WO2012060449A1 - カチオン硬化性樹脂組成物 - Google Patents
カチオン硬化性樹脂組成物 Download PDFInfo
- Publication number
- WO2012060449A1 WO2012060449A1 PCT/JP2011/075485 JP2011075485W WO2012060449A1 WO 2012060449 A1 WO2012060449 A1 WO 2012060449A1 JP 2011075485 W JP2011075485 W JP 2011075485W WO 2012060449 A1 WO2012060449 A1 WO 2012060449A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin composition
- compound
- curing
- cationic
- tpb
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/68—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/04—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
- C08G65/06—Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
- C08G65/16—Cyclic ethers having four or more ring atoms
- C08G65/18—Oxetanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
Definitions
- the present invention relates to a cationic curable resin composition. More specifically, the present invention relates to a resin composition that contains a cation curable compound and can be cured by a cation curing reaction with a cation curing catalyst that generates cationic species by heat, light, or the like.
- the cationic curable resin composition is a resin composition that contains a cationic curable compound and a cationic curing catalyst, generates cationic species from the catalyst by heat or light, and can be cured by a cationic curing reaction.
- Cationic curing (polymerization) has advantages in that curing inhibition by oxygen does not occur and shrinkage during curing is small compared to radical polymerization, and application to various fields is expected. Specifically, for example, various applications such as electrical / electronic members, optical members, molding materials, paints, adhesive materials, etc. have been studied, and the properties required for each application are excellent. Development of a cationic curable resin composition is desired.
- a cation curable resin composition for example, a cation curable compound having a boiling point of 260 ° C. or less under 1 atm for the purpose of obtaining a molded article excellent in heat resistance, transparency, releasability and the like.
- a curable resin composition for an optical molded article containing a compound having a release agent, a release agent, and a cationic curing catalyst has been studied (for example, see Patent Document 1).
- Patent Document 1 discloses using an antimony sulfonium salt or the like as a cationic curing catalyst.
- a boron-containing compound for curing the resin composition.
- a photocurable resin composition containing a photocationic polymerizable compound and a photocationic polymerization initiator by using tetrakis (pentafluorophenyl) borate (TEPB) as the photocationic polymerization initiator, moisture permeability is low. And the effect that the cured
- curing agent for epoxy resins is also disclosed (for example, refer patent document 3).
- a curable resin composition containing a boron-containing compound is a curable resin composition containing a curable resin and a curing catalyst comprising a Lewis acid containing a trivalent boron and a nitrogen-containing molecule.
- Patent Document 4 describes that such a curable resin composition is cured using an acid anhydride.
- a curable epoxy resin composition for encapsulating a solid element device containing an acid anhydride curing agent and a boron-containing catalyst such as triphenylborane is also disclosed (for example, see Patent Document 5).
- Patent Document 1 discloses a resin composition using an antimony sulfonium salt as a cationic curing catalyst.
- an antimony sulfonium salt By using an antimony sulfonium salt, certain results have been achieved, such as application to a reflow method.
- an antimony-based sulfonium salt is used, the molded product is colored by heat (heat at the time of curing, use environment), and as a result, there is a problem in that the transmittance at 400 nm, which is short-wavelength visible light, decreases.
- the heat resistance of the molded body is not yet sufficient.
- a molded body cured with an antimony sulfonium salt tends to have a relatively high water absorption rate, and when used as an optical material, there is room for further study of lower water absorption.
- the heat resistance of the molded body is not so high as to be applicable to the reflow process.
- the conventional technique has room for further study on a resin composition that gives a molded article having excellent characteristics such as heat resistance, heat and humidity resistance, low water absorption, and UV irradiation resistance.
- the present invention has been made in view of the above situation, a cationic curable resin composition capable of obtaining a molded article excellent in heat resistance, heat and moisture resistance, low water absorption, UV irradiation resistance, and the like, and
- An object of the present invention is to provide a molded article useful for various uses such as an optical member.
- the present inventors have made various studies on a cationic curable resin composition containing a cation curable compound and a cation curing catalyst as essential components.
- the cation curing catalyst comprises a specific Lewis acid having a boron atom and a Lewis base. It has been found that when a compound is used, a molded product obtained by curing the resin composition is excellent in heat resistance, moist heat resistance, low water absorption, UV irradiation resistance and the like.
- the use of the cation curing catalyst in the present invention can suppress the coloration of the resulting molded product by heat and ultraviolet rays and the decrease in transmittance in the visible light short wavelength region, as compared with conventional antimony cation curing catalysts.
- a molded object was very useful for optical uses, such as a lens, and it came to the idea that the said subject can be solved brilliantly and reached
- this invention is a cation curable resin composition which has a cation curable compound and a cation curing catalyst as an essential component, Comprising:
- This invention is also a molded object obtained by hardening
- the present invention is described in detail below. A combination of two or more preferred embodiments of the present invention described below is also a preferred embodiment of the present invention.
- the cation curable resin composition (also referred to as a resin composition) of the present invention comprises a cation curable compound and a cation curing catalyst as essential components, but other components are included within the range not impeding the effects of the present invention. You may contain and these components can use 1 type (s) or 2 or more types.
- the cation curing catalyst comprises a Lewis acid (organic borane) represented by the general formula (1) and a Lewis base.
- a Lewis acid organic borane
- a Lewis base a Lewis base
- cationic curing can be employed as a curing method. Therefore, compared to the case where addition-type curing such as acid anhydride curing is employed, the resulting cured product has heat resistance, chemical stability, and moisture resistance. The properties required for optical use, such as the property, are excellent.
- a conventional cationic curing catalyst such as antimony-based sulfonium salt, coloring due to heat (heat at the time of curing, usage environment) is reduced, moisture absorption is low, heat and moisture resistance and UV irradiation resistance
- a cured product having excellent durability such as the above can be obtained.
- the cationic curing catalyst is a catalyst that accelerates the cationic curing reaction, and functions differently from, for example, a curing accelerator in an acid anhydride curing reaction.
- R in the said General formula (1) is the same or different, and represents the hydrocarbon group which may have a substituent.
- the hydrocarbon group is not particularly limited, but is preferably a hydrocarbon group having 1 to 20 carbon atoms.
- the hydrocarbon group having 1 to 20 carbon atoms is not limited as long as it has 1 to 20 carbon atoms as a whole, but is preferably an alkyl group, an aryl group, or an alkenyl group.
- the alkyl group, aryl group, and alkenyl group may be an unsubstituted group or a group in which one or more hydrogen atoms are substituted with another organic group or a halogen atom.
- organic groups in this case include an alkyl group (when the hydrocarbon group represented by R is an alkyl group, the substituted hydrocarbon group corresponds to an unsubstituted alkyl group as a whole), An aryl group, an alkenyl group, an alkoxy group, a hydroxyl group, etc. are mentioned.
- x is an integer of 1 to 5, and is the same or different and represents the number of fluorine atoms bonded to the aromatic ring.
- the bonding position of the fluorine atom in the aromatic ring is not particularly limited.
- x is preferably 2 to 5, more preferably 3 to 5, and most preferably 5.
- a is an integer of 1 or more
- b is an integer of 0 or more
- a + b 3 is satisfied. That is, the Lewis acid is one in which at least one aromatic ring to which a fluorine atom is bonded is bonded to a boron atom.
- a is more preferably 2 or more, and most preferably 3, that is, a form in which three aromatic rings to which fluorine atoms are bonded are bonded to boron atoms.
- the Lewis acid examples include tris (pentafluorophenyl) borane (TPB), bis (pentafluorophenyl) phenylborane, pentafluorophenyl-diphenylborane, and tris (4-fluorophenyl) borane.
- TPB is more preferable because it can improve the heat resistance, moisture heat resistance, low water absorption, UV irradiation resistance and the like of the molded body.
- an Example, etc. what contains TPB as a Lewis acid among the cationic curing catalysts concerning this invention may be described as a TPB type catalyst.
- the Lewis base is not limited as long as it can be coordinated to the Lewis acid, that is, can form a coordinate bond with the boron atom of the Lewis acid, and those commonly used as Lewis bases are used.
- compounds having atoms with lone pairs are preferred.
- a compound having a nitrogen atom, a phosphorus atom or a sulfur atom is preferred.
- the Lewis base forms a coordinate bond by donating a non-shared electron pair possessed by a nitrogen atom, a phosphorus atom, or a sulfur atom to the boron atom of the Lewis acid.
- the compound which has a nitrogen atom or a phosphorus atom is more preferable.
- Preferred examples of the compound having a nitrogen atom include amines (monoamines and polyamines) and ammonia. More preferred are amines having a hindered amine structure, amines having a low boiling point, and ammonia, and still more preferred are polyamines having a hindered amine structure and ammonia.
- amines monoamines and polyamines
- ammonia More preferred are amines having a hindered amine structure, amines having a low boiling point, and ammonia, and still more preferred are polyamines having a hindered amine structure and ammonia.
- the resulting cured product is excellent in low water absorption and UV irradiation resistance.
- the ammonia or low boiling point amine volatilizes in the curing process, so that the salt structure derived from ammonia or the low boiling point amine in the final molded product (cured product) is reduced, so the water absorption rate of the molded product is reduced. It is speculated that it can. In particular, ammonia is preferable because of its excellent effects.
- a nitrogen atom forming a coordinate bond with a boron atom constitutes a secondary or tertiary amine from the viewpoint of storage stability of the resin composition and curability at the time of molding. It is preferable that it is polyamine more than diamine.
- Specific examples of the amine having a hindered amine structure include 2,2,6,6-tetramethylpiperidine, N-methyl-2,2,6,6-tetramethylpiperidine; TINUVIN770, TINUVIN765, TINUVIN144, TINUVIN123, TINUVIN744.
- CHIMASSORB2020FDL (above, manufactured by BASF); Adeka Stub LA52, Adekastab LA57 (above, made by ADEKA) and the like.
- Adeka Stub LA52 Adekastab LA57 (above, made by ADEKA) and the like.
- TINUVIN770 TINUVIN770
- Adeka Stab LA52 Adeka Stub LA57 having two or more hindered amine structures per molecule are preferable.
- primary amines such as monomethylamine, monoethylamine, monopropylamine, monobutylamine, monopentylamine, ethylenediamine
- secondary amines such as dimethylamine, diethylamine, dipropylamine, methylethylamine, piperidine
- tertiary amines such as trimethylamine and triethylamine.
- the compound having a phosphorus atom is preferably a phosphine.
- phosphine include triphenylphosphine, trimethylphosphine, tritoluylphosphine, methyldiphenylphosphine, 1,2-bis (diphenylphosphino) ethane, diphenylphosphine, and the like.
- Preferred examples of the compound having a sulfur atom include thiols and sulfides.
- thiols include methyl thiol, ethyl thiol, propyl thiol, hexyl thiol, decane thiol, and phenyl thiol.
- sulfides include diphenyl sulfide, dimethyl sulfide, diethyl sulfide, methylphenyl sulfide, methoxymethylphenyl sulfide and the like.
- the mixing ratio of the Lewis acid and the Lewis base is not necessarily a stoichiometric ratio. That is, any one of Lewis acid and Lewis base (converted to the base point amount) may be contained in excess of the theoretical amount (equivalent). That is, the mixing ratio of Lewis acid and Lewis base in the cation curing catalyst is the ratio of the number of atoms n (b) of the Lewis base point to the number of boron atoms n (a) of the Lewis acid point (n ( b) / n (a)), even if it is not 1 (stoichiometric ratio), it acts as a cationic curing catalyst.
- the ratio n (b) / n (a) in the cationic curing catalyst affects the storage stability and cationic curing characteristics (curing speed, degree of curing of the cured product, etc.) of the resin composition.
- the ratio n is determined when the mixing molar ratio of the Lewis base to the Lewis acid constituting the cationic curing catalyst is 0.5.
- (B) / n (a) 1 (stoichiometric ratio). In this way, the ratio n (b) / n (a) is calculated.
- the ratio n (b) / n (a) is preferably 0.5 or more.
- the ratio is more preferably 0.8 or more, still more preferably 0.9 or more, still more preferably 0.95 or more, and particularly preferably 0.99 or more.
- the Lewis base is excessively large, the low-temperature curability of the cured product may be lowered.
- n (b) / n (A) is preferably 100 or less.
- the ratio n (b) / n (a) is more preferably 20 or less, still more preferably 10 or less, and particularly preferably 5 or less.
- a Lewis base is composed of a compound having a nitrogen atom, a sulfur atom or a phosphorus atom, and is a structure having two or more carbon substitutions (a structure having two or more carbon substitutions is a carbon atom in these atoms.
- the ratio n (b) / n (a) is preferably 2 or less because the acid dissociation constant is high and the steric hindrance is large. , 1.5 or less is more preferable, and 1.2 or less is still more preferable. For example, in a structure such as a hindered amine, the above range is preferable.
- the ratio n (b) / n (a) is preferably larger than 1 particularly when ammonia is used. Specifically, it is preferably 1.001 or more, more preferably 1.01 or more, still more preferably 1.1 or more, and particularly preferably 1.5 or more.
- the presence form of the Lewis acid and the Lewis base constituting the cation curing catalyst is not particularly limited, but it is preferable that the Lewis base exists in an electronic interaction with the Lewis acid. More preferably, at least a part of the Lewis base is coordinated to the Lewis acid, and more preferably at least a Lewis base equivalent to an equivalent amount to the Lewis acid present is coordinated to the Lewis acid. It is a form.
- the abundance ratio of Lewis base to Lewis acid is equivalent or less than equivalent, that is, when the ratio n (b) / n (a) is 1 or less, almost all of the Lewis base present is coordinated to the Lewis acid.
- the form formed is preferable.
- the Lewis base is coordinated with the Lewis acid in an equivalent amount, and the excess Lewis base is present in the vicinity of the complex.
- cationic curing catalyst in the present invention examples include TPB / monoalkylamine complexes, TPB / dialkylamine complexes, TPB alkylamine complexes such as TPB / trialkylamine complexes, and organic borane / amine complexes such as TPB / hindered amine complexes.
- Organic borane / ammonia complex such as TPB / NH 3 complex; organic borane / phosphine complex such as TPB / triarylphosphine complex, TPB / diarylphosphine complex, TPB / monoarylphosphine complex; organic borane such as TPB / alkylthiol complex / Orthiol complex; Organic borane / sulfide complex such as TPB / diaryl sulfide complex and TPB / dialkyl sulfide complex.
