WO2023032380A1 - 換気装置 - Google Patents

換気装置 Download PDF

Info

Publication number
WO2023032380A1
WO2023032380A1 PCT/JP2022/022507 JP2022022507W WO2023032380A1 WO 2023032380 A1 WO2023032380 A1 WO 2023032380A1 JP 2022022507 W JP2022022507 W JP 2022022507W WO 2023032380 A1 WO2023032380 A1 WO 2023032380A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
outdoor
indoor
exhaust
information indicating
Prior art date
Application number
PCT/JP2022/022507
Other languages
English (en)
French (fr)
Inventor
幸子 松本
康史 鵜飼
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202280057117.6A priority Critical patent/CN117836565A/zh
Publication of WO2023032380A1 publication Critical patent/WO2023032380A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/10Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with air supply, or exhaust, through perforated wall, floor or ceiling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This disclosure relates to a ventilation device.
  • Patent Document 1 discloses a ventilator.
  • the ventilator includes receiving means for receiving air pollution prediction related information, determination means for determining whether to introduce outside air based on the air pollution prediction related information, and outside air introduction (air supply operation) according to the determination result of the determination means. ) and a control means for controlling The ventilator ventilates indoor air by performing an air supply operation.
  • the determination means determines that the outdoor air is contaminated, the air supply operation is not performed, and the indoor air cannot be ventilated.
  • the purpose of this disclosure is to enable proper ventilation operation according to the outdoor environment.
  • the first aspect targets the ventilation system.
  • the ventilator includes a communication unit (55) that acquires environmental information about an outdoor environment, and control to perform any one of a plurality of ventilation operations based on the environmental information acquired by the communication unit (55).
  • Part (C) wherein the plurality of ventilation operations include an air supply operation for sending outdoor air into the room and an exhaust operation for sending indoor air to the outside.
  • appropriate ventilation operation can be performed according to the outdoor environment.
  • a second aspect is the first aspect, wherein the control unit (C) performs the exhaust operation when determining that the environment information includes a condition that reduces the user's comfort.
  • the ventilation operation can be performed while suppressing the deterioration of the user's indoor comfort.
  • a third aspect is, in the first or second aspect, a notification unit ( 41).
  • the user can recognize which ventilation operation is being performed, the air supply operation or the exhaust operation.
  • a fourth aspect is, in any one of the first to third aspects, an air supply path for sending outdoor air into the room during the air supply operation, and an exhaust path for sending indoor air to the outside during the exhaust operation. and the air supply route and the exhaust route have common routes (S1, S2, S3).
  • a switching damper (24) for switching from one of the air supply operation and the exhaust operation to the other operation is provided, and the control section (C) reduces the rotational speed of the ventilation fan (13) when the switching operation is performed by the switching damper (24).
  • the controller (C) reduces the rotational speed of the indoor fan (32) as the rotational speed of the ventilation fan (13) is reduced.
  • control section (C) does not change the rotational speed of the indoor fan (32) when the switching operation is performed by the switching damper (24).
  • the driving sound of the indoor fan (32) can be used to eliminate the driving sound of the switching damper (24).
  • the environmental information includes information indicating outdoor temperature, information indicating outdoor humidity, information indicating outdoor discomfort index, and outdoor dust. It includes at least one of quantity information and outdoor weather information.
  • control unit (C) controls information indicating outdoor temperature, information indicating outdoor humidity, information indicating outdoor discomfort index, information about outdoor dust amount, and outdoor weather information. Based on at least one of them, it can be determined which of the air supply operation and the exhaust operation is performed.
  • a ninth aspect is the eighth aspect, wherein the communication unit (55) acquires the weather information from the server (100).
  • control unit (C) of the ventilator can determine which of the air supply operation and the exhaust operation should be performed based on the weather information acquired from the server (100).
  • a tenth aspect is the ninth aspect, when the weather information acquired by the communication unit (55) includes information indicating rainfall or information indicating snowfall, the control unit (C) performs an exhaust operation.
  • the control unit (C) controls the hose after the ventilation operation. Perform inner drying operation.
  • the control unit (C) when the weather information acquired by the communication unit (55) includes information indicating rainfall or snowfall, the control unit (C) The exhaust operation is performed at one air volume, and when the weather information acquired by the communication unit (55) includes information indicating fine weather, the exhaust operation is performed at a second air volume smaller than the first air volume.
  • FIG. 1 is a schematic overall configuration diagram of an air conditioner according to an embodiment.
  • FIG. 2 is a configuration diagram showing refrigerant piping and air flow of an air conditioner.
  • FIG. 3 is a longitudinal sectional view of the air conditioning indoor unit.
  • FIG. 4 is a block diagram including the main elements of the air conditioner.
  • FIG. 5 is a diagram showing the flow of air during the air supply operation.
  • FIG. 6 is a diagram showing the flow of air during exhaust operation.
  • FIG. 7 is a flow chart showing a first example of the operation of the control section.
  • FIG. 8 is a flow chart showing a second example of the operation of the control section.
  • FIG. 9 is a flow chart showing a third example of the operation of the controller.
  • the air conditioner (1) is an example of a ventilator.
  • An air conditioner (1) regulates the temperature and humidity of the air in the target space.
  • the target space in this example is the indoor space (I).
  • the air conditioner (1) has an air conditioner outdoor unit (10) and an air conditioner indoor unit (30).
  • the air conditioning outdoor unit (10) is installed outdoors, and the air conditioning indoor unit (30) is installed indoors.
  • the air conditioner (1) is a pair type having one air conditioner indoor unit (30) and one air conditioner outdoor unit (10).
  • An air conditioner (1) has a humidification unit (20).
  • An air conditioner (1) has a function of humidifying air.
  • the air conditioner (1) further has a function of ventilating the indoor space (I).
  • the air conditioner (1) has a hose (2), a liquid connection pipe (3), and a gas connection pipe (4).
  • the air conditioning indoor unit (30) and the humidifying unit (20) are connected to each other via the hose (2).
  • the air conditioning indoor unit (30) and the air conditioning outdoor unit (10) are connected to each other via a liquid communication pipe (3) and a gas communication pipe (4).
  • a refrigerant circuit (R) is configured.
  • the refrigerant circuit (R) is filled with refrigerant.
  • the refrigerant is not limited to difluoromethane.
  • the refrigerant circuit (R) performs a vapor compression refrigeration cycle.
  • the refrigerant circuit (R) mainly has a compressor (12), an outdoor heat exchanger (14), an expansion valve (15), a four-way switching valve (16), and an indoor heat exchanger (34). .
  • the refrigerant circuit (R) performs the first refrigerating cycle and the second refrigerating cycle according to switching of the four-way switching valve (16).
  • the first refrigerating cycle is a refrigerating cycle in which the indoor heat exchanger (34) functions as an evaporator and the outdoor heat exchanger (14) functions as a radiator.
  • the second refrigerating cycle is a refrigerating cycle in which the outdoor heat exchanger (14) functions as a radiator and the indoor heat exchanger (34) functions as an evaporator.
  • the air conditioner outdoor unit (10) includes an outdoor casing (11), a compressor (12), and an outdoor fan (13). , an outdoor heat exchanger (14), an expansion valve (15), and a four-way switching valve (16).
  • the outdoor casing (11) houses a compressor (12), an outdoor fan (13), an outdoor heat exchanger (14), an expansion valve (15) and a four-way switching valve (16).
  • the outdoor casing (11) is formed with an outdoor inlet (11a) and an outdoor outlet (11b).
  • the outdoor suction port (11a) is formed on the rear side of the outdoor casing (11).
  • the outdoor air inlet (11a) is an opening for sucking outdoor air.
  • the outdoor outlet (11b) is formed on the front side of the outdoor casing (11).
  • the outdoor air outlet (11b) is an opening for blowing out air that has passed through the outdoor heat exchanger (14).
  • An outdoor air passage (11c) is formed inside the outdoor casing (11) from the outdoor suction port (11a) to the outdoor outlet (11b).
  • the compressor (12) sucks and compresses low-pressure gas refrigerant.
  • the compressor (12) is driven by a first motor (M1).
  • the compressor (12) is a variable displacement compressor in which power is supplied from an inverter circuit to the first motor (M1).
  • the compressor (12) is configured such that its operating capacity can be changed by adjusting the operating frequency (rotational speed) of the first motor (M1).
  • the outdoor fan (13) is arranged in the outdoor air passage (11c).
  • the outdoor fan (13) is rotated by driving the second motor (M2). Air carried by the outdoor fan (13) is sucked into the outdoor casing (11) through the outdoor suction port (11a). This air flows through the outdoor air passageway (11c) and is blown out of the outdoor casing (11) through the outdoor outlet (11b).
  • the outdoor fan (13) conveys outdoor air so as to pass through the outdoor heat exchanger (14).
  • the outdoor heat exchanger (14) is arranged upstream of the outdoor fan (13) in the outdoor air passage (11c).
  • the outdoor heat exchanger (14) of this example is a fin-and-tube heat exchanger.
  • the outdoor heat exchanger (14) is an example of a heat source heat exchanger.
  • the outdoor heat exchanger (14) exchanges heat between the refrigerant flowing therein and the outdoor air conveyed by the outdoor fan (13).
  • the expansion valve (15) is an example of a decompression mechanism.
  • the expansion valve (15) reduces the pressure of the refrigerant.
  • the expansion valve (15) is an electrically operated expansion valve whose degree of opening is adjustable.
  • the decompression mechanism may be a temperature-sensitive expansion valve, an expander, a capillary tube, or the like.
  • the expansion valve (15) may be connected to the liquid line of the refrigerant circuit (R), and may be provided in the air conditioning indoor unit (30).
  • the four-way switching valve (16) is an example of a channel switching mechanism.
  • the four-way switching valve (16) has a first port (P1), a second port (P2), a third port (P3) and a fourth port (P4).
  • the first port (P1) is connected to the discharge of the compressor (12).
  • the second port (P2) is connected to the intake of the compressor (12).
  • the third port (P3) is connected to the gas end of the outdoor heat exchanger (14).
  • the fourth port (P4) is connected to the gas communication pipe (4).
  • the four-way switching valve (16) is switched between a first state (shown by the solid line in Fig. 2) and a second state (state shown by the broken line in Fig. 2).
  • the four-way switching valve (16) in the first state allows communication between the first port (P1) and the third port (P3) and communication between the second port (P2) and the fourth port (P4).
  • the four-way switching valve (16) in the second state allows communication between the first port (P1) and the fourth port (P4) and communication between the second port (P2) and the third port (P3).
  • the humidification unit (20) is installed outdoors.
  • the humidification unit (20) of this example is integrated with the air conditioner outdoor unit (10).
  • the humidification unit (20) sends moisture in the outdoor air to the air conditioning indoor unit (30).
  • the humidification unit (20) includes a humidification casing (21), a humidification rotor (22), a second fan (23), a switching damper (24), a heater (25), and a first fan (26). have.
  • the humidifying casing (21) is integrally attached to the outdoor casing (11).
  • the humidification casing (21) houses a humidification rotor (22), a second fan (23), a switching damper (24), a heater (25), and a first fan (26).
  • the humidification casing (21) is formed with a humidification intake port (21a), a humidification exhaust port (21b), and an intake/exhaust port (21c).
  • the humidification suction port (21a) is an opening for sucking outdoor air.
  • the humidification exhaust port (21b) is an opening for discharging the air after applying moisture to the humidification rotor (22).
  • the intake/exhaust port (21c) is an opening for taking in outdoor air or discharging air sent from the room.
  • a first passageway (27) extending from the humidification suction port (21a) to the humidification exhaust port (21b) is formed inside the humidification casing (21).
  • a second passageway (28) extending from the air intake/exhaust port (21c) to the connection port (21d) is formed inside the humidification casing (21).
  • a hose (2) is connected to the connection port (21d).
  • the humidification rotor (22) is arranged across the first passageway (27) and the second passageway (28).
  • the humidification rotor (22) is an adsorption member that adsorbs moisture in the air.
  • the humidification rotor (22) is, for example, a disk-shaped humidity control rotor having a honeycomb structure.
  • a humidifying rotor (22) holds an adsorbent such as silica gel, zeolite, or alumina.
  • the adsorbent has the property of adsorbing moisture in the air.
  • Moisture absorbents have the property of desorbing adsorbed moisture when heated.
  • the humidification rotor (22) is rotated by driving the third motor (M3).
  • the humidification rotor (22) has a moisture absorption area (22A) that adsorbs moisture in the air and a moisture release area (22B) that desorbs moisture in the air.
  • the moisture absorption region (22A) is constituted by a portion of the humidification rotor (22) located in the first passageway (27).
  • the moisture release area (22B) is configured by a portion of the humidification rotor (22) located in the second passageway (28).
  • the first fan (26) is arranged in the first passageway (27).
  • the first fan (26) is rotated by driving the fourth motor (M4).
  • the first fan (26) is configured to be able to switch the air volume in a plurality of steps by adjusting the rotational speed of the fourth motor (M4).
  • Air conveyed by the first fan (26) is sucked into the humidification casing (21) through the humidification suction port (21a). This air flows through the first passageway (27) and is discharged to the outside of the humidification casing (21) through the humidification exhaust port (21b).
  • the first fan (26) conveys outdoor air so as to pass through the moisture absorption region (22A) of the humidification rotor (22). Moisture contained in the outdoor air flowing through the first passageway (27) is adsorbed by the moisture absorption region (22A) of the humidification rotor (22).
  • the switching damper (24) is arranged in the second passageway (28). As shown in FIG. 5, the switching damper (24) is provided within the damper casing (29). A space (S1) inside the switching damper (24), a space (S2) in which the switching damper (24) is arranged, and a space (S3) are provided in the damper casing (29). The switching damper (24) is slidably supported in the space (S2).
