WO2012066980A1 - リチウムイオン二次電池負極集電体用の銅箔、リチウムイオン二次電池負極材及びリチウムイオン二次電池負極集電体選定方法 - Google Patents

リチウムイオン二次電池負極集電体用の銅箔、リチウムイオン二次電池負極材及びリチウムイオン二次電池負極集電体選定方法 Download PDF

Info

Publication number
WO2012066980A1
WO2012066980A1 PCT/JP2011/075716 JP2011075716W WO2012066980A1 WO 2012066980 A1 WO2012066980 A1 WO 2012066980A1 JP 2011075716 W JP2011075716 W JP 2011075716W WO 2012066980 A1 WO2012066980 A1 WO 2012066980A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
copper foil
secondary battery
ion secondary
lithium ion
Prior art date
Application number
PCT/JP2011/075716
Other languages
English (en)
French (fr)
Inventor
松嶋 英明
咲子 朝長
三宅 行一
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to KR1020137015449A priority Critical patent/KR20130087042A/ko
Priority to CN2011800545366A priority patent/CN103210533A/zh
Priority to US13/885,540 priority patent/US20130288122A1/en
Publication of WO2012066980A1 publication Critical patent/WO2012066980A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a copper foil for a negative electrode current collector for a lithium ion secondary battery, a lithium ion secondary battery negative electrode material, and a method for selecting a negative electrode current collector for a lithium ion secondary battery. It is related with the copper foil for lithium ion secondary battery negative electrode collectors which can prevent a deformation
  • Lithium ion secondary batteries in which charging and discharging are performed by moving lithium ions between a positive electrode and a negative electrode are known.
  • Lithium ion secondary batteries are widely used as power sources for portable electronic devices and the like because they have a high capacity and a high energy density and are free from problems such as memory effects.
  • a copper foil is used as a negative electrode current collector of a lithium ion secondary battery.
  • the copper foil for example, electrolytic copper foil or rolled copper foil is used.
  • a negative electrode material of a lithium ion secondary battery includes a negative electrode mixture layer including a negative electrode active material, a conductive material, a binder (binder) and the like on the surface of a copper foil as a current collector (for example, Patent Document 1).
  • the negative electrode active material carbon-based materials such as graphite capable of occluding and releasing lithium ions are generally used, and in recent years, silicon-based materials that have a larger theoretical capacity than graphite-based materials And tin-based materials have been proposed as next-generation negative electrode active materials.
  • the negative electrode active material exemplified above occludes / releases lithium during charge / discharge, but at that time, volume change occurs.
  • the negative electrode mixture layer expands / shrinks along with the volume change of the negative electrode active material, the negative electrode mixture layer is in close contact with the surface of the current collector, so that stress is applied between the negative electrode mixture layer and the current collector. Join. If the current collector is deformed such as wrinkles due to the expansion of the current collector by repeating the charge / discharge cycle, a short circuit occurs between the positive electrode and the negative electrode, or the distance between the positive electrode and the negative electrode Changes, the uniform electrode reaction is hindered, and the charge / discharge cycle durability decreases.
  • silicon-based materials and tin-based materials have a large volume change during charge / discharge, so when silicon-based materials and tin-based materials are used as negative electrode active materials, the problem is significant. It was.
  • the subject of this invention is the copper foil for lithium ion secondary battery negative electrode electrical power collectors which can prevent a deformation
  • the present inventors have come to solve the above problems by adopting the following copper foil and lithium ion secondary battery negative electrode material for a negative electrode of a lithium ion secondary battery. .
  • the present inventors have found a method for selecting an appropriate copper foil as a negative electrode current collector for a lithium ion secondary battery.
  • the copper foil for the negative electrode current collector of the lithium ion secondary battery according to the present invention has an origin of O in the load-elongation curve when a 10 mm wide test piece made of the copper foil is subjected to a tensile test, and the elongation the rate is the load when load when the E Q is P Q - the point on the growth curve when is Q, in the region L value is 0.8 or more represented by the following formula (1)
  • the maximum load when the test piece is subjected to the tensile test is 30 N or more.
  • the triangle OQE Q indicates a triangle having the origin O, the point Q, and the point E Q as vertices in the load-elongation rate curve.
  • the region OQE Q indicates a region surrounded by the curve OQ, the line segment QE Q, and the line segment OE Q in the load-elongation rate curve.
  • the L value is a value for evaluating the linearity of the load-elongation curve.
  • the L value always shows 0.8 or more when the load applied to the test piece is 30 N or less. At this time, it is more preferable that the L value always shows 0.8 or more in a range where the load applied to the test piece is 40 N or less.
  • the L value is also obtained when the copper foil after heat treatment at 70 ° C. to 450 ° C. is used as the test piece.
  • the maximum load load is preferably 30 N or more.
  • the surface roughness (Ra) of each surface of the copper foil is preferably in the range of 0.2 ⁇ m to 0.7 ⁇ m.
  • the lithium ion secondary battery negative electrode material according to the present invention uses the copper foil for a lithium ion secondary battery negative electrode current collector as described above as a current collector, and includes a negative electrode active material on the surface of the current collector. A negative electrode mixture layer is provided.
  • the negative electrode active material is at least one selected from the group consisting of B, Al, Ga, In, C, Si, Ge, Sn, Pb, Zn, and Ag. It is preferable to use a material containing the above elements. Among these, it is particularly preferable to use a material containing Si or Sn having a large theoretical capacity.
  • the method for selecting a negative electrode current collector for a lithium ion secondary battery according to the present invention is a method for selecting a negative electrode current collector for a lithium ion secondary battery for selecting a copper foil used for a negative electrode current collector for a lithium ion secondary battery.
  • the copper foil for a negative electrode current collector of a lithium ion secondary battery described in any of the above is selected as a current collector.
  • the copper foil according to the present invention as a current collector for a negative electrode of a lithium ion secondary battery, a material having a large theoretical capacity, such as Si or Sn, is used as a material for occluding or alloying with lithium.
  • the negative electrode mixture layer can follow the expansion / contraction of the negative electrode mixture layer even if the negative electrode mixture layer is greatly expanded / contracted due to charge / discharge. As a result, even when the charge / discharge cycle is repeated, deformation of the current collector or the like can be prevented from occurring or breaking.
  • the copper foil according to the present invention as a current collector for the negative electrode of a lithium ion secondary battery, further increase in energy density and capacity of the lithium ion secondary battery can be achieved, The life of the lithium ion secondary battery can be extended.
  • Example 3 is a load-elongation curve for explaining L values indicating selection criteria or characteristics of a copper foil for a negative electrode current collector of a lithium ion secondary battery according to the present invention. It is a figure which shows the load-elongation rate curve of the electrolytic copper foil manufactured in Example 1- Example 3 and a comparative example. It is the figure which plotted the L value at that time with respect to the tensile load loaded on the test piece.
  • X-ray-CT image (a) obtained by photographing the cross section of the deformation evaluation cell 1-1 produced in Example 1
  • X-ray CT image obtained by photographing the cross section of the deformation evaluation cell 2-1 produced in Example 2.
  • X-ray-CT image (c) obtained by photographing the cross section of the deformation evaluation cell 3-1 produced in Example 3, and X-ray obtained by photographing the cross section of the deformation comparison cell 1-1 produced in the comparative example.
  • -CT image (d). X-ray-CT image (a) obtained by photographing the cross section of the deformation evaluation cell 1-2 produced in Example 1, and X-ray CT image obtained by photographing the cross section of the deformation evaluation cell 2-2 produced in Example 2.
  • B) X-ray-CT image (c) obtained by photographing a cross section of the deformation evaluation cell 3-2 produced in Example 3, and X-ray obtained by photographing a cross section of the deformation evaluation cell 1-2 produced in the comparative example.
  • FIG. 6 is a photograph showing an external appearance of a current collector after one charge / discharge cycle of a deformation evaluation cell 3-2 produced in Example 3.
  • FIG. 6 is a photograph showing the external appearance of a current collector after one charge / discharge cycle of a deformation comparison cell 1-1 produced in a comparative example.
  • a lithium ion secondary battery has a wound body in which a positive electrode material and a negative electrode material formed in a long shape are integrally wound with a separator interposed in a rectangular or cylindrical casing. What is contained is generally known.
  • a cell in which a set of a positive electrode material and a negative electrode material formed in a rectangular shape are opposed to each other via a separator, or a laminate cell type in which a plurality of sets of cells are laminated and covered with a laminate material is also adopted. Yes. Since lithium ions are highly reactive with water, a nonaqueous electrolytic solution is generally used as the electrolytic solution.
  • Electrode reaction In the electrode reaction of a lithium ion secondary battery, lithium ions (Li +) move from the positive electrode side to the negative electrode side through the separator, and charging is performed by occlusion of lithium ions in the negative electrode mixture layer on the negative electrode side. Is done. And lithium ion is discharge
  • the electrode material positive electrode material, negative electrode material
  • an electrode (positive electrode, negative electrode) mainly refers to an electrode material in a state that can be accompanied by an electrode reaction, or an electrode as a component in a state assembled as a lithium ion secondary battery. .
  • the positive electrode material includes a positive electrode mixture layer (or positive electrode active material layer) on at least one side of a positive electrode current collector formed in a predetermined shape.
  • the positive electrode mixture layer includes a positive electrode active material, a conductive material, a binder (binder), and the like.
  • a lithium transition metal composite oxide is used as the positive electrode active material.
  • the lithium transition metal composite oxide include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , LiCo 0 . 5 Ni 0 . 5 O 2 , LiNi 0 . 7 Co 0 . 2 Mn 0. Such as 1 O 2, LiNi 1/3 Co 1/3 Mn 1/3 O 2 can be used.
  • the positive electrode active material is not limited to these exemplified lithium transition metal composite oxides.
  • a positive electrode active material can be used 1 type or in combination of 2 or more types.
  • the positive electrode mixture layer is obtained by suspending the positive electrode active material, the conductive material, and the binder in an appropriate solvent to produce a positive electrode mixture, and applying this to the surface of a current collector such as an aluminum foil, After drying, it is annealed as necessary, and then manufactured through processes such as roll rolling and pressing.
  • a current collector such as an aluminum foil
  • acetylene black or the like can be used.
  • the binder polyvinylidene fluoride or the like can be used.
  • the negative electrode material comprises a negative electrode mixture layer on at least one side of a negative electrode current collector formed in a predetermined shape.
  • the negative electrode mixture layer includes a negative electrode active material, a conductive material, a binder, and the like.
  • a conductive material acetylene black, ketjen black, graphite or the like can be used.
  • binder polyamic acid (polyimide), polyvinylidene fluoride, styrene butadiene rubber, polyethylene, ethylene propylene diene monomer, polyurethane, polyacrylic acid, polyvinyl ether, polyamide imide, or the like can be used.
  • the negative electrode mixture layer is prepared by suspending a negative electrode active material, a conductive material, and a binder described below in an appropriate solvent to produce a negative electrode mixture, which is the present invention. It is applied to the surface of the current collector according to the above, dried, and then subjected to an annealing treatment as necessary, and then manufactured through processes such as roll rolling and pressing.
  • the manufacturing method of the negative electrode material is not particularly limited, and can be manufactured by a sputtering method or a vapor deposition method.
  • Negative electrode active material As the negative electrode active material, in the present invention, a material that occludes / releases lithium (including a material that is alloyed / dealloyed with lithium, the same applies hereinafter) is used.
  • Specific examples of the negative electrode active material include materials containing at least one element selected from the group consisting of B, Al, Ga, In, C, Si, Ge, Sn, Pb, Zn, and Ag.
  • the material containing at least one element selected from the group consisting of B, Al, Ga, In, C, Si, Ge, Sn, Pb, Zn, and Ag is a simple substance of each of these elements. It may be an oxide containing at least one of these elements or a nitride.
  • the alloy containing these elements may be sufficient.
  • Si and Sn have a higher theoretical capacity than carbon-based materials that have been used as negative electrode active materials in the past, from the viewpoint of providing a lithium ion secondary battery with higher energy density and higher capacity. It is preferable to use a material containing Si or a material containing Sn as the negative electrode active material.
  • the material containing Si is a material that can occlude and release lithium (including alloying and dealloying, the same applies hereinafter) and contains Si.
  • Si silicon
  • silicon (Si) simple substance, silicon oxide, an alloy of silicon and other metal elements, and the like can be given. These materials can be used alone or in combination.
  • the metal element that forms an alloy with silicon include one or more elements selected from the group consisting of B, Cu, Ni, Co, Cr, Fe, Ti, Pt, W, Mo, and Au. Of these metal elements, B, Cu, Ni, and Co are preferable. In particular, Cu and Ni are preferably used from the viewpoints of excellent electronic conductivity and low ability to form a lithium compound.
  • the material containing Sn is a material that can occlude / release lithium, or can be alloyed / dealloyed with lithium and contains Sn.
  • tin (Sn) simple substance, tin oxide, and an alloy of tin and other elements can be used.
  • the metal element that forms an alloy with tin include one or more elements selected from the group consisting of Cu, Ni, Co, Cr, Fe, Ti, Pt, W, Mo, and Au. More specifically, an Sn—Co—C alloy can be cited as an alloy of tin and other elements.
  • Si or Sn has a large structural change or volume change during lithium insertion / release compared with carbon-based materials such as graphite. Since the negative electrode mixture layer is formed so as to be in close contact with the surface of the current collector, when the volume of the negative electrode mixture layer expands and contracts greatly during charge / discharge, when the charge / discharge cycle is repeated, the negative electrode mixture layer and A large load is repeatedly applied to the current collector. For this reason, in a lithium ion secondary battery using Si or Sn or the like as a negative electrode active material, the current collector expands or contracts as a result of deformation such as wrinkles as compared with the case where a carbon-based material such as graphite is used as a negative electrode active material. Or easily break.
  • the copper foil according to the present invention is characterized by having the mechanical characteristics described below, and is suitably used as a current collector for a negative electrode of a lithium ion secondary battery. be able to.
  • the origin is O and the elongation is E in a load-elongation curve (see FIG. 1) when a test piece made of the copper foil having a width of 10 mm is subjected to a tensile test.