- TPB / alkylamine complexes, TPB / hindered amine complexes, TPB / NH 3 complexes, and TPB / phosphine complexes are preferred.
- the content of the cation curing catalyst is an amount of an active ingredient that does not include a solvent or the like (total amount of Lewis acid and Lewis base represented by the general formula (1)).
- the amount is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the compound. If it is less than 0.01 parts by mass, the curing rate may not be sufficiently increased. More preferably, it is 0.05 mass part or more, More preferably, it is 0.1 mass part or more. On the other hand, if the amount exceeds 10 parts by mass, there is a risk of coloring during curing or heating of the molded body. For example, when the molded product is obtained by reflow mounting after obtaining the molded product, heat resistance of 200 ° C. or higher is necessary. Therefore, from the viewpoint of colorlessness and transparency, the content is preferably 10 parts by mass or less. . More preferably, it is 5 mass parts or less, More preferably, it is 3 mass parts or less, Most preferably, it is 2 mass parts or less.
- the cationic curable compound (also referred to as “cationic curable resin”) may be a compound that can be cured (polymerized) by a cationic curing reaction, and may be a compound having a cationic polymerizable group.
- the cationic polymerizable group may be a cationically curable functional group, and examples thereof include an epoxy group, an oxetane group (oxetane ring), a dioxolane group, a trioxane group, a vinyl group, a vinyl ether group, and a styryl group.
- an epoxy group and an oxetane group are preferable.
- the cationic curable compound includes an epoxy compound and / or an oxetane compound (also referred to as “oxetane group-containing compound”) is one of the preferred embodiments of the present invention.
- the curing characteristics of the cationically polymerizable group are affected not only by the type of group but also by the organic skeleton to which the group is bonded.
- the “epoxy group” in the present specification includes an oxirane ring which is a three-membered ether, and in addition to a strict epoxy group, a group in which the oxirane ring is bonded to carbon, such as a glycidyl group.
- a group containing an ether or ester bond such as a glycidyl ether group and a glycidyl ester group, an epoxycyclohexane ring, and the like.
- an epoxy compound and an oxetane compound are demonstrated concretely.
- an alicyclic epoxy compound, a hydrogenated epoxy compound, an aromatic epoxy compound, and an aliphatic epoxy compound are suitable, and an alicyclic epoxy compound and a hydrogenated epoxy compound are more suitable.
- the cationic curable compound includes at least one selected from the group consisting of an alicyclic epoxy compound, a hydrogenated epoxy compound, and an oxetane compound is also a preferred form of the present invention. .
- the alicyclic epoxy compound is a compound having an alicyclic epoxy group.
- the alicyclic epoxy group include an epoxycyclohexane group (epoxycyclohexane skeleton), an epoxy group added to a cyclic aliphatic hydrocarbon directly or via a hydrocarbon (particularly an oxirane ring), and the like.
- the alicyclic epoxy compound is preferably a compound having an epoxycyclohexane group.
- numerator is suitable at the point which can raise a hardening rate more.
- a compound having one alicyclic epoxy group in the molecule and an unsaturated double bond group such as a vinyl group is also preferably used as the alicyclic epoxy compound.
- Examples of the epoxy compound having an epoxycyclohexane group include 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, epsilon-caprolactone modified 3,4-epoxycyclohexylmethyl-3 ′, 4 ′. -Epoxycyclohexanecarboxylate, bis- (3,4-epoxycyclohexyl) adipate and the like are preferred.
- Examples of the alicyclic epoxy compound other than the epoxy compound having an epoxycyclohexane group include 1,2-epoxy-4- (2-oxiranyl) cyclohexane of 2,2-bis (hydroxymethyl) -1-butanol. Examples include adducts and alicyclic epoxides such as epoxy resins containing heterocycles such as triglycidyl isocyanurate.
- the hydrogenated epoxy compound is preferably a compound having a glycidyl ether group bonded directly or indirectly to a saturated aliphatic cyclic hydrocarbon skeleton, and a polyfunctional glycidyl ether compound is preferred.
- a hydrogenated epoxy compound is preferably a complete or partial hydrogenated product of an aromatic epoxy compound, more preferably a hydrogenated product of an aromatic glycidyl ether compound, and still more preferably an aromatic polyfunctional compound. It is a hydrogenated product of a glycidyl ether compound.
- hydrogenated bisphenol A type epoxy compounds, hydrogenated bisphenol S type epoxy compounds, hydrogenated bisphenol F type epoxy compounds, and the like are preferable. More preferred are hydrogenated bisphenol A type epoxy compounds and hydrogenated bisphenol F type epoxy compounds.
- the aromatic epoxy compound is a compound having an aromatic ring and an epoxy group in the molecule.
- Preferred examples of the aromatic epoxy compound include epoxy compounds having an aromatic ring conjugated system such as a bisphenol skeleton, a fluorene skeleton, a biphenyl skeleton, a naphthalene ring, and an anthracene ring.
- a compound having a bisphenol skeleton and / or a fluorene skeleton is preferable. More preferably, it is a compound having a fluorene skeleton, whereby the refractive index can be remarkably increased and the releasability can be further enhanced.
- the compound whose epoxy group is a glycidyl group in an aromatic epoxy compound is preferable, but the compound (aromatic glycidyl ether compound) which is a glycidyl ether group is more preferable.
- the Abbe number slightly increases, it is preferably used as appropriate depending on the application.
- aromatic epoxy compound examples include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, fluorene type epoxy compounds, and aromatic epoxy compounds having a bromo substituent. Of these, bisphenol A type epoxy compounds and fluorene type epoxy compounds are preferred.
- aromatic glycidyl ether compound examples include an epibis type glycidyl ether type epoxy resin, a high molecular weight epibis type glycidyl ether type epoxy resin, a novolak / aralkyl type glycidyl ether type epoxy resin, and the like.
- Preferred examples of the epibis type glycidyl ether type epoxy resin include those obtained by a condensation reaction of bisphenols such as bisphenol A, bisphenol F, bisphenol S, and fluorene bisphenol with epihalohydrin.
- the high molecular weight epibis type glycidyl ether type epoxy resin for example, the above epibis type glycidyl ether type epoxy resin is further subjected to addition reaction with bisphenols such as bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol and the like. Those obtained by (1) are preferably mentioned.
- aromatic glycidyl ether compound examples include bisphenol A type compounds such as 828EL, 1003, and 1007 (manufactured by Japan Epoxy Resin Co., Ltd.); Oncoat EX-1020, Oncoat EX-1010, Oxol EG-210, Fluorene compounds such as Ogsol PG (manufactured by Osaka Gas Chemical Co., Ltd.) and the like can be mentioned. Of these, Ogsol EG-210 is preferred.
- the said aliphatic epoxy compound is a compound which has an aliphatic epoxy group.
- Aliphatic glycidyl ether type epoxy resins are preferred.
- Examples of the aliphatic glycidyl ether type epoxy resin include polyhydroxy compounds (ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol (PEG 600), propylene glycol, dipropylene glycol, tripropylene glycol, and tetrapropylene glycol.
- PPG Polypropylene glycol
- glycerol diglycerol, tetraglycerol, polyglycerol, trimethylolpropane and multimers thereof, pentaerythritol and multimers thereof, mono / polysaccharides such as glucose, fructose, lactose and maltose) and epihalohydrins
- mono / polysaccharides such as glucose, fructose, lactose and maltose
- epihalohydrins Those obtained by a condensation reaction with are preferably mentioned.
- aliphatic glycidyl ether type epoxy resins having a propylene glycol skeleton, an alkylene skeleton, and an oxyalkylene skeleton as the central skeleton are more preferable.
- the oxetane compound is a compound having an oxetane group (oxetane ring).
- the oxetane compound is preferably used in combination with an alicyclic epoxy compound and / or a hydrogenated epoxy compound from the viewpoint of curing speed.
- a polyfunctional oxetane compound that is, a compound having two or more oxetane rings in one molecule.
- examples of the monofunctional oxetane compound include 3-methyl-3-hydroxymethyl oxetane, 3-ethyl-3-hydroxymethyl oxetane, and 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, isobutoxymethyl (3-ethyl-3-oxetanylmethyl) ether, isobornyloxyethyl (3-ethyl-3-oxetanylmethyl) ether, isobornyl (3-ethyl-3- Oxetanylmethyl) ether, 2-ethylhexyl (3-ethyl-3-oxetanylmethyl) ether, ethyldiethylene glycol (3-ethyl-3-oxetanylmethyl) ether and the like are preferable.
- examples of the polyfunctional oxetane compound include di [1-ethyl (3-oxetanyl)] methyl ether and 3,7-bis (3-oxetanyl) -5.
- oxetane compound examples include, for example, ETERNACOLL (R) EHO, ETERRNACOLL (R) OXBP, ETERRNACOLL (R) OXMA, ETERNACOLL (R) HBOX, and ETERRNACOLL (R) OXIPA (manufactured by Ube Industries, Ltd.) OXT-101, OXT-121, OXT-211, OXT-221, OXT-212, OXT-610 (above, manufactured by Toagosei Co., Ltd.) and the like are preferable.
- alicyclic epoxy compounds and hydrogenated epoxy compounds are particularly suitable. These are less likely to cause coloration of the epoxy compound itself during curing, and are less likely to be colored or deteriorated by light, that is, excellent in transparency, low colorability, and light resistance. Therefore, if it is set as the resin composition containing these, the optical member which is excellent in light resistance without coloring can be obtained with high productivity.
- the form in which the said cationic curable compound contains at least 1 sort (s) selected from the group which consists of an alicyclic epoxy compound and a hydrogenated epoxy compound is also one of the suitable forms of this invention.
- the cationic curable compound includes at least one selected from the group consisting of an alicyclic epoxy compound and a hydrogenated epoxy compound
- the content of the alicyclic epoxy compound and the hydrogenated epoxy compound is the sum of these.
- the amount is preferably 50% by mass or more based on 100% by mass of the total amount of the cationic curable compound.
- the cation curable resin composition of this invention even when the aromatic epoxy compound which was hard to be hardened
- the form which makes an aromatic epoxy compound 100 mass% as a cationic curable compound, and the form which uses an aromatic epoxy compound and another cationic curable compound together are preferable forms.
- a form including an aromatic epoxy compound and at least one selected from the group consisting of an alicyclic epoxy compound and a hydrogenated epoxy compound as another cationic curable compound is a more preferable form.
- a resin composition using an aromatic epoxy compound as a cationic curable compound is suitable for applications such as a lens that requires a refractive index (high refractive index).
- the cationic curable compound is also preferably a compound having two or more cationic polymerizable groups in one molecule, that is, a polyfunctional cationic curable compound.
- a polyfunctional cationic curable compound a compound having two or more cationic polymerizable groups in one molecule.
- the compound having two or more cationic polymerizable groups in one molecule may be a compound having two or more identical cationic polymerizable groups, or a compound having two or more different cationic polymerizable groups.
- the polyfunctional cation curable compound is particularly preferably a polyfunctional alicyclic epoxy compound or a polyfunctional hydrogenated epoxy compound. By using these, a cured product can be obtained in a shorter time.
- the resin composition also preferably includes a flexible component (flexible component).
- a flexible component flexible component
- the flexible component may be a compound different from the cationic curable compound, or at least one of the cationic curable compounds may be a flexible component.
- the flexible component is a compound having an oxyalkylene skeleton represented by (1)-[— (CH 2 ) n —O—] m — (n is an integer of 2 or more, and m is an integer of 1 or more.
- n is 2 to 12
- m is an integer of 1 to 1000, more preferably n is 3 to 6, and
- m is an integer of 1 to 20.
- An epoxy compound containing an oxybutylene group manufactured by Japan Epoxy Resin, YL-7217, epoxy equivalent 437, liquid epoxy compound (10 ° C. or higher) is preferred.
- suitable flexible components include (2) polymer epoxy compounds (for example, hydrogenated bisphenol (manufactured by Japan Epoxy Resin, YX-8040, epoxy equivalent 1000, solid hydrogenated epoxy compound)); 3) Alicyclic solid epoxy compound (EHPE-3150 manufactured by Daicel Chemical Industries, Ltd.); (4) Alicyclic liquid epoxy compound (Delcel Chemical Industries, Celoxide 2081); (5) Liquid rubber such as liquid nitrile rubber, Polymer rubber such as polybutadiene, fine particle rubber having a particle size of 100 nm or less, and the like are preferable.
- polymer epoxy compounds for example, hydrogenated bisphenol (manufactured by Japan Epoxy Resin, YX-8040, epoxy equivalent 1000, solid hydrogenated epoxy compound)
- Alicyclic solid epoxy compound EHPE-3150 manufactured by Daicel Chemical Industries, Ltd.
- Alicyclic liquid epoxy compound (Delcel Chemical Industries, Celoxide 2081)
- Liquid rubber such as liquid nitrile rubber, Polymer rubber such as polybutad
- a cationic curable compound containing a cationic polymerizable group at the terminal, side chain, main chain skeleton, or the like is more preferable.
- a cationically curable compound can be suitably used as the flexible component.
- the compound is preferably a compound containing an epoxy group, and more preferably an oxybutylene group (-[ -(CH 2 ) 4 -O-] m- (m is the same as above)).
- the content thereof is preferably 40% by mass or less with respect to 100% by mass of the total amount of the cationic curable compound and the flexible component. More preferably, it is 30 mass% or less, More preferably, it is 20 mass% or less. Moreover, 0.01 mass% or more is preferable, More preferably, it is 0.1 mass% or more, More preferably, it is 0.5 mass% or more.
- the resin composition of the present invention is suitable for a mold molding material. Therefore, in the resin composition of the present invention, it is possible to release from the mold without using a release agent used in the prior art. Therefore, a cured product having excellent mold releasability from the mold can be obtained by suppressing the influence on the performance of the mold release agent without causing a decrease in transparency due to the inclusion of the mold release agent.
- a release agent may be included.
- a compound having a group that promotes rather than inhibiting the curing reaction by the cationic curing catalyst is preferable.
- a compound having an alcoholic OH group and / or a carbonyl group is preferable as the mold release agent, and the compatibility with the cationic curable resin composition and the mold release effect are high. From the viewpoint, those having a hydrocarbon group having 8 or more carbon atoms are preferred.
- It is at least one compound selected from the group consisting of salts.
- alcohols, carboxylic acids, and carboxylic acid esters are more preferable, and carboxylic acids (particularly higher fatty acids) and carboxylic acid esters are more preferable.