  • the damper casing (29) is provided with a first entrance (24a) and a second entrance (24b) that communicate the space (S2) with the outside of the damper casing (29).
  • the first inlet/outlet (24a) communicates with the intake/exhaust port (21c).
  • the second inlet/outlet (24b) communicates with the hose (2) connection port (21d) in the humidification casing (21).
  • the damper casing (29) is provided with an air intake (24c) and an air outlet (24d) that communicate the space (S2) and the space (S3).
  • the switching damper (24) is switched between the first state and the second state by sliding within the space (S2). As shown in FIG. 5, the switching damper (24) in the first state has a first inlet/outlet (24a) as an inlet for sucking air and a second inlet/outlet (24b) as an outlet for discharging air. As shown in FIG.
  • the switching damper (24) in the second state has a second inlet/outlet (24b) as an inlet for sucking air and a first inlet/outlet (24a) as an outlet for discharging air.
  • the state of the switching damper (24) is switched by driving the fifth motor (M5).
  • the heater (25) is an example of the regeneration section.
  • the heater (25) is arranged between the intake/exhaust port (21c) and the switching damper (24) in the second passageway (28).
  • the heater (25) heats air flowing through the second passageway (28).
  • the heater (25) has a variable output. The temperature of the air passing through the heater (25) changes according to the output of the heater (25).
  • the first fan (26) is arranged between the first entrance (24a) and the second entrance (24b) of the switching damper (24).
  • the first fan (26) is rotated by driving the sixth motor (M6).
  • the first fan (26) is configured to be able to switch the air volume in a plurality of stages by adjusting the rotation speed of the sixth motor (M6).
  • the flow of air carried by the first fan (26) changes according to the state of the switching damper (24). As shown in FIGS. 2 and 5, when the switching damper (24) is in the first state, the space (S1) communicates with the second inlet/outlet (24b), and the space (S1) communicates with the air outlet (24d).
  • the space (S3) communicates with the space (S3) via the air intake (24c).
  • the air conditioner indoor unit (30) is installed indoors.
  • the air conditioning indoor unit (30) is a wall-mounted type that is installed on the wall (WL) of the room that forms the indoor space (I).
  • the air conditioning indoor unit (30) includes an indoor casing (31), an indoor fan (32), an air filter (33), an indoor heat exchanger (34), a drain pan (35), and a wind direction adjusting section (36). and
  • the indoor casing (31) houses an indoor fan (32), an air filter (33), an indoor heat exchanger (34) and a drain pan (35).
  • the indoor casing (31) is formed with an indoor suction port (31a) and an indoor outlet (31b).
  • the indoor suction port (31a) is arranged above the indoor casing (31).
  • the indoor air intake (31a) is an opening for sucking indoor air.
  • the indoor outlet (31b) is arranged below the indoor casing (31).
  • the indoor air outlet (31b) is an opening for blowing out air after heat exchange or air for humidification.
  • the interior of the indoor casing (31) is provided with an indoor air passageway (31c) extending from the indoor air inlet (31a) to the indoor air outlet (31b).
  • the indoor fan (32) is arranged substantially in the center of the indoor air passage (31c).
  • the indoor fan (32) is an example of a blower.
  • the indoor fan (32) is, for example, a cross-flow fan.
  • the indoor fan (32) is rotated by driving the seventh motor (M7).
  • the indoor fan (32) takes indoor air into the indoor air passageway (31c) and conveys it.
  • the air carried by the indoor fan (32) is sucked into the indoor casing (31) through the indoor suction port (31a). This air flows through the indoor air passageway (31c) and is blown out of the indoor casing (31) from the indoor outlet (31b).
  • the indoor fan (32) conveys indoor air so as to pass through the indoor heat exchanger (34).
  • the air blown out from the indoor air outlet (31b) is supplied to the indoor space.
  • the indoor fan (32) is configured such that the air volume can be switched in multiple stages by adjusting the rotation speed of the seventh motor (M7).
  • the air filter (33) is arranged upstream of the indoor heat exchanger (34) in the indoor air passage (31c).
  • the air filter (33) is attached to the indoor casing (31) so that substantially all of the air supplied to the indoor heat exchanger (34) passes through.
  • the air filter (33) collects dust in the air sucked through the indoor air inlet (31a).
  • the indoor heat exchanger (34) is arranged upstream of the indoor fan (32) in the indoor air passage (31c).
  • the indoor heat exchanger (34) of this example is a fin-and-tube heat exchanger.
  • the indoor heat exchanger (34) is an example of a utilization heat exchanger.
  • the indoor heat exchanger (34) exchanges heat between the refrigerant therein and indoor air conveyed by the indoor fan (32).
  • the drain pan (35) is arranged on the lower front side and the lower rear side of the indoor heat exchanger (34).
  • the drain pan (35) receives condensed water generated inside the indoor casing (31) of the air conditioning indoor unit (30). Condensed water generated on the surface of the fins of the indoor heat exchanger (34) flows down due to its own weight along the surface and is received by the drain pan (35).
  • the wind direction adjusting section (36) adjusts the direction of the air blown out from the indoor outlet (31b).
  • the wind direction adjusting part (36) has a flap (37).
  • the flap (37) is shaped like a long plate extending along the longitudinal direction of the indoor outlet (31b).
  • the flap (37) is rotated by being driven by a motor.
  • the flap (37) opens and closes the indoor outlet (31b) as it rotates.
  • the flap (37) is configured so that the tilt angle can be changed stepwise.
  • the positions to which the flap (37) in this example is adjusted include six positions. These six positions include a closed position and five open positions. The five open positions include the generally horizontal blow position shown in FIG.
  • the flap (37) in the closed position substantially closes the indoor outlet (31b). A gap may be formed between the flap (37) in the closed position and the indoor outlet (31b).
  • the remote controller (40) is placed indoors at a position where the user can operate it.
  • the remote controller (40) has a display section (41) and an input section (42).
  • the display (41) displays predetermined information.
  • the display section (41) is composed of, for example, a liquid crystal monitor.
  • the predetermined information is information indicating the operating state, set temperature, and the like of the air conditioner (1).
  • An input unit (42) receives an input operation for performing various settings from a user.
  • the input section (42) is composed of, for example, a plurality of physical switches. The user can set the operation mode, target temperature, target humidity, etc. of the air conditioner (1) by operating the input section (42) of the remote controller (40).
  • the air conditioner (1) has a plurality of sensors.
  • the plurality of sensors includes a sensor for refrigerant and a sensor for air.
  • the refrigerant sensor includes a sensor that detects the temperature and pressure of the high-pressure refrigerant and a sensor that detects the temperature and pressure of the low-pressure refrigerant (not shown).
  • the air sensors include an outside air temperature sensor (51), an outside air humidity sensor (52), an inside air temperature sensor (53), an inside air humidity sensor (54), and a communication section (55).
  • the outside air temperature sensor (51) is provided in the air conditioning outdoor unit (10).
  • the outdoor air temperature sensor (51) detects the temperature of outdoor air (outdoor temperature).
  • the outside air humidity sensor (52) is provided in the humidification unit (20).
  • the outdoor air humidity sensor (52) detects the humidity of the outdoor air (outdoor humidity).
  • the outdoor air humidity sensor (52) of this example detects the relative humidity of the outdoor air, but may also detect the absolute humidity.
  • the inside air temperature sensor (53) and the inside air humidity sensor (54) are provided in the air conditioning indoor unit (30).
  • the inside air temperature sensor (53) detects the temperature of the inside air.
  • a room air humidity sensor (54) detects the humidity of the room air.
  • the room air humidity sensor (54) detects the relative humidity of the room air, but may also detect the absolute humidity.
  • a communication unit (55) acquires environmental information about the outdoor environment.
  • a communication unit (55) receives detection results from a communication module such as a LAN board for communicably connecting to the server (100) via a network, an outside air temperature sensor (51), and an outside air humidity sensor (52). It includes a communication port etc. to which a communication cable for transmission is connected.
  • the environmental information includes at least one of information indicating outdoor temperature, information indicating outdoor humidity, information indicating outdoor discomfort index, information about outdoor dust amount, and outdoor weather information. .
  • the air conditioner (1) has a controller (C).
  • the controller (C) controls the operation of the refrigerant circuit (R).
  • the controller (C) controls the operation of the air conditioning outdoor unit (10), the humidifying unit (20), and the air conditioning indoor unit (30).
  • the controller (C) includes an outdoor controller (OC), an indoor controller (IC), and a remote controller (40).
  • the outdoor controller (OC) is provided in the air conditioner outdoor unit (10).
  • An indoor controller (IC) is provided in the air conditioner indoor unit (30).
  • Each of the indoor controller (IC) and the outdoor controller (OC) includes an MCU (Micro Control Unit), an electric circuit, and an electronic circuit.
  • the MCU includes a CPU (Central Processing Unit), a memory, and a communication interface. Various programs for the CPU to execute are stored in the memory.
  • the outdoor temperature sensor (51) detection value and the outdoor air humidity sensor (52) detection value are input to the outdoor control unit (OC).
  • the outdoor control unit (OC) is connected to the compressor (12), outdoor fan (13), expansion valve (15) and four-way switching valve (16).
  • the outdoor control unit (OC) sends control signals for executing and stopping the operation of the air conditioning outdoor unit (10) to the compressor (12), the outdoor fan (13), the expansion valve (15), and the four-way switching valve. Output to (16).
  • the outdoor control unit (OC) controls the operating frequency of the first motor (M1) of the compressor (12), the rotation speed of the second motor (M2) of the outdoor fan (13), the state of the four-way switching valve (16), and the expansion Controls the opening of the valve (15).
  • the outdoor controller (OC) is further connected to the humidification rotor (22), second fan (23), switching damper (24), heater (25), and first fan (26).
  • the outdoor control section (OC) sends control signals for executing and stopping the operation of the humidification unit (20) to the humidification rotor (22), the second fan (23), the switching damper (24), the first fan ( 26), and output to the heater (25).
  • the outdoor controller (OC) controls the number of rotations of the fourth motor (M4) of the second fan (23) and the sixth motor (M6) of the first fan (26), the humidification rotor (22) and the switching damper (24 ) and the output of the heater (25).
  • the detection value of the inside air temperature sensor (53) and the detection value of the inside air humidity sensor (54) are input to the indoor control unit (IC).
  • the indoor control unit (IC) is communicably connected to the remote controller (40).
  • the indoor controller (IC) is connected to the indoor fan (32).
  • the indoor controller (IC) outputs a control signal to the indoor fan (32) to start and stop the operation of the air conditioning indoor unit (30).
  • the indoor controller (IC) controls the rotation speed of the seventh motor (M7) of the indoor fan (32).
  • the indoor controller (IC) is communicably connected to the outdoor controller (OC).
  • the remote controller (40) is communicably connected to the indoor control unit (IC).
  • the remote controller (40) transmits an instruction signal instructing the operation of the air conditioner (1) to the indoor controller (IC) according to the user's operation on the input section (42).
  • the indoor controller (IC) Upon receiving an instruction signal from the remote controller (40), the indoor controller (IC) transmits the instruction signal to the outdoor controller (OC).
  • the indoor controller (IC) controls the operation of each device of the air conditioning indoor unit (30) according to the instruction signal.
  • the outdoor controller (OC) receives an instruction signal from the indoor controller (IC), it controls the operation of each of the air conditioning outdoor unit (10) and the humidifying unit (20).
  • Operation Operation The operation modes executed by the air conditioner (1) include cooling operation, heating operation, humidification operation, air supply operation, and exhaust operation.
  • the controller (C) executes these operations based on instruction signals from the remote controller (40).
  • Cooling operation is an operation in which indoor air is cooled by the indoor heat exchanger (34) as an evaporator.
  • the set temperature for the cooling operation is instructed from the remote controller (40) at the start of the cooling operation or during the cooling operation.
  • the controller (C) operates the compressor (12), the outdoor fan (13), and the indoor fan (32).
  • the controller (C) sets the four-way switching valve (16) to the first state.
  • the control section (C) appropriately adjusts the degree of opening of the expansion valve (15).
  • a first refrigeration cycle is performed in which the compressed refrigerant releases heat in the outdoor heat exchanger (14) and evaporates in the indoor heat exchanger (34).
  • the controller (C) adjusts the target evaporating temperature of the indoor heat exchanger (34) so that the room temperature detected by the inside air temperature sensor (53) converges to the set temperature.
  • the control section (C) controls the rotation speed of the compressor (12) such that the evaporation temperature of the refrigerant in the indoor heat exchanger (34) converges to the target evaporation temperature.
  • the air conveyed by the indoor fan (32) is cooled as it passes through the indoor heat exchanger (34).
  • the air cooled by the indoor heat exchanger (34) is supplied to the indoor space (I) from the indoor outlet (31b) of the air conditioning indoor unit (30).
  • the heating operation is an operation in which the indoor air is heated by the indoor heat exchanger (34) as a radiator.
  • the set temperature for the heating operation is instructed from the remote controller (40) at the start of the heating operation or during the heating operation.
  • the controller (C) operates the compressor (12), the outdoor fan (13), and the indoor fan (32).
  • the controller (C) sets the four-way switching valve (16) to the second state.
  • the control section (C) appropriately adjusts the degree of opening of the expansion valve (15).
  • a second refrigeration cycle is performed in which refrigerant compressed by the compressor (12) releases heat in the indoor heat exchanger (34) and evaporates in the outdoor heat exchanger (14).
  • the controller (C) adjusts the target condensing temperature of the indoor heat exchanger (34) so that the indoor temperature detected by the indoor air temperature sensor (53) converges to the set temperature.
  • the control section (C) controls the rotation speed of the compressor (12) such that the condensation temperature of the refrigerant in the indoor heat exchanger (34) converges to the target condensation temperature.
  • the air conveyed by the indoor fan (32) is heated as it passes through the indoor heat exchanger (34).