  • the load when the load when the Q is P Q - the point on the growth curve is taken as Q in the region L value is 0.8 or more represented by the following formula (1), the test It is mentioned that the maximum load when the piece is subjected to a tensile test is 30 N or more.
  • the maximum load load value when the test piece is subjected to the tensile test is referred to as “S value”.
  • the triangle OQE Q indicates a triangle having the origin O, the point Q, and the point E Q as vertices in the load-elongation rate curve illustrated in FIG.
  • the region OQE Q indicates a region surrounded by the curve OQ, the line segment QE Q, and the line segment OE Q in the load-elongation rate curve.
  • Tensile test is performed as follows.
  • the shape of the test piece is a substantially rectangular shape having a width of 10 mm.
  • the distance between the gauge points was 50 mm, and the tensile speed was 5 mm / min.
  • tensile strength (tensile strength) is generally employed as an index representing the mechanical strength of the copper foil.
  • the tensile strength is represented by a stress (N / mm 2 ) corresponding to the maximum force applied during the test. This is a value obtained by dividing the load applied to the test piece by the cross-sectional area of the test piece.
  • Tensile strength is a basic mechanical property of a material.
  • the tensile strength of each copper foil shows a substantially identical value.
  • the thickness of the actual current collector is better when the thick copper foil is used. Decrease. Therefore, in the present invention, a technique for expressing the mechanical characteristics of the copper foil as a current collector not by the tensile strength measured by the tensile test but by the value of the load (N) actually applied to the test piece. I found.
  • the mechanical properties of the copper foil can be more appropriately defined, and the negative electrode of a lithium ion secondary battery, particularly a lithium ion secondary battery that employs Si or Sn as a negative electrode active material
  • An appropriate copper foil can be selected as the current collector.
  • the L value obtained according to the above equation (1) is an index representing the linearity of the load-elongation curve.
  • the L value is “1”, and the linearity of the load-elongation curve is the highest.
  • the load applied to the test piece is 30 N or less and the L value always shows 0.8 or more, the linearity of the load-elongation curve is high.
  • the copper foil having such an L value is a load of 30 N or less, even if the elongation occurs according to the load, the copper foil returns to the original shape of the substantially original size when the load is unloaded. Can do. For this reason, by using the copper foil which concerns on this invention as a collector, even if it repeats a charging / discharging cycle, possibility that deformation
  • the copper foil according to the present invention has the L value always showing 0.8 or more in a range where the load applied to the test piece is 30 N or less. Further, it is more preferable that the L value always shows 0.8 or more in a range where the load applied to the test piece is 40 N or less. When the load applied to the test piece is 30 N or less and the L value always shows 0.8 or more, the current collector is not easily damaged even if the charge / discharge cycle is repeated for the same reason as described above. The possibility of deformation is reduced.
  • the L value is always 0.8 or more, there is a possibility that the current collector may be deformed even if the charge / discharge cycle is repeated. Can be lower.
  • the L value is always 0.8 or more in a range where the load applied to the test piece is 40 N or less. It is more preferable to use the copper foil shown.
  • the copper foil according to the present invention preferably has an elongation (%) of 0.1 to 3.5 when a load of 30 N is applied to the test piece.
  • the elongation percentage (%) of the test piece when a load of 30 N is applied is less than 0.1, when the copper foil is used as a current collector, it cannot follow the expansion of the volume of the negative electrode mixture layer, The current collector may break during discharge.
  • the elongation (%) when a load of 30 N is applied exceeds 3.5, the copper foil is used as a current collector, and the result is that the electrode material layer expands following the expansion of the volume of the negative electrode mixture layer. The risk of wrinkles on the current collector increases. From these viewpoints, the elongation percentage (%) is preferably 0.1 to 3.5.
  • the negative electrode material after applying the negative electrode mixture layer, drying is performed for several seconds to several tens of minutes in a temperature range of about 70 ° C. to 200 ° C. in order to remove the solvent.
  • a negative electrode mixture layer is applied to the surface of the current collector, and then a dehydration condensation reaction is performed to obtain polyimide from the polyamic acid.
  • heat treatment is performed in a temperature range of 120 ° C. to 450 ° C. for about 0.5 hours to 5 hours. Accordingly, it is preferable that the copper foil has the above-described mechanical characteristics even after the heat treatment is performed in such a temperature range for about 0.5 to 5 hours.
  • the above-mentioned mechanical properties refer to at least mechanical properties (a) among mechanical properties (a) to (c). That is, in the load-elongation curve when the tensile test was performed using the copper foil after heat treatment at 70 ° C. to 450 ° C. as a test piece, the test was performed in the region where the L value was 0.8 or more. The maximum load applied to the piece, that is, the S value is 30N or more.
  • Thickness Here, as the thickness of the copper foil used as the current collector increases, the actual elongation rate of the current collector when the same load (N) is applied if the copper foil is of the same foil type. (Deformation amount) becomes smaller. For this reason, from the viewpoint of preventing deformation of the current collector, it is preferable to employ a thick copper foil. However, from the viewpoint of further reducing the size of the lithium ion secondary battery, it is more preferable that the current collector is thinner. This is because when the thickness of the current collector increases, the capacity per unit volume of the lithium ion secondary battery decreases, which is not preferable.
  • the thickness of the copper foil for the negative electrode current collector of the lithium ion secondary battery according to the present invention is preferably 35 ⁇ m or less, more preferably 18 ⁇ m or less, and even more preferably 12 ⁇ m or less.
  • the copper foil preferably has appropriate handling properties, and the copper foil preferably has a thickness of 6 ⁇ m or more.
  • the lower limit regarding thickness will not be specifically limited.
  • the surface roughness (Ra) of each surface of the copper foil for a lithium ion secondary battery negative electrode collector according to the present invention is 0.1 ⁇ m or more. Furthermore, the surface roughness (Ra) of each surface is more preferably in the range of 0.2 ⁇ m to 0.7 ⁇ m. When the surface roughness (Ra) of each surface is 0.2 ⁇ m to 0.7 ⁇ m, the adhesion to the negative electrode mixture layer can be maintained.
  • the difference in surface roughness (Ra) of each surface of the copper foil is preferably 0.6 ⁇ m or less. This is because, if there is a difference in surface roughness (Ra) between one surface and the other surface, a stress difference is generated and wrinkles or the like are considered to occur.
  • Electrolytic copper foil The copper foil for the negative electrode current collector of the lithium ion secondary battery according to the present invention may be a rolled copper foil or an electrolytic copper foil. However, in view of economy and production efficiency, it is preferable to use electrolytic copper foil from the viewpoint that it can be manufactured at low cost.
  • the electrolytic copper foil having the above-mentioned mechanical characteristics and the like, there is one having a chlorine concentration of 40 ppm to 200 ppm contained in the electrolytic copper foil.
  • the electrolytic copper foil has, for example, a copper concentration in the range of 60 g / L to 90 g / L, a sulfuric acid concentration in the range of 80 g / L to 250 g / L, and a chlorine ion content in the range of 1 ppm to 3 ppm.
  • the temperature of the electrolyte solution was adjusted to 40 °C ⁇ 60 °C, 30A / dm 2 ⁇ 120A / dm 2 of the electrolysis current It can be obtained by electrolysis at a density.
  • the surface roughness (Ra) of each surface is within the above range by performing a roughening treatment on one surface or both surfaces as necessary.
  • the electrolytic copper foil having a certain smoothness on each surface has a more uniform film thickness, and the surface roughness (Ra) of each surface is within the above range, whereby the negative electrode mixture layer, the current collector, Can be ensured.
  • the difference in surface roughness (Ra) on both sides is smaller because deformation caused by the stress difference can be prevented.
  • Silane coupling agent treatment In the copper foil for the negative electrode current collector of the lithium ion secondary battery of the present invention, it is preferable to provide a silane coupling agent layer on at least the side of the copper foil on which the negative electrode mixture layer is formed. . This is because the adhesion between the copper foil and the negative electrode mixture layer can be improved by providing the silane coupling agent layer.
  • silane coupling agent for example, epoxyalkoxysilane, aminoalkoxysilane, methacryloxyalkoxysilane, mercaptoalkoxysilane and the like can be used. Two or more kinds of such silane coupling agents may be used in combination.
  • the silane coupling agent layer can be formed using a known method. Specifically, a silane coupling agent layer is applied to the surface of the copper foil by applying a silane coupling agent on the surface of the copper foil by dipping or spraying, and then performing drying and heat treatment as necessary. Can be formed.
  • the current collector By adopting the copper foil having the characteristics described above as a current collector constituting the negative electrode material of the lithium ion secondary battery, even if the volume of the negative electrode mixture layer expands during charging, the current collector follows it. be able to. And when the volume of the negative electrode mixture layer shrinks during discharge, the current collector can return to its original shape, preventing deformation of the current collector even if the charge / discharge cycle is repeated. can do.
  • Electrolytic copper foil preparation process In Example 1, the electrolytic copper foil 1 was produced as follows as copper foil for lithium ion secondary battery negative electrode electrical power collectors. In producing the electrolytic copper foil 1, an electrolytic copper foil manufacturing apparatus having a known rotating cathode was employed. An electrolyte containing 80 g / L of copper ions, 250 g / L of sulfuric acid, 2.7 ppm of chlorine ions, and 2 ppm of gelatin was continuously supplied, and the current density was 60 A / dm at a liquid temperature of 50 ° C. At 2 , electrolysis was performed to deposit copper on the surface of the rotating cathode.
  • the copper foil electrodeposited on the surface of the rotating cathode was peeled off to produce an electrolytic copper foil 1 having a converted thickness of 12 ⁇ m (gauge thickness: 12 ⁇ m).
  • the converted thickness is a thickness obtained from the density of copper based on the mass per unit area.
  • Roughening treatment step Next, roughening treatment was performed using a commonly used roughening treatment apparatus.
  • an acidic copper electrolytic solution of 8 g / L of copper ions and 200 g / L of sulfuric acid is used as the electrolytic solution, and the temperature is 35 ° C. and the current density is 25 A / dm 2. Copper particles were deposited and formed. Then, using copper sulfate ion 70 g / L, sulfuric acid 110 g / L sulfuric acid acidic copper electrolyte, adopting smooth plating conditions with a liquid temperature of 50 ° C.
  • the roughening process was completed by applying a covering plating to prevent the falling off.
  • the surface roughness (Ra) of the larger surface of the electrolytic copper foil 1 obtained in this step was 0.35 ⁇ m, and the roughness (Ra) of the other surface was 0.32 ⁇ m.
  • the surface roughness (Ra) was measured using a stylus type surface roughness meter (trade name: SE-3500) manufactured by Kosaka Laboratory.
  • SE-3500 stylus type surface roughness meter
  • Silane coupling agent treatment step The silane coupling agent treatment was performed on the electrolytic copper foil 1 that had undergone the roughening treatment step.
  • 3-aminopropyltrimethoxysilane was used as the silane coupling agent.
  • Spray treatment was performed in a shower to form silane coupling agent layers on both sides of the electrolytic copper foil 1.
  • a negative electrode mixture layer was formed on the surface of the electrolytic copper foil 1 obtained as described above as follows.
  • a negative electrode mixture layer a negative electrode mixture containing a negative electrode active material, a conductive material, and a binder was prepared.
  • silicon powder was used as the negative electrode active material
  • acetylene black was used as the conductive material
  • polyamic acid was used as the binder
  • NMP N-methylpyrrolidone
  • This negative electrode mixture was applied to one side of the electrolytic copper foil 1 (the surface with the larger roughness) using an applicator, dried at 200 ° C. for 2 hours to volatilize the solvent, and then the polyamic acid In order to perform the dehydration condensation reaction, annealing treatment was performed at 350 ° C. for 1 hour.
  • negative electrode material 1-1 what formed the negative mix layer on the single side
  • a tab made of Ni foil was attached to one side portion of the base end portion in the length direction of the electrode surface. This is designated as negative electrode material 1-1.
  • a negative electrode mixture layer is formed on both surfaces of the electrolytic copper foil 1 and is formed in the same size as the negative electrode material 1-1, and from the Ni foil at the same position as the negative electrode material 1-1.
  • the one provided with the tab was used as the negative electrode material 1-2.
  • Example 2 in the electrolytic copper foil manufacturing step, the negative electrode was formed only on one side of the electrolytic copper foil 2 in the same manner as in Example 1 except that the converted copper foil 2 having a converted thickness of 15 ⁇ m (gauge thickness of 15 ⁇ m) was prepared.
  • a negative electrode material 2-1 provided with an agent layer and a negative electrode material 2-2 provided with a negative electrode mixture layer on both surfaces of the electrolytic copper foil 2 were produced.
  • the surface roughness (Ra) of the surface having the larger roughness of the electrolytic copper foil 2 produced in Example 2 is 0.36 ⁇ m
  • the surface roughness (Ra) of the other surface is 0.32 ⁇ m. there were.
  • Example 3 in the electrolytic copper foil manufacturing step, the negative electrode was formed only on one side of the electrolytic copper foil 3 in the same manner as in Example 1 except that the electrolytic copper foil 3 having a converted thickness of 17 ⁇ m (gauge thickness 18 ⁇ m) was prepared.
  • a negative electrode material 3-1 provided with an agent layer and a negative electrode material 3-2 provided with a negative electrode mixture layer on both surfaces of the electrolytic copper foil 3 were produced.
  • the surface roughness (Ra) of the surface having the larger roughness of the electrolytic copper foil 3 produced in Example 3 is 0.37 ⁇ m
  • the surface roughness (Ra) of the other surface is 0.31 ⁇ m. there were.
  • a double-sided smooth copper foil having a converted thickness of 15 ⁇ m was used as a comparative electrolytic copper foil for comparison with Examples 1 to 3 described above.
  • the comparative electrolytic copper foil was the same as that of Example 1 except that DFF (registered trademark) series DFF15 (gauge thickness 15 ⁇ m) commercially available from Mitsui Mining & Smelting Co., Ltd. was used.
  • a comparative negative electrode material 1-1 having a negative electrode mixture layer provided on only one surface and a comparative negative electrode material 1-2 having a negative electrode mixture layer provided on both surfaces of the comparative copper foil were produced.
  • the surface roughness (Ra) of the surface with the larger roughness of the comparative copper foil used in this comparative example was 0.19 ⁇ m
  • the surface roughness (Ra) of the other surface was 0.16 ⁇ m. It was.
  • Examples 1 to 3 the electrolytic copper foils 1 to 3 used as current collectors and the deformation evaluation during charging / discharging of the comparative electrolytic copper foil, and the lithium ion secondary battery
  • a deformation evaluation cell and a cycle durability evaluation cell were prepared as follows.
  • a lithium metal electrode as a counter electrode of the test electrode was produced as follows.