- Carboxylic acids and carboxylic acid esters are preferred because they can sufficiently exhibit the release effect without inhibiting the cationic curing reaction.
- amines may inhibit a cation hardening reaction, it is preferable not to use as a mold release agent.
- the above-mentioned compound may have any structure such as linear, branched or cyclic, and is preferably branched.
- the number of carbon atoms of the above compound is preferably an integer of 8 to 36. By this, a cured product exhibiting excellent peelability without impairing functions such as transparency and workability of the resin composition. It becomes.
- the carbon number is more preferably 8-20, and still more preferably 10-18.
- the alcohol having 8 to 36 carbon atoms is a monohydric or polyhydric alcohol and may be linear or branched.
- Specific examples of the alcohol include octyl alcohol, nonyl alcohol, decyl alcohol, undecyl alcohol, lauryl alcohol, tridecyl alcohol, tetradecyl alcohol, pentadecyl alcohol, palmityl alcohol, margaryl alcohol, stearyl alcohol, nona Decyl alcohol, eicosyl alcohol, seryl alcohol, myricyl alcohol, methylpentyl alcohol, 2-ethylbutyl alcohol, 2-ethylhexyl alcohol, 3,5-dimethyl-1-hexanol, 2,2,4-trimethyl-1-pen
- Preferable examples include tanol, dipentaerythritol, 2-phenylethanol and the like.
- the alcohol is preferably an aliphatic alcohol, and more preferably octyl alcohol (octanol), lauryl alcohol, 2-ethylhexyl alcohol (2-ethylhexanol), and stearyl alcohol.
- octanol octanol
- lauryl alcohol 2-ethylhexyl alcohol (2-ethylhexanol)
- 2-ethylhexyl alcohol 2-ethylhexanol
- stearyl alcohol stearyl alcohol
- the carboxylic acid having 8 to 36 carbon atoms is a monovalent or polyvalent carboxylic acid, such as 2-ethylhexanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, lauric acid, tridecanoic acid, tetradecanoic acid.
- Preferable examples include pentadecanoic acid, palmitic acid, 1-heptadecanoic acid, stearic acid, nonadecanoic acid, eicosanoic acid, 1-hexacosanoic acid and behenic acid.
- Preferred are octanoic acid, lauric acid, 2-ethylhexanoic acid and stearic acid.
- Examples of the carboxylic acid ester having 8 to 36 carbon atoms include (1) carboxylic acid ester obtained from the above alcohol and the above carboxylic acid, (2) methanol, ethanol, propanol, hexanol, heptanol, glycerin, benzyl alcohol, and the like.
- the carboxylic acid esters of (2) and (3) are preferable, and stearic acid methyl ester, stearic acid ethyl ester, acetic acid octyl ester, and the like are more preferable.
- the carboxylic acid anhydride having 8 to 36 carbon atoms is a carboxylic acid anhydride having 8 to 36 carbon atoms.
- Examples of the carboxylate having 8 to 36 carbon atoms include carboxylic acid obtained by combining the above carboxylic acid with amine, Na, K, Mg, Ca, Mn, Fe, Co, Ni, Cu, Zn, and Sn. Suitable examples include salts. Among these, Zn stearate, Mg stearate, Zn 2-ethylhexanoate and the like are preferable.
- stearic acid compounds such as stearic acid and stearic acid esters, and alcohol compounds are more preferable, and stearic acid compounds are more preferable.
- the content is preferably 10% by mass or less with respect to 100% by mass of the resin composition. If it exceeds 10% by mass, the resin composition may be hard to be cured. More preferably, the content is 0.01 to 5% by mass, and still more preferably 0.1 to 2% by mass.
- the form which contains an inorganic material in a resin composition is also preferable.
- the resin composition contains an inorganic material, the lens obtained by curing has a high strength, excellent moldability, and has a controlled Abbe number and refractive index (particularly, a silicon compound has a high Abbe number). Number).
- the inorganic material include inorganic fine particles such as metal oxide particles and inorganic polymers such as polysiloxane compounds.
- the inorganic fine particles are not particularly limited as long as they are fine particles composed of an inorganic compound such as a metal or a metal compound.
- Inorganic components in the inorganic fine particles include metal oxides, hydroxides, (acid) nitrides, (acid) sulfides, carbides, halides, sulfates, nitrates, (basic) carbonates, (basic) Examples include acetate.
- a metal oxide (metal oxide) is preferable, and silica, titanium oxide, zirconium oxide, and zinc oxide are more preferable.
- the refractive index and Abbe number of the curable compound to be used in order to obtain a molded article (cured product) having a high refractive index or a low Abbe number, usually titanium oxide, zirconium oxide or zinc oxide is preferably used. .
- silica is preferably used in order to obtain a molded article (cured product) having a low refractive index or a high Abbe number.
- the inorganic fine particles include particles that have been surface-treated for the purpose of improving the affinity of the fine particles with the resin and improving the dispersibility.
- the surface treatment agent is not particularly limited, and various organic compounds, inorganic compounds, organometallic compounds, and the like are used for the purpose of introducing organic chains and polymer chains on the fine particle surfaces or controlling surface charge.
- surface treatment agents include coupling agents such as silane coupling agents, titanate coupling agents, aluminate coupling agents, and zirconium coupling agents; metal alkoxides and (partial) hydrolysis / condensation thereof.
- organometallic compounds such as metal soaps.
- the inorganic polymer include polysiloxane compounds, and specific examples include polymethylsilsesquioxane and polyphenylsilsesquioxane.
- the cationic curable compound preferably has a hydrogenated epoxy compound and / or an alicyclic epoxy compound. Thereby, it can be set as the epoxy type cationic curable compound which has a high Abbe number.
- the said resin composition can reduce a thermal expansion coefficient by containing an inorganic material.
- by adjusting the refractive index of the inorganic material and the resin it is possible to control the appearance of the resin composition and its molded body (for example, a lens, etc.) and to exhibit transparency. It can be particularly useful as a material. Furthermore, a mold release effect can be exhibited more by including inorganic fine particles.
- the resin component when a thermosetting resin (particularly an epoxy compound) is included as a resin component, the resin component has an adhesive effect, and such a resin composition adheres to a mold when cured. There is a risk. However, by adding an appropriate amount of inorganic fine particles, a mold release effect is observed, and the molded body (cured product) is easily peeled off from the mold.
- the inorganic material is included, the content thereof is preferably 0.01 to 95% by mass, more preferably 0.1 to 80% by mass with respect to 100% by mass of the resin composition. More preferably, it is 0.2 to 60% by mass, particularly preferably 0.3 to 20% by mass, and most preferably 0.5 to 15% by mass.
- the cationic curable resin composition of the present invention contains a dye, particularly a dye having an absorption maximum in a wavelength range of 600 nm to 2000 nm (also referred to as a near infrared absorbing dye in the present invention).
- a dye particularly a dye having an absorption maximum in a wavelength range of 600 nm to 2000 nm (also referred to as a near infrared absorbing dye in the present invention).
- This form is also preferred.
- the dye is not limited to the near infrared absorbing dye. What is necessary is just to select suitably the pigment
- the dye is preferably dispersed or dissolved in the cationic curable resin composition. More preferably, the dye is dissolved and contained in the cationic curable resin composition. That is, it is preferable that the pigment is dissolved in a resin component or a solvent constituting the cationic curable resin composition.
- the dye one kind or two or more kinds can be used.
- the near-infrared absorbing dye used for the purpose of preventing malfunction of the sensor in the imaging lens module a dye having an absorption maximum in a wavelength region of 600 to 800 nm is preferable. More preferably, it has an absorption maximum in the wavelength region of 650 to 750 nm. It is also preferable that the dye has substantially no absorption maximum in a wavelength region of 400 nm or more and less than 600 nm.
- a dye having a ⁇ electron bond in the molecule is preferable.
- Such a dye having a ⁇ electron bond in the molecule is preferably a compound containing an aromatic ring. More preferably, it is a compound containing two or more aromatic rings in one molecule.
- numerator is what has an absorption maximum in the suitable wavelength range mentioned above.
- the dye having a ⁇ -electron bond in the molecule examples include, for example, phthalocyanine dyes, porphyrin dyes, cyanine dyes, quaterylene dyes, squarylium dyes, naphthalocyanine dyes, nickel complex dyes, copper ion dyes, and the like. These can be used, and one or more of these can be used.
- a dye having neither a zwitterionic structure nor a cationic structure is preferable from the viewpoint of heat resistance and weather resistance, and a phthalocyanine dye and / or a porphyrin dye is preferable. More preferred are metal phthalocyanine complexes and / or metal porphyrin complexes.
- a metal phthalocyanine complex is suitable, for example, a metal whose central metal is a metal element such as copper, zinc, cobalt, vanadium, iron, nickel, tin, silver, magnesium, sodium, lithium, and lead.
- a phthalocyanine complex is mentioned.
- these metal elements those having one or more of copper, vanadium, and zinc as a central metal are preferable because they are more excellent in solubility, visible light transmittance, and light resistance.
- the center metal is more preferably copper and zinc, and even more preferably copper. The phthalocyanine using copper is not deteriorated by light even when dispersed in any binder resin, and has very excellent light resistance.
- porphyrin-based dye metal porphyrin complexes such as tetraazaporphyrin are suitable.
- the content thereof is preferably 0.0001 to 10% by mass, more preferably 0.001 to 1% by mass with respect to 100% by mass of the resin composition.
- an infrared cut filter (also referred to as a reflective IRCF) having a transparent resin sheet as a base material and provided with an infrared reflection film on one or both sides in order to remove (near) infrared rays in incident light that becomes noise.
- a lens provided on the incident light side or the outgoing light side of the lens is known.
- the reflection-type IRCF needs to be improved because the spectral transmittance curve varies depending on the incident angle (depends on the incident angle).
- the present applicant can suppress the incident angle dependency by using a resin sheet having a dye-containing layer obtained from a composition containing a near-infrared absorbing dye in a resin composition as a base material.
- the resin composition is used as the cation curable resin composition of the present invention, that is, a resin sheet having a dye-containing layer obtained from a composition containing a near-infrared absorbing dye in a cation curable resin composition. It was confirmed that a reflective IRCF excellent in heat resistance and the like can be obtained while the incident angle dependency is suppressed by using as a base material.
- the cation curable resin composition of the present invention has excellent heat resistance and light resistance required for IRCF for imaging lenses, and therefore contains a dye obtained from the composition containing a near infrared absorbing dye.
- a resin sheet (molded body) having a layer is useful as a base material for a reflection type IRCF in which the dependency on the incident angle is suppressed.
- the incident angle dependency is suppressed even if the imaging lens module including the lens is equipped with a reflective IRCF. Therefore, it is preferable.
- a base material (resin sheet) for IRCF used for an imaging lens module a cationic curable resin composition containing a near-infrared absorbing dye for lenses, and a molded body (for example, resin) obtained from the composition
- a base material for IRCF used for an imaging lens module
- a cationic curable resin composition containing a near-infrared absorbing dye for lenses a molded body obtained from the composition
- the cationic curable resin composition containing a near-infrared absorbing dye is not limited to application to the IRCF substrate (resin sheet) and lens, but includes various members constituting the imaging lens module, such as a sealant and an adhesive. It can also be suitably used for other members such as agents and microlenses on the top of the sensor. Furthermore, it is preferably used in various applications such as LED sealing resin and LED lens resin other than the imaging lens module.
- the resin composition is a curing catalyst / curing agent other than the cationic curing catalyst, a curing accelerator, a reactive diluent, as long as the effects of the present invention are not impaired.
- Adhesion improvers such as adhesives, inorganic fillers, organic fillers, coupling agents, heat stabilizers, antibacterial and antifungal agents, flame retardants, matting agents, antifoaming agents, leveling agents, wetting / dispersing agents, sedimentation Antibacterial agent, thickener / anti-sagging agent, anti-coloring agent, emulsifier, anti-slip / scratch agent, anti-skinning agent, desiccant, antifouling agent, antistatic agent, conductive agent (electrostatic aid), solvent Etc. may be contained.
- Adhesion improvers such as adhesives, inorganic fillers, organic fillers, coupling agents, heat stabilizers, antibacterial and antifungal agents, flame retardants, matting agents, antifoaming agents, leveling agents, wetting / dispersing agents, sedimentation Antibacterial agent, thickener / anti-sagging agent, anti-coloring agent, emulsifier, anti-slip / scratch agent, anti-skinning
- the cation curable resin composition of the present invention can be prepared by mixing the cation curable compound and the cation curable catalyst, and mixing the other components as necessary. Moreover, when mixing each component, each component or mixture can also be heated and mixed so that it may become a uniform composition as needed.
- the heating temperature is not particularly limited as long as it is not higher than the decomposition temperature of the curable resin or not higher than the reaction temperature, but is preferably 140 to 20 ° C., more preferably 120 to 40 ° C. before addition of the catalyst.
- the resin composition preferably has a viscosity of 10,000 Pa ⁇ s or less. Thereby, it is excellent in processing characteristics, for example, it is more excellent for a molded body forming application (particularly for forming a mold molded body). More preferably, it is 1000 Pa.s or less, More preferably, it is 200 Pa.s or less. Moreover, it is preferable that it is 0.01 Pa.s or more, and it is more preferable that it is 0.1 Pa.s or more. More preferably, it is 1 Pa ⁇ s or more, more preferably 5 Pa ⁇ s or more, and particularly preferably 10 Pa ⁇ s or more.
- an RC25-1 measuring jig can be used, and when the viscosity is less than 20 Pa ⁇ s, an RC50-1 jig can be used.
- thermosetting and photocuring curing by irradiation with active energy rays
- the thermosetting is preferably performed at about 30 to 400 ° C.
- the photocuring is preferably performed at 10 to 10,000 mJ / cm 2 .
- Curing may be performed in one stage, or may be performed in two stages such as primary curing (preliminary curing) and secondary curing (main curing).
- primary curing preliminary curing
- secondary curing main curing
- a demolding operation is required.
- a primary curing is performed before the demolding operation and a secondary curing is performed after the demolding operation.
- -A molding method is preferably employed.
- the resin composition is photocured at 10 to 100,000 mJ / cm 2 or thermally cured at 80 to 200 ° C.
- a method including a second step corresponding to the secondary curing in which the cured product obtained in the step is thermally cured at a temperature exceeding 200 ° C. and not exceeding 500 ° C.
- the curing temperature is preferably 80 to 200 ° C. More preferably, it is 100 degreeC or more and 160 degrees C or less. Further, the curing temperature may be changed stepwise within the range of 80 to 200 ° C.
- the curing time in the thermosetting step is preferably, for example, within 10 minutes, more preferably within 5 minutes, and even more preferably within 3 minutes. Further, it is preferably 10 seconds or longer, more preferably 30 seconds or longer.
- the thermosetting step can also be performed in air or in an atmosphere of an inert gas such as nitrogen, under reduced pressure, or under pressure.
- an inert gas such as nitrogen, under reduced pressure, or under pressure.
- the first step is also preferably a curing step using a mold made of metal, ceramic, glass, resin or the like (referred to as “mold”).
- the curing process using a mold may be a curing process normally performed in a mold molding method such as an injection molding method, a compression molding method, a casting molding method, a sandwich molding method, etc., but the first step is If it is a hardening process using such a metal mold
- the first step is a curing step using a mold
- the mold including the demolding process that is, the cured product obtained in the first process is taken out from the mold, and the taken cured product is used for the next second process, whereby the expensive mold is effectively rotated (recycled). ) And the life of the mold can be extended, and a molded product can be obtained at low cost.
- the resin composition is a one-component composition containing a curing agent and other components as necessary, and the one-component composition is filled into a mold that matches the shape of the target molded article (injection / A method in which the cured product is taken out from the mold after coating and the like is suitably used.
- the cured product obtained in the first step is heat-cured at a temperature exceeding 200 ° C. and not more than 500 ° C. preferable.
- the lower limit of the curing temperature is more preferably 250 ° C. or higher, still more preferably 300 ° C. or higher, particularly preferably 330 ° C. or higher, and most preferably 350 ° C. or higher.
- the upper limit is more preferably 400 ° C. or lower.
- the curing temperature may be changed stepwise within a temperature range exceeding 200 ° C. and not more than 500 ° C.
- the curing time in the second step is not particularly limited as long as the curing rate of the obtained molded article is sufficient, but considering production efficiency, for example, 30 minutes to 30 hours is preferable. . More preferably, it is 1 to 10 hours.
- the second step can also be performed in any atmosphere such as air or an inert gas atmosphere such as nitrogen.
- the second step is preferably performed in an atmosphere having a low oxygen concentration.
- the strength of the cured product obtained by the above curing method may be a strength that can be taken out of the mold and keep the shape.
- the ratio of the shape change when extruded with a force of 9.8 ⁇ 10 4 Pa or more Is preferably 10% or less.
- the ratio of the shape change is preferably 1% or less, more preferably 0.1% or less, and still more preferably 0.01% or less.
- the cationic curable resin composition of the present invention can give a molded article excellent in heat resistance, moisture and heat resistance, low water absorption, UV irradiation resistance and the like.
- a molded body (cured product) obtained by curing the cationic curable resin composition is also one aspect of the present invention.
- the molded body is useful for various applications such as optical materials (members), mechanical component materials, electrical / electronic component materials, automotive component materials, civil engineering and building materials, molding materials, paint materials, and adhesive materials. Is. Especially, it can use suitably for an optical material, an optical device member, a display device member, etc.
- Such applications include eyeglass lenses, (digital) cameras, camera cameras for mobile phones, in-vehicle cameras, and other camera imaging lenses, light beam condensing lenses, light diffusion lenses, and other lenses, LEDs.
- Optical applications such as sealing materials, optical adhesives, optical transmission bonding materials, filters, diffraction gratings, prisms, light guides, watch glasses, transparent glasses such as cover glasses for display devices, and cover glasses; photo sensors, Opto device applications such as photoswitches, LEDs, light emitting elements, optical waveguides, multiplexers, duplexers, disconnectors, optical splitters, optical fiber adhesives; substrates for display elements such as LCD, organic EL and PDP, color Display devices such as filter substrates, touch panel substrates, display protective films, display backlights, light guide plates, antireflection films, and antifogging films Applications and the like are suitable.
- an optical material is particularly suitable.
- the optical material is particularly preferably a lens, an LED sealing material, an optical adhesive, or a light transmission bonding material.
- the lens is preferably a camera lens, a light beam condensing lens, a light diffusion lens and an optical pickup lens, and more preferably a camera lens.
- imaging lenses such as an imaging lens for a mobile phone and an imaging lens for a digital camera are preferable. Further, these micro optical lenses are preferable.
- the other component may be included suitably.
- other components include UV absorbers, IR cut agents, reactive diluents, pigments, washing agents, antioxidants, light stabilizers, plasticizers, non-reactive compounds, chain transfer agents, heat transfer agents, Preferable examples include a polymerization initiator, an anaerobic polymerization initiator, a polymerization inhibitor, and an antifoaming agent.
- the cation curable resin composition of the present invention is useful from the viewpoint of reducing the environmental burden by using the above cation curable catalyst, as compared with the case of using an antimony cation curable catalyst.
- the usefulness is high.
- the resin composition of the present invention is used in LED sealing materials and optical adhesives. The value to use is high.
- the molded product (cured product) obtained from the resin composition of the present invention has a low water absorption, it is preferably used in each application of a camera lens, a light beam condensing lens, a light diffusion lens, and an optical pickup lens. .
- an imaging lens such as an imaging lens for a mobile phone and an imaging lens for a digital camera is still more preferred.
- Water absorption in the molded body (cured product) causes expansion, cracking, and the like.
- the molded body (cured) of the present invention is effective.
- the molded body (cured product) obtained from the resin composition of the present invention has high reflow heat resistance, and reduction in visible light transmittance and coloring can be suppressed.
- Various elements such as mobile phones, televisions, personal computers, and in-vehicle applications are in the process of adopting a solder reflow process for reasons such as simplification of manufacturing processes and cost reduction. Since the resin composition of the present invention or a molded product obtained from the composition suppresses deterioration of optical properties even when subjected to a solder reflow process, members of various elements that employ the solder reflow process (for example, lenses, It is useful as optical materials such as filters and adhesives.
- the cationic curing catalyst used in the composition of the present invention is a TPB catalyst
- the molded article (cured product) obtained from the composition has a particularly low water absorption and excellent heat resistance.
- the cation curable resin composition using as a cation curing catalyst is particularly useful for each optical material application described above.
- the cation curable resin composition of the present invention can provide a molded article excellent in heat resistance, moist heat resistance, low water absorption, UV irradiation resistance, and the like.
- the transmittance of 400 nm in the obtained molded body is improved, and coloring is reduced.
- Such a molded body can be suitably applied to various applications such as optical materials, mechanical component materials, electrical / electronic component materials, automotive component materials, civil engineering and building materials, molding materials, and other materials such as paints and adhesives, It is particularly useful as an optical material.
- Preparation Example 2 (Preparation of TPB / hindered amine (TINUVIN770) complex) 81.1 parts (TPB component: 69.0 parts) of TPB: THF complex obtained in Preparation Example 1 and 31.1 parts of TINUVIN 770 (hindered amine, manufactured by BASF) were dissolved in 88 parts of ⁇ -butyrolactone to obtain TPB.
- TPB ⁇ NH 3 component of the TPB complex NH 3 coordinated (4b) ⁇ (4f) becomes 50%
- a ⁇ -butyrolactone solution was prepared as described above.
- the NH 3 coordination amount in each TPB complex is as follows. n (b) / n (a) TPB complex (4b) 0.59 / 1 TPB complex (4c) 1.18 / 1 TPB complex (4d) 2.94 / 1 TPB complex (4e) 15/1 TPB complex (4f) 100/1
- Preparation Example 7 (Preparation of TPB / triethylamine complex) 100 parts of the TPB: THF complex obtained in Preparation Example 1 (TPB component: 85.1 parts) and 13.5 parts of triethylamine are dissolved in 99 parts of ⁇ -butyrolactone to obtain a ⁇ -butyrolactone solution of TPB complex (6a).
- TPB component 85.1 parts
- n (b) / n (a) 0.8 / 1.
- Example 1 As cationically curable compounds, 100 parts of Celoxide CELL-2021P (liquid alicyclic epoxy resin, epoxy equivalent 131, manufactured by Daicel Chemical Industries), and 0.2 part of ⁇ -butyrolactone solution of the above TPB complex (1a) (cationic curing) TPB / TINUVIN770 complex 0.1 part) was added as a catalyst and mixed uniformly at 40 ° C. under reduced pressure to obtain a resin composition (1). The said resin composition was hardened by the below-mentioned method (hardening process), and hardened
- Example 2 As a cationic curable compound, 100 parts of Celoxide CELL-2021P (liquid alicyclic epoxy resin, epoxy equivalent 131, manufactured by Daicel Chemical Industries), and 0.234 part of a ⁇ -butyrolactone solution of the above TPB complex (4a) (cationic curing) TPB / amine complex (0.117 parts) was added as a catalyst and mixed uniformly at 40 ° C. under reduced pressure to obtain a resin composition (2). The resin composition was cured by the method described later to obtain a cured product.
- Celoxide CELL-2021P liquid alicyclic epoxy resin, epoxy equivalent 131, manufactured by Daicel Chemical Industries
- a ⁇ -butyrolactone solution of the above TPB complex (4a) (cationic curing) TPB / amine complex (0.117 parts) was added as a catalyst and mixed uniformly at 40 ° C. under reduced pressure to obtain a resin composition (2).
- the resin composition was cured by the method described later to obtain a cured product.
- Example 8 100 parts of YX-8000 (liquid hydrogenated epoxy resin, manufactured by Mitsubishi Chemical Corporation) as a cationic curable compound, and 1 part of a ⁇ -butyrolactone solution of TPB complex (5) (TPB / triphenylphosphine complex as a cation curing catalyst, 0. 5 parts) was added and mixed uniformly to obtain a resin composition (8). The resin composition was cured by the method described later to obtain a cured product.
- TPB complex (5) triphenylphosphine complex as a cation curing catalyst
- Example 27 To 100 parts of the resin composition of Example 19, 0.008 parts of TX-EX-609K (phthalocyanine dye, absorption maximum wavelength 680 nm, manufactured by Nippon Shokubai Co., Ltd.) was uniformly dissolved at 40 ° C. I got a thing. Moreover, the said resin composition was hardened by the below-mentioned method, and hardened
- TX-EX-609K phthalocyanine dye, absorption maximum wavelength 680 nm, manufactured by Nippon Shokubai Co., Ltd.
- Example 28 To 100 parts of the resin composition of Example 19, 0.015 part of TX-EX-720 (phthalocyanine dye, absorption maximum wavelength 715 nm, manufactured by Nippon Shokubai Co., Ltd.) was uniformly dissolved at 40 ° C. I got a thing. Moreover, the said resin composition was hardened by the below-mentioned method, and hardened
- TX-EX-720 phthalocyanine dye, absorption maximum wavelength 715 nm, manufactured by Nippon Shokubai Co., Ltd.
- Comparative Example 8 In 100 parts of the resin composition of Comparative Example 6, 0.008 parts of TX-EX-609K (phthalocyanine dye, absorption maximum wavelength 680 nm, manufactured by Nippon Shokubai Co., Ltd.) was uniformly dissolved at 40 ° C. I got a thing. Moreover, the said resin composition was hardened by the below-mentioned method, and hardened
- TX-EX-609K phthalocyanine dye, absorption maximum wavelength 680 nm, manufactured by Nippon Shokubai Co., Ltd.
- Comparative Example 9 To 100 parts of the resin composition of Comparative Example 6, 0.015 parts of TX-EX-609K (phthalocyanine dye, absorption maximum wavelength 715 nm, manufactured by Nippon Shokubai Co., Ltd.) was uniformly dissolved at 40 ° C. I got a thing. Moreover, the said resin composition was hardened by the below-mentioned method, and hardened
- TX-EX-609K phthalocyanine dye, absorption maximum wavelength 715 nm, manufactured by Nippon Shokubai Co., Ltd.
- the resin compositions obtained in the above Examples and Comparative Examples were cured by the following method to obtain a cured product (molded product).
- ⁇ Curing process> First step
- SUS304 manufactured by Nippon Test Panel Co., Ltd., surface No. 800
- gaps at intervals of 1000 ⁇ m were formed, and each resin composition was cast.
- the mold was removed. If the molded product has strong adhesiveness at the time of primary curing and is difficult to release, the die-free GA-7500 (manufactured by Daikin Industries, Ltd., fluorine-silicone system) is sprayed onto the SUS plate and wiped off.
- a SUS board was used.
- ⁇ Heat resistance test (reflow heat resistance test)> The cured product after the secondary curing was dried in the atmosphere at 260 ° C. for 10 minutes, and the transmittance of the cured product at wavelengths of 400 nm and 500 nm was measured using an absorptiometer (manufactured by Shimadzu Corporation, spectrophotometer UV-3100). And measured.
- ⁇ Water absorption test (hygroscopicity)> The cured product after the secondary curing was dried at 230 ° C. for 1 hour in a nitrogen gas (N 2 ) atmosphere to obtain an absolutely dry state, and then weighed. After standing for 100 hours in an environment of a temperature of 85 ° C. and a relative humidity of 85%, the weight was measured. The water absorption was calculated from the increased weight.
- ⁇ Moisture and heat resistance test> The transmittance of the cured product after the water absorption test at wavelengths of 400 nm and 500 nm was measured using an absorptiometer (manufactured by Shimadzu Corporation, spectrophotometer UV-3100).
- ⁇ Weather resistance (light) resistance test> Using a cured product after secondary curing as a sample, a filter: (inner) quartz / (outer) # 275, 1 kW / m 2 (300) using M6T (6 kW horizontal metering weather meter) manufactured by Suga Test Instruments Co., Ltd.
- a weather resistance (light) test was conducted under the conditions of ⁇ 400 nm), and the transmittance (wavelength 400 nm, 500 nm) of the cured product after 100 hours at 50 ° C. was measured using an absorptiometer (manufactured by Shimadzu Corp. ).
- the viscosity of the resin composition (3) was 0.12 Pa ⁇ s after 0 hours (at the start of the test), 1.3 Pa ⁇ s after 72 hours, and 100 Pa ⁇ s after 144 hours.
- the resin composition (Comparative 1) was solidified after 48 hours.
- the resin compositions obtained in some examples and comparative examples (shown in Table 3) were measured for viscosity after standing in a 40 ° C.
- ⁇ Curability (formability during primary curing)> The resin composition was cured under primary curing conditions. After the primary curing, a cured product having a hardness of 10 or more with a Shore hardness A type at the curing temperature was evaluated as x, and a cured product of less than 10 (including a gel product due to poor curing) was evaluated as x.
- the thickness direction of the cured product and the glass IRCF (vertical direction) ), And the cured product and the IRCF made of glass are installed so that the light enters from a direction inclined by 25 ° with respect to the thickness direction (vertical direction) of the cured product and IRCF.
- the transmittance spectrum measured in this way is also referred to as a 25 ° spectrum).
- CELL-2021P Liquid alicyclic epoxy resin “Celoxide CELL-2021P”, epoxy equivalent 131, weight average molecular weight 260, EHPE-3150 manufactured by Daicel Chemical Industries, Ltd .: Alicyclic epoxy resin, YX-8000 manufactured by Daicel Chemical Industries, Ltd. Liquid hydrogenated epoxy resin, weight average molecular weight 409, Mitsubishi Chemical Corporation YX-8034: Hydrogenated epoxy resin, Mitsubishi Chemical Corporation YX-8040: High molecular weight hydrogenated epoxy resin, weight average molecular weight 3831, Mitsubishi Chemical Corporation PG- 100: Fluorene epoxy resin, Osaka Gas Chemical Co., Ltd.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Epoxy Resins (AREA)
- Polyethers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
これらの点に関して、上述したように、特許文献1にはカチオン硬化触媒としてアンチモン系スルホニウム塩を用いる樹脂組成物が開示されている。アンチモン系スルホニウム塩を用いることにより、リフロー方式への適用が可能となる等、一定の成果が上がっている。しかし、アンチモン系スルホニウム塩を用いた場合、その成形体は熱(硬化時の熱、使用環境)により着色し、その結果、短波長可視光である400nmの透過率が低下するという問題があり、成形体の耐熱性はまだ充分なものではない。また、アンチモン系スルホニウム塩を用いて硬化させた成形体は、吸水率が比較的高くなる傾向があり、光学材料として使用する場合には、更なる低吸水化を検討する余地があった。
このように、従来の技術には、耐熱性、耐湿熱性、低吸水性、耐UV照射性等の特性に優れた成形体を与える樹脂組成物について更に検討する余地があった。
本発明はまた、上記カチオン硬化性樹脂組成物を硬化して得られる成形体でもある。
以下に本発明を詳述する。
なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせたものもまた、本発明の好ましい形態である。
また、アンチモン系スルホニウム塩等の従来のカチオン硬化触媒を用いた場合と比較して、熱(硬化時の熱、使用環境)による着色が低減され、吸湿性が低く、耐湿熱性や耐UV照射性等の耐久性に優れた硬化物が得られる。なお、用いる触媒に基づく硬化物の着色の有無、程度は通常、400nmにおける透過率の変化からも確認できる。つまり、硬化物の400nmの透過率を測定することによって、硬化物の着色の有無、程度について評価することができる。
なお、カチオン硬化触媒とは、カチオン硬化反応を促進する触媒であり、例えば酸無水物硬化反応における硬化促進剤とは異なる働きをするものである。
また、aは1以上の整数であり、bは0以上の整数であり、a+b=3を満たす。すなわち、上記ルイス酸は、フッ素原子が結合した芳香環が少なくとも1つ、ホウ素原子に結合したものである。aとしてより好ましくは2以上であり、最も好ましくは3、すなわち、フッ素原子が結合した芳香環がホウ素原子に3つ結合している形態である。
なお、本願明細書、実施例等において、本発明にかかるカチオン硬化触媒のうち、ルイス酸としてTPBを含むものをTPB系触媒と表記することもある。
上記窒素原子を有する化合物として好ましくは、アミン類(モノアミン、ポリアミン)、アンモニア等が挙げられる。より好ましくは、ヒンダードアミン構造を有するアミン、低沸点のアミン、アンモニアであり、更に好ましくは、ヒンダードアミン構造を有するポリアミン、アンモニアである。上記ルイス塩基としてヒンダードアミン構造を有するポリアミンを用いると、ラジカル捕捉効果により硬化成形体の酸化防止が可能となり、得られる硬化物がより耐熱性(耐湿熱性)に優れたものとなる。一方、上記ルイス塩基としてアンモニア又は低沸点のアミンを用いると、得られる硬化物が低吸水性、耐UV照射性に優れたものとなる。硬化工程でアンモニア又は低沸点のアミンが揮発することにより、最終の成形体(硬化物)中の、アンモニア又は低沸点のアミンに由来する塩構造が少なくなるため、成形体の吸水率を低減することができると推測される。特にアンモニアは上述の効果に優れるため好ましい。
すなわち、カチオン硬化触媒におけるルイス酸とルイス塩基との混合比が、ルイス酸点であるホウ素の原子数n(a)に対する、ルイス塩基点となる原子の原子数n(b)の比(n(b)/n(a))で表して、1(量論比)でなくても、カチオン硬化触媒として作用する。
カチオン硬化触媒における比n(b)/n(a)は、樹脂組成物の保存安定性、カチオン硬化特性(硬化速度、硬化物の硬化度等)に影響する。
なお、ルイス塩基が、ジアミン類等の如く、ルイス塩基点を分子内に2個有する場合は、カチオン硬化触媒を構成するルイス酸に対するルイス塩基の混合モル比が0.5の場合に、比n(b)/n(a)=1(量論比)となる。このようにして、比n(b)/n(a)は算定される。
一方、カチオン硬化特性の観点から、ルイス塩基が余りに過剰となると、硬化物の低温硬化性が低下する場合があるので、カチオン硬化特性により優れる組成物とするためには、n(b)/n(a)が100以下であることが好ましい。同様の理由から、比n(b)/n(a)は、20以下であることがより好ましく、10以下であることが更に好ましく、5以下であることが特に好ましい。
更に、カチオン硬化特性の観点では、ルイス塩基が窒素原子、硫黄原子又はリン原子を有する化合物からなり、2以上炭素置換された構造(2以上炭素置換された構造とは、これらの原子に炭素原子を介して有機基が2個以上結合した構造を意味する)では、酸解離定数が高く、立体障害が大きい事から、比n(b)/n(a)は、2以下であることが好ましく、1.5以下であることがより好ましく、1.2以下であることが更に好ましい。例えばヒンダードアミンの様な構造では、上記範囲が好ましい。
また、ルイス塩基がアンモニアや立体障害の小さい低沸点アミンである場合は、特にアンモニアである場合は、比n(b)/n(a)が1より大きいことが好ましい。具体的には、好ましくは、1.001以上であり、より好ましくは1.01以上であり、更に好ましくは1.1以上であり、特に好ましくは1.5以上である。
上記カチオン重合性基としては、カチオン硬化性の官能基であればよく、例えば、エポキシ基、オキセタン基(オキセタン環)、ジオキソラン基、トリオキサン基、ビニル基、ビニルエーテル基、スチリル基等が挙げられる。中でも、エポキシ基、オキセタン基が好適である。すなわち、上記カチオン硬化性化合物が、エポキシ化合物及び/又はオキセタン化合物(「オキセタン基含有化合物」とも称す。)を含む形態は、本発明の好適な実施形態の1つである。上記カチオン重合性基の硬化特性は、基の種類のみならず、該基が結合した有機骨格にも影響されることになる。
なお、本明細書における「エポキシ基」とは、3員環のエーテルであるオキシラン環を含むものであり、狭義のエポキシ基の他、グリシジル基のようにオキシラン環が炭素に結合している基や、グリシジルエーテル基及びグリシジルエステル基のようにエーテル又はエステル結合を含む基、エポキシシクロヘキサン環等を含むものである。
上記エポキシ化合物としては、脂環式エポキシ化合物、水添エポキシ化合物、芳香族エポキシ化合物、脂肪族エポキシ化合物が好適であり、脂環式エポキシ化合物、水添エポキシ化合物がより好適である。
このように上記カチオン硬化性化合物が、脂環式エポキシ化合物、水添エポキシ化合物及びオキセタン化合物からなる群より選択される少なくとも1種を含む形態もまた、本発明の好適な形態の1つである。
上記エピビスタイプグリシジルエーテル型エポキシ樹脂としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール等のビスフェノール類と、エピハロヒドリンとの縮合反応により得られるものが好適に挙げられる。
上記高分子量エピビスタイプグリシジルエーテル型エポキシ樹脂としては、例えば、上記エピビスタイプグリシジルエーテル型エポキシ樹脂を、上記ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール等のビスフェノール類と、更に付加反応させることにより得られるものが好適に挙げられる。
芳香族グリシジルエーテル化合物の好ましい具体例としては、828EL、1003、1007(以上、ジャパンエポキシレジン社製)等のビスフェノールA型化合物;オンコートEX-1020、オンコートEX-1010、オグソールEG-210、オグソールPG(以上、大阪ガスケミカル社製)等のフルオレン系化合物等が挙げられ、中でもオグソールEG-210が好ましい。
上記脂肪族グリシジルエーテル型エポキシ樹脂としては、例えば、ポリヒドロキシ化合物(エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール(PEG600)、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ポリプロピレングリコール(PPG)、グリセロール、ジグリセロール、テトラグリセロール、ポリグリセロール、トリメチロールプロパン及びその多量体、ペンタエリスリトール及びその多量体、グルコース、フルクトース、ラクトース、マルトース等の単/多糖類等)とエピハロヒドリンとの縮合反応により得られるもの等が好適に挙げられる。中でも、中心骨格にプロピレングリコール骨格、アルキレン骨格、オキシアルキレン骨格を有する脂肪族グリシジルエーテル型エポキシ樹脂等がより好適である。
上記オキセタン化合物は、硬化速度の観点から、脂環式エポキシ化合物及び/又は水添エポキシ化合物と併用することが好ましい。また、耐光性向上の観点では、アリール基又は芳香環を有しないオキセタン化合物を用いることが好ましい。一方、硬化物の強度向上の観点から、多官能のオキセタン化合物、すなわち1分子中に2個以上のオキセタン環を有する化合物を用いることが好適である。
また、カチオン硬化性化合物として芳香族エポキシ化合物を用いた樹脂組成物は、屈折率(高い屈折率)が要求されるレンズ等の用途に好適である。
上記可撓性成分としては、上記カチオン硬化性化合物とは異なる化合物であってもよいし、該カチオン硬化性化合物の少なくとも1種が可撓性成分であってもよい。
このように上記可撓性成分としては、カチオン硬化性化合物を好適に用いることができるが、該化合物としては、エポキシ基を含む化合物であることが好ましく、より好ましくは、オキシブチレン基(-〔-(CH2)4-O-〕m-(mは、同上。))を有する化合物である。
しかし、上記樹脂組成物を用いてレンズ等を得る場合、つまり、硬化・成形方法として金型成形を採用する場合において、離型剤を含んでもよい。離型剤としては、カチオン硬化触媒による硬化反応を阻害することなく、むしろ促進する基を有する化合物が好ましい。離型剤として具体的には、アルコール性OH基及び/又はカルボニル基(カルボキシル基及びエステル基を含む)を有する化合物が好ましく、更にカチオン硬化性樹脂組成物への相溶性、離型効果の高い点から、炭素数が8以上の炭化水素基を有するものが好ましい。より好ましくは、炭素数8~36のアルコール、炭素数8~36のカルボン酸、炭素数8~36のカルボン酸エステル、炭素数8~36のカルボン酸無水物及び炭素数8~36のカルボン酸塩からなる群より選ばれる少なくとも一つの化合物である。このような離型剤を含有することで、短時間で硬化できるとともに、金型を用いて硬化する際に容易に金型を剥がすことができ、硬化物の表面に傷をつけることなく外観を制御し、透明性を発現させることができる。よって、上記樹脂組成物を、電気・電子部品材料用途や光学部材用途等により有用なものとすることができる。
上記化合物はまた、直鎖状、分岐状、環状等のいずれの構造であってもよく、分岐しているものが好ましい。
上記化合物の炭素数としては、8~36の整数であることが好適であるが、これによって、樹脂組成物の透明性や作業性等の機能を損なうことなく、優れた剥離性を示す硬化物となる。炭素数としてより好ましくは8~20であり、更に好ましくは10~18である。
上記炭素数が8~36のカルボン酸無水物とは、上記炭素数が8~36のカルボン酸の無水物である。
上記無機微粒子としては、金属や金属化合物等の無機化合物から構成される微粒子であればよく、特に限定されるものではない。無機微粒子における無機成分としては、金属の酸化物、水酸化物、(酸)窒化物、(酸)硫化物、炭化物、ハロゲン化物、硫酸塩、硝酸塩、(塩基性)炭酸塩、(塩基性)酢酸塩等が例示される。これらの中でも好ましくは、金属の酸化物(金属酸化物)であり、シリカ、酸化チタン、酸化ジルコニウム、酸化亜鉛であることがより好ましい。用いる硬化性化合物の屈折率やアッベ数にもよるが、通常、屈折率の高い又はアッベ数の低い成形体(硬化物)を得るためには、酸化チタン、酸化ジルコニウム又は酸化亜鉛が好ましく用いられる。一方、屈折率の低い又はアッベ数の高い成形体(硬化物)を得るためには、シリカを用いることが好ましい。
上記無機微粒子としては、微粒子の樹脂との親和性向上、分散性向上等の目的で、表面処理された粒子も包含される。表面処理剤としては、特に限定されず、微粒子表面に有機鎖、高分子鎖の導入又は表面電荷制御の目的で、各種の有機化合物、無機化合物、有機金属化合物等が用いられる。表面処理剤としては、例えば、シランカップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤、ジルコニウム系カップリング剤等のカップリング剤;金属アルコキシド類及びこれらの(部分)加水分解・縮合物;金属石鹸;等の有機金属化合物が挙げられる。
また、無機高分子としては、ポリシロキサン化合物等が挙げられ、具体的には、ポリメチルシルセスキオキサン、ポリフェニルシルセスキオキサン等が挙げられる。
上記樹脂組成物は、無機材料を含有することにより、熱膨張率を低下させることができる。また、無機材料と樹脂との屈折率をあわせることにより、樹脂組成物及びその成形体(例えばレンズ等)の外観を制御し、透明性を発現させることもでき、電気・電子部品材料や光学用途における材料として特に有用なものとすることができる。更に、無機微粒子を含むことにより、離型効果をより発揮することができる。具体的には、樹脂成分として例えば熱硬化性樹脂(特に、エポキシ化合物)を含む場合、樹脂成分が接着効果を有することとなり、このような樹脂組成物は、硬化させた場合に金型に接着するおそれがある。しかし、無機微粒子を適量加えることにより、離型効果がみられ、成形体(硬化物)が金型から容易に剥がれることとなる。
上記無機材料を含む場合、その含有量としては、樹脂組成物100質量%に対して、0.01~95質量%であることが好ましく、より好ましくは、0.1~80質量%であり、更に好ましくは、0.2~60質量%であり、特に好ましくは、0.3~20質量%であり、最も好ましくは、0.5~15質量%である。
上記色素としては、近赤外線吸収色素に限定されない。紫外線、可視光、赤外線の各帯域において特定の波長に特性吸収を有する色素を使用目的に応じて適宜選択すればよく、光学材料の各種用途に適用することができる。
後述するように撮像レンズモジュールにおけるセンサーの誤作動防止の目的で使用する近赤外線吸収色素としては、600~800nmの波長域に吸収極大を有する色素が好適である。より好ましくは、650~750nmの波長域に吸収極大を有するものである。上記色素はまた、400nm以上、600nm未満の波長域には実質的に吸収極大を持たないものであることが好ましい。
なお、上記分子内にπ電子結合を有する色素が、上述した好適な波長域に吸収極大を有するものであることが特に好ましい。
上記分子内にπ電子結合を有する色素としては、例えば、フタロシアニン系色素、ポルフィリン系色素、シアニン系色素、クアテリレン系色素、スクアリリウム系色素、ナフタロシアニン系色素、ニッケル錯体系色素、銅イオン系色素等が挙げられ、これらの1種又は2種以上を使用することができる。
双性イオン構造及びカチオン性構造のいずれも有さない色素が耐熱性、耐候性の観点で好ましく、フタロシアニン系色素及び/又はポルフィリン系色素が好適である。より好ましくは、金属フタロシアニン錯体及び/又は金属ポルフィリン錯体である。
上記ポルフィリン系色素としては、テトラアザポルフィリン等の金属ポルフィリン錯体が好適である。
上記色素を含む場合、その含有量としては、樹脂組成物100質量%に対して、0.0001~10質量%であることが好ましく、より好ましくは0.001~1質量%である。
本出願人は、反射型IRCFにおいて、近赤外線吸収色素を樹脂組成物に含有させた組成物から得られた色素含有層を有する樹脂シートを基材とすることにより、入射角依存性の抑制された反射型IRCFを得ることができることを既に知見している。そこで、該樹脂組成物を本発明のカチオン硬化性樹脂組成物とすること、すなわち、近赤外線吸収色素をカチオン硬化性樹脂組成物に含有させた組成物から得られた色素含有層を有する樹脂シートを基材とすることにより、入射角依存性が抑制されるとともに耐熱性等に優れる反射型IRCFを得ることができることを確認した。
また、本発明のカチオン硬化性樹脂組成物から得られるレンズ自体に近赤外線吸収色素を含有させることによっても、該レンズを含む撮像レンズモジュールは反射型IRCFを搭載しても入射角依存性が抑制されたものとなるため、好ましい。
すなわち、撮像レンズモジュールに用いられるIRCF用の基材(樹脂シート)やレンズ用としての、近赤外線吸収色素を含有するカチオン硬化性樹脂組成物、及び、該組成物から得られる成形体(例えば樹脂シート、レンズ等)の使用もまた本発明の好ましい形態である。
また、各成分を混合する際には、必要に応じて、各成分又は混合物を加熱して、均一組成になるように混合することもできる。加熱温度としては、硬化性樹脂の分解温度以下、又は、反応温度以下であれば特に限定されないが、触媒添加前であれば、好ましくは140~20℃、より好ましくは120~40℃である。
上記粘度の測定は、樹脂組成物について、R/Sレオメーター(米国ブルックフィールド社製)を用いて、40℃、回転速度D=1/sの条件下で行うことが可能である。なお、粘度20Pa・s以上では、RC25-1の測定治具を使用し、粘度20Pa・s未満では、RC50-1の治具を使用できる。また、回転速度D=1/s時点の粘度が測定できないものについては、回転速度D=5~100/sの値を外挿して、樹脂組成物の粘度として評価可能である。
以下に、2段階硬化を行う場合について、詳述する。
2段階硬化法としては、1次硬化に相当する第1工程として、樹脂組成物を10~100000mJ/cm2で光硬化させるか、又は、80~200℃で熱硬化させる工程と、該第1工程で得た硬化物を200℃を超え500℃以下で熱硬化させる、2次硬化に相当する第2工程とを含む方法を採用することが好ましい。
上記熱硬化工程における硬化時間は、例えば、10分以内であることが好ましく、より好ましくは5分以内、更に好ましくは3分以内である。また、好ましくは10秒以上、より好ましくは30秒以上である。
この場合、上記樹脂組成物を硬化剤及び必要に応じて他の成分を含む1液組成物とし、目的とする成形体の形状に合わせた金型内に該1液組成物を充填(射出・塗出等)して硬化させ、その後、硬化物を金型から取り出す方法が好適に用いられる。
上記第2工程における硬化時間は、得られる成形体の硬化率が充分となる時間とすればよく特に限定されないが、製造効率を考慮すると、例えば、30分間~30時間とすることが好適である。より好ましくは1~10時間である。
上記成形体は、例えば、光学材料(部材)、機械部品材料、電気・電子部品材料、自動車部品材料、土木建築材料、成形材料等の他、塗料や接着剤の材料等の各種用途に有用なものである。中でも特に、光学材料、オプトデバイス部材、表示デバイス部材等に好適に用いることができる。このような用途として具体的には、例えば、眼鏡レンズ、(デジタル)カメラや携帯電話用カメラや車載カメラ等のカメラ用撮像レンズ、光ビーム集光レンズ、光拡散用レンズ等のレンズ、LED用封止材、光学用接着剤、光伝送用接合材料、フィルター、回折格子、プリズム、光案内子、ウォッチガラス、表示装置用のカバーガラス等の透明ガラスやカバーガラス等の光学用途;フォトセンサー、フォトスイッチ、LED、発光素子、光導波管、合波器、分波器、断路器、光分割器、光ファイバー接着剤等のオプトデバイス用途;LCDや有機ELやPDP等の表示素子用基板、カラーフィルター用基板、タッチパネル用基板、ディスプレイ保護膜、ディスプレイバックライト、導光板、反射防止フィルム、防曇フィルム等の表示デバイス用途等が好適である。
上記光学材料としては、特に、レンズ、LED用封止材、光学用接着剤、光伝送用接合材料であることが好適である。レンズとして好ましくは、カメラレンズ、光ビーム集光レンズ、光拡散用レンズ及び光ピックアップレンズであり、より好ましくはカメラレンズである。カメラレンズの中でも、携帯電話用撮像レンズ及びデジタルカメラ用撮像レンズ等の撮像レンズが好ましい。また、これら微小光学レンズであることが好適である。
なお、上記樹脂組成物が光学材料用の樹脂組成物である場合は、光学材料の用途に応じて適宜その他の成分を含んでいてもよい。その他の成分としては、具体的には、UV吸収剤、IRカット剤、反応性希釈剤、顔料、洗料、酸化防止剤、光安定剤、可塑剤、非反応性化合物、連鎖移動剤、熱重合開始剤、嫌気重合開始剤、重合禁止剤、消泡剤等が好適に挙げられる。
本発明の組成物に用いるカチオン硬化触媒がTPB系触媒である場合には、該組成物から得られる成形体(硬化物)の吸水率が特に低く、耐熱性にも優れることから、TPB系触媒をカチオン硬化触媒とするカチオン硬化性樹脂組成物は、上述した各光学材料用途に特に有用である。
調製例1
(TPB:THF錯体の合成)
TPB(トリス(ペンタフルオロフェニル)ボラン)42.3gをトルエン60.5gに溶解し、室温で撹拌しながらTHF(テトラヒドロフラン)7.14gを滴下した。その後、n-ヘキサン121.1gを室温で滴下した。この溶液を氷冷し、しばらく撹拌を続けると白色結晶が析出した。白色結晶をろ別し、n-ヘキサン洗浄し、乾燥後、白色固体であるTPB:THF錯体を34.5g(TPBの含有量は液体クロマトグラフィーより85.05%であった)得た。
[NMRデータ]
1H-NMR(CDCl3)ppm
δ=1.87(4H,m)
δ=3.63(4H,m)
19F-NMR(CDCl3)ppm
δ=-87.7(6F,m)
δ=-80.5(3F,dd)
δ=-59.4(6F,d)
(TPB/ヒンダードアミン(TINUVIN770)錯体の調製)
調製例1で得られたTPB:THF錯体81.1部(TPB成分:69.0部)と、TINUVIN770(ヒンダードアミン、BASF社製)31.1部を、γ-ブチロラクトン88部に溶解し、TPB錯体(1a)のγ-ブチロラクトン溶液を調製した。TPB錯体(1a)におけるn(b)/n(a)=0.96/1である。
また、上記と同様にして、以下のTPB錯体(1b)~(1e)のγ-ブチロラクトン溶液を調整した。
n(b)/n(a)
TPB錯体(1b) 2.04/1
TPB錯体(1c) 1.1/1
TPB錯体(1d) 0.95/1
TPB錯体(1e) 0.91/1
(TPB/ヒンダードアミン(アデカスタブLA57)錯体の調製)
調製例1で得られたTPB:THF錯体100.0部(TPB成分:85.1部)と、アデカスタブLA57(ヒンダードアミン、ADEKA社製)32.6部を、γ-ブチロラクトン103部に溶解し、TPB錯体(2a)のγ-ブチロラクトン溶液を調製した。なお、n(b)/n(a)=0.99/1である。
また、上記と同様にして、TPB錯体(2b)~(2c)のγ-ブチロラクトン溶液を調製した。
n(b)/n(a)
TPB錯体(2b) 1.06/1
TPB錯体(2c) 1.02/1
(TPB/ヒンダードアミン(TINUVIN765)錯体の調製)
調製例1で得られたTPB:THF錯体100.0部(TPB成分:85.1部)と、TINUVIN765(ヒンダードアミン、BASF社製)50.1部を、γ-ブチロラクトン120部に溶解し、TPB錯体(3)のγ-ブチロラクトン溶液を調製した。なお、n(b)/n(a)=1.19/1である。
(TPB/アンモニア錯体の調製)
調製例1と同様にして得られたTPB:THF錯体130部(TPB成分:110.6部)と、25%NH3水溶液26部(NH3成分:6.5部)を、γ-ブチロラクトン78.2部に溶解し、ルイス塩基としてNH3が配位したTPB錯体(4a)のγ-ブチロラクトン溶液を調製した。なお、n(b)/n(a)=1.77/1である。
また、用いる25%NH3水溶液の量を以下のように変える以外は上記と同様にして、NH3が配位したTPB錯体(4b)~(4f)のTPB・NH3成分が50%となるようにγ-ブチロラクトン溶液を調製した。
各TPB錯体におけるNH3配位量は以下のとおりである。
n(b)/n(a)
TPB錯体(4b) 0.59/1
TPB錯体(4c) 1.18/1
TPB錯体(4d) 2.94/1
TPB錯体(4e) 15/1
TPB錯体(4f) 100/1
(TPB/トリフェニルホスフィン錯体の調製)
調製例1と同様にして得られたTPB:THF錯体100部(TPB成分:85.1部)と、トリフェニルホスフィン43部を、γ-ブチロラクトン113.2部に溶解し、TPB/トリフェニルホスフィン錯体(TPB錯体(5))のγ-ブチロラクトン溶液を調製した。TPB錯体(5)における、トリフェニルホスフィン配位量は以下のとおりである。n(b)/n(a)=0.99/1
(TPB/トリエチルアミン錯体の調製)
調製例1で得られたTPB:THF錯体100部(TPB成分:85.1部)と、トリエチルアミン13.5部を、γ-ブチロラクトン99部に溶解し、TPB錯体(6a)のγ-ブチロラクトン溶液を調製した。なお、n(b)/n(a)=0.8/1である。
また、上記と同様にして、TPB錯体(6b)のγ-ブチロラクトン溶液を調製した。なお、n(b)/n(a)=2.2/1である。
実施例1
カチオン硬化性化合物としてセロキサイドCELL-2021P(液状脂環式エポキシ樹脂、エポキシ当量131、ダイセル化学工業社製)100部、及び、上記TPB錯体(1a)のγ-ブチロラクトン溶液0.2部(カチオン硬化触媒としてTPB/TINUVIN770錯体0.1部)を投入し、40℃にて減圧下で均一になるように混合して樹脂組成物(1)を得た。当該樹脂組成物を、後述の方法(硬化工程)により硬化させ、硬化物を得た。
カチオン硬化性化合物としてセロキサイドCELL-2021P(液状脂環式エポキシ樹脂、エポキシ当量131、ダイセル化学工業社製)100部、及び、上記TPB錯体(4a)のγ-ブチロラクトン溶液0.234部(カチオン硬化触媒としてTPB/アミン錯体0.117部)を投入し、40℃にて減圧下で均一になるように混合して樹脂組成物(2)を得た。当該樹脂組成物を、後述の方法により硬化させ、硬化物を得た。
樹脂組成物を構成するカチオン硬化性化合物及びカチオン硬化触媒の種類及び量を表1~2に示すとおりに変更したこと以外は、実施例1と同様にして樹脂組成物(3)~(7)、樹脂組成物(比較1)~(比較3)を得た。当該樹脂組成物を、後述の方法により硬化させ、硬化物を得た。
カチオン硬化性化合物としてYX-8000(液状水添エポキシ樹脂、三菱化学社製)100部、及び、TPB錯体(5)のγ-ブチロラクトン溶液1部(カチオン硬化触媒としてTPB/トリフェニルホスフィン錯体0.5部)を投入し、均一になるように混合して樹脂組成物(8)を得た。当該樹脂組成物を、後述の方法により硬化させ、硬化物を得た。
表1~2記載の種類及び量のカチオン硬化性化合物、無機材料、カチオン硬化触媒を用い、各樹脂組成物を得た。なお、カチオン硬化性化合物として、EHPE-3150、YX-8040、PG-100の固体エポキシ樹脂を混合する際には、樹脂を140℃に加熱して、均一組成とした。無機材料としてPMSQ-Eを用いた場合は、カチオン硬化性化合物を混合した後に、80℃にて均一混合した。触媒を混合する際は、実施例1と同様に40℃減圧下にて均一組成になるように混合した。
当該樹脂組成物を、後述の方法により硬化させ、硬化物を得た。
実施例19の樹脂組成物100部に対して、40℃でTX-EX-609K(フタロシアニン系色素、吸収極大波長680nm、日本触媒社製)0.008部を均一に溶解させ、色素含有樹脂組成物を得た。
また、当該樹脂組成物を、後述の方法により硬化させ、硬化物を得た。
実施例19の樹脂組成物100部に対して、40℃でTX-EX-720(フタロシアニン系色素、吸収極大波長715nm、日本触媒社製)0.015部を均一に溶解させ、色素含有樹脂組成物を得た。
また、当該樹脂組成物を、後述の方法により硬化させ、硬化物を得た。
比較例6の樹脂組成物100部に対して、40℃でTX-EX-609K(フタロシアニン系色素、吸収極大波長680nm、日本触媒社製)0.008部を均一に溶解させ、色素含有樹脂組成物を得た。
また、当該樹脂組成物を、後述の方法により硬化させ、硬化物を得た。
比較例6の樹脂組成物100部に対して、40℃でTX-EX-609K(フタロシアニン系色素、吸収極大波長715nm、日本触媒社製)0.015部を均一に溶解させ、色素含有樹脂組成物を得た。
また、当該樹脂組成物を、後述の方法により硬化させ、硬化物を得た。
<硬化工程>
(第1工程)
SUS304(日本テストパネル社製、表面800番仕上げ)の金属板を2枚用いて、1000μm間隔のギャップを形成し、各樹脂組成物の注型成形を行った。表1記載の温度/時間で1次硬化を行った後、脱型した。また、1次硬化時の成形物の接着性が強く、離型しにくい場合には、ダイフリーGA-7500(ダイキン工業社製、フッ素-シリコーン系)をSUS板上に噴霧してふき取り、このSUS板を使用した。
(第2工程(キュア))
第1工程での硬化後、N2雰囲気下(特に断りのない限り、0.2~0.3体積%の酸素濃度で実施した)、以下の条件で硬化の処理を行った。
条件:250℃×1時間(250℃の乾燥機へ直接試料を投入)
<硬化物の透過率(着色の有無)>
吸光度計(島津製作所社製、分光光度計UV-3100)を用いて、上記第1工程後(1次硬化後)及び第2工程後(2次硬化後)の夫々の時点で、波長400nm及び500nmにおける硬化物の透過率を測定した。
<耐熱性試験(リフロー耐熱性試験)>
2次硬化後の硬化物を、大気中、260℃で10分間乾燥させた後、波長400nm及び500nmにおける硬化物の透過率を、吸光度計(島津製作所社製、分光光度計UV-3100)を用いて測定した。
<吸水性試験(吸湿性)>
2次硬化後の硬化物を、窒素ガス(N2)雰囲気下、230℃で1時間乾燥させ、絶乾状態とした後、重量を測った。温度85℃、相対湿度85%の環境下に100時間静置した後、重量を測定した。増加した重量より吸水率を算出した。
上記吸水性試験後の硬化物の、波長400nm及び500nmにおける透過率を、吸光度計(島津製作所社製、分光光度計UV-3100)を用いて測定した。
<耐候(光)性試験>
2次硬化後の硬化物を試料として、スガ試験機社製のM6T(6kW水平式メタリングウエザーメーター)を用いて、フィルター:(インナー)石英/(アウター)#275、1kW/m2(300~400nm)の条件で耐候(光)性試験を行い、50℃で100時間経過後の硬化物の透過率(波長400nm、500nm)を、吸光度計(島津製作所社製、分光光度計UV-3100)を用いて測定した。
実施例3で得た樹脂組成物(3)及び比較例1で得た樹脂組成物(比較1)を40℃の環境下で静置し、所定時間経過後の粘度を以下のようにして測定した。
上記粘度の測定は、樹脂組成物について、R/Sレオメーター(米国ブルックフィールド社製)を用いて、40℃、回転速度D=1/sの条件下で行った。なお、粘度20Pa・s以上では、RC25-1の測定治具を使用し、粘度20Pa・s未満では、RC50-1の治具を使用した。また、回転速度D=1/s時点の粘度が測定できないものについては、回転速度D=5~100/sの値を外挿して、樹脂組成物の粘度として評価した。
樹脂組成物(3)の粘度は、0時間経過後(試験開始時)に0.12Pa・s、72時間経過後に1.3Pa・s、144時間経過後に100Pa・sとなった。
樹脂組成物(比較1)は、48時間経過後に固化した。
また、同様の測定法にて、一部の実施例、比較例で得られた樹脂組成物について(表3に示す)、40℃雰囲気中に12時間静置した後の粘度を測定し、樹脂組成物調製直後の粘度に対する変化の程度を評価した。具体的には、40℃静置後の粘度が調製直後の粘度に対して10倍以上に変化したものを×、変化が10倍未満であったものを○と評価した。
樹脂組成物を1次硬化条件にて硬化させた。1次硬化後に、硬化温度にてショア硬度Aタイプで10以上の固さのある硬化物を○、10未満の硬化物(硬化不良によるゲル物を含む)を×として評価した。
実施例19、27、28より得られた1mm厚みの硬化物(2次硬化体)とガラス製IRCF(片面に酸化チタン20層/シリカ20層の交互蒸着品)を用いて、入射光源側から、硬化物、ガラス製IRCFの順に直列に配置して、吸光度計(島津製作所社製、分光光度計UV-3100)を用いて、分光透過率測定(透過率スペクトル測定)を行った。
入射光に対して垂直になるように硬化物及びガラス製IRCFを設置した場合(このようにして測定された透過率スペクトルを0°スペクトルともいう。硬化物及びガラス製IRCFの厚み方向(垂直方向)から光が入射するようにして測定される。)と、硬化物、IRCFの厚み方向(垂直方向)に対して25°傾いた方向から光が入射するように硬化物及びガラス製IRCFを設置した場合(このようにして測定された透過率スペクトルを25°スペクトルともいう。)について評価した。
CELL-2021P:液状脂環式エポキシ樹脂『セロキサイドCELL-2021P』、エポキシ当量131、重量平均分子量260、ダイセル化学工業社製
EHPE-3150:脂環式エポキシ樹脂、ダイセル化学工業社製
YX-8000:液状水添エポキシ樹脂、重量平均分子量409、三菱化学社製
YX-8034:水添エポキシ樹脂、三菱化学社製
YX-8040:高分子量水添エポキシ樹脂、重量平均分子量3831、三菱化学社製
PG-100:フルオレンエポキシ樹脂、大阪ガスケミカル社製
828EL:芳香族エポキシ樹脂、三菱化学社製
OXT-221:オキセタン樹脂『アロンオキセタンOXT-221』、東亜合成社製
PMSQ-E:ポリメチルシルセスキオキサン(PMSQ-E)『SR-13』、小西化学工業社製
SI-100L:熱潜在性カチオン硬化触媒『サンエイドSI-100L』(アンチモン系スルホニウム塩(SbF6塩))、三新化学工業社製、固形分50%
(2次硬化時の着色について)
カチオン硬化性化合物として脂環式エポキシ化合物を用いた例を比較すると、カチオン硬化触媒としてTPBを含む化合物(TPB系触媒ともいう。)を用いた実施例1及び3では、アンチモン系スルホニウム塩(アンチモン系触媒ともいう。)を用いた比較例1に比べ、2次硬化後の透過率が高いことがわかった。これは、TPB系触媒を用いたほうが、2次硬化時の着色をより低減できることを示している。また、TPB系触媒の中でも、ヒンダードアミンをルイス塩基に用いた場合(実施例1)のほうが、アンモニアを用いた場合(実施例3)より着色低減効果が高いことがわかった。これは、ヒンダードアミンが有する酸化防止効果に起因するものと推測される。
一方、カチオン硬化性化合物として水添エポキシ化合物を用いた例を比較すると、アンモニア含有量の少ないTPB系触媒を用いた例(実施例4)では、アンチモン系触媒を用いた例(比較例2)より着色が低減できるが、アンモニア含有量の多いTPB系触媒を用いた例(実施例5)では、着色低減効果が低いことがわかった。これは、YX-8000中の残留塩素量が影響していると考えられる。
カチオン硬化性化合物として芳香族エポキシ化合物を用いた例を比較すると、カチオン硬化触媒としてTPB系触媒を用いた場合(実施例9、10)のほうが、アンチモン系触媒を用いた場合(比較例4、5)よりも、着色低減効果が高い(400nmの透過率が高い)ことが明らかとなり、耐熱性(透明性)が大きく向上した。
さらに、実施例18、20の様な無機材料(シリコーン系材料)を含んだ樹脂組成物の硬化にも、本発明におけるカチオン硬化触媒(特にTPB系触媒)を好適に使用可能である。特に、無機材料(シリコーン系)とTPB系触媒を併用する事により、2次硬化時の着色を低減(400nmの透過率が向上)し、耐熱性(透明性)が大きく向上した。
また、色素を含んだ樹脂組成物の硬化においても、TPB系触媒を用いた場合(実施例27、28)はそれぞれ、アンチモン系触媒を用いた場合(比較例8、9)よりも耐熱性が高い結果となり、耐熱性が高く、生産性、成形性に優れるフィルター材料になることが示唆された。
TPB系触媒を用いた場合(実施例17、19)のほうが、アンチモン系触媒を用いた場合(比較例6)よりも、高い耐熱性を実現できることがわかった。
(吸水性について)
カチオン硬化性化合物として脂環式エポキシ化合物を用いた場合、及び、水添エポキシ化合物を用いた場合のいずれも、カチオン硬化触媒としてTPB系触媒を用いた場合のほうがアンチモン系触媒を用いた場合より吸水率を低減できることがわかった。これは、反応末端の構造の相違に起因するものと考えられる。また、TPB系触媒の中でも、アンモニアをルイス塩基に用いた場合のほうがより低吸水性を実現できることがわかった。これは、硬化時にアンモニアが揮発することによるものと考えられる。
カチオン硬化性化合物として脂環式エポキシ化合物を用いた例において、TPB系触媒を用いた場合のほうがアンチモン系触媒を用いた場合より耐湿熱性が高くなることがわかった。また、TPB系触媒の中でも、ヒンダードアミンを用いた場合(実施例1)のほうが、アンモニアを用いた場合(実施例2、3)より耐湿熱性が高いことがわかった。これは、2次硬化時の着色と同様、ヒンダードアミンが有する酸化防止効果に起因するものと推測される。
(耐候(光)性について)
TPB系触媒を用いた場合のほうがアンチモン系触媒を用いた場合より高い耐UV照射性を実現できることがわかった。
TPB系触媒を用いた場合のほうがアンチモン系触媒を用いた場合より高い保存安定性を実現できることがわかった。
(硬化性(成形性)について)
カチオン硬化性化合物として芳香族エポキシ化合物を用いても、カチオン硬化触媒としてTPB系触媒を用いた場合(実施例26)のほうが、アンチモン系触媒を用いた場合(比較例7)よりも、硬化性(成形性)に優れることが明らかとなった。特に、これまでカチオン硬化では短時間硬化が困難と考えられていた芳香族エポキシ化合物を、カチオン硬化性化合物として100質量%用いた樹脂組成物の硬化にも成功した。
(入射角依存性について)
吸収色素を硬化物に添加した実施例27、28は、吸収色素を添加しない実施例19を用いた場合に比べて、反射型IRCFを用いた場合において、入射角による長波長側の透過端における透過率の差異を低減できる(0°スペクトルと25°スペクトルとの差異が小さい)ことがわかった。
したがって、上記実施例の結果から、本発明の技術的範囲全般において、また、本明細書において開示した種々の形態において本発明が適用でき、有利な作用効果を発揮することができるといえる。
Claims (5)
- 前記カチオン硬化性化合物は、エポキシ化合物及び/又はオキセタン化合物を含むことを特徴とする請求項1に記載のカチオン硬化性樹脂組成物。
- 前記ルイス塩基は、窒素原子、リン原子又は硫黄原子を有する化合物であることを特徴とする請求項1又は2に記載のカチオン硬化性樹脂組成物。
- 前記カチオン硬化性樹脂組成物は、光学材料用であることを特徴とする請求項1~3のいずれかに記載のカチオン硬化性樹脂組成物。
- 請求項1~4のいずれかに記載のカチオン硬化性樹脂組成物を硬化して得られる成形体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180053291.5A CN103189413B (zh) | 2010-11-05 | 2011-11-04 | 阳离子固化性树脂组合物 |
KR1020137014381A KR101870469B1 (ko) | 2010-11-05 | 2011-11-04 | 카티온 경화성 수지 조성물 |
JP2012541911A JP5680668B2 (ja) | 2010-11-05 | 2011-11-04 | カチオン硬化性樹脂組成物 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010248742 | 2010-11-05 | ||
JP2010-248742 | 2010-11-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012060449A1 true WO2012060449A1 (ja) | 2012-05-10 |
Family
ID=46024562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/075485 WO2012060449A1 (ja) | 2010-11-05 | 2011-11-04 | カチオン硬化性樹脂組成物 |
Country Status (5)
Country | Link |
---|---|
JP (2) | JP5680668B2 (ja) |
KR (1) | KR101870469B1 (ja) |
CN (1) | CN103189413B (ja) |
TW (1) | TWI480308B (ja) |
WO (1) | WO2012060449A1 (ja) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013230431A (ja) * | 2012-04-27 | 2013-11-14 | Nippon Shokubai Co Ltd | カチオン硬化触媒の製造方法 |
CN103923438A (zh) * | 2013-01-11 | 2014-07-16 | 株式会社日本触媒 | 叠层用树脂组合物及其用途 |
JP2014133849A (ja) * | 2013-01-11 | 2014-07-24 | Nippon Shokubai Co Ltd | 積層用樹脂組成物、及び、硬化物 |
JP2014149514A (ja) * | 2013-01-11 | 2014-08-21 | Nippon Shokubai Co Ltd | 積層用樹脂組成物及びその用途 |
JP2014152194A (ja) * | 2013-02-05 | 2014-08-25 | Nippon Shokubai Co Ltd | 硬化性樹脂組成物、その硬化物及び光学材料 |
JP2015152861A (ja) * | 2014-02-18 | 2015-08-24 | 株式会社日本触媒 | 積層用樹脂組成物及びその用途 |
JP2016017152A (ja) * | 2014-07-09 | 2016-02-01 | 株式会社日本触媒 | 樹脂組成物及びその用途 |
JP2016027400A (ja) * | 2014-07-04 | 2016-02-18 | 株式会社日本触媒 | 積層用樹脂組成物及びその用途 |
WO2016158523A1 (ja) * | 2015-03-30 | 2016-10-06 | 株式会社Adeka | 組成物 |
JP2016536410A (ja) * | 2013-08-27 | 2016-11-24 | ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA | 電子装置用の硬化性組成物及びその使用 |
WO2016204115A1 (ja) * | 2015-06-17 | 2016-12-22 | 株式会社ダイセル | 硬化物の製造方法、硬化物、及び前記硬化物を含む積層物 |
JPWO2014196515A1 (ja) * | 2013-06-03 | 2017-02-23 | 株式会社ダイセル | 硬化性エポキシ樹脂組成物 |
JP2018055091A (ja) * | 2016-09-07 | 2018-04-05 | 大立光電股▲ふん▼有限公司 | 光学撮像レンズ及びそのプラスチック材料、画像取込装置並びに電子装置 |
JP2018055092A (ja) * | 2016-09-07 | 2018-04-05 | 大立光電股▲ふん▼有限公司 | 光学撮像レンズ及びそのプラスチック材料、画像取込装置並びに電子装置 |
JP2019529619A (ja) * | 2016-09-30 | 2019-10-17 | エルジー・ケム・リミテッド | 接着剤組成物 |
JP2019218267A (ja) * | 2018-06-14 | 2019-12-26 | 株式会社日本触媒 | トリアリールホウ素化合物を含む組成物 |
JP2021165355A (ja) * | 2020-04-08 | 2021-10-14 | 株式会社日本触媒 | 熱潜在性重合開始剤 |
US11685817B2 (en) | 2019-06-04 | 2023-06-27 | Dow Silicones Corporation | Bridged frustrated Lewis pairs as thermal trigger for reactions between Si-H and epoxide |
WO2023153387A1 (ja) * | 2022-02-08 | 2023-08-17 | 三井化学株式会社 | 重合性組成物、封止材、画像表示装置および画像表示装置の製造方法 |
US12084547B2 (en) | 2019-06-04 | 2024-09-10 | Dow Silicones Corporation | Bridged frustrated lewis pairs as thermal trigger for reactions between Si—H and Si—O—Si |
US12104019B2 (en) | 2019-06-04 | 2024-10-01 | Dow Silicones Corporation | Bridged frustrated Lewis pairs as thermal trigger for reactions between Si—H and alpha-beta unsaturated esters |
WO2024204248A1 (ja) * | 2023-03-29 | 2024-10-03 | 三井化学株式会社 | 硬化性組成物、封止剤、枠封止剤、表示パネル及びその製造方法 |
US12116459B2 (en) | 2019-06-04 | 2024-10-15 | Dow Silicones Corporation | Thermally initiated acid catalyzed reaction between silyl hydride and silyl ether and/or silanol |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI641649B (zh) * | 2013-01-11 | 2018-11-21 | 日本觸媒股份有限公司 | 積層用樹脂組成物及其用途 |
CN108780170B (zh) | 2016-03-29 | 2021-07-16 | 富士胶片株式会社 | 保护片、图像显示装置、眼镜片及眼镜 |
JP6848477B2 (ja) * | 2017-01-25 | 2021-03-24 | Jsr株式会社 | 光学フィルターおよびその用途 |
JP6844275B2 (ja) * | 2017-01-25 | 2021-03-17 | Jsr株式会社 | 光学フィルターおよびその用途 |
CN108485184B (zh) * | 2018-02-11 | 2020-11-24 | 东莞爱的合成材料科技有限公司 | 一种可用于临床医学的耐高温透明光敏树脂及其制备方法 |
CN109705331B (zh) * | 2018-12-25 | 2020-10-13 | 浙江大学 | 一种路易斯酸碱对催化引发剂及其应用 |
JP7306903B2 (ja) * | 2019-07-17 | 2023-07-11 | 株式会社ダイセル | 硬化性組成物、及び繊維強化複合材料 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002092665A1 (fr) * | 2001-05-15 | 2002-11-21 | Rhodia Chimie | Composition silicone polymerisable reticulable par voie cationique, sous activation thermique et au moyen d'un amorceur de type adduit acide/base de lewis |
WO2003062208A1 (en) * | 2002-01-17 | 2003-07-31 | General Electric Company | Onium salts with weakly coordinating imidazolidine anion as cationic initiators |
JP2008544067A (ja) * | 2005-06-23 | 2008-12-04 | モーメンティブ・パフォーマンス・マテリアルズ・インク | 硬化触媒、組成物、電子機器及び関連する方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8607565D0 (en) | 1986-03-26 | 1986-04-30 | Ciba Geigy Ag | Curable compositions |
US5863970A (en) * | 1995-12-06 | 1999-01-26 | Polyset Company, Inc. | Epoxy resin composition with cycloaliphatic epoxy-functional siloxane |
FR2824839B1 (fr) * | 2001-05-17 | 2003-07-04 | Rhodia Chimie Sa | Compositions silicones adhesives sensibles a la pression, leur procede de preparations et leurs utilisations |
US6617400B2 (en) | 2001-08-23 | 2003-09-09 | General Electric Company | Composition of cycloaliphatic epoxy resin, anhydride curing agent and boron catalyst |
JP2005187636A (ja) | 2003-12-25 | 2005-07-14 | Sekisui Chem Co Ltd | 光硬化性樹脂組成物、表示素子用接着剤、接着方法および表示素子 |
JP4406465B2 (ja) | 2008-03-27 | 2010-01-27 | 株式会社日本触媒 | 成型体用硬化性樹脂組成物、成型体及びその製造方法 |
-
2011
- 2011-11-04 JP JP2012541911A patent/JP5680668B2/ja active Active
- 2011-11-04 WO PCT/JP2011/075485 patent/WO2012060449A1/ja active Application Filing
- 2011-11-04 TW TW100140455A patent/TWI480308B/zh active
- 2011-11-04 CN CN201180053291.5A patent/CN103189413B/zh active Active
- 2011-11-04 KR KR1020137014381A patent/KR101870469B1/ko active IP Right Grant
-
2015
- 2015-01-07 JP JP2015001769A patent/JP5814478B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002092665A1 (fr) * | 2001-05-15 | 2002-11-21 | Rhodia Chimie | Composition silicone polymerisable reticulable par voie cationique, sous activation thermique et au moyen d'un amorceur de type adduit acide/base de lewis |
WO2003062208A1 (en) * | 2002-01-17 | 2003-07-31 | General Electric Company | Onium salts with weakly coordinating imidazolidine anion as cationic initiators |
JP2008544067A (ja) * | 2005-06-23 | 2008-12-04 | モーメンティブ・パフォーマンス・マテリアルズ・インク | 硬化触媒、組成物、電子機器及び関連する方法 |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013230431A (ja) * | 2012-04-27 | 2013-11-14 | Nippon Shokubai Co Ltd | カチオン硬化触媒の製造方法 |
CN103923438A (zh) * | 2013-01-11 | 2014-07-16 | 株式会社日本触媒 | 叠层用树脂组合物及其用途 |
JP2014133849A (ja) * | 2013-01-11 | 2014-07-24 | Nippon Shokubai Co Ltd | 積層用樹脂組成物、及び、硬化物 |
JP2014149514A (ja) * | 2013-01-11 | 2014-08-21 | Nippon Shokubai Co Ltd | 積層用樹脂組成物及びその用途 |
JP2014152194A (ja) * | 2013-02-05 | 2014-08-25 | Nippon Shokubai Co Ltd | 硬化性樹脂組成物、その硬化物及び光学材料 |
JPWO2014196515A1 (ja) * | 2013-06-03 | 2017-02-23 | 株式会社ダイセル | 硬化性エポキシ樹脂組成物 |
JP2016536410A (ja) * | 2013-08-27 | 2016-11-24 | ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA | 電子装置用の硬化性組成物及びその使用 |
JP2015152861A (ja) * | 2014-02-18 | 2015-08-24 | 株式会社日本触媒 | 積層用樹脂組成物及びその用途 |
JP2016027400A (ja) * | 2014-07-04 | 2016-02-18 | 株式会社日本触媒 | 積層用樹脂組成物及びその用途 |
JP2016017152A (ja) * | 2014-07-09 | 2016-02-01 | 株式会社日本触媒 | 樹脂組成物及びその用途 |
WO2016158523A1 (ja) * | 2015-03-30 | 2016-10-06 | 株式会社Adeka | 組成物 |
JPWO2016204115A1 (ja) * | 2015-06-17 | 2018-04-05 | 株式会社ダイセル | 硬化物の製造方法、硬化物、及び前記硬化物を含む積層物 |
WO2016204115A1 (ja) * | 2015-06-17 | 2016-12-22 | 株式会社ダイセル | 硬化物の製造方法、硬化物、及び前記硬化物を含む積層物 |
JP2018055092A (ja) * | 2016-09-07 | 2018-04-05 | 大立光電股▲ふん▼有限公司 | 光学撮像レンズ及びそのプラスチック材料、画像取込装置並びに電子装置 |
US11073638B2 (en) | 2016-09-07 | 2021-07-27 | Largan Precision Co., Ltd. | Optical image lens assembly and plastic material thereof, image capturing apparatus and electronic device |
JP2018055091A (ja) * | 2016-09-07 | 2018-04-05 | 大立光電股▲ふん▼有限公司 | 光学撮像レンズ及びそのプラスチック材料、画像取込装置並びに電子装置 |
US10890699B2 (en) | 2016-09-07 | 2021-01-12 | Largan Precision Co., Ltd. | Optical image lens assembly, image capturing apparatus and electronic device |
JP2019529619A (ja) * | 2016-09-30 | 2019-10-17 | エルジー・ケム・リミテッド | 接着剤組成物 |
JP7163078B2 (ja) | 2018-06-14 | 2022-10-31 | 株式会社日本触媒 | トリアリールホウ素化合物を含む組成物 |
JP2019218267A (ja) * | 2018-06-14 | 2019-12-26 | 株式会社日本触媒 | トリアリールホウ素化合物を含む組成物 |
US11685817B2 (en) | 2019-06-04 | 2023-06-27 | Dow Silicones Corporation | Bridged frustrated Lewis pairs as thermal trigger for reactions between Si-H and epoxide |
US12084547B2 (en) | 2019-06-04 | 2024-09-10 | Dow Silicones Corporation | Bridged frustrated lewis pairs as thermal trigger for reactions between Si—H and Si—O—Si |
US12104019B2 (en) | 2019-06-04 | 2024-10-01 | Dow Silicones Corporation | Bridged frustrated Lewis pairs as thermal trigger for reactions between Si—H and alpha-beta unsaturated esters |
US12116459B2 (en) | 2019-06-04 | 2024-10-15 | Dow Silicones Corporation | Thermally initiated acid catalyzed reaction between silyl hydride and silyl ether and/or silanol |
JP2021165355A (ja) * | 2020-04-08 | 2021-10-14 | 株式会社日本触媒 | 熱潜在性重合開始剤 |
JP7498587B2 (ja) | 2020-04-08 | 2024-06-12 | 株式会社日本触媒 | 熱潜在性重合開始剤 |
WO2023153387A1 (ja) * | 2022-02-08 | 2023-08-17 | 三井化学株式会社 | 重合性組成物、封止材、画像表示装置および画像表示装置の製造方法 |
WO2024204248A1 (ja) * | 2023-03-29 | 2024-10-03 | 三井化学株式会社 | 硬化性組成物、封止剤、枠封止剤、表示パネル及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012060449A1 (ja) | 2014-05-12 |
CN103189413B (zh) | 2015-11-25 |
TWI480308B (zh) | 2015-04-11 |
JP2015061929A (ja) | 2015-04-02 |
JP5814478B2 (ja) | 2015-11-17 |
CN103189413A (zh) | 2013-07-03 |
TW201219442A (en) | 2012-05-16 |
KR101870469B1 (ko) | 2018-06-22 |
JP5680668B2 (ja) | 2015-03-04 |
KR20130118339A (ko) | 2013-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5814478B2 (ja) | カチオン硬化性樹脂組成物 | |
JP5480469B2 (ja) | 樹脂組成物、光学材料、及び、該光学材料の制御方法 | |
JP6131062B2 (ja) | 硬化性樹脂組成物、その硬化物及び光学材料 | |
JP2009084310A (ja) | 熱・光硬化性樹脂組成物、光学材料及び光学部材 | |
JP2016027400A (ja) | 積層用樹脂組成物及びその用途 | |
JP6001317B2 (ja) | カチオン硬化性樹脂組成物 | |
JP2009062459A (ja) | 有機無機複合樹脂組成物及び該有機無機複合樹脂組成物を硬化させてなる硬化物 | |
JP5301409B2 (ja) | カチオン硬化性樹脂組成物及びその硬化物 | |
JP6342645B2 (ja) | 積層用樹脂組成物及びその用途 | |
JP4439017B2 (ja) | 成型体用硬化性樹脂組成物、成型体及びその製造方法 | |
JP6251530B2 (ja) | 撮像素子用硬化性樹脂組成物及びその用途 | |
JP5296472B2 (ja) | 成型体用硬化性樹脂組成物、成型体及びその製造方法 | |
JP2011241380A (ja) | 硬化成型体用樹脂組成物及び硬化成型体 | |
JP2013138158A (ja) | 撮像素子、色素含有レンズ及びレンズ成型用樹脂組成物 | |
JP6356429B2 (ja) | 積層用樹脂組成物及びその用途 | |
KR102147630B1 (ko) | 적층용 수지 조성물 및 그 용도 | |
JP6001318B2 (ja) | エポキシ系硬化物 | |
JP6073690B2 (ja) | 積層用樹脂組成物、及び、硬化物 | |
TW201431945A (zh) | 硬化性樹脂組成物及光半導體密封用樹脂組成物 | |
JP5815463B2 (ja) | カチオン硬化触媒の製造方法 | |
JP5778448B2 (ja) | 硬化成型体用樹脂組成物及び硬化成型体 | |
JP5819772B2 (ja) | カチオン硬化触媒の製造方法 | |
JP2016017152A (ja) | 樹脂組成物及びその用途 | |
JP2013234231A (ja) | カチオン硬化性樹脂組成物 | |
JP4669280B2 (ja) | 重合性化合物およびその用途 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11838099 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012541911 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20137014381 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11838099 Country of ref document: EP Kind code of ref document: A1 |