  • the air heated by the indoor heat exchanger (34) is supplied to the indoor space (I) from the indoor outlet (31b) of the air conditioning indoor unit (30).
  • Humidification operation is an operation of humidifying indoor air by the humidification unit (20).
  • outdoor air is sent to the air conditioner indoor unit (30) through the hose (2), as indicated by the solid arrow in FIG.
  • the control section (C) operates the heater (25), the humidification rotor (22) and the second fan (23).
  • the control section (C) operates the first fan (26).
  • the control section (C) sets the switching damper (24) to the first state.
  • the outdoor air conveyed by the second fan (23) passes through the moisture absorption area (22A) of the humidification rotor (22), and the moisture contained in the outdoor air passes through the moisture absorption area (22A) of the humidification rotor (22). 22A).
  • the portion of the humidification rotor (22) that has adsorbed moisture as the moisture absorption area (22A) moves to the second passageway (28) as the humidification rotor (22) rotates to form a moisture release area (22B).
  • Outdoor air heated by the heater (25) passes through the moisture release area (22B) of the humidification rotor (22), and moisture is desorbed from the humidification rotor (22) to the heated air.
  • the air supply operation is an operation for supplying outdoor air to a room.
  • outdoor air is sent to the air conditioner indoor unit (30) through the hose (2), as indicated by the solid arrow in FIG.
  • the controller (C) stops the heater (25), the humidification rotor (22), and the second fan (23) and operates the first fan (26).
  • the controller (C) sets the switching damper (24) to the first state (see FIG. 5).
  • the outdoor air conveyed by the first fan (26) is sent to the air conditioning indoor unit (30) through the hose (2), and is discharged from the indoor outlet (31b) of the air conditioning indoor unit (30). It is supplied to the space (I).
  • the air supply operation may be performed simultaneously with the cooling operation or the heating operation.
  • the air supply operation is the first example of the ventilation operation of the present invention.
  • the exhaust operation is an operation in which indoor air is discharged to the outside.
  • room air is sent to the humidification unit (20) through the hose (2), as indicated by the dashed arrow in FIG.
  • the controller (C) stops the heater (25), the humidification rotor (22), and the second fan (23) and operates the first fan (26).
  • the control section (C) sets the switching damper (24) to the second state (see FIG. 6).
  • the indoor air conveyed by the first fan (26) is sent to the humidification unit (20) through the hose (2), and is discharged to the outside through the intake/exhaust port (21c) of the humidification unit (20).
  • the exhaust operation may be performed simultaneously with the cooling operation or the heating operation.
  • Exhaust operation is a second example of ventilation operation of the present invention.
  • step S110 the control section (C) determines whether or not a start instruction has been input from the input section (42).
  • the start instruction is an instruction to start the operation of automatically switching between the air supply operation and the exhaust operation of the air conditioner (1).
  • the control section (C) determines that the start instruction has been input from the input section (42) (Yes in step S110)
  • the process proceeds to step S120.
  • the control section (C) determines that the start instruction has not been input from the input section (42) (No in step S110)
  • the process shown in step S110 is repeated.
  • the communication unit (55) acquires environment information.
  • the control unit (C) determines whether or not the environment information includes a predetermined condition.
  • the predetermined conditions include conditions under which the user's comfort is reduced.
  • step S120 the communication unit (55) acquires information indicating the outdoor discomfort index from the server (100) as environmental information. is included (contains a condition that reduces the user's comfort), the control unit (C) determines. On the other hand, if the discomfort index is a value within a predetermined range, the control unit (C) determines that the environmental information does not include the predetermined conditions (ie, does not include conditions that reduce the user's comfort). do.
  • step S120 if the communication unit (55) acquires dust information relating to the amount of dust outdoors from the server (100) as environmental information, and the dust information indicates that there is a large amount of dust outdoors, A control unit (C) determines that the environment information includes a predetermined condition. On the other hand, when the dust information indicates that there is little dust outside, the control unit (C) determines that the environment information does not include the predetermined condition.
  • step S120 the communication unit (55) acquires information indicating the outdoor temperature from the outdoor temperature sensor (51) as environmental information. too high or too low), and the control unit (C) determines that the environment information includes a predetermined condition. On the other hand, if the outdoor temperature is within a predetermined range (the outdoor temperature is appropriate), the control unit (C) determines that the environmental information does not include the predetermined condition.
  • step S120 the communication unit (55) acquires information indicating the outdoor humidity from the outdoor air humidity sensor (52) as environmental information, and if the outdoor humidity is outside the predetermined range (the outdoor humidity is too high or too low), and the control unit (C) determines that the environment information includes a predetermined condition. On the other hand, if the outdoor humidity is within a predetermined range (the outdoor humidity is appropriate), the control unit (C) determines that the environmental information does not include the predetermined condition.
  • step S130 determines that the environment information includes the predetermined condition.
  • step S140 determines that the environment information does not include the predetermined condition.
  • control unit (C) determines to perform the exhaust operation.
  • the control section (C) sets the switching damper (24) to the second state to perform the exhaust operation (see FIGS. 2 and 6).
  • control unit (C) determines to perform air supply operation.
  • the controller (C) sets the switching damper (24) to the first state to perform the air supply operation (see FIGS. 2 and 6).
  • step S160 when the switching process of switching from one of the air supply operation and the exhaust operation to the other operation is performed, the display unit (41) informs the user that the switching process has been performed. For example, when the air supply operation is being performed, the control unit (C) determines in step S140 to perform the exhaust operation, thereby changing the operation mode of the air conditioner (1) from the air supply operation to the exhaust operation. If so, in step S160, the display section (41) displays information indicating that the air supply operation has been switched to the exhaust operation. On the other hand, when the exhaust operation is being performed, the control unit (C) determines in step S150 to perform the air supply operation, thereby changing the operation mode of the air conditioner (1) from the exhaust operation to the air supply operation. If the operation has been switched to operation, the display section (41) displays information indicating that the exhaust operation has been switched to the air supply operation in step S160.
  • the control section (C) determines whether or not an end instruction has been input from the input section (42).
  • the termination instruction is an instruction to terminate the operation of automatically switching between the air supply operation and the exhaust operation of the air conditioner (1).
  • the control section (C) performs any one of a plurality of ventilation operations based on the environmental information acquired by the communication section (55).
  • the plurality of ventilation operations include an air supply operation for sending outdoor air into the room and an exhaust operation for sending indoor air to the outside.
  • the control unit (C) can determine which ventilation operation to perform, the air supply operation or the exhaust operation, based on the outdoor environmental information.
  • the control unit (C) performs air supply operation to send outside air into the room when there is no problem with the outdoor environment, and exhaust operation to prevent outside air from entering the room when the outdoor environment deteriorates. It can be carried out. As a result, appropriate ventilation operation can be performed according to the outdoor environment.
  • control unit (C) determines that the environmental information includes a condition that reduces the user's comfort
  • exhaust operation is performed.
  • the ventilation operation exhaust operation
  • the display unit (41) notifies that the air supply operation has been switched to the exhaust operation, or that the exhaust operation has been switched to the air supply operation. This allows the user to recognize which ventilation operation is being performed, the air supply operation or the exhaust operation.
  • the air conditioner (1) has an air supply path (see FIG. 5) for sending outdoor air indoors during air supply operation, and an exhaust path for sending indoor air outdoors during exhaust operation.
  • the air supply route and the exhaust route have common routes (S1, S2, S3) (see FIGS. 5 and 6). As a result, the number of parts of the path for sending air during air supply operation and exhaust operation can be reduced.
  • step S121 the communication section (55) acquires weather information from the server (100).
  • the weather information is information indicating the current outdoor weather, or information indicating the outdoor weather predicted during a predetermined period from the current time to the future.
  • step S131 when the weather information acquired by the communication unit (55) includes information indicating rainfall or information indicating snowfall (Yes in step S131), the process proceeds to step S140, after the dehumidifying operation is performed. , step S160 and step S170.
  • step S150 air supply operation is performed, and then step The process proceeds to S160 and step S170.
  • step S170 when the control section (C) determines that the end instruction has been input from the input section (42) (Yes in step S170), the process proceeds to step S110.
  • step S110 When the control unit (C) determines that the end instruction has not been input from the input unit (42) (No in step S170), the process proceeds to step S121.
  • the control section (C) performs the exhaust operation. This suppresses the supply of outside air containing a large amount of moisture into the hose (2) when it rains or snows, thereby suppressing the formation of dew condensation in the hose (2).
  • step S121 the communication section (55) acquires weather information from the server (100).
  • step S131 when the weather information acquired by the communication unit (55) includes information indicating rainfall or information indicating snowfall (Yes in step S131), the process proceeds to step S141.
  • step S141 When the weather information acquired by the communication unit (55) does not include rainfall information or snowfall information (No in step S131), the process proceeds to step S132.
  • step S132 when the weather information acquired by the communication unit (55) includes information indicating fine weather (Yes in step S132), the process proceeds to step S142.
  • step S142 when the weather information acquired by the communication unit (55) does not include information indicating fine weather (No in step S132), the process proceeds to step S140.
  • the first exhaust operation is a first example of the exhaust operation.
  • the exhaust operation is performed by the controller (C) such that the amount of air discharged from the room reaches a predetermined first air amount.
  • the second exhaust operation is a second example of the exhaust operation.
  • the exhaust operation is performed by the controller (C) such that the amount of air discharged from the room reaches a predetermined second air amount.
  • the second air volume is less than the first air volume.
  • step S150 After the air supply operation is performed in step S150, the process proceeds to steps S160 and S170.
  • step S160 it is notified that any one of the first exhaust operation, the second exhaust operation, and the air supply operation has been switched to the other operation.
  • the control unit (C) performs the exhaust operation at the first air volume
  • the exhaust operation is performed with a second air volume smaller than the first air volume.
  • the control section (C) may reduce the rotation speed of the outdoor fan (13) from the time immediately before the switching operation.
  • a switching operation indicates an operation of switching from one operation of the air supply operation and the exhaust operation to the other operation. As a result, it is possible to reduce the degree of change in the indoor air environment that accompanies switching between the air supply operation and the exhaust operation.
  • the control section (C) reduces the rotation speed of the outdoor fan (13), and furthermore, the switching operation of the rotation speed of the indoor fan (32) is performed. may be reduced from the time just before the This makes it possible to further effectively reduce the degree of change in the indoor air environment that accompanies switching between the air supply operation and the exhaust operation.
  • the control unit (C) rotates the indoor fan (32) at the same number of revolutions as immediately before the switching operation, thereby reducing the indoor fan (32). No need to change the rpm.
  • the drive sound of the indoor fan (32) can be used to eliminate the drive sound of the switching damper (24).
  • the control unit (C) may perform hose drying operation after ventilation operation.
  • the hose drying operation indicates that the hose (2) is dried by sending air heated by the heater (25) into the hose (2). Thereby, it is possible to suppress the formation of dew condensation inside the hose (2) when it rains or snows.
  • the ventilator of the present invention only needs to have the functions of air supply operation and exhaust operation, and does not have to have the functions of cooling operation, heating operation, and humidification operation.
  • the device configuration for performing air supply operation and exhaust operation is not limited to that described in the embodiment.
  • the regeneration unit of the embodiment is the heater (25).
  • the regeneration section may include a first fan (26), and the control section (C) may control the output of the regeneration section by adjusting the air volume of the first fan (26).
  • the adsorption member of the embodiment is a humidification rotor (22) having an adsorbent.
  • the adsorption member may be an adsorption element supporting an adsorbent, or a heat exchanger (adsorption heat exchanger) supporting an adsorbent.
  • the adsorption heat exchanger desorbs moisture from the adsorbent by heating the adsorbent with a refrigerant or heat medium flowing inside.
  • the notification unit of the embodiment is the display unit (41).
  • the notification unit includes a sound generation unit that notifies that switching processing (processing to switch from one of the air supply operation and the exhaust operation to the other operation) has been performed by sound, and a sound generation unit that notifies that switching processing has been performed by light. It may be a light-emitting portion that notifies the user of the fact.
  • the present disclosure is useful for ventilators.
  • control unit 1 air conditioner (ventilator) 13 Outdoor fan (ventilation fan) 24 switching damper 32 indoor fan 41 display unit (informing unit) 55 communication unit 100 server

