adjusts the degree of opening of the expansion valve (15).
- a second refrigeration cycle is performed in which refrigerant compressed by the compressor (12) releases heat in the indoor heat exchanger (34) and evaporates in the outdoor heat exchanger (14).
- the controller (C) adjusts the target condensing temperature of the indoor heat exchanger (34) so that the indoor temperature detected by the indoor air temperature sensor (53) converges to the set temperature.
- the control section (C) controls the rotation speed of the compressor (12) such that the condensation temperature of the refrigerant in the indoor heat exchanger (34) converges to the target condensation temperature.
- the air conveyed by the indoor fan (32) is heated as it passes through the indoor heat exchanger (34).
- the air heated by the indoor heat exchanger (34) is supplied to the room (I) from the indoor outlet (31b) of the air conditioning indoor unit (30).
- the air supply operation is an operation for supplying outdoor air to the room.
- outdoor air is sent to the air conditioner indoor unit (30) through the hose (2), as indicated by the solid arrow in FIG.
- the controller (C) stops the heater (25), the humidity control rotor (22), and the second fan (23) and operates the first fan (26).
- the control section (C) sets the first switching damper (24) to the third state (the state indicated by the solid line in FIG. 2) and sets the second switching damper (29) to the fifth state (see FIG. 5). .
- the outdoor air conveyed by the first fan (26) is sent to the air conditioning indoor unit (30) through the hose (2), and is discharged from the indoor air outlet (31b) of the air conditioning indoor unit (30) into the room ( I).
- the air supply operation may be performed simultaneously with the cooling operation or the heating operation.
- Exhaust operation is an operation in which indoor air is discharged to the outside.
- room air is sent to the humidity control unit (20) through the hose (2), as indicated by the dashed arrow in FIG.
- the controller (C) stops the heater (25), the humidity control rotor (22), and the second fan (23) and operates the first fan (26).
- the control section (C) sets the first switching damper (24) to the third state (the state indicated by the solid line in FIG. 2) and sets the second switching damper (29) to the sixth state (see FIG. 6). .
- the room air conveyed by the first fan (26) is sent to the humidity control unit (20) through the hose (2) and discharged to the outside through the intake/exhaust port (21a) of the humidity control unit (20). be done.
- the exhaust operation may be performed simultaneously with the cooling operation or the heating operation.
- (3-5) Dehumidification operation In the dehumidification operation, the air dehumidified by the humidity control unit (20) is supplied to the room. In the dehumidifying operation, air dehumidified by the humidity control unit (20) is intermittently supplied indoors. The humidity control unit (20) alternately performs the first operation and the second operation. The first action is to cause the humidity control rotor (22) to adsorb moisture in the air and to supply air dehumidified by the humidity control rotor (22) into the room. The second action is to regenerate the humidity control rotor (22) and to discharge the air used for regeneration to the outside of the room.
- the control section (C) operates the first fan (26), stops the second fan (23), stops the heater (25), stops the first switching damper ( 24) is set to the third state (the state indicated by the solid line in FIG. 2), and the second switching damper (29) is set to the fifth state (see FIG. 5).
- Air conveyed by the first fan (26) flows through the first passageway (27) and passes through the humidity control area (22A) of the humidity control rotor (22). Moisture in the air is adsorbed by the adsorbent in the humidity control region (22A).
- the air dehumidified in the humidity control area (22A) is sent to the air conditioning indoor unit (30) through the hose (2) and supplied to the room (I) from the indoor outlet (31b) of the air conditioning indoor unit (30).
- the control section (C) operates the first fan (26) and the heater (25), stops the second fan (23), and
- the switching damper (24) is set to the fourth state (the state indicated by the dashed line in FIG. 2), and the second switching damper (29) is set to the fifth state (see FIG. 5).
- Air conveyed by the first fan (26) flows through the first passageway (27), is heated by the heater (25), and then flows through the humidity control region (22A) of the humidity control rotor (22).
- the adsorbent is regenerated in the humidity conditioning area (22A). Specifically, the moisture adsorbed by the adsorbent is desorbed and released into the air.
- the air used to regenerate the humidity control rotor (22) flows from the first passageway (27) through the exhaust passageway (28), as indicated by the black arrows in FIG. 2, and is discharged to the outside of the room.
- Humidification operation is an operation to supply air humidified by the humidity control unit (20) to the room.
- the humidification operation includes a continuous humidification mode and an intermittent humidification mode.
- the control section (C) is configured to cause the humidity control unit (20) to selectively execute the continuous humidification mode and the intermittent humidification mode.
- the humidity control unit (20) starts the humidification operation when the humidification start condition is satisfied, and ends the humidification operation when the humidification end condition is satisfied.
- the humidification start condition is "a humidification start command signal is input to the control section (C)"
- the humidification end condition is "the control section (C) has completed humidification.”
- the condition is that a command signal has been input.
- Each of the humidification start command signal and the humidification end command signal is transmitted from the remote controller (40) to the control section (C) when the user operates the remote controller (40).
- control section (C) may be configured to automatically determine the start and end of the humidification operation of the humidity control unit (20).
- a determination section provided in the control section (C) generates a humidification start command signal and a humidification end command signal based on the measured value of the inside air humidity sensor (54).
- the continuous humidification mode is an operation mode in which air (first air) humidified by the humidity control unit (20) is continuously supplied indoors.
- the controller (C) operates the first fan (26) and the second fan (23), rotates the humidity control rotor (22), and turns the heater (25) on (energized state). and Further, the control section (C) places the first switching damper (24) in the third state and the second switching damper (29) in the fifth state.
- outdoor air which is secondary air
- the second air flowing through the second passageway (62) flows through the adsorption region (22C) of the humidity control rotor (22).
- moisture in the second air is adsorbed by the adsorbent.
- the second air that has added moisture to the humidity control rotor (22) is discharged to the outside of the room through the second passageway (62).
- the outdoor air which is the first air
- the first air flowing through the first passageway (27) is heated by the heater (25) and then flows through the humidity control area (22A) of the humidity control rotor (22).
- the adsorbent is heated by the first air sent from the heater (25), and moisture is desorbed from the adsorbent.
- moisture desorbed from the adsorbent is released into the primary air.
- the primary air humidified by the humidity control rotor (22) is sent to the air conditioner indoor unit (30) through the hose (2) and supplied to the room (I) from the indoor outlet (31b) of the air conditioner indoor unit (30). be done.
- the intermittent humidification mode is an operation mode in which air (first air) humidified by the humidity control unit (20) is intermittently supplied indoors.
- the humidity control unit (20) in the intermittent humidification mode, repeatedly performs unit operations.
- a unit operation is an operation in which a third operation and a fourth operation are executed in order.
- the fourth motion is performed after the third motion ends. Therefore, in the intermittent humidification mode, the humidity control unit (20) alternately and repeatedly performs the third operation and the fourth operation.
- the third operation is an operation of causing the humidity control rotor (22) to adsorb moisture in the air and discharging the air that has passed through the humidity control rotor (22) to the outside of the room.
- the third action is a moisture collection action.
- control section (C) operates the second fan (23), rotates the humidity control rotor (22), stops the first fan (26), and turns off the heater (25). (de-energized state). Moreover, a control part (C) makes a 2nd switching damper (29) a 5th state.
- the first switching damper (24) may be in either the third state or the fourth state.
- the second air which is outdoor air, flows from the moisture absorption side suction port (61a) into the second passageway (62), flows through the second passageway (62), and reaches the humidity control rotor ( 22) through the adsorption area (22C).
- moisture in the second air is adsorbed by the adsorbent of the humidity control rotor (22).
- the second air that has passed through the adsorption region (22C) is discharged to the outside of the room through the moisture absorption side exhaust port (61b).
- the fourth action is to regenerate the humidity control rotor (22) and to supply air to which moisture has been added from the humidity control rotor (22) into the room.
- a fourth operation is a moisture release operation.
- control section (C) operates the first fan (26) and the second fan (23), rotates the humidity control rotor (22), and turns the heater (25) ON (energized state). to Further, the control section (C) places the first switching damper (24) in the third state and the second switching damper (29) in the fifth state.
- first air which is outdoor air
- first air flows through the intake/exhaust port (21a) into the first passageway (27), flows through the first passageway (27), and is heated by the heater (25).
- the heater (25) After being heated, it passes through the humidity control area (22A) of the humidity control rotor (22).
- the adsorbent In the humidity control area (22A), the adsorbent is heated by the first air sent from the heater (25), and moisture is desorbed from the adsorbent. Moisture is released from the adsorbent to the primary air in the humidity conditioning region (22A).
- the primary air humidified by the humidity control rotor (22) is sent to the air conditioner indoor unit (30) through the hose (2) and supplied to the room (I) from the indoor outlet (31b) of the air conditioner indoor unit (30). be done.
- the second air which is outdoor air, flows through the second passageway (62) and passes through the adsorption region (22C) of the humidity control rotor (22). do.
- the secondary air dehydrated in the adsorption region (22C) is discharged to the outside of the room through the moisture absorption side exhaust port (61b).
- the controller (C) causes the humidity control unit (20) to Start the third operation.
- control section (C) causes the humidity control unit (20) to end the third action.
- the first termination condition is that "the duration of the third action reaches a predetermined first reference time (eg, 15 minutes)".
- a predetermined first reference time eg, 15 minutes
- the control section (C) causes the humidity control unit (20) to terminate the third operation.
- the control section (C) causes the humidity control unit (20) to start the fourth operation when the previous third operation ends.
- control section (C) causes the humidity control unit (20) to end the fourth action.
- the second termination condition is a condition that "the duration of the fourth action reaches a predetermined second reference time (eg, 10 minutes)".
- a predetermined second reference time eg, 10 minutes
- the control section (C) causes the humidity control unit (20) to terminate the fourth operation.
- the second end condition is that "the humidity of the first air humidified in the humidity control rotor (22) (specifically, the measured value of the humidity sensor (55)) is lower than the predetermined reference humidity".
- the humidity of the first air that has passed through the humidity control rotor (22) is lower than the reference humidity, the amount of moisture remaining in the humidity control rotor (22) is small and even if the fourth operation is continued, the It can be determined that a sufficient amount of humidification is not obtained for one air. Therefore, when the second termination condition is satisfied, the control section (C) causes the humidity control unit (20) to terminate the fourth operation.
- the humidity control unit (20) is executing the intermittent humidification mode, it is preferable not to display that the intermittent humidification mode is being executed on the display section (41) of the remote controller (40). desirable. For example, from when the humidification start command signal is input to the control unit (C) until when the humidification end command signal is input, the display unit (41) of the remote controller (40) shows the humidity control unit (20). It is desirable that the humidity control unit (20) simply displays that the humidification operation is being performed without indicating whether the is executing the continuous humidification mode or the intermittent humidification mode.
- Humidification/heating operation In the humidification/heating operation, the heating operation and the humidification operation described above are performed simultaneously. Specifically, the air is humidified by the humidity control unit (20) and heated by the indoor heat exchanger (34) functioning as a radiator.
- the humidity control unit (20) has an intermittent humidification mode.
- the humidity control unit (20) repeats unit operations.