  • As the current collector the same one as the electrolytic copper foil 1 used in the negative electrode material 1-1 was cut into the same size.
  • a material obtained by superimposing a lithium metal foil on the surface of the electrolytic copper foil 1 was used as a counter electrode material for deformation evaluation.
  • the negative electrode material 1-1 provided with the negative electrode mixture layer only on one side is covered with a separator, and the counter electrode material is disposed so that the negative electrode mixture layer and the lithium metal foil face each other with the separator interposed therebetween. I let you. This was used as a pair of electrodes. Then, the pair of electrodes were covered with a laminate material, and the edge of the laminate material was heat-sealed, leaving an electrolyte inlet. At this time, the tab was exposed to the outside from the laminate material.
  • the injection hole was heat-sealed and the lithium ion secondary battery of a 2 layer laminate structure was produced.
  • a deformation evaluation cell 1-1 using the electrolytic copper foil produced in Example 1 as a current collector was obtained.
  • the deformation evaluation cell 2 was obtained in the same manner as described above except that the negative electrode material 2-1 produced in Example 2 was used instead of the negative electrode material 1-1, and the electrolytic copper foil 2 was used as a current collector for the counter electrode. -1 was obtained.
  • a deformation evaluation cell 3-1 was obtained in the same manner as described above except that the negative electrode material 3-1 produced in Example 3 was used and the electrolytic copper foil 3 was used as the counter electrode current collector.
  • a modified comparative cell 1-1 was obtained in the same manner as described above except that the comparative negative electrode material 1-1 produced in the comparative example was used and a comparative electrolytic copper foil was used as a current collector for the counter electrode.
  • the deformation evaluation cell 2-2 was made in the same manner as described above except that the negative electrode material 2-2 produced in Example 2 was used instead of the negative electrode material 1-2 and the electrolytic copper foil 2 was used as a current collector for the counter electrode.
  • a deformation evaluation cell 3-2 was obtained in the same manner as above except that the electrolytic copper foil 3 was used as the negative electrode material 3-2 produced in Example 3 and the current collector for the counter electrode.
  • a modified comparison cell 1-2 was obtained in the same manner as described above except that the comparative negative electrode material 1-2 produced in the comparative example and the comparative electrolytic copper foil were used as the current collector for the counter electrode.
  • Cycle Durability Evaluation Cell In order to perform the cycle durability of a lithium ion secondary battery using each electrolytic copper foil as a negative electrode current collector by full cell evaluation, a negative electrode material was used as a cycle durability evaluation cell. A three-layer laminate cell for durability evaluation using each of 1-2, the negative electrode material 3-2, and the comparative negative electrode material 1-2 as a negative electrode was prepared as follows. However, the cycle durability refers to an evaluation based on the capacity maintenance rate (%) of the lithium ion secondary battery when the charge / discharge cycle is repeatedly performed.
  • a positive electrode material used as a positive electrode to be paired with each negative electrode was produced as follows. Lithium manganate as the positive electrode active material, acetylene black as the conductive material, polyvinylidene fluoride as the binder, and NMP as the solvent are mixed at a mixing ratio (mass ratio) of 5.6: 6.8: 100: 102. Thus, a positive electrode mixture (slurry) was prepared. This positive electrode mixture was applied to a current collector made of aluminum foil using an applicator, dried, and then rolled and pressed to obtain a positive electrode material. The positive electrode material thus produced was cut out such that the electrode surface had a width of 29 mm and a length of 40 mm. However, a tab made of Al foil was attached to one side of the base end in the length direction of the electrode surface. This was used as a positive electrode material.
  • a cycle durability evaluation cell 1 was obtained in the same manner as the method for producing a three-layer laminate cell for deformation evaluation.
  • a cell 3 for evaluating cycle durability was obtained using the negative electrode material 3-2 as a negative electrode and the positive electrode material as a positive electrode.
  • a cell obtained by using the comparative negative electrode material 1-2 as a negative electrode and the positive electrode material as a positive electrode was used as a durability comparison cell.
  • Charge / Discharge Method 2-1 Charge / Discharge Method of Deformation Evaluation Cell Deformation Evaluation Cell 1-1 to Deformation Evaluation Cell 3-2, Deformation Comparison Cell 1-1, and Deformation Comparison Cell 1-2 produced above.
  • 1 charge / discharge cycle was carried out. Charging was performed by capacity regulation, and discharging was performed by voltage regulation. Specifically, in the first cycle, charging was performed as follows. First, charging was performed under a constant current (CC) condition at a charge rate of 0.05 C until the end voltage reached 0.001 V (vs. Li / Li +). Subsequently, the battery was charged until the current value reached 0.01 C under constant voltage (CV) conditions.
  • CC constant current
  • CV constant voltage
  • the discharge capacity is 100% when discharging is performed under constant current (CC) conditions until the end voltage becomes 1.5 V at a discharge rate of 0.05 C, and the charge rate is 0 until the capacity reaches 82.5% at this time. Charged at .05C. On the other hand, the discharge was performed at a discharge rate of 0.05 C until the final voltage reached 1.5V.
  • CC constant current
  • the charging from the 2nd cycle to the 5th cycle was performed under a constant current / constant voltage (CCCV) condition with a charging rate of 0.1 C and a final voltage of 4.2 V.
  • the discharge was performed under a constant current (CC) condition with a discharge rate of 0.1 C and a final voltage of 3.0 V.
  • the charge and discharge after the 6th cycle were carried out up to 50 cycles under the same conditions except that the charge rate was 0.5C and the discharge rate was 0.5C.
  • Evaluation Method 3-1 Physical Properties (Mechanical Properties), 3-2 Deformation Evaluation after Charge / Discharge, and 3-3 Lithium Ion for the Copper Foil Prepared in Examples 1 to 3 and the Copper Foil Used in the Comparative Example Evaluation as a secondary battery negative electrode current collector was performed.
  • Each evaluation method is as follows.
  • electrolytic copper foils 1 to 3 used as negative electrode current collectors of lithium ion secondary batteries in Examples 1 to 3 and Comparative Examples and comparison
  • the physical properties of the electrolytic copper foil for normal use and after heat treatment were evaluated.
  • a tensile test was performed using each electrolytic copper foil as a test piece and using a universal testing machine (model 5582) manufactured by Instron Corporation.
  • the shape of the test piece was a rectangular shape having a width of 10 mm, and the distance between the gauge points was 50 mm.
  • the tensile speed was 5 mm / min.
  • the maximum load load (N), tensile strength (N / mm 2 ), elongation at break (%), and S value were determined for each test piece.
  • the maximum load load refers to the maximum load (N) applied to the test piece during the test.
  • the tensile strength (tensile strength) has shown the value (N / mm ⁇ 2 >) which remove
  • the elongation at break (%) indicates a value (%) in which the permanent elongation after the break is expressed as a percentage with respect to the distance between the original marks (50 mm).
  • the electrolytic copper foil in a normal state refers to an electrolytic copper foil that is not particularly heat-treated.
  • the electrolytic copper foil after heat treatment refers to the electrolytic copper foil after heat-drying at 200 ° C. for 2 hours and then annealing at 350 ° C. for 1 hour.
  • each cell was disassembled, and whether or not deformation such as wrinkles occurred in electrolytic copper foil 1 to electrolytic copper foil 3 and comparative electrolytic copper foil was visually observed.
  • an industrial X-ray CT scanner (TOSCANER-32250 ⁇ hd) manufactured by Toshiba IT Control System Co., Ltd. was used for taking X-ray-CT images.
  • Electrolytic copper foils 1 to 3 as lithium ion secondary battery negative electrode current collectors and comparative electrolytic copper foils were evaluated. Specifically, the deformation rate (%) of each electrolytic copper foil after one charge / discharge cycle and the state of occurrence of wrinkles, and each electrolytic copper foil after heat treatment were used as test pieces, and a load of 30 N in the tensile test. On the basis of the L value at the time of loading, the capacity retention rate (%) of the lithium ion secondary battery after 50 charge / discharge cycles, and the S value of each electrolytic copper foil after the heat treatment. It was determined whether or not the copper foil was suitable as a lithium ion secondary battery negative electrode current collector.
  • the deformation rate (%) of the electrolytic copper foil is the extension of the current collector in a predetermined direction (for example, the long direction) after performing one charge / discharge cycle by the above-described method for each deformation evaluation cell.
  • the amount is expressed as a percentage of the original size of the current collector in the predetermined direction.
  • the capacity retention rate (%) is the capacity retention rate (%) of each cell after 50 cycles of charge / discharge, (discharge capacity at 50th cycle) / (discharge capacity at 5th cycle) ⁇ 100. It was obtained by calculating.
  • L value, and S value the same method as described in the method for evaluating 3-1 physical properties (mechanical characteristics) and 3-2 for evaluating deformation after charge / discharge was adopted.
  • the S values of the electrolytic copper foils 1 to 3 prepared in Examples 1 to 3 are all 30 N or more after the heat treatment.
  • the S value of the comparative electrolytic copper foil used in the comparative example was 19N.
  • FIG. 2 shows a load-elongation curve of each test piece obtained by the tensile test for each electrolytic copper foil after the heat treatment.
  • the point on the elongation curve is Q (see FIG. 1)
  • the L value obtained based on the above formula (1) is plotted against the tensile load at that time.
  • the electrolytic copper foils 1 to 3 prepared in Examples 1 to 3 are larger in load load than the electrolytic copper foil used as a current collector in the comparative example. Is high.
  • the electrolytic copper foil used as the current collector in Examples 1 to 3 has an L value in a range where the load applied to the test piece made of each electrolytic copper foil is 30 N or less. It turns out that it is always 0.8 or more.
  • FIGS. 4-2 Deformation Evaluation after Charging / Discharging X-ray-CT images obtained by photographing a cross section of each cell after performing one charging / discharging cycle for each deformation evaluation cell are shown in FIGS.
  • FIG. 4 shows a cross section of each cell of the two-layer laminate cell type, (a) is a deformation evaluation cell 1-1, (b) is a deformation evaluation cell 2-1, and (c) is a cell.
  • Deformation evaluation cells 3-1 and (d) show cross sections of the deformation comparison cell 1-1, respectively.
  • FIG. 4 shows a cross section of each cell of the two-layer laminate cell type
  • (a) is a deformation evaluation cell 1-1
  • (b) is a deformation evaluation cell 2-1
  • (c) is a cell.
  • Deformation evaluation cells 3-1 and (d) show cross sections of the deformation comparison cell 1-1, respectively.
  • FIG. 5 shows a cross section of each cell of the three-layer laminate cell type, where (a) is a deformation evaluation cell 1-2, (b) is a deformation evaluation cell 2-2, and (c) is a deformation. Evaluation cells 3-2 and (d) show cross sections of the deformation comparison cell 1-2, respectively.
  • FIG. 6 one charge / discharge cycle was performed in each of the deformation evaluation cell 1-1 to the deformation evaluation cell 3-2, the deformation comparison cell 1-1, and the deformation comparison cell 1-2.
  • the deformation rate (%) of each current collector is shown.
  • the deformation rate after carrying out one charge / discharge cycle is extremely high in the comparative electrolytic copper foil used as the current collector in the comparative example.
  • Example 1, Example 2, Example 3 The electrolytic copper foil 1 to the electrolytic copper foil 3 used in each of the above cases have the negative electrode mixture layer provided on one side (the negative electrode material 1-1, the negative electrode material 2-1, and the negative electrode material 3-1, respectively). It can be seen that in any case where the agent layer is provided (the negative electrode material 1-2, the negative electrode material 2-2 and the negative electrode material 3-2), the deformation rate decreases as the thickness increases.
  • FIGS. 7 and 8 are external photographs of the current collector obtained by disassembling the cells after carrying out one charge / discharge cycle in the deformation evaluation cell 3-2 and the deformation comparison cell 1-1, respectively. Show. Referring to FIG. 7, it can be seen that the electrolytic copper foil 3 used as the negative electrode current collector in the deformation evaluation cell 3-2 has no wrinkles even when the negative electrode mixture layer is provided on both sides thereof. On the other hand, referring to FIG. 8, the comparative electrolytic copper foil used as the negative electrode current collector in the modified comparative evaluation cell 1-1 was provided with the negative electrode mixture layer only on one side. In addition, it is understood that wrinkles are generated on the entire surface when one charge / discharge cycle is performed.
  • Table 2 shows the evaluation results of the electrolytic copper foil 1, the electrolytic copper foil 3 and the comparative electrolytic copper foil as the lithium ion secondary battery negative electrode current collector. Show. As shown in Table 2, in the electrolytic copper foil 1 used as the current collector in Example 1, the amount of soot generated after one charge / discharge cycle of the deformation evaluation cell 1-2 was minimal. . In addition, the durability evaluation cell 1 using the electrolytic copper foil 1 as a negative electrode current collector achieved a capacity retention rate of 90% after 50 charge / discharge cycles. As a result, it can be evaluated that the electrolytic copper foil 1 has a practically no problem level as an electrolytic copper foil for a negative electrode current collector of a lithium ion secondary battery.
  • the electrolytic copper foil 3 used as the current collector in Example 3 did not generate soot after the charge / discharge cycle of the deformation evaluation cell 3-2 was performed once. Further, the durability evaluation cell 3 using the electrolytic copper foil 3 as a negative electrode current collector achieved a capacity retention rate of 92% even after 50 charge / discharge cycles. Therefore, it can be evaluated that the electrolytic copper foil 3 is very suitable as a current collector for a negative electrode current collector of a lithium ion secondary battery. On the other hand, when the comparative electrolytic copper foil was used as a current collector, wrinkles occurred on the entire surface when the charge / discharge cycle of the deformation comparison cell 1-2 was performed once. Moreover, the capacity retention rate after 50 charge / discharge cycles of the durability comparison cell was 80%.
  • the copper foil according to the present invention as a current collector for a negative electrode of a lithium ion secondary battery, a material having a large theoretical capacity, such as Si or Sn, is used as a material for occluding or alloying with lithium.
  • the negative electrode mixture layer can follow the expansion / contraction of the negative electrode mixture layer even if the negative electrode mixture layer is greatly expanded / contracted due to charge / discharge. As a result, even when the charge / discharge cycle is repeated, deformation of the current collector or the like can be prevented from occurring or breaking.
  • the copper foil according to the present invention as a current collector for the negative electrode of a lithium ion secondary battery, further increase in energy density and capacity of the lithium ion secondary battery can be achieved, The life of the lithium ion secondary battery can be extended.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本件発明の課題は、充放電サイクルを繰り返し行っても集電体の変形を防止することのできるリチウムイオン二次電池負極集電体用の銅箔、リチウムイオン二次電池負極材及びリチウムイオン二次電池負極集電体選定方法を提供することにある。 上記課題を解決するため、本件発明は、リチウムイオン二次電池負極集電体用の銅箔であって、当該銅箔からなる幅10mmの試験片を引張試験に供したときの荷重-伸び率曲線において、原点をOとし、伸び率がEのときの荷重がPであるときの当該荷重-伸び率曲線上の点をQとしたときに、下記式(1)で表わされるL値が0.8以上である領域において、当該試験片を前記引張試験に供したときの最大負荷荷重が30N以上であることを特徴とする銅箔を採用した。

Description

リチウムイオン二次電池負極集電体用の銅箔、リチウムイオン二次電池負極材及びリチウムイオン二次電池負極集電体選定方法
 本件発明は、リチウムイオン二次電池負極集電体用の銅箔、リチウムイオン二次電池負極材及びリチウムイオン二次電池負極集電体選定方法に関し、特に、充放電に起因する集電体の変形及び破断を防止することが可能なリチウムイオン二次電池負極集電体用の銅箔、リチウムイオン二次電池負極材及びリチウムイオン二次電池負極集電体選定方法に関する。
 従来より、正極と負極との間をリチウムイオンが移動することにより、充放電が行われるリチウムイオン二次電池が知られている。リチウムイオン二次電池は、高容量、高エネルギー密度であり、且つ、メモリー効果等の問題もないことから、携帯用電子機器などの電源として広く利用されている。
 リチウムイオン二次電池の負極集電体として、一般に、銅箔が用いられる。銅箔としては、例えば、電解銅箔や圧延銅箔が用いられる。リチウムイオン二次電池の負極材は、この集電体としての銅箔の表面に負極活物質と、導電材と、結着剤(バインダー)等を含む負極合剤層を備えて構成される(例えば、特許文献1)。また、負極活物質としては、リチウムイオンを吸蔵・放出することが可能なグラファイト等の炭素系材料が一般に用いられており、近年では、グラファイト系材料よりも理論容量の大きな材料であるシリコン系材料やスズ系材料が次世代の負極活物質として提案されている。
 上記例示した負極活物質は充放電時にリチウムを吸蔵・放出するが、その際に、体積変化を生じる。負極活物質の体積変化に伴い、負極合剤層が膨張・収縮すると、負極合剤層は集電体の表面に密着されているため、負極合剤層と集電体との間に応力が加わる。充放電サイクルを繰り返すことにより集電体が伸張する等の理由により、集電体に皺等の変形が生じると、正極と負極との間で短絡が生じたり、正極と負極との間の距離が変化して均一な電極反応が阻害され、充放電サイクル耐久性が低下してしまう。また、集電体に破断が生じると、単位体積当たりの容量が減少し、リチウムイオン二次電池の電池的特性が低下するという課題が生じていた。グラファイト系材料に比して、シリコン系材料やスズ系材料は、充放電時の体積変化が大きいため、シリコン系材料やスズ系材料を負極活物質として採用した場合、当該課題は顕著なものとなっていた。
特開2007-200686号公報
 本件発明の課題は、充放電サイクルを繰り返し行っても集電体の変形及び破断を防止することのできるリチウムイオン二次電池負極集電体用の銅箔、リチウムイオン二次電池負極材及びリチウムイオン二次電池負極集電体選定方法を提供することである。
 本件発明者等は、鋭意研究を行った結果、以下のリチウムイオン二次電池負極集電体用の銅箔及びリチウムイオン二次電池負極材を採用することで上記課題を解決するに到った。これと同時に、リチウムイオン二次電池負極集電体として適切な銅箔を選定する方法を見出した。
 本件発明に係るリチウムイオン二次電池負極集電体用の銅箔は、当該銅箔からなる幅10mmの試験片を引張試験に供したときの荷重-伸び率曲線において、原点をOとし、伸び率がEのときの荷重がPであるときの当該荷重-伸び率曲線上の点をQとしたときに、下記式(1)で表わされるL値が0.8以上である領域において、当該試験片を前記引張試験に供したときの最大負荷荷重が30N以上であることを特徴とする。
Figure JPOXMLDOC01-appb-M000002
 但し、上記式(1)において、三角形OQEは、当該荷重-伸び率曲線において、原点Oと、点Qと、点Eとをそれぞれ頂点とする三角形を指す。また、領域OQEは、当該荷重-伸び率曲線における曲線OQと、線分QEと、線分OEとにより囲まれる領域を指す。ここで、当該L値は、当該荷重-伸び率曲線の直線性を評価するための値である。下記式に示す三角形OQEの面積と領域OQEの面積が等しい場合、下記L値は「1」になり、荷重-伸び率曲線の直線性が最も高くなる。
 本件発明に係るリチウムイオン二次電池負極集電体用の銅箔において、前記試験片に負荷される荷重が30N以下の範囲で、前記L値が常に0.8以上を示すことが好ましい。このとき、試験片に負荷される荷重が40N以下の範囲で、前記L値が常に0.8以上を示すことがより好ましい。
 本件発明に係るリチウムイオン二次電池負極集電体用の銅箔において、70℃~450℃で熱処理が施された後の当該銅箔を前記試験片として用いた場合にも、前記L値が0.8以上である領域において、前記最大負荷荷重が30N以上であることが好ましい。
 本件発明に係るリチウムイオン二次電池負極集電体用の銅箔は、前記銅箔の各面の表面粗さ(Ra)がそれぞれ0.2μm~0.7μmの範囲内であることが好ましい。
 本件発明に係るリチウムイオン二次電池負極材は、上記いずれかに記載のリチウムイオン二次電池負極集電体用の銅箔を集電体とし、当該集電体の表面に負極活物質を含む負極合剤層を備えることを特徴とする。
 本件発明に係るリチウムイオン二次電池負極材において、前記負極活物質として、B、Al、Ga、In、C、Si、Ge、Sn、Pb、Zn及びAgからなる群から選択される少なくとも1種以上の元素を含む材料を用いることが好ましい。特にこれらの中でも理論容量の大きなSiやSnを含む材料を用いることが好ましい。
 本件発明のリチウムイオン二次電池負極集電体選定方法は、リチウムイオン二次電池負極集電体に用いる銅箔を選定するためのリチウムイオン二次電池負極集電体選定方法であって、選定候補の銅箔のうち、上記いずれかに記載のリチウムイオン二次電池負極集電体用の銅箔を集電体として選定することを特徴とする。
 本件発明に係る銅箔をリチウムイオン二次電池の負極用の集電体として用いることにより、リチウムを吸蔵、又は、リチウムと合金化する材料として、SiまたはSnなどの理論容量が大きな材料を負極活物質として採用する場合であっても、負極合剤層が充放電に起因して大きく膨張・収縮しても、負極合剤層の膨張・収縮に追従することができる。その結果、充放電サイクルを繰り返しても集電体に皺等の変形が生じたり、破断するのを防止することができる。従って、本件発明に係る銅箔をリチウムイオン二次電池の負極用の集電体として採用することにより、リチウムイオン二次電池の更なる高エネルギー密度化、高容量化を達成することができ、リチウムイオン二次電池の長寿命化を図ることができる。
本件発明に係るリチウムイオン二次電池負極集電体用の銅箔の選定基準或いは特性を示すL値を説明するための荷重-伸び率曲線である。 実施例1~実施例3及び比較例において製造した電解銅箔の荷重-伸び率曲線を示す図である。 試験片に負荷した引張荷重に対して、そのときのL値をプロットした図である。 実施例1で作製した変形評価用セル1-1の断面を撮影したX線-CT画像(a)、実施例2で作製した変形評価用セル2-1の断面を撮影したX線-CT画像(b)、実施例3で作製した変形評価用セル3-1の断面を撮影したX線-CT画像(c)、比較例で作製した変形比較用セル1-1の断面を撮影したX線ーCT画像(d)である。 実施例1で作製した変形評価用セル1-2の断面を撮影したX線-CT画像(a)、実施例2で作製した変形評価用セル2-2の断面を撮影したX線-CT画像(b)、実施例3で作製した変形評価用セル3-2の断面を撮影したX線-CT画像(c)、比較例で作製した変形評価用セル1-2の断面を撮影したX線-CT画像(d)である。 実施例及び比較例で集電体として用いた各電解銅箔の充放電サイクル1回実施後の変形率を示す図である。 実施例3で製造した変形評価用セル3-2の1回の充放電サイクル実施後の集電体の外観を示す写真である。 比較例で製造した変形比較用セル1-1の1回の充放電サイクル実施後の集電体の外観を示す写真である。
 以下、本件発明に係るリチウムイオン二次電池負極集電体用の銅箔、リチウムイオン二次電池負極材及びリチウムイオン二次電池負極集電体選定方法の好ましい実施の形態を説明する。
〈リチウムイオン二次電池〉
基本構成: リチウムイオン二次電池は、長尺形状に形成された正極材と負極材とをセパレータを介在させた状態で一体的に巻回した巻回体を角型或いは円筒型の筐体内に収容したものが一般に知られている。また、矩形形状に形成された正極材と負極材とをセパレータを介して一組対向させたセル、或いは、複数組のセルを積層してラミネート材で被覆したラミネートセルタイプのものも採用されている。リチウムイオンは水との反応性が高いため、電解液は一般に非水電解溶液が採用される。
電極反応: リチウムイオン二次電池の電極反応では、セパレータを介して、正極側から負極側にリチウムイオン(Li+)が移動し、負極側において負極合剤層にリチウムイオンが吸蔵されることにより充電が行われる。そして、負極合剤層からリチウムイオンが放出され、セパレータを介してリチウムイオンが正極側に移動し、正極合剤層に吸蔵されることにより、放電が行われる。なお、本件明細書では、電極材(正極材、負極材)とは、主として、電極を構成する材料、電極を製造する際に用いられる材料を指し、部品単体としての電極を指す場合もある。一方、本件明細書において、電極(正極、負極)とは、主として、電極反応を伴い得る状態下にある電極材、或いは、リチウムイオン二次電池として組み付けられた状態における構成部品としての電極を指す。
正極材: 正極材は、所定形状に形成された正極用の集電体の少なくとも片面側に正極合剤層(又は正極活物質層)を備えて構成される。正極合剤層は、正極活物質、導電材、結着剤(バインダー)等を含んで構成される。正極活物質として、例えば、リチウム遷移金属複合酸化物が用いられる。リチウム遷移金属複合酸化物としては、LiCoO、LiNiO、LiMn、LiMnO、LiCoNi、LiNiCoMn、LiNiCoMnなどを用いることができる。但し、正極活物質はこれらの例示したリチウム遷移金属複合酸化物に限定されるものではない。また、正極活物質は一種又は二種以上を組み合わせて用いることができる。
 正極合剤層は、上記正極活物質と、導電材と、結着剤とを適当な溶媒に懸濁し、正極合剤を作製し、これをアルミニウム箔等の集電体の表面に塗布し、乾燥した後、必要に応じてアニール処理を行い、その後、ロール圧延、プレス等の工程を経て製造される。導電材としては、アセチレンブラック等を用いることができる。また、結着剤として、ポリフッ化ビニリデン等を用いることができる。
負極材: 負極材は、所定形状に形成された負極用の集電体の少なくとも片面側に負極合剤層を備えて構成される。負極合剤層は、負極活物質、導電材、結着剤等を含んで構成される。導電材としては、アセチレンブラック、ケッチェンブラック、グラファイト等を用いることができる。また、結着剤として、ポリアミック酸(ポリイミド)、ポリフッ化ビニリデン、スチレンブタジエンラバー、ポリエチレン、エチレンプロピレンジエンモノマー、ポリウレタン、ポリアクリル酸、ポリビニルエーテル、ポリアミドイミド等を用いることができる。負極合剤層は、正極合剤層と同様に、次に説明する負極活物質と、導電材と、結着剤とを適当な溶媒に懸濁し、負極合剤を作製し、これを本件発明に係る集電体の表面に塗布し、乾燥した後、必要に応じてアニール処理を行い、その後、ロール圧延、プレス等の工程を経て製造される。但し、負極材の製造方法は特に限定されるものではなく、スパッタ法や蒸着法によっても製造することが可能である。
負極活物質: 負極活物質として、本件発明では、リチウムを吸蔵・放出する材料(リチウムと合金化・脱合金化する材料を含む、以下同じ)を用いる。負極活物質として、具体的には、B、Al、Ga、In、C、Si、Ge、Sn、Pb、Zn及びAgからなる群から選択される少なくとも1種以上の元素を含む材料が挙げられる。ここで、これらのB、Al、Ga、In、C、Si、Ge、Sn、Pb、Zn及びAgからなる群から選択される少なくとも1種以上の元素を含む材料とは、これらの各元素単体であってもよいし、これらの元素のうち少なくとも1種以上の元素を含む酸化物であってもよいし、窒化物であってもよい。また、これらの元素を含む合金であってもよい。特に、Si及びSnは、従来、負極活物質として用いられてきた炭素系材料に比して、理論容量が高いため、より高エネルギー密度、高容量のリチウムイオン二次電池を提供するという観点からSiを含む材料又はSnを含む材料を負極活物質として用いることが好適である。
 ここで、Siを含む材料とは、リチウムを吸蔵・放出(合金化・脱合金化を含む、以下同じ)することができ、且つ、Siを含有する材料である。例えば、シリコン(Si)単体、シリコン酸化物の他、シリコンと他の金属元素との合金などを挙げることができる。これらの材料はそれぞれ単独で、或いはこれらを混合して用いることができる。シリコンと合金化する金属元素としては、B、Cu、Ni、Co、Cr、Fe、Ti、Pt、W、Mo及びAuからなる群から選択される1種類以上の元素を挙げることができる。これらの金属元素のうち、B、Cu、Ni、Coが好ましく、特に電子伝導性に優れる点、リチウム化合物の形成能の低さなどの点から、Cu、Niを用いることが好ましい。しかしながら、リチウムイオンの吸蔵能の高さから、上記列挙した材料のうち、負極活物質として、シリコン単体又はシリコン酸化物を採用することが好ましい。
 一方、Snを含む材料とは、リチウムを吸蔵・放出することができ、或いは、リチウムと合金化・脱合金化することが可能で、且つ、Snを含有する材料である。例えば、スズ(Sn)単体、スズ酸化物の他、スズと他の元素との合金などを挙げることができる。スズと合金化する金属元素としては、例えば、Cu、Ni、Co、Cr、Fe、Ti、Pt、W、Mo及びAuからなる群から選択される1種類以上の元素が挙げられる。より具体的には、スズと他の元素との合金として、Sn-Co-C合金が挙げられる。しかしながら、リチウムイオンの吸蔵能の高さから、上記列挙した材料のうち、負極活物質として、スズ単体又はスズ酸化物を採用することが好ましい。
 上記列挙した材料のうち、グラファイト等の炭素系材料に比して、Si又はSn等は、リチウムの吸蔵・放出時における構造の変化や体積の変化が大きい。負極合剤層は集電体の表面に密着するように形成されるため、充放電時に負極合剤層の体積が大きく膨張・収縮すると、充放電サイクルを繰り返した場合に、負極合剤層と集電体との間には繰り返し大きな負荷が加わる。このため、Si又はSn等を負極活物質として用いるリチウムイオン二次電池では、グラファイト等の炭素系材料を負極活物質として用いた場合に比して、集電体が伸縮して皺などの変形を生じたり、破断しやすくなる。
〈リチウムイオン二次電池負極集電体用の銅箔〉
 本件発明者らは、鋭意研究の結果、リチウムイオン二次電池の負極用の集電体として、以下に説明する特徴を有する銅箔を採用することにより、充放電サイクルを繰り返し行った場合でも、集電体が変形するのを防止して、リチウムイオン二次電池の電池的特性を維持することが可能になることを見出した。以下、本件発明に係るリチウムイオン二次電池負極集電体用の銅箔について説明する。
機械的特性(a): 本件発明に係る銅箔は、次に説明する機械的特性を備えることを特徴とするものであって、リチウムイオン二次電池の負極用の集電体として好適に用いることができる。まず、当該銅箔の機械的特性として、当該銅箔からなる幅10mmの試験片を引張試験に供したときの荷重-伸び率曲線(図1参照)において、原点をOとし、伸び率がEのときの荷重がPであるときの当該荷重-伸び率曲線上の点をQとしたときに、下記式(1)で表わされるL値が0.8以上である領域において、当該試験片を引張試験に供したときの最大負荷荷重が30N以上であることが挙げられる。以下、本件明細書において、L値が0.8以上である領域において、当該試験片を前記引張試験に供したときの最大負荷荷重値を「S値」と称する。
Figure JPOXMLDOC01-appb-M000003
 但し、上記式(1)において、三角形OQEは、図1に例示する当該荷重-伸び率曲線において、原点Oと、点Qと、点Eとをそれぞれ頂点とする三角形を指す。また、領域OQEは、当該荷重-伸び率曲線における曲線OQと、線分QEと、線分OEとにより囲まれる領域を指す。
引張試験: ここで、本件発明において引張試験は、以下のようにして行うものとする。
本件発明では、試験片の形状を幅が10mmの略長方形状とした。そして、標点間の距離を50mmとし、引張速度は、5mm/minとした。ここで、銅箔の機械的強度を表す指標として、一般に引張強さ(抗張力)が採用される。引張強さは、試験中に加わった最大の力に対応する応力(N/mm)で表される。これは、試験片に負荷された荷重を試験片の断面積で割った値となる。引張強さは、材料の基本的な機械的特性である。このため、同一種類の銅箔であれば、銅箔の厚みが異なる場合であっても、各銅箔の引張強さは略同一の値を示す。しかしながら、同一種類の銅箔を集電体として用いた場合であっても、同一の荷重(N)が負荷された場合、厚みが厚い銅箔を採用した方が実際の集電体の変形量は減少する。そこで、本件発明では、引張試験により測定した引張強さではなく、試験片に対して実際に負荷される荷重(N)の値により、銅箔の集電体としての機械的特性を表現する手法を見出した。当該手法を採用することにより、銅箔の機械的特性をより適切に規定することができ、リチウムイオン二次電池、特に、負極活物質としてSi又はSn等を採用するリチウムイオン二次電池の負極集電体として適切な銅箔を選定することができる。
 以上のようにして、銅箔を引張試験に供したときの荷重-伸び率曲線に基づいて、上記式(1)に従って求めたL値は、荷重-伸び率曲線の直線性を表す指標となる。荷重-伸び率曲線において、三角形OQEの面積と領域OQEの面積が等しい場合、当該L値は「1」になり、荷重-伸び率曲線の直線性が最も高くなる。上記試験片に負荷された荷重が30N以下の範囲で、L値が常に0.8以上を示す場合、荷重-伸び率曲線の直線性は高い。従って、このようなL値を有する銅箔は、30N以内の荷重であれば、負荷に応じて伸びが生じても当該荷重が除荷された時点で、略原寸法の元の形状に戻ることができる。このため、本件発明に係る銅箔を集電体として用いることにより、充放電サイクルを繰り返し行っても集電体に皺等の変形が生じる可能性は低い。また、仮に、集電体に皺等の変形が生じたとしても、変形量は極小であり、実用に支障のないレベルに抑えることができる。
 一方、試験片に負荷される荷重が30N以下の範囲で、上記L値が0.8未満である銅箔の場合、充電時の負極合剤層の体積の膨張に追従し、その後、放電時に負極合剤層の体積が収縮したときに、元の形状に戻ることができず、集電体に皺などが生じる場合がある。集電体としての銅箔の変形が大きくなると、負極合剤層が剥離したり、正極と負極との間で短絡が生じたり、正極と負極との間の距離が変化して均一な電極反応が阻害される。このため、充放電サイクルを繰り返すと、リチウムイオン二次電池の電気的特性が低下していき、リチウムイオン二次電池の寿命が短くなる恐れがある。
機械的特性(b): ここで、本件発明に係る銅箔は、上記試験片に負荷される荷重が30N以下の範囲で、上記L値が常に0.8以上を示すことが好ましい。また、試験片に負荷される荷重が40N以下の範囲で、上記L値が常に0.8以上を示すことがより好ましい。試験片に負荷される荷重が30N以下の範囲で、L値が常に0.8以上を示す場合、上述した理由と同様の理由により、充放電サイクルを繰り返し行っても集電体に皺等の変形が生じる可能性が低くなる。また、試験片に負荷される荷重が40N以下の範囲で、上記L値が常に0.8以上を示す場合、充放電サイクルを繰り返し行っても集電体に皺等の変形が生じる可能性をより低くすることができる。特に、スズやシリコン等の充電時の体積の変化が大きい材料を負極活物質として用いる場合には、試験片に負荷される荷重が40N以下の範囲で、上記L値が常に0.8以上を示す銅箔を用いることがより好ましい。
機械的特性(c): また、本件発明に係る銅箔は、上記試験片に対して30Nの荷重を負荷したときの伸び率(%)が0.1~3.5であることが好ましい。30Nの荷重を負荷したときの試験片の伸び率(%)が0.1未満の場合、当該銅箔を集電体として採用した場合、負極合剤層の体積の膨張に追随できず、充放電時に集電体が破断する恐れがある。一方、30Nの荷重を負荷したときの伸び率(%)が3.5を超えると、当該銅箔を集電体として採用した場合、負極合剤層の体積の膨張に追随して伸張する結果、集電体に皺が発生する恐れが高くなる。これらの観点から、上記伸び率(%)は、0.1~3.5であることが好ましい。
熱処理後の機械的特性: 本件発明のリチウムイオン二次電池負極集電体用の銅箔において、70℃~450℃で熱処理が施された後の当該銅箔を上記試験片として用いた場合にも、上述した機械的特性を有することが好ましい。既に説明したように、負極材の製造工程において、集電体に負極合剤を塗布した後、乾燥やアニール処理等の熱処理を施す場合がある。このため、70℃~450℃で熱処理を施した後においても、当該銅箔が上述した機械的特性を備えていれば、負極材の製造工程における熱の影響の有無によらず、充放電時の集電体の変形を防止することができる。具体的には、負極材の製造工程において、負極合剤層を塗布した後、溶媒を除去するために70℃~200℃程度の温度範囲において数秒~数十分間の乾燥を施す。また、結着剤としてポリアミック酸(ポリイミドの前駆体)を用いた場合、集電体の表面に負極合剤層を塗布した後、ポリアミック酸からポリイミドを得るために脱水縮合反応を行う。このとき、120℃~450℃の温度範囲で、0.5時間~5時間程度熱処理が行われる。従って、このような温度範囲で、0.5時間~5時間程度熱処理が行われた後にも、当該銅箔が上述した機械的特性を有することが好ましい。但し、上述した機械的特性とは、機械的特性(a)~機械的特性(c)のうち、少なくとも機械的特性(a)を指す。すなわち、70℃~450℃で熱処理を施した後の銅箔を試験片として用いて引張試験を行った場合の荷重-伸び率曲線において、上記L値が0.8以上である領域において、試験片に負荷した最大荷重、すなわちS値が30N以上であることを指す。
厚み: ここで、集電体として用いられる銅箔の厚みが増加するほど、同一箔種の銅箔であれば、同一の荷重(N)が負荷された場合の集電体の実際の伸び率(変形量)は小さくなる。このため、集電体の変形を防止するという観点からは、厚みの厚い銅箔を採用した方が好ましい。しかしながら、リチウムイオン二次電池の更なる小型化を図るという観点から、集電体の厚みは薄い方がより好ましい。これは、集電体の厚みが増加すると、リチウムイオン二次電池の単位体積当たりの容量が低下するため好ましくないからである。これらの観点から、本件発明に係るリチウムイオン二次電池負極集電体用の銅箔の厚みは35μm以下であることが好ましく、18μm以下であることがより好ましく、12μm以下であることが更に好ましい。一方、負極材製造時の生産効率性を考慮すると、当該銅箔は適切なハンドリング性を有することが好ましく、当該銅箔が6μm以上の厚みを有することが好ましい。しかしながら、本件発明に係る銅箔は、上記の機械的特性を示すものであれば、厚みに関する下限値が特に限定されるものではない。
表面粗さ(Ra): また、本件発明に係るリチウムイオン二次電池負極集電体用の銅箔の各面の表面粗さ(Ra)がそれぞれ0.1μm以上であることが好ましい。さらに、各面の表面粗さ(Ra)が0.2μm~0.7μmの範囲内であることがより好ましい。各面の表面粗さ(Ra)が0.2μm~0.7μmであることにより、負極合剤層との密着性を維持することができる。ここで、銅箔の各面の表面粗さ(Ra)の差は、0.6μm以下であることが好ましい。一方の面と、他方の面とにおいて、表面粗さ(Ra)に差があると、応力差が生じ、皺等の発生が考えられるためである。
電解銅箔: 本件発明に係るリチウムイオン二次電池負極集電体用の銅箔は、圧延銅箔であってもよいし、電解銅箔であってもよい。しかしながら、経済性及び生産効率を考慮すると安価に製造可能という観点から電解銅箔を用いることが好ましい。
 上記の機械的特性等を有する電解銅箔の一例を挙げれば、当該電解銅箔中に含まれる塩素濃度が40ppm~200ppmのものがある。当該電解銅箔は、電解液として、例えば、銅濃度が60g/L~90g/Lの範囲にあり、硫酸濃度が80g/L~250g/Lの範囲にあり、塩素イオンを1ppm~3ppmの範囲で含み,且つ、ゼラチン系添加剤が0.3ppm~5ppmの量で含む電解液を用い、電解液の温度を40℃~60℃に調整し、30A/dm~120A/dmの電解電流密度で電解を行うことにより得ることができる。
 電解銅箔を採用する場合、必要に応じて片面あるいは両面に対して粗化処理を施すことにより、各面の表面粗さ(Ra)を上述の範囲とすることが好ましい。各面がそれぞれ一定の平滑性を有する電解銅箔の方が膜厚が均一であり、各面の表面粗さ(Ra)を上述の範囲とすることにより、負極合剤層と集電体との密着性を確保することができる。さらに、上述した様に、両面の表面粗さ(Ra)の差が小さい方が応力差により生じる変形が防止できるため好ましい。
シランカップリング剤処理: 本件発明のリチウムイオン二次電池負極集電体用の銅箔は、銅箔の少なくとも負極合剤層を形成する側の面にはシランカップリング剤層を設けることが好ましい。シランカップリング剤層を設けることにより、当該銅箔と負極合剤層との密着性を向上することができるためである。
 ここで、シランカップリング剤としては、例えば、エポキシアルコキシシラン、アミノアルコキシシラン、メタクリロキシアルコキシシラン、メルカプトアルコキシシランなどを使用することができる。このようなシランカップリング剤は、2種以上混合して用いてもよい。シランカップリング剤層は、公知の方法を用いて形成することができる。具体的には、浸漬やスプレー処理などにより当該銅箔の表面にシランカップリング剤を塗布し、その後、乾燥、必要に応じて熱処理等を行うことにより、銅箔の表面にシランカップリング剤層を形成することができる。
 以上説明した特徴を有する銅箔をリチウムイオン二次電池の負極材を構成する集電体として採用することにより、充電時に負極合剤層の体積が膨張しても、集電体がそれに追従することができる。そして、放電時に負極合剤層の体積が収縮したときには、集電体が略元の形状に戻ることができるため、充放電サイクルを繰り返しても集電体に皺などの変形が生じるのを防止することができる。
 以上説明した本実施の形態は本件発明の一態様に過ぎず、本件発明の趣旨を逸脱しない範囲において適宜変更可能である。また、次に、本件発明を実施例を挙げてより具体的に説明するが、本件発明は以下の実施例に限定されるものではない。
〈リチウムイオン二次電池負極集電体の作製〉
電解銅箔作製工程: 実施例1では、リチウムイオン二次電池負極集電体用の銅箔として、次のようにして電解銅箔1を作製した。当該電解銅箔1の作製に際しては、公知の回転陰極を有する電解銅箔製造装置を採用した。銅イオンを80g/L、硫酸を250g/L、塩素イオンを2.7ppm、ゼラチンを2ppmの量で含む電解液を連続的に供給して、液温50℃の下、電流密度が60A/dmにて、電気分解を行い、銅を回転陰極の表面に析出させた。回転陰極の表面に電着した銅箔を剥離して換算厚さ12μm(ゲージ厚:12μm)の電解銅箔1を作製した。なお、換算厚さとは、単位面積当たりの質量に基づき、銅の密度から求めた厚さである。
粗化処理工程: 次に、一般に使用される粗化処理装置を用いて、粗化処理を行った。この粗化処理には、電解液として、銅イオン8g/L、硫酸を200g/Lの硫酸酸性系銅電解液を用い、液温35℃、電流密度25A/dmのヤケメッキ条件を採用して銅粒子を付着形成した。その後、硫銅イオン70g/L、硫酸を110g/Lの硫酸酸性系銅電解液を用い、液温50℃、電流密度25A/dmの平滑メッキ条件を採用し、付着形成させた銅粒子の脱落を防止するための被せメッキを施して、粗化処理を完了した。当該工程において得られた電解銅箔1の粗さの大きい方の面の表面粗さ(Ra)は、0.35μm、もう一方の面の粗さ(Ra)は、0.32μmであった。なお、本実施例において、表面粗さ(Ra)の測定は、株式会社小坂研究所製の触針式表面粗さ計(商品名:SE-3500)を用いた。以下、表面粗さ(Ra)の測定は全て同様の方法により行った。
シランカップリング剤処理工程: 粗化処理工程を経た電解銅箔1に対して、シランカップリング剤処理を行った。本実施例では、シランカップリング剤として、3-アミノプロピルトリメトキシシランを用いた。シャワーにて噴霧処理を行い、電解銅箔1の両面にそれぞれシランカップリング剤層を形成した。
〈負極材の作製〉
 以上の様にして得た電解銅箔1の表面に、次のようにして負極合剤層を形成した。まず、負極合剤層を形成するために負極活物質と、導電材と、結着剤とを含む負極合剤を調製した。本実施例では、負極活物質としてシリコン粉、導電材としてアセチレンブラック、結着剤としてポリアミック酸、溶剤としてNMP(N-メチルピロリドン)を用いた。これらを、それぞれ、100:5:15:184の混合比(質量比)で混合して負極合剤(スラリー)を調製した。この負極合剤を電解銅箔1の片面(但し、粗さが大きい方の面)に、アプリケーターを用いて塗布して、200℃で2時間乾燥させて溶剤を揮発させた後、ポリアミック酸の脱水縮合反応を行うために、350℃で1時間アニール処理を施した。
 このようにして電解銅箔1の片面に負極合剤層を形成したものを、負極の電極面の大きさが幅31mm、長さ41mmになるように切り出した。但し、電極面の長さ方向の基端部の一側部にはNi箔からなるタブを取り付けた。これを負極材1-1とする。
 一方、上記と同様の手順で、電解銅箔1の両面に負極合剤層を形成し、負極材1-1と同じ大きさに形成するとともに、負極材1-1と同位置にNi箔からなるタブを取り付けたものを負極材1-2とした。
 実施例2では、電解銅箔作製工程において、換算厚さが15μm(ゲージ厚15μm)の電解銅箔2を作製した以外は、実施例1と同様にして電解銅箔2の片面にのみ負極合剤層を設けた負極材2-1と、電解銅箔2の両面に負極合剤層を設けた負極材2-2を作製した。但し、本実施例2で作製した電解銅箔2の粗さが大きい方の面の表面粗さ(Ra)は、0.36μm、もう一方の面の表面粗さ(Ra)は0.32μmであった。
 実施例3では、電解銅箔作製工程において、換算厚さが17μm(ゲージ厚18μm)の電解銅箔3を作製した以外は、実施例1と同様にして電解銅箔3の片面にのみ負極合剤層を設けた負極材3-1と、電解銅箔3の両面に負極合剤層を設けた負極材3-2とを作製した。但し、本実施例3で作製した電解銅箔3の粗さが大きい方の面の表面粗さ(Ra)は、0.37μm、もう一方の面の表面粗さ(Ra)は0.31μmであった。
比較例
 比較例では、上記実施例1~実施例3と比較するために、換算厚さが15μmの両面平滑銅箔を比較用電解銅箔として用いた。当該比較用電解銅箔は、三井金属鉱業株式会社から市販されているDFF(登録商標)シリーズのDFF15(ゲージ厚15μm)を採用した以外は、実施例1と同様にして当該比較用銅箔の片面にのみ負極合剤層を設けた比較負極材1-1と、当該比較用銅箔の両面に負極合剤層を設けた比較負極材1-2とを作製した。但し、本比較例で使用した比較用銅箔の粗さが大きい方の面の表面粗さ(Ra)は、0.19μm、もう一方の面の表面粗さ(Ra)は0.16μmであった。
1.評価用セルの作製
 実施例1~実施例3において、集電体として用いた電解銅箔1~電解銅箔3と、比較用電解銅箔の充放電時における変形評価と、リチウムイオン二次電池を構成したときの充放電時のサイクル耐久性評価を行うために、変形評価用セルと、サイクル耐久性評価用セルをそれぞれ以下のようにして作製した。
1-1 変形評価用セルの作製
 充放電後の各電解銅箔の変形評価をハーフセル評価により行うために、変形評価用セルとして、変形評価用2層ラミネートセル及び変形評価用3層ラミネートセルをそれぞれ作製した。各変形評価用セルにおいて、上記負極材1-1~負極材3-2と、比較負極材1-1及び比較負極材1-2とをそれぞれ試験電極とした。そして、これら各試験電極の対極としてリチウム金属電極を用いた。
〈対極材の作製〉
 上記試験電極の対極としての、リチウム金属電極を次のようにして作製した。集電体は、負極材1-1で使用した電解銅箔1と同じものを同じ大きさに切り出したものを用いた。この電解銅箔1の表面にリチウム金属箔を重ねたものを、変形評価用の対極材とした。
〈変形評価用2層ラミネートセルの作製〉
 まず、片面にのみ負極合剤層を設けた負極材1-1の両面をそれぞれセパレータで覆い、セパレータを介して負極合剤層と、リチウム金属箔とが対向するようにして上記対極材を配置させた。これを一対の電極とした。そして、この一対の電極をラミネート材で覆い、電解液の注入口を残してラミネート材の縁部をヒートシールした。このとき、ラミネート材からタブが外側に露出するようにした。そして、グローブボックス内で、注入口からラミネート材の内部に電解液を注入した後、注入口をヒートシールして2層ラミネート構造のリチウムイオン二次電池を作製した。以上により、実施例1で作製した電解銅箔を集電体として用いた変形評価用セル1-1を得た。そして、負極材1-1の代わりに、実施例2で作製した負極材2-1を用い、対極の集電体として電解銅箔2を用いた以外は上記と同様にして変形評価用セル2-1を得た。同様に、実施例3で作製した負極材3-1を用いて、対極の集電体として電解銅箔3を用いた以外は上記と同様にして変形評価用セル3-1を得た。また、比較例で作製した比較負極材1-1を用いて、対極の集電体として比較用電解銅箔を用いた以外は上記と同様にして変形比較用セル1-1を得た。
〈変形評価用3層ラミネートセルの作製〉
 一方、両面に負極合剤層を設けた負極材1-2の両面をセパレータで覆い、セパレータを介して両面側にリチウム金属箔が対向するように上記対極材を配置させた。そして、この一対の電極を用いた以外は、変形評価用セル1-1と同様にして、3層ラミネート構造のリチウムイオン二次電池を作製した。以上により、実施例1で作成した電解銅箔を集電体として用いた変形評価用セル1-2を得た。そして、負極材1-2の代わりに実施例2で作製した負極材2-2及び対極の集電体として電解銅箔2を用いた以外は、上記と同様にして変形評価用セル2-2を得た。同様に、実施例3で作製した負極材3-2及び対極の集電体として電解銅箔3を用いた以外は、上記と同様にして、変形評価用セル3-2を得た。また、比較例で作製した比較負極材1-2及び対極の集電体として比較用電解銅箔を用いた以外は、上記と同様にして、変形比較用セル1-2を得た。
1-2 サイクル耐久性評価用セルの作製
 各電解銅箔を負極集電体として用いたリチウムイオン二次電池のサイクル耐久性をフルセル評価により行うために、サイクル耐久性評価用セルとして、負極材1-2、負極材3-2、比較負極材1-2のそれぞれを負極として用いた耐久性評価用の3層ラミネートセルを次のようにして作製した。但し、サイクル耐久性とは、充放電サイクルを繰り返し行ったときのリチウムイオン二次電池の容量維持率(%)にて判断する評価をいう。
〈正極材の作製〉
 まず、各負極と対にする正極として使用する正極材を次のようにして作製した。正極活物質としてマンガン酸リチウム、導電材としてアセチレンブラック、結着剤としてポリフッ化ビニリデン、溶剤としてNMPを用い、これらを5.6:6.8:100:102の混合比(質量比)で混合して正極合剤(スラリー)を調製した。この正極合剤をアルミニウム箔からなる集電体にアプリケータを用いて塗布し、乾燥した後、ロール圧延及びプレスを行って正極材を得た。このようにして作製した正極材から電極面の大きさが幅29mm、長さ40mmになるようにして切り出した。但し、電極面の長さ方向の基端部の一側部にはAl箔からなるタブを取り付けた。これを正極材とした。
〈耐久性評価用の3層ラミネートセルの作製〉
 そして、負極材1-2を負極とし、上記正極材を正極としてそれぞれ用いて、変形評価用の3層ラミネートセルの作製方法と同様にしてサイクル耐久性評価用セル1を得た。同様に、負極材3-2を負極とし、上記正極材を正極として用いて得たものをサイクル耐久性評価用セル3とした。さらに、比較負極材1-2を負極とし、上記正極材を正極として用いて得たものを耐久性比較用セルとした。
2.充放電方法
2-1 変形評価用セルの充放電方法
 上記において作製した変形評価用セル1-1~変形評価用セル3-2と、変形比較用セル1-1及び変形比較用セル1-2とについて、1回の充放電サイクルを実施した。充電は容量規制により行い、放電は電圧規制により行った。具体的には、初回のサイクルでは、充電を次のように行った。まず、充電レート0.05Cで終止電圧が0.001V(vs.Li/Li+)になるまで定電流(CC)条件により充電した。その後、引き続き、定電圧(CV)条件により電流値が0.01Cに達するまで充電した。さらに、放電レート0.05Cで終止電圧が1.5Vになるまで定電流(CC)条件により放電した場合の放電容量を100%とし、このときの82.5%の容量になるまで充電レート0.05Cで充電した。一方、放電は、放電レート0.05Cで終止電圧が1.5Vになるまで行った。
2-2 サイクル耐久性評価用セルの充放電方法
 上記において作製したサイクル耐久性評価用1、サイクル耐久性評価用セル3及び耐久性比較用セルについて、容量維持率(%)を評価するために50回の充放電サイクルを実施した。充電および放電は電圧規制により行った。各セルについて、充放電を50サイクル実施した。このとき、1サイクル目の充電は、充電レートを0.05C、終止電圧を4.2Vで定電流定電圧(CCCV)条件で実施した。また、1サイクル目の放電は、放電レート0.05C、終止電圧3.0Vで定電流(CC)条件で実施した。そして、2サイクル目から5サイクル目の充電は、充電レートを0.1C、終止電圧を4.2Vで定電流・定電圧(CCCV)条件で実施した。一方、放電は、放電レートを0.1C、終止電圧を3.0Vで定電流(CC)条件で実施した。6サイクル目以降の充放電は、充電レートを0.5Cとし、放電レートを0.5Cとした以外は同じ条件で50サイクルまで実施した。
3.評価方法
 上記実施例1~実施例3で作製した銅箔及び比較例で用いた銅箔について、3-1物性(機械的特性)、3-2充放電後の変形評価、3-3リチウムイオン二次電池負極集電体としての評価を行った。各評価方法は以下の通りである。
3-1 物性(機械的特性)の評価方法
 まず、実施例1~実施例3と比較例とにおいてリチウムイオン二次電池の負極集電体として使用した電解銅箔1~電解銅箔3及び比較用電解銅箔の常態時と熱処理後の物性を評価した。当該物性を評価するに際して、各電解銅箔を試験片として、インストロンコーポレーション社製の万能試験機(型式5582)を用いて、引張試験を行った。試験片の形状は、幅が10mmの長方形状とし、標点間の距離を50mmとした。また、引張速度は、5mm/minとした。当該引張試験において、各試験片について、最大負荷加重(N)、引張強さ(N/mm)、破断伸び率(%)、S値を求めた。但し、最大負荷荷重とは、試験中に試験片に負荷された最大の荷重(N)を指す。また、引張強さ(抗張力)は、最大負荷荷重を試験片の断面積で除した値(N/mm)を示している。また、破断伸び率(%)は、破断後の永久伸びを原標点間距離(50mm)に対して百分率で表した値(%)を示している。また、S値は上述した通りであり、L値が0.8以上である領域において、当該試験片を前記引張試験に供したときの最大負荷荷重値を指す。また、常態時の電解銅箔とは、特に熱処理を施していない電解銅箔を指す。また、熱処理後の電解銅箔とは、本評価においては、200℃で2時間加熱乾燥させた後、350℃で1時間アニール処理を行った後の電解銅箔を指す。
3-2 充放電後の変形評価方法
 充放電後の変形評価は、次のようにして行った。変形評価用セル1-1~変形評価用セル3-2及び変形比較用セル1-1及び変形比較用セル1-2について、それぞれ上述した方法で充放電サイクルを1回実施した後、各セルの断面のX線-CT画像を得て観察した。また、各セルの断面のX線-CT画像に基づき、集電体として用いた電解銅箔1~電解銅箔3及び比較用電解銅箔の変形率(伸び率)を求めた。その後、各セルを解体して、電解銅箔1~電解銅箔3及び比較用電解銅箔に皺等の変形が生じたか否かについて目視により観察した。但し、X線-CT画像の撮影には、東芝ITコントロールシステム株式会社製の産業用X線CTスキャナ(TOSCANER-32250μhd)を用いた。
3-3 リチウムイオン二次電池負極集電体としての評価
 リチウムイオン二次電池負極集電体としての電解銅箔1~電解銅箔3と、比較用電解銅箔とを評価した。具体的には、充放電サイクル1回実施した後の各電解銅箔の変形率(%)及び皺の発生状態と、熱処理後の各電解銅箔を試験片とし、上記引張試験において30Nの荷重を負荷したときのL値と、充放電サイクルを50回実施した後のリチウムイオン二次電池の容量維持率(%)と、熱処理後の各電解銅箔のS値とに基づいて、各電解銅箔がリチウムイオン二次電池負極集電体として適しているか否かを判断した。
 ここで、電解銅箔の変形率(%)は、各変形評価用セルについて、上述した方法で1回充放電サイクルを実施した後の所定方向(例えば、長尺方向)における集電体の伸張量を、当該所定方向における集電体の原寸法に対する百分率として表したものである。また、容量維持率(%)は、50サイクルの充放電を実施した後の各セルの容量維持率(%)を、(50サイクル目の放電容量)/(5サイクル目の放電容量)×100を計算することにより求めた。皺の発生状態、L値、S値については3-1物性(機械的特性)の評価方法、3-2充放電後の変形評価方法において述べた方法と同じ方法を採用した。
4.評価結果
 以下、各評価結果を示す。
4-1 物性
 表1に、実施例1~実施例3において集電体として用いた電解銅箔1~電解銅箔3の常態時、熱処理後の物性値を比較例で集電体として用いた比較用電解銅箔の各物性値と共に示す。
Figure JPOXMLDOC01-appb-T000004
 表1に示すように、実施例1~実施例3で作製した電解銅箔1~電解銅箔3のS値は、熱処理後においていずれも30N以上の値を示している。これに対して、比較例で用いた比較用電解銅箔のS値は19Nであった。また、表1から熱処理を施すことにより、各電解銅箔の機械的強度は、常態時と比較すると、一般に低下することが分かる。次に、図2に熱処理後の各電解銅箔について、当該引張試験により得られた各試験片の荷重-伸び率曲線を示す。さらに、図3に熱処理後の各電解銅箔について当該引張試験により得られた荷重-伸び率曲線において、原点をOとし、伸び率がEのときの荷重をPとしたときの荷重-伸び率曲線上の点をQとしたときに(図1参照)、上記式(1)に基づいて求めたL値をそのときの引張荷重に対してプロットしたものを示す。図2及び表1に示すように、実施例1~実施例3において作製した電解銅箔1~電解銅箔3は、比較例において集電体として用いた電解銅箔に比して最大負荷荷重が高いことが分かる。また、図3に示すように、実施例1~実施例3で集電体として用いた電解銅箔は、各電解銅箔からなる試験片に負荷した荷重が30N以下の範囲で、L値が常に0.8以上であることが分かる。
4-2 充放電後の変形評価
 各変形評価用セルについて充放電サイクルを1回実施した後の各セルの断面を撮影したX線-CT画像を図4及び図5に示す。ここで、図4は2層ラミネートセルタイプの各セルの断面を示すものであり、(a)は変形評価用セル1-1、(b)は変形評価用セル2-1、(c)は変形評価用セル3-1、(d)は変形比較用セル1-1の断面をそれぞれ示している。一方、図5は3層ラミネートセルタイプの各セルの断面を示すものであり、(a)は変形評価用セル1-2、(b)は変形評価用セル2-2、(c)は変形評価用セル3-2、(d)は変形比較用セル1-2の断面をそれぞれ示している。
 これらのX線-CT画像を観察すると、図4に示す2層ラミネートセルに比して、図5に示す3層ラミネートセルの方が、負極集電体として用いた各電解銅箔の伸張量(変形量)が多いことが分かる。また、図4(d)及び図5(d)に示すように、比較用電解銅箔は、伸張量も大きく、且つ、断面視において波打っている状態であることから皺の発生が観察される。これに対して、図4(a)~図4(c)、図5(a)~図5(c)に示すように電解銅箔1~電解銅箔3は比較用電解銅箔に比して伸張量も少なく、皺等の発生がないことが視認できる。
 次に、図6に、変形評価用セル1-1~変形評価用セル3-2と、変形比較用セル1-1及び変形比較用セル1-2とにおいて、それぞれ充放電サイクル1回実施した後の各集電体の変形率(%)を示す。図6に示すように、充放電サイクルを1回実施した後の変形率は、比較例において集電体として用いた比較用電解銅箔が極めて高く、実施例1、実施例2、実施例3のそれぞれで用いた電解銅箔1~電解銅箔3は、片面に負極合剤層を設けた場合(負極材1-1、負極材2-1及び負極材3-1)、両面に負極合剤層を設けた場合(負極材1-2、負極材2-2及ぶ負極材3-2)のいずれの場合においても、厚みが増加するにつれて変形率が減少していることが分かる。
 また、図7及び図8に、それぞれ変形評価用セル3-2及び変形比較用セル1-1において1回の充放電サイクルを実施した後にセルを解体して得た集電体の外観写真を示す。図7を参照すると、変形評価用セル3-2において負極集電体として使用した電解銅箔3は、その両面に負極合剤層を備える場合であっても皺の発生はないことが分かる。これに対して、図8を参照すると、変形比較評価用セル1-1において負極集電体として用いた比較用電解銅箔では、片面にのみ負極合剤層を設けたものであるにも関わらず、1回の充放電サイクルを実施するとその全面に皺が発生していることが分かる。
4-3 リチウムイオン二次電池負極集電体としての評価
 表2に、リチウムイオン二次電池負極集電体としての、電解銅箔1、電解銅箔3及び比較用電解銅箔の評価結果を示す。表2に示すように、実施例1において集電体として用いた電解銅箔1は、変形評価用セル1-2の充放電サイクルを1回行った後の皺の発生量は極小であった。また、当該電解銅箔1を負極集電体として用いた耐久性評価用セル1は、充放電サイクルを50回実施した後において90%の容量維持率を達成した。その結果、当該電解銅箔1は、リチウムイオン二次電池負極集電体用の電解銅箔として実用上問題ないレベルであると評価できる。また、実施例3において集電体として用いた電解銅箔3は、変形評価用セル3-2の充放電サイクルを1回行った後に皺が発生することはなかった。また、当該電解銅箔3を負極集電体として用いた耐久性評価用セル3は、充放電サイクルを50回行った後も92%の容量維持率を達成した。従って、当該電解銅箔3は、リチウムイオン二次電池負極集電体用の集電体として非常に好適なものであると評価できる。一方、比較用電解銅箔を集電体として用いた場合、変形比較用セル1-2の充放電サイクルを1回行うと、その表面全面に皺が発生した。また、耐久性比較用セルの充放電サイクルを50回実施した後の容量維持率は80%であった。
 以上より、S値が30N以上の銅箔をリチウムイオン二次電池の負極の集電体として用いることにより、充放電サイクルを繰り返し行っても集電体の変形及び破断を防止することのできることを確認することができた。
Figure JPOXMLDOC01-appb-T000005
 本件発明に係る銅箔をリチウムイオン二次電池の負極用の集電体として用いることにより、リチウムを吸蔵、又は、リチウムと合金化する材料として、SiまたはSnなどの理論容量が大きな材料を負極活物質として採用する場合であっても、負極合剤層が充放電に起因して大きく膨張・収縮しても、負極合剤層の膨張・収縮に追従することができる。その結果、充放電サイクルを繰り返しても集電体に皺等の変形が生じたり、破断するのを防止することができる。従って、本件発明に係る銅箔をリチウムイオン二次電池の負極用の集電体として採用することにより、リチウムイオン二次電池の更なる高エネルギー密度化、高容量化を達成することができ、リチウムイオン二次電池の長寿命化を図ることができる。

Claims (6)

  1.  リチウムイオン二次電池負極集電体用の銅箔であって、
     当該銅箔からなる幅10mmの試験片を引張試験に供したときの荷重-伸び率曲線において、原点をOとし、伸び率がEのときの荷重がPであるときの当該荷重-伸び率曲線上の点をQとしたときに、下記式(1)で表わされるL値が0.8以上である領域において、当該試験片を前記引張試験に供したときの最大負荷荷重が30N以上であることを特徴とするリチウムイオン二次電池負極集電体用の銅箔。
    Figure JPOXMLDOC01-appb-M000001

     但し、上記式(1)において、三角形OQEは、当該荷重-伸び率曲線において、原点Oと、点Qと、点Eとをそれぞれ頂点とする三角形を指す。また、領域OQEは、当該荷重-伸び率曲線における曲線OQと、線分QEと、線分OEとにより囲まれる領域を指す。
  2.  前記試験片に負荷される荷重が30N以下の範囲で、前記L値が常に0.8以上を示す請求項1に記載のリチウムイオン二次電池負極集電体用の銅箔。
  3.  70℃~450℃で熱処理が施された後の当該銅箔を前記試験片として用いた場合にも、前記L値が0.8以上である領域において、前記最大負荷荷重が30N以上である請求項1又は請求項2に記載のリチウムイオン二次電池負極集電体用の銅箔。
  4.  請求項1~請求項3のいずれか一項に記載のリチウムイオン二次電池負極集電体用の銅箔を集電体とし、当該集電体の表面に負極活物質を含む負極合剤層を備えることを特徴とするリチウムイオン二次電池負極材。
  5.  前記負極活物質として、Si又はSnを含む材料を用いる請求項4に記載のリチウムイオン二次電池負極材。
  6.  リチウムイオン二次電池負極集電体に用いる銅箔を選定するためのリチウムイオン二次電池負極集電体選定方法であって、
     選定候補の銅箔のうち、請求項1~請求項3に記載のリチウムイオン二次電池負極集電体用の銅箔を集電体として選定することを特徴とするリチウムイオン二次電池負極集電体選定方法。
PCT/JP2011/075716 2010-11-17 2011-11-08 リチウムイオン二次電池負極集電体用の銅箔、リチウムイオン二次電池負極材及びリチウムイオン二次電池負極集電体選定方法 WO2012066980A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137015449A KR20130087042A (ko) 2010-11-17 2011-11-08 리튬 이온 2차 전지 부극 집전체용의 동박, 리튬 이온 2차 전지 부극재 및 리튬 이온 2차 전지 부극 집전체 선정 방법
CN2011800545366A CN103210533A (zh) 2010-11-17 2011-11-08 锂离子二次电池负极集电体用的铜箔、锂离子二次电池负极材料及锂离子二次电池负极集电体的选定方法
US13/885,540 US20130288122A1 (en) 2010-11-17 2011-11-08 Copper foil for negative electrode current collector of lithium ion secondary battery, negative electrode material of lithium ion secondary battery, and method for selecting negative electrode current collector of lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-257177 2010-11-17
JP2010257177A JP5850611B2 (ja) 2010-11-17 2010-11-17 リチウムイオン二次電池負極集電体用の銅箔、リチウムイオン二次電池負極材及びリチウムイオン二次電池負極集電体選定方法。

Publications (1)

Publication Number Publication Date
WO2012066980A1 true WO2012066980A1 (ja) 2012-05-24

Family

ID=46083914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075716 WO2012066980A1 (ja) 2010-11-17 2011-11-08 リチウムイオン二次電池負極集電体用の銅箔、リチウムイオン二次電池負極材及びリチウムイオン二次電池負極集電体選定方法

Country Status (6)

Country Link
US (1) US20130288122A1 (ja)
JP (1) JP5850611B2 (ja)
KR (1) KR20130087042A (ja)
CN (1) CN103210533A (ja)
TW (1) TWI456827B (ja)
WO (1) WO2012066980A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797505A (zh) * 2018-08-03 2020-02-14 远景Aesc日本有限公司 锂离子二次电池、该电池用负极的制造方法以及检查方法
CN111146428A (zh) * 2020-01-02 2020-05-12 宁德新能源科技有限公司 负极和包含其的电化学装置及电子装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5751448B2 (ja) 2011-05-25 2015-07-22 日産自動車株式会社 リチウムイオン二次電池用負極活物質
JP2016027528A (ja) * 2012-11-22 2016-02-18 日産自動車株式会社 電気デバイス用負極、及びこれを用いた電気デバイス
EP2924778B1 (en) * 2012-11-22 2018-09-19 Nissan Motor Co., Ltd Negative electrode for electrical device and electrical device provided with same
US20160285088A1 (en) * 2012-11-22 2016-09-29 Nissan Motor Co., Ltd. Negative electrode for electric device and electric device using the same
KR20150065815A (ko) * 2012-11-22 2015-06-15 닛산 지도우샤 가부시키가이샤 전기 디바이스용 부극, 및 이것을 사용한 전기 디바이스
EP2924771B1 (en) * 2012-11-22 2018-08-29 Nissan Motor Co., Ltd Negative electrode for electrical device and electrical device provided with same
JP2014159606A (ja) * 2013-02-19 2014-09-04 Hitachi Metals Ltd アルミニウム箔の製造方法、アルミニウム箔、及びそれを用いた電極、蓄電デバイス
JP6190619B2 (ja) * 2013-05-07 2017-08-30 Jx金属株式会社 銅箔及びその製造方法、並びに銅張積層板及びフレキシブルプリント配線板
US10476101B2 (en) 2014-01-24 2019-11-12 Nissan Motor Co., Ltd. Electrical device
KR20160102026A (ko) 2014-01-24 2016-08-26 닛산 지도우샤 가부시키가이샤 전기 디바이스
JP6186385B2 (ja) * 2014-07-10 2017-08-23 東洋ゴム工業株式会社 密閉型二次電池の劣化診断方法及び劣化診断システム
JP2017022075A (ja) * 2015-07-15 2017-01-26 日立化成株式会社 リチウムイオン二次電池用負極及びそれを備えるリチウムイオン二次電池
KR102040819B1 (ko) * 2016-10-07 2019-11-06 주식회사 엘지화학 전극 유닛 및 그러한 전극 유닛의 제조 방법
JP7295016B2 (ja) 2017-05-22 2023-06-20 東洋アルミニウム株式会社 窒化アルミニウム系粉末及びその製造方法
US11581523B2 (en) 2017-10-19 2023-02-14 Sila Nanotechnologies, Inc. Anode electrode composition of Li-ion battery cell
CN112652774A (zh) * 2019-10-11 2021-04-13 浙江大学 铜箔复合材料及其制备方法、负极极片和锂离子电池
WO2022150096A2 (en) * 2020-11-03 2022-07-14 Research Foundation Of The City University Of New York Device and method for utilizing intercalation zinc oxide with an electrode
CN113777495A (zh) * 2021-08-25 2021-12-10 同济大学 基于特征面积的锂电池容量跳水在线多级预警方法及系统
CN114050308A (zh) * 2021-09-26 2022-02-15 湖北允升科技工业园有限公司 一种无负极锂电池结构及无负极锂电池的制备方法
CA3172526A1 (en) * 2021-10-07 2023-04-07 Circuit Foil Luxembourg Copper foil with high energy at break and secondary battery comprising the same
WO2023057067A1 (en) * 2021-10-07 2023-04-13 Circuit Foil Luxembourg Copper foil with high engery at break and secondary battery comprising the same
CN114035069A (zh) * 2021-11-03 2022-02-11 元能科技(厦门)有限公司 锂电池全soc压缩模量评估方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228652A (ja) * 2005-02-21 2006-08-31 Furukawa Circuit Foil Kk リチウム2次電池電極用銅箔およびその製造方法、該銅箔を用いたリチウム2次電池用電極およびリチウム2次電池
JP2006260928A (ja) * 2005-03-17 2006-09-28 Sanyo Electric Co Ltd リチウム二次電池用電極の製造方法及びリチウム二次電池
JP2007200686A (ja) * 2006-01-26 2007-08-09 Sanyo Electric Co Ltd リチウム二次電池用負極及びリチウム二次電池
JP2008124036A (ja) * 2008-01-10 2008-05-29 Sanyo Electric Co Ltd リチウム二次電池用負極及びリチウム二次電池
JP2010103061A (ja) * 2008-10-27 2010-05-06 Hitachi Cable Ltd 二次電池用負極銅合金箔及び二次電池用負極銅合金箔の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053993A (ja) * 2000-08-04 2002-02-19 Mitsui Mining & Smelting Co Ltd 電解銅箔およびその製造方法
US20020015833A1 (en) * 2000-06-29 2002-02-07 Naotomi Takahashi Manufacturing method of electrodeposited copper foil and electrodeposited copper foil
JP4225727B2 (ja) * 2001-12-28 2009-02-18 三洋電機株式会社 リチウム二次電池用負極及びリチウム二次電池
KR100676356B1 (ko) * 2002-06-26 2007-01-31 산요덴키가부시키가이샤 리튬 2차 전지용 부극 및 리튬 2차 전지
JP5588607B2 (ja) * 2007-10-31 2014-09-10 三井金属鉱業株式会社 電解銅箔及びその電解銅箔の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228652A (ja) * 2005-02-21 2006-08-31 Furukawa Circuit Foil Kk リチウム2次電池電極用銅箔およびその製造方法、該銅箔を用いたリチウム2次電池用電極およびリチウム2次電池
JP2006260928A (ja) * 2005-03-17 2006-09-28 Sanyo Electric Co Ltd リチウム二次電池用電極の製造方法及びリチウム二次電池
JP2007200686A (ja) * 2006-01-26 2007-08-09 Sanyo Electric Co Ltd リチウム二次電池用負極及びリチウム二次電池
JP2008124036A (ja) * 2008-01-10 2008-05-29 Sanyo Electric Co Ltd リチウム二次電池用負極及びリチウム二次電池
JP2010103061A (ja) * 2008-10-27 2010-05-06 Hitachi Cable Ltd 二次電池用負極銅合金箔及び二次電池用負極銅合金箔の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797505A (zh) * 2018-08-03 2020-02-14 远景Aesc日本有限公司 锂离子二次电池、该电池用负极的制造方法以及检查方法
CN111146428A (zh) * 2020-01-02 2020-05-12 宁德新能源科技有限公司 负极和包含其的电化学装置及电子装置

Also Published As

Publication number Publication date
CN103210533A (zh) 2013-07-17
JP5850611B2 (ja) 2016-02-03
KR20130087042A (ko) 2013-08-05
US20130288122A1 (en) 2013-10-31
TWI456827B (zh) 2014-10-11
JP2012109122A (ja) 2012-06-07
TW201222959A (en) 2012-06-01

Similar Documents

Publication Publication Date Title
JP5850611B2 (ja) リチウムイオン二次電池負極集電体用の銅箔、リチウムイオン二次電池負極材及びリチウムイオン二次電池負極集電体選定方法。
JP5276158B2 (ja) リチウムイオン二次電池、該電池用負極電極、該電池負極集電体用電解銅箔
JP5590576B2 (ja) 蓄電デバイス用電極の製造方法、および、蓄電デバイス
EP1536499A1 (en) Negative electrode for lithium secondary cell and lithium secondary cell
JPWO2015115051A1 (ja) 非水電解質二次電池用負極
JP5437536B2 (ja) 電極用集電体、非水電解質二次電池用負極、非水電解質二次電池
JP7096197B2 (ja) 被覆正極活物質及び全固体電池
CN109546096A (zh) 正极材料和使用该正极材料的锂二次电池
JP6660662B2 (ja) リチウムイオン二次電池
JP2012174577A (ja) リチウム二次電池用負極電極板、負極およびリチウム二次電池
JP5190762B2 (ja) リチウム電池
JP2020145034A (ja) 正極スラリーの製造方法、正極の製造方法及び全固体電池の製造方法、並びに、正極及び全固体電池
JP6179404B2 (ja) 二次電池の製造方法
JP2013246900A (ja) 二次電池
KR20230014733A (ko) 이차 전지 및 그 제조 방법
JP2023112393A (ja) 全固体電池
JP2015198020A (ja) 負極電極用表面処理銅箔、負極電極およびそれを使用したリチウムイオン二次電池
JP7226359B2 (ja) 全固体電池用負極
JP2005268120A (ja) リチウム二次電池およびその製造方法
WO2018062264A1 (ja) 電極および二次電池
JP2006092928A (ja) リチウム二次電池用負極及びリチウム二次電池
JP7149160B2 (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
WO2023223581A1 (ja) 電池
WO2023223065A1 (ja) 二次電池
WO2024018247A1 (ja) リチウム二次電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137015449

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13885540

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11842429

Country of ref document: EP

Kind code of ref document: A1