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)
  • Ventilation (AREA)

Abstract

換気装置は、室外の環境に関する環境情報を取得する通信部(55)と、前記通信部(55)が取得した前記環境情報に基づいて、複数の換気運転のうちのいずれの換気運転を行う制御部(C)とを備え、前記複数の換気運転は、室外の空気を室内に送る給気運転と、室内の空気を室外に送る排気運転とを含む。

Description

換気装置
 本開示は、換気装置に関する。
 特許文献1には、換気装置が開示されている。換気装置は、大気汚染予測関連情報を受信する受信手段と、大気汚染予測関連情報に基づいて外気を導入するか否かを判定する判定手段と、判定手段の判定結果に従って外気導入(給気運転)を制御する制御手段と、を備える。換気装置は、給気運転を行うことで室内の空気を換気する。
特開2006-133121号公報
 しかし、室外の環境が悪化し、室外の空気が汚染されていると判定手段が判定した場合は、給気運転が行われず、室内の空気を換気することができない状態になる。
 本開示の目的は、室外の環境に応じて適切な換気運転を行うことができるようにすることである。
 第1の態様は換気装置を対象とする。換気装置は、室外の環境に関する環境情報を取得する通信部(55)と、前記通信部(55)が取得した前記環境情報に基づいて、複数の換気運転のうちのいずれの換気運転を行う制御部(C)とを備え、前記複数の換気運転は、室外の空気を室内に送る給気運転と、室内の空気を室外に送る排気運転とを含む。
 第1の態様では、室外の環境に応じて適切な換気運転を行うことができる。
 第2の態様は、第1の態様において、前記制御部(C)は、前記環境情報にユーザーの快適性が低下する条件が含まれると判断すると、前記排気運転を行う。
 第2の態様では、室外の環境が悪化しても、室内のユーザーの快適性が低下することを抑制しつつ換気運転(排気運転)を行うことできる。
 第3の態様は、第1または第2の態様において、前記給気運転から前記排気運転に切り換えられたこと、または、前記排気運転から前記給気運転に切り換えられたことを報知する報知部(41)を備える。
 第3の態様では、ユーザーは給気運転および排気運転のうちのいずれの換気運転が行われているかを認識することができる。
 第4の態様は、第1~第3のいずれか1つの態様において、前記給気運転時に室外の空気を室内に送る給気経路と、前記排気運転時に室内の空気を室外に送る排気経路とを備え、前記給気経路と前記排気経路とが共通の経路(S1,S2,S3)を有する。
 第4の態様では、給気運転時および排気運転時に空気を送るための経路の部品点数を減らすことができる。
 第5の態様は、第4の態様において、前記給気運転および前記排気運転のうちの一方の運転から他方の運転に切り換える切換動作を行う切換ダンパ(24)を備え、前記制御部(C)は、前記切換ダンパ(24)による前記切換動作が行われる際、換気ファン(13)の回転数を低減させる。
 第5の態様では、給気運転と排気運転との切換えに伴う室内の空気環境の変化の度合いを低減できる。
 第6の態様は、第5の態様において、前記制御部(C)は、前記換気ファン(13)の回転数を低減させることに伴い、室内ファン(32)の回転数を低減させる。
 第6の態様では、給気運転と排気運転との切換えに伴う室内の空気環境の変化の度合いをさらに効果的に低減できる。
 第7の態様は、第5の態様において、前記制御部(C)は、前記切換ダンパ(24)による前記切換動作が行われる際、室内ファン(32)の回転数を変更しない。
 第7の態様では、室内ファン(32)の駆動音を切換ダンパ(24)の駆動音の音消しに用いることができる。
 第8の態様は、第1~第7のいずれか1つの態様において、前記環境情報は、室外温度を示す情報と、室外湿度を示す情報と、室外の不快指数を示す情報と、室外の粉塵量に関する情報と、室外の天気情報とのうちの少なくとも1つの情報とを含む。
 第8の態様では、制御部(C)は、室外温度を示す情報と、室外湿度を示す情報と、室外の不快指数を示す情報と、室外の粉塵量に関する情報と、室外の天気情報とのうちの少なくとも1つに基づいて給気運転および排気運転のうちのいずれの運転を行うかを決定できる。
 第9の態様は、第8の態様において、前記通信部(55)は、サーバ(100)から前記天気情報を取得する。
 第9の態様では、換気装置の制御部(C)は、サーバ(100)から取得した天気情報に基づいて給気運転および排気運転のうちのいずれの運転を行うかを決定できる。
 第10の態様は、第9の態様において、前記通信部(55)が取得した前記天気情報が降雨を示す情報または降雪を示す情報を含むとき、前記制御部(C)は排気運転を行う。
 第10の態様では、降雨時または降雪時に外気を室内に送るホース内に結露が生じることを抑制できる。
 第11の態様は、第9の態様において、前記通信部(55)が取得した前記天気情報が降雨を示す情報または降雪を示す情報を含むとき、前記制御部(C)は前記換気運転後にホース内乾燥運転を行う。
 第11の態様では、降雨または降雪時にホース内に結露が生じることを抑制できる。
 第12の態様は、第1~第11のいずれか1つの態様において、前記制御部(C)は、前記通信部(55)が取得した前記天気情報が降雨または降雪を示す情報を含むときには第1風量で前記排気運転を行い、前記通信部(55)が取得した前記天気情報が晴天を示す情報を含むときには前記第1風量よりも少ない第2風量で前記排気運転を行う。
 第12の態様では、降雨または降雪時にホース内に結露が生じることを抑制できる。
図1は、実施形態に係る空気調和装置の概略の全体構成図である。 図2は、空気調和装置の冷媒配管および空気流れを示す構成図である。 図3は、空調室内機の縦断面図である。 図4は、空気調和装置の主な要素を含むブロック図である。 図5は、給気運転時の空気の流れを示す図である。 図6は、排気運転時の空気の流れを示す図である。 図7は、制御部の動作の第1例を示すフローチャートである。 図8は、制御部の動作の第2例を示すフローチャートである。 図9は、制御部の動作の第3例を示すフローチャートである。
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示される実施形態に限定されるものではなく、本開示の技術的思想を逸脱しない範囲内で各種の変更が可能である。各図面は、本開示を概念的に説明するためのものであるから、理解容易のために必要に応じて寸法、比または数を誇張または簡略化して表す場合がある。
 以下、例示的な実施形態を図面に基づいて詳細に説明する。
 (1)空気調和装置の構成の概要
 空気調和装置(1)は、換気装置の一例である。空気調和装置(1)は、対象空間の空気の温度および湿度を調節する。本例の対象空間は、室内空間(I)である。図1に示すように、空気調和装置(1)は、空調室外機(10)と空調室内機(30)とを有する。空調室外機(10)は室外に設置され、空調室内機(30)は室内に設置される。空気調和装置(1)は、1つの空調室内機(30)と1つの空調室外機(10)とを有するペア式である。空気調和装置(1)は、加湿ユニット(20)を有する。空気調和装置(1)は、空気を加湿する機能を有する。空気調和装置(1)は、室内空間(I)を換気する機能をさらに有する。
 図1および図2に示すように、空気調和装置(1)は、ホース(2)と、液連絡管(3)と、ガス連絡管(4)とを有する。空調室内機(30)と加湿ユニット(20)とは、ホース(2)を介して互いに接続される。空調室内機(30)と空調室外機(10)とは、液連絡管(3)およびガス連絡管(4)を介して互いに接続される。これにより、冷媒回路(R)が構成される。冷媒回路(R)には、冷媒が充填される。ただし、冷媒はジフルオロメタンに限定されない。冷媒回路(R)は、蒸気圧縮式の冷凍サイクルを行う。
 冷媒回路(R)は、主として、圧縮機(12)と、室外熱交換器(14)と、膨張弁(15)と、四方切換弁(16)と、室内熱交換器(34)とを有する。
 冷媒回路(R)は、四方切換弁(16)の切り換えに応じて第1冷凍サイクルと第2冷凍サイクルとを行う。第1冷凍サイクルは、室内熱交換器(34)を蒸発器として機能させ、室外熱交換器(14)を放熱器として機能させる冷凍サイクルである。第2冷凍サイクルは、室外熱交換器(14)を放熱器として機能させ、室内熱交換器(34)を蒸発器として機能させる冷凍サイクルである。
 (2)詳細構成
 (2-1)空調室外機
 図2および図4に示すように、空調室外機(10)は、室外ケーシング(11)と、圧縮機(12)と、室外ファン(13)と、室外熱交換器(14)と、膨張弁(15)と、四方切換弁(16)とを有する。
 室外ケーシング(11)は、圧縮機(12)、室外ファン(13)、室外熱交換器(14)、膨張弁(15)および四方切換弁(16)を収容する。室外ケーシング(11)には、室外吸込口(11a)と、室外吹出口(11b)とが形成される。室外吸込口(11a)は、室外ケーシング(11)の後側に形成される。室外吸込口(11a)は、室外の空気を吸い込むための開口である。室外吹出口(11b)は、室外ケーシング(11)の前側に形成される。室外吹出口(11b)は、室外熱交換器(14)を通過した空気を吹き出すための開口である。室外ケーシング(11)の内部には、室外吸込口(11a)から室外吹出口(11b)に亘って室外空気通路(11c)が形成される。
 圧縮機(12)は、低圧のガス冷媒を吸入して圧縮する。圧縮機(12)は、第1モータ(M1)によって駆動される。圧縮機(12)は、インバータ回路から第1モータ(M1)へ電力が供給される可変容量式の圧縮機である。圧縮機(12)は、第1モータ(M1)の運転周波数(回転数)を調整することで、運転容量が変更可能に構成される。
 室外ファン(13)は、室外空気通路(11c)に配置される。室外ファン(13)は、第2モータ(M2)の駆動により回転する。室外ファン(13)により搬送される空気は、室外吸込口(11a)から室外ケーシング(11)内に吸い込まれる。この空気は、室外空気通路(11c)を流れて、室外吹出口(11b)から室外ケーシング(11)の外部に吹き出される。室外ファン(13)は、室外熱交換器(14)を通過させるように室外の空気を搬送する。
 室外熱交換器(14)は、室外空気通路(11c)において室外ファン(13)の上流側に配置される。本例の室外熱交換器(14)は、フィンアンドチューブ式の熱交換器である。室外熱交換器(14)は、熱源熱交換器の一例である。室外熱交換器(14)は、その内部を流れる冷媒と、室外ファン(13)によって搬送される室外空気とを熱交換させる。
 膨張弁(15)は、減圧機構の一例である。膨張弁(15)は、冷媒を減圧する。膨張弁(15)は、開度が調節可能な電動式の膨張弁である。減圧機構は、感温式の膨張弁、膨張機、キャピラリーチューブなどであってもよい。膨張弁(15)は、冷媒回路(R)の液ラインに接続されていればよく、空調室内機(30)に設けられてもよい。
 四方切換弁(16)は、流路切換機構の一例である。四方切換弁(16)は、第1ポート(P1)と、第2ポート(P2)と、第3ポート(P3)と、第4ポート(P4)を有する。第1ポート(P1)は、圧縮機(12)の吐出部に繋がる。第2ポート(P2)は、圧縮機(12)の吸入部に繋がる。第3ポート(P3)は、室外熱交換器(14)のガス端部に繋がる。第4ポート(P4)は、ガス連絡管(4)に繋がる。
 四方切換弁(16)は、第1状態(図2の実線で示す状態)と、第2状態(図2の破線で示す状態)とに切り換えられる。第1状態の四方切換弁(16)は、第1ポート(P1)と第3ポート(P3)とを連通させ、且つ第2ポート(P2)と第4ポート(P4)とを連通させる。第2状態の四方切換弁(16)は、第1ポート(P1)と第4ポート(P4)とを連通させ、且つ第2ポート(P2)と第3ポート(P3)とを連通させる。
 (2-2)加湿ユニット
 加湿ユニット(20)は、室外に設置される。本例の加湿ユニット(20)は、空調室外機(10)と一体化される。加湿ユニット(20)は、室外空気中の水分を空調室内機(30)に送る。加湿ユニット(20)は、加湿ケーシング(21)と、加湿ロータ(22)と、第2ファン(23)と、切換ダンパ(24)と、ヒータ(25)と、第1ファン(26)とを有する。
 加湿ケーシング(21)は、室外ケーシング(11)に一体に取り付けられている。加湿ケーシング(21)は、加湿ロータ(22)、第2ファン(23)、切換ダンパ(24)、ヒータ(25)、および第1ファン(26)を収容する。加湿ケーシング(21)には、加湿吸込口(21a)と、加湿排気口(21b)と、吸排気口(21c)とが形成される。
 加湿吸込口(21a)は、室外の空気を吸い込むための開口である。加湿排気口(21b)は、加湿ロータ(22)に水分を付与した後の空気を排出するための開口である。吸排気口(21c)は、室外の空気を吸い込む、または室内から送られる空気を排出するための開口である。加湿ケーシング(21)の内部には、加湿吸込口(21a)から加湿排気口(21b)まで続く第1通路(27)が形成される。加湿ケーシング(21)の内部には、吸排気口(21c)から接続口(21d)まで続く第2通路(28)が形成される。接続口(21d)には、ホース(2)が接続される。
 加湿ロータ(22)は、第1通路(27)と第2通路(28)とに亘って配置される。加湿ロータ(22)は空気中の水分を吸着する吸着部材である。加湿ロータ(22)は、例えば、ハニカム構造を有する円盤状の調湿用ロータである。加湿ロータ(22)は、シリカゲル、ゼオライト、アルミナなどの吸着剤を保持する。吸着剤は、空気中の水分を吸着する性質を有する。吸湿剤は、加熱されることにより、吸着した水分を脱離する性質を有する。
 加湿ロータ(22)は、第3モータ(M3)の駆動によって回転する。加湿ロータ(22)は、空気中の水分を吸着する吸湿領域(22A)と、空気中に水分を脱離する放湿領域(22B)とを有する。吸湿領域(22A)は、加湿ロータ(22)のうち第1通路(27)に位置する部分によって構成される。放湿領域(22B)は、加湿ロータ(22)のうち第2通路(28)に位置する部分によって構成される。
 第1ファン(26)は、第1通路(27)に配置される。第1ファン(26)は、第4モータ(M4)の駆動によって回転する。第1ファン(26)は、第4モータ(M4)の回転数を調整することで、風量を複数段階に切り換え可能に構成される。第1ファン(26)により搬送される空気は、加湿吸込口(21a)から加湿ケーシング(21)内に吸い込まれる。この空気は、第1通路(27)を流れて、加湿排気口(21b)から加湿ケーシング(21)の外部に排出される。第1ファン(26)は、加湿ロータ(22)の吸湿領域(22A)を通過させるように室外の空気を搬送する。第1通路(27)を流れる室外の空気に含まれる水分は、加湿ロータ(22)の吸湿領域(22A)に吸着される。
 切換ダンパ(24)は、第2通路(28)に配置される。図5に示すように、切換ダンパ(24)は、ダンパケーシング(29)内に設けられる。ダンパケーシング(29)内には、切換ダンパ(24)の内部の空間(S1)と、切換ダンパ(24)が配置される空間(S2)と、空間(S3)とが設けられる。切換ダンパ(24)は、空間(S2)内をスライド自在に支持され。ダンパケーシング(29)には、空間(S2)とダンパケーシング(29)の外部とを連通する第1出入口(24a)と第2出入口(24b)とが設けられる。第1出入口(24a)は、吸排気口(21c)と連通する。第2出入口(24b)は、加湿ケーシング(21)におけるホース(2)との接続口(21d)と連通する。ダンパケーシング(29)には、空間(S2)と空間(S3)とを連通する空気取入口(24c)と空気吹出口(24d)とが設けられる。切換ダンパ(24)は、空間(S2)内でスライドすることで、第1状態と第2状態とに切り換えられる。図5に示すように、第1状態の切換ダンパ(24)は、空気を吸い込む入口を第1出入口(24a)とし、空気を排出する出口を第2出入口(24b)とする。図6に示すように、第2状態の切換ダンパ(24)は、空気を吸い込む入口を第2出入口(24b)とし、空気を排出する出口を第1出入口(24a)とする。切換ダンパ(24)の状態は、第5モータ(M5)の駆動によって切り換えられる。
 図2及び図4に示すように、ヒータ(25)は、再生部の一例である。ヒータ(25)は、第2通路(28)において吸排気口(21c)と切換ダンパ(24)との間に配置される。ヒータ(25)は、第2通路(28)を流れる空気を加熱する。ヒータ(25)は、出力を可変に構成される。ヒータ(25)を通過する空気の温度は、ヒータ(25)の出力に応じて変化する。
 第1ファン(26)は、切換ダンパ(24)の第1出入口(24a)と第2出入口(24b)との間に配置される。第1ファン(26)は、第6モータ(M6)の駆動によって回転する。第1ファン(26)は、第6モータ(M6)の回転数を調整することで、風量を複数段階に切り換え可能に構成される。第1ファン(26)により搬送される空気の流れは、切換ダンパ(24)の状態に応じて変化する。図2及び図5に示すように、切換ダンパ(24)が第1状態であるときには、空間(S1)が第2出入口(24b)と連通し、空間(S1)が空気吹出口(24d)を介して空間(S3)と連通し、空間(S3)が空気取入口(24c)を介して空間(S2)と連通する。切換ダンパ(24)が第1状態であるときには、図2の実線矢印及び図5の矢印R1で示すように、第1出入口(24a)から吸い込まれた空気が第2出入口(24b)に流出する。図2及び図5に示すように、切換ダンパ(24)が第2状態であるときには、空間(S1)が第2出入口(24b)と連通し、空間(S1)が空気取入口(24c)を介して空間(S3)と連通し、空間(S3)が空気吹出口(24d)を介して空間(S2)と連通する。切換ダンパ(24)が第2状態であるときには、図2の破線矢印及び図6の矢印R2で示すように、第2出入口(24b)から吸い込まれた空気が第1出入口(24a)に流出する。
 (2-3)空調室内機
 図1~図3に示すように、空調室内機(30)は、室内に設置される。空調室内機(30)は、室内空間(I)を形成する部屋の壁(WL)に設置される、壁掛け式である。空調室内機(30)は、室内ケーシング(31)と、室内ファン(32)と、エアフィルタ(33)と、室内熱交換器(34)と、ドレンパン(35)と、風向調節部(36)とを有する。
 室内ケーシング(31)は、室内ファン(32)、エアフィルタ(33)、室内熱交換器(34)およびドレンパン(35)を収容する。室内ケーシング(31)には、室内吸込口(31a)と、室内吹出口(31b)とが形成される。室内吸込口(31a)は、室内ケーシング(31)の上側に配置される。室内吸込口(31a)は、室内の空気を吸い込むための開口である。室内吹出口(31b)は、室内ケーシング(31)の下側に配置される。室内吹出口(31b)は、熱交換後の空気または加湿用の空気を吹き出すための開口である。室内ケーシング(31)の内部には、室内吸込口(31a)から室内吹出口(31b)に続く室内空気通路(31c)が設けられている。
 室内ファン(32)は、室内空気通路(31c)の略中央部分に配置される。室内ファン(32)は、送風機の一例である。室内ファン(32)は、例えばクロスフローファンである。室内ファン(32)は、第7モータ(M7)の駆動により回転する。室内ファン(32)は、室内の空気を室内空気通路(31c)に取り込んで搬送する。室内ファン(32)により搬送される空気は、室内吸込口(31a)から室内ケーシング(31)内に吸い込まれる。この空気は、室内空気通路(31c)を流れて、室内吹出口(31b)から室内ケーシング(31)の外部に吹き出される。
 室内ファン(32)は、室内熱交換器(34)を通過させるように室内の空気を搬送する。室内吹出口(31b)から吹き出された空気は、室内空間に供給される。室内ファン(32)は、第7モータ(M7)の回転数を調整することで、風量を複数段階に切り換え可能に構成される。
 エアフィルタ(33)は、室内空気通路(31c)において室内熱交換器(34)の上流側に配置される。エアフィルタ(33)は、室内熱交換器(34)に供給される空気が実質的に全て通過するように室内ケーシング(31)に取り付けられる。エアフィルタ(33)は、室内吸込口(31a)から吸い込まれる空気中の塵埃を捕集する。
 室内熱交換器(34)は、室内空気通路(31c)において室内ファン(32)の上流側に配置される。本例の室内熱交換器(34)は、フィンアンドチューブ式の熱交換器である。室内熱交換器(34)は、利用熱交換器の一例である。室内熱交換器(34)は、その内部の冷媒と、室内ファン(32)によって搬送される室内の空気とを熱交させる。
 ドレンパン(35)は、室内熱交換器(34)の前方下側および後方下側に配置される。ドレンパン(35)は、空調室内機(30)の室内ケーシング(31)の内部で発生した結露水を受ける。室内熱交換器(34)のフィンの表面に発生した結露水は、その表面を伝って自重により流下し、ドレンパン(35)で受けられる。
 風向調節部(36)は、室内吹出口(31b)から吹き出される空気の風向きを調節する。風向調節部(36)は、フラップ(37)を有する。フラップ(37)は、室内吹出口(31b)の長手方向に沿って延びる長板状に形成される。フラップ(37)は、モータの駆動により回動する。フラップ(37)は、その回動に伴い室内吹出口(31b)を開閉する。
 フラップ(37)は、傾斜角度を段階的に変えられるように構成される。本例のフラップ(37)が調節される位置は、6つの位置を含む。これら6つの位置は、閉位置と、5つの開位置とを含む。5つの開位置には、図3に示す略水平吹出位置を含む。閉位置のフラップ(37)は、室内吹出口(31b)を実質的に閉じる。閉位置のフラップ(37)と室内吹出口(31b)との間には、隙間が形成されてもよい。
 (2-4)リモートコントローラ
 リモートコントローラ(40)は、室内においてユーザが操作可能な位置に配置される。リモートコントローラ(40)は、表示部(41)と入力部(42)とを有する。表示部(41)は、所定の情報を表示する。表示部(41)は、例えば液晶モニタによって構成される。所定の情報は、空気調和装置(1)の運転状態や設定温度などを示す情報である。入力部(42)は、ユーザからの各種設定を行う入力操作を受け付ける。入力部(42)は、例えば物理的な複数のスイッチで構成される。ユーザは、リモートコントローラ(40)の入力部(42)を操作することで、空気調和装置(1)の運転モード、目標温度、目標湿度などを設定できる。
 (2-5)センサ
 図2に示すように、空気調和装置(1)は、複数のセンサを有する。複数のセンサは、冷媒用のセンサと、空気用のセンサとを含む。冷媒用のセンサは、高圧冷媒の温度や圧力を検出するセンサ、低圧冷媒の温度や圧力を検出するセンサを含む(図示省略)。
 空気用のセンサは、外気温度センサ(51)、外気湿度センサ(52)、内気温度センサ(53)、内気湿度センサ(54)、および通信部(55)を含む。外気温度センサ(51)は、空調室外機(10)に設けられる。外気温度センサ(51)は、室外空気の温度(室外温度)を検出する。外気湿度センサ(52)は、加湿ユニット(20)に設けられる。外気湿度センサ(52)は、室外空気の湿度(室外湿度)を検出する。本例の外気湿度センサ(52)は、室外空気の相対湿度を検出するが、絶対湿度を検出してもよい。内気温度センサ(53)および内気湿度センサ(54)は、空調室内機(30)に設けられる。内気温度センサ(53)は、室内空気の温度を検出する。内気湿度センサ(54)は、室内空気の湿度を検出する。内気湿度センサ(54)は、室内空気の相対湿度を検出するが、絶対湿度を検出してもよい。通信部(55)は、室外の環境に関する環境情報を取得する。通信部(55)は、ネットワークを介してサーバ(100)と通信可能に接続するためのLANボードのような通信モジュ-ル、外気温度センサ(51)及び外気湿度センサ(52)の検出結果を送信する通信ケーブルが接続される通信ポート等を含む。環境情報は、室外温度を示す情報と、室外湿度を示す情報と、室外の不快指数を示す情報と、室外の粉塵量に関する情報と、室外の天気情報とのうちの少なくとも1つの情報とを含む。
 (2-6)制御部
 空気調和装置(1)は、制御部(C)を有する。制御部(C)は、冷媒回路(R)の動作を制御する。制御部(C)は、空調室外機(10)、加湿ユニット(20)、および空調室内機(30)の動作を制御する。制御部(C)は、室外制御部(OC)と、室内制御部(IC)と、リモートコントローラ(40)とを含む。室外制御部(OC)は空調室外機(10)に設けられる。室内制御部(IC)は空調室内機(30)に設けられる。室内制御部(IC)および室外制御部(OC)のそれぞれは、MCU(Micro Control Unit,マイクロコントローラユニット)、電気回路、電子回路を含む。MCUは、CPU(Central Processing Unit,中央演算処理装置)、メモリ、通信インターフェースを含む。メモリには、CPUが実行するための各種のプログラムが記憶されている。
 室外制御部(OC)には、外気温度センサ(51)の検出値、および外気湿度センサ(52)の検出値が入力される。
 室外制御部(OC)は、圧縮機(12)、室外ファン(13)、膨張弁(15)および四方切換弁(16)に接続される。室外制御部(OC)は、空調室外機(10)の運転の実行および停止を行うための制御信号を、圧縮機(12)、室外ファン(13)、膨張弁(15)、および四方切換弁(16)に出力する。室外制御部(OC)は、圧縮機(12)の第1モータ(M1)の運転周波数、室外ファン(13)の第2モータ(M2)の回転数、四方切換弁(16)の状態および膨張弁(15)の開度を制御する。
 室外制御部(OC)はさらに、加湿ロータ(22)、第2ファン(23)、切換ダンパ(24)、ヒータ(25)、および第1ファン(26)に接続される。室外制御部(OC)は、加湿ユニット(20)の運転の実行および停止を行うための制御信号を、加湿ロータ(22)、第2ファン(23)、切換ダンパ(24)、第1ファン(26)、およびヒータ(25)に出力する。室外制御部(OC)は、第2ファン(23)の第4モータ(M4)および第1ファン(26)の第6モータ(M6)の回転数と、加湿ロータ(22)および切換ダンパ(24)の動作と、ヒータ(25)の出力とを制御する。
 室内制御部(IC)には、内気温度センサ(53)の検出値、および内気湿度センサ(54)の検出値が入力される。
 室内制御部(IC)は、リモートコントローラ(40)と通信可能に接続される。室内制御部(IC)は、室内ファン(32)に接続される。室内制御部(IC)は、空調室内機(30)の運転の実行および停止を行うための制御信号を、室内ファン(32)に出力する。室内制御部(IC)は、室内ファン(32)の第7モータ(M7)の回転数を制御する。室内制御部(IC)は、室外制御部(OC)と通信可能に接続される。
 リモートコントローラ(40)は、室内制御部(IC)と通信可能に接続される。リモートコントローラ(40)は、入力部(42)でのユーザの操作に応じて、空気調和装置(1)の運転を指示する指示信号を室内制御部(IC)に送信する。室内制御部(IC)は、リモートコントローラ(40)からの指示信号を受信すると、その指示信号を室外制御部(OC)に送信する。室内制御部(IC)は、その指示信号に従い、空調室内機(30)の上述した各機器の動作を制御する。室外制御部(OC)が、室内制御部(IC)からの指示信号を受信すると、空調室外機(10)および加湿ユニット(20)の上述した各機器の動作を制御する。
 (3)運転動作
 空気調和装置(1)が実行する運転モードは、冷房運転、暖房運転、加湿運転、給気運転、および排気運転を含む。制御部(C)は、リモートコントローラ(40)からの指示信号に基づいて、これらの運転を実行させる。
 (3-1)冷房運転
 冷房運転は、蒸発器とした室内熱交換器(34)により室内の空気を冷却する運転である。冷房運転での設定温度は、冷房運転の開始時または冷房運転中にリモートコントローラ(40)から指示される。冷房運転では、制御部(C)が、圧縮機(12)、室外ファン(13)、および室内ファン(32)を運転させる。制御部(C)は、四方切換弁(16)を第1状態に設定する。制御部(C)は、膨張弁(15)の開度を適宜調節する。冷房運転では、圧縮した冷媒が室外熱交換器(14)で放熱し、室内熱交換器(34)で蒸発する第1冷凍サイクルが行われる。
 冷房運転では、内気温度センサ(53)で検出する室内温度が設定温度に収束するように、制御部(C)が室内熱交換器(34)の目標蒸発温度を調節する。制御部(C)は、室内熱交換器(34)の冷媒の蒸発温度が目標蒸発温度に収束するように、圧縮機(12)の回転数を制御する。冷房運転では、室内ファン(32)により搬送された空気が室内熱交換器(34)を通過する際に冷却される。室内熱交換器(34)によって冷却された空気は、空調室内機(30)の室内吹出口(31b)から室内空間(I)へ供給される。
 (3-2)暖房運転
 暖房運転は、放熱器とした室内熱交換器(34)により室内の空気を加熱する運転である。暖房運転での設定温度は、暖房運転の開始時または暖房運転中にリモートコントローラ(40)から指示される。暖房運転では、制御部(C)が、圧縮機(12)、室外ファン(13)、および室内ファン(32)を運転させる。制御部(C)は、四方切換弁(16)を第2状態に設定する。制御部(C)は、膨張弁(15)の開度を適宜調節する。暖房運転では、圧縮機(12)で圧縮した冷媒が室内熱交換器(34)で放熱し、室外熱交換器(14)で蒸発する第2冷凍サイクルが行われる。
 暖房運転では、内気温度センサ(53)によって検出される室内温度が設定温度に収束するように、制御部(C)が室内熱交換器(34)の目標凝縮温度を調節する。制御部(C)は、室内熱交換器(34)の冷媒の凝縮温度が目標凝縮温度に収束するように、圧縮機(12)の回転数を制御する。暖房運転では、室内ファン(32)により搬送された空気が室内熱交換器(34)を通過する際に加熱される。室内熱交換器(34)で加熱された空気は、空調室内機(30)の室内吹出口(31b)から室内空間(I)へ供給される。
 (3-3)加湿運転
 加湿運転は、加湿ユニット(20)により室内の空気を加湿する運転である。加湿運転では、図2の実線の矢印で示すように、室外空気がホース(2)を通じて空調室内機(30)へ送られる。加湿運転では、制御部(C)が、ヒータ(25)、加湿ロータ(22)および第2ファン(23)を運転させる。制御部(C)は、第1ファン(26)を運転させる。制御部(C)は、切換ダンパ(24)を第1状態に設定する。
 加湿運転において、第2ファン(23)によって搬送される室外の空気が加湿ロータ(22)の吸湿領域(22A)を通過し、室外の空気に含まれる水分が加湿ロータ(22)の吸湿領域(22A)に吸着される。加湿ロータ(22)の吸湿領域(22A)として水分を吸着した部分は、加湿ロータ(22)の回転により第2通路(28)に移動して、放湿領域(22B)を構成する。加湿ロータ(22)の放湿領域(22B)には、ヒータ(25)で加熱された室外の空気が通過し、加湿ロータ(22)から加熱された空気へと水分の脱離が生じる。加湿運転では、加湿ロータ(22)で水分が付与された高湿度の空気が、ホース(2)を通じて空調室内機(30)に送られ、空調室内機(30)の室内吹出口(31b)から室内空間(I)へ供給される。なお、暖房運転と同時に加湿運転を行ってもよい。
 (3-4)給気運転
 給気運転は、室外の空気を室内に供給する運転である。給気運転では、図2の実線の矢印で示すように、室外空気がホース(2)を通じて空調室内機(30)へ送られる。給気運転では、制御部(C)がヒータ(25)、加湿ロータ(22)、および第2ファン(23)を停止させ、第1ファン(26)を運転させる。給気運転では、制御部(C)は、切換ダンパ(24)を第1状態に設定する(図5参照)。給気運転において、第1ファン(26)によって搬送される室外の空気は、ホース(2)を通じて空調室内機(30)に送られ、空調室内機(30)の室内吹出口(31b)から室内空間(I)へ供給される。なお、冷房運転または暖房運転と同時に給気運転を行ってもよい。給気運転は、本発明の換気運転の第1例である。
 (3-5)排気運転
 排気運転は、室内の空気を室外に排出する運転である。排気運転では、図2の破線の矢印で示すように、室内空気がホース(2)を介して加湿ユニット(20)へ送られる。排気運転では、制御部(C)がヒータ(25)、加湿ロータ(22)、および第2ファン(23)を停止させ、第1ファン(26)を運転させる。排気運転では、制御部(C)は、切換ダンパ(24)を第2状態に設定する(図6参照)。排気運転において、第1ファン(26)によって搬送される室内の空気は、ホース(2)を通じて加湿ユニット(20)に送られ、加湿ユニット(20)の吸排気口(21c)から室外へ排出される。なお、冷房運転または暖房運転と同時に排気運転を行ってもよい。排気運転は、本発明の換気運転の第2例である。
 (4)制御部の動作の第1例
 図4および図7に示すように、ステップS110において、制御部(C)は、入力部(42)から開始指示が入力されたか否かを判定する。開始指示は、空気調和装置(1)に対して給気運転と排気運転との切り換えを自動的に行わせる動作を開始させる指示である。入力部(42)から開始指示が入力されたと制御部(C)が判定すると(ステップS110で、Yes)、処理がステップS120へ移行する。入力部(42)から開始指示が入力されていないと制御部(C)が判定すると(ステップS110で、No)、ステップS110に示す処理が繰り返される。
 ステップS120において、通信部(55)が環境情報を取得する。
 ステップS130において、制御部(C)は、環境情報に所定の条件が含まれるか否かを判定する。所定の条件は、ユーザーの快適性が低下する条件を含む。
 例えば、ステップS120において、通信部(55)がサーバ(100)から室外の不快指数を示す情報を環境情報として取得し、不快指数が所定の範囲外の値であれば、環境情報に所定の条件が含まれる(ユーザーの快適性が低下する条件が含まれる)と制御部(C)が判定する。これに対し、不快指数が所定の範囲内の値であれば、環境情報に所定の条件が含まれていない(ユーザーの快適性が低下する条件が含まれない)と制御部(C)が判定する。
 また、例えば、ステップS120において、通信部(55)がサーバ(100)から室外の粉塵量に関する粉塵情報を環境情報として取得し、粉塵情報において室外の粉塵が多いことが示されている場合は、環境情報に所定の条件が含まれると制御部(C)が判定する。これに対し、粉塵情報において室外の粉塵が少ないことが示されている場合は、環境情報に所定の条件が含まれていないと制御部(C)が判定する。
 また、ステップS120において、通信部(55)が外気温度センサ(51)から室外の気温を示す情報を環境情報として取得し、室外の気温が所定の範囲外の値であれば(室外の気温が高すぎる、または低すぎる)、環境情報に所定の条件が含まれると制御部(C)が判定する。これに対し、室外の気温が所定の範囲内の値であれば(室外の気温が適切)、環境情報に所定の条件が含まれていないと制御部(C)が判定する。
 また、ステップS120において、通信部(55)が外気湿度センサ(52)から室外の湿度を示す情報を環境情報として取得し、室外の湿度が所定の範囲外の値であれば(室外の湿度が高すぎる、または低すぎる)、環境情報に所定の条件が含まれると制御部(C)が判定する。これに対し、室外の湿度が所定の範囲内の値であれば(室外の湿度が適切)、環境情報に所定の条件が含まれていないと制御部(C)が判定する。
 制御部(C)により環境情報に所定の条件が含まれると判定されると(ステップS130で、Yes)、処理がステップS140に移行する。制御部(C)により環境情報に所定の条件が含まれないと判定されると(ステップS130で、No)、処理がステップS150に移行する。
 ステップS140において、制御部(C)は、排気運転を行うことを決定する。制御部(C)は、切換ダンパ(24)を第2状態に設定して、排気運転を行う(図2及び図6参照)。
 ステップS150において、制御部(C)は、給気運転を行うことを決定する。制御部(C)は、切換ダンパ(24)を第1状態に設定して、給気運転を行う(図2及び図6参照)。
 ステップS160において、給気運転および排気運転のうちの一方の運転から他方に運転に切り換える切り換え処理が行われた場合、表示部(41)は、切り換え処理が行われたことをユーザに報知する。例えば、給気運転が行われている状態で、ステップS140において制御部(C)が排気運転を行うことを決定することで、空気調和装置(1)の運転モードが給気運転から排気運転に切り換えられた場合、ステップS160において、表示部(41)は給気運転から排気運転に切り換えられたことを示す情報を表示する。これに対し、排気運転が行われている状態で、ステップS150において制御部(C)が給気運転を行うことを決定することで、空気調和装置(1)の運転モードが排気運転から給気運転に切り換えられた場合、ステップS160において、表示部(41)は排気運転から給気運転に切り換えられたことを示す情報を表示する。
 ステップS170において、制御部(C)は、入力部(42)から終了指示が入力されたか否かを判定する。終了指示は、空気調和装置(1)に対して給気運転と排気運転との切り換えを自動的に行わせる動作を終了させる指示である。入力部(42)から終了指示が入力されたと制御部(C)が判定すると(ステップS170で、Yes)、処理がステップS110へ移行する。入力部(42)から終了指示が入力されていないと制御部(C)が判定すると(ステップS170で、No)、処理がステップS120へ移行する。
 (5)効果
 以上のように、制御部(C)は、通信部(55)が取得した環境情報に基づいて、複数の換気運転のうちのいずれの換気運転を行う。複数の換気運転は、室外の空気を室内に送る給気運転と、室内の空気を室外に送る排気運転とを含む。これにより、制御部(C)は、室外の環境情報に基づいて給気運転と排気運転とのうちいずれの換気運転を行うかを決定できる。これによると、制御部(C)は、室外の環境が問題ない場合は外気を室内に送る給気運転を行い、室外の環境が悪化したした場合は外気が室内に入らないように排気運転を行うことができる。その結果、室外の環境に応じて適切な換気運転を行うことができる。
 また、制御部(C)は、環境情報にユーザーの快適性が低下する条件が含まれると判断すると、排気運転を行う。これにより、室外の環境が悪化しても、室内のユーザーの快適性が低下することを抑制しつつ換気運転(排気運転)を行うことできる。
 また、表示部(41)は、給気運転から排気運転に切り換えられたこと、または、排気運転から給気運転に切り換えられたことを報知する。これにより、ユーザーは給気運転および排気運転のうちのいずれの換気運転が行われているかを認識することができる。
 また、空気調和装置(1)は、給気運転時に室外の空気を室内に送る給気経路(図5参照)と、排気運転時に室内の空気を室外に送る排気経路とを備える。給気経路と前記排気経路とが共通の経路(S1,S2,S3)(図5および図6参照)を有する。これにより、給気運転時および排気運転時に空気を送るための経路の部品点数を減らすことができる。
 (6)制御部の動作の第2例
 図4および図8に示すように、ステップS110において、入力部(42)から開始指示が入力されたと制御部(C)が判定すると(ステップS110で、Yes)、ステップS121において、通信部(55)がサーバ(100)から天気情報を取得する。天気情報は、現時点の室外の天気を示す情報、または、現時点から将来の所定期間内までの間に予測される室外の天気を示す情報である。
 ステップS131において、通信部(55)が取得した天気情報が降雨を示す情報または降雪を示す情報を含むとき(ステップS131で、Yes)、処理がステップS140に移行して除湿運転が行われた後、ステップS160、およびステップS170に移行する。通信部(55)が取得した天気情報が降雨を示す情報または降雪を示す情報を含まないとき(ステップS131で、No)、処理がステップS150に移行して給気運転が行われた後、ステップS160、およびステップS170に移行する。
 ステップS170において、入力部(42)から終了指示が入力されたと制御部(C)が判定すると(ステップS170で、Yes)、処理がステップS110へ移行する。入力部(42)から終了指示が入力されていないと制御部(C)が判定すると(ステップS170で、No)、処理がステップS121へ移行する。
 (7)効果
 以上のように、通信部(55)が取得した天気情報が降雨を示す情報または降雪を示す情報を含むとき、前記制御部(C)は排気運転を行う。これにより、降雨時または降雪時に湿気を多く含む外気がホース(2)内に供給されることが抑制されるので、ホース(2)内に結露が生じることを抑制できる。
 (8)制御部の動作の第3例
 図4および図9に示すように、ステップS110において、入力部(42)から開始指示が入力されたと制御部(C)が判定すると(ステップS110で、Yes)、ステップS121において、通信部(55)がサーバ(100)から天気情報を取得する。
 ステップS131において、通信部(55)が取得した天気情報が降雨を示す情報または降雪を示す情報を含むとき(ステップS131で、Yes)、処理がステップS141に移行する。通信部(55)が取得した天気情報が降雨を示す情報または降雪を示す情報を含まないとき(ステップS131で、No)、処理がステップS132に移行する。
 ステップS132において、通信部(55)が取得した天気情報が晴天を示す情報を含むとき(ステップS132で、Yes)、処理がステップS142に移行する。通信部(55)が取得した天気情報が晴天を示す情報を含まないとき(ステップS132で、No)、処理がステップS140に移行する。
 ステップS141において、第1排気運転が行われた後、処理がステップS160、およびステップS170に移行する。第1排気運転は、排気運転の第1例である。第1排気運転では、室内から排出される風量が所定の第1風量になるようにして、制御部(C)による排気運転が行われる。
 ステップS142において、第2排気運転が行われた後、処理がステップS160、およびステップS170に移行する。第2排気運転は、排気運転の第2例である。第2排気運転では、室内から排出される風量が所定の第2風量になるようにして、制御部(C)による排気運転が行われる。第2風量は、第1風量よりも少ない。
 ステップS150において、給気運転が行われた後、処理がステップS160、およびステップS170に移行する。
 なお、第3例では、ステップS160において、第1排気運転、第2排気運転、および給気運転のうちのいずれか1つの運転から他の1つの運転に切り換えられたことが報知される。
 (9)効果
 以上のように、制御部(C)は、通信部(55)が取得した天気情報が降雨または降雪を示す情報を含むときには第1風量で排気運転を行い、通信部(55)が取得した天気情報が晴天を示す情報を含むときには第1風量よりも少ない第2風量で前記排気運転を行う。これにより、降雨時または降雪時には、比較的多めの第1風量で排気運転を行うことで、湿気を多く含む外気がホース(2)内に供給されることが効果的に抑制されるので、ホース(2)内に結露が生じることを抑制できる。
 (10)その他の実施形態
 切換ダンパ(24)による切換動作が行われる際、制御部(C)は室外ファン(13)の回転数を切換動作が行われる直前の時点よりも低減させてもよい。切換動作は、給気運転および排気運転のうちの一方の運転から他方の運転に切り換える動作を示す。これにより、給気運転と排気運転との切換えに伴う室内の空気環境の変化の度合いを低減できる。
 切換ダンパ(24)による切換動作が行われる際、制御部(C)は、室外ファン(13)の回転数を低減させることに伴い、さらに、室内ファン(32)の回転数を切換動作が行われる直前の時点よりも低減させてもよい。これにより、給気運転と排気運転との切換えに伴う室内の空気環境の変化の度合いをさらに効果的に低減できる。
 制御部(C)は、切換ダンパ(24)による切換動作が行われる際、室内ファン(32)を切換動作が行われる直前の時点と同じ回転数で回転させることで、室内ファン(32)の回転数を変更しなくてもよい。これにより、室内ファン(32)の駆動音を切換ダンパ(24)の駆動音の音消しに用いることができる。
 通信部(55)が取得した天気情報が降雨を示す情報または降雪を示す情報を含むとき、制御部(C)は換気運転後にホース内乾燥運転を行ってもよい。ホース内乾燥運転は、ヒータ(25)で加熱された空気をホース(2)内へ送ることでホース(2)を乾燥させることを示す。これにより、降雨時または降雪時にホース(2)内に結露が生じることを抑制できる。
 本発明の換気装置は、給気運転および排気運転を行う機能を有していればよく、冷房運転、暖房運転、および加湿運転を行う機能は有していなくてもよい。本発明の換気装置について、給気運転および排気運転を行うための装置構成は、実施形態に記載のものに限定されない。
 実施形態の再生部はヒータ(25)である。再生部は第1ファン(26)を含み、制御部(C)は、第1ファン(26)の風量を調節することにより再生部の出力を制御してもよい。
 実施形態の吸着部材は、吸着剤を有する加湿ロータ(22)である。吸着部材は、吸着剤が担持された吸着素子や、吸着剤が担持された熱交換器(吸着熱交換器)であってもよい。吸着熱交換器は、その内部を流れる冷媒や熱媒体により吸着剤を加熱することにより、吸着剤の水分を脱離させる。
 実施形態の報知部は、表示部(41)である。報知部は、音により切り換え処理(給気運転および排気運転のうちの一方の運転から他方に運転に切り換える処理)が行われたことを報知する音発生部や、光により切り換え処理が行われたことを報知する発光部であってもよい。
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態、変形例、その他の実施形態は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。
 以上に述べた「第1」、「第2」、「第3」…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。
 以上に説明したように、本開示は、換気装置について有用である。
     C    制御部
     1    空気調和装置(換気装置)
     13   室外ファン(換気ファン)
     24   切換ダンパ
     32   室内ファン
     41   表示部(報知部)
     55   通信部
     100  サーバ

Claims (12)

  1.  室外の環境に関する環境情報を取得する通信部(55)と、
     前記通信部(55)が取得した前記環境情報に基づいて、複数の換気運転のうちのいずれの換気運転を行う制御部(C)と
     を備え、
     前記複数の換気運転は、室外の空気を室内に送る給気運転と、室内の空気を室外に送る排気運転とを含む、換気装置。
  2.  請求項1において、
     前記制御部(C)は、前記環境情報にユーザーの快適性が低下する条件が含まれると判断すると、前記排気運転を行う、換気装置。
  3.  請求項1、または請求項2において、
     前記給気運転から前記排気運転に切り換えられたこと、または、前記排気運転から前記給気運転に切り換えられたことを報知する報知部(41)を備える、換気装置。
  4.  請求項1から請求項3のいずれか1項において、
     前記給気運転時に室外の空気を室内に送る給気経路と、
     前記排気運転時に室内の空気を室外に送る排気経路と
     を備え、
     前記給気経路と前記排気経路とが共通の経路(S1,S2,S3)を有する、換気装置。
  5.  請求項4において、
     前記給気運転および前記排気運転のうちの一方の運転から他方の運転に切り換える切換動作を行う切換ダンパ(24)を備え、
     前記制御部(C)は、前記切換ダンパ(24)による前記切換動作が行われる際、換気ファン(13)の回転数を低減させる、換気装置。
  6.  請求項5において、
     前記制御部(C)は、前記換気ファン(13)の回転数を低減させることに伴い、室内ファン(32)の回転数を低減させる、換気装置。
  7.  請求項5において、
     前記制御部(C)は、前記切換ダンパ(24)による前記切換動作が行われる際、室内ファン(32)の回転数を変更しない、換気装置。
  8.  請求項1から請求項7のいずれか1項において、
     前記環境情報は、室外温度を示す情報と、室外湿度を示す情報と、室外の不快指数を示す情報と、室外の粉塵量に関する情報と、室外の天気情報とのうちの少なくとも1つの情報とを含む、換気装置。
  9.  請求項8において、
     前記通信部(55)は、サーバ(100)から前記天気情報を取得する、換気装置。
  10.  請求項9において、
     前記通信部(55)が取得した前記天気情報が降雨を示す情報または降雪を示す情報を含むとき、前記制御部(C)は排気運転を行う、換気装置。
  11.  請求項9において、
     前記通信部(55)が取得した前記天気情報が降雨を示す情報または降雪を示す情報を含むとき、前記制御部(C)は前記換気運転後にホース内乾燥運転を行う、換気装置。
  12.  請求項1から請求項11のいずれか1項において、
     前記制御部(C)は、前記通信部(55)が取得した前記天気情報が降雨または降雪を示す情報を含むときには第1風量で前記排気運転を行い、前記通信部(55)が取得した前記天気情報が晴天を示す情報を含むときには前記第1風量よりも少ない第2風量で前記排気運転を行う、換気装置。
PCT/JP2022/022507 2021-08-31 2022-06-02 換気装置 WO2023032380A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280057117.6A CN117836565A (zh) 2021-08-31 2022-06-02 换气装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-141554 2021-08-31
JP2021141554A JP7332927B2 (ja) 2021-08-31 2021-08-31 換気装置

Publications (1)

Publication Number Publication Date
WO2023032380A1 true WO2023032380A1 (ja) 2023-03-09

Family

ID=85411186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022507 WO2023032380A1 (ja) 2021-08-31 2022-06-02 換気装置

Country Status (3)

Country Link
JP (1) JP7332927B2 (ja)
CN (1) CN117836565A (ja)
WO (1) WO2023032380A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003176944A (ja) * 2001-12-07 2003-06-27 Daikin Ind Ltd 換気装置および空気調和機
JP2004225945A (ja) * 2003-01-20 2004-08-12 Daikin Ind Ltd 空気調和機および空気調和機の制御方法
JP2006170596A (ja) * 2004-11-16 2006-06-29 Sanyo Electric Co Ltd 空気調和装置
JP2011033302A (ja) * 2009-08-05 2011-02-17 Takumasa Watanabe 調湿換気装置
JP2013044498A (ja) * 2011-08-26 2013-03-04 Taiji Imaizumi 省エネ換気扇
JP2021038869A (ja) * 2019-09-02 2021-03-11 ダイキン工業株式会社 空調システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003176944A (ja) * 2001-12-07 2003-06-27 Daikin Ind Ltd 換気装置および空気調和機
JP2004225945A (ja) * 2003-01-20 2004-08-12 Daikin Ind Ltd 空気調和機および空気調和機の制御方法
JP2006170596A (ja) * 2004-11-16 2006-06-29 Sanyo Electric Co Ltd 空気調和装置
JP2011033302A (ja) * 2009-08-05 2011-02-17 Takumasa Watanabe 調湿換気装置
JP2013044498A (ja) * 2011-08-26 2013-03-04 Taiji Imaizumi 省エネ換気扇
JP2021038869A (ja) * 2019-09-02 2021-03-11 ダイキン工業株式会社 空調システム

Also Published As

Publication number Publication date
CN117836565A (zh) 2024-04-05
JP2023034996A (ja) 2023-03-13
JP7332927B2 (ja) 2023-08-24

Similar Documents

Publication Publication Date Title
JP2004225945A (ja) 空気調和機および空気調和機の制御方法
JP5594030B2 (ja) コントローラ、調湿用制御部および空調処理システム
WO2023032738A1 (ja) 空気調和装置
WO2023032380A1 (ja) 換気装置
WO2023032731A1 (ja) 空気調和システム
WO2023032379A1 (ja) 加湿装置
JP7182026B1 (ja) 加湿装置
WO2023032397A1 (ja) 空気調和装置
JP7208562B1 (ja) 空気調和装置
JP2009109134A (ja) 換気装置
WO2023085166A1 (ja) 空気調和装置
JP2023035192A (ja) 空気調和装置
WO2024101430A1 (ja) 空気処理装置
JP2023065165A (ja) 換気装置
JP2024068878A (ja) 空気調和装置
JP2024068764A (ja) 空気調和装置
JP2023070421A (ja) 空気調和装置
WO2022030145A1 (ja) 空調室内機
JP2024068991A (ja) 空気処理装置
JP2024068992A (ja) 空調システム
CN1920406A (zh) 增加湿度显示功能的空调器
JP2023150491A (ja) 空気調和装置
JP2022028550A (ja) 情報報知システム
JP2022028549A (ja) 情報報知システム
JP2023035001A (ja) 加湿システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863968

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280057117.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE