WO2012063870A1 - 幹細胞懸濁液 - Google Patents

幹細胞懸濁液 Download PDF

Info

Publication number
WO2012063870A1
WO2012063870A1 PCT/JP2011/075843 JP2011075843W WO2012063870A1 WO 2012063870 A1 WO2012063870 A1 WO 2012063870A1 JP 2011075843 W JP2011075843 W JP 2011075843W WO 2012063870 A1 WO2012063870 A1 WO 2012063870A1
Authority
WO
WIPO (PCT)
Prior art keywords
stem cells
trehalose
mammalian stem
dextran
mammalian
Prior art date
Application number
PCT/JP2011/075843
Other languages
English (en)
French (fr)
Inventor
英司 小林
圭樹 和田
泰毅 藤田
吉永 至宏
土居 雅子
康弘 藤本
工 寺谷
Original Assignee
株式会社大塚製薬工場
学校法人自治医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大塚製薬工場, 学校法人自治医科大学 filed Critical 株式会社大塚製薬工場
Priority to KR1020137014704A priority Critical patent/KR101868653B1/ko
Priority to ES11839155.6T priority patent/ES2568731T3/es
Priority to US13/883,371 priority patent/US10087421B2/en
Priority to AU2011327239A priority patent/AU2011327239B2/en
Priority to CA2817172A priority patent/CA2817172C/en
Priority to DK11839155.6T priority patent/DK2639296T3/en
Priority to CN201180064550.4A priority patent/CN103298926B/zh
Priority to SG2013034681A priority patent/SG190169A1/en
Priority to SI201130786A priority patent/SI2639296T1/sl
Priority to EP11839155.6A priority patent/EP2639296B1/en
Priority to NZ61055611A priority patent/NZ610556A/en
Publication of WO2012063870A1 publication Critical patent/WO2012063870A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0667Adipose-derived stem cells [ADSC]; Adipose stromal stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • A01N1/021Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
    • A01N1/0226Physiologically active agents, i.e. substances affecting physiological processes of cells and tissue to be preserved, e.g. anti-oxidants or nutrients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/04Disaccharides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B31/00Preparation of derivatives of starch
    • C08B31/02Esters
    • C08B31/04Esters of organic acids, e.g. alkenyl-succinated starch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0021Dextran, i.e. (alpha-1,4)-D-glucan; Derivatives thereof, e.g. Sephadex, i.e. crosslinked dextran
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0663Bone marrow mesenchymal stem cells (BM-MSC)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/34Sugars

Definitions

  • the present invention relates to a mammalian stem cell suspension and a pharmaceutical preparation containing the same.
  • the present invention also relates to an agent for suppressing aggregation of mammalian stem cells and a method for suppressing aggregation of mammalian stem cells.
  • the present invention relates to an agent for suppressing a decrease in the survival rate of mammalian stem cells and a method for suppressing a decrease in the survival rate of mammalian stem cells.
  • stem cells Due to recent advances in stem cell research, the clinical application of stem cells has already shifted from the basic research stage to the development stage.
  • the functions of the cells and tissues of the damaged patient are supplemented by the cells and organs newly differentiated from the stem cells.
  • treatment with stem cells can be broadly divided into two.
  • stem cells are cultured in vitro under specific conditions to differentiate into desired somatic cells or tissues, and the obtained somatic cells or tissues are transplanted into the recipient's body.
  • pluripotent stem cells such as ES cells and iPS cells may form teratomas when transplanted directly into a living body. Therefore, they usually differentiate into specific somatic cells or tissues in vitro, and have the ability to form teratomas. After it has disappeared, it is transplanted into the body.
  • Another aspect is to transfer stem cells directly into the living body.
  • This method can be used for diseases such as amyotrophic lateral sclerosis, aplastic anemia, Parkinson's disease, multiple sclerosis, collagen disease, Crohn's disease, ulcerative colitis, Alzheimer's disease, leukemia, lifestyle-related diseases, cancer, etc. It has been reported to be effective.
  • Mesenchymal stem cells exist in mammalian bone marrow and are known as stem cells that differentiate into adipocytes, chondrocytes, bone cells, and the like. Mesenchymal stem cells are attracting attention as transplant materials for regenerative medicine in many tissues because of their multipotency. That is, “regenerative medicine by cell transplantation” that uses mesenchymal stem cells to regenerate a tissue that has not been regenerated by a conventional treatment method and restores a function lost by a disease or a disorder.
  • transplantation of bone marrow mesenchymal stem cells to patients with lower limb ischemia (Burger's disease)
  • transplantation of bone marrow mesenchymal stem cells to the affected area of periodontal disease transplantation of bone marrow mesenchymal stem cells to patients with osteoarthritis Treatment such as transplantation is started or planned.
  • trehalose is a kind of disaccharide formed by combining glucose with 1,1-glycoside.
  • Trehalose is sweet and has a high water retention capacity, so it is used in various foods and cosmetics.
  • Trehalose stabilizes cell membranes and suppresses cell damage, and is therefore used as an active ingredient in organ protective solutions when organs are transplanted.
  • Excellent organ preservation solutions containing trehalose such as ET-Kyoto solution and New ET-Kyoto solution have been developed (Patent Documents 1 and 2, Non-Patent Document 1).
  • Hydroxyethyl starch is one of etherified starches and is used as an adhesive, an emulsifier, a paste, and the like.
  • Dextran is a kind of polysaccharide consisting of glucose, and is widely used in the field of pharmaceuticals and cosmetics as a thickener, moisturizer and the like.
  • the present inventors diligently studied the conditions for more stable and smooth transplantation of stem cells into the living body.
  • the stem cells are transferred into the living body by instilling a suspension of the stem cells into the living body, but during the instillation, the stem cells in the suspension in the infusion bag are exchanged. It has been found that there is a risk of flocculation and clogging in a cannula or embolization in a thin blood vessel such as a pulmonary vein.
  • the present inventors have found that the survival rate of the stem cells in the infusion bag may gradually decrease during the infusion.
  • An object of this invention is to provide the technique which suppresses aggregation of the stem cells in suspension at the time of transplantation of stem cells. Moreover, an object of this invention is to provide the technique which suppresses the fall of the survival rate of the stem cell in suspension.
  • stem cell aggregation can be suppressed by adding a polysaccharide such as trehalose to the stem cell suspension.
  • these polysaccharides can suppress the fall of the survival rate of a stem cell.
  • the effect which suppresses the fall of the survival rate of a stem cell was strengthened by combining some of these polysaccharides.
  • a mammalian stem cell suspension comprising mammalian stem cells and at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch and dextran.
  • the mammalian stem cell suspension according to [1] comprising a combination comprising trehalose and hydroxyethyl starch, or trehalose and dextran.
  • the mammalian stem cell suspension according to [1], wherein the stem cells are adherent stem cells.
  • the mammalian stem cell suspension according to [3], wherein the adherent stem cells are mesenchymal stem cells or pluripotent stem cells.
  • a method for producing a mammalian stem cell suspension comprising suspending mammalian stem cells in a physiological aqueous solution containing at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch, and dextran.
  • a physiological aqueous solution containing at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch, and dextran.
  • the physiological aqueous solution contains trehalose and hydroxyethyl starch, or trehalose and dextran.
  • a mammalian stem cell suspension preparation comprising the mammalian stem cell suspension of any one of [1] to [7].
  • a mammalian stem cell aggregation inhibitor comprising at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch, and dextran.
  • a method for suppressing aggregation of mammalian stem cells comprising suspending mammalian stem cells in a physiological aqueous solution containing at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch, and dextran.
  • [18] The method for suppressing aggregation of mammalian stem cells according to [17], wherein the adherent stem cells are mesenchymal stem cells or pluripotent stem cells. [19] The method for suppressing aggregation of mammalian stem cells according to [16], wherein the mammalian stem cells include mammalian stem cells in a single cell state. [20] The method for suppressing aggregation of mammalian stem cells according to [16], wherein the polysaccharide is trehalose and the concentration of trehalose is in the range of 4.53 to 362.4 mg / ml.
  • An inhibitor for reducing the survival rate of mammalian stem cells comprising at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch, and dextran.
  • [24] The inhibitor for lowering the survival rate of mammalian stem cells according to [22], wherein the stem cells are adherent stem cells.
  • a method for suppressing a decrease in the survival rate of mammalian stem cells comprising suspending mammalian stem cells in a physiological aqueous solution containing at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch, and dextran .
  • the present invention aggregation of stem cells in suspension can be suppressed at the time of transplantation of stem cells. Therefore, the risk of stem cell aggregates clogging in the cannula or forming emboli in narrow blood vessels such as pulmonary veins is reduced. Furthermore, if this invention is used, the fall of the survival rate of the stem cell in suspension can be suppressed. Therefore, since treatment can be performed with stem cells in better condition, an improvement in therapeutic effect can be expected.
  • the form and survival rate of hBM-MSC P6 after standing at 25 ° C. for 1 hour in each composition solution are shown.
  • the form and survival rate of hAT-MSC P8 after standing at 25 ° C. for 1 hour in each composition solution are shown.
  • the survival rate after leaving still at 25 degreeC in each composition liquid is shown.
  • the six bars indicate Saline, Medium, ET-K, Saviosol, HES70K and HES200K, respectively, from the left.
  • the survival rate after leaving still at 25 degreeC in each composition liquid is shown. From the left, the five bars indicate Saline, Medium, ET-K, Saviosol, and ET-K + Saviosol.
  • Mammalian stem cell suspension comprising mammalian stem cells and at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch and dextran.
  • mammals examples include rodents such as mice, rats, hamsters, and guinea pigs, rabbit eyes such as rabbits, ungulates such as pigs, cows, goats, horses, and sheep, cats such as dogs and cats, and humans Primates such as monkeys, rhesus monkeys, cynomolgus monkeys, marmosets, orangutans and chimpanzees.
  • the mammal is preferably a rodent (such as a mouse), an ungulate (such as a pig) or a primate (such as a human).
  • stem cell means an immature cell having self-renewal ability and differentiation / proliferation ability.
  • Stem cells include subpopulations such as pluripotent stem cells, multipotent stem cells, and unipotent stem cells, depending on differentiation ability.
  • a pluripotent stem cell means a cell that cannot be an individual by itself, but has an ability to differentiate into all tissues and cells constituting a living body.
  • a multipotent stem cell means a cell having the ability to differentiate into multiple types of tissues and cells, although not all types.
  • a unipotent stem cell means a cell having the ability to differentiate into a specific tissue or cell.
  • pluripotent stem cells examples include embryonic stem cells (ES cells), EG cells, iPS cells, and the like.
  • ES cells can be produced by culturing the inner cell mass on feeder cells or in a medium containing LIF. Methods for producing ES cells are described in, for example, WO96 / 22362, WO02 / 101057, US5,843,780, US6,200,806, US6,280,718 and the like.
  • EG cells can be produced by culturing primordial germ cells in a medium containing mSCF, LIF and bFGF (Cell, 70: 841-847, 1992).
  • iPS cells are produced by introducing reprogramming factors such as Oct3 / 4, Sox2 and Klf4 (c-Myc or n-Myc as necessary) into somatic cells (eg, fibroblasts, skin cells, etc.).
  • somatic cells eg, fibroblasts, skin cells, etc.
  • Stem cells established by culturing early embryos produced by nuclear transfer of somatic cell nuclei are also preferred as pluripotent stem cells (Nature, 385, 810 (1997); Science, 280, 1256 (1998) ; Nature Biotechnology, 17, 456 (1999); Nature, 394, 369 (1998); Nature Genetics, 22, 127 (1999); Proc. Natl. Acad.Sci. USA, 96, 14984 (1999)), Rideout III Et al. (Nature Genetics, 24, 109 (2000)).
  • multipotent stem cells examples include somatic stem cells such as mesenchymal stem cells, hematopoietic stem cells, nervous system stem cells, bone marrow stem cells, and reproductive stem cells.
  • the multipotent stem cell is preferably a mesenchymal stem cell.
  • mesenchymal stem cell is meant a stem cell that can differentiate into all or some of osteoblasts, chondroblasts and lipoblasts.
  • Multipotent stem cells can be isolated from a living body by a method known per se. For example, mesenchymal stem cells can be collected by known general methods from mammalian bone marrow, adipose tissue, peripheral blood, umbilical cord blood and the like.
  • human mesenchymal stem cells can be isolated by culture and passage of hematopoietic stem cells after bone marrow puncture (Journalourof Autoimmunity, ity30 (2008) 163-171).
  • Multipotent stem cells can also be obtained by culturing the pluripotent stem cells under appropriate induction conditions.
  • the stem cells contained in the suspension of the present invention are preferably adherent. This is because adherent stem cells tend to aggregate in the suspension, but since the suspension of the present invention contains trehalose, this aggregation is effectively suppressed.
  • adherent stem cells means an anchorage-dependent cell that can survive, proliferate, and produce a substance by adhering to the scaffold. Examples of adherent stem cells include pluripotent stem cells, mesenchymal stem cells, nervous system stem cells, bone marrow stem cells, and reproductive stem cells. The adherent stem cells are preferably mesenchymal stem cells or pluripotent stem cells.
  • Mammalian stem cells may be isolated from the living body or may be subcultured in vitro.
  • the mammalian stem cells contained in the suspension of the present invention are preferably isolated or purified.
  • isolated or purification means that an operation for removing components other than the target component has been performed.
  • the purity of the isolated or purified mammalian stem cells is usually 30% or more, preferably 50% or more, more preferably 70% or more, still more preferably 90% or more. (For example, 100%).
  • the mammalian stem cells contained in the suspension of the present invention preferably include mammalian stem cells in a single cell (single cell) state.
  • the “single cell state” means that the cells do not gather together to form a lump (that is, they are not aggregated).
  • Mammalian stem cells in a single cell state can be prepared by enzymatic treatment of mammalian stem cells cultured in vitro with trypsin / EDTA or the like.
  • the proportion of mammalian stem cells in a single cell state contained in mammalian stem cells is usually 70% or more, preferably 90% or more, more preferably 95% or more, and even more preferably 99% or more (for example, 100%). is there.
  • the proportion of cells in a single cell state is determined by dispersing mammalian stem cells in PBS and observing them under a microscope, and examining the presence or absence of aggregation of a plurality of randomly selected cells (eg, 1000). Can be determined.
  • the mammalian stem cells are preferably floating.
  • “floating” means that cells are held in the suspension without contacting the inner wall of the container containing the suspension.
  • the suspension of the present invention contains at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch and dextran. As shown in Examples described later, these polysaccharides have an effect of suppressing aggregation of mammalian stem cells. Therefore, preferably, in the suspension of the present invention, aggregation of mammalian stem cells is suppressed.
  • aggregation refers to a phenomenon in which two or more cells gather together to form a mass.
  • adherent stem cells float in suspension and tend to aggregate in a single cell state, but the above polysaccharides effectively suppress aggregation and maintain a single cell state for a long time. Can do.
  • the polysaccharide is contained in the stem cell suspension, the suspended state of the cells in the suspension is maintained for a relatively long time, and the precipitation of the cells is suppressed. Contact is suppressed. Furthermore, it is generally known that adherent cells are exposed to a floating state for a long time, so that stress is applied to the cells. Since saccharides (especially trehalose) exert a slight stress on the cells, the formation of these protrusions is suppressed. Combined with these actions, the polysaccharide is considered to have an excellent inhibitory effect on mammalian stem cell aggregation.
  • the polysaccharide has an effect of suppressing a decrease in the survival rate of mammalian stem cells. Therefore, preferably, in the suspension of the present invention, a decrease in the survival rate of mammalian stem cells is suppressed.
  • adherent stem cells are susceptible to damage in the state of suspension in suspension (particularly in the state of suspension and single cells), and the survival rate tends to decrease. Addition can effectively suppress a decrease in the survival rate of adherent stem cells.
  • trehalose there are three types of trehalose that can be used in the suspension of the present invention: ⁇ , ⁇ -trehalose, ⁇ , ⁇ -trehalose and ⁇ , ⁇ -trehalose.
  • the type of trehalose is not particularly limited as long as aggregation of mammalian stem cells and / or a decrease in viability can be suppressed, but ⁇ , ⁇ -trehalose is preferably used.
  • the weight average molecular weight (Mw) of hydroxyethyl starch that can be used in the suspension of the present invention is not particularly limited as long as it can suppress aggregation and / or decrease in the survival rate of mammalian stem cells, but is usually 5 ⁇ 10 4 to It is in the range of 67 ⁇ 10 4 , preferably 7 ⁇ 10 4 to 60 ⁇ 10 4 , more preferably 7 ⁇ 10 4 to 20 ⁇ 10 4 .
  • a relatively low weight average molecular weight (for example, 5 ⁇ 10 4 to 9 ⁇ 10 4 , preferably 6 It is preferable to use hydroxyethyl starch of ⁇ 10 4 to 8 ⁇ 10 4 (eg, 7 ⁇ 10 4 )).
  • the degree of substitution of hydroxyethyl starch (number of hydroxyethyl groups per glucose unit) that can be used in the suspension of the present invention is not particularly limited as long as aggregation of mammalian stem cells and / or decrease in survival rate can be suppressed. Is usually in the range of 0.4 to 0.8.
  • hydroxyethyl starch As a suitable example of hydroxyethyl starch that can be used in the suspension of the present invention, a hydroxyethyl starch having a weight average molecular weight (Mw) of 7 ⁇ 10 4 and a substitution degree of 0.50 to 0.55, a weight average molecular weight. And hydroxyethyl starch having a (Mw) of 20 ⁇ 10 4 and a substitution degree of 0.50 to 0.55.
  • Mw weight average molecular weight
  • Mw weight average molecular weight
  • hydroxyethyl starch having a (Mw) of 20 ⁇ 10 4 and a substitution degree of 0.50 to 0.55 are commercially available, for example, from Fresenius Kirby Japan Co., Ltd. as Hespander (registered trademark).
  • the dextran that can be used in the suspension of the present invention is a polysaccharide (C 6 H 10 O 5 ) n consisting of D-glucose and having an ⁇ 1 ⁇ 6 bond as the main chain.
  • the type of dextran is not particularly limited as long as aggregation of mammalian stem cells and / or decrease in survival rate can be suppressed.
  • the weight average molecular weight (Mw) of dextran is not particularly limited as long as it can suppress aggregation and / or decrease in survival rate of mammalian stem cells.
  • the concentration of the polysaccharide in the suspension of the present invention is not particularly limited as long as the concentration is sufficient to suppress aggregation of mammalian stem cells and / or a decrease in survival rate.
  • the higher the concentration of the polysaccharide the higher the effect of suppressing aggregation and / or the decrease in the survival rate.
  • the polysaccharide concentration is too high, the survival rate of the stem cells may be adversely affected.
  • the trehalose concentration in the suspension of the present invention is usually 4.53 mg / ml or more, preferably 15.1 mg / ml or more.
  • the trehalose concentration in the suspension is usually 362.4 mg / ml or less, preferably 181.2 mg / ml or less. Therefore, the trehalose concentration in the suspension is usually 4.53 to 362.4 mg / ml, preferably 15.1 to 181.2 mg / ml.
  • the concentration that exhibits the effect of suppressing stem cell aggregation and / or decrease in the survival rate and appropriately suppresses the adverse effect on the survival rate of the stem cells is set appropriately according to trehalose can do.
  • the concentration of hydroxyethyl starch in the suspension of the present invention is, for example, 1 mg / ml or more, preferably 10 mg / ml or more. Further, from the viewpoint of avoiding adverse effects on the survival rate of the stem cells, the concentration of hydroxyethyl starch in the suspension is, for example, 500 mg / ml or less, preferably 100 mg / ml or less. Accordingly, the concentration of hydroxyethyl starch in the suspension is, for example, 1 to 500 mg / ml, preferably 10 to 100 mg / ml.
  • the concentration of dextran in the suspension of the present invention is, for example, 1 mg / ml or more, preferably 10 mg / ml or more, more preferably 30 mg / ml or more, still more preferably 65 mg / ml or more. It is. From the viewpoint of avoiding adverse effects on the survival rate of stem cells, the concentration of dextran in the suspension is, for example, 500 mg / ml or less, preferably 200 mg / ml or less, more preferably 125 mg / ml or less, and still more preferably 100 mg. / Ml or less.
  • the concentration of dextran in the suspension is, for example, 1 to 500 mg / ml, preferably 10 to 200 mg / ml, more preferably 30 to 125 mg / ml, still more preferably 30 to 100 mg / ml, and even more preferably. 65-100 mg / ml.
  • the suspension of the present invention preferably contains trehalose and hydroxyethyl starch or a combination comprising trehalose and dextran.
  • the concentration of each polysaccharide in the suspension of the present invention is preferably higher than when trehalose, hydroxyethyl starch or dextran is used alone.
  • the combination of trehalose and hydroxyethyl starch or dextran is set such that the effect of suppressing the decrease in the survival rate of mammalian stem cells is enhanced.
  • mammalian stem cells are suspended in a physiological aqueous solution containing at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch, and dextran.
  • the physiological aqueous solution is preferably physiological saline, phosphate buffered saline, Tris buffered saline, HEPES buffered saline, Ringer's solution, 5% glucose aqueous solution, liquid medium for mammalian culture, etc.
  • An isotonic aqueous solution such as an aqueous solution of a tonicity agent (glucose, D-sorbitol, D-mannitol, lactose, sodium chloride, etc.).
  • a tonicity agent glucose, D-sorbitol, D-mannitol, lactose, sodium chloride, etc.
  • isotonic means that the osmotic pressure is in the range of 250 to 380 mOs
  • the physiological aqueous solution further contains a stabilizer (eg, human serum albumin, polyethylene glycol, etc.), a buffer (eg, phosphate buffer, sodium acetate buffer), a chelating agent (eg, EDTA, EGTA, citric acid, salicylate). ), Solubilizers, preservatives, antioxidants, and the like.
  • a stabilizer eg, human serum albumin, polyethylene glycol, etc.
  • a buffer eg, phosphate buffer, sodium acetate buffer
  • a chelating agent eg, EDTA, EGTA, citric acid, salicylate.
  • Solubilizers eg, preservatives, antioxidants, and the like.
  • the suspension of the present invention comprises a physiological aqueous solution containing at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch and dextran (preferably the group consisting of trehalose, hydroxyethyl starch and dextran).
  • the present invention also provides a method for producing such a mammalian stem cell suspension.
  • the polysaccharide is added to the suspension of mammalian stem cells, and the mammalian stem cell and the mammalian stem cell suspension containing the polysaccharide are added. Obtaining a liquid is also included.
  • Suspension of mammalian stem cells in a physiological aqueous solution containing the above-mentioned polysaccharide can be performed by a well-known method in the technical field such as pipetting or tapping.
  • the temperature of the suspension of the present invention is usually in the range of 0 to 37 ° C, preferably 0 to 25 ° C.
  • the density of mammalian stem cells in the suspension of the present invention suppresses aggregation and / or decrease in viability of mammalian stem cells caused by at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch, and dextran. Although not particularly limited as long as the effect is achieved, it is usually in the range of 10 3 to 10 10 pieces / ml.
  • the suspension of the present invention aggregation of mammalian stem cells is suppressed by at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch, and dextran.
  • at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch, and dextran suppresses a decrease in the survival rate of mammalian stem cells in the suspension. Therefore, if the suspension of the present invention is used, stem cell transplantation can be performed with stem cells in better condition, and an improvement in therapeutic effect can be expected. Therefore, the present invention also provides a mammalian stem cell suspension preparation containing the suspension of the present invention.
  • the mammalian stem cell suspension preparation of the present invention can be produced by housing the suspension of the present invention in a suitable sterilized container.
  • the container include bottles, vials, syringes, plastic bags such as infusion bags, test tubes, and the like. These containers may be formed from a variety of materials such as glass or plastic. These containers can be connected to a cannula and / or needle so that the mammalian stem cell suspension in the container can be instilled into the patient.
  • the present invention provides a mammalian stem cell aggregation inhibitor comprising at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch and dextran. With these polysaccharides, in particular, aggregation of mammalian stem cells (that is, suspended mammalian stem cells) in suspension is suppressed.
  • the mammalian stem cells to which the aggregation inhibitor of the present invention is applied are preferably adherent stem cells. This is because adherent stem cells are more likely to aggregate in suspension (that is, in a suspended state).
  • the adherent stem cells are preferably mesenchymal stem cells or pluripotent stem cells.
  • Mammalian stem cells may be isolated from the living body or may be subcultured in vitro.
  • the mammalian stem cell to which the aggregation inhibitor of the present invention is applied is preferably isolated or purified.
  • the mammalian stem cells to which the aggregation inhibitor of the present invention is applied preferably include mammalian stem cells in a single cell (single cell) state.
  • the proportion of mammalian stem cells in a single cell state contained in mammalian stem cells is usually 70% or more, preferably 90% or more, more preferably 95% or more, and even more preferably 99% or more (for example, 100%). is there.
  • Mammalian stem cells to which the aggregation inhibitor of the present invention is applied are preferably suspended in a suspension of the stem cells.
  • adherent stem cells float in suspension and tend to aggregate in the state of a single cell, but aggregation can be effectively suppressed by the aggregation inhibitor of the present invention. Can be maintained for a long time.
  • the aggregation inhibitor of the present invention contains 1, 2 or 3 kinds of polysaccharides selected from the group consisting of trehalose, hydroxyethyl starch and dextran.
  • the combination of polysaccharides is a combination of trehalose and hydroxyethyl starch, a combination of trehalose and dextran, hydroxyethyl starch, A combination of dextran or a combination of trehalose, hydroxyethyl starch and dextran.
  • the aggregation inhibitor of the present invention may be at least one polysaccharide itself selected from the group consisting of trehalose, hydroxyethyl starch and dextran, or may further contain a physiologically acceptable carrier.
  • physiologically acceptable carriers include physiological aqueous solutions (for example, physiological saline, phosphate buffered saline, Tris buffered saline, HEPES buffered saline, Ringer's solution, 5% glucose aqueous solution).
  • Liquid medium for mammalian culture isotonic aqueous solutions such as aqueous solutions of isotonic agents (glucose, D-sorbitol, D-mannitol, lactose, sodium chloride, etc.), stabilizers (eg, human serum albumin, polyethylene glycol, etc.) ), Buffer (eg, phosphate buffer, sodium acetate buffer), chelating agent (eg, EDTA, EGTA, citric acid, salicylate), excipient, binder, solubilizer, preservative, antioxidant Agents and the like.
  • isotonic agents glucose, D-sorbitol, D-mannitol, lactose, sodium chloride, etc.
  • stabilizers eg, human serum albumin, polyethylene glycol, etc.
  • Buffer eg, phosphate buffer, sodium acetate buffer
  • chelating agent eg, EDTA, EGTA, citric acid, salicylate
  • the aggregation inhibitor of the present invention is preferably a physiological aqueous solution containing at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch, and dextran (solution of the polysaccharide in the physiological aqueous solution), More preferably, it is an isotonic aqueous solution containing at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch and dextran.
  • the aggregation inhibitor of the present invention can be used by adding it to a suspension of mammalian stem cells.
  • the aggregation inhibitor of the present invention is a physiological aqueous solution containing at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch and dextran
  • the mammalian stem cells are suspended by the aggregation inhibitor of the present invention. It may be cloudy.
  • the aggregation inhibitor of the present invention is added or the mammalian stem cells are suspended by the aggregation inhibitor of the present invention so that the concentration of the polysaccharide is sufficient to suppress the aggregation of mammalian stem cells.
  • the trehalose concentration sufficient to suppress aggregation of mammalian stem cells in the suspension is usually 4.53 mg / ml or more, preferably 15.1 mg / ml or more. .
  • the trehalose concentration in the suspension is usually 362.4 mg / ml or less, preferably 181.2 mg / ml or less. Therefore, the trehalose concentration in the suspension is usually 4.53 to 362.4 mg / ml, preferably 15.1 to 181.2 mg / ml.
  • a concentration sufficient to suppress aggregation of mammalian stem cells in the suspension can be appropriately set according to trehalose.
  • the concentration of hydroxyethyl starch sufficient to suppress aggregation of mammalian stem cells in the suspension is, for example, 1 mg / ml or more, preferably 10 mg / ml or more. .
  • the concentration of hydroxyethyl starch in the suspension is, for example, 500 mg / ml or less, preferably 100 mg / ml or less. Accordingly, the concentration of hydroxyethyl starch in the suspension is, for example, 1 to 500 mg / ml, preferably 10 to 100 mg / ml.
  • the concentration of dextran sufficient to suppress aggregation of mammalian stem cells in the suspension is, for example, 1 mg / ml or more, preferably 10 mg / ml or more, more preferably 30 mg / ml. ml or more, more preferably 65 mg / ml or more.
  • the concentration of dextran in the suspension is, for example, 500 mg / ml or less, preferably 200 mg / ml or less, more preferably 125 mg / ml or less, and still more preferably 100 mg. / Ml or less.
  • the concentration of dextran in the suspension is, for example, 1 to 500 mg / ml, preferably 10 to 200 mg / ml, more preferably 30 to 125 mg / ml, still more preferably 30 to 100 mg / ml, and even more preferably. 65-100 mg / ml.
  • the present invention is such that aggregation of mammalian stem cells in the suspension is suppressed as a result.
  • a mammalian stem cell is suspended by the aggregation inhibitor of the present invention.
  • the aggregation inhibitor of the present invention when used as described above, at least one selected from the group consisting of trehalose, hydroxyethyl starch and dextran in an amount sufficient to inhibit aggregation of mammalian stem cells.
  • trehalose hydroxyethyl starch
  • dextran in an amount sufficient to inhibit aggregation of mammalian stem cells.
  • the content of the polysaccharide in the aggregation inhibitor of the present invention is usually in the range of 0.001 to 100 (w / w)%.
  • the concentration of the polysaccharide in the aqueous solution is determined by mammalian stem cells.
  • the concentration is not particularly limited as long as it is a concentration sufficient to suppress the aggregation of the water.
  • the higher the concentration of the polysaccharide the higher the effect of suppressing aggregation.
  • the polysaccharide concentration is too high, the survival rate of the stem cells may be adversely affected.
  • the trehalose concentration in the aqueous solution is usually 4.53 mg / ml or more, preferably 15.1 mg / ml or more.
  • the trehalose concentration in the aqueous solution is usually 362.4 mg / ml or less, preferably 181.2 mg / ml or less. Therefore, the trehalose concentration in the aqueous solution is usually 4.53 to 362.4 mg / ml, preferably 15.1 to 181.2 mg / ml.
  • a trehalose concentration sufficient to suppress aggregation of mammalian stem cells can be appropriately set according to trehalose.
  • the concentration of hydroxyethyl starch in the aqueous solution is, for example, 1 mg / ml or more, preferably 10 mg / ml or more.
  • the concentration of hydroxyethyl starch in the aqueous solution is, for example, 500 mg / ml or less, preferably 100 mg / ml or less. Accordingly, the concentration of hydroxyethyl starch in the aqueous solution is, for example, 1 to 500 mg / ml, preferably 10 to 100 mg / ml.
  • the concentration of dextran in the aqueous solution is, for example, 1 mg / ml or more, preferably 10 mg / ml or more, more preferably 30 mg / ml or more, and further preferably 65 mg / ml or more.
  • the concentration of dextran in the aqueous solution is, for example, 500 mg / ml or less, preferably 200 mg / ml or less, more preferably 125 mg / ml or less, and still more preferably 100 mg / ml. Less than ml.
  • the concentration of dextran in the aqueous solution is, for example, 1 to 500 mg / ml, preferably 10 to 200 mg / ml, more preferably 30 to 125 mg / ml, still more preferably 30 to 100 mg / ml, and even more preferably 65. ⁇ 100 mg / ml.
  • each polysaccharide is contained in the aqueous solution so as to suppress the aggregation of mammalian stem cells as a result. It is.
  • Aggregation of mammalian stem cells simply by suspending the mammalian stem cells in a physiological aqueous solution containing at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch and dextran prepared to such a concentration Can be suppressed.
  • a physiological aqueous solution containing at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch and dextran prepared to such a concentration Can be suppressed.
  • the mammalian stem cell is a physiological aqueous solution comprising at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch and dextran (preferably selected from the group consisting of trehalose, hydroxyethyl starch and dextran).
  • a method for inhibiting the aggregation of mammalian stem cells comprising suspending in an isotonic aqueous solution containing at least one polysaccharide). With these polysaccharides, in particular, aggregation of mammalian stem cells (that is, suspended mammalian stem cells) in suspension is suppressed.
  • the mammalian stem cells used in the aggregation suppression method of the present invention are preferably adherent stem cells. This is because adherent stem cells are more likely to aggregate in suspension (that is, in a suspended state).
  • the adherent stem cells are preferably mesenchymal stem cells or pluripotent stem cells.
  • Mammalian stem cells may be isolated from the living body or may be subcultured in vitro.
  • Mammalian stem cells used in the aggregation suppression method of the present invention are preferably isolated or purified.
  • the mammalian stem cells used in the aggregation suppression method of the present invention preferably include mammalian stem cells in a single cell (single cell) state.
  • the proportion of mammalian stem cells in a single cell state contained in mammalian stem cells is usually 70% or more, preferably 90% or more, more preferably 95% or more, and even more preferably 99% or more (for example, 100%). is there.
  • adherent stem cells float in suspension and tend to aggregate in a single cell state, but are effective due to at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch and dextran. Aggregation can be suppressed, and the state of a single cell can be maintained for a long time.
  • the physiological aqueous solution used in the present invention contains 1, 2 or 3 kinds of polysaccharides selected from the group consisting of trehalose, hydroxyethyl starch and dextran.
  • the combination of polysaccharides is a combination of trehalose and hydroxyethyl starch, a combination of trehalose and dextran, a combination of hydroxyethyl starch and dextran.
  • the physiological aqueous solution used in the present invention contains the polysaccharide at a concentration sufficient to suppress aggregation of mammalian stem cells.
  • the trehalose concentration in the physiological aqueous solution is not particularly limited as long as it is a concentration sufficient to suppress aggregation of mammalian stem cells, but usually 4.53 mg / ml or more, Preferably, it is 15.1 mg / ml or more.
  • the trehalose concentration in the physiological aqueous solution is preferably 362.4 mg / ml or less, more preferably 181.2 mg / ml or less. Therefore, the trehalose concentration in the physiological aqueous solution is preferably 4.53 to 362.4 mg / ml, more preferably 15.1 to 181.2 mg / ml.
  • a concentration sufficient to suppress aggregation of mammalian stem cells can be appropriately set according to trehalose.
  • the concentration of hydroxyethyl starch in the physiological aqueous solution is not particularly limited as long as it is sufficient to suppress aggregation of mammalian stem cells.
  • 1 mg / ml As mentioned above, Preferably, it is 10 mg / ml or more.
  • the concentration of hydroxyethyl starch in the physiological aqueous solution is, for example, 500 mg / ml or less, preferably 100 mg / ml or less. Therefore, the hydroxyethyl starch concentration in the physiological aqueous solution is, for example, 1 to 500 mg / ml, preferably 10 to 100 mg / ml.
  • the concentration of dextran in the physiological aqueous solution is not particularly limited as long as the concentration is sufficient to suppress aggregation of mammalian stem cells.
  • 1 mg / ml or more preferably It is 10 mg / ml or more, more preferably 30 mg / ml or more, still more preferably 65 mg / ml or more.
  • the dextran concentration in the physiological aqueous solution is usually 500 mg / ml or less, preferably 200 mg / ml or less, more preferably 125 mg / ml or less, more preferably 100 mg. / Ml or less.
  • the concentration of dextran in the physiological aqueous solution is usually 1 to 500 mg / ml, preferably 10 to 200 mg / ml, more preferably 30 to 125 mg / ml, still more preferably 30 to 100 mg / ml, and still more preferably. 65-100 mg / ml.
  • each of the polysaccharides in the physiological aqueous solution can be suppressed so that aggregation of mammalian stem cells can be suppressed.
  • Sugars are included.
  • the temperature of the physiological aqueous solution containing at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch and dextran when suspending mammalian stem cells is usually 0 to 37 ° C, preferably 0 to 25 ° C. Within range.
  • the density of mammalian stem cells in suspension, trehalose is not particularly limited as long as at least one polysaccharide by aggregation suppressing effect is selected from the group consisting of hydroxyethyl starch and dextran are achieved, usually 10 3 to 10 Within the range of 10 / ml.
  • Suspension of mammalian stem cells in a physiological aqueous solution containing at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch and dextran is performed by a well-known method in the art such as pipetting and tapping. I can do it.
  • mammalian stem cells float in a physiological aqueous solution containing at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch, and dextran.
  • the present invention provides an inhibitor for lowering the survival rate of mammalian stem cells, comprising at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch and dextran.
  • the inhibitor of decreased mammalian stem cell viability comprises two or three polysaccharides selected from these groups, a combination of trehalose and hydroxyethyl starch, a combination of trehalose and dextran, a combination of hydroxyethyl starch and dextran
  • the combination or the combination of trehalose, hydroxyethyl starch and dextran suppresses the decrease in viability of mammalian stem cells (ie, suspended mammalian stem cells) in suspension.
  • the mammalian stem cell to which the inhibitor for reducing the survival rate of the present invention is applied is preferably an adherent stem cell. This is because adherent stem cells are more likely to have a lower survival rate in suspension (that is, in a suspended state) than non-adherent cells.
  • the adherent stem cells are preferably mesenchymal stem cells or pluripotent stem cells.
  • Mammalian stem cells may be isolated from the living body or may be subcultured in vitro.
  • the mammalian stem cell to which the inhibitor for reducing the survival rate of the present invention is applied is isolated or purified.
  • the mammalian stem cell used for the inhibitor of the decrease in the survival rate of the present invention includes a mammalian stem cell in a single cell state.
  • the proportion of mammalian stem cells in a single cell state contained in mammalian stem cells is usually 70% or more, preferably 90% or more, more preferably 95% or more, and even more preferably 99% or more (for example, 100%). is there.
  • the mammalian stem cells to which the inhibitor for reducing the survival rate of the present invention is applied are preferably suspended in a suspension of the stem cells.
  • adherent stem cells float in suspension and are easily damaged in the state of a single cell, and the survival rate tends to decrease. It can be effectively suppressed.
  • the inhibitor for reducing the survival rate of the present invention preferably contains trehalose and hydroxyethyl starch, or a combination containing trehalose and dextran.
  • trehalose hydroxyethyl starch or dextran
  • adherent stem cells suspended in suspension are effective in reducing the survival rate of suspension in suspension (especially, adherent stem cells suspended in suspension and in a single cell state). Can be expected to be suppressed.
  • the inhibitor of the decrease in survival rate of the present invention may be composed of at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch and dextran, and in addition to these constituent factors, further physiologically It may contain an acceptable carrier.
  • physiologically acceptable carriers include physiological aqueous solutions (for example, physiological saline, phosphate buffered saline, Tris buffered saline, HEPES buffered saline, Ringer's solution, 5% glucose aqueous solution).
  • Liquid medium for mammalian culture isotonic aqueous solutions such as aqueous solutions of isotonic agents (glucose, D-sorbitol, D-mannitol, lactose, sodium chloride, etc.), stabilizers (eg, human serum albumin, polyethylene glycol, etc.) ), Buffer (eg, phosphate buffer, sodium acetate buffer), chelating agent (eg, EDTA, EGTA, citric acid, salicylate), excipient, binder, solubilizer, preservative, antioxidant Agents and the like.
  • isotonic agents glucose, D-sorbitol, D-mannitol, lactose, sodium chloride, etc.
  • stabilizers eg, human serum albumin, polyethylene glycol, etc.
  • Buffer eg, phosphate buffer, sodium acetate buffer
  • chelating agent eg, EDTA, EGTA, citric acid, salicylate
  • the inhibitor for lowering the survival rate of the present invention is preferably a physiological aqueous solution (one in a physiological aqueous solution) containing one, two or three polysaccharides selected from the group consisting of trehalose, hydroxyethyl starch and dextran.
  • the polysaccharide solution is more preferably an isotonic aqueous solution containing one, two or three polysaccharides selected from the group consisting of trehalose, hydroxyethyl starch and dextran.
  • the inhibitor for reducing the survival rate of the present invention can be used by adding it to a suspension of mammalian stem cells.
  • the inhibitor for reducing the survival rate of the present invention is a physiological aqueous solution containing at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch, and dextran
  • the inhibitor for decreasing the survival rate of the present invention Mammalian stem cells may be suspended by The inhibitor for reducing the survival rate of the present invention is added, or the inhibitor for decreasing the survival rate of the present invention is used so that the concentration of the polysaccharide is sufficient to suppress the decrease in the survival rate of mammalian stem cells. Mammalian stem cells are suspended.
  • the trehalose concentration sufficient to suppress the decrease in the survival rate of mammalian stem cells in the suspension is usually 4.53 mg / ml or more, preferably 15.1 mg / ml or more. is there.
  • the higher the trehalose concentration the higher the effect of suppressing the decrease in the survival rate.
  • the trehalose concentration in the suspension is usually 362.4 mg / ml or less, preferably 181.2 mg / ml or less. Therefore, the trehalose concentration in the suspension is usually 4.53 to 362.4 mg / ml, preferably 15.1 to 181.2 mg / ml.
  • a trehalose concentration sufficient to suppress a decrease in the survival rate of mammalian stem cells in suspension can be appropriately set according to trehalose.
  • the hydroxyethyl starch concentration sufficient to suppress the decrease in the survival rate of mammalian stem cells in the suspension is usually 1 mg / ml or more, preferably 10 mg / ml or more. is there.
  • the hydroxyethyl starch concentration in the suspension is usually 500 mg / ml or less, preferably 100 mg / ml or less. Therefore, the hydroxyethyl starch concentration in the suspension is usually 1 to 500 mg / ml, preferably 10 to 100 mg / ml.
  • the concentration of dextran sufficient to suppress the decrease in the survival rate of mammalian stem cells in the suspension is usually 1 mg / ml or more, preferably 10 mg / ml or more, more preferably 30 mg. / Ml or more, more preferably 65 mg / ml or more.
  • the survival rate of the stem cells may be adversely affected.
  • the dextran concentration in the suspension is usually 500 mg / ml or less, preferably 200 mg / ml or less, more preferably 125 mg / ml or less, and still more preferably 100 mg / ml or less. Accordingly, the concentration of dextran in the suspension is usually 1 to 500 mg / ml, preferably 10 to 200 mg / ml, more preferably 30 to 125 mg / ml, still more preferably 30 to 100 mg / ml, still more preferably 65 to 100 mg / ml.
  • the concentration of each polysaccharide in the suspension is preferably trehalose, It is set so that the effect of suppressing the decrease in the survival rate of mammalian stem cells is enhanced when these combinations are used rather than when hydroxyethyl starch or dextran is used alone.
  • the inhibitor for reducing the survival rate of the present invention is selected from the group consisting of trehalose, hydroxyethyl starch and dextran in an amount sufficient to suppress the decrease in the survival rate of mammalian stem cells when used as described above. Containing at least one polysaccharide.
  • the content of the polysaccharide in the inhibitor for reducing the survival rate of the present invention is usually in the range of 0.001 to 100 (w / w)%.
  • the trehalose content in the inhibitor of survival rate reduction of the present invention is usually 0.001 to 99.999 ( The content of hydroxyethyl starch or dextran is usually in the range of 0.001 to 99.999 (w / w)%.
  • the content of each polysaccharide in the inhibitor for reducing the survival rate of the present invention is usually 0.001 to 99.997, respectively. It is in the range of (w / w)%.
  • the concentration of the polysaccharide in the aqueous solution is:
  • the concentration is not particularly limited as long as the concentration is sufficient to suppress a decrease in the survival rate of mammalian stem cells.
  • the higher the concentration of the polysaccharide the higher the effect of suppressing the decrease in the survival rate.
  • the polysaccharide concentration is too high, the survival rate of the stem cells may be adversely affected.
  • the trehalose concentration in the aqueous solution is usually 4.53 mg / ml or more, preferably 15.1 mg so as to be sufficient to suppress the decrease in the survival rate of mammalian stem cells. / Ml or more.
  • the trehalose concentration in the aqueous solution is usually 362.4 mg / ml or less, preferably 181.2 mg / ml or less. Therefore, the trehalose concentration in the aqueous solution is usually 4.53 to 362.4 mg / ml, preferably 15.1 to 181.2 mg / ml.
  • the concentration of hydroxyethyl starch in the aqueous solution is, for example, 1 mg / ml or more, preferably 10 mg / ml or more. From the viewpoint of avoiding adverse effects, the concentration of hydroxyethyl starch in the aqueous solution is, for example, 500 mg / ml or less, preferably 100 mg / ml or less. Accordingly, the concentration of hydroxyethyl starch in the aqueous solution is, for example, 1 to 500 mg / ml, preferably 10 to 100 mg / ml.
  • the concentration of dextran in the aqueous solution is, for example, 1 mg / ml or more, preferably 10 mg / ml or more, more preferably 30 mg / ml or more, and further preferably 65 mg / ml or more. From the viewpoint of avoiding adverse effects, the concentration of dextran in the aqueous solution is, for example, 500 mg / ml or less, preferably 200 mg / ml or less, more preferably 125 mg / ml or less, and still more preferably 100 mg / ml or less.
  • the concentration of dextran in the aqueous solution is, for example, 1 to 500 mg / ml, preferably 10 to 200 mg / ml, more preferably 30 to 125 mg / ml, still more preferably 30 to 100 mg / ml, and even more preferably 65. ⁇ 100 mg / ml.
  • the concentration of each polysaccharide in the aqueous solution is preferably trehalose, hydroxy It is set so that the effect of suppressing the decrease in the survival rate of mammalian stem cells is enhanced when these combinations are used rather than when ethyl starch or dextran is used alone.
  • mammalian stem cells conveniently by suspending the mammalian stem cells in a physiological aqueous solution containing at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch and dextran adjusted to such a concentration. A decrease in rate can be suppressed.
  • the present invention provides a physiological aqueous solution (preferably consisting of trehalose, hydroxyethyl starch and dextran) containing one, two or three polysaccharides selected from the group consisting of trehalose, hydroxyethyl starch and dextran.
  • a physiological aqueous solution preferably consisting of trehalose, hydroxyethyl starch and dextran
  • the present invention provides a method for suppressing a decrease in the survival rate of mammalian stem cells, comprising suspending in an isotonic aqueous solution containing one, two or three polysaccharides selected from the group.
  • trehalose In order to suspend mammalian stem cells in a physiological aqueous solution containing at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch and dextran, trehalose, hydroxyethyl starch and Mammalian stem cell suspension in a physiological aqueous solution comprising at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch and dextran with the addition of at least one polysaccharide selected from the group consisting of dextran Is also encompassed.
  • Mammalian stem cells used in the method for suppressing a decrease in survival rate of the present invention are preferably adherent stem cells. This is because adherent stem cells are more likely to have a lower survival rate in suspension (that is, in a suspended state) than non-adherent cells.
  • the adherent stem cells are preferably mesenchymal stem cells or pluripotent stem cells.
  • Mammalian stem cells may be isolated from the living body or may be subcultured in vitro.
  • Mammalian stem cells used in the method for suppressing a decrease in survival rate of the present invention are preferably isolated or purified.
  • the mammalian stem cells used in the method for suppressing a decrease in the survival rate of the present invention include mammalian stem cells in a single cell (single cell) state.
  • the proportion of mammalian stem cells in a single cell state contained in mammalian stem cells is usually 70% or more, preferably 90% or more, more preferably 95% or more, and even more preferably 99% or more (for example, 100%). is there.
  • adherent stem cells float in suspension and are easily damaged in a single cell state, and the viability tends to decrease, but at least one selected from the group consisting of trehalose, hydroxyethyl starch, and dextran.
  • One polysaccharide can effectively suppress the decrease in the survival rate.
  • the physiological aqueous solution used in the present invention preferably includes trehalose and hydroxyethyl starch, or a combination containing trehalose and dextran.
  • trehalose hydroxyethyl starch or dextran
  • trehalose By combining hydroxyethyl starch or dextran with trehalose, it can be expected that the effect of suppressing the decrease in the survival rate of mammalian stem cells is enhanced. In particular, it can be expected to effectively suppress a decrease in the survival rate of adherent stem cells suspended in suspension (in particular, adherent stem cells suspended in suspension and in a single cell state).
  • the concentration of the polysaccharide in the physiological aqueous solution containing at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch, and dextran is sufficient to suppress a decrease in the viability of mammalian stem cells.
  • trehalose hydroxyethyl starch
  • dextran dextran
  • the trehalose concentration in the aqueous solution is usually 4.53 mg / ml or more, preferably 15.1 mg / ml so that it is sufficient to suppress the decrease in the survival rate of mammalian stem cells. That's it.
  • the trehalose concentration in the aqueous solution is usually 362.4 mg / ml or less, preferably 181.2 mg / ml or less. Therefore, the trehalose concentration in the aqueous solution is usually 4.53 to 362.4 mg / ml, preferably 15.1 to 181.2 mg / ml.
  • a concentration sufficient to suppress a decrease in the survival rate of mammalian stem cells in suspension can be appropriately set according to trehalose.
  • the concentration of hydroxyethyl starch in the aqueous solution is, for example, 1 mg / ml or more, preferably 10 mg / ml or more.
  • the concentration of hydroxyethyl starch in the aqueous solution is, for example, 500 mg / ml or less, preferably 100 mg / ml or less. Accordingly, the concentration of hydroxyethyl starch in the aqueous solution is, for example, 1 to 500 mg / ml, preferably 10 to 100 mg / ml.
  • the concentration of dextran in the aqueous solution is, for example, 1 mg / ml or more, preferably 10 mg / ml or more, more preferably 30 mg / ml or more, and further preferably 65 mg / ml or more.
  • the concentration of dextran in the aqueous solution is, for example, 500 mg / ml or less, preferably 200 mg / ml or less, more preferably 125 mg / ml or less, and still more preferably 100 mg / ml. Less than ml.
  • the concentration of dextran in the aqueous solution is, for example, 1 to 500 mg / ml, preferably 10 to 200 mg / ml, more preferably 30 to 125 mg / ml, still more preferably 30 to 100 mg / ml, and even more preferably 65. ⁇ 100 mg / ml.
  • the concentration of each polysaccharide in the aqueous solution is preferably trehalose, hydroxy It is set so that the effect of suppressing the decrease in the survival rate of mammalian stem cells is enhanced when these combinations are used rather than when ethyl starch or dextran is used alone.
  • the temperature of the physiological aqueous solution containing at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch and dextran when suspending mammalian stem cells is usually 0 to 37 ° C, preferably 0 to 25 ° C. Within range.
  • the density of mammalian stem cells in the suspension is not particularly limited as long as the aggregation inhibitory effect by trehalose is achieved, but is usually in the range of 10 3 to 10 10 cells / ml.
  • Suspension of mammalian stem cells in a physiological aqueous solution containing at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch and dextran is performed by a well-known method in the art such as pipetting and tapping. I can do it.
  • mammalian stem cells float in a physiological aqueous solution containing at least one polysaccharide selected from the group consisting of trehalose, hydroxyethyl starch, and dextran.
  • Example 1 Preparation of porcine subcutaneous fat-derived mesenchymal stem cells (Pig AT-MSC) (1) Preparation of pig tissue After that, chopping and washing with HBSS (Hanks solution) were repeated several times. The cleaning operation was continued until removal of blood cells (or blood clots) and removal of membrane-like floating substances such as muscle were visually confirmed. The obtained porcine subcutaneous fat was shredded with scissors. The minced tissue was mixed with the same amount of HBSS. The mixture was gently shaken and then allowed to stand to separate into two layers. Only the upper layer was collected. 0.2% collagenase (Type I) / HBSS was added to the collected upper layer, and gently shaken at 37 ° C.
  • ⁇ MEM containing 10% fetal bovine serum (FBS) was added to the reaction solution in an amount equal to or greater than the amount of collagenase reaction solution and mixing, the mixture was centrifuged to separate into three layers (from the bottom nucleated cells. Solution / fat). Only the lower layer was collected and resuspended in HBSS. This operation was repeated three times. Finally, the cell suspension suspended in ⁇ MEM containing 10% FBS was transferred to a culture dish and cultured. MSC adhered to the bottom of the culture dish.
  • FBS fetal bovine serum
  • ET-K contains trehalose at a concentration of 45.3 mg / ml. Then, it suspended so that it might become 2.5x10 ⁇ 5 > cells / 50microliter using each solution. The suspension was allowed to stand at each temperature (0, 25, 37 ° C.), and after 0, 30, 60, 120, 240 minutes, pipetting was performed several times with a 20 ⁇ L pipetman, and 10 ⁇ L was transferred to a dish. Observation was performed by focusing a stereomicroscope on the bottom surface of the suspension on the dish. What formed the adjacent cell mass under a microscope was made into the cell aggregate. It was confirmed that the cell clumps clearly moved as a clump by shaking the dish on the stage of the microscope.
  • Example 2 Cells obtained by subcultured the porcine subcutaneous fat-derived mesenchymal stem cells prepared in Example 1 twice (Pig AT-MSC P2) were seeded in three 10 cm dishes. After washing 3 times with 5 ml of PBS ( ⁇ ) per 10 cm dish, the cells were detached by treatment with 1 ml of trypsin-EDTA (0.25% trypsin, 1 mM EDTA ⁇ 4Na) for 20 seconds to obtain a single cell state. . The obtained cells (1.7 ⁇ 10 6 cells, viability: 94.1%) were transferred to a 15 ml falcon tube, and centrifuged to collect the cells.
  • ET-kyoto E-K, manufactured by Otsuka Pharmaceutical Factory. 500 ⁇ L each of the cell suspension in ET-K was dispensed into 10 15 mL tubes and allowed to stand at room temperature (25 ° C.) for 10 minutes. By adding an appropriate amount of physiological saline to each tube, the cell suspension in ET-K was diluted 2 to 10 times and allowed to stand for another 30 minutes. Thereafter, as in Example 1, the survival rate was calculated, and the presence or absence of cell aggregates was observed. The results are shown in Table 2.
  • the stem cells After observing cell aggregability, the cells were resuspended, allowed to stand at room temperature (25 ° C.) for 10 minutes, and then the suspension of the cells was observed under a microscope. When the ET-K stock solution, its 2-fold dilution, and 3-fold dilution were used, the cells were stably suspended. On the other hand, when ET-K was diluted 8 times or more, the cells precipitated with almost no change from MSCM and HBSS. Therefore, it was suggested that the stem cells stably float at a trehalose concentration of at least 15.1 mg / ml.
  • Example 3 Cells obtained by subcultured pig subcutaneous fat-derived mesenchymal stem cells prepared in Example 1 10 times (Pig AT-MSC P10) were seeded in a 10 cm dish. After washing 3 times with 5 ml of PBS ( ⁇ ) per 10 cm dish, the cells were detached by treatment with 1 ml of trypsin-EDTA (0.25% trypsin, 1 mM EDTA ⁇ 4Na) for 20 seconds to obtain a single cell state. . The obtained cells (3.3 ⁇ 10 8 cells, survival rate: 98.5%) were transferred to a 15 ml falcon tube, and the cells were collected by centrifugation, washed twice with PBS ( ⁇ ), and then 5 ml of ET ⁇ .
  • the suspension was suspended in Kyoto (ET-K, manufactured by Otsuka Pharmaceutical Factory).
  • ET-K manufactured by Otsuka Pharmaceutical Factory.
  • the cell suspension in ET-K was left at 4 ° C. for 5 hours or 27 hours. Thereafter, as in Example 1, the survival rate was calculated, and the presence or absence of cell aggregates was observed.
  • Table 2 After standing for 5 hours or 27 hours, the cells were further cultured for 24 hours, and then the morphology of the cells was observed under a microscope.
  • Cell aggregation After detachment from the dish, the cells were allowed to stand at 4 ° C in a state suspended in ET-K. As a result, cell aggregation did not occur at any time after 5 and 27 hours, and the single cell state was maintained. It had been. Therefore, it was shown that the cell aggregation inhibitory effect by ET-K is exhibited even at 4 ° C.
  • the survival rate after 5 hours was 78.7%, and the survival rate after 27 hours was 65.9%. From 0 hours to 5 hours, a decrease in survival rate of 3.96% / hr and from 5 hours to 27 hours was confirmed to be 0.58% / hr.
  • Cell morphology When the cells were further cultured for 24 hours after standing for 5 hours or 27 hours, cells adhered to the plate were confirmed in accordance with the survival rate. However, about 10% of allomorphic cells were confirmed in the cells stored for 27 hours. In cells stored for 5 hours, the proportion of cells with abnormal morphology was 1% or less.
  • Example 4 Preparation of human bone marrow-derived MSC (hBM-MSC) 20-30 mL of bone marrow cells were collected from human iliac bone with a syringe containing 6000 Unit heparin. Bone marrow cells were washed once with PBS ( ⁇ ), and the cells were collected by centrifugation at 900 g for 20 minutes and repeated once more. The suspension was suspended in ⁇ MEM containing 10% FBS, transferred to a culture dish, and adhesion culture was performed. (2) Preparation of cells (hBM-MSC P3) to be used in the experiment In the operation of (1), MSCs adhered to the culture dish continued to grow, and after 5 to 7 days, the bottom of the culture dish was filled with cells.
  • hBM-MSC P3 Preparation of cells
  • the cells were detached by treatment with 1 ml of trypsin-EDTA (0.25% trypsin, 1 mM EDTA ⁇ 4Na) for 20 seconds to obtain a single cell state. .
  • the obtained cells were transferred to a 15 ml falcon tube, and centrifuged to collect the cells.
  • the cells were suspended in the following composition solution and allowed to stand for 240 minutes and 480 minutes. The presence or absence of cell aggregation was observed.
  • NS Saline (Otsuka Pharmaceutical Factory) H: Hessander (Kyorin Pharmaceutical) 1 ⁇ T & NS: 45.3 mg / mL D-(+)-Trehalose (Wako Pure Chemical) containing physiological saline 1 ⁇ T & H: 45.3 mg / mL D-(+)-Trehalose (Wako Pure Chemical) Hessander (Kyorin Pharmaceutical) 1 ⁇ T & H & TRase: 45.3 mg / mL D-(+)-trehalose (Wako Pure Chemical Industries) and trehalase (SIGMA) (2Unit / mL) containing Hesspander (Kyorin Pharmaceutical)
  • Trehalose is a major component of ET-K, and 45.3 mg / mL is the concentration of trehalose contained in ET-K.
  • Hessander is a hydroxyethyl starch preparation containing 6 (w / v)% of hydroxyethyl starch (weight average molecular weight (Mw) of about 70000, substitution degree of 0.50 to 0.55).
  • Example 5 Preparation of human fat-derived MSC (hBM-MSC) After collecting human subcutaneous fat, tissues that are different from fatty tissues such as visible blood vessels and muscles are removed with a micro scissors, and then minced and HBSS (Hanks solution) The washing with was repeated several times. The cleaning operation was continued until removal of blood cells (or blood clots) and removal of membrane-like floating substances such as muscle were visually confirmed. The obtained human subcutaneous fat was shredded with scissors. The minced tissue was mixed with the same amount of HBSS. The mixture was gently shaken and then allowed to stand to separate into two layers. Only the upper layer was collected.
  • HBSS Hormonos solution
  • 0.05% collagenase (Type I) / HBSS was added to the recovered upper layer, and the mixture was gently shaken at 37 ° C. until the fat became completely liquid.
  • ⁇ MEM containing 10% fetal bovine serum (FBS) in the reaction solution, the mixture was separated into two layers by centrifuging. Only the lower layer was collected and resuspended in HBSS. This operation was repeated three times. Finally, the cell suspension suspended in ⁇ MEM containing 10% FBS was transferred to a culture dish and cultured. MSC adhered to the bottom of the culture dish.
  • Cells obtained by passage of hAT-MSC and hBM-MSC three times (hAT-MSC P3 and hBM-MSC P3) were seeded in a 10 cm dish. After washing 3 times with 5 ml of PBS ( ⁇ ) per 10 cm dish, the cells were detached by treatment with 1 ml of trypsin-EDTA (0.25% trypsin, 1 mM EDTA ⁇ 4Na) for 20 seconds to form a single cell. .
  • the obtained cells (hAT-MSC P3: 1.0 ⁇ 10 5 cells, survival rate: 98.4% / hBM-MSC P3: 1.25 ⁇ 10 5 cells, survival rate: 96.8%) were transferred to a 15 ml capacity Falcon tube. Transfer and centrifuge to collect cells, wash twice with PBS ( ⁇ ), suspend in 100 ⁇ L of the following composition solution, leave at room temperature (about 25 ° C.) for 240 minutes or 24 hours, Viability was measured and cell aggregation and morphology were observed. Further, after standing for 240 minutes or 24 hours, the cells were further cultured for 12 hours, and the morphology of the cells was observed.
  • 0.1 ⁇ T & H 4.53 mg / mL D-(+)-Trehalose (Wako Pure Chemical Industries) containing Hesspander (Kyorin Pharmaceutical) 0.1 ⁇ T & NS: 4.53mg / mL D-(+)-Saline containing trehalose (Otsuka Pharmaceutical Factory) 1 ⁇ T & H: 45.3 mg / mL D-(+)-Hespander containing trehalose 1 ⁇ T & NS: 45.3 mg / mL D-(+)-saline containing trehalose 2 ⁇ T & H: 90.6 mg / Hessander 2 ⁇ T & NS containing mL D-(+)-trehalose: 90.6 mg / mL Saline ET-K containing D-(+)-trehalose ET-K: ET-Kyoto (Otsuka Pharmaceutical Factory) H: Hespander NS: Saline MSCM: ⁇
  • trehalose can suppress cell aggregation, increase cell viability, and maintain cell morphology and function. It was also shown that hydroxyethyl starch can increase cell viability and maintain cell morphology and function. Furthermore, it was shown that the viability of the cells was significantly increased by combining trehalose and hydroxyethyl starch.
  • Example 6 Cells obtained by passage of hAT-MSC and hBM-MSC three times (hAT-MSC P3 and hBM-MSC P3) were seeded in 10 cm dishes. After washing 3 times with 5 ml of PBS ( ⁇ ) per 10 cm dish, the cells were detached by treatment with 1 ml of trypsin-EDTA (0.25% trypsin, 1 mM EDTA ⁇ 4Na) for 20 seconds to obtain a single cell state. .
  • the resulting cells (hAT-MSC P3: 4.25x10 5 cells, the survival rate: 97.5% / hBM-MSC P3 : 5.0x10 5 cells, the survival rate: 98.2%) of 15ml capacity to the Falcon tube
  • the cells are collected by centrifugation, washed twice with PBS ( ⁇ ), suspended in 100 ⁇ L of the following composition solution, and left at room temperature (about 25 ° C.) for 8 hours or 36 hours. Viability was measured and cell aggregation was observed.
  • Cell viability (Cell viability) Table 4 shows the cell viability after 36 hours from the start of the test.
  • the viability of the cells increased as compared with Hessander alone (H), regardless of which concentration of trehalose was added. Until the addition of trehalose at a concentration of 181.2 mg / mL (4 ⁇ T), the cell viability was significantly increased. However, when the trehalose addition concentration was increased to 362.4 mg / mL (8 ⁇ T), The effect diminished. Therefore, it was suggested that the trehalose concentration is preferably 181.2 mg / mL (4 ⁇ T) or less from the viewpoint of increasing the cell viability.
  • Example 7 Cells obtained by passage of hAT-MSC and hBM-MSC 6 or 8 times (hAT-MSC P8 and hBM-MSC P6) were seeded in a 10 cm dish. After washing 3 times with 5 ml of Hesspander (Kyorin Pharmaceutical) per 10 cm dish, cells are detached by treatment with 1 ml of trypsin-EDTA (0.25% trypsin, 1 mM EDTA ⁇ 4Na) for 20 seconds to form a single cell. did.
  • Hesspander Kerin Pharmaceutical
  • the obtained cells (hAT-MSC P8: 2.4 ⁇ 10 6 cells / hBM-MSC P6: 2.3 ⁇ 10 6 cells) were transferred to a 15 ml falcon tube, and centrifuged to collect the cells. After suspending and allowing to stand at room temperature (about 25 ° C.) for 1 hour, the survival rate of the cells was measured, and cell aggregation was observed.
  • Cell viability Regardless of which concentration of trehalose was added, cell viability increased compared to Hespander alone (H). On the other hand, when fucoidan was added, cell viability decreased, suggesting that fucoidan has cytotoxicity. Trehalose tended to suppress fucoidan cytotoxicity.
  • Cell aggregation For both hAT-MSC and hBM-MSC, cell suspension effect and cell aggregation inhibitory effect were observed by addition of trehalose. On the other hand, fucoidan was found to have a tendency to inhibit cell suspension, and no cell aggregation inhibitory effect was observed. The addition of trehalose suppressed cell protrusion formation and the cell morphology was better than hessander alone. The cell aggregation inhibitory effect of 0.5 ⁇ T & H was similar to that of ET-K. The cell floating effect was slightly better with ET-K than with 0.5 ⁇ T & H. At 0.1 ⁇ T & H, some protrusions were observed on the cell surface.
  • Example 8 Cells obtained by passage 7 times of porcine subcutaneous fat-derived mesenchymal stem cells prepared in Example 1 (Pig AT-MSC P7) were cultured on a 10 cm dish. After washing 3 times with 5 ml of PBS ( ⁇ ) per 10 cm dish, the cells were detached by treatment with 1 ml of trypsin-EDTA (0.25% trypsin, 1 mM EDTA ⁇ 4Na) for 20 seconds, to form a single cell. Suspended in ET-K solution. The obtained cell suspension was used for the following tests.
  • the Soldem 3AG infusion bag (TERUMO) was shredded and the fragment was placed on the wall of a 50 ml tube. The tube was filled with the cell suspension, and the tube was placed on its side in a clean bench at room temperature (25 ° C.) for 30 minutes. Thereafter, the infusion bag fragment was washed with PBS, and the presence or absence of cell adhesion to the inner wall of the infusion bag was evaluated by microscopic observation.
  • the cell viability was unchanged regardless of the number of passes until at least 10 times. Although very few MSCs and ET-K solution remained on the inner wall of the catheter, the number of cells after passing through the catheter was unchanged, and no adherent cells were confirmed after washing with PBS. Therefore, it has been shown that trehalose can avoid cell adhesion to the inner wall of the catheter.
  • Example 9 Porcine mesenchymal stem cells were cultured on 10 cm dishes. The cells were detached by treatment with trypsin-EDTA (0.25% trypsin, 1 mM EDTA ⁇ 4Na) to make a single cell. The obtained cells were suspended in the following composition solution, allowed to stand at room temperature (about 25 ° C.) for 360 minutes, and then the cell viability was measured to observe cell aggregation.
  • NS Saline MSCM: ⁇ MEM containing 10%
  • FBS ET-K ET-Kyoto (Otsuka Pharmaceutical Factory)
  • Saviosol Savizol (Otsuka Pharmaceutical Factory)
  • Dextran Low molecular weight dextran L injection (Otsuka Pharmaceutical Factory)
  • Savizol is a lactated Ringer's solution containing dextran (dextran 40) having a weight average molecular weight of 40,000 at a concentration of 30 mg / ml.
  • the low molecular weight dextran L injection is a lactated Ringer's solution containing dextran having a weight average molecular weight of 40000 (dextran 40) at a concentration of 100 mg / ml.
  • Cell viability (Cell viability) Table 6 shows the cell viability after 30 minutes and 360 minutes from the start of the test.
  • the survival rate of the cells was remarkably high compared to the case of using physiological saline regardless of which composition was used.
  • Cell aggregation The presence or absence of cell aggregation was observed under a microscope 360 minutes after the start of the test. When stored in saline or MSCM, formation of large cell aggregates was observed, but in ET-K, Saviosol, or Dextran, the formation of cell aggregates was suppressed, and the cell dispersion state was maintained. It had been.
  • Example 10 (1) Preparation of rat tissue After collecting rat subcutaneous fat from the ridge, remove tissue that is different from fat tissue such as visible blood vessels and muscles with micro scissors, then wash with minced slices and HBSS (Hanks solution) Was repeated several times. The cleaning operation was continued until removal of blood cells (or blood clots) and removal of membrane-like floating substances such as muscle were visually confirmed. The obtained rat subcutaneous fat was minced with scissors. The minced tissue was mixed with the same amount of HBSS. The mixture was gently shaken and then allowed to stand to separate into two layers. Only the upper layer was collected. 0.2% collagenase (Type I) / HBSS was added to the collected upper layer, and gently shaken at 37 ° C.
  • HBSS Horts solution
  • ⁇ MEM containing 10% fetal bovine serum (FBS) was added to the reaction solution in an amount equal to or greater than the amount of collagenase reaction solution and mixing, the mixture was centrifuged to separate into three layers (from the bottom nucleated cells. Solution / fat). Only the lower layer was collected and resuspended in HBSS. This operation was repeated three times. Finally, the cell suspension suspended in ⁇ MEM containing 10% FBS was transferred to a culture dish and cultured. MSC adhered to the bottom of the culture dish.
  • FBS fetal bovine serum
  • the suspension was allowed to stand at each temperature (0, 25, 37 ° C.), and after 30 to 360 minutes, pipetted several times with a 20 ⁇ L pipetman, and 10 ⁇ L was transferred to a dish. Observation was performed by focusing a stereomicroscope on the bottom surface of the suspension on the dish. What formed the adjacent cell mass under a microscope was made into the cell aggregate. It was confirmed that the cell clumps clearly moved as a clump by shaking the dish on the stage of the microscope.
  • Cell viability The cell viability 30 to 360 minutes after the start of the test is shown in FIGS. As shown in these figures, the cell viability was remarkably high compared to the case of using physiological saline regardless of which composition was used. The effect of suppressing the decrease in cell viability was higher with HES70K than with HES200K.
  • Example 11 Bone marrow-derived mesenchymal stem cells separated and purified from humans (passage number 8 times) and adipose tissue-derived mesenchymal stem cells (passage number 8 times) are placed on the bottom of a Nunc cell dish about 90 times. Incubated until% coverage. The culture dish was washed 3 times with PBS ( ⁇ ) manufactured by TaKaRa, each mesenchymal stem cell was detached from the culture dish with a trypsin solution manufactured by GIBCO, and the cells were collected in a 15 mL centrifuge tube manufactured by Assist.
  • PBS
  • trypsin solution manufactured by GIBCO
  • a cell mass was formed at the bottom of the centrifuge tube by centrifugation at 1000 rpm for 5 minutes, and the supernatant was discarded with an aspirator.
  • the cell mass was unwound by playing with a finger, PBS (-) manufactured by TaKaRa was added, the cells were further unwound by pipetting several times, and centrifuged at 1000 rpm for 5 minutes. After confirming that a cell mass was formed at the bottom of the centrifuge tube, the supernatant was discarded with an aspirator. This washing operation with PBS (-) was repeated twice thereafter.
  • the number of cells was measured with a hemocytometer, and the cells were transferred to a 1.5 mL tube manufactured by Assist under the conditions of 1.0 ⁇ 10 6 cells / tube. A cell mass was formed at the bottom of the tube by centrifugation at 1000 rpm for 5 minutes, and the supernatant was removed with a micropipette.
  • Cell singulation was performed using a Terumo 30G injection needle and a 1 mL syringe, and the cells were allowed to stand at room temperature (about 25 ° C.) using a tube stand. After 30 minutes and 60 minutes of standing, 10 ⁇ L of liquid was taken from each tube, and a liquid obtained by mixing an equal amount of GIBCO trypan blue liquid was measured with a hemocytometer. In addition, the evaluated liquid was gently separated from the three positions of the center of the liquid surface (upper), the middle of the liquid (middle), and the bottom center (lower) of each tube. The total value of the upper, middle, and lower cells was defined as 100%, and the cell distribution was calculated in proportion using the respective cell number as the numerator and the total cell number as the denominator. Moreover, the survival rate of the whole cell was calculated separately.
  • the present invention is used, aggregation of stem cells in suspension can be suppressed at the time of transplantation of stem cells. Therefore, the risk of stem cell aggregates clogging in the cannula or forming emboli in narrow blood vessels such as pulmonary veins is reduced. Furthermore, if this invention is used, the fall of the survival rate of the stem cell in suspension can be suppressed. Therefore, since treatment can be performed with stem cells in better condition, an improvement in therapeutic effect can be expected. Therefore, the present invention is useful in the field of transplantation medicine using stem cells.
  • This application is based on Japanese Patent Application No. 2010-251273 (filing date: November 9, 2010) and Japanese Patent Application No. 2010-293908 (filing date: December 28, 2010) filed in Japan. All are included in the specification.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Rheumatology (AREA)
  • Hematology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Environmental Sciences (AREA)
  • Dentistry (AREA)
  • Dermatology (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Inorganic Chemistry (AREA)
  • Virology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)

Abstract

 本発明は、哺乳動物幹細胞及びトレハロース等の多糖類を含む、哺乳動物幹細胞懸濁液;トレハロース等の多糖類を含む、哺乳動物幹細胞凝集抑制剤;哺乳動物幹細胞を多糖類を含む生理的水溶液に懸濁することを含む、哺乳動物幹細胞の凝集の抑制方法;トレハロース等の多糖類を含む、哺乳動物幹細胞の生存率低下の抑制剤;哺乳動物幹細胞を多糖類を含む生理的水溶液に懸濁することを含む、哺乳動物幹細胞の生存率低下の抑制方法等を提供する。

Description

幹細胞懸濁液
 本発明は、哺乳動物幹細胞懸濁液及びそれを含む医薬製剤に関する。また、本発明は、哺乳動物の幹細胞の凝集を抑制するための剤及び哺乳動物の幹細胞の凝集の抑制方法に関する。更に、本発明は、哺乳動物の幹細胞の生存率低下を抑制するための剤、哺乳動物の幹細胞の生存率低下の抑制方法に関する。
 近年の幹細胞研究の進歩により、幹細胞の臨床応用は、既に基礎的な研究段階から開発段階へ移行している。幹細胞による疾患の治療においては、ダメージを受けた患者の細胞や組織の機能を、幹細胞から新たに分化させた当該細胞や臓器により補う。ここで、幹細胞からの体細胞や組織への分化の態様により、幹細胞による治療は大きく2つに分けることができる。
 そのうちの1つの態様は、インビトロにおいて幹細胞を特定の条件下で培養して所望の体細胞や組織へ分化させ、得られた体細胞や組織をレシピエントの体内へ移植するものである。例えば、ES細胞やiPS細胞等の多能性幹細胞は、これを直接生体内へ移植するとテラトーマを形成するおそれがあるので、通常はインビトロにおいて特定の体細胞や組織へ分化させ、テラトーマ形成能力を確実に消失させた上で、これを体内へ移植する。
 もう1つの態様は、幹細胞を直接生体内へ移入するものである。この方法により、筋萎縮性側索硬化症、再生不良性貧血、パーキンソン病、多発性硬化症、膠原病、クローン病、潰瘍性大腸炎、アルツハイマー病、白血病、生活習慣病、ガン等の疾患に効果があることが報告されている。
 間葉系幹細胞は、哺乳類の骨髄等に存在し、脂肪細胞、軟骨細胞、骨細胞等に分化する幹細胞として知られている。間葉系幹細胞は、その多分化能故に、多くの組織の再生医療のための移植材料として注目されている。すなわち、間葉系幹細胞を用いて、従来の治療方法では再生しなかった、疾病や障害により失った組織を再生し、機能を回復させる「細胞移植による再生医療」である。具体的には、例えば、下肢虚血(ビュルガー病)患者に対する骨髄間葉系幹細胞の移植、歯周病患部への骨髄間葉系幹細胞の移植、変形性関節症患者に対する骨髄間葉系幹細胞の移植等の治療が開始または計画されている。
 一方、トレハロースはグルコースが1,1-グリコシド結合してできた二糖の一種である。トレハロースは甘味を呈し、高い保水力を持つため、種々の食品や化粧品に用いられている。また、トレハロースは細胞膜を安定化し、細胞傷害を抑制する性質を有するため、臓器を移植する際の臓器保護液の有効成分として用いられている。ET-Kyoto液やNew ET-Kyoto液等のトレハロースを含有する優れた臓器保存液が開発されている(特許文献1及び2、非特許文献1)。
 ヒドロキシエチルデンプンは、エーテル化デンプンの1つであり、接着剤、乳化剤、糊料等として用いられる。
 デキストランは、グルコースからなる多糖類の1種であり、増粘剤、保湿剤等として、医薬品、化粧品の分野で汎用されている。
特許第3253131号公報 国際公開第2007/043698号パンフレット
Yonsei Medical Journal, vol.45, No.6, p.1107-1114, 2004
 本発明者らは、幹細胞の生体内への移植をより安定且つスムースに行う条件について鋭意検討を行った。幹細胞の生体内への移入は、多くの場合、幹細胞の懸濁液を生体内へ点滴注入することにより行われるが、点滴をしている間に、輸液バッグ内の懸濁液中の幹細胞同士が凝集し、カニューレ中に詰まったり、肺静脈等の細い血管中に塞栓を形成してしまうおそれがあることを見出した。更に、点滴を行っている間に、輸液バッグ内の幹細胞の生存率が徐々に低下してしまうおそれがあることを本発明者らは見出した。
 本発明は、幹細胞の移植時に、懸濁液中の幹細胞同士の凝集を抑制する技術を提供することを目的とする。
 また、本発明は、懸濁液中の幹細胞の生存率の低下を抑制する技術を提供することを目的とする。
 本発明者らは、鋭意検討の結果、幹細胞の懸濁液中にトレハロース等の多糖類を添加することにより、幹細胞の凝集を抑制できることを見出した。また、これらの多糖類が、幹細胞の生存率の低下を抑制できることを併せて見出した。更に、これらの多糖類のいくつかを組み合わせることにより、幹細胞の生存率の低下を抑制する効果が増強されることを見出した。これらの知見に基づき、更に検討を加えた結果、本発明を完成させた。
 即ち、本発明は以下に関する。
[1]哺乳動物幹細胞及びトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む、哺乳動物幹細胞懸濁液。
[2]トレハロース及びヒドロキシエチルデンプン、或いはトレハロース及びデキストランを含む組み合わせを含む、[1]の哺乳動物幹細胞懸濁液。
[3]幹細胞が付着性幹細胞である、[1]の哺乳動物幹細胞懸濁液。
[4]付着性幹細胞が、間葉系幹細胞又は多能性幹細胞である、[3]の哺乳動物幹細胞懸濁液。
[5]哺乳動物幹細胞が単一細胞の状態にある哺乳動物幹細胞を含む、[1]の哺乳動物幹細胞懸濁液。
[6]多糖類がトレハロースであり、且つトレハロースの濃度が4.53~362.4mg/mlの範囲内である、[1]の哺乳動物幹細胞懸濁液。
[7]多糖類がデキストランであり、且つデキストランの濃度が30~100mg/mlの範囲内である、[1]の哺乳動物幹細胞懸濁液。
[8]哺乳動物幹細胞をトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む生理的水溶液に懸濁することを含む、哺乳動物幹細胞懸濁液の製造方法。
[9]生理的水溶液がトレハロース及びヒドロキシエチルデンプン、或いはトレハロース及びデキストランを含む、[8]の製造方法。
[10][1]~[7]のいずれかの哺乳動物幹細胞懸濁液を含む、哺乳動物幹細胞懸濁液製剤。
[11]トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む、哺乳動物幹細胞凝集抑制剤。
[12]幹細胞が付着性幹細胞である、[11]の哺乳動物幹細胞凝集抑制剤。
[13]付着性幹細胞が間葉系幹細胞又は多能性幹細胞である、[12]の哺乳動物幹細胞凝集抑制剤。
[14]多糖類がトレハロースであり、且つ哺乳動物幹細胞懸濁液中のトレハロースの濃度が4.53~362.4mg/mlの範囲内となるように使用される、[11]の哺乳動物幹細胞凝集抑制剤。
[15]多糖類がデキストランであり、且つデキストランの濃度が30~100mg/mlの範囲内となるように使用される、[11]の哺乳動物幹細胞凝集抑制剤。
[16]哺乳動物幹細胞をトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む生理的水溶液に懸濁することを含む、哺乳動物幹細胞の凝集の抑制方法。
[17]幹細胞が付着性幹細胞である、[16]の哺乳動物幹細胞の凝集の抑制方法。
[18]付着性幹細胞が間葉系幹細胞又は多能性幹細胞である、[17]の哺乳動物幹細胞の凝集の抑制方法。
[19]哺乳動物幹細胞が単一細胞の状態にある哺乳動物幹細胞を含む、[16]の哺乳動物幹細胞の凝集の抑制方法。
[20]多糖類がトレハロースであり、且つトレハロースの濃度が4.53~362.4mg/mlの範囲内である、[16]の哺乳動物幹細胞の凝集の抑制方法。
[21]多糖類がデキストランであり、且つデキストランの濃度が30~100mg/mlの範囲内である、[16]の哺乳動物幹細胞の凝集の抑制方法。
[22]トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む、哺乳動物幹細胞の生存率低下の抑制剤。
[23]トレハロース及びヒドロキシエチルデンプン、或いはトレハロース及びデキストランを含む組み合わせを含む、[22]の哺乳動物幹細胞の生存率低下の抑制剤。
[24]幹細胞が付着性幹細胞である、[22]の哺乳動物幹細胞の生存率低下の抑制剤。
[25]付着性幹細胞が、間葉系幹細胞又は多能性幹細胞である、[24]の哺乳動物幹細胞の生存率低下の抑制剤。
[26]多糖類がトレハロースであり、且つ哺乳動物幹細胞懸濁液中のトレハロースの濃度が4.53~362.4mg/mlの範囲内となるように使用される、[22]の哺乳動物幹細胞の生存率低下の抑制剤。
[27]多糖類がデキストランであり、且つ哺乳動物幹細胞懸濁液中のデキストランの濃度が30~100mg/mlの範囲内となるように使用される、[22]の哺乳動物幹細胞の生存率低下の抑制剤。
[28]哺乳動物幹細胞を、トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む生理的水溶液に懸濁することを含む、哺乳動物幹細胞の生存率低下の抑制方法。
[29]該生理的水溶液が、トレハロース及びヒドロキシエチルデンプン、或いはトレハロース及びデキストランを含む組み合わせを含む、[28]の哺乳動物幹細胞の生存率低下の抑制方法。
[30]幹細胞が付着性幹細胞である、[28]の哺乳動物幹細胞の生存率低下の抑制方法。
[31]付着性幹細胞が、間葉系幹細胞又は多能性幹細胞である、[30]の哺乳動物幹細胞の生存率低下の抑制方法。
[32]哺乳動物幹細胞が単一細胞の状態にある、[28]の哺乳動物幹細胞の生存率低下の抑制方法。
[33]多糖類がトレハロースであり、且つトレハロースの濃度が15.1~362.4mg/mlの範囲内である、[28]の哺乳動物幹細胞の生存率低下の抑制方法。
[34]多糖類がデキストランであり、且つデキストランの濃度が30~100mg/mlの範囲内である、[28]の哺乳動物幹細胞の生存率低下の抑制方法。
 本発明を用いれば、幹細胞の移植時に、懸濁液中の幹細胞同士の凝集を抑制することができる。従って、幹細胞の凝集物が、カニューレ中に詰まったり、肺静脈等の細い血管中に塞栓を形成してしまうリスクが低減する。
 更に、本発明を用いれば、懸濁液中の幹細胞の生存率の低下を抑制することができる。従って、より状態のよい幹細胞により治療を実施することができるので、治療効果の向上が期待できる。
各組成液中で25℃にて1時間静置後のhBM-MSC P6の形態及び生存率を示す。 各組成液中で25℃にて1時間静置後のhAT-MSC P8の形態及び生存率を示す。 各組成液中で25℃にて静置後の生存率を示す。6本のバーは、左から、Saline、Medium、ET-K、Saviosol、HES70K及びHES200Kをそれぞれ示す。 各組成液中で25℃にて静置後の生存率を示す。5本のバーは、左から、Saline、Medium、ET-K、Saviosol、ET-K+Saviosolをそれぞれ示す。 デキストラン40を含む緩衝液(6.5~10(w/v)%)又は生理食塩水中でヒト骨髄由来間葉系幹細胞を保存したときの、チューブの上、中、下層における各細胞数を示す。グラフ中央の数値は細胞全体の生存率を示す。 デキストラン40を含む緩衝液(6.5~10(w/v)%)又は生理食塩水中でヒト脂肪組織由来間葉系幹細胞を保存したときの、チューブの上、中、下層における各細胞数を示す。グラフ中央の数値は細胞全体の生存率を示す。
I.哺乳動物幹細胞懸濁液
 本発明は、哺乳動物幹細胞及びトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む、哺乳動物幹細胞懸濁液を提供するものである。
 哺乳動物としては、例えば、マウス、ラット、ハムスター、モルモット等のげっ歯類、ウサギ等のウサギ目、ブタ、ウシ、ヤギ、ウマ、ヒツジ等の有蹄目、イヌ、ネコ等のネコ目、ヒト、サル、アカゲザル、カニクイザル、マーモセット、オランウータン、チンパンジーなどの霊長類等を挙げることが出来る。哺乳動物は、好ましくはげっ歯類(マウス等)、有蹄目(ブタ等)又は霊長類(ヒト等)である。
 本明細書中、「幹細胞」とは、自己複製能及び分化・増殖能を有する未熟な細胞を意味する。幹細胞には、分化能力に応じて、多能性幹細胞(pluripotent stem cell)、複能性幹細胞(multipotent stem cell)、単能性幹細胞(unipotent stem cell)等の亜集団が含まれる。多能性幹細胞とは、それ自体では個体になることが出来ないが、生体を構成する全ての組織や細胞へ分化し得る能力を有する細胞を意味する。複能性幹細胞とは、全ての種類ではないが、複数種の組織や細胞へ分化し得る能力を有する細胞を意味する。単能性幹細胞とは、特定の組織や細胞へ分化し得る能力を有する細胞を意味する。
 多能性幹細胞としては、胚性幹細胞(ES細胞)、EG細胞、iPS細胞等を挙げることが出来る。ES細胞は、内部細胞塊をフィーダー細胞上又はLIFを含む培地中で培養することにより製造することが出来る。ES細胞の製造方法は、例えば、WO96/22362、WO02/101057、US5,843,780、US6,200,806、US6,280,718等に記載されている。EG細胞は、始原生殖細胞をmSCF、LIF及びbFGFを含む培地中で培養することにより製造することが出来る(Cell, 70: 841-847, 1992)。iPS細胞は、体細胞(例えば線維芽細胞、皮膚細胞等)にOct3/4、Sox2及びKlf4(必要に応じて更にc-Myc又はn-Myc)等のリプログラミング因子を導入することにより製造することが出来る(Cell, 126: p. 663-676, 2006; Nature, 448: p. 313-317, 2007; Nat Biotechnol, 26: p. 101-106, 2008; Cell 131: p. 861-872, 2007; Science, 318: p.1917-1920, 2007; Cell Stem Cells 1: p. 55-70, 2007; Nat Biotechnol, 25: p.1177-1181, 2007; Nature, 448: p. 318-324, 2007; Cell Stem Cells 2: p. 10-12, 2008; Nature 451: p. 141-146, 2008; Science, 318: p.1917-1920, 2007)。体細胞の核を核移植することによって作製された初期胚を培養することによって樹立した幹細胞も、多能性幹細胞としてまた好ましい(Nature, 385, 810 (1997); Science, 280, 1256 (1998); Nature Biotechnology, 17, 456 (1999); Nature, 394, 369 (1998); Nature Genetics, 22, 127 (1999); Proc. Natl. Acad.Sci. USA, 96, 14984 (1999))、Rideout IIIら (Nature Genetics, 24, 109 (2000))。
 複能性幹細胞としては、間葉系幹細胞、造血系幹細胞、神経系幹細胞、骨髄幹細胞、生殖幹細胞等の体性幹細胞等を挙げることが出来る。複能性幹細胞は、好ましくは間葉系幹細胞である。間葉系幹細胞とは、骨芽細胞、軟骨芽細胞及び脂肪芽細胞の全て又はいくつかへの分化が可能な幹細胞を意味する。複能性幹細胞は、自体公知の方法により、生体から単離することが出来る。例えば、間葉系幹細胞は、哺乳動物の骨髄、脂肪組織、末梢血、臍帯血等から公知の一般的な方法で採取することが出来る。例えば、骨髄穿刺後の造血幹細胞等の培養、継代によりヒト間葉系幹細胞を単離することができる(Journal of Autoimmunity, 30 (2008) 163-171)。複能性幹細胞は、上記多能性幹細胞を適切な誘導条件下で培養することによっても得ることが出来る。
 本発明の懸濁液中に含まれる幹細胞は、好ましくは付着性である。付着性の幹細胞は懸濁液中で凝集しやすいが、本発明の懸濁液にはトレハロースが含まれるため、この凝集が効果的に抑制されるからである。本明細書中、「付着性」細胞とは、足場に接着することで生存、増殖、物質の生産を行なうことができる足場依存性の細胞を意味する。付着性幹細胞としては、多能性幹細胞、間葉系幹細胞、神経系幹細胞、骨髄幹細胞、生殖幹細胞等を挙げることができる。付着性幹細胞は、好ましくは、間葉系幹細胞又は多能性幹細胞である。
 哺乳動物幹細胞は生体内から分離されたものであっても、インビトロで継代培養されたものであってもよい。
 本発明の懸濁液に含まれる哺乳動物幹細胞は、単離又は精製されていることが好ましい。本明細書中、「単離または精製」とは、目的とする成分以外の成分を除去する操作が施されていることを意味する。単離または精製された哺乳動物幹細胞の純度(全細胞数に対する、哺乳動物幹細胞数の割合)は、通常30%以上、好ましくは50%以上、より好ましくは70%以上、更に好ましくは90%以上(例えば100%)である。
 本発明の懸濁液に含まれる哺乳動物幹細胞は、単一細胞(シングルセル)の状態の哺乳動物幹細胞を含むことが好ましい。本明細書において、「単一細胞の状態」とは、他の細胞と寄り集まって塊を形成していないこと(即ち、凝集していない状態)を意味する。単一細胞の状態の哺乳動物幹細胞は、インビトロで培養した哺乳動物幹細胞をトリプシン/EDTA等で酵素処理することにより調製することが出来る。哺乳動物幹細胞中に含まれる単一細胞の状態の哺乳動物幹細胞の割合は、通常70%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは99%以上(例えば100%)である。単一細胞の状態の細胞の割合は、哺乳動物幹細胞をPBSに分散し、これを顕微鏡下で観察し、無作為に選択された複数個(例、1000個)の細胞について凝集の有無を調べることにより決定することが出来る。
 本発明の懸濁液において、哺乳動物幹細胞は好ましくは浮遊している。本明細書において、「浮遊」とは、細胞が、懸濁液を収容した容器の内壁に接触することなく、懸濁液中に保持されていることをいう。
 本発明の懸濁液はトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む。後述の実施例に示すように、これらの多糖類は哺乳動物幹細胞の凝集を抑制する効果を有する。従って、好ましくは、本発明の懸濁液においては、哺乳動物幹細胞の凝集が抑制されている。本明細書において、「凝集」とは、2個以上の細胞が寄り集まって塊になる現象をいう。
 特に、付着性幹細胞は懸濁液中に浮遊し、且つ単一細胞の状態では凝集しやすいが、上記多糖類により、効果的に凝集を抑制し、単一細胞の状態を長時間維持することができる。
 理論に拘束されるものではないが、幹細胞懸濁液中に上記多糖類が含まれると、懸濁液中の細胞の浮遊状態が比較的長時間維持され、細胞の沈殿が抑制され、細胞同士の接触が抑制される。更に、一般に、付着性細胞は長時間浮遊状態に曝されると、細胞にストレスがかかるため、浮遊時間に依存してdishなどに接着しようと突起を出すことが知られているが、上記多糖類(特にトレハロース)は細胞に与えるストレスが軽微であるため、この突起の形成が抑制される。このような作用が相まって、上記多糖類は優れた哺乳動物幹細胞凝集抑制効果を奏すると考えられる。
 また、後述の実施例に示すように、上記多糖類は、哺乳動物幹細胞の生存率低下を抑制する効果を有する。従って、好ましくは、本発明の懸濁液においては、哺乳動物幹細胞の生存率低下が抑制されている。特に、付着性幹細胞は懸濁液中に浮遊した状態(とりわけ、懸濁液中に浮遊し、且つ単一細胞の状態)ではダメージを受けやすく、生存率が低下しやすいが、上記多糖類の添加により、付着性幹細胞の生存率の低下を効果的に抑制することができる。
 本発明の懸濁液に用いることのできるトレハロースにはα,α-トレハロース、α,β-トレハロース及びβ,β-トレハロースの3種が存在する。トレハロースの種類は、哺乳動物幹細胞の凝集及び/又は生存率低下を抑制し得る限り特に限定されないが、好ましくはα,α-トレハロースが用いられる。
 本発明の懸濁液に用いることのできるヒドロキシエチルデンプンの重量平均分子量(Mw)は、哺乳動物幹細胞の凝集及び/又は生存率低下を抑制し得る限り特に限定されないが、通常5×10~67×10、好ましくは7×10~60×10、より好ましくは7×10~20×10の範囲内である。
 哺乳動物幹細胞の哺乳動物幹細胞の凝集及び/又は生存率低下を抑制効果を強化する観点からは、比較的低い重量平均分子量(Mw)(例えば、5×10~9×10、好ましくは6×10~8×10(例、7×10))のヒドロキシエチルデンプンを用いることが好ましい。
 また、本発明の懸濁液に用いることができるヒドロキシエチルデンプンの置換度(1グルコース単位当たりのヒドロキシエチル基数)も、哺乳動物幹細胞の凝集及び/又は生存率低下を抑制し得る限り特に限定されないが、通常0.4~0.8の範囲内である。
 本発明の懸濁液に用いることができるヒドロキシエチルデンプンの好適な例として、重量平均分子量(Mw)が7×10、置換度が0.50~0.55のヒドロキシエチルデンプン、重量平均分子量(Mw)が20×10、置換度が0.50~0.55のヒドロキシエチルデンプン等を挙げることが出来る。これらのヒドロキシエチルデンプンは、例えば、ヘスパンダー(登録商標)としてフレゼニウス カービ ジャパン株式会社より市販されている。
 本発明の懸濁液に用いることのできるデキストランは、D-グルコースからなる多糖(C10であって、α1→6結合を主鎖とするものである。デキストランの種類は、哺乳動物幹細胞の凝集及び/又は生存率低下を抑制し得る限り特に限定されない。デキストランの重量平均分子量(Mw)も、哺乳動物幹細胞の凝集及び/又は生存率低下を抑制し得る限り特に限定されないが、例えば、デキストラン40(Mw=40000)、デキストラン70(Mw=70000)等を好適な例として挙げることができる。
 本発明の懸濁液中の上記多糖類の濃度は、哺乳動物幹細胞の凝集及び/又は生存率低下を抑制するのに十分な濃度であれば、特に限定されない。上記多糖類の濃度が高いほど凝集及び/又は生存率低下を抑制する効果は高くなるが、該多糖類濃度が高すぎると、幹細胞の生存率に悪影響を及ぼす可能性がある。
 例えば、上記多糖類としてトレハロースを用いる場合、本発明の懸濁液中のトレハロース濃度は、通常、4.53mg/ml以上、好ましくは、15.1mg/ml以上である。また、幹細胞の生存率への悪影響を回避する観点から、懸濁液中のトレハロース濃度は、通常362.4mg/ml以下、好ましくは181.2mg/ml以下である。従って、懸濁液中のトレハロース濃度は、通常4.53~362.4mg/ml、好ましくは15.1~181.2mg/mlである。
 トレハロース以外の上記多糖類を用いる場合にも、トレハロースに準じて、幹細胞の凝集及び/又は生存率低下を抑制する効果を発揮し、且つ幹細胞の生存率への悪影響が抑制された濃度を適宜設定することができる。
 上記多糖類としてヒドロキシエチルデンプンを用いる場合、本発明の懸濁液中のヒドロキシエチルデンプンの濃度は、例えば1mg/ml以上、好ましくは、10mg/ml以上である。また、幹細胞の生存率への悪影響を回避する観点から、懸濁液中のヒドロキシエチルデンプンの濃度は、例えば500mg/ml以下、好ましくは100mg/ml以下である。従って、懸濁液中のヒドロキシエチルデンプンの濃度は、例えば、1~500mg/ml、好ましくは10~100mg/mlである。
 上記多糖類としてデキストランを用いる場合、本発明の懸濁液中のデキストランの濃度は、例えば1mg/ml以上、好ましくは10mg/ml以上、より好ましくは30mg/ml以上、更に好ましくは65mg/ml以上である。また、幹細胞の生存率への悪影響を回避する観点から、懸濁液中のデキストランの濃度は、例えば500mg/ml以下、好ましくは200mg/ml以下、より好ましくは125mg/ml以下、更に好ましくは100mg/ml以下である。従って、懸濁液中のデキストランの濃度は、例えば、1~500mg/ml、好ましくは10~200mg/ml、より好ましくは30~125mg/ml、更に好ましくは30~100mg/ml、更により好ましくは65~100mg/mlである。
 本発明の懸濁液は、好ましくは、トレハロース及びヒドロキシエチルデンプン、或いはトレハロース及びデキストランを含む組み合わせを含む。ヒドロキシエチルデンプン又はデキストランをトレハロースと組み合わせることにより、哺乳動物幹細胞の生存率の低下を抑制する効果が増強されることが期待できる。特に、懸濁液中に浮遊した付着性幹細胞(とりわけ、懸濁液中に浮遊し、且つ単一細胞の状態の付着性幹細胞)の生存率の低下を効果的に抑制することが期待される。
 トレハロースと、ヒドロキシエチルデンプン又はデキストランとを組み合わせて用いる場合における、本発明の懸濁液中の各多糖類の濃度は、好ましくは、トレハロース、ヒドロキシエチルデンプン又はデキストランをそれぞれ単独で用いた場合よりも、トレハロースと、ヒドロキシエチルデンプン又はデキストランとを組み合わせて用いた場合の方が、哺乳動物幹細胞の生存率の低下を抑制する効果が増強されるように、設定される。
 本発明の懸濁液においては、哺乳動物幹細胞がトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む生理的水溶液中に懸濁されている。生理的水溶液は、好ましくは、生理食塩水、リン酸緩衝化生理食塩水、トリス緩衝化生理食塩水、HEPES緩衝化生理食塩水、リンゲル液、5%グルコース水溶液、哺乳動物培養用の液体培地、等張剤(ブドウ糖、D-ソルビトール、D-マンニトール、ラクトース、塩化ナトリウム等)の水溶液等の等張水溶液である。本明細書において「等張」とは、浸透圧が250~380mOsm/lの範囲内であることを意味する。
 生理的水溶液は、更に安定剤(例えば、ヒト血清アルブミン、ポリエチレングリコールなど)、緩衝剤(例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液)、キレート剤(例えば、EDTA、EGTA、クエン酸、サリチレート)、溶解補助剤、保存剤、酸化防止剤等を含むことができる。
 本発明の懸濁液は、哺乳動物幹細胞をトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む生理的水溶液(好ましくは、トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む等張水溶液)に懸濁することにより、製造することが出来る。当該生理的水溶液中の各多糖類の濃度は、上記本発明の懸濁液中の各多糖類の濃度と同様である。本発明は、このような哺乳動物幹細胞懸濁液の製造方法をも提供する。
 哺乳動物幹細胞を上記多糖類を含む生理的水溶液に懸濁することには、哺乳動物幹細胞の懸濁液に上記多糖類を添加して、哺乳動物幹細胞及び上記多糖類を含む哺乳動物幹細胞懸濁液を得ることも包含される。
 哺乳動物幹細胞の上記多糖類を含む生理的水溶液中への懸濁は、ピペッティングやタッピング等の当該技術分野における周知の方法により実施することが出来る。
 本発明の懸濁液の温度は、通常0~37℃、好ましくは0~25℃の範囲内である。
 本発明の懸濁液中の哺乳動物幹細胞の密度は、トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類による哺乳動物幹細胞の凝集及び/又は生存率の低下を抑制する効果が達成される限り特に限定されないが、通常10~1010個/mlの範囲内である。
 好ましい態様において、本発明の懸濁液では、トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類により哺乳動物幹細胞の凝集が抑制されているので、これを用いて幹細胞移植を実施することにより、幹細胞の凝集物が、カニューレ中に詰まったり、肺静脈等の細い血管中に塞栓を形成してしまうリスクを低減することが出来る。また、好ましい態様において、本発明の懸濁液では、トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類により、懸濁液中の哺乳動物幹細胞の生存率の低下が抑制されるので、本発明の懸濁液を用いれば、より状態のよい幹細胞により幹細胞移植を実施することができ、治療効果の向上が期待できる。従って、本発明は、上記本発明の懸濁液を含む、哺乳動物幹細胞懸濁液製剤をも提供するものである。
 本発明の哺乳動物幹細胞懸濁液製剤は、上記本発明の懸濁液を適切な滅菌容器内に収容することにより、製造することが出来る。該容器としては、ボトル、バイアル、シリンジ、輸液バッグ等の可塑性のバッグ、試験管等が挙げられる。これらの容器は、ガラス又はプラスチックのような各種の材料から形成し得る。これらの容器には、容器内の哺乳動物幹細胞懸濁液を患者に点滴注入可能とするように、カニューレ及び/又は注射針を接続することができる。
II.哺乳動物幹細胞の凝集の抑制
(1.哺乳動物幹細胞凝集抑制剤)
 本発明は、トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む、哺乳動物幹細胞凝集抑制剤を提供するものである。これらの多糖類により、特に、懸濁液中の哺乳動物幹細胞(即ち、浮遊した哺乳動物幹細胞)の凝集が抑制される。
 「トレハロース」、「ヒドロキシエチルデンプン」、「デキストラン」、「哺乳動物」、「幹細胞」、「付着性」、「単離又は精製」、「単一細胞の状態」、「浮遊」、「凝集」、「等張」、「生理的水溶液」、等の各用語の定義は、特にことわりのない限り、上記Iの項に記載した通りである。
 本発明の凝集抑制剤の適用対象となる哺乳動物幹細胞は、好ましくは付着性幹細胞である。付着性の幹細胞は懸濁液中では(即ち、浮遊した状態では)より凝集しやすいからである。付着性幹細胞は、好ましくは、間葉系幹細胞又は多能性幹細胞である。
 哺乳動物幹細胞は生体内から分離されたものであっても、インビトロで継代培養されたものであってもよい。
 本発明の凝集抑制剤の適用対象となる哺乳動物幹細胞は、単離又は精製されていることが好ましい。
 本発明の凝集抑制剤の適用対象となる哺乳動物幹細胞は、単一細胞(シングルセル)の状態の哺乳動物幹細胞を含むことが好ましい。哺乳動物幹細胞中に含まれる単一細胞の状態の哺乳動物幹細胞の割合は、通常70%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは99%以上(例えば100%)である。
 本発明の凝集抑制剤の適用対象となる哺乳動物幹細胞は、好ましくは、該幹細胞の懸濁液中に浮遊している。
 特に、付着性幹細胞は懸濁液中に浮遊し、且つ単一細胞の状態では凝集しやすいが、本発明の凝集抑制剤により、効果的に凝集を抑制することができ、単一細胞の状態を長時間維持することができる。
 本発明の凝集抑制剤は、トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される1、2又は3種の多糖類を含む。本発明の凝集抑制剤がこれらの群から選択される2種、3種の多糖類を含む場合における多糖類の組み合わせは、トレハロースとヒドロキシエチルデンプンの組み合わせ、トレハロースとデキストランの組み合わせ、ヒドロキシエチルデンプンとデキストランの組み合わせ又はトレハロースとヒドロキシエチルデンプンとデキストランの組み合わせである。
 本発明の凝集抑制剤はトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類そのものであってもよいし、更に生理学的に許容される担体を含んでいてもよい。生理学的に許容される担体としては、例えば、生理的水溶液(例えば、生理食塩水、リン酸緩衝化生理食塩水、トリス緩衝化生理食塩水、HEPES緩衝化生理食塩水、リンゲル液、5%グルコース水溶液、哺乳動物培養用の液体培地、等張剤(ブドウ糖、D-ソルビトール、D-マンニトール、ラクトース、塩化ナトリウム等)の水溶液等の等張水溶液)、安定剤(例えば、ヒト血清アルブミン、ポリエチレングリコールなど)、緩衝剤(例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液)、キレート剤(例えば、EDTA、EGTA、クエン酸、サリチレート)、賦形剤、結合剤、溶解補助剤、保存剤、酸化防止剤等を含むことができる。本発明の凝集抑制剤は、好ましくは、トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む生理的水溶液(生理的水溶液中の上記多糖類の溶液)であり、より好ましくは、トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む等張水溶液である。
 本発明の凝集抑制剤は、哺乳動物幹細胞の懸濁液に添加することにより用いることができる。あるいは、本発明の凝集抑制剤がトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む生理的水溶液の場合には、本発明の凝集抑制剤により哺乳動物幹細胞を懸濁してもよい。哺乳動物幹細胞の凝集を抑制するのに十分な当該多糖類の濃度が達成されるように、本発明の凝集抑制剤が添加され、又は本発明の凝集抑制剤により哺乳動物幹細胞が懸濁される。
 上記多糖類としてトレハロースを用いる場合、懸濁液中の哺乳動物幹細胞の凝集を抑制するのに十分なトレハロース濃度は、通常、4.53mg/ml以上、好ましくは、15.1mg/ml以上である。また、トレハロース濃度が高いほど凝集抑制効果は高くなるが、トレハロース濃度が高すぎると、幹細胞の生存率に悪影響を及ぼす可能性がある。従って、この生存率への悪影響を回避する観点から、懸濁液中のトレハロース濃度は、通常362.4mg/ml以下、好ましくは181.2mg/ml以下である。従って、懸濁液中のトレハロース濃度は、通常4.53~362.4mg/ml、好ましくは15.1~181.2mg/mlである。
 トレハロース以外の上記多糖類を用いる場合にも、トレハロースに準じて、懸濁液中の哺乳動物幹細胞の凝集を抑制するのに十分な濃度を適宜設定することができる。
 上記多糖類としてヒドロキシエチルデンプンを用いる場合、懸濁液中の哺乳動物幹細胞の凝集を抑制するのに十分なヒドロキシエチルデンプンの濃度は、例えば1mg/ml以上、好ましくは、10mg/ml以上である。また、幹細胞の生存率への悪影響を回避する観点から、懸濁液中のヒドロキシエチルデンプンの濃度は、例えば500mg/ml以下、好ましくは100mg/ml以下である。従って、懸濁液中のヒドロキシエチルデンプンの濃度は、例えば、1~500mg/ml、好ましくは10~100mg/mlである。
 上記多糖類としてデキストランを用いる場合、懸濁液中の哺乳動物幹細胞の凝集を抑制するのに十分なデキストランの濃度は、例えば1mg/ml以上、好ましくは、10mg/ml以上、より好ましくは30mg/ml以上、更に好ましくは65mg/ml以上である。また、幹細胞の生存率への悪影響を回避する観点から、懸濁液中のデキストランの濃度は、例えば500mg/ml以下、好ましくは200mg/ml以下、より好ましくは125mg/ml以下、更に好ましくは100mg/ml以下である。従って、懸濁液中のデキストランの濃度は、例えば、1~500mg/ml、好ましくは10~200mg/ml、より好ましくは30~125mg/ml、更に好ましくは30~100mg/ml、更により好ましくは65~100mg/mlである。
 また、トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される2又は3種の多糖類を用いる場合においては、結果として懸濁液中の哺乳動物幹細胞の凝集が抑制されるように、本発明の凝集抑制剤が添加され、又は本発明の凝集抑制剤により哺乳動物幹細胞が懸濁される。
 本発明の凝集抑制剤中には、上記のように使用したときに、哺乳動物幹細胞の凝集を抑制するのに十分な量のトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類が含有される。本発明の凝集抑制剤中の当該多糖類の含有量は、通常、0.001~100(w/w)%の範囲内である。
 本発明の凝集抑制剤が、トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む生理的水溶液である場合、当該水溶液中の該多糖類の濃度は、哺乳動物幹細胞の凝集を抑制するのに十分な濃度であれば特に限定されない。上記多糖類の濃度が高いほど凝集を抑制する効果は高くなるが、該多糖類濃度が高すぎると、幹細胞の生存率に悪影響を及ぼす可能性がある。
 例えば、上記多糖類としてトレハロースを用いる場合、当該水溶液中のトレハロース濃度は、通常、4.53mg/ml以上、好ましくは、15.1mg/ml以上である。また、幹細胞の生存率への悪影響を避けるため、当該水溶液中のトレハロース濃度は、通常、362.4mg/ml以下、好ましくは、181.2mg/ml以下である。従って、当該水溶液中のトレハロース濃度は、通常、4.53~362.4mg/ml、好ましくは15.1~181.2mg/mlである。
 トレハロース以外の上記多糖類を用いる場合にも、トレハロースに準じて、哺乳動物幹細胞の凝集を抑制するのに十分なトレハロース濃度を適宜設定することができる。
 上記多糖類としてヒドロキシエチルデンプンを用いる場合、当該水溶液中のヒドロキシエチルデンプンの濃度は、例えば1mg/ml以上、好ましくは、10mg/ml以上である。また、幹細胞の生存率への悪影響を回避する観点から、当該水溶液中のヒドロキシエチルデンプンの濃度は、例えば500mg/ml以下、好ましくは100mg/ml以下である。従って、当該水溶液中のヒドロキシエチルデンプンの濃度は、例えば、1~500mg/ml、好ましくは10~100mg/mlである。
 上記多糖類としてデキストランを用いる場合、当該水溶液中のデキストランの濃度は、例えば1mg/ml以上、好ましくは、10mg/ml以上、より好ましくは30mg/ml以上、更に好ましくは65mg/ml以上である。また、幹細胞の生存率への悪影響を回避する観点から、当該水溶液中のデキストランの濃度は、例えば500mg/ml以下、好ましくは200mg/ml以下、より好ましくは125mg/ml以下、更に好ましくは100mg/ml以下である。従って、当該水溶液中のデキストランの濃度は、例えば、1~500mg/ml、好ましくは10~200mg/ml、より好ましくは30~125mg/ml、更に好ましくは30~100mg/ml、更により好ましくは65~100mg/mlである。
 また、トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される2又は3種の多糖類を用いる場合においても、結果として哺乳動物幹細胞の凝集を抑制するように、当該水溶液に各多糖類が含まれる。
 このような濃度に調製されたトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む生理的水溶液に哺乳動物幹細胞を懸濁することにより、簡便に哺乳動物幹細胞の凝集を抑制することが出来る。
(2.哺乳動物幹細胞の凝集の抑制方法)
 本発明は、哺乳動物幹細胞をトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む生理的水溶液(好ましくは、トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む等張水溶液)に懸濁することを含む、哺乳動物幹細胞の凝集の抑制方法を提供するものである。これらの多糖類により、特に、懸濁液中の哺乳動物幹細胞(即ち、浮遊した哺乳動物幹細胞)の凝集が抑制される。
 哺乳動物幹細胞をトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む生理的水溶液に懸濁することには、哺乳動物幹細胞の懸濁液にトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を添加して、当該多糖類を含む生理的水溶液中の哺乳動物幹細胞懸濁液を得ることも包含される。
 「トレハロース」、「ヒドロキシエチルデンプン」、「デキストラン」、「哺乳動物」、「幹細胞」、「付着性」、「単離又は精製」、「単一細胞の状態」、「浮遊」、「凝集」、「等張」、「生理的水溶液」、等の各用語の定義は、特にことわりのない限り、上記Iの項に記載した通りである。
 本発明の凝集抑制方法に用いる哺乳動物幹細胞は、好ましくは付着性幹細胞である。付着性の幹細胞は懸濁液中では(即ち、浮遊した状態では)より凝集しやすいからである。付着性幹細胞は、好ましくは、間葉系幹細胞又は多能性幹細胞である。
 哺乳動物幹細胞は生体内から分離されたものであっても、インビトロで継代培養されたものであってもよい。
 本発明の凝集抑制方法に用いる哺乳動物幹細胞は、単離又は精製されていることが好ましい。
 本発明の凝集抑制方法に用いる哺乳動物幹細胞は、単一細胞(シングルセル)の状態の哺乳動物幹細胞を含むことが好ましい。哺乳動物幹細胞中に含まれる単一細胞の状態の哺乳動物幹細胞の割合は、通常70%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは99%以上(例えば100%)である。
 特に、付着性幹細胞は懸濁液中に浮遊し、且つ単一細胞の状態では凝集しやすいが、トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類により、効果的に凝集を抑制することができ、単一細胞の状態を長時間維持することができる。
 本発明に用いる生理的水溶液には、トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される1、2又は3種の多糖類を含む。該生理的水溶液がこれらの群から選択される2種又は3種の多糖類を含む場合における多糖類の組み合わせは、トレハロースとヒドロキシエチルデンプンの組み合わせ、トレハロースとデキストランの組み合わせ、ヒドロキシエチルデンプンとデキストランの組み合わせ又はトレハロースとヒドロキシエチルデンプンとデキストランの組み合わせである。
 本発明に用いる生理的水溶液には、哺乳動物幹細胞の凝集を抑制するのに十分な濃度の上記多糖類が含まれる。
 上記多糖類としてトレハロースを用いる場合、該生理的水溶液中のトレハロース濃度は、哺乳動物幹細胞の凝集を抑制するのに十分な濃度であれば、特に限定されないが、通常、4.53mg/ml以上、好ましくは、15.1mg/ml以上である。また、幹細胞の生存率への悪影響を避けるため、該生理的水溶液中のトレハロース濃度は、好ましくは、362.4mg/ml以下、より好ましくは、181.2mg/ml以下である。従って、該生理的水溶液中のトレハロース濃度は、好ましくは、4.53~362.4mg/ml、より好ましくは15.1~181.2mg/mlである。
 トレハロース以外の上記多糖類を用いる場合にも、トレハロースに準じて、哺乳動物幹細胞の凝集を抑制するのに十分な濃度を適宜設定することができる。
 上記多糖類としてヒドロキシエチルデンプンを用いる場合、該生理的水溶液中のヒドロキシエチルデンプン濃度は、哺乳動物幹細胞の凝集を抑制するのに十分な濃度であれば、特に限定されないが、例えば、1mg/ml以上、好ましくは、10mg/ml以上である。また、幹細胞の生存率への悪影響を避けるため、該生理的水溶液中のヒドロキシエチルデンプン濃度は、例えば、500mg/ml以下、好ましくは、100mg/ml以下である。従って、該生理的水溶液中のヒドロキシエチルデンプン濃度は、例えば、1~500mg/ml、好ましくは10~100mg/mlである。
 上記多糖類としてデキストランを用いる場合、該生理的水溶液中のデキストラン濃度は、哺乳動物幹細胞の凝集を抑制するのに十分な濃度であれば、特に限定されないが、例えば、1mg/ml以上、好ましくは、10mg/ml以上、より好ましくは30mg/ml以上、更に好ましくは65mg/ml以上である。また、幹細胞の生存率への悪影響を避けるため、該生理的水溶液中のデキストラン濃度は、通常、500mg/ml以下、好ましくは、200mg/ml以下、より好ましくは125mg/ml以下、更に好ましくは100mg/ml以下である。従って、該生理的水溶液中のデキストラン濃度は、通常、1~500mg/ml、好ましくは10~200mg/ml、より好ましくは30~125mg/ml、更に好ましくは30~100mg/ml、更により好ましくは65~100mg/mlである。
 また、トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される2又は3種の多糖類を用いる場合においても、結果として哺乳動物幹細胞の凝集を抑制し得るように、生理的水溶液中に各多糖類が含まれる。
 哺乳動物幹細胞を懸濁する際のトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む生理的水溶液の温度は、通常0~37℃、好ましくは0~25℃の範囲内である。
 懸濁液中の哺乳動物幹細胞の密度は、トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類による凝集抑制効果が達成される限り特に限定されないが、通常10~1010個/mlの範囲内である。
 哺乳動物幹細胞のトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む生理的水溶液中への懸濁は、ピペッティングやタッピング等の当該技術分野における周知の方法により実施することが出来る。このような操作により、哺乳動物幹細胞が、トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む生理的水溶液中を浮遊する。
III.哺乳動物幹細胞の生存率低下の抑制
(1.哺乳動物幹細胞の生存率低下の抑制剤)
 本発明は、トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む、哺乳動物幹細胞の生存率低下の抑制剤を提供するものである。哺乳動物幹細胞の生存率低下の抑制剤がこれらの群から選択される2種又は3種の多糖類を含む場合、トレハロースとヒドロキシエチルデンプンの組み合わせ、トレハロースとデキストランの組み合わせ、ヒドロキシエチルデンプンとデキストランの組み合わせ又はトレハロースとヒドロキシエチルデンプンとデキストランの組み合わせにより、特に、懸濁液中の哺乳動物幹細胞(即ち、浮遊した哺乳動物幹細胞)の生存率の低下が抑制される。
 「トレハロース」、「ヒドロキシエチルデンプン」、「デキストラン」、「哺乳動物」、「幹細胞」、「付着性」、「単離又は精製」、「単一細胞の状態」、「浮遊」、「凝集」、「等張」、「生理的水溶液」、等の各用語の定義は、特にことわりのない限り、上記Iの項に記載した通りである。
 本発明の生存率低下の抑制剤の適用対象となる哺乳動物幹細胞は、好ましくは付着性幹細胞である。付着性の幹細胞は非付着性の細胞と比較して、懸濁液中では(即ち、浮遊した状態では)より生存率が低下しやすいからである。付着性幹細胞は、好ましくは、間葉系幹細胞又は多能性幹細胞である。
 哺乳動物幹細胞は生体内から分離されたものであっても、インビトロで継代培養されたものであってもよい。
 本発明の生存率低下の抑制剤の適用対象となる哺乳動物幹細胞は、単離又は精製されていることが好ましい。
 本発明の生存率低下の抑制剤に用いる哺乳動物幹細胞は、単一細胞(シングルセル)の状態の哺乳動物幹細胞を含むことが好ましい。哺乳動物幹細胞中に含まれる単一細胞の状態の哺乳動物幹細胞の割合は、通常70%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは99%以上(例えば100%)である。
 本発明の生存率低下の抑制剤の適用対象となる哺乳動物幹細胞は、好ましくは、該幹細胞の懸濁液中に浮遊しているものである。
 特に、付着性幹細胞は懸濁液中に浮遊し、且つ単一細胞の状態ではダメージを受けやすく、生存率が低下しやすいが、本発明の生存率低下の抑制剤により、生存率の低下を効果的に抑制することができる。
 本発明の生存率低下の抑制剤は、好ましくは、トレハロース及びヒドロキシエチルデンプン、或いはトレハロース及びデキストランを含む組み合わせを含む。ヒドロキシエチルデンプン又はデキストランをトレハロースと組み合わせることにより、哺乳動物幹細胞の生存率の低下を抑制する効果が増強されることが期待できる。特に、懸濁液中に浮遊した付着性幹細胞は懸濁液中に浮遊した状態(とりわけ、懸濁液中に浮遊し、且つ単一細胞の状態の付着性幹細胞)の生存率の低下を効果的に抑制することが期待できる。
 本発明の生存率低下の抑制剤はトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類からなるものであってもよいし、これらの構成因子に加えて更に生理学的に許容される担体を含んでいてもよい。生理学的に許容される担体としては、例えば、生理的水溶液(例えば、生理食塩水、リン酸緩衝化生理食塩水、トリス緩衝化生理食塩水、HEPES緩衝化生理食塩水、リンゲル液、5%グルコース水溶液、哺乳動物培養用の液体培地、等張剤(ブドウ糖、D-ソルビトール、D-マンニトール、ラクトース、塩化ナトリウム等)の水溶液等の等張水溶液)、安定剤(例えば、ヒト血清アルブミン、ポリエチレングリコールなど)、緩衝剤(例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液)、キレート剤(例えば、EDTA、EGTA、クエン酸、サリチレート)、賦形剤、結合剤、溶解補助剤、保存剤、酸化防止剤等を含むことができる。本発明の生存率低下の抑制剤は、好ましくは、トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される1種、2種又は3種の多糖類を含む生理的水溶液(生理的水溶液中の上記多糖類溶液)であり、より好ましくは、トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される1種、2種又は3種の多糖類を含む等張水溶液である。
 本発明の生存率低下の抑制剤は、哺乳動物幹細胞の懸濁液に添加することにより用いることができる。あるいは、本発明の生存率低下の抑制剤がトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む生理的水溶液の場合には、本発明の生存率低下の抑制剤により哺乳動物幹細胞を懸濁してもよい。哺乳動物幹細胞の生存率低下を抑制するのに十分な上記多糖類の濃度が達成されるように、本発明の生存率低下の抑制剤が添加され、又は本発明の生存率低下の抑制剤により哺乳動物幹細胞が懸濁される。
 多糖類としてトレハロースを用いる場合、懸濁液中の哺乳動物幹細胞の生存率低下を抑制するのに十分なトレハロース濃度は、通常、4.53mg/ml以上、好ましくは、15.1mg/ml以上である。また、トレハロース濃度が高いほど生存率低下を抑制する効果は高くなるが、トレハロース濃度が高すぎると、逆に幹細胞の生存率に悪影響を及ぼす可能性がある。従って、この悪影響を回避する観点から、懸濁液中のトレハロース濃度は、通常362.4mg/ml以下、好ましくは181.2mg/ml以下である。従って、懸濁液中のトレハロース濃度は、通常4.53~362.4mg/ml、好ましくは15.1~181.2mg/mlである。
 トレハロース以外の上記多糖類を用いる場合にも、トレハロースに準じて、懸濁液中の哺乳動物幹細胞の生存率の低下を抑制するのに十分なトレハロース濃度を適宜設定することができる。
 多糖類としてヒドロキシエチルデンプンを用いる場合、懸濁液中の哺乳動物幹細胞の生存率低下を抑制するのに十分なヒドロキシエチルデンプン濃度は、通常、1mg/ml以上、好ましくは、10mg/ml以上である。また、ヒドロキシエチルデンプン濃度が高いほど生存率低下を抑制する効果は高くなるが、ヒドロキシエチルデンプン濃度が高すぎると、逆に幹細胞の生存率に悪影響を及ぼす可能性がある。従って、この悪影響を回避する観点から、懸濁液中のヒドロキシエチルデンプン濃度は、通常500mg/ml以下、好ましくは100mg/ml以下である。従って、懸濁液中のヒドロキシエチルデンプン濃度は、通常1~500mg/ml、好ましくは10~100mg/mlである。
 多糖類としてデキストランを用いる場合、懸濁液中の哺乳動物幹細胞の生存率低下を抑制するのに十分なデキストラン濃度は、通常、1mg/ml以上、好ましくは、10mg/ml以上、より好ましくは30mg/ml以上、更に好ましくは65mg/ml以上である。また、デキストラン濃度が高いほど生存率低下を抑制する効果は高くなるが、デキストラン濃度が高すぎると、逆に幹細胞の生存率に悪影響を及ぼす可能性がある。従って、この悪影響を回避する観点から、懸濁液中のデキストラン濃度は、通常500mg/ml以下、好ましくは200mg/ml以下、より好ましくは125mg/ml以下、更に好ましくは100mg/ml以下である。従って、懸濁液中のデキストラン濃度は、通常1~500mg/ml、好ましくは10~200mg/ml、より好ましくは30~125mg/ml、更に好ましくは30~100mg/ml、更により好ましくは65~100mg/mlである。
 また、多糖類として、トレハロース及びヒドロキシエチルデンプン;トレハロース及びデキストラン;或いはトレハロース、ヒドロキシエチルデンプン及びデキストランを含む組み合わせを用いる場合においては、懸濁液中の各多糖類の濃度は、好ましくは、トレハロース、ヒドロキシエチルデンプン又はデキストランをそれぞれ単独で用いた場合よりも、これらの組み合わせを用いた場合の方が、哺乳動物幹細胞の生存率の低下を抑制する効果が増強されるように、設定される。
 本発明の生存率低下の抑制剤中には、上記の様に使用したときに、哺乳動物幹細胞の生存率低下を抑制するのに十分な量のトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類が含有される。本発明の生存率低下の抑制剤中の当該多糖類の含有量は、通常、0.001~100(w/w)%の範囲内である。
 多糖類として、トレハロース及びヒドロキシエチルデンプン、或いはトレハロース及びデキストランを含む組み合わせを用いる場合には、本発明の生存率低下の抑制剤中のトレハロースの含有量は、通常、0.001~99.999(w/w)%の範囲内であり、ヒドロキシエチルデンプン又はデキストランの含有量は、通常、0.001~99.999(w/w)%の範囲内である。
 多糖類として、トレハロース、ヒドロキシエチルデンプン及びデキストランを含む組み合わせを用いる場合には、本発明の生存率低下の抑制剤中の各多糖類の含有量は、それぞれ、通常、0.001~99.997(w/w)%の範囲内である。
 本発明の生存率低下の抑制剤が、トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む生理的水溶液である場合、当該水溶液中の該多糖類の濃度は、哺乳動物幹細胞の生存率の低下を抑制するのに十分な濃度であれば特に限定されない。上記多糖類の濃度が高いほど、生存率の低下を抑制する効果は高くなるが、該多糖類濃度が高すぎると、幹細胞の生存率に悪影響を及ぼす可能性がある。
 例えば、多糖類としてトレハロースを用いる場合、当該水溶液中のトレハロース濃度は、哺乳動物幹細胞の生存率低下を抑制するのに十分なように、通常、4.53mg/ml以上、好ましくは、15.1mg/ml以上である。また、悪影響を避けるため、当該水溶液中のトレハロース濃度は、通常、362.4mg/ml以下、好ましくは、181.2mg/ml以下である。従って、当該水溶液中のトレハロース濃度は、通常、4.53~362.4mg/ml、好ましくは15.1~181.2mg/mlである。
 トレハロース以外の上記多糖類を用いる場合にも、トレハロースに準じて、懸濁液中の哺乳動物幹細胞の生存率の低下を抑制するのに十分な濃度を適宜設定することができる。 
 上記多糖類としてヒドロキシエチルデンプンを用いる場合、当該水溶液中のヒドロキシエチルデンプンの濃度は、例えば1mg/ml以上、好ましくは、10mg/ml以上である。また、悪影響を回避する観点から、当該水溶液中のヒドロキシエチルデンプンの濃度は、例えば500mg/ml以下、好ましくは100mg/ml以下である。従って、当該水溶液中のヒドロキシエチルデンプンの濃度は、例えば、1~500mg/ml、好ましくは10~100mg/mlである。
 上記多糖類としてデキストランを用いる場合、当該水溶液中のデキストランの濃度は、例えば1mg/ml以上、好ましくは、10mg/ml以上、より好ましくは30mg/ml以上、更に好ましくは65mg/ml以上である。また、悪影響を回避する観点から、当該水溶液中のデキストランの濃度は、例えば500mg/ml以下、好ましくは200mg/ml以下、より好ましくは125mg/ml以下、更に好ましくは100mg/ml以下である。従って、当該水溶液中のデキストランの濃度は、例えば、1~500mg/ml、好ましくは10~200mg/ml、より好ましくは30~125mg/ml、更に好ましくは30~100mg/ml、更により好ましくは65~100mg/mlである。
 また、多糖類として、トレハロース及びヒドロキシエチルデンプン;トレハロース及びデキストラン;或いはトレハロース、ヒドロキシエチルデンプン及びデキストランを含む組み合わせを用いる場合においては、当該水溶液中の各多糖類の濃度は、好ましくは、トレハロース、ヒドロキシエチルデンプン又はデキストランをそれぞれ単独で用いた場合よりも、これらの組み合わせを用いた場合の方が、哺乳動物幹細胞の生存率の低下を抑制する効果が増強されるように、設定される。
 このような濃度に調整されたトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む生理的水溶液に哺乳動物幹細胞を懸濁することにより、簡便に哺乳動物幹細胞の生存率の低下を抑制することが出来る。
(2.哺乳動物幹細胞の生存率低下の抑制方法)
 本発明は、哺乳動物幹細胞をトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される1種、2種又は3種多糖類を含む生理的水溶液(好ましくは、トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される1種、2種又は3種の多糖類を含む等張水溶液)に懸濁することを含む、哺乳動物幹細胞の生存率低下の抑制方法を提供するものである。2種又は3種の多糖類組み合わせて用いる場合、トレハロースとヒドロキシエチルデンプンの組み合わせ、トレハロースとデキストランの組み合わせ、ヒドロキシエチルデンプンとデキストランの組み合わせ又はトレハロースとヒドロキシエチルデンプンとデキストランの組み合わせにより、特に、懸濁液中の哺乳動物幹細胞(即ち、浮遊した哺乳動物幹細胞)の生存率の低下が抑制される。
 哺乳動物幹細胞をトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む生理的水溶液に懸濁することには、哺乳動物幹細胞の懸濁液にトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を添加して、トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む生理的水溶液中の哺乳動物幹細胞懸濁液を得ることも包含される。
 「トレハロース」、「ヒドロキシエチルデンプン」、「デキストラン」、「哺乳動物」、「幹細胞」、「付着性」、「単離又は精製」、「単一細胞の状態」、「浮遊」、「凝集」、「等張」、「生理的水溶液」、等の各用語の定義は、特にことわりのない限り、上記Iの項に記載した通りである。
 本発明の生存率低下の抑制方法に用いる哺乳動物幹細胞は、好ましくは付着性幹細胞である。付着性の幹細胞は非付着性の細胞と比較して、懸濁液中では(即ち、浮遊した状態では)より生存率が低下しやすいからである。付着性幹細胞は、好ましくは、間葉系幹細胞又は多能性幹細胞である。
 哺乳動物幹細胞は生体内から分離されたものであっても、インビトロで継代培養されたものであってもよい。
 本発明の生存率低下の抑制方法に用いる哺乳動物幹細胞は、単離又は精製されていることが好ましい。
 本発明の生存率低下の抑制方法に用いる哺乳動物幹細胞は、単一細胞(シングルセル)の状態の哺乳動物幹細胞を含むことが好ましい。哺乳動物幹細胞中に含まれる単一細胞の状態の哺乳動物幹細胞の割合は、通常70%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは99%以上(例えば100%)である。
 特に、付着性幹細胞は懸濁液中に浮遊し、且つ単一細胞の状態ではダメージを受けやすく、生存率が低下しやすいが、トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類により、生存率の低下を効果的に抑制することができる。
 本発明に用いる生理的水溶液には、好ましくは、トレハロース及びヒドロキシエチルデンプン、或いはトレハロース及びデキストランを含む組み合わせが含まれる。ヒドロキシエチルデンプン又はデキストランをトレハロースと組み合わせることにより、哺乳動物幹細胞の生存率の低下を抑制する効果が増強されることが期待できる。特に、懸濁液中に浮遊した付着性幹細胞(とりわけ、懸濁液中に浮遊し、且つ単一細胞の状態の付着性幹細胞)の生存率の低下を効果的に抑制することが期待できる。
 トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む生理的水溶液中の該多糖類の濃度は、哺乳動物幹細胞の生存率低下を抑制するのに十分な濃度であれば、特に限定されない。
 多糖類としてトレハロースを用いる場合、当該水溶液中のトレハロース濃度は、哺乳動物幹細胞の生存率低下を抑制するのに十分なように、通常、4.53mg/ml以上、好ましくは、15.1mg/ml以上である。また、幹細胞の生存率への悪影響を避けるため、当該水溶液中のトレハロース濃度は、通常、362.4mg/ml以下、好ましくは、181.2mg/ml以下である。従って、当該水溶液中のトレハロース濃度は、通常、4.53~362.4mg/ml、好ましくは15.1~181.2mg/mlである。
 トレハロース以外の上記多糖類を用いる場合にも、トレハロースに準じて、懸濁液中の哺乳動物幹細胞の生存率の低下を抑制するのに十分な濃度を適宜設定することができる。
 上記多糖類としてヒドロキシエチルデンプンを用いる場合、当該水溶液中のヒドロキシエチルデンプンの濃度は、例えば1mg/ml以上、好ましくは、10mg/ml以上である。また、幹細胞の生存率への悪影響を回避する観点から、当該水溶液中のヒドロキシエチルデンプンの濃度は、例えば500mg/ml以下、好ましくは100mg/ml以下である。従って、当該水溶液中のヒドロキシエチルデンプンの濃度は、例えば、1~500mg/ml、好ましくは10~100mg/mlである。
 上記多糖類としてデキストランを用いる場合、当該水溶液中のデキストランの濃度は、例えば1mg/ml以上、好ましくは、10mg/ml以上、より好ましくは30mg/ml以上、更に好ましくは65mg/ml以上である。また、幹細胞の生存率への悪影響を回避する観点から、当該水溶液中のデキストランの濃度は、例えば500mg/ml以下、好ましくは200mg/ml以下、より好ましくは125mg/ml以下、更に好ましくは100mg/ml以下である。従って、当該水溶液中のデキストランの濃度は、例えば、1~500mg/ml、好ましくは10~200mg/ml、より好ましくは30~125mg/ml、更に好ましくは30~100mg/ml、更により好ましくは65~100mg/mlである。
 また、多糖類として、トレハロース及びヒドロキシエチルデンプン;トレハロース及びデキストラン;或いはトレハロース、ヒドロキシエチルデンプン及びデキストランを含む組み合わせを用いる場合においては、当該水溶液中の各多糖類の濃度は、好ましくは、トレハロース、ヒドロキシエチルデンプン又はデキストランをそれぞれ単独で用いた場合よりも、これらの組み合わせを用いた場合の方が、哺乳動物幹細胞の生存率の低下を抑制する効果が増強されるように、設定される。
 哺乳動物幹細胞を懸濁する際のトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む生理的水溶液の温度は、通常0~37℃、好ましくは0~25℃の範囲内である。
 懸濁液中の哺乳動物幹細胞の密度は、トレハロースによる凝集抑制効果が達成される限り特に限定されないが、通常10~1010個/mlの範囲内である。
 哺乳動物幹細胞のトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む生理的水溶液中への懸濁は、ピペッティングやタッピング等の当該技術分野における周知の方法により実施することが出来る。このような操作により、哺乳動物幹細胞が、トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む生理的水溶液中を浮遊する。
 刊行物、特許文献等を含む、本明細書に引用されたすべての参考文献は、引用により、それらが個々に具体的に参考として援用されかつその内容全体が具体的に記載されているのと同程度まで、本明細書に援用される。
 以下、実施例を示して本発明をより具体的に説明するが、本発明は以下に示す実施例によって何ら限定されるものではない。
[実施例1]
1.ブタ皮下脂肪由来間葉系幹細胞(Pig AT-MSC)の調製
(1)ブタ組織の調製
 ブタ皮下脂肪をそけい部より採取後、視認可能な血管や筋など脂肪組織と異なる組織をマイクロ鋏で除去し、その後、細切とHBSS(ハンクス溶液)での洗浄を数回繰り返した。視覚的に、血球(または血塊)の除去および筋などの膜状浮遊物質の除去が確認出来るまで洗浄作業を続けた。得られたブタ皮下脂肪をはさみにより細切した。
 細切された組織を同量のHBSSと混ぜた。混合物を緩やかに振とう後、静置することにより2層に分離させた。上層のみを回収した。回収された上層に0.2%コラゲナーゼ(TypeI)/HBSSを加え、37℃下で緩やかに脂肪が完全に液状になるまで振とうした(最大90分間)。反応液に10%牛胎児血清(FBS)を含むαMEMをコラゲナーゼ反応液量に対して等量以上加えて混合後、混合物を遠心分離することにより3層に分離させた(下から有核細胞・溶液・脂肪)。下層のみを回収し、HBSSにて再懸濁した。この操作を3回繰り返し、最後に10%FBSを含むαMEMで懸濁した細胞懸濁液を培養皿へ移し、培養した。MSCは培養皿の底面へ接着した。
(2)実験に用いる細胞(Pig AT-MSC P6)の調製
 (1)の操作で、培養皿へ接着したMSCは増殖を続け、5~7日後に培養皿底面はぎっしり細胞で埋まった。コンフルエントに到達するとMSCは増殖停止または細胞死が誘導されるので、コンフルエント到達前に、MSCを培養皿からはがし、新しい培養皿へ低密度で播種した。培養皿の底面に接着しているMSCをPBSで3回洗浄後、トリプシン-EDTA(0.25% トリプシン,1mM EDTA・4Na)を加え、MSCを培養皿からはがした後、細胞が低密度になるような量の10%のFBSを含むαMEMで懸濁し、新しい培養皿へ移した。この操作を6回繰り返した(6回継代=P6)。
(3)各液による細胞の懸濁
 (2)で得たPig AT-MSC P6を実験に用いた。
 10cm ディッシュあたり、5mlのPBS(-)で3回洗浄後、1mlのトリプシン-EDTA(0.25% トリプシン,1mM EDTA・4Na)で20秒処理することにより細胞をはがし、シングルセルの状態にした。得られた細胞を15ml容量のファルコンチューブへ移し、遠心することにより細胞を回収し、PBS(-)にて2回洗浄後、各溶液{ET-kyoto(ET-K、大塚製薬工場社製)、HBSS、MSCM(DMEM+10%FBS)}にて再度、馴化洗浄を1回行った。なお、ET-K中には45.3mg/mlの濃度のトレハロースが含まれる。その後、各溶液を用いて2.5x10 cells/50μLとなるように懸濁した。
 懸濁液を各温度(0、25、37℃)にて静置し、0、30、60、120、240分後に20μLピペットマンにて数回ピペッティングし、10μLをディッシュに移した。
 ディッシュ上の懸濁液の最下面に実体顕微鏡の焦点を合わせ、観察を行った。
 顕微鏡下にて隣接し合う細胞塊を形成しているものを、細胞凝集塊とした。細胞凝集塊は、dishを顕微鏡のステージ上で揺らし、明らかに塊として動いている事を確認した。
2.細胞生存率の検討
 各条件の細胞生存率への影響を検討した。
 50μLあたりに生存している細胞数をトリパンブルー染色にて算出し、スタートの時点で50μL中に生存していた細胞数(2.5x10個)と比較することにより、細胞の生存率を算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 MSCM又はHBSSを用いた場合には、時間の経過とともに顕著な細胞生存率の低下が認められたが、ET-Kでは生存率の低下が抑えられた。
3.細胞の凝集状態の検討
 MSCMを用いた場合には、25℃及び37℃においては、試験開始30分後から細胞凝集塊の形成が認められた。0℃においても、試験開始60分後から細胞凝集塊の形成が認められた。
 HBSSを用いた場合には、25℃及び37℃においては、試験開始120分後から細胞凝集塊の形成が認められた。0℃においても、試験開始240分後には細胞凝集塊の形成が認められた。
 一方、ET-Kを用いた場合には、25℃及び37℃においては、試験開始120分後までは細胞凝集塊の形成は認められず、試験開始240分後に若干の細胞凝集塊の形成が認められた。0℃においては、試験開始240分後でも細胞凝集塊の形成は認められなかった。いずれの温度においても、ET-Kを用いた場合には、細胞の浮遊状態が試験開始240分後まで維持されていた。
4.細胞の形態の検討
 MSCMを用いた場合には、突起を出す細胞が若干確認された。膨張した細胞の出現率は低かった。
 HBSSを用いた場合には、突起を出す細胞の割合が経時的に増加した。また、膨張した細胞の出現率が高かった。
 一方、ET-Kを用いた場合には、突起を出す細胞の割合は、MSCM及びHBSSと比較して少なかった。膨張した細胞の出現率も、MSCM及びHBSSと比較して低かった。
 一般に、付着性細胞は浮遊時間に依存してdishなどに接着しようと突起を出すことが知られている。これは、浮遊状態が細胞にストレスを与えるためである。また、細胞の膨張は、細胞質内外の浸透圧調節力が低下していることを示していると考えられる。以上の細胞形態の観察結果から、ET-Kは他の組成液と比較して細胞に与えるストレスが軽微であると考えられた。
[実施例2]
 実施例1で調製したブタ皮下脂肪由来間葉系幹細胞を2回継代して得られた細胞(Pig AT-MSC P2)を10cmディッシュ3枚に播いた。10cmディッシュあたり、5mlのPBS(-)で3回洗浄後、1mlのトリプシン-EDTA(0.25% トリプシン,1mM EDTA・4Na)で20秒処理することにより細胞をはがし、シングルセルの状態にした。得られた細胞(1.7x10個、生存率:94.1%)を15ml容量のファルコンチューブへ移し、遠心することにより細胞を回収し、PBS(-)にて2回洗浄後、5mLのET-kyoto(ET-K、大塚製薬工場社製)に懸濁した。ET-K中の細胞懸濁液を10本の15mLチューブに500μLずつ分注し、10分間室温(25℃)にて静置した。適量の生理食塩水を各チューブに加えることにより、ET-K中の細胞懸濁液を2~10倍に希釈し、更に30分静置した。その後、実施例1と同様に、生存率を算出し、細胞凝集塊の有無を観察した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
(細胞凝集性)
 ET-Kの原液、その2倍希釈液及び3倍希釈液を用いた場合には、細胞凝集塊は観察されなかった。ET-Kを4倍以上希釈すると、細胞が2~3個結合した凝集塊が僅かに認められた。従って、少なくとも15.1mg/ml以上のトレハロース濃度において、幹細胞の凝集抑制効果が発揮されることが示唆された。
(細胞浮遊性)
 細胞凝集性を観察後、細胞を再度懸濁し、室温(25℃)にて10分間静置後、顕微鏡下にて細胞の浮遊性を観察した。ET-Kの原液、その2倍希釈液及び3倍希釈液を用いた場合には、細胞は安定して浮遊していた。一方、ET-Kを8倍以上希釈すると、MSCMやHBSSとほとんど変化なく、細胞は沈殿した。従って、少なくとも15.1mg/ml以上のトレハロース濃度において、幹細胞が安定して浮遊することが示唆された。
(細胞形態及び生存率)
 ET-Kを生理食塩水により希釈しても、試験した希釈率の範囲内においては、細胞形態及び生存率の有意な変化は認められなかった。
[実施例3]
 実施例1で調製したブタ皮下脂肪由来間葉系幹細胞を10回継代して得られた細胞(Pig AT-MSC P10)を10cmディッシュに播いた。10cmディッシュあたり、5mlのPBS(-)で3回洗浄後、1mlのトリプシン-EDTA(0.25% トリプシン,1mM EDTA・4Na)で20秒処理することにより細胞をはがし、シングルセルの状態にした。得られた細胞(3.3x10個、生存率:98.5%)を15ml容量のファルコンチューブへ移し、遠心により細胞を回収し、PBS(-)にて2回洗浄後、5mLのET-Kyoto(ET-K、大塚製薬工場社製)に懸濁した。ET-K中の細胞懸濁液を、4℃にて5時間又は27時間静置した。その後、実施例1と同様に、生存率を算出し、細胞凝集塊の有無を観察した。結果を表2に示す。5時間又は27時間の静置後、更に細胞を24時間培養し、その後、細胞の形態を顕微鏡下で観察した。
(細胞凝集性)
 ディッシュから剥離後、ET-Kに懸濁した状態で細胞を4℃にて静置した結果、5時間及び27時間後のいずれの時点でも細胞凝集の形成は起こらず、シングルセルの状態が維持されていた。従って、ET-Kによる細胞凝集抑制効果は4℃においても発揮されることが示された。
(生存率)
 5時間後の生存率は78.7%であり、27時間後の生存率は65.9%であった。0時間から5時間までは3.96%/hr、5時間~27時間までは0.58%/hrの生存率低下が確認された。
(細胞の形態)
 5時間又は27時間の静置後、更に細胞を24時間培養すると、生存率に一致してプレートに接着した細胞が確認された。しかし、27時間保存細胞では異形態の細胞が約10%確認された。5時間保存した細胞では異形態の細胞の割合は1%以下であった。
[実施例4]
(1)ヒト骨髄由来MSC(hBM-MSC)の調製
 20~30mLの骨髄細胞を6000Unitヘパリンを含むシリンジによりヒト腸骨から採取した。骨髄細胞は、PBS(-)で一度洗浄し、900g、20分間の遠心により細胞を回収し、もう一度繰り返した。10%FBSを含むαMEMに懸濁し、培養皿に移して接着培養を行った。
(2)実験に用いる細胞(hBM-MSC P3)の調製
 (1)の操作で、培養皿へ接着したMSCは増殖を続け、5~7日後に培養皿底面はぎっしり細胞で埋まった。コンフルエントに到達するとMSCは増殖停止または細胞死が誘導されるので、コンフルエント到達前に、MSCを培養皿からはがし、新しい培養皿へ低密度で播種した。培養皿の底面に接着しているMSCをPBSで3回洗浄後、トリプシン-EDTA(0.05% トリプシン,0.53mM EDTA・4Na)を加え、MSCを培養皿からはがした後、細胞が低密度になるような量の10%のFBSを含むαMEMで懸濁し、新しい培養皿へ移した。この操作を3回繰り返した(3回継代=P3)。
 ヒト骨髄細胞由来MSCを10cmディッシュに播き培養した。10cmディッシュあたり、5mlのPBS(-)で3回洗浄後、1mlのトリプシン-EDTA(0.25% トリプシン,1mM EDTA・4Na)で20秒処理することにより細胞をはがし、シングルセルの状態にした。得られた細胞を15ml容量のファルコンチューブへ移し、遠心することにより細胞を回収し、PBS(-)にて2回洗浄後、以下の組成液に懸濁し、240分及び480分静置後、細胞の凝集の有無を観察した。
NS:生理食塩水(大塚製薬工場)
H:ヘスパンダー(杏林製薬)
1×T&NS:45.3mg/mL D-(+)-トレハロース(和光純薬)を含有する生理食塩水
1×T&H:45.3mg/mL D-(+)-トレハロース(和光純薬)を含有するヘスパンダー(杏林製薬)
1×T&H&TRase:45.3mg/mL D-(+)-トレハロース(和光純薬)及びトレハラーゼ(SIGMA)(2Unit/mL)を含有するヘスパンダー(杏林製薬)
 尚、トレハロースはET-Kの主要な成分であり、45.3mg/mLはET-Kに含まれるトレハロースの濃度である。また、ヘスパンダーは、ヒドロキシエチルデンプン(重量平均分子量(Mw) 約70000、置換度 0.50~0.55)を6(w/v)%含有する、ヒドロキシエチルデンプン製剤である。
 その結果、NS及びHを用いた場合には、試験開始240分後から細胞凝集塊の形成が認められた。一方、1×T&NS及び1×T&Hを用いた場合には、試験開始240分後及び480分後のいずれにおいても、細胞凝集塊の形成は認められなかった。しかしながら、トレハラーゼによりトレハロースを分解すると、細胞凝集塊の形成が認められた。
 以上の結果から、ET-Kの細胞凝集抑制効果はトレハロースによるものであることが示された。
[実施例5]
(1)ヒト脂肪由来MSC(hBM―MSC)の調製
 ヒト皮下脂肪を採取後、視認可能な血管や筋など脂肪組織と異なる組織をマイクロ鋏で除去し、その後、細切とHBSS(ハンクス溶液)での洗浄を数回繰り返した。視覚的に、血球(または血塊)の除去および筋などの膜状浮遊物質の除去が確認出来るまで洗浄作業を続けた。得られたヒト皮下脂肪をはさみにより細切した。
 細切された組織を同量のHBSSと混ぜた。混合物を緩やかに振とう後、静置することにより2層に分離させた。上層のみを回収した。回収された上層に0.05%コラゲナーゼ(TypeI)/HBSSを加え、37℃下で緩やかに脂肪が完全に液状になるまで振とうした。反応液に10%牛胎児血清(FBS)を含むαMEMを混合後、混合物を遠心分離することにより2層に分離させた。下層のみを回収し、HBSSにて再懸濁した。この操作を3回繰り返し、最後に10%FBSを含むαMEMで懸濁した細胞懸濁液を培養皿へ移し、培養した。MSCは培養皿の底面へ接着した。
(2)実験に用いる細胞(hAT-MSC P3)の調製
 (1)の操作で、培養皿へ接着したMSCは増殖を続け、5~7日後に培養皿底面はぎっしり細胞で埋まった。コンフルエントに到達するとMSCは増殖停止または細胞死が誘導されるので、コンフルエント到達前に、MSCを培養皿からはがし、新しい培養皿へ低密度で播種した。培養皿の底面に接着しているMSCをPBSで3回洗浄後、トリプシン-EDTA(0.05% トリプシン,0.53mM EDTA・4Na)を加え、MSCを培養皿からはがした後、細胞が低密度になるような量の10%のFBSを含むαMEMで懸濁し、新しい培養皿へ移した。この操作を3回繰り返した(3回継代=P3)。
 hAT-MSC及びhBM-MSCを3回継代して得られた細胞(hAT-MSC P3及びhBM-MSC P3)を10cm ディッシュに播いた。10cm ディッシュあたり、5mlのPBS(-)で3回洗浄後、1mlのトリプシン-EDTA(0.25% トリプシン, 1mM EDTA・4Na)で20秒処理することにより細胞をはがし、シングルセルの状態にした。得られた細胞(hAT-MSC P3:1.0x10個、生存率:98.4%/hBM-MSC P3:1.25x10個、生存率:96.8%)を15ml容量のファルコンチューブへ移し、遠心することにより細胞を回収し、PBS(-)にて2回洗浄後、以下の組成液100μLに懸濁し、室温(約25℃)にて240分又は24時間静置後、細胞の生存率を測定し、細胞の凝集及び形態を観察した。更に、240分又は24時間静置後、更に細胞を12時間培養し、細胞の形態を観察した。
0.1×T&H:4.53mg/mL D-(+)-トレハロース(和光純薬)を含有するヘスパンダー(杏林製薬)
0.1×T&NS:4.53mg/mL D-(+)-トレハロースを含有する生理食塩水(大塚製薬工場)
1×T&H:45.3mg/mL D-(+)-トレハロースを含有するヘスパンダー
1×T&NS:45.3mg/mL D-(+)-トレハロースを含有する生理食塩水
2×T&H:90.6mg/mL D-(+)-トレハロースを含有するヘスパンダー
2×T&NS:90.6mg/mL D-(+)-トレハロースを含有する生理食塩水
ET-K:ET-Kyoto(大塚製薬工場)
H:ヘスパンダー
NS:生理食塩水
MSCM:10%FBSを含有するαMEM
(細胞生存率)
 結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 トレハロース又はヒドロキシエチルデンプン(ヘスパンダー)をそれぞれ単独で添加することにより、細胞生存率の上昇が認められた。トレハロース及びヒドロキシエチルデンプン(ヘスパンダー)の両方を添加することにより、細胞生存率は大幅に上昇した。
(細胞の凝集及び形態)
 0.1×T&NSにおいては、試験開始から240分後に細胞凝集塊の形成がAT及びBMの双方について若干認められたが、組成液中にトレハロースを含むその他の群(0.1×T&H、1×T&H、1×T&NS、2×T&H、2×T&NS及びET-K)においては、細胞凝集塊の形成は認められなかった。組成液中にトレハロースを含む群においては、細胞の変形は認められなかった。
 組成液中にトレハロースもヒドロキシエチルデンプンも含まない群(NS、MSCM)においては、顕著に細胞凝集塊及び細胞変形が認められた。ヒドロキシエチルデンプンのみを含む群(H)においては、細胞凝集塊が認められたが、細胞変形はわずかであった。 
(静置後の培養)
 トレハロース添加の有無に関係なく、生存率に一致した接着細胞数の増減が確認された。0.1×Tを含む群及びトレハロース無添加群の一部では、細胞形態の異常が確認された。一方、NSと比較してHでは細胞形態が良好であり、生存率に一致した細胞接着数の増減が確認された。
 以上の結果から、トレハロースは細胞の凝集を抑制し、細胞の生存率を高め、細胞形態や機能を維持し得ることが示された。また、ヒドロキシエチルデンプンは、細胞の生存率を高め、細胞形態や機能を維持し得ることが示された。更に、トレハロースとヒドロキシエチルデンプンとを組み合わせることにより、細胞の生存率が顕著に上昇することが示された。
[実施例6]
 hAT-MSC及びhBM-MSCを3回継代して得られた細胞(hAT-MSC P3及びhBM-MSC P3)を10cmディッシュに播いた。10cmディッシュあたり、5mlのPBS(-)で3回洗浄後、1mlのトリプシン-EDTA(0.25% トリプシン,1mM EDTA・4Na)で20秒処理することにより細胞をはがし、シングルセルの状態にした。得られた細胞(hAT-MSC P3:4.25x10個、生存率:97.5%/hBM-MSC P3:5.0x10個、生存率:98.2%)を15ml容量のファルコンチューブへ移し、遠心することにより細胞を回収し、PBS(-)にて2回洗浄後、以下の組成液100μLに懸濁し、室温(約25℃)にて8時間又は36時間静置後、細胞の生存率を測定し、細胞の凝集を観察した。
1×T&H:45.3mg/mL D-(+)-トレハロース(和光純薬)を含有するヘスパンダー(杏林製薬)
2×T&H:90.6mg/mL D-(+)-トレハロースを含有するヘスパンダー
4×T&H:181.2mg/mL D-(+)-トレハロースを含有するヘスパンダー
8×T&H:362.4mg/mL D-(+)-トレハロースを含有するヘスパンダー
ET-K:ET-Kyoto(大塚製薬工場)
H:ヘスパンダー
1×T&H&TRase:45.3mg/mL D-(+)-トレハロース及びトレハラーゼ(SIGMA)(2Unit/mL)を含有するヘスパンダー
(細胞の凝集)
 組成液中にトレハロースを含む群(1×T&H、2×T&H、4×T&H、8×T&H及びET-K)においては、hAT-MSC及びhBM-MSCの双方について、試験開始から8時間後の細胞凝集塊の形成は認められなかった。一方、トレハロースを含まないヘスパンダー(H)を用いた場合には、hAT-MSC及びhBM-MSCの双方について、試験開始から8時間後に細胞凝集塊の形成が認められた。更に、トレハラーゼによりトレハロースを分解すると、細胞凝集塊の形成が認められた(1×T&H&TRase)。以上の結果から、トレハロースが細胞凝集抑制効果を有することが示された。
(細胞生存率)
 試験開始36時間後の細胞生存率を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示される通り、いずれの濃度のトレハロースを添加しても、細胞の生存率はヘスパンダー単独(H)と比較して上昇した。181.2mg/mL(4×T)の濃度のトレハロースの添加までは、細胞生存率の顕著な上昇を示したが、362.4mg/mL(8×T)までトレハロース添加濃度を高くすると、その効果は逆に減弱した。従って、細胞生存率を上昇させる観点からは、トレハロース濃度は181.2mg/mL(4×T)以下が好ましいことが示唆された。
[実施例7]
 hAT-MSC及びhBM-MSCを6又は8回継代して得られた細胞(hAT-MSC P8及びhBM-MSC P6)を10cmディッシュに播いた。10cmディッシュあたり、5mlのヘスパンダー(杏林製薬)で3回洗浄後、1mlのトリプシン-EDTA(0.25% トリプシン,1mM EDTA・4Na)で20秒処理することにより細胞をはがし、シングルセルの状態にした。得られた細胞(hAT-MSC P8:2.4x10個/hBM-MSC P6:2.3x10個)を15ml容量のファルコンチューブへ移し、遠心することにより細胞を回収し、以下の組成液に懸濁し、室温(約25℃)にて1時間静置後、細胞の生存率を測定し、細胞の凝集を観察した。
1×T&H:45.3mg/mL D-(+)-トレハロース(和光純薬)を含有するヘスパンダー
0.5×T&H:22.65mg/mL D-(+)-トレハロースを含有するヘスパンダー
0.1×T&H:4.53mg/mL D-(+)-トレハロースを含有するヘスパンダー
1×T&F&H:45.3mg/mL D-(+)-トレハロース及び10μg/ml フコイダン(焼津水産化学工業)を含有するヘスパンダー
0.5×T&F&H:22.65mg/mL D-(+)-トレハロース及び10μg/ml フコイダンを含有するヘスパンダー
0.1×T&F&H:4.53mg/mL D-(+)-トレハロース及び10μg/ml フコイダンを含有するヘスパンダー
F&H:10μg/ml フコイダンを含有するヘスパンダー
ET-K:ET-Kyoto(大塚製薬工場)
H:ヘスパンダー
MSCM:10%FBSを含有するαMEM
 試験結果を図1及び2に示す。
(細胞生存率)
 いずれの濃度のトレハロースを添加しても、細胞の生存率はヘスパンダー単独(H)と比較して上昇した。一方、フコイダンを添加すると、細胞生存率が低下したことから、フコイダンは細胞毒性を有することが示唆された。トレハロースは、フコイダンの細胞毒性を抑制する傾向を示した。
(細胞の凝集)
 hAT-MSC及びhBM-MSCの双方について、トレハロースの添加により、細胞浮遊効果及び細胞凝集抑制効果が観察された。一方、フコイダンは、細胞浮遊を阻害する傾向が認められ、細胞凝集抑制効果は認められなかった。ヘスパンダーのみよりも、トレハロースを添加した方が、細胞の突起形成が抑制され、細胞の形態がよかった。0.5×T&Hによる細胞凝集抑制効果はET-Kと同程度であった。細胞浮遊効果は、ET-Kの方が0.5×T&Hよりも若干優れていた。0.1×T&Hでは、若干細胞表面に突起が観察された。
[実施例8]
 実施例1で調製したブタ皮下脂肪由来間葉系幹細胞を7回継代して得られた細胞(Pig AT-MSC P7)を10cmディッシュ上で培養した。10cmディッシュあたり、5mlのPBS(-)で3回洗浄後、1mlのトリプシン-EDTA(0.25% トリプシン,1mM EDTA・4Na)で20秒処理することにより細胞をはがし、シングルセルの状態にし、ET-K液に懸濁した。得られた細胞懸濁液を以下の試験に用いた。
(輸液バッグ内壁への接着性の評価)
 ソルデム3AG輸液バッグ(TERUMO)を細断し、断片を50mlチューブの壁面に設置した。細胞懸濁液でチューブを満たし、チューブを横にしてクリーンベンチ内で室温(25℃)にて30分静置した。その後、輸液バッグ断片をPBSにより洗浄し、輸液バッグ内壁への細胞の接着の有無を、顕微鏡観察により評価した。
 PBSによる洗浄前においては、MSCsの一部(目算で10%以下)の輸液バッグ内壁への接着が認められたが、PBS洗浄により、接着したMSCsの大部分(目算で90%以上)が除去された。従って、トレハロースにより、輸液バッグ内壁への細胞の接着を回避できる可能性が示された。
(カテーテル通過試験)
 CVカテーテルキット(日本シャーウッド)を用いた。18G注射針をカテーテル先端に接続した。5mLシリンジで細胞懸濁液を吸入した。カテーテルにシリンジをセットし、細胞懸濁液を押し出した。この操作を規定回数繰り返した後に、細胞生存率を測定し、また顕微鏡下で観察した。顕微鏡観察の前に、5mLのPBSでカテーテルを洗浄した。
 結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 少なくとも10回までは通過回数に関係なく、細胞生存率は不変であった。カテーテルの内壁にごく僅かのMSCsとET-K液の残存が観察されたが、カテーテル通過後の細胞数が不変であり、PBS洗浄後には接着細胞は確認されなかった。従って、トレハロースにより、カテーテル内壁への細胞の接着を回避できる可能性が示された。
[実施例9]
 ブタ間葉系幹細胞を10cmディッシュ上で培養した。トリプシン-EDTA(0.25% トリプシン,1mM EDTA・4Na)で処理することにより細胞をはがし、シングルセルの状態にした。得られた細胞を、以下の組成液に懸濁し、室温(約25℃)にて360分間静置後、細胞の生存率を測定し、細胞の凝集を観察した。
NS:生理食塩水
MSCM:10%FBSを含有するαMEM
ET-K:ET-Kyoto(大塚製薬工場)
Saviosol:サヴィオゾール(大塚製薬工場)
Dextran:低分子デキストランL注(大塚製薬工場)
 尚、サヴィオゾールは重量平均分子量が40000のデキストラン(デキストラン40)を30mg/mlの濃度で含有する、乳酸リンゲル液である。低分子デキストランL注は、重量平均分子量が40000のデキストラン(デキストラン40)を100mg/mlの濃度で含有する、乳酸リンゲル液である。
(細胞生存率)
 試験開始30分後及び360分後の細胞生存率を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示される通り、いずれの組成物を使用した場合であっても、細胞の生存率は生理食塩水を使用した場合と比較して顕著に高かった。
(細胞の凝集)
 試験開始から360分後に顕微鏡下で細胞凝集の有無を観察した。生理食塩水又はMSCM中で保存した場合には、大きな細胞凝集塊の形成が観察されたが、ET-K、Saviosol又はDextranにおいては、細胞凝集塊の形成が抑制され、細胞の分散状態が維持されていた。
[実施例10]
(1)ラット組織の調製
 ラット皮下脂肪をそけい部より採取後、視認可能な血管や筋など脂肪組織と異なる組織をマイクロ鋏で除去し、その後、細切とHBSS(ハンクス溶液)での洗浄を数回繰り返した。視覚的に、血球(または血塊)の除去および筋などの膜状浮遊物質の除去が確認出来るまで洗浄作業を続けた。得られたラット皮下脂肪をはさみにより細切した。
 細切された組織を同量のHBSSと混ぜた。混合物を緩やかに振とう後、静置することにより2層に分離させた。上層のみを回収した。回収された上層に0.2%コラゲナーゼ(TypeI)/HBSSを加え、37℃下で緩やかに脂肪が完全に液状になるまで振とうした(最大90分間)。反応液に10%牛胎児血清(FBS)を含むαMEMをコラゲナーゼ反応液量に対して等量以上加えて混合後、混合物を遠心分離することにより3層に分離させた(下から有核細胞・溶液・脂肪)。下層のみを回収し、HBSSにて再懸濁した。この操作を3回繰り返し、最後に10%FBSを含むαMEMで懸濁した細胞懸濁液を培養皿へ移し、培養した。MSCは培養皿の底面へ接着した。
(2)実験に用いる細胞(Rat AT-MSC P6)の調製
 (1)の操作で、培養皿へ接着したMSCは増殖を続け、5~7日後に培養皿底面はぎっしり細胞で埋まった。コンフルエントに到達するとMSCは増殖停止または細胞死が誘導されるので、コンフルエント到達前に、MSCを培養皿からはがし、新しい培養皿へ低密度で播種した。培養皿の底面に接着しているMSCをPBSで3回洗浄後、トリプシン-EDTA(0.25% トリプシン,1mM EDTA・4Na)を加え、MSCを培養皿からはがした後、細胞が低密度になるような量の10%のFBSを含むαMEMで懸濁し、新しい培養皿へ移した。この操作を6回繰り返した(6回継代=P6)。
(3)各液による細胞の懸濁
 (2)で得たRat AT-MSC P6を実験に用いた。
 10cm ディッシュあたり、5mlのPBS(-)で3回洗浄後、1mlのトリプシン-EDTA(0.25% トリプシン,1mM EDTA・4Na)で20秒処理することにより細胞をはがし、シングルセルの状態にした。得られた細胞を15ml容量のファルコンチューブへ移し、遠心することにより細胞を回収し、PBS(-)にて2回洗浄後、以下の各溶液にて再度、馴化洗浄を1回行った。
Saline:生理食塩水
Medium:10%FBSを含有するαMEM
ET-K:ET-Kyoto(大塚製薬工場)
Saviosol:サヴィオゾール(大塚製薬工場)
HES70K:6(w/v)% ヒドロキシエチルデンプン(重量平均分子量70000)+0.9(w/v)% NaCl(ドイツ・ブラウン社)
HES200K:6(w/v)% ヒドロキシエチルデンプン(重量平均分子量200000)+0.9(w/v)% NaCl(ドイツ・フレゼニウス・カビー社)
ET-K+Saviosol:ET-KとSaviosolの混合液(体積比で1:1)
 その後、各溶液を用いて2.5x10 cells/50μLとなるように懸濁した。
 懸濁液を各温度(0、25、37℃)にて静置し、30~360分後に20μLピペットマンにて数回ピペッティングし、10μLをディッシュに移した。
 ディッシュ上の懸濁液の最下面に実体顕微鏡の焦点を合わせ、観察を行った。
 顕微鏡下にて隣接し合う細胞塊を形成しているものを、細胞凝集塊とした。細胞凝集塊は、dishを顕微鏡のステージ上で揺らし、明らかに塊として動いている事を確認した。
(細胞生存率)
 試験開始30~360分後の細胞生存率を図3及び4に示す。これらの図に示されるように、いずれの組成物を使用した場合であっても、細胞の生存率は生理食塩水を使用した場合と比較して顕著に高かった。細胞の生存率低下を抑制する効果はHES200KよりもHES70Kの方が高かった。
(細胞の凝集)
 試験開始から360分後に顕微鏡下で細胞の凝集性を観察した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 培地中で保存した場合と比較して、その他の条件においては、細胞凝集塊の形成が抑制された。細胞凝集を抑制する効果はHES200KよりもHES70Kの方が高かった。ET-K、Saviosol、HES70K、及びET-K+Saviosolにおいては、細胞凝集の形成が認められず、細胞の分散がよく維持されていた。
[実施例11]
 ヒトから分離精製された骨髄由来間葉系幹細胞(継代回数8回目)と脂肪組織由来間葉系幹細胞(継代回数8回目)の各細胞を、Nunc社製の細胞皿の底面を約90%覆うまで培養した。TaKaRa社製のPBS(-)で培養皿を3回洗浄し、GIBCO社製のトリプシン溶液にて各間葉系幹細胞を培養皿より剥離し、アシスト社製の15mL遠心チューブに細胞を回収した。1000rpm、5分間の遠心操作により、遠心チューブの底に細胞塊を形成させ、アスピレーターにて上澄み液を破棄した。指で弾いて細胞塊を解し、TaKaRa社製のPBS(-)を加え、数回ピペット操作にて更に細胞を解し、1000rpm、5分間遠心した。遠心チューブの底に細胞塊が形成されたことを確認し、アスピレーターにて上澄み液を破棄した。このPBS(-)による洗浄操作を後2回繰り返した。血球計算盤で細胞数を測定し、アシスト社製の1.5mLチューブに1.0x10個/チューブの条件で細胞を移した。1000rpm、5分間の遠心操作により、チューブの底に細胞塊を形成させ、上澄み液をマイクロピペットにて除去した。各チューブに
(1)生理食塩水(大塚製薬工場社製) 1mL
(2)サヴィオゾール(大塚製薬工場社製) 500μLとデキストランL注(大塚製薬工場社製) 500μLの混合液(デキストラン40 6.5(w/v)%)
(3)サヴィオゾール(大塚製薬工場社製) 250μLとデキストランL注(大塚製薬工場社製) 750μLの混合液(デキストラン40 8.25(w/v)%)
(4)デキストランL注(大塚製薬工場社製)(デキストラン40 10(w/v)%) 1mL
の計4種類の液をそれぞれ加え、ボルテックスミキサーにて数秒間、混合した。テルモ製の30G注射針と1mLのシリンジを用いて、細胞のシングル化操作を行い、室温(約25℃)にてチューブ立てを用いて静置した。静置30分後と60分後に、各チューブより、10μLの液を取り、GIBCO製のトリパンブルー液と等量混合した液を血球計算盤にて細胞数と生存率を測定した。尚、評価した液は、各チューブの液面中心(上)、液中間中心(中)及びチューブの底中心(下)の3箇所から静かに分取した。上、中、下の各細胞数の合計値を100%とし、それぞれの細胞数を分子に、合計細胞数を分母として割合で細胞の分布状況を算出した。また、細胞全体の生存率を別途算出した。
 結果を図5及び6に示す。デキストランを含む緩衝液(6.5~10(w/v)%)中で間葉系幹細胞を保存した場合には、間葉系幹細胞の由来に関わらず、チューブの上、中、下における細胞数に大きな差は認められず、細胞の均一な分散が維持されていることが示された。また、この場合、細胞の生存率は100%で不変であった。一方、生理食塩水を用いた場合には、細胞はチューブの下に沈み、60分間保存後の細胞の生存率は80%にまで低下した。
 本発明を用いれば、幹細胞の移植時に、懸濁液中の幹細胞同士の凝集を抑制することができる。従って、幹細胞の凝集物が、カニューレ中に詰まったり、肺静脈等の細い血管中に塞栓を形成してしまうリスクが低減する。
 更に、本発明を用いれば、懸濁液中の幹細胞の生存率の低下を抑制することができる。従って、より状態のよい幹細胞により治療を実施することができるので、治療効果の向上が期待できる。
 従って、本発明は幹細胞を利用した移植医療分野で有用である。
 本出願は日本で出願された特願2010-251273(出願日:2010年11月9日)及び特願2010-293908(出願日:2010年12月28日)を基礎としており、その内容は本明細書に全て包含されるものである。

Claims (34)

  1.  哺乳動物幹細胞及びトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む、哺乳動物幹細胞懸濁液。
  2.  トレハロース及びヒドロキシエチルデンプン、或いはトレハロース及びデキストランを含む組み合わせを含む、請求項1記載の哺乳動物幹細胞懸濁液。
  3.  幹細胞が付着性幹細胞である、請求項1記載の哺乳動物幹細胞懸濁液。
  4.  付着性幹細胞が、間葉系幹細胞又は多能性幹細胞である、請求項3記載の哺乳動物幹細胞懸濁液。
  5.  哺乳動物幹細胞が単一細胞の状態にある哺乳動物幹細胞を含む、請求項1記載の哺乳動物幹細胞懸濁液。
  6.  多糖類がトレハロースであり、且つトレハロースの濃度が4.53~362.4mg/mlの範囲内である、請求項1記載の哺乳動物幹細胞懸濁液。
  7.  多糖類がデキストランであり、且つデキストランの濃度が30~100mg/mlの範囲内である、請求項1記載の哺乳動物幹細胞懸濁液。
  8.  哺乳動物幹細胞をトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む生理的水溶液に懸濁することを含む、哺乳動物幹細胞懸濁液の製造方法。
  9.  生理的水溶液がトレハロース及びヒドロキシエチルデンプン、或いはトレハロース及びデキストランを含む、請求項8記載の製造方法。
  10.  請求項1~7のいずれかの哺乳動物幹細胞懸濁液を含む、哺乳動物幹細胞懸濁液製剤。
  11.  トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む、哺乳動物幹細胞凝集抑制剤。
  12.  幹細胞が付着性幹細胞である、請求項11記載の哺乳動物幹細胞凝集抑制剤。
  13.  付着性幹細胞が間葉系幹細胞又は多能性幹細胞である、請求項12記載の哺乳動物幹細胞凝集抑制剤。
  14.  多糖類がトレハロースであり、且つ哺乳動物幹細胞懸濁液中のトレハロースの濃度が4.53~362.4mg/mlの範囲内となるように使用される、請求項11記載の哺乳動物幹細胞凝集抑制剤。
  15.  多糖類がデキストランであり、且つデキストランの濃度が30~100mg/mlの範囲内となるように使用される、請求項11記載の哺乳動物幹細胞凝集抑制剤。
  16.  哺乳動物幹細胞をトレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む生理的水溶液に懸濁することを含む、哺乳動物幹細胞の凝集の抑制方法。
  17.  幹細胞が付着性幹細胞である、請求項16記載の哺乳動物幹細胞の凝集の抑制方法。
  18.  付着性幹細胞が間葉系幹細胞又は多能性幹細胞である、請求項17記載の哺乳動物幹細胞の凝集の抑制方法。
  19.  哺乳動物幹細胞が単一細胞の状態にある哺乳動物幹細胞を含む、請求項16記載の哺乳動物幹細胞の凝集の抑制方法。
  20.  多糖類がトレハロースであり、且つトレハロースの濃度が4.53~362.4mg/mlの範囲内である、請求項16記載の哺乳動物幹細胞の凝集の抑制方法。
  21.  多糖類がデキストランであり、且つデキストランの濃度が30~100mg/mlの範囲内である、請求項16記載の哺乳動物幹細胞の凝集の抑制方法。
  22.  トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む、哺乳動物幹細胞の生存率低下の抑制剤。
  23.  トレハロース及びヒドロキシエチルデンプン、或いはトレハロース及びデキストランを含む組み合わせを含む、請求項22記載の哺乳動物幹細胞の生存率低下の抑制剤。
  24.  幹細胞が付着性幹細胞である、請求項22記載の哺乳動物幹細胞の生存率低下の抑制剤。
  25.  付着性幹細胞が、間葉系幹細胞又は多能性幹細胞である、請求項24記載の哺乳動物幹細胞の生存率低下の抑制剤。
  26.  多糖類がトレハロースであり、且つ哺乳動物幹細胞懸濁液中のトレハロースの濃度が4.53~362.4mg/mlの範囲内となるように使用される、請求項22記載の哺乳動物幹細胞の生存率低下の抑制剤。
  27.  多糖類がデキストランであり、且つ哺乳動物幹細胞懸濁液中のデキストランの濃度が30~100mg/mlの範囲内となるように使用される、請求項22記載の哺乳動物幹細胞の生存率低下の抑制剤。
  28.  哺乳動物幹細胞を、トレハロース、ヒドロキシエチルデンプン及びデキストランからなる群から選択される少なくとも1つの多糖類を含む生理的水溶液に懸濁することを含む、哺乳動物幹細胞の生存率低下の抑制方法。
  29.  該生理的水溶液が、トレハロース及びヒドロキシエチルデンプン、或いはトレハロース及びデキストランを含む組み合わせを含む、請求項28記載の哺乳動物幹細胞の生存率低下の抑制方法。
  30.  幹細胞が付着性幹細胞である、請求項28記載の哺乳動物幹細胞の生存率低下の抑制方法。
  31.  付着性幹細胞が、間葉系幹細胞又は多能性幹細胞である、請求項30記載の哺乳動物幹細胞の生存率低下の抑制方法。
  32.  哺乳動物幹細胞が単一細胞の状態にある、請求項28記載の哺乳動物幹細胞の生存率低下の抑制方法。
  33.  多糖類がトレハロースであり、且つトレハロースの濃度が15.1~362.4mg/mlの範囲内である、請求項28記載の哺乳動物幹細胞の生存率低下の抑制方法。
  34.  多糖類がデキストランであり、且つデキストランの濃度が30~100mg/mlの範囲内である、請求項28記載の哺乳動物幹細胞の生存率低下の抑制方法。
PCT/JP2011/075843 2010-11-09 2011-11-09 幹細胞懸濁液 WO2012063870A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
KR1020137014704A KR101868653B1 (ko) 2010-11-09 2011-11-09 줄기 세포 현탁액
ES11839155.6T ES2568731T3 (es) 2010-11-09 2011-11-09 Suspensión de células madre
US13/883,371 US10087421B2 (en) 2010-11-09 2011-11-09 Stem cell suspension
AU2011327239A AU2011327239B2 (en) 2010-11-09 2011-11-09 Stem cell suspension
CA2817172A CA2817172C (en) 2010-11-09 2011-11-09 Stem cell suspension
DK11839155.6T DK2639296T3 (en) 2010-11-09 2011-11-09 Stem cell suspension
CN201180064550.4A CN103298926B (zh) 2010-11-09 2011-11-09 干细胞悬浮液
SG2013034681A SG190169A1 (en) 2010-11-09 2011-11-09 Stem cell suspension
SI201130786A SI2639296T1 (sl) 2010-11-09 2011-11-09 Suspenzija matičnih celic
EP11839155.6A EP2639296B1 (en) 2010-11-09 2011-11-09 Stem cell suspension
NZ61055611A NZ610556A (en) 2010-11-09 2011-11-09 Stem cell suspension

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010251273 2010-11-09
JP2010-251273 2010-11-09
JP2010293908A JP5341059B2 (ja) 2010-11-09 2010-12-28 幹細胞懸濁液
JP2010-293908 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012063870A1 true WO2012063870A1 (ja) 2012-05-18

Family

ID=46051010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075843 WO2012063870A1 (ja) 2010-11-09 2011-11-09 幹細胞懸濁液

Country Status (15)

Country Link
US (1) US10087421B2 (ja)
EP (1) EP2639296B1 (ja)
JP (1) JP5341059B2 (ja)
KR (1) KR101868653B1 (ja)
CN (1) CN103298926B (ja)
AU (1) AU2011327239B2 (ja)
CA (1) CA2817172C (ja)
CY (1) CY1117419T1 (ja)
DK (1) DK2639296T3 (ja)
ES (1) ES2568731T3 (ja)
NZ (1) NZ610556A (ja)
SG (1) SG190169A1 (ja)
SI (1) SI2639296T1 (ja)
TW (1) TWI547561B (ja)
WO (1) WO2012063870A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5196618B1 (ja) * 2012-09-28 2013-05-15 株式会社大塚製薬工場 トレハロース含有細胞洗浄溶液を用いた接着細胞の洗浄方法
JP5276230B1 (ja) * 2013-01-10 2013-08-28 株式会社大塚製薬工場 トレハロース含有細胞洗浄溶液を用いた接着細胞のインビトロ継代方法
WO2014208053A1 (ja) * 2013-06-28 2014-12-31 株式会社大塚製薬工場 トレハロース及びデキストラン含有哺乳動物細胞移植用溶液
WO2015033558A1 (ja) * 2013-09-04 2015-03-12 株式会社大塚製薬工場 多能性幹細胞の調製方法
JPWO2021145364A1 (ja) * 2020-01-17 2021-07-22

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5432322B2 (ja) 2012-05-08 2014-03-05 株式会社大塚製薬工場 トレハロース含有肺塞栓形成予防用哺乳動物細胞懸濁液
EP3052943B1 (en) * 2013-10-04 2019-11-20 Cell Ideas Pty Ltd. Biomarkers for cell therapy
JP2017531446A (ja) * 2014-09-29 2017-10-26 クック・ジェネラル・バイオテクノロジー・エルエルシー 細胞懸濁液中のトレハロースの使用
US20160324898A1 (en) * 2015-05-04 2016-11-10 Stemedica International, Sa Compositions and methods for the treatment of alzheimer's disease
CN105267952B (zh) * 2015-09-01 2018-05-18 河南卓丰生物科技有限公司 一种用于保护干细胞治疗的药物及其制备方法
WO2017172679A1 (en) * 2016-03-28 2017-10-05 Cook General Biotechnology Llc Viable cell compositions, and methods related to same
CZ2016284A3 (cs) * 2016-05-13 2017-07-12 Ústav experimentální medicíny AV ČR, v. v. i. Prostředek pro uchování, transport a aplikaci kmenových buněk
CZ307325B6 (cs) * 2016-10-14 2018-06-06 Ústav experimentální medicíny AV ČR, v. v. i. Prostředek obsahující kmenové buňky k léčení posttraumatických zánětlivých reakcí a způsob jeho výroby
CN107034184A (zh) * 2017-05-04 2017-08-11 济南赛尔生物科技股份有限公司 一种用于原代培养脐带间充质干细胞的试剂盒
CN107156108A (zh) * 2017-05-27 2017-09-15 魏方萌 一种外周血干细胞保存液及制备方法
JP7133549B2 (ja) 2017-06-06 2022-09-08 住友ファーマアニマルヘルス株式会社 細胞凝集低減方法および細胞凝集が低減された治療用組成物
CN107912420A (zh) * 2017-10-27 2018-04-17 北京协科医药科技有限公司 一种细胞保存方法、保存液及保存液制备方法
US20210345602A1 (en) 2018-09-28 2021-11-11 Otsuka Pharmaceutical Factory, Inc Mammal cell preserving solution containing acarbose or stachyose
AU2020241910B2 (en) 2019-03-15 2023-12-21 Megakaryon Corporation Storage liquid for mammalian cells
JP6830294B1 (ja) 2019-04-26 2021-02-17 株式会社大塚製薬工場 トレハロースを含む哺乳動物細胞保存用液
WO2021193606A1 (ja) * 2020-03-27 2021-09-30 株式会社大塚製薬工場 アカルボース及びデキストランを含む哺乳動物細胞保存用液
CN114574426A (zh) * 2022-01-25 2022-06-03 湖北省农业科学院畜牧兽医研究所 一种鸭小肠隐窝干细胞分离鉴定和3d类器官培养的方法
CN115039762B (zh) * 2022-06-17 2023-04-11 广州沙艾生物科技有限公司 一种胎盘干细胞储存液及储存方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH114682A (ja) * 1997-06-16 1999-01-12 Asahi Medical Co Ltd 有核細胞保存方法、有核細胞保存用組成物及び有核細胞分離方法
JP2009521931A (ja) * 2005-12-29 2009-06-11 アントフロゲネシス コーポレーション 胎盤幹細胞を収集及び保存するための改善された組成物、及び該組成物の使用方法
JP2009296889A (ja) * 2008-06-10 2009-12-24 Foundation For Biomedical Research & Innovation 造血幹細胞の培養方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004681B1 (en) * 1987-11-12 2000-04-11 Biocyte Corp Preservation of fetal and neonatal hematopoietic stem and progenitor cells of the blood
JP3253131B2 (ja) 1992-07-24 2002-02-04 洋巳 和田 移植臓器用溶液
ATE235919T1 (de) * 1994-06-02 2003-04-15 Elan Drug Delivery Ltd Methode zum verhindern der aggregation von proteinen/peptiden bei rehydratation oder auftauen
EP2243827B2 (en) * 1996-08-30 2017-11-22 Life Technologies Corporation Serum-free mammalian cell culture medium, and uses thereof
US20050048460A1 (en) * 2003-05-29 2005-03-03 The Regents Of The University Of California Preservative and method for preserving cells
US20060257842A1 (en) 2003-05-29 2006-11-16 Pettegrew Jay W Cryopreservation media and molecules
US20060009469A1 (en) 2004-05-28 2006-01-12 Leonore Witchey-Lakshmanan Particulate-stabilized injectable pharmacutical compositions of posaconazole
US7880925B2 (en) 2005-08-02 2011-02-01 Kabushiki Kaisha Toshiba Apparatus and method for generating an image file with a color layer and a monochrome layer
JP5274017B2 (ja) 2005-10-13 2013-08-28 株式会社大塚製薬工場 肝臓保存液
EP2278873B1 (en) * 2008-03-19 2015-05-06 Cryo-Save AG Improved cryopreservation of adipose tissue for the isolation of mesenchymal stem cells
US20100035327A1 (en) 2008-08-11 2010-02-11 Ann Marie Steele Use of rice-derived products in a universal cell culture medium
KR20240052847A (ko) * 2008-08-20 2024-04-23 셀룰래리티 인코포레이티드 개선된 세포 조성물 및 그의 제조 방법
US20110208162A1 (en) * 2008-10-24 2011-08-25 Indiana University Rsearch and Technology Corporation Methods for preventing aggregation of adipose stromal cells
EP2358395A4 (en) 2008-11-17 2013-11-20 Hoffmann La Roche METHOD AND FORMULATION FOR REDUCING THE AGGREGATION OF A MACROMOLECULUM UNDER PHYSIOLOGICAL CONDITIONS
JP6027300B2 (ja) * 2009-03-19 2016-11-16 国立大学法人岩手大学 細胞または臓器の保存液および保存方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH114682A (ja) * 1997-06-16 1999-01-12 Asahi Medical Co Ltd 有核細胞保存方法、有核細胞保存用組成物及び有核細胞分離方法
JP2009521931A (ja) * 2005-12-29 2009-06-11 アントフロゲネシス コーポレーション 胎盤幹細胞を収集及び保存するための改善された組成物、及び該組成物の使用方法
JP2009296889A (ja) * 2008-06-10 2009-12-24 Foundation For Biomedical Research & Innovation 造血幹細胞の培養方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIDEMI HATTORI ET AL.: "Saibo no Reizo Hozon no Kento", JAPANESE JOURNAL OF MEDICAL ELECTRONICS AND BIOLOGICAL ENGINEERING, vol. 42, 2004, pages 538, XP008168171 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9040300B2 (en) 2012-09-28 2015-05-26 Otsuka Pharmaceutical Factory, Inc. Method of washing adherent cell using trehalose-containing cell-washing solution
EP2712920A1 (en) * 2012-09-28 2014-04-02 Otsuka Pharmaceutical Factory, Inc. Method of washing adherent cell using trehalose-containing cell-washing solution
CN103710305A (zh) * 2012-09-28 2014-04-09 株式会社大塚制药工场 使用含有海藻糖的细胞洗涤溶液的贴壁细胞的洗涤方法
JP5196618B1 (ja) * 2012-09-28 2013-05-15 株式会社大塚製薬工場 トレハロース含有細胞洗浄溶液を用いた接着細胞の洗浄方法
US9498500B2 (en) 2012-09-28 2016-11-22 Otsuka Pharmaceutical Factory, Inc. Method of washing adherent cell using trehalose-containing cell-washing solution
JP5276230B1 (ja) * 2013-01-10 2013-08-28 株式会社大塚製薬工場 トレハロース含有細胞洗浄溶液を用いた接着細胞のインビトロ継代方法
US10945427B2 (en) 2013-06-28 2021-03-16 Otsuka Pharmaceutical Factory, Inc. Trehalose and dextran-containing solution for transplanting mammalian cells
RU2663793C2 (ru) * 2013-06-28 2018-08-09 Оцука Фармасьютикал Фэктори, Инк. Содержащий трегалозу и декстран раствор для трансплантации клеток млекопитающих
CN105324480A (zh) * 2013-06-28 2016-02-10 株式会社大塚制药工场 含有海藻糖及葡聚糖的哺乳动物细胞移植用溶液
JP2016034279A (ja) * 2013-06-28 2016-03-17 株式会社大塚製薬工場 トレハロース及びデキストラン含有哺乳動物細胞移植用溶液
CN105324480B (zh) * 2013-06-28 2021-07-16 株式会社大塚制药工场 含有海藻糖及葡聚糖的哺乳动物细胞移植用溶液
JPWO2014208053A1 (ja) * 2013-06-28 2017-02-23 株式会社大塚製薬工場 トレハロース及びデキストラン含有哺乳動物細胞移植用溶液
WO2014208053A1 (ja) * 2013-06-28 2014-12-31 株式会社大塚製薬工場 トレハロース及びデキストラン含有哺乳動物細胞移植用溶液
AU2014300400B2 (en) * 2013-06-28 2019-11-28 Otsuka Pharmaceutical Factory,Inc. Trehalose and dextran-containing solution for transplanting mammalian cells
JP5820958B2 (ja) * 2013-06-28 2015-11-24 株式会社大塚製薬工場 トレハロース及びデキストラン含有哺乳動物細胞移植用溶液
JP2018023401A (ja) * 2013-09-04 2018-02-15 株式会社大塚製薬工場 多能性幹細胞の調製方法
US10370639B2 (en) 2013-09-04 2019-08-06 Otsuka Pharmaceutical Factory, Inc. Method for preparing pluripotent stem cells
US9765296B2 (en) 2013-09-04 2017-09-19 Otsuka Pharmaceutical Factory, Inc. Method for preparing pluripotent stem cells
JPWO2015033558A1 (ja) * 2013-09-04 2017-03-02 株式会社大塚製薬工場 多能性幹細胞の調製方法
WO2015033558A1 (ja) * 2013-09-04 2015-03-12 株式会社大塚製薬工場 多能性幹細胞の調製方法
US11155782B2 (en) 2013-09-04 2021-10-26 Otsuka Pharmaceutical Factory, Inc. Method for preparing pluripotent stem cells
JPWO2021145364A1 (ja) * 2020-01-17 2021-07-22
WO2021145364A1 (ja) * 2020-01-17 2021-07-22 株式会社大塚製薬工場 トレハロースを含む血球系細胞保存用液
JP7079045B2 (ja) 2020-01-17 2022-06-01 株式会社大塚製薬工場 トレハロースを含む血球系細胞保存用液

Also Published As

Publication number Publication date
CA2817172A1 (en) 2012-05-18
CN103298926B (zh) 2017-11-03
EP2639296A4 (en) 2014-04-30
AU2011327239A8 (en) 2013-07-04
CA2817172C (en) 2021-05-18
ES2568731T3 (es) 2016-05-04
EP2639296A1 (en) 2013-09-18
KR101868653B1 (ko) 2018-06-18
CN103298926A (zh) 2013-09-11
SI2639296T1 (sl) 2016-09-30
JP5341059B2 (ja) 2013-11-13
US20130260461A1 (en) 2013-10-03
AU2011327239B2 (en) 2016-11-17
TWI547561B (zh) 2016-09-01
NZ610556A (en) 2015-03-27
DK2639296T3 (en) 2016-04-25
KR20130129382A (ko) 2013-11-28
SG190169A1 (en) 2013-06-28
CY1117419T1 (el) 2017-04-26
TW201226568A (en) 2012-07-01
US10087421B2 (en) 2018-10-02
JP2012115253A (ja) 2012-06-21
EP2639296B1 (en) 2016-02-03
AU2011327239A1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
JP5341059B2 (ja) 幹細胞懸濁液
JP5998265B2 (ja) トレハロース及びデキストラン含有哺乳動物細胞移植用溶液
KR20100084620A (ko) 조직 재생을 위한 세포 조성물
JP5753874B2 (ja) 細胞生存率低下抑制剤
WO2013168403A1 (ja) トレハロース含有肺塞栓形成予防用哺乳動物細胞懸濁液
TWI510626B (zh) 使用了含有海藻糖之細胞洗淨溶液的接著細胞之洗淨方法
JP6830294B1 (ja) トレハロースを含む哺乳動物細胞保存用液
JP2013252126A (ja) デキストラン含有肺塞栓形成予防用哺乳動物細胞懸濁液
WO2021193606A1 (ja) アカルボース及びデキストランを含む哺乳動物細胞保存用液
WO2022210574A1 (ja) 筋ジストロフィー治療剤
JP5276230B1 (ja) トレハロース含有細胞洗浄溶液を用いた接着細胞のインビトロ継代方法
JP2022120698A (ja) 間葉系幹細胞を含む細胞集団を含有する軟部組織再生用医薬組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839155

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2817172

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011839155

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137014704

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13883371

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011327239

Country of ref document: AU

Date of ref document: 20111109

Kind code of ref document: A