- the humidity control rotor (22) imparts moisture taken from the secondary air in the third operation (moisture collection operation) to the primary air in the fourth operation (moisture release operation).
- the third operation moisture collection operation
- heating of the first air by the heater (25) is stopped, so the temperature of the humidity control rotor (22) is kept low.
- the temperature rise of the secondary air passing through the humidity control rotor (22) is suppressed. Decrease in relative humidity is suppressed.
- the humidity control rotor ( 22) increases the amount of moisture adsorbed from the secondary air.
- the amount of moisture imparted to the primary air by the humidity conditioning rotor (22) in the fourth operation increases, thereby improving the humidification capability of the humidity conditioning unit (20).
- the humidity control unit (20) performs only the operation of sending the second air to the humidity control rotor (22) while sending the first air heated by the heater (25) to the humidity control rotor (22), Even if the temperature of the humidity rotor (22) rises and the amount of moisture that the humidity conditioning rotor (22) adsorbs from the secondary air decreases, the humidifying capacity of the humidity conditioning unit (20) is low. (25) continues to be energized. Therefore, the heater (25) continues to consume power even though only a low humidifying capacity is obtained.
- the heater (25) is turned off (non-energized) during execution of the third operation (moisture collection operation). That is, in the intermittent humidification mode performed by the humidity control unit (20) of the present embodiment, when a sufficient amount of humidification of the first air cannot be obtained in the fourth operation (moisture release operation), the humidity control unit is executed. The operation is switched from the fourth operation to the third operation, and the heater (25) is turned off (non-energized state). Therefore, according to the present embodiment, the power consumption of the heater (25) can be reduced while increasing the amount of moisture adsorbed from the secondary air by the humidity control rotor (22). Therefore, according to the present embodiment, the power consumption of the humidity control unit (20) can be reduced while maintaining the humidification capability of the humidity control unit (20).
- the controller (C) may stop the second fan (23) in the fourth operation of the intermittent humidification mode.
- the controller (C) may stop the second fan (23) during part of the duration of the fourth operation.
- the control unit (C) stops the second fan (23) for a predetermined period of time (for example, 5 minutes) from the start of the fourth action, and the predetermined time from the start of the fourth action.
- a predetermined period of time for example, 5 minutes
- control section (C) may stop the second fan (23) during the entire duration of the fourth operation.
- the controller (C) stops the second fan (23) at the start of the fourth action, and operates the second fan (23) at the start of the third action after the fourth action ends.
- the first air heated by the heater (25) continues to be sent to the humidity control rotor (22) while the flow of the second air in the second passageway (62) is stopped. Therefore, in this state, the temperature of the entire humidity control rotor (22) is kept higher than when both the first air and the second air are sent to the humidity control rotor (22). As a result, according to this modification, the heating amount of the heater (25) can be kept low.
- the controller (C) controls the first fan (26) and the second fan (23) in the third operation of the intermittent humidification mode. may be activated.
- control section (C) operates the first fan (26) and the second fan (23), rotates the humidity control rotor (22), and turns off the heater (25). (de-energized state). Further, the control section (C) places the first switching damper (24) in the fourth state and the second switching damper (29) in the fifth state.
- the outdoor air which is primary air, passes through the humidity control region (22A) of the humidity control rotor (22), and the second air moves through the adsorption region (22C) of the humidity control rotor (22).
- outdoor air passes through.
- the moisture contained in the outdoor air is adsorbed by the adsorbent of the humidity control rotor (22).
- the first air flows from the first passageway (27) through the exhaust passageway (28) and is discharged to the outside of the room.
- the second air flows through the second passageway (62) and is discharged to the outside of the room through the moisture absorption side exhaust port (61b).
- the third operation of the present modification moisture contained in outdoor air is adsorbed by the adsorbent of the humidity control rotor (22) in both the humidity control region (22A) and the adsorption region (22C) of the humidity control rotor (22). be done. Therefore, the time required for the third operation can be shortened, and the number of unit operations that can be performed within a certain period of time can be increased, so that the humidification capacity of the humidity control unit (20) can be enhanced.
- the humidity control unit (20) of the present embodiment may perform an operation other than the unit operation between two unit operations.
- An example of the operation other than the unit operation is an operation of temporarily stopping the humidity control unit (20) (eg, for a relatively short time of about 30 seconds).
- the humidity control unit (20) of the present embodiment may perform an operation other than the third operation and the fourth operation between the third operation and the fourth operation in each unit operation of the intermittent humidification mode.
- An example of operations other than the third and fourth operations is an operation of temporarily stopping the humidity control unit (20) (eg, for a relatively short period of time, such as about 30 seconds).
- the controller (C) automatically switches between the continuous humidification mode and the intermittent humidification mode in the humidification operation of the humidity control unit (20). It may be configured to switch.
- the control unit (C) of this modified example is configured to select one of the continuous humidification mode and the intermittent humidification mode, for example, based on the measured value (measured value of outdoor air humidity) of the outdoor air humidity sensor (52). may have been In this case, the control section (C) causes the humidity control unit (20) to execute the continuous humidification mode when the measured value of the outside air humidity sensor (52) is higher than the predetermined reference humidity (or equal to or higher than the reference humidity). and causes the humidity control unit (20) to execute the intermittent humidification mode when the measured value of the outside air humidity sensor (52) is equal to or less than a predetermined reference humidity (or lower than the reference humidity).
- the present disclosure is useful for humidifiers and air conditioners.
- Air conditioner 3 Liquid connection (refrigerant piping) 4 Gas connection pipe (refrigerant pipe) 10 Air conditioning outdoor unit (outdoor unit) 20 Humidity control unit (humidifier) 22 Humidity control rotor (rotor member) 25 Heater 27 First aisle 30 Air conditioning indoor unit (indoor unit) 62 Passage 2
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Central Air Conditioning (AREA)
- Air Conditioning Control Device (AREA)
Abstract
加湿装置(20)は、吸着剤を有するロータ部材(22)を備える。加湿装置(20)は、水分捕集動作を実行後に水分放出動作を実行する単位動作を繰り返し行う間欠加湿モードを有する。水分捕集動作は、加熱器(25)による第1空気の加熱を停止し且つ室内への第1空気の供給を停止した状態で、第2空気をロータ部材(22)へ供給して第2空気中の水分をロータ部材(22)に吸着させる動作である。水分放出動作は、加熱器(25)によって加熱された第1空気をロータ部材(22)へ送り、ロータ部材(22)によって加湿された第1空気を室内へ供給する動作である。
Description
本開示は、加湿装置および空気調和装置に関するものである。
吸着剤を有するロータ部材を用いて空気を加湿する加湿装置が知られている。特許文献1には、この加湿装置を備えた空調システムが開示されている。
この加湿装置において、ロータ部材は、吸着側の空気通路と再生側の空気通路のそれぞれを横断するように設けられて回転する。加湿装置では、吸着側の空気通路を流れる空気がロータ部材を通過し、その空気に含まれる水分がロータ部材に吸着される。また、加湿装置では、再生側の空気通路を流れる空気がヒータで加熱された後にロータ部材を通過し、ロータ部材から脱離した水分が空気に付与される。加湿装置は、ロータ部材において加湿された空気を室内へ供給することによって、室内を加湿する。
加湿装置において、ロータ部材のうち再生側の空気通路を横断する部分は、ヒータによって加熱された空気と接触するため、高温(例えば100℃以上)になる。ロータ部材が回転すると、ロータ部材のうち再生側の空気通路に位置していた部分が、吸着側の空気通路へ移動する。吸着ロータの温度は、吸着側の空気通路を移動する間に低下するが、それでも比較的高い温度(例えば60℃程度)となる。そのため、吸着側の空気通路においてロータ部材と接触する空気の温度が高くなり、その空気の相対湿度が低下する。その結果、ロータ部材に吸着される水分の量が少なくなり、空気に付与される水分の量(加湿量)が少なくなる。
本開示の目的は、ロータ部材を備えた加湿装置の加湿能力を向上させることにある。
本開示の第1の態様は、第1空気が流れる第1通路(27)と、第2空気が流れる第2通路(62)と、空気中の水分を吸着する吸着剤を有し、上記第1通路(27)と上記第2通路(62)のそれぞれを横断するように設けられて回転するロータ部材(22)と、上記ロータ部材(22)へ送られる上記第1空気を加熱する加熱器(25)とを備え、上記ロータ部材(22)によって加湿された上記第1空気を室内へ供給することによって室内を加湿する加湿装置(20)を対象とする。この態様の加湿装置(20)は、水分捕集動作を実行後に水分放出動作を実行する単位動作を繰り返し行う間欠加湿モードを有し、上記水分捕集動作は、上記加熱器(25)による上記第1空気の加熱を停止し且つ室内への上記第1空気の供給を停止した状態で、上記第2空気を上記ロータ部材(22)へ供給して上記第2空気中の水分を上記ロータ部材(22)に吸着させる動作であり、上記水分放出動作は、上記加熱器(25)によって加熱された上記第1空気を上記ロータ部材(22)へ送り、上記ロータ部材(22)によって加湿された上記第1空気を室内へ供給する動作である。
第1の態様では、加湿装置(20)が間欠加湿モードを有する。間欠加湿モードにおいて、加湿装置(20)は、単位動作を繰り返し行う。単位動作において、ロータ部材(22)は、水分捕集動作において第2空気から奪った水分を、水分放出動作において第1空気に付与する。水分捕集動作では、加熱器(25)による第1空気の加熱が停止するため、ロータ部材(22)の温度が低く抑えられる。ロータ部材(22)の温度が低く抑えられると、ロータ部材(22)を通過する第2空気の温度の上昇が抑えられ、その結果、ロータ部材(22)を通過する第2空気の相対湿度の低下が抑えられる。
ロータ部材(22)を通過する第2空気の相対湿度が高いほど、ロータ部材(22)の吸着剤が第2空気から吸着する水分の量が多くなる。そのため、この態様によれば、加熱器(25)によって加熱した第1空気をロータ部材(22)へ送りつつ第2空気をロータ部材(22)へ送る場合に比べて、ロータ部材(22)が第2空気から吸着する水分の量が増加する。その結果、水分放出動作においてロータ部材(22)が第1空気に付与する水分の量が増加し、加湿装置(20)の加湿能力が向上する。
本開示の第2の態様は、上記第1の態様において、上記間欠加湿モードは、上記加湿装置(20)が上記水分捕集動作と上記水分放出動作を交互に繰り返し行う運転モードである。
第2の態様において、加湿装置(20)は、水分捕集動作が終了すると水分放出動作を開始し、その水分放出動作が終了すると次の水分捕集動作を開始する。
本開示の第3の態様は、上記第1又は第2の態様において、上記加湿装置(20)は、上記水分捕集動作の実行中に第1終了条件が成立すると上記水分捕集動作を終了し、上記第1終了条件は、上記水分捕集動作の継続時間が第1基準時間に達するという条件である。
第3の態様において、加湿装置(20)は、水分捕集動作の継続時間に基づいて、第1終了条件の成否を判断する。
本開示の第4の態様は、上記第1~第3のいずれか一つの態様において、上記加湿装置(20)は、上記水分放出動作の実行中に第2終了条件が成立すると上記水分放出動作を終了し、上記第2終了条件は、上記水分放出動作の継続時間が第2基準時間に達するという条件、又は上記ロータ部材(22)において加湿された上記第1空気の湿度が所定湿度よりも低いという条件である。
第4の態様では、において、加湿装置(20)は、水分放出動作の継続時間、又はロータ部材(22)において加湿された第1空気の湿度に基づいて、第2終了条件の成否を判断する。
本開示の第5の態様は、上記第1~第4のいずれか一つの態様において、上記加湿装置(20)は、上記水分放出動作を実行している時間の少なくとも一部において、上記第2通路(62)における上記第2空気の流れを停止させる。
第5の態様の加湿装置(20)の水分放出動作では、第2通路(62)における第2空気の流れが停止した状態で、加熱器(25)によって加熱された第1空気がロータ部材(22)へ送られ続ける。そのため、この状態では、第1空気と第2空気の両方がロータ部材(22)へ送られる状態に比べて、ロータ部材(22)の全体の温度が高く保たれる。そのため、この態様では、加熱器(25)の加熱量が低く抑えられる。
本開示の第6の態様は、上記第1~第5のいずれか一つの態様の加湿装置(20)と、互いに冷媒配管(3,4)によって接続されて冷凍サイクルを行う室外機(10)及び室内機(30)とを備える空気調和装置(1)である。
第6の態様では、加湿装置(20)と室外機(10)と室内機(30)とによって空気調和装置(1)が構成される。
以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示される実施形態に限定されるものではなく、本開示の技術的思想を逸脱しない範囲内で各種の変更が可能である。各図面は、本開示を概念的に説明するためのものであるから、理解容易のために必要に応じて寸法、比または数を誇張または簡略化して表す場合がある。
以下、例示的な実施形態を図面に基づいて詳細に説明する。
(1)空気調和装置の構成の概要
空気調和装置(1)は、室内(I)の空気の温度および湿度を調節する。図1に示すように、空気調和装置(1)は、空調室外機(10)と空調室内機(30)とを有する。空調室外機(10)は室外に設置され、空調室内機(30)は室内に設置される。空気調和装置(1)は、1つの空調室内機(30)と1つの空調室外機(10)とを有するペア式である。空気調和装置(1)は、調湿要素である調湿ユニット(20)を有する。空気調和装置(1)は、空気を加湿および除湿する機能を有する。空気調和装置(1)は、室内(I)を換気する機能をさらに有する。
空気調和装置(1)は、室内(I)の空気の温度および湿度を調節する。図1に示すように、空気調和装置(1)は、空調室外機(10)と空調室内機(30)とを有する。空調室外機(10)は室外に設置され、空調室内機(30)は室内に設置される。空気調和装置(1)は、1つの空調室内機(30)と1つの空調室外機(10)とを有するペア式である。空気調和装置(1)は、調湿要素である調湿ユニット(20)を有する。空気調和装置(1)は、空気を加湿および除湿する機能を有する。空気調和装置(1)は、室内(I)を換気する機能をさらに有する。
図1および図2に示すように、空気調和装置(1)は、ホース(2)と、液連絡管(3)と、ガス連絡管(4)とを有する。空調室内機(30)と調湿ユニット(20)とは、ホース(2)を介して互いに接続される。空調室内機(30)と空調室外機(10)とは、液連絡管(3)およびガス連絡管(4)を介して互いに接続される。これにより、冷媒回路(R)を含む空調要素(5)が構成される。冷媒回路(R)には、冷媒が充填される。冷媒は、ジフルオロメタンである。ただし、冷媒はジフルオロメタンに限定されない。冷媒回路(R)は、蒸気圧縮式の冷凍サイクルを行う。
冷媒回路(R)は、主として、圧縮機(12)と、室外熱交換器(14)と、膨張弁(15)と、四方切換弁(16)と、室内熱交換器(34)とを有する。
冷媒回路(R)は、四方切換弁(16)の切り換えに応じて第1冷凍サイクルと第2冷凍サイクルとを行う。第1冷凍サイクルは、室内熱交換器(34)を蒸発器として機能させ、室外熱交換器(14)を放熱器として機能させる冷凍サイクルである。第2冷凍サイクルは、室内熱交換器(34)を放熱器として機能させ、室外熱交換器(14)を蒸発器として機能させる冷凍サイクルである。
(2)詳細構成
(2-1)空調室外機
空調室外機(10)は、空気調和装置(1)を構成する室外機である。
(2-1)空調室外機
空調室外機(10)は、空気調和装置(1)を構成する室外機である。
図2および図4に示すように、空調室外機(10)は、室外ケーシング(11)と、圧縮機(12)と、室外ファン(13)と、室外熱交換器(14)と、膨張弁(15)と、四方切換弁(16)とを有する。
室外ケーシング(11)の内部には、仕切板(18)が設けられる。仕切板(18)は、室外ケーシング(11)の内部を、第1空間(S1)と第2空間(S2)とに区画する。第1空間(S1)には、圧縮機(12)および室外熱交換器(14)が設けられる。厳密には、第1空間(S1)には、圧縮機(12)、室外ファン(13)、室外熱交換器(14)、膨張弁(15)、および四方切換弁(16)が設けられる。
室外ケーシング(11)には、室外吸込口(11a)と、室外吹出口(11b)と、吸湿側吸込口(61a)と、吸湿側排気口(61b)とが形成される。室外吸込口(11a)は、室外ケーシング(11)の後側に形成される。室外吸込口(11a)は、室外空気(室外の空気)を吸い込むための開口である。室外吹出口(11b)は、室外ケーシング(11)の前側に形成される。室外吹出口(11b)は、室外熱交換器(14)を通過した空気を吹き出すための開口である。室外ケーシング(11)の内部には、室外吸込口(11a)から室外吹出口(11b)に亘って室外空気通路(11c)が形成される。
圧縮機(12)は、低圧のガス冷媒を吸入して圧縮する。圧縮機(12)は、第1モータ(M1)によって駆動される。圧縮機(12)は、インバータ回路から第1モータ(M1)へ電力が供給される可変容量式の圧縮機である。圧縮機(12)は、第1モータ(M1)の運転周波数(回転数)を調整することで、運転容量が変更可能に構成される。圧縮機(12)は、その内部が高圧冷媒で満たされる、いわゆる高圧ドーム式である。圧縮機(12)の運転時には、圧縮機(12)から発する熱がその周囲へ放出される。
室外ファン(13)は、室外空気通路(11c)に配置される。室外ファン(13)は、第2モータ(M2)の駆動により回転する。室外ファン(13)により搬送される空気は、室外吸込口(11a)から室外ケーシング(11)内に吸い込まれる。この空気は、室外空気通路(11c)を流れて、室外吹出口(11b)から室外ケーシング(11)の外部に吹き出される。室外ファン(13)は、室外熱交換器(14)を通過させるように室外空気を搬送する。
室外熱交換器(14)は、室外空気通路(11c)において室外ファン(13)の上流側に配置される。本例の室外熱交換器(14)は、フィンアンドチューブ式の熱交換器である。室外熱交換器(14)は、その内部を流れる冷媒と、室外ファン(13)によって搬送される室外空気とを熱交換させる。
膨張弁(15)は、冷媒を減圧する。膨張弁(15)は、開度が調節可能な電動式の膨張弁である。減圧機構は、感温式の膨張弁、膨張機、キャピラリーチューブなどであってもよい。膨張弁(15)は、冷媒回路(R)の液ラインに接続されていればよく、空調室内機(30)に設けられてもよい。
四方切換弁(16)は、第1ポート(P1)と、第2ポート(P2)と、第3ポート(P3)と、第4ポート(P4)を有する。第1ポート(P1)は、圧縮機(12)の吐出部に繋がる。第2ポート(P2)は、圧縮機(12)の吸入部に繋がる。第3ポート(P3)は、室外熱交換器(14)のガス端部に繋がる。第4ポート(P4)は、ガス連絡管(4)に繋がる。
四方切換弁(16)は、第1状態(図2の実線で示す状態)と、第2状態(図2の破線で示す状態)とに切り換えられる。第1状態の四方切換弁(16)は、第1ポート(P1)と第3ポート(P3)とを連通させ、且つ第2ポート(P2)と第4ポート(P4)とを連通させる。第2状態の四方切換弁(16)は、第1ポート(P1)と第4ポート(P4)とを連通させ、且つ第2ポート(P2)と第3ポート(P3)とを連通させる。
(2-2)調湿ユニット
調湿ユニット(20)は、室外に設置される。本例の調湿ユニット(20)は、空調室外機(10)と一体化される。調湿ユニット(20)は、湿度を調節した空気を空調室内機(30)に送る。調湿ユニット(20)は、室内(I)を加湿する加湿装置である。調湿ユニット(20)は、室外ケーシング(11)と、調湿ロータ(22)と、第1ファン(26)と、第2ファン(23)と、ヒータ(25)と、第1切換ダンパ(24)と、第2切換ダンパ(29)(図5参照)とを有する。室外ケーシング(21)は、空調室外機(10)と調湿ユニット(20)とに共用される。
調湿ユニット(20)は、室外に設置される。本例の調湿ユニット(20)は、空調室外機(10)と一体化される。調湿ユニット(20)は、湿度を調節した空気を空調室内機(30)に送る。調湿ユニット(20)は、室内(I)を加湿する加湿装置である。調湿ユニット(20)は、室外ケーシング(11)と、調湿ロータ(22)と、第1ファン(26)と、第2ファン(23)と、ヒータ(25)と、第1切換ダンパ(24)と、第2切換ダンパ(29)(図5参照)とを有する。室外ケーシング(21)は、空調室外機(10)と調湿ユニット(20)とに共用される。
室外ケーシング(11)の内部には、上述した第2空間(S2)が区画される。第2空間(S2)には、調湿ロータ(22)およびヒータ(25)が設けられる。厳密には、第2空間(S2)には、調湿ロータ(22)、第1ファン(26)、第2ファン(23)、ヒータ(25)、第1切換ダンパ(24)、および第2切換ダンパ(29)が設けられる。
室外ケーシング(11)には、吸排気口(21a)と、接続口(21b)と、室外排気口(21c)とが形成される。吸排気口(21a)は、室外空気および室内空気が流通する開口である。室外ケーシング(11)の内部には、吸排気口(21a)から接続口(21b)まで続く第1通路(27)が形成される。室外ケーシング(11)の内部には、吸湿側吸込口(61a)から吸湿側排気口(61b)まで続く第2通路(62)が形成される。接続口(21b)には、ホース(2)が接続される。
第1通路(27)には、排気通路(28)が接続される。排気通路(28)は、第1通路(27)の中途部から室外排気口(21c)まで続く。排気通路(28)の流入端は、第1通路(27)における調湿ロータ(22)の下流側(厳密には、第1ファン(26)の下流側)に接続する。第1通路(27)、および排気通路(28)において、下流は給気運転時に空気が流れる方向(図2の実線の矢印の指す方向)の下流であり、上流は給気運転時に空気が流れる方向の上流である。
調湿ロータ(22)は、第1通路(27)を流れる空気が通過する。調湿ロータ(22)は空気中の水分を吸着するロータ部材である。調湿ロータ(22)は、例えば、ハニカム構造を有する円盤状の調湿用ロータである。調湿ロータ(22)は、第1通路(27)と第2通路(62)のそれぞれを横断するように設けられる。
調湿ロータ(22)は、吸湿性を有する高分子材料からなる吸着剤を保持する。この吸湿性を有する高分子材料は、いわゆる収着剤の一種である。吸湿性を有する高分子材料からなる吸着剤では、空気中の水蒸気が吸着剤の表面に吸着される現象と、水蒸気が吸着剤の内部に吸収される現象との両方が生じる。なお、調湿ロータ(22)が保持する吸着剤は、シリカゲル、ゼオライト、アルミナ等の無機材料であってもよい。吸着剤は、空気中の水分を吸着する性質を有する。吸湿剤は、加熱されることにより、吸着した水分を脱離する性質を有する。
調湿ロータ(22)は、第3モータ(M3)によって駆動され、その中心軸まわりに回転する。調湿ロータ(22)が回転すると、調湿ロータ(22)のうち第1通路(27)に位置していた部分が第2通路(62)へ移動し、調湿ロータ(22)のうち第2通路(62)に位置していた部分が第1通路(27)へ移動する。
調湿ロータ(22)は、第1通路(27)に位置する調湿領域(22A)を有する。調湿領域(22A)では、吸着剤に吸着した水分を空気中に脱離させる再生動作、および空気中の水分を吸着剤に吸着させる吸着動作が行われる。
第1ファン(26)は、第1通路(27)における調湿領域(22A)の下流側に配置される。第1ファン(26)は、調湿ロータ(22)の調湿領域(22A)を通過させるように室外空気を搬送する。第1ファン(26)は、第4モータ(M4)の駆動によって回転する。第1ファン(26)は、第4モータ(M4)の回転数を調整することで、風量を複数段階に切り換え可能に構成される。
ヒータ(25)は、第1通路(27)における調湿領域(22A)の上流側に配置される。ヒータ(25)は、第1通路(27)を流れる空気を加熱する加熱器である。ヒータ(25)は、出力を可変に構成される。ヒータ(25)を通過する空気の温度は、ヒータ(25)の出力に応じて変化する。
第2ファン(23)は、第2通路(62)に配置される。第2ファン(23)は、第6モータ(M6)の駆動によって回転する。第2ファン(23)は、第2通路(62)を通過させるようにして室外空気を搬送する。第2ファン(23)により搬送される室外空気は、吸湿側吸込口(61a)を通じて第2通路(62)内へ送られ、吸湿側排気口(61b)を通じて室外へ排出される。第2通路(62)には、空気流れの上流側から下流側に向かって順に、調湿ロータ(22)の吸着領域(22C)および第2ファン(23)が配置される。
第1切換ダンパ(24)は、第1通路(27)における排気通路(28)の接続部分に設けられる。流路切換機構は、流路切換弁やシャッターなどで構成されてもよい。第1切換ダンパ(24)は、第3状態(図2の実線で示す状態)と、第4状態(図2の破線で示す状態)とに切り換わる。第3状態の第1切換ダンパ(24)は、第1通路(27)とホース(2)の内部とを連通させ、第1通路(27)と排気通路(28)とを遮断する。第4状態の第1切換ダンパ(24)は、第1通路(27)とホース(2)の内部とを遮断し、第1通路(27)と排気通路(28)とを連通させる。第1切換ダンパ(24)の状態は、モータのような動力源の駆動により切り換えられる。
第2切換ダンパ(29)は、第1通路(27)に配置される。図5および図6に示すように、第2切換ダンパ(29)は、ダンパケーシング(29A)内に設けられる。ダンパケーシング(29A)内には、第2切換ダンパ(29)の内部の空間(S31)と、第2切換ダンパ(29)が配置される空間(S32)と、空間(S33)とが設けられる。第2切換ダンパ(29)は、空間(S32)内にスライド自在に設けられる。
ダンパケーシング(29A)には、空間(S32)とダンパケーシング(29A)の外部とを連通する第1出入口(29a)と第2出入口(29b)とが設けられる。第1出入口(29a)は、第1通路(27)を通じて吸排気口(21a)と連通する。第2出入口(29b)は、第1通路(27)を通じて室外ケーシング(11)におけるホース(2)との接続口(21b)と連通する。第2出入口(29b)は、第1通路(27)および排気通路(28)を通じて室外排気口(21c)と連通する。
ダンパケーシング(29A)には、空間(S32)と空間(S33)とを連通する第1連通口(29c)と第2連通口(29d)とが設けられる。第2切換ダンパ(29)は、空間(S32)内でスライドすることで、第5状態と第6状態とに切り換えられる。図5に示すように、第5状態の第2切換ダンパ(29)は、空気を吸い込む入口を第1出入口(29a)とし、空気を排出する出口を第2出入口(29b)とする。図6に示すように、第6状態の第2切換ダンパ(29)は、空気を吸い込む入口を第2出入口(29b)とし、空気を排出する出口を第1出入口(29a)とする。第2切換ダンパ(29)の状態は、モータのような動力源の駆動により切り換えられる。
(2-3)空調室内機
空調室内機(30)は、空気調和装置(1)を構成する室内機である。
空調室内機(30)は、空気調和装置(1)を構成する室内機である。
図1~図3に示すように、空調室内機(30)は、室内に設置される。空調室内機(30)は、室内(I)を形成する部屋の壁(WL)に設置される、壁掛け式である。空調室内機(30)は、室内ケーシング(31)と、室内ファン(32)と、エアフィルタ(33)と、室内熱交換器(34)と、ドレンパン(35)と、風向調節部(36)とを有する。
室内ケーシング(31)は、室内ファン(32)、エアフィルタ(33)、室内熱交換器(34)およびドレンパン(35)を収容する。室内ケーシング(31)には、室内吸込口(31a)と、室内吹出口(31b)とが形成される。室内吸込口(31a)は、室内ケーシング(31)の上側に配置される。室内吸込口(31a)は、室内の空気を吸い込むための開口である。室内吹出口(31b)は、室内ケーシング(31)の下側に配置される。室内吹出口(31b)は、熱交換後の空気または調湿用の空気を吹き出すための開口である。室内ケーシング(31)の内部には、室内吸込口(31a)から室内吹出口(31b)に続く室内空気通路(31c)が設けられている。
室内ファン(32)は、室内空気通路(31c)の略中央部分に配置される。室内ファン(32)は、例えばクロスフローファンである。室内ファン(32)は、第5モータ(M5)の駆動により回転する。室内ファン(32)は、室内の空気を室内空気通路(31c)に取り込んで搬送する。室内ファン(32)により搬送される空気は、室内吸込口(31a)から室内ケーシング(31)内に吸い込まれる。この空気は、室内空気通路(31c)を流れて、室内吹出口(31b)から室内ケーシング(31)の外部に吹き出される。
室内ファン(32)は、室内熱交換器(34)を通過させるように室内の空気を搬送する。室内吹出口(31b)から吹き出された空気は、室内(I)に供給される。室内ファン(32)は、第5モータ(M5)の回転数を調整することで、風量を複数段階に切り換え可能に構成される。
エアフィルタ(33)は、室内空気通路(31c)において室内熱交換器(34)の上流側に配置される。エアフィルタ(33)は、室内熱交換器(34)に供給される空気が実質的に全て通過するように室内ケーシング(31)に取り付けられる。エアフィルタ(33)は、室内吸込口(31a)から吸い込まれる空気中の塵埃を捕集する。
室内熱交換器(34)は、室内空気通路(31c)において室内ファン(32)の上流側に配置される。本例の室内熱交換器(34)は、フィンアンドチューブ式の熱交換器である。室内熱交換器(34)は、その内部の冷媒と、室内ファン(32)によって搬送される室内の空気とを熱交させる。
ドレンパン(35)は、室内熱交換器(34)の前方下側および後方下側に配置される。ドレンパン(35)は、空調室内機(30)の室内ケーシング(31)の内部で発生した結露水を受ける。室内熱交換器(34)のフィンの表面に発生した結露水は、その表面を伝って自重により流下し、ドレンパン(35)で受けられる。
風向調節部(36)は、室内吹出口(31b)から吹き出される空気の風向きを調節する。風向調節部(36)は、フラップ(37)を有する。フラップ(37)は、室内吹出口(31b)の長手方向に沿って延びる長板状に形成される。フラップ(37)は、モータの駆動により回動する。フラップ(37)は、その回動に伴い室内吹出口(31b)を開閉する。
フラップ(37)は、傾斜角度を段階的に変えられるように構成される。本例のフラップ(37)が調節される位置は、6つの位置を含む。これら6つの位置は、閉位置と、5つの開位置とを含む。5つの開位置には、図3に示す略水平吹出位置を含む。閉位置のフラップ(37)は、室内吹出口(31b)を実質的に閉じる。閉位置のフラップ(37)と室内吹出口(31b)との間には、隙間が形成されてもよい。
上述したように、空調室内機(30)は、ホース(2)を介して調湿ユニット(20)と接続される。空調室内機(30)に接続するホース(2)の端部は、室内空気通路(31c)における室内熱交換器(34)の上流に連通する。調湿ユニット(20)から空調室内機(30)へ送られる空気は、ホース(2)を通って室内空気通路(31c)における室内熱交換器(34)の上流に供給される。空調室内機(30)から調湿ユニット(20)へ送られる空気は、室内空気通路(31c)における室内熱交換器(34)の上流からホース(2)へ流入する。
(2-4)リモートコントローラ
図2および図4に示すように、リモートコントローラ(40)は、室内においてユーザが操作可能な位置に配置される。リモートコントローラ(40)は、表示部(41)と入力部(42)とを有する。表示部(41)は、所定の情報を表示する。表示部(41)は、例えば液晶モニタによって構成される。所定の情報は、空気調和装置(1)の運転状態や設定温度などを示す情報である。入力部(42)は、ユーザからの各種設定を行う入力操作を受け付ける。入力部(42)は、例えば物理的な複数のスイッチで構成される。ユーザは、リモートコントローラ(40)の入力部(42)を操作することで、空気調和装置(1)の運転モード、目標温度、目標湿度などを設定できる。
図2および図4に示すように、リモートコントローラ(40)は、室内においてユーザが操作可能な位置に配置される。リモートコントローラ(40)は、表示部(41)と入力部(42)とを有する。表示部(41)は、所定の情報を表示する。表示部(41)は、例えば液晶モニタによって構成される。所定の情報は、空気調和装置(1)の運転状態や設定温度などを示す情報である。入力部(42)は、ユーザからの各種設定を行う入力操作を受け付ける。入力部(42)は、例えば物理的な複数のスイッチで構成される。ユーザは、リモートコントローラ(40)の入力部(42)を操作することで、空気調和装置(1)の運転モード、目標温度、目標湿度などを設定できる。
(2-5)センサ
図2および図4に示すように、空気調和装置(1)は、複数のセンサを有する。複数のセンサは、冷媒用のセンサと、空気用のセンサとを含む。冷媒用のセンサは、高圧冷媒の温度や圧力を検出するセンサ、低圧冷媒の温度や圧力を検出するセンサを含む(図示省略)。
図2および図4に示すように、空気調和装置(1)は、複数のセンサを有する。複数のセンサは、冷媒用のセンサと、空気用のセンサとを含む。冷媒用のセンサは、高圧冷媒の温度や圧力を検出するセンサ、低圧冷媒の温度や圧力を検出するセンサを含む(図示省略)。
空気用のセンサは、外気温度センサ(51)、外気湿度センサ(52)、内気温度センサ(53)、内気湿度センサ(54)、および湿度センサ(55)を含む。
外気温度センサ(51)は、空調室外機(10)に設けられる。外気温度センサ(51)は、室外空気の温度を検出する。
外気湿度センサ(52)は、第2通路(62)に設けられ、調湿ロータ(22)の上流(例えば、吸湿側吸込口(61a)の周辺)に位置する。外気湿度センサ(52)は、外気温度センサ(51)と同様に、室外ケーシング(11)の室外吸込口(11a)の周辺に設けられてもよい。外気湿度センサ(52)は、室外空気の湿度を検出する。本例の外気湿度センサ(52)は、室外空気の相対湿度を検出するが、絶対湿度を検出してもよい。
内気温度センサ(53)および内気湿度センサ(54)は、空調室内機(30)に設けられる。内気温度センサ(53)は、室内空気の温度を検出する。内気湿度センサ(54)は、室内空気の湿度を検出する。内気湿度センサ(54)は、室内空気の相対湿度を検出するが、絶対湿度を検出してもよい。
本例の湿度センサ(55)は、第1通路(27)に設けられる。この湿度センサ(55)は、第2切換ダンパ(29)の第2出入口(29b)と、室外ケーシング(11)の接続口(21b)との間に位置する。湿度センサ(55)は、第1通路(27)を流れる空気の湿度を検出する。本例の湿度センサ(55)は、空気の相対湿度を検出するが、絶対湿度を検出してもよい。
(2-6)制御部
図2および図4に示すように、空気調和装置(1)は、制御部(C)を有する。制御部(C)は、冷媒回路(R)の動作を制御する。制御部(C)は、空調室外機(10)、調湿ユニット(20)、および空調室内機(30)の動作を制御する。制御部(C)は、室外制御部(OC)と、室内制御部(IC)と、リモートコントローラ(40)とを含む。室外制御部(OC)は空調室外機(10)に設けられる。室内制御部(IC)は空調室内機(30)に設けられる。室内制御部(IC)および室外制御部(OC)のそれぞれは、MCU(Micro Control Unit,マイクロコントローラユニット)、電気回路、電子回路を含む。MCUは、CPU(Central Processing Unit,中央演算処理装置)、メモリ、通信インターフェースを含む。メモリには、CPUが実行するための各種のプログラムが記憶されている。
図2および図4に示すように、空気調和装置(1)は、制御部(C)を有する。制御部(C)は、冷媒回路(R)の動作を制御する。制御部(C)は、空調室外機(10)、調湿ユニット(20)、および空調室内機(30)の動作を制御する。制御部(C)は、室外制御部(OC)と、室内制御部(IC)と、リモートコントローラ(40)とを含む。室外制御部(OC)は空調室外機(10)に設けられる。室内制御部(IC)は空調室内機(30)に設けられる。室内制御部(IC)および室外制御部(OC)のそれぞれは、MCU(Micro Control Unit,マイクロコントローラユニット)、電気回路、電子回路を含む。MCUは、CPU(Central Processing Unit,中央演算処理装置)、メモリ、通信インターフェースを含む。メモリには、CPUが実行するための各種のプログラムが記憶されている。
室外制御部(OC)には、外気温度センサ(51)の検出値、外気湿度センサ(52)の検出値、および湿度センサ(55)の検出値が入力される。
室外制御部(OC)は、圧縮機(12)、室外ファン(13)、膨張弁(15)および四方切換弁(16)に接続される。室外制御部(OC)は、空調室外機(10)の運転の実行および停止を行うための制御信号を、圧縮機(12)、室外ファン(13)、膨張弁(15)、および四方切換弁(16)に出力する。室外制御部(OC)は、圧縮機(12)の第1モータ(M1)の運転周波数、室外ファン(13)の第2モータ(M2)の回転数、四方切換弁(16)の状態および膨張弁(15)の開度を制御する。
室外制御部(OC)はさらに、調湿ロータ(22)、第1ファン(26)、第2ファン(23)、ヒータ(25)、および第1切換ダンパ(24)に接続される。室外制御部(OC)は、調湿ユニット(20)の運転の実行および停止を行うための制御信号を、調湿ロータ(22)、第1ファン(26)、第2ファン(23)、ヒータ(25)、および第1切換ダンパ(24)に出力する。室外制御部(OC)は、調湿ロータ(22)の第3モータ(M3)、第1ファン(26)の第4モータ(M4)、第2ファン(23)の第6モータ(M6)の回転数と、調湿ロータ(22)および第1切換ダンパ(24)の動作と、ヒータ(25)の出力とを制御する。
室内制御部(IC)には、内気温度センサ(53)の検出値、および内気湿度センサ(54)の検出値が入力される。
室内制御部(IC)は、リモートコントローラ(40)と通信可能に接続される。室内制御部(IC)は、室内ファン(32)に接続される。室内制御部(IC)は、空調室内機(30)の運転の実行および停止を行うための制御信号を、室内ファン(32)に出力する。室内制御部(IC)は、室内ファン(32)の第5モータ(M5)の回転数を制御する。室内制御部(IC)は、室外制御部(OC)と通信可能に接続される。
リモートコントローラ(40)は、室内制御部(IC)と通信可能に接続される。リモートコントローラ(40)は、入力部(42)でのユーザの操作に応じて、空気調和装置(1)の運転を指示する指示信号を室内制御部(IC)に送信する。室内制御部(IC)は、リモートコントローラ(40)からの指示信号を受信すると、その指示信号を室外制御部(OC)に送信する。室内制御部(IC)は、その指示信号に従い、空調室内機(30)の上述した各機器の動作を制御する。室外制御部(OC)が、室内制御部(IC)からの指示信号を受信すると、空調室外機(10)および調湿ユニット(20)の上述した各機器の動作を制御する。
(3)運転動作
空気調和装置(1)が実行する運転モードは、冷房運転、暖房運転、給気運転、排気運転、除湿運転、加湿運転、除湿冷房運転、および加湿暖房運転を含む。制御部(C)は、リモートコントローラ(40)からの指示信号に基づいて、これらの運転を実行させる。
空気調和装置(1)が実行する運転モードは、冷房運転、暖房運転、給気運転、排気運転、除湿運転、加湿運転、除湿冷房運転、および加湿暖房運転を含む。制御部(C)は、リモートコントローラ(40)からの指示信号に基づいて、これらの運転を実行させる。
(3-1)冷房運転
冷房運転は、蒸発器として機能する室内熱交換器(34)により室内の空気を冷却する運転である。調湿ユニット(20)は停止する。冷房運転では、制御部(C)が、圧縮機(12)、室外ファン(13)、および室内ファン(32)を運転させる。制御部(C)は、四方切換弁(16)を第1状態に設定する。制御部(C)は、膨張弁(15)の開度を適宜調節する。冷房運転では、圧縮した冷媒が室外熱交換器(14)で放熱し、室内熱交換器(34)で蒸発する第1冷凍サイクルが行われる。
冷房運転は、蒸発器として機能する室内熱交換器(34)により室内の空気を冷却する運転である。調湿ユニット(20)は停止する。冷房運転では、制御部(C)が、圧縮機(12)、室外ファン(13)、および室内ファン(32)を運転させる。制御部(C)は、四方切換弁(16)を第1状態に設定する。制御部(C)は、膨張弁(15)の開度を適宜調節する。冷房運転では、圧縮した冷媒が室外熱交換器(14)で放熱し、室内熱交換器(34)で蒸発する第1冷凍サイクルが行われる。
冷房運転では、内気温度センサ(53)で検出する室内温度が設定温度に収束するように、制御部(C)が室内熱交換器(34)の目標蒸発温度を調節する。制御部(C)は、室内熱交換器(34)の冷媒の蒸発温度が目標蒸発温度に収束するように、圧縮機(12)の回転数を制御する。冷房運転では、室内ファン(32)により搬送された空気が室内熱交換器(34)を通過する際に冷却される。室内熱交換器(34)によって冷却された空気は、空調室内機(30)の室内吹出口(31b)から室内(I)へ供給される。
(3-2)暖房運転
暖房運転は、放熱器として機能する室内熱交換器(34)により室内の空気を加熱する運転である。調湿ユニット(20)は停止する。暖房運転では、制御部(C)が、圧縮機(12)、室外ファン(13)、および室内ファン(32)を運転させる。制御部(C)は、四方切換弁(16)を第2状態に設定する。制御部(C)は、膨張弁(15)の開度を適宜調節する。暖房運転では、圧縮機(12)で圧縮した冷媒が室内熱交換器(34)で放熱し、室外熱交換器(14)で蒸発する第2冷凍サイクルが行われる。
暖房運転は、放熱器として機能する室内熱交換器(34)により室内の空気を加熱する運転である。調湿ユニット(20)は停止する。暖房運転では、制御部(C)が、圧縮機(12)、室外ファン(13)、および室内ファン(32)を運転させる。制御部(C)は、四方切換弁(16)を第2状態に設定する。制御部(C)は、膨張弁(15)の開度を適宜調節する。暖房運転では、圧縮機(12)で圧縮した冷媒が室内熱交換器(34)で放熱し、室外熱交換器(14)で蒸発する第2冷凍サイクルが行われる。
暖房運転では、内気温度センサ(53)によって検出される室内温度が設定温度に収束するように、制御部(C)が室内熱交換器(34)の目標凝縮温度を調節する。制御部(C)は、室内熱交換器(34)の冷媒の凝縮温度が目標凝縮温度に収束するように、圧縮機(12)の回転数を制御する。暖房運転では、室内ファン(32)により搬送された空気が室内熱交換器(34)を通過する際に加熱される。室内熱交換器(34)で加熱された空気は、空調室内機(30)の室内吹出口(31b)から室内(I)へ供給される。
(3-3)給気運転
給気運転は、室外空気を室内に供給する運転である。給気運転では、図2の実線の矢印で示すように、室外空気がホース(2)を通じて空調室内機(30)へ送られる。給気運転では、制御部(C)がヒータ(25)、調湿ロータ(22)、および第2ファン(23)を停止させ、第1ファン(26)を運転させる。制御部(C)は、第1切換ダンパ(24)を第3状態(図2の実線で示す状態)に設定し、第2切換ダンパ(29)を第5状態に設定する(図5参照)。給気運転において、第1ファン(26)によって搬送される室外空気は、ホース(2)を通じて空調室内機(30)に送られ、空調室内機(30)の室内吹出口(31b)から室内(I)へ供給される。なお、冷房運転または暖房運転と同時に給気運転を行ってもよい。
給気運転は、室外空気を室内に供給する運転である。給気運転では、図2の実線の矢印で示すように、室外空気がホース(2)を通じて空調室内機(30)へ送られる。給気運転では、制御部(C)がヒータ(25)、調湿ロータ(22)、および第2ファン(23)を停止させ、第1ファン(26)を運転させる。制御部(C)は、第1切換ダンパ(24)を第3状態(図2の実線で示す状態)に設定し、第2切換ダンパ(29)を第5状態に設定する(図5参照)。給気運転において、第1ファン(26)によって搬送される室外空気は、ホース(2)を通じて空調室内機(30)に送られ、空調室内機(30)の室内吹出口(31b)から室内(I)へ供給される。なお、冷房運転または暖房運転と同時に給気運転を行ってもよい。
(3-4)排気運転
排気運転は、室内空気を室外に排出する運転である。排気運転では、図2の破線の矢印で示すように、室内空気がホース(2)を通じて調湿ユニット(20)へ送られる。排気運転では、制御部(C)がヒータ(25)、調湿ロータ(22)、および第2ファン(23)を停止させ、第1ファン(26)を運転させる。制御部(C)は、第1切換ダンパ(24)を第3状態(図2の実線で示す状態)に設定し、第2切換ダンパ(29)を第6状態に設定する(図6参照)。排気運転において、第1ファン(26)によって搬送される室内空気は、ホース(2)を通じて調湿ユニット(20)に送られ、調湿ユニット(20)の吸排気口(21a)から室外へ排出される。なお、冷房運転または暖房運転と同時に排気運転を行ってもよい。
排気運転は、室内空気を室外に排出する運転である。排気運転では、図2の破線の矢印で示すように、室内空気がホース(2)を通じて調湿ユニット(20)へ送られる。排気運転では、制御部(C)がヒータ(25)、調湿ロータ(22)、および第2ファン(23)を停止させ、第1ファン(26)を運転させる。制御部(C)は、第1切換ダンパ(24)を第3状態(図2の実線で示す状態)に設定し、第2切換ダンパ(29)を第6状態に設定する(図6参照)。排気運転において、第1ファン(26)によって搬送される室内空気は、ホース(2)を通じて調湿ユニット(20)に送られ、調湿ユニット(20)の吸排気口(21a)から室外へ排出される。なお、冷房運転または暖房運転と同時に排気運転を行ってもよい。
(3-5)除湿運転
除湿運転では、調湿ユニット(20)により除湿した空気を室内に供給する運転である。除湿運転では、調湿ユニット(20)により除湿された空気が間欠的に室内に供給される。調湿ユニット(20)は、第1動作と第2動作とを交互に行う。第1動作は、空気中の水分を調湿ロータ(22)に吸着させるとともに、調湿ロータ(22)で除湿した空気を室内へ供給する動作である。第2動作は、調湿ロータ(22)を再生するとともに、再生に利用された空気を室外へ排出する動作である。
除湿運転では、調湿ユニット(20)により除湿した空気を室内に供給する運転である。除湿運転では、調湿ユニット(20)により除湿された空気が間欠的に室内に供給される。調湿ユニット(20)は、第1動作と第2動作とを交互に行う。第1動作は、空気中の水分を調湿ロータ(22)に吸着させるとともに、調湿ロータ(22)で除湿した空気を室内へ供給する動作である。第2動作は、調湿ロータ(22)を再生するとともに、再生に利用された空気を室外へ排出する動作である。
具体的には、第1動作では、制御部(C)が、第1ファン(26)を運転させ、第2ファン(23)を停止させ、ヒータ(25)を停止させ、第1切換ダンパ(24)を第3状態(図2の実線で示す状態)とし、第2切換ダンパ(29)を第5状態(図5参照)とする。第1ファン(26)によって搬送される空気は、第1通路(27)を流れ、調湿ロータ(22)の調湿領域(22A)を通過する。調湿領域(22A)では、空気中の水分が吸着剤に吸着される。調湿領域(22A)で除湿された空気はホース(2)を通じて空調室内機(30)へ送られ、空調室内機(30)の室内吹出口(31b)から室内(I)へ供給される。
第2動作(調湿ロータ(22)の再生処理)は、制御部(C)が、第1ファン(26)およびヒータ(25)を運転させ、第2ファン(23)を停止させ、第1切換ダンパ(24)を第4状態(図2の破線で示す状態)とし、第2切換ダンパ(29)を第5状態(図5参照)とする。第1ファン(26)によって搬送される空気は、第1通路(27)を流れ、ヒータ(25)によって加熱された後、調湿ロータ(22)の調湿領域(22A)を流れる。調湿領域(22A)では、吸着剤が再生される。具体的には、吸着剤に吸着された水分が脱離し、空気中に放出される。調湿ロータ(22)の再生に利用された空気は、図2の黒塗りの矢印で示すように、第1通路(27)から排気通路(28)を流れ、室外に排出される。
(3-6)加湿運転
加湿運転では、調湿ユニット(20)により加湿した空気を室内に供給する運転である。加湿運転は、連続加湿モードと、間欠加湿モードとを含む。制御部(C)は、調湿ユニット(20)に連続加湿モードと間欠加湿モードを選択的に実行させるように構成される。
加湿運転では、調湿ユニット(20)により加湿した空気を室内に供給する運転である。加湿運転は、連続加湿モードと、間欠加湿モードとを含む。制御部(C)は、調湿ユニット(20)に連続加湿モードと間欠加湿モードを選択的に実行させるように構成される。
調湿ユニット(20)は、加湿開始条件が成立すると加湿運転を開始し、加湿終了条件が成立すると加湿運転を終了する。本実施形態の調湿ユニット(20)において、加湿開始条件は“制御部(C)に加湿開始指令信号が入力された”という条件であり、加湿終了条件は“制御部(C)に加湿終了指令信号が入力された”という条件である。加湿開始指令信号と加湿終了指令信号のそれぞれは、ユーザーがリモートコントローラ(40)を操作することによって、リモートコントローラ(40)から制御部(C)へ送信される。
なお、制御部(C)は、調湿ユニット(20)の加湿運転の開始と終了を、自動的に判断するように構成されていてもよい。この場合は、制御部(C)に設けられた判断部が、内気湿度センサ(54)の計測値等に基づいて、加湿開始指令信号と加湿終了指令信号とを生成する。
(3-6-1)連続加湿モード
連続加湿モードは、調湿ユニット(20)が加湿した空気(第1空気)を、連続的に室内へ供給する運転モードである。連続加湿モードにおいて、制御部(C)は、第1ファン(26)および第2ファン(23)を作動させ、調湿ロータ(22)を回転させ、ヒータ(25)をON状態(通電状態)とする。また、制御部(C)は、第1切換ダンパ(24)を第3状態とし、第2切換ダンパ(29)を第5状態とする。
連続加湿モードは、調湿ユニット(20)が加湿した空気(第1空気)を、連続的に室内へ供給する運転モードである。連続加湿モードにおいて、制御部(C)は、第1ファン(26)および第2ファン(23)を作動させ、調湿ロータ(22)を回転させ、ヒータ(25)をON状態(通電状態)とする。また、制御部(C)は、第1切換ダンパ(24)を第3状態とし、第2切換ダンパ(29)を第5状態とする。
連続加湿モードでは、第2空気である室外空気が第2通路(62)を流れる。第2通路(62)を流れる第2空気は、調湿ロータ(22)の吸着領域(22C)を流れる。吸着領域(22C)では、第2空気中の水分が吸着剤に吸着される。調湿ロータ(22)に水分を付与した第2空気は、第2通路(62)から室外に排出される。
また、連続加湿モードでは、第1空気である室外空気が第1通路(27)を流れる。第1通路(27)を流れる第1空気は、ヒータ(25)によって加熱された後、調湿ロータ(22)の調湿領域(22A)を流れる。調湿領域(22A)では、ヒータ(25)から送られた第1空気によって吸着剤が加熱され、吸着剤から水分が脱離する。調湿領域(22A)では、吸着剤から脱離した水分が第1空気へ放出される。調湿ロータ(22)で加湿された第1空気は、ホース(2)を通じて空調室内機(30)へ送られ、空調室内機(30)の室内吹出口(31b)から室内(I)へ供給される。
(3-6-2)間欠加湿モード
間欠加湿モードは、調湿ユニット(20)が加湿した空気(第1空気)を、間欠的に室内へ供給する運転モードである。
間欠加湿モードは、調湿ユニット(20)が加湿した空気(第1空気)を、間欠的に室内へ供給する運転モードである。
図7に示すように、間欠加湿モードでは、調湿ユニット(20)が、単位動作を繰り返し実行する。単位動作は、第3動作と第4動作とを順に実行する動作である。単位動作では、第3動作の終了後に第4動作が行われる。従って、間欠加湿モードにおいて、調湿ユニット(20)は、第3動作と第4動作を交互に繰り返し実行する。
〈第3動作〉
第3動作は、空気中の水分を調湿ロータ(22)に吸着させるとともに、調湿ロータ(22)を通過した空気を室外へ排出する動作である。第3動作は、水分捕集動作である。
第3動作は、空気中の水分を調湿ロータ(22)に吸着させるとともに、調湿ロータ(22)を通過した空気を室外へ排出する動作である。第3動作は、水分捕集動作である。
第3動作では、制御部(C)が、第2ファン(23)を作動させ、調湿ロータ(22)を回転させ、第1ファン(26)を停止状態とし、ヒータ(25)をOFF状態(非通電状態)にする。また、制御部(C)は、第2切換ダンパ(29)を第5状態とする。第1切換ダンパ(24)は、第3状態と第4状態のどちらであってもよい。
第2ファン(23)が作動すると、室外空気である第2空気が、吸湿側吸込口(61a)から第2通路(62)へ流入し、第2通路(62)を流れ、調湿ロータ(22)の吸着領域(22C)を通過する。吸着領域(22C)では、第2空気中の水分が調湿ロータ(22)の吸着剤に吸着される。吸着領域(22C)を通過した第2空気は、吸湿側排気口(61b)から室外に排出される。
〈第4動作〉
第4動作は、調湿ロータ(22)を再生するとともに、調湿ロータ(22)から水分が付与された空気を室内へ供給する動作である。第4動作は、水分放出動作である。
第4動作は、調湿ロータ(22)を再生するとともに、調湿ロータ(22)から水分が付与された空気を室内へ供給する動作である。第4動作は、水分放出動作である。
第4動作では、制御部(C)が、第1ファン(26)及び第2ファン(23)を作動させ、調湿ロータ(22)を回転させ、ヒータ(25)をON状態(通電状態)にする。また、制御部(C)は、第1切換ダンパ(24)を第3状態とし、第2切換ダンパ(29)を第5状態とする。
第1ファン(26)が作動すると、室外空気である第1空気が、吸排気口(21a)から第1通路(27)へ流入し、第1通路(27)を流れ、ヒータ(25)によって加熱された後に調湿ロータ(22)の調湿領域(22A)を通過する。調湿領域(22A)では、ヒータ(25)から送られた第1空気によって吸着剤が加熱され、吸着剤から水分が脱離する。調湿領域(22A)では、吸着剤から第1空気へ水分が放出される。調湿ロータ(22)によって加湿された第1空気は、ホース(2)を通じて空調室内機(30)へ送られ、空調室内機(30)の室内吹出口(31b)から室内(I)へ供給される。
第3動作中と同様に、第2ファン(23)が作動すると、室外空気である第2空気が、第2通路(62)を流れ、調湿ロータ(22)の吸着領域(22C)を通過する。吸着領域(22C)に水分を奪われた第2空気は、吸湿側排気口(61b)から室外に排出される。
〈第3動作の開始と終了〉
調湿ユニット(20)の間欠加湿モードにおいて、制御部(C)は、間欠加湿モードの開始指令が入力されたとき、又は直前の第4動作が終了したときに、調湿ユニット(20)に第3動作を開始させる。
調湿ユニット(20)の間欠加湿モードにおいて、制御部(C)は、間欠加湿モードの開始指令が入力されたとき、又は直前の第4動作が終了したときに、調湿ユニット(20)に第3動作を開始させる。
また、制御部(C)は、調湿ユニット(20)が第3動作を実行している状態で第1終了条件が成立すると、調湿ユニット(20)に第3動作を終了させる。
第1終了条件は、“第3動作の継続時間が、所定の第1基準時間(例えば、15分)に達する”という条件である。第3動作の継続時間が第1基準時間に達すると、調湿ロータ(22)の吸着剤が概ね飽和状態に達しており、第3動作を継続しても調湿ロータ(22)が吸着する水分の量は増えないと判断できる。そこで、この第1終了条件が成立すると、制御部(C)は、調湿ユニット(20)に第3動作を終了させる。
〈第4動作の開始と終了〉
調湿ユニット(20)の間欠加湿モードにおいて、制御部(C)は、直前の第3動作が終了したときに、調湿ユニット(20)に第4動作を開始させる。
調湿ユニット(20)の間欠加湿モードにおいて、制御部(C)は、直前の第3動作が終了したときに、調湿ユニット(20)に第4動作を開始させる。
また、制御部(C)は、調湿ユニット(20)が第4動作を実行している状態で第2終了条件が成立すると、調湿ユニット(20)に第4動作を終了させる。
第2終了条件は、“第4動作の継続時間が、所定の第2基準時間(例えば、10分)に達する”という条件である。第4動作の継続時間が第2基準時間に達すると、調湿ロータ(22)の吸着剤が保持する水分の量が少なくなっていて、第4動作を継続しても第1空気に対する加湿量が充分に得られないと判断できる。そこで、この第2終了条件が成立すると、制御部(C)は、調湿ユニット(20)に第4動作を終了させる。
なお、第2終了条件は、“調湿ロータ(22)において加湿された第1空気の湿度(具体的には、湿度センサ(55)の計測値)が所定の基準湿度よりも低い”という条件であってもよい。調湿ロータ(22)を通過した第1空気の湿度が基準湿度よりも低い場合は、調湿ロータ(22)に残存する水分の量が少なくなっており、第4動作を継続しても第1空気に対する加湿量が充分に得られないと判断できる。そこで、この第2終了条件が成立すると、制御部(C)は、調湿ユニット(20)に第4動作を終了させる。
〈ユーザーに対する報知〉
ここで、調湿ユニット(20)が間欠加湿モードを実行している状態において、調湿ユニット(20)が第3動作(水分捕集動作)を行っていることは、ユーザーに報知しないのが望ましい。調湿ユニット(20)が第3動作(水分捕集動作)を実行していて、室内に対する“加湿した第1空気”の供給が停止していることをユーザーに知らせると、加湿量が少なくなっているとユーザーが誤認するおそれがあるからである。
ここで、調湿ユニット(20)が間欠加湿モードを実行している状態において、調湿ユニット(20)が第3動作(水分捕集動作)を行っていることは、ユーザーに報知しないのが望ましい。調湿ユニット(20)が第3動作(水分捕集動作)を実行していて、室内に対する“加湿した第1空気”の供給が停止していることをユーザーに知らせると、加湿量が少なくなっているとユーザーが誤認するおそれがあるからである。
従って、調湿ユニット(20)が間欠加湿モードを実行している状態であっても、間欠加湿モードを実行中であることを、リモートコントローラ(40)の表示部(41)に表示しないのが望ましい。例えば、制御部(C)に加湿開始指令信号が入力されてから加湿終了指令信号が入力されるまでの間は、リモートコントローラ(40)の表示部(41)には、調湿ユニット(20)が連続加湿モードと間欠加湿モードのどちらを実行中であるかを表示せず、単に調湿ユニット(20)が加湿運転を実行中であることを表示するのが望ましい。
(3-7)除湿冷房運転
除湿冷房運転は、上述した冷房運転と除湿運転とが同時に行われる。具体的には、調湿ユニット(20)によって空気が除湿されるとともに、蒸発器として機能する室内熱交換器(34)によって空気が冷却される。
除湿冷房運転は、上述した冷房運転と除湿運転とが同時に行われる。具体的には、調湿ユニット(20)によって空気が除湿されるとともに、蒸発器として機能する室内熱交換器(34)によって空気が冷却される。
(3-8)加湿暖房運転
加湿暖房運転は、上述した暖房運転と加湿運転とが同時に行われる。具体的には、調湿ユニット(20)によって空気が加湿されるとともに、放熱器として機能する室内熱交換器(34)によって空気が加熱される。
加湿暖房運転は、上述した暖房運転と加湿運転とが同時に行われる。具体的には、調湿ユニット(20)によって空気が加湿されるとともに、放熱器として機能する室内熱交換器(34)によって空気が加熱される。
(4)実施形態の特徴
本実施形態の空気調和装置(1)では、調湿ユニット(20)が間欠加湿モードを有する。間欠加湿モードにおいて、調湿ユニット(20)は、単位動作を繰り返し行う。単位動作において、調湿ロータ(22)は、第3動作(水分捕集動作)において第2空気から奪った水分を、第4動作(水分放出動作)において第1空気に付与する。第3動作(水分捕集動作)では、ヒータ(25)による第1空気の加熱が停止するため、調湿ロータ(22)の温度が低く抑えられる。調湿ロータ(22)の温度が低く抑えられると、調湿ロータ(22)を通過する第2空気の温度の上昇が抑えられ、その結果、調湿ロータ(22)を通過する第2空気の相対湿度の低下が抑えられる。
本実施形態の空気調和装置(1)では、調湿ユニット(20)が間欠加湿モードを有する。間欠加湿モードにおいて、調湿ユニット(20)は、単位動作を繰り返し行う。単位動作において、調湿ロータ(22)は、第3動作(水分捕集動作)において第2空気から奪った水分を、第4動作(水分放出動作)において第1空気に付与する。第3動作(水分捕集動作)では、ヒータ(25)による第1空気の加熱が停止するため、調湿ロータ(22)の温度が低く抑えられる。調湿ロータ(22)の温度が低く抑えられると、調湿ロータ(22)を通過する第2空気の温度の上昇が抑えられ、その結果、調湿ロータ(22)を通過する第2空気の相対湿度の低下が抑えられる。
調湿ロータ(22)を通過する第2空気の相対湿度が高いほど、調湿ロータ(22)の吸着剤が第2空気から吸着する水分の量が多くなる。そのため、本実施形態によれば、ヒータ(25)によって加熱した第1空気を調湿ロータ(22)へ送りつつ第2空気を調湿ロータ(22)へ送る場合に比べて、調湿ロータ(22)が第2空気から吸着する水分の量が増加する。その結果、第4動作(水分放出動作)において調湿ロータ(22)が第1空気に付与する水分の量が増加し、調湿ユニット(20)の加湿能力が向上する。
ここで、ヒータ(25)によって加熱した第1空気を調湿ロータ(22)へ送りつつ第2空気を調湿ロータ(22)へ送る動作だけを調湿ユニット(20)が行う場合は、調湿ロータ(22)の温度が高くなって調湿ロータ(22)が第2空気から吸着する水分の量が少なくなり、調湿ユニット(20)の加湿能力が低い状態になっていても、ヒータ(25)への通電が継続される。そのため、低い加湿能力しか得られないにも拘わらず、ヒータ(25)が電力を消費し続けることになる。
一方、本実施形態の調湿ユニット(20)が行う間欠加湿モードでは、第3動作(水分捕集動作)の実行中にヒータ(25)がOFF状態(非通電状態)になる。つまり、本実施形態の調湿ユニット(20)が行う間欠加湿モードでは、第4動作(水分放出動作)において第1空気への加湿量が充分に得られない状態になると、調湿ユニットの実行する動作が第4動作から第3動作に切り換わってヒータ(25)がOFF状態(非通電状態)になる。そのため、本実施形態によれば、調湿ロータ(22)が第2空気から吸着する水分の量を増加させつつ、ヒータ(25)の消費電力を低減できる。従って、本実施形態によれば、調湿ユニット(20)の加湿能力を維持しつつ、調湿ユニット(20)の消費電力を削減できる。
(5)実施形態の変形例
本実施形態の空気調和装置(1)の変形例について説明する。
本実施形態の空気調和装置(1)の変形例について説明する。
(5-1)第1変形例
本実施形態の調湿ユニット(20)において、制御部(C)は、間欠加湿モードの第4動作において、第2ファン(23)を停止させてもよい。
本実施形態の調湿ユニット(20)において、制御部(C)は、間欠加湿モードの第4動作において、第2ファン(23)を停止させてもよい。
図8に示すように、制御部(C)は、第4動作の継続時間の一部において、第2ファン(23)を停止させてもよい。図8に示す例において、制御部(C)は、第4動作の開始時点から所定時間(例えば、5分間)にわたって第2ファン(23)を停止させ、第4動作の開始時点から所定時間が経過すると第2ファン(23)を作動させる。
図9に示すように、制御部(C)は、第4動作の継続時間の全部において、第2ファン(23)を停止させてもよい。この場合、制御部(C)は、第4動作の開始時点で第2ファン(23)を停止させ、第4動作が終了して第3動作が開始する時点で第2ファン(23)を作動させる。
本変形例の第4動作では、第2通路(62)における第2空気の流れが停止した状態で、ヒータ(25)によって加熱された第1空気が調湿ロータ(22)へ送られ続ける。そのため、この状態では、第1空気と第2空気の両方が調湿ロータ(22)へ送られる状態に比べて、調湿ロータ(22)の全体の温度が高く保たれる。その結果、本変形例によれば、ヒータ(25)の加熱量を低く抑えることができる。
(5-2)第2変形例
本実施形態の調湿ユニット(20)において、制御部(C)は、間欠加湿モードの第3動作において、第1ファン(26)と第2ファン(23)の両方を作動させてもよい。
本実施形態の調湿ユニット(20)において、制御部(C)は、間欠加湿モードの第3動作において、第1ファン(26)と第2ファン(23)の両方を作動させてもよい。
本変形例の第3動作では、制御部(C)が、第1ファン(26)及び第2ファン(23)を作動させ、調湿ロータ(22)を回転させ、ヒータ(25)をOFF状態(非通電状態)にする。また、制御部(C)は、第1切換ダンパ(24)を第4状態とし、第2切換ダンパ(29)を第5状態とする。
本変形例の第3動作では、調湿ロータ(22)の調湿領域(22A)を第1空気である室外空気が通過し、調湿ロータ(22)の吸着領域(22C)を第2空気である室外空気が通過する。そして、調湿ロータ(22)の調湿領域(22A)と吸着領域(22C)の両方において、室外空気に含まれる水分が調湿ロータ(22)の吸着剤に吸着される。調湿ロータ(22)の調湿領域(22A)を通過した第1空気は、第1通路(27)から排気通路(28)を流れ、室外に排出される。調湿ロータの吸着領域(22C)を通過した第2空気は、第2通路(62)を流れ、吸湿側排気口(61b)から室外に排出される。
本変形例の第3動作では、調湿ロータ(22)の調湿領域(22A)と吸着領域(22C)の両方において、室外空気に含まれる水分が調湿ロータ(22)の吸着剤に吸着される。そのため、第3動作に要する時間を短縮でき、一定の時間内に実行できる単位動作の回数を増やすことができるため、調湿ユニット(20)の加湿能力を高めることができる。
(5-3)第3変形例
本実施形態の調湿ユニット(20)は、間欠加湿モードにおいて、二つの単位動作の間に、単位動作以外の動作を行ってもよい。この単位動作以外の動作の一例として、調湿ユニット(20)を一時的に(例えば30秒程度の比較的短い時間に亘って)停止させる動作が挙げられる。
本実施形態の調湿ユニット(20)は、間欠加湿モードにおいて、二つの単位動作の間に、単位動作以外の動作を行ってもよい。この単位動作以外の動作の一例として、調湿ユニット(20)を一時的に(例えば30秒程度の比較的短い時間に亘って)停止させる動作が挙げられる。
また、本実施形態の調湿ユニット(20)は、間欠加湿モードの各単位動作において、第3動作と第4動作の間に、第3動作および第4動作以外の動作を行ってもよい。この第3動作および第4動作以外の動作の一例として、調湿ユニット(20)を一時的に(例えば30秒程度の比較的短い時間に亘って)停止させる動作が挙げられる。
(5-4)第4変形例
本実施形態の空気調和装置(1)において、制御部(C)は、調湿ユニット(20)の加湿運転において、連続加湿モードと間欠加湿モードを自動的に切り換えるように構成されていてもよい。
本実施形態の空気調和装置(1)において、制御部(C)は、調湿ユニット(20)の加湿運転において、連続加湿モードと間欠加湿モードを自動的に切り換えるように構成されていてもよい。
本変形例の制御部(C)は、例えば、外気湿度センサ(52)の計測値(室外空気の湿度の測定値)に基づいて、連続加湿モードと間欠加湿モードの一方を選択するように構成されていてもよい。この場合、制御部(C)は、外気湿度センサ(52)の計測値が所定の基準湿度よりも高いとき(又は基準湿度以上のとき)に調湿ユニット(20)に連続加湿モードを実行させ、外気湿度センサ(52)の計測値が所定の基準湿度以下のとき(又は、基準湿度よりも低いとき)に調湿ユニット(20)に間欠加湿モードを実行させる。
以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態、変形例、その他の実施形態の要素を適宜組み合わせたり、置換したりしてもよい。
以上に述べた「第1」、「第2」、「第3」…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。
以上に説明したように、本開示は、加湿装置および空気調和装置について有用である。
1 空気調和装置
3 液連絡官(冷媒配管)
4 ガス連絡管(冷媒配管)
10 空調室外機(室外機)
20 調湿ユニット(加湿装置)
22 調湿ロータ(ロータ部材)
25 ヒータ(加熱器)
27 第1通路
30 空調室内機(室内機)
62 第2通路
3 液連絡官(冷媒配管)
4 ガス連絡管(冷媒配管)
10 空調室外機(室外機)
20 調湿ユニット(加湿装置)
22 調湿ロータ(ロータ部材)
25 ヒータ(加熱器)
27 第1通路
30 空調室内機(室内機)
62 第2通路
Claims (6)
- 第1空気が流れる第1通路(27)と、
第2空気が流れる第2通路(62)と、
空気中の水分を吸着する吸着剤を有し、上記第1通路(27)と上記第2通路(62)のそれぞれを横断するように設けられて回転するロータ部材(22)と、
上記ロータ部材(22)へ送られる上記第1空気を加熱する加熱器(25)とを備え、
上記ロータ部材(22)によって加湿された上記第1空気を室内へ供給することによって室内を加湿する加湿装置(20)であって、
水分捕集動作を実行後に水分放出動作を実行する単位動作を繰り返し行う間欠加湿モードを有し、
上記水分捕集動作は、上記加熱器(25)による上記第1空気の加熱を停止し且つ室内への上記第1空気の供給を停止した状態で、上記第2空気を上記ロータ部材(22)へ供給して上記第2空気中の水分を上記ロータ部材(22)に吸着させる動作であり、
上記水分放出動作は、上記加熱器(25)によって加熱された上記第1空気を上記ロータ部材(22)へ送り、上記ロータ部材(22)によって加湿された上記第1空気を室内へ供給する動作である
加湿装置。 - 上記間欠加湿モードは、上記加湿装置(20)が上記水分捕集動作と上記水分放出動作を交互に繰り返し行う運転モードである
請求項1に記載の加湿装置。 - 上記加湿装置(20)は、上記水分捕集動作の実行中に第1終了条件が成立すると上記水分捕集動作を終了し、
上記第1終了条件は、上記水分捕集動作の継続時間が第1基準時間に達するという条件である
請求項1又は2に記載の加湿装置。 - 上記加湿装置(20)は、上記水分放出動作の実行中に第2終了条件が成立すると上記水分放出動作を終了し、
上記第2終了条件は、上記水分放出動作の継続時間が第2基準時間に達するという条件、又は上記ロータ部材(22)において加湿された上記第1空気の湿度が所定湿度よりも低いという条件である
請求項1乃至3のいずれか一つに記載の加湿装置。 - 上記加湿装置(20)は、上記水分放出動作を実行している時間の少なくとも一部において、上記第2通路(62)における上記第2空気の流れを停止させる
請求項1乃至4のいずれか一つに記載の加湿装置。 - 請求項1乃至5のいずれか一つに記載の加湿装置(20)と、
互いに冷媒配管(3,4)によって接続されて冷凍サイクルを行う室外機(10)及び室内機(30)とを備える
空気調和装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280073599.4A CN118235000A (zh) | 2021-11-09 | 2022-11-09 | 加湿装置及空调装置 |
JP2023559870A JPWO2023085327A1 (ja) | 2021-11-09 | 2022-11-09 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-182428 | 2021-11-09 | ||
JP2021182428 | 2021-11-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023085327A1 true WO2023085327A1 (ja) | 2023-05-19 |
Family
ID=86331658
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/040800 WO2023085166A1 (ja) | 2021-11-09 | 2022-10-31 | 空気調和装置 |
PCT/JP2022/041746 WO2023085327A1 (ja) | 2021-11-09 | 2022-11-09 | 加湿装置および空気調和装置 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/040800 WO2023085166A1 (ja) | 2021-11-09 | 2022-10-31 | 空気調和装置 |
Country Status (3)
Country | Link |
---|---|
JP (2) | JP2023070672A (ja) |
CN (1) | CN118235000A (ja) |
WO (2) | WO2023085166A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004353898A (ja) * | 2003-05-27 | 2004-12-16 | Mitsubishi Electric Corp | 空気調和機、空気調和機の運転方法 |
JP2006336950A (ja) * | 2005-06-02 | 2006-12-14 | Toto Ltd | 除湿機能付浴室乾燥機 |
JP2007101055A (ja) * | 2005-10-04 | 2007-04-19 | Daikin Ind Ltd | 加湿ユニット、および空気調和機の室外機 |
JP2016114344A (ja) * | 2014-12-18 | 2016-06-23 | ダイキン工業株式会社 | 空気調和機 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3668786B2 (ja) * | 2003-12-04 | 2005-07-06 | ダイキン工業株式会社 | 空気調和装置 |
JP5127280B2 (ja) * | 2007-04-06 | 2013-01-23 | 三菱電機株式会社 | 空気調和機 |
JP2010145024A (ja) * | 2008-12-19 | 2010-07-01 | Daikin Ind Ltd | 空調システム |
JP4942799B2 (ja) * | 2009-08-05 | 2012-05-30 | 三菱電機株式会社 | 除加湿装置及びそれを備えた空気調和機 |
JP5355501B2 (ja) * | 2010-06-04 | 2013-11-27 | エスペック株式会社 | 空調システム |
JP2018084351A (ja) * | 2016-11-22 | 2018-05-31 | ダイキン工業株式会社 | 室外ユニット |
-
2022
- 2022-10-31 WO PCT/JP2022/040800 patent/WO2023085166A1/ja unknown
- 2022-11-09 JP JP2022179340A patent/JP2023070672A/ja active Pending
- 2022-11-09 JP JP2023559870A patent/JPWO2023085327A1/ja active Pending
- 2022-11-09 WO PCT/JP2022/041746 patent/WO2023085327A1/ja active Application Filing
- 2022-11-09 CN CN202280073599.4A patent/CN118235000A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004353898A (ja) * | 2003-05-27 | 2004-12-16 | Mitsubishi Electric Corp | 空気調和機、空気調和機の運転方法 |
JP2006336950A (ja) * | 2005-06-02 | 2006-12-14 | Toto Ltd | 除湿機能付浴室乾燥機 |
JP2007101055A (ja) * | 2005-10-04 | 2007-04-19 | Daikin Ind Ltd | 加湿ユニット、および空気調和機の室外機 |
JP2016114344A (ja) * | 2014-12-18 | 2016-06-23 | ダイキン工業株式会社 | 空気調和機 |
Also Published As
Publication number | Publication date |
---|---|
JP2023070672A (ja) | 2023-05-19 |
WO2023085166A1 (ja) | 2023-05-19 |
CN118235000A (zh) | 2024-06-21 |
JPWO2023085327A1 (ja) | 2023-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7464868B2 (ja) | 空気質の調整システム | |
CN112823262B (zh) | 空调机 | |
JP5631415B2 (ja) | 空気調和システム及び調湿装置 | |
JP2010151337A (ja) | 空調システム | |
JP5127870B2 (ja) | 空気調和装置 | |
WO2023032738A1 (ja) | 空気調和装置 | |
JP2010133612A (ja) | 空調システム | |
WO2023085327A1 (ja) | 加湿装置および空気調和装置 | |
JP7208562B1 (ja) | 空気調和装置 | |
WO2023032731A1 (ja) | 空気調和システム | |
JP7233538B2 (ja) | 空気調和装置 | |
WO2024101430A1 (ja) | 空気処理装置 | |
WO2023032341A1 (ja) | 加湿装置 | |
JP7182026B1 (ja) | 加湿装置 | |
WO2023032397A1 (ja) | 空気調和装置 | |
JP2024068878A (ja) | 空気調和装置 | |
WO2023032380A1 (ja) | 換気装置 | |
JP5309849B2 (ja) | 調湿装置 | |
JP2024068764A (ja) | 空気調和装置 | |
JP2024068992A (ja) | 空調システム | |
JP2023070421A (ja) | 空気調和装置 | |
JP2023035192A (ja) | 空気調和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22892825 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023559870 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280073599.4 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |