WO2012060325A1 - プラズマアニール方法及びその装置 - Google Patents

プラズマアニール方法及びその装置 Download PDF

Info

Publication number
WO2012060325A1
WO2012060325A1 PCT/JP2011/075068 JP2011075068W WO2012060325A1 WO 2012060325 A1 WO2012060325 A1 WO 2012060325A1 JP 2011075068 W JP2011075068 W JP 2011075068W WO 2012060325 A1 WO2012060325 A1 WO 2012060325A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
plasma
substrate
gas
producing
Prior art date
Application number
PCT/JP2011/075068
Other languages
English (en)
French (fr)
Inventor
古性 均
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020137013656A priority Critical patent/KR20140067956A/ko
Priority to KR1020197016611A priority patent/KR102192283B1/ko
Priority to JP2012541852A priority patent/JP6328882B2/ja
Priority to US13/883,042 priority patent/US11511316B2/en
Publication of WO2012060325A1 publication Critical patent/WO2012060325A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02689Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using particle beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/326Application of electric currents or fields, e.g. for electroforming

Definitions

  • the present invention relates to a film manufacturing method for changing the crystal structure of a constituent material of a film by plasma and a plasma annealing apparatus used therefor.
  • An amorphous inorganic structure formed by a method such as chemical vapor deposition depends on its bonding state, and conduction electrons are scattered in electron conduction and become resistance with respect to its movement behavior, that is, the bonding state of the structure is the structure. This greatly affects the properties of electron transfer. For this reason, it is possible to greatly improve the electron transfer behavior by aligning the bonds between atoms and crystallizing them.
  • an amorphous film formed on a substrate by a vapor deposition method or the like is subjected to a high-temperature heat treatment using an electric furnace or the like (direct heating method)
  • An amorphous structure film is converted into a polycrystalline film by a method of heating by irradiating a laser beam (laser annealing method).
  • the film and the entire substrate material on which the film is formed are heated.
  • the heating and baking temperature is limited by the heat-resistant temperature.
  • the laser annealing method uses a laser with a specific wavelength, so that the temperature does not increase almost at the base material that does not absorb the laser beam. For this reason, for example, by selecting a laser beam having a wavelength that has absorption for the film and no absorption for the substrate, the laser is irradiated with almost no increase in the temperature of the substrate, and the film is bonded. It is expected that the state can be changed.
  • a high-capacity high-capacity substrate that can accommodate an amorphous silicon film can be accommodated.
  • An airtight chamber is provided, and after the impurity gas is exhausted by evacuating the chamber, a process of replacing the chamber with an inert gas or the like is performed (Patent Document 1).
  • Patent Document 1 the above-described method for controlling the gas atmosphere in the entire chamber requires an expensive vacuum chamber, a large-scale exhaust device, and the like, and there is a problem that the apparatus cost and running cost are increased.
  • it is necessary to increase the size of the vacuum chamber that accommodates the entire substrate in accordance with the size of the substrate there is a problem that the entire apparatus is increased in size particularly when a large substrate is processed.
  • the uniformity of the crystal has a great influence on its electrical properties, so that the shape of the laser beam is devised.
  • the intensity of the center of a circular laser beam is exponentially increased, so that when the laser beam is directly irradiated onto an inorganic structure, only the irradiation center is preferentially crystallized.
  • spot laser light is passed through a cylindrical lens to form rectangular laser light, and then the laser intensity is made uniform using a homogenizer, and the rectangular laser light with uniform intensity is scanned against the inorganic structure.
  • Patent Document 2 A technique of performing crystallization by adopting the method is employed (Patent Document 2). However, even in the laser annealing apparatus having the above-described configuration, it is still necessary to perform the laser annealing treatment at a high temperature, and further, the problem of non-uniformity of crystallization has not been improved.
  • Patent Document 3 Although there is no structural change, a plasma deposition method has been proposed in which plasma is generated after introducing an amorphous silicon deposition gas under high vacuum to form an amorphous silicon film on a substrate ( Patent Document 3).
  • JP 2002-164543 A Japanese Patent Laid-Open No. 2003-100652 Japanese Patent Laid-Open No. 6-173044
  • the semiconductor film can be crystallized stepwise by irradiating two stages of laser beams with different irradiation energies, and the crystallinity defects observed in laser annealing without conventional preliminary irradiation. This is because various problems following abrupt phase change such as uniformity, generation of crystal grain boundaries, and concentration of stress can be alleviated. Moreover, the effect of this stepwise irradiation can be further enhanced by increasing the number of times and making it multistage. By these two methods, the uniformity of the laser irradiation effect can be considerably improved.
  • the laser processing time is doubled and the throughput is reduced, and the equipment for performing the two-stage irradiation method is more complicated than the case where only one stage is irradiated.
  • the equipment for performing the two-stage irradiation method is more complicated than the case where only one stage is irradiated.
  • the present invention has been made in view of the above circumstances, and can easily change the crystal structure of a film by processing a film (film) on a substrate with a simple configuration, and has excellent productivity.
  • An object is to provide a plasma annealing apparatus.
  • a method for producing a film characterized by changing the crystal structure of a constituent material of the film including the step (A) of irradiating the film on the substrate with atmospheric pressure plasma,
  • step (A) plasma is generated under atmospheric pressure by energizing at a frequency of 10 to 100 megahertz and a voltage of 60 to 1 million volts, and the generated plasma is directly applied to the substrate.
  • the method for producing a film according to the first aspect which is a step of irradiating the film
  • the frequency is 10 to 100 megahertz
  • the voltage is 60 to 1 million volts
  • the high voltage electrode of the discharge tube is energized, or one of the two counter electrodes is applied.
  • the discharge tube used for a process (A) consists of an inorganic dielectric material, an organic polymer, or a metal, The manufacturing method of the film
  • the method for producing a film according to the third aspect wherein the two counter electrodes used in the step (A) are made of a plate dielectric or a plate metal,
  • the plate dielectric used in the step (A) is made of an inorganic dielectric material or an organic polymer, and the method for producing a film according to the fifth aspect,
  • the plasma generating gas used in the step (A) is helium, argon, krypton, xenon, hydrogen, nitrogen
  • a method for producing the membrane according to claim in the step (A), the method for producing a film according to any one of the first aspect to the eighth aspect, wherein the plasma is irradiated while heating the film on the substrate.
  • a method for changing a crystal structure of a constituent material of a film including the step (A) according to any one of the first to ninth aspects
  • a plasma generator used in the film manufacturing method of step (A) according to any one of the first aspect to the ninth aspect As a twelfth aspect, the electronic device is manufactured through the step (A) described in any one of the first aspect to the ninth aspect.
  • the film manufacturing method of the present invention only the portion where the plasma particles collide with the film can be gradually crystallized in the plasma irradiation apparatus (plasma annealing apparatus).
  • plasma irradiation apparatus plasma annealing apparatus
  • atmospheric pressure plasma thermal non-equilibrium type plasma
  • the plasma density can be controlled by the frequency and voltage of the power supply to be applied or the gas concentration of the plasma generating gas, and the degree of crystallization and the crystallization time can be controlled by controlling them.
  • crystallization can be performed while controlling at low temperature.
  • the film manufacturing method of the present invention by using a high purity gas, for example, in a film where oxidation is a problem, the oxygen concentration around the irradiation region where the plasma is irradiated to the film of the substrate is extremely low. It becomes possible to keep. As a result, the film irradiated with plasma can be converted into a high-quality film with uniform crystal grain size and surface roughness, with uniform surface orientation, without the influence of oxygen. .
  • the film manufacturing method of the present invention since a highly airtight chamber or the like for keeping the entire substrate in a vacuum or an inert gas atmosphere is not required, the configuration of the plasma irradiation apparatus (plasma annealing apparatus) is simplified and the cost is reduced. As well as being able to achieve light weight and downsizing, the labor required for maintenance can be greatly reduced, and the running cost can be reduced and the productivity can be improved. Of course, when oxygen is disliked, it is possible to perform gas replacement using a highly airtight chamber, but even in that case, a conventional high vacuum chamber is not required.
  • FIG. 1 is a schematic view showing an example of an apparatus using a discharge tube, which is a plasma irradiation apparatus used in the present invention.
  • FIG. 2 is a schematic view showing an example of a plasma irradiation apparatus used in the present invention and using a plate electrode (counter electrode).
  • FIG. 3 is a diagram for explaining the plasma discharge spectrum.
  • FIG. 4 is a graph showing the results of Raman spectrum measurement of an amorphous silicon film formed by CVD.
  • FIG. 5 is a graph showing the results of Raman spectrum measurement of a film obtained by plasma-irradiating an amorphous silicon film formed by CVD with the method of the present invention.
  • FIG. 6 is a graph showing the Raman spectrum measurement results of the film before and after plasma irradiation, and is an explanatory diagram showing the verification results of the present invention from these differences.
  • a film manufacturing method targeted by the present invention provides the following plasma annealing method and apparatus used therefor. That is, the film manufacturing method of the present invention is characterized by changing the crystal structure of the film by irradiating the film formed on the substrate with atmospheric pressure plasma. (Annealing apparatus) can be used.
  • a stage on which a substrate on which a film is formed is placed, and a discharge tube or a high-voltage flat plate electrode (counter electrode) for irradiating plasma toward the substrate are installed on the stage.
  • a high frequency high voltage is applied while flowing a plasma generating gas through the discharge tube.
  • the plasma generating gas is retained between the substrate on which the film is formed and the flat plate electrode to increase the plasma. It is characterized by being formed in the vicinity of atmospheric pressure.
  • the plasma is not particularly limited, but glow discharge is desirable for stable annealing.
  • a film manufacturing method according to the present invention will be described with reference to the drawings together with a plasma irradiation apparatus (plasma annealing apparatus).
  • plasma irradiation apparatus plasma annealing apparatus
  • the present embodiment is specifically described for better understanding of the gist of the invention, and does not limit the invention unless otherwise specified.
  • a method of converting an amorphous silicon film on a substrate into a polysilicon film by a CVD method is illustrated, but of course, the manufacturing method of the present invention is an object.
  • the film to be used is not limited to a silicon film.
  • the present invention is a film manufacturing method including the step (A) of irradiating a film on a substrate with atmospheric pressure plasma, and changing a crystal structure of a constituent material of the film.
  • Atmospheric pressure plasma refers to plasma generated under atmospheric pressure (760 Torr). However, when the plasma is generated under atmospheric pressure, the pressure in the system may change due to the inflow and discharge of the plasma generating gas, and may change from 760 Torr up and down by about 100 Torr.
  • the constituent material of the film refers to a component that forms the film, for example, silicon (silicon) in the case of an amorphous silicon film.
  • changing the crystal structure of the constituent material of the film means changing the crystal structure of the silicon from amorphous silicon to polysilicon, for example.
  • metal oxides, metal sulfides, dopant-containing silicon, compound semiconductors, and the like can be used as constituents of the film.
  • the metal oxide include silicon oxide, zirconium oxide, aluminum oxide, nickel oxide, iron oxide, zinc oxide, titanium oxide, and cobalt oxide.
  • Examples of the metal sulfide include zinc sulfide, cadmium sulfide, titanium sulfide, cobalt sulfide, and iron sulfide.
  • Examples of the dopant-containing silicon include silicon doped with boron or phosphorus.
  • Examples of the compound semiconductor include gallium arsenide, aluminum gallium arsenide, indium phosphide, and gallium nitride.
  • FIG. 1 is a schematic view showing an example of a plasma irradiation apparatus (plasma annealing apparatus) used in the present invention, and is a schematic view of a plasma jet annealing apparatus using a discharge tube.
  • the plasma annealing refers to a plasma irradiation process that is performed, for example, while changing the crystal of amorphous silicon into polysilicon.
  • a plasma irradiation (plasma annealing) apparatus 5 includes a stage 4 on which a substrate 3 coated with a film as a workpiece is placed, and a discharge tube 1 that irradiates plasma toward the substrate 3. , Provided on the stage 4 with a space.
  • a power source 2 is connected to the high voltage electrode 1-a provided at the tip of the discharge tube 1.
  • the stage 4 is configured to be movable in the X-axis direction and the Y-axis direction within the plane of the stage 4 by the stage moving means.
  • the plasma irradiation position is fixed, and the entire surface of the substrate 1 placed on the stage 4 can be irradiated with the plasma by moving the stage 4 in a plane in the X-axis direction and the Y-axis direction. It has a structure. In some cases, irradiation may be performed by moving three-dimensionally in the Z-axis direction which is perpendicular to the stage 4 in addition to the X-axis direction and the Y-axis direction.
  • plasma is jetted from the tip of the discharge tube.
  • the plasma has a plasma particle temperature necessary for converting a film formed on one surface of the substrate 1, for example, an amorphous silicon film into a polysilicon film.
  • the plasma density can be controlled by controlling the voltage and frequency of the power source 2 connected to the high voltage electrode 1-a of the discharge tube and the gas flow rate of the plasma generating gas as plasma parameters. Thereby, the state of the film can be freely changed.
  • the processing time plasma irradiation time
  • the plasma density can be changed by changing the installation height of the discharge tube 1 of the plasma irradiation device (plasma annealing device) 5.
  • the discharge tube 1 used in the apparatus shown in FIG. 1 is not particularly limited.
  • a dielectric such as glass
  • a high voltage electrode 1-a is installed at the tip of the discharge tube to supply power 2.
  • a plasma jet can be generated easily.
  • the plasma to be generated is a dielectric barrier type plasma, so that it becomes a thermal non-equilibrium plasma, thereby suppressing an increase in ambient temperature.
  • a plasma irradiation apparatus plasma annealing apparatus
  • it can be formed using a counter plate electrode as shown in FIG.
  • the plasma jet type apparatus as shown in FIG. 1 is basically suitable for causing a local structural change, but is not suitable for a large area process. For this reason, a large area process is attained by using the apparatus which produces
  • FIG. 2 shows a plasma generation apparatus using a counter plate electrode.
  • the distance between the counter electrodes 6 can be used as one parameter to change the plasma density.
  • the high voltage electrode 8 is normally connected to the upper electrode 6 a
  • the power supply 7 is connected to the high voltage electrode 8
  • the ground is connected to the lower electrode 6 b, but it is not particularly necessary to connect the ground.
  • a plasma generating gas is caused to flow between the counter electrodes 6.
  • a gas chamber is preferably used in order to avoid unstable plasma generation due to the gas flow.
  • it is not necessary to use a reduced pressure state and plasma in various states is generated from atmospheric pressure to reduced pressure. be able to.
  • the film formed on the substrate is placed between the electrodes and subjected to plasma treatment for a predetermined time.
  • the present invention applies high voltage electricity at a low frequency while flowing a plasma generating gas in a discharge tube in which a high voltage electrode is attached to a metal tube or an insulator tube under a pressure of atmospheric pressure (near atmospheric pressure).
  • a plasma generating gas in which a high voltage electrode is attached to a metal tube or an insulator tube under a pressure of atmospheric pressure (near atmospheric pressure).
  • atmospheric pressure near atmospheric pressure
  • a ground may be attached before and after the high voltage electrode (keep a distance that does not contact the high voltage electrode, and a distance that does not cause arc discharge).
  • the atmosphere can be grounded like a metal tube.
  • the material of the nozzle part of the discharge tube used for plasma discharge is composed of simple elements included in Groups 4 to 14 of the periodic table or their compounds, and a high voltage electrode is connected to this, and the ground side is the atmosphere.
  • an ionized gas and a radical gas generated by applying a low-frequency high voltage while flowing a gas can be used.
  • the plasma irradiation apparatus is not particularly required to be a plasma jet (FIG. 1) radiated from a pencil-shaped nozzle, and an alternating electric field is applied to two opposing plate electrodes, and a gas (plasma) that can be a plasma gas in this gap.
  • Gas for generation Although it is not particularly limited, it is possible to generate a stable atmospheric pressure plasma by flowing, for example, helium gas (see below), etc., and processing can be performed by leaving a processing substrate in this gap. (FIG. 2).
  • This device has a structure in which two flat dielectrics or flat metals face each other, a high voltage electrode is connected to one of them, and the other is connected to the ground without connecting a ground, or is connected to a ground electrode. Then, two plate dielectrics or metal plates are placed in the atmospheric pressure, and a high voltage is applied at a low frequency to convert the introduced gas (plasma generating gas) into a plasma, thereby converting the obtained plasma into a processing substrate. Can be irradiated. Alternatively, two plate dielectrics or metal plates are placed in a decompression vessel, the introduced gas is flowed after decompression, and the introduced gas is turned into plasma by applying a high voltage at a low frequency under a low gas pressure. Can also be used as a processing substrate.
  • the shape of the electrode is not particularly limited, but in order to stabilize the discharge, it is preferable to use a material that can concentrate the electric field as much as possible, such as a copper mesh. This is to prevent abnormal discharge from a specific weak point on the electrode surface, and is important for maintaining stable glow discharge at a pressure near atmospheric pressure.
  • an electrode material an inorganic dielectric material, an organic polymer, and a metal can be used regardless of whether a discharge tube or a counter electrode is used.
  • any metal tube or metal electrode in which a gas flow path is formed such as aluminum, stainless steel, copper, iron, brass or the like, can be used.
  • the organic polymer as the insulator is not particularly limited, but general-purpose plastic, engineering plastic, super engineering plastic, and the like can be used.
  • General-purpose plastics include polyethylene (high density polyethylene, medium density polyethylene, low density polyethylene), polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, acrylonitrile butadiene styrene resin (ABS resin), and acrylonitrile styrene resin (AS). Resin), acrylic resin, polytetrafluoroethylene and the like.
  • the engineering plastic is not particularly limited.
  • polyamide polyamide, nylon, polyacetal, polycarbonate, modified polyphenylene ether (m-PPE, modified PPE), polybutylene terephthalate, polyethylene terephthalate, polyethylene terephthalate glass resin (PET). -G), cyclic polyolefin, glass fiber reinforced polyethylene terephthalate (FRP) and the like.
  • the super engineering plastic is not particularly limited, and examples thereof include polyphenylene sulfide, polysulfone, polyethersulfone, amorphous polyarylate, liquid crystal polyester, polyetheretherketone, polyamideimide, polyimide, and polyamide.
  • an inorganic dielectric material can be used as the insulator.
  • these include, but are not limited to, glass, silicon, zirconia, ceramics, alumina, titania, silicon carbide, silicon nitride, and the like.
  • AC high voltage power supply is used as the power supply necessary for plasma generation.
  • AC indicates a frequency of 10 Hz to 100 MHz, preferably 50 Hz to 100 kHz, more preferably 5 kHz to 20 kHz.
  • the AC voltage can generate plasma in the range of 60 to 1,000,000 V, preferably 1,000 to 20,000 V, more preferably 5,000 to 10,000 V.
  • the plasma irradiation time for the film on the substrate is usually several minutes to several hours. For example, plasma irradiation for about 5 minutes to 24 hours, 5 minutes to 10 hours, 10 minutes to 2 hours, or 20 minutes to 1 hour is performed. It can be carried out.
  • the film on the substrate can be irradiated with plasma at room temperature (about 20 ° C.), but it is also possible to irradiate the plasma while heating the substrate, that is, heating the film.
  • the heating temperature is about 50 to 450 ° C., or about 100 to 250 ° C.
  • the plasma generating gas used in the present invention is not particularly limited, but any gas that can be ionized can be used.
  • the gas introduced into the discharge tube or between the flat plate electrodes as a plasma generating gas is a group 18 element (helium, neon, argon, krypton, xenon). ), Hydrogen, nitrogen, oxygen, carbon monoxide, carbon dioxide (carbon dioxide), nitrogen oxides (nitrogen monoxide, nitrogen dioxide), ammonia, halogen, hydrogen halide, sulfur disulfide, hydrogen sulfide, water vapor, silane, At least one gas selected from the group consisting of GeH 4 , PH 4 , AsH 3 , and B 2 H 6 is used. Usually, helium gas is used for stable plasma generation under atmospheric pressure.
  • helium is ionized and then forms a metastable state (metastable) when returning to the ground state, thereby enabling stable plasma generation.
  • ionization of gas is possible with nitrogen and oxygen as well, but in this case as well, stable plasma can be generated by mixing helium.
  • helium alone gas or a mixed gas of helium and at least one gas selected from the group consisting of hydrogen, oxygen, nitrogen, carbon dioxide gas, carbon monoxide, fluorine, and chlorine is used as a plasma generating gas.
  • the mixed gas is 10 volumes or less, preferably 0.1 volumes of at least one gas selected from the group consisting of hydrogen, oxygen, nitrogen, carbon dioxide gas, carbon monoxide, fluorine, and chlorine with respect to 1 volume of helium. In the following, it can be more preferably 0.001 volume or less.
  • the mixed gas does not need to be two kinds, and can be used by mixing three or more kinds of gases.
  • Mixing two or more kinds of plasma generating gases can change the state of the generated plasma and its secondary product radicals, which can be observed in the emission spectrum of the plasma.
  • the ionization energy of helium excites nitrogen molecules, thereby extracting energy corresponding to ultraviolet light (see FIG. 3).
  • various radicals and ion species derived from nitrogen gas are generated by ionizing helium in nitrogen gas.
  • the flow rate of the gas used is a factor that affects the plasma parameters, but generally the flow rate is 1 ml / second or more and can be used in the range of 1,000 ml / second or less. Preferably, it can be used at 10 ml / second or more and 500 ml / second or less, more preferably 30 ml / second or more and 100 ml / second or less.
  • the form (crystal structure) of the constituent material of the film can be changed by irradiating the film with the generated plasma.
  • the plasma irradiation unit is not particularly limited.
  • the plasma irradiation unit is scanned by placing the film-formed substrate on the XY stage and scanning the X-axis direction or the Y-axis direction while fixing the plasma jet. The binding state of can be changed.
  • the shape change before and after plasma irradiation can be traced by Raman scattering.
  • Raman scattering a bond derived from broad amorphous silicon is initially observed from 200 nm to 600 nm.
  • the peak position is gradually shifted while the polycrystalline silicon sharpens beside the broad peak. The peak of appears.
  • the broad peak of amorphous silicon disappears, and only the peak of polycrystalline silicon is observed.
  • the discharge tube is irradiated with a thermal non-equilibrium type plasma using a dielectric
  • the temperature of the substrate itself does not rise, so only the form of the amorphous silicon film changes, the deformation of the substrate, etc. It can be said that it is a big feature not to be accompanied.
  • the change in the shape of amorphous silicon is a technique that is generally required in the semiconductor industry, it is hated that an oxide film is formed during the change in shape.
  • it does not specifically limit, it is possible to suppress oxide film formation by the plasma processing in the environment which shielded oxygen, such as a glove box.
  • the plasma density can be increased by using a metal tube as the discharge tube material. In this case, the ambient temperature can be slightly increased as compared with the plasma using the above-described dielectric as a discharge tube. As a result, the crystallization speed of amorphous silicon is improved.
  • the movement of the irradiation unit on the XY stage limits the working time of the process, and the processing time for a large area becomes very long. Therefore, it is possible to easily convert the structure of a large-area film by generating plasma between flat electrodes using flat electrodes, placing a substrate with a film between the flat electrodes, and irradiating with plasma. is there.
  • the electrode material is not particularly limited as described above, but, as in the case of the plasma jet, a structure in which a high voltage electric wire is attached to a dielectric with a conductive tape or the like and the dielectrics are opposed to each other. Alternatively, the metal electrodes may face each other as they are.
  • the processing substrate is installed between the counter electrodes, but may be directly on the lower electrode.
  • the plasma annealing apparatus of the present invention is cheaper than the conventional laser annealing apparatus, and does not require a high temperature as in the prior art, and can form a semiconductor film by processing at a low temperature. This is a very useful technology for plasticizing devices.
  • Example 1 The amorphous silicon film formed by the CVD method was irradiated with a plasma jet by a plasma irradiation apparatus using a metal discharge tube (stainless steel tube), and the change in the crystalline state was analyzed by Raman spectroscopy. Film formation and plasma irradiation were performed in the same apparatus.
  • SiH 4 having a flow rate of 200 sccm and He having a flow rate of 200 sccm were flowed as film forming gases into the glow discharge decomposition apparatus.
  • sccm is an abbreviation for standard cc / min, and means cc (cm 3 ) per minute.
  • This gas is introduced into the reaction furnace from the gas inlet and ejected to the substrate surface.
  • the substrate is set to 250 ° C. by a heater, and glow discharge is performed at a high frequency power of 200 W between the substrate support pair and the electrode plate for 5 hours.
  • an amorphous silicon film having a thickness of 30 ⁇ m was formed.
  • FIG. 4 shows the Raman spectrum of the obtained amorphous silicon film.
  • the Raman spectrum was measured at a wavelength of 532 nm using a micro laser Raman SENTERRA manufactured by Bruker Optics. From the measurement results, a broad peak was observed from 200 nm to 600 nm.
  • this film was irradiated with the generated plasma at 20 ° C. for 30 minutes using a metal discharge tube (stainless steel tube) as a discharge tube in the plasma irradiation apparatus.
  • the voltage applied at this time was 10 kilovolts, and the frequency was 10 kHz.
  • the Raman spectrum measurement result after plasma irradiation is shown in FIG.
  • FIG. 6 the Raman spectrum measurement results of the silicon film before plasma irradiation (10) and after plasma irradiation (11) are shown superimposed.
  • the full width at half maximum is narrower after the plasma irradiation (11, the spectrum of FIG. 5) than that before the plasma irradiation (10, the spectrum of FIG. 4). It was confirmed that the crystal structure changed from amorphous silicon to polysilicon.
  • the method of the present invention it is possible to provide a plasma annealing method and apparatus capable of changing a crystal structure of a film by treating a film (film) on a substrate and having excellent productivity.
  • FIG. 10 is a schematic diagram of a plasma annealing apparatus using a counter-plate electrode. 10 Raman spectrum of an amorphous silicon film formed by CVD. 11 Raman spectrum of a film obtained by plasma irradiation of an amorphous silicon film formed by CVD using the method of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Recrystallisation Techniques (AREA)
  • Plasma Technology (AREA)

Abstract

【課題】基板上の膜(被膜)を処理して膜の結晶構造を変化させることができ、かつ生産性に優れたプラズマアニール装置を提供する。 【解決手段】基板上の膜に大気圧プラズマを照射する工程(A)を含む膜の構成物質の結晶構造を変化させる膜の製造方法。工程(A)が10ヘルツ~100メガヘルツの周波数と、60ボルト~100万ボルトの電圧により大気圧でプラズマを生成し、そのプラズマを直接に基板上の膜に照射するものである。(A)工程を含む膜の構成物質の結晶構造を変化させる方法。(A)工程の膜の形成方法に用いられるプラズマ発生装置。(A)工程を経て製造された電子デバイス。

Description

プラズマアニール方法及びその装置
 本発明は、プラズマにより膜の構成物質の結晶構造を変化させる膜の製造方法及びそれに用いるプラズマアニール装置に関する。
 化学蒸着法などの方法で形成されたアモルファス無機構造体は、その結合状態に依存して、電子伝導において伝導電子は散乱を受け、その移動挙動に関して抵抗となり、すなわち構造体の結合状態は構造体の電子移動物性に大きな影響を及ぼす。このため原子同士の結合を整わせ結晶化させることによって電子移動挙動を大幅に改善することが可能である。
 構造体の結合状態を変化させるには、結合状態にある原子を大きく揺らす必要があり、これには大きな熱エネルギーを必要とする。このため、現在こうした構造膜の一種である構造体膜の形成にあたっては、気相成長法などによって基板上に形成したアモルファス膜に対して、電気炉等により高温熱処理する方法(直接加熱法)や、レーザー光を照射して加熱する方法(レーザーアニール法)により、アモルファス構造体膜を多結晶膜へと変換させることが行われている。
 上述の加熱焼成による直接加熱法では、膜並びに膜が形成された基板材全体が加熱されるため、例えばガラスなどの比較的熱に弱い基材に膜が形成されている場合、その基材の耐熱温度により加熱焼成温度が制限を受けてしまう。
 これに対して、レーザーアニール法は特定波長のレーザーを用いるため、レーザー光を吸収しない基材ではほとんど温度上昇が起こらない。このため、例えば膜に対して吸収を持ち、基材に対して吸収をもたない波長のレーザー光を選択することにより、基材の温度をほとんど上昇させることなくレーザーを照射し、膜の結合状態を変えることができることが期待される。
 但し、レーザーアニール法によって例えばアモルファスシリコン膜をポリシリコン膜に変換する工程では、レーザー光の照射領域に酸素などの不純物ガスが存在すると、これら不純物ガスがシリコン膜中に取り込まれ、不純物の混入による特性劣化、アモルファスシリコン膜から変換されるポリシリコン膜の結晶の大きさや表面粗さの低減、面方位の均等化を阻害するなどを引き起こす虞がある。このため、レーザー光の照射領域に不純物ガスを存在させないようにすることが重要である。
 アモルファスシリコン膜をポリシリコン膜に変換させるための従来のレーザーアニール装置では、レーザー光の照射領域における不純物ガスの濃度を低減させるために、例えば、アモルファスシリコン膜を備えた基板全体を収納可能な高気密のチャンバーを設け、このチャンバー内を真空にして不純物ガスを排出させた後、不活性ガスなどでチャンバー内を置換する工程が行われている(特許文献1)。
 しかしながら、上述したようなチャンバー内全体のガス雰囲気を制御する方法では、高価な真空チャンバー、大規模な排気装置などが必要になり、装置コストやランニングコストが高くなるという課題があった。また、基板の大きさに合わせて、基板全体を収容する真空チャンバーも大型化する必要があるため、特に大型の基板を処理する場合には、装置全体が大型化してしまうという課題もあった。
 一方、多結晶体を形成する際、結晶の均一性がその電気物性に大きな影響を及ぼすため、レーザー光の形状に工夫がなされている。これは、一般に円形レーザー光ではその強度は指数関数的にその中心部強度が大きくなっていることから、レーザー光を直接無機構造体に照射すると、照射中心だけが優先的に結晶化されるため、結晶化において不均一な膜となるためである。
 このため、一般にスポットレーザー光をシリンドリカルレンズを通し、矩形形レーザー光にしたのち、ホモジナイザーを用いてそのレーザー強度を均一にし、強度が均一となった矩形形レーザー光を無機構造体に対してスキャンさせることによって結晶化を行う手法が採用されている(特許文献2)。
 しかしながら、上述したような構成のレーザーアニール装置においても、依然として高温でレーザーアニール処理を行う必要があり、さらに結晶化の不均一性という不具合を改善できるに至っていない。
 なお、構造変化を伴わないものの、高真空下にアモルファスシリコン成膜用ガスを導入後にプラズマを発生させ、基板上にアモルファスシリコン膜を形成する、プラズマを利用した成膜方法が提案されている(特許文献3)。
特開2002-164543号公報 特開2003-100652号公報 特開平6-173044号公報
 上述のレーザーアニール法における改善すべき問題として残されていたことは、レーザー照射効果の均一性である。この均一性を高めるための種々の方法が検討されている。
 1つの方法として、スリットを介すことにより、ビームのエネルギー分布の形状を矩形にできるだけ近づけて、線状ビーム内のばらつきを小さくする方法がある。
 上記方法に加え、不均一性をさらに緩和させるために、強いパルスレーザー光の照射の前に、それよりも弱いパルスレーザー光の予備的な照射をおこなうと、均一性が向上することが報告されている。
 この予備的照射を行うことによる効果は非常に高く、半導体デバイスの特性を著しく向上させることができる。これは、照射エネルギーが異なる2段階のレーザー光を照射することで、半導体膜の結晶化を段階的に行うことができ、従来の予備的照射を行わないレーザーアニールでみられた結晶性の不均一性や結晶粒界の生成、さらには応力の集中といった急激な相変化に従う種々の問題を緩和できるからである。また、この段階的な照射は、さらにその回数を増やし多段階とすることで、その効果をより高めることができる。
 そしてこれら2つの方法によって、レーザー照射効果の均一性をかなり向上させることができる。
 しかしながら、上述のような2段階照射法では、レーザー処理時間が倍になるためスループットが低下し、また、2段階照射法を行うための設備は1段階のみ照射を行う場合に比較して複雑になることからコストアップにもつながり、生産性に課題があった。
 また、レーザー照射効果の均一性も、かなり向上させることができたといっても、十分満足であると言えるものには程遠く、生産性・性能面の双方をさらに改善できる方法が求められている。
 本発明は、上記事情に鑑みてなされたものであって、簡易な構成で基板上の膜(被膜)を処理して膜の結晶構造を確実に変化させることができ、かつ生産性に優れたプラズマアニール装置を提供することを目的とする。
 本発明は第1観点として、基板上の膜に大気圧プラズマを照射する工程(A)を含む、膜の構成物質の結晶構造を変化させることを特徴とする膜の製造方法、
 第2観点として、工程(A)が、周波数が10ヘルツ~100メガヘルツ、電圧が60ボルト~100万ボルトで通電することにより大気圧下でプラズマを生成させ、生成したプラズマを直接に基板上の膜に照射する工程である、第1観点に記載の膜の製造方法、
 第3観点として、工程(A)が、周波数が10ヘルツ~100メガヘルツ、電圧が60ボルト~100万ボルトで、放電管の高電圧電極に通電するか又は2枚の対向電極のどちらか一方に通電するとともに、前記放電管の内部に又は前記2枚の対向電極間にプラズマ発生用ガスを流すことにより大気圧下でプラズマを生成させ、生成したプラズマを直接に基板上の膜に照射する工程である、第1観点に記載の膜の製造方法、
 第4観点として、工程(A)に用いられる放電管が、無機誘電体材料、有機高分子、又は金属からなる、第3観点に記載の膜の製造方法、
 第5観点として、工程(A)に用いられる2枚の対向電極が、平板誘電体又は平板金属からなる、第3観点に記載の膜の製造方法、
 第6観点として、工程(A)に用いられる平板誘電体が、無機誘電体材料又は有機高分子からなる、第5観点に記載の膜の製造方法、
 第7観点として、工程(A)に用いられるプラズマ発生用ガスが、ヘリウム、アルゴン、クリプトン、キセノン、水素、窒素、酸素、二硫化硫黄、硫化水素、水蒸気、一酸化炭素、二酸化炭素、アンモニア、窒素酸化物、ハロゲン、ハロゲン化水素、シラン、GeH4、PH4、AsH3、及びB26からなる群から選ばれる少なくとも1種のガスである、第3観点乃至第6観点のいずれか1項に記載の膜の製造方法、
 第8観点として、前記プラズマ発生用ガスとして酸素を用いない場合、工程(A)が酸素濃度100ppm以下に保たれているチャンバー内で行われる、第3観点乃至第7観点のいずれか1項に記載の膜の製造方法、
 第9観点として、工程(A)において、基板上の膜を加熱しながらプラズマを照射する、第1観点乃至第8観点のいずれか1項に記載の膜の製造方法、
 第10観点として、第1観点乃至第9観点のいずれか1項に記載の(A)工程を含む膜の構成物質の結晶構造を変化させる方法、
 第11観点として、第1観点乃至第9観点のいずれか1項に記載の(A)工程の膜の製造方法に用いられるプラズマ発生装置、
 第12観点として、第1観点乃至第9観点のいずれか1項に記載の(A)工程を経て製造された電子デバイスである。
 本発明の膜の製造方法によれば、プラズマ照射装置(プラズマアニール装置)内で、プラズマ粒子が膜に衝突した部分のみを徐々に結晶化させることができる。
 特に本発明で用いる大気圧プラズマ(熱非平衡型のプラズマ)の場合、周囲温度を上げることなく、照射領域の構造体の形態や結合状態を変化させることができ、即ち低温での結晶化が可能である。また、プラズマ密度は印加する電源の周波数、電圧もしくはプラズマ発生用ガスのガス濃度でコントロールすることができ、それらを制御することで結晶化の度合い、結晶化時間をコントロールすることができる。このように、大気圧中で制御されるプラズマでは、結晶化を低温にて制御しながら行うことができる。
 また本発明の膜の製造方法によれば、高純度ガスを用いることによって、例えば酸化が問題になる膜では、プラズマが基板の膜に照射されるところの照射領域の周囲の酸素濃度を極めて低く保つことが可能になる。これにより、プラズマが照射された膜は、酸素による影響が排された、均一な結晶粒径と表面粗さを持ち、面方位が均等化された高品質な膜に変換することが可能になる。
 また本発明の膜の製造方法によれば、基板全体を真空や不活性ガス雰囲気に保つ高気密なチャンバー等を必要としないので、プラズマ照射装置(プラズマアニール装置)の構成を簡略にしてローコスト化できるとともに、軽量、小型化を達成できるため、メンテナンスに掛かる手間を大幅に削減でき、ランニングコストを低減して生産性を向上させることが可能になる。無論、酸素を嫌う場合には高気密チャンバーを用いてガス置換を行うことも可能であるが、その場合でも従来のような高真空用チャンバーは必要としない。
図1は、本発明に用いるプラズマ照射装置であって、放電管を用いた装置の例を示した概略図である。 図2は、本発明に用いるプラズマ照射装置であって、平板電極(対向電極)を用いた装置の例を示した概略図である。 図3は、プラズマ放電スペクトルを説明する図である。 図4は、CVDにより成膜したアモルファスシリコン膜のラマンスペクトル測定結果を示すグラフである。 図5は、CVDにより成膜したアモルファスシリコン膜に、本発明の方法でプラズマ照射して得られた膜のラマンスペクトル測定結果を示すグラフである。 図6は、プラズマ照射の前後の膜のラマンスペクトル測定結果を示すグラフであって、これらの差から本発明の検証結果を示す説明図である。
 本発明が対象とする膜の製造方法は、上記課題を解決するために、次のようなプラズマアニール方法及びそれに用いる装置を提供するものである。
 すなわち、本発明の膜の製造方法は、基板に形成された膜に大気圧プラズマを照射することによって膜の結晶構造を変化させる点を特徴とするものであって、プラズマ照射にあたり、プラズマ照射装置(アニール装置)を用いることができる。
 前記プラズマ照射装置には、膜の形成された基板を載置するステージと、その上に前記基板に向けてプラズマを照射する放電管又は高電圧平板電極(対向電極)とが設置され、放電管の場合はその放電管にプラズマ発生用ガスを流しながら高周波高電圧を印加し、また平板電極の場合には膜の形成された基板と平板電極の間にプラズマ発生用ガスを滞留させプラズマを大気圧近傍で形成させることを特徴としている。プラズマは特に限定するものではないが安定なアニール処理を行う場合グロー状放電が望ましい。
 以下、本発明に係る膜の製造方法について、プラズマ照射装置(プラズマアニール装置)と共に、図面に基づき説明する。なお、本実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。また、基板上に被覆された膜の結晶構造を変化させる一例として、CVD法により基板上のアモルファスシリコン膜をポリシリコン膜へ変換させる方法を例示するが、無論、本発明の製造方法が対象とする膜はシリコン膜のみに限定されるわけではない。
 本発明は基板上の膜に大気圧プラズマを照射する工程(A)を含み、膜の構成物質の結晶構造を変化させることを特徴とする、膜の製造方法である。
 大気圧プラズマとは大気圧(760Torr)下で発生させたプラズマを指す。但し、大気圧下でプラズマ発生させる際、プラズマ発生用ガスの流入や排出により系内の圧力は変化することがあり、760Torrから上下に100Torr程度変化し得る。
 膜の構成物質とはその膜を形成する成分を指し、例えばアモルファスシリコン膜であればシリコン(ケイ素)を指す。そして、膜の構成物質の結晶構造を変化させるとは、例えばこのシリコンの結晶構造をアモルファスシリコンからポリシリコンに変化させることを意味する。
 上記膜の構成物質として、シリコン以外にも金属酸化物、金属硫化物、ドーパント含有シリコン、化合物半導体等を用いることができる。
 金属酸化物としては、例えば酸化珪素、酸化ジルコニウム、酸化アルミニウム、酸化ニッケル、酸化鉄、酸化亜鉛、酸化チタン、酸化コバルト等が挙げられる。
 金属硫化物は例えば硫化亜鉛、硫化カドニウム、硫化チタン、硫化コバルト、硫化鉄等が挙げられる。
 ドーパント含有シリコンは例えばホウ素やリンがドープされたシリコンが挙げられる。
 化合物半導体としては例えばヒ化ガリウム、ヒ化アルミニウムガリウム、インジウムリン、窒化ガリウム等が挙げられる。
 図1は、本発明に用いるプラズマ照射装置(プラズマアニール装置)の一例を示す概略図であって、放電管を用いるプラズマジェット型アニール装置の概略図である。なお、ここでプラズマアニールとは、例えばアモルファスシリコンをポリシリコンへと結晶変化させる間に実施されるプラズマ照射処理をさす。
 図1に示すように、プラズマ照射(プラズマアニール)装置5は、被加工物である膜を被覆した基板3を載置するステージ4と、基板3に向けてプラズマを照射する放電管1とを、ステージ4の上に間隔をあけて備えている。放電管1の先端部に備えられた高電圧電極1-aには電源2が接続されている。
 図1に示す装置において、ステージ4は、ステージ移動手段によって、ステージ4の平面内のX軸方向およびY軸方向に移動可能な構造とされている。プラズマの照射位置は固定とされ、ステージ4をX方軸向、Y軸方向に平面的に移動させることによって、ステージ4上に載置された基板1の一面全体にプラズマを照射させることができる構造となっている。また、場合によってはX軸方向及びY軸方向に加え、ステージ4に対して垂直方向であるZ軸方向に立体的に移動させて照射することもできる。
 図1に示す装置において、プラズマは放電管の先端からジェット状に噴出する。そしてプラズマは、基板1の一面に形成された膜、一例としてアモルファスシリコン膜を、ポリシリコン膜に変換させるために必要なプラズマ粒子温度を有している。プラズマパラメーターとして放電管の高電圧電極1-aに接続する電源2の電圧及び周波数、並びにプラズマ発生用ガスのガス流量を制御することで、プラズマ密度をコントロールすることができる。そしてこれにより、膜の状態を自由に変化させることができる。
 また本装置において、ステージ4のY軸方向に向かって所定の線速度でスキャンさせることで、加工時間(プラズマ照射時間)を制御できる。
 さらに、プラズマ密度は、プラズマ照射装置(プラズマアニール装置)5の放電管1の設置高さを変化させることによっても変えることが可能である。
 図1に示す装置において用いる放電管1は特に限定されるものではないが、例えばガラスなどの誘電体等が用いられ、その放電管の先端部に高電圧電極1-aを設置して電源2を接続することで、簡単にプラズマジェットを生成することができる。この場合、生成するプラズマは誘電体バリア型プラズマとなることから熱非平衡プラズマとなり、これにより周囲温度の上昇を抑制することができる。
 さらに、本発明に用いられるプラズマ照射装置(プラズマアニール装置)として、図2に示すように対向平板電極を用いて形成することもできる。図1に示すようなプラズマジェット型の装置では、基本的に局所的な構造変化をもたらすには好適ではあるが、大面積の処理には不向きである。このため、図2に示すような平板電極間でプラズマを生成させる装置を用いることにより大面積処理が可能となる。
 図2は対向平板電極を用いるプラズマ生成装置を記している。対向電極6の間の距離はプラズマ密度を変える1つのパラメーターとして使用できる。対向電極6は通常上部電極6aに高電圧電極8を接続し、この高電圧電極8に電源7を接続し、下部電極6bにアースを接続するが、特にアースを接続する必要はない。プラズマ発生用ガスはこの対向電極6間に流される。この場合、ガス流による不安定なプラズマ生成を避けるため、好ましくはガスチャンバーが用いられるが、この場合も特に減圧状態にする必要はなく、大気圧から減圧下まで様々な状態のプラズマを生成することができる。基材に形成した膜はこの電極間に設置され所定時間プラズマ処理される。
 以下、さらに本発明に用いるプラズマ照射装置を構成する各構成要素について詳述する。
 本発明は、大気圧(大気圧近傍)の圧力下において、金属管又は絶縁体管に高電圧電極を取り付けた放電管内にプラズマ発生用ガスを流しながら低周波数で高電圧の電気を印加することにより放電管内にプラズマを発生させ、この発生したプラズマを膜に照射することにより、膜の構成物質の形態や結合状態を変化させることができる。
 放電管として金属管を用いる場合には高電圧電極のみを金属管に接続し、グラウンドは大気とする(図1)。また、放電管としてプラスチック管等の絶縁体管を用いる場合には、高電圧電極の前後(高電圧電極とは接触しない距離を保つ、またアーク放電しない距離以上はなす。)にアースを取り付けることもできるが、金属管同様に大気をグランドにすることもできる。
 また、プラズマの放出に用いられる放電管のノズル部の材質としては周期律表4族から14族に含まれる元素単体又はそれらの化合物からなり、これに高電圧電極を接続し、グランド側を大気としてガスを流しながら、低周波数高電圧を印加させることにより発生させた電離気体およびラジカルガスとすることが可能である。
 プラズマ照射装置は特にペンシル状のノズルから放射するプラズマジェット(図1)である必要は無く、2枚の対向する平板電極に対して交流電界を印加し、この間隙にプラズマガスとなり得るガス(プラズマ発生用ガス:特に限定するものではないが例えばヘリウムガス、後述参照)などを流すことにより安定な大気圧プラズマを発生させ、この間隙に処理基板を静置することで処理することが可能である(図2)。
 この装置は、2枚の平板誘電体又は平板金属を対面させ、一方に高電圧電極を接続し、他方はアースを接続せず大気アースとするか又はアース電極を接続した構造を有する。
 そして、2枚の平板誘電体又は平板金属を大気圧中に設置し、低周波数で高電圧を印加して導入ガス(プラズマ発生用ガス)をプラズマ化させることにより、得られたプラズマを処理基板に照射させることができる。或いは、2枚の平板誘電体又は平板金属を減圧容器中に設置し、減圧後に導入ガスを流し、低ガス圧下、低周波数で高電圧を印加して導入ガスをプラズマ化させ、得られたプラズマを処理基板に用いることもできる。
 対向平板電極を用いた場合、その電極の形状としては特に限定するものではないが、放電を安定させるため、例えば銅のメッシュなど出来るだけ電界を集中できる材料を用いることが好ましい。
 これは、電極表面にある特定の弱点からの異常放電をさけるためであり、大気圧近傍の圧力において、安定なグロー状放電を維持するために重要である。
 電極材料としては放電管を用いる場合も、対向電極を用いる場合も、無機誘電体材料、有機高分子、及び金属を用いることができる。
 上記金属としては、例えばアルミニウム、ステンレス、銅、鉄、真鋳など、ガス流路の形成されている金属管又は金属電極は何れも使用が可能である。
 また、絶縁体としての有機高分子としては特に限定するものではないが、汎用プラスチック、エンジニアリングプラスチック、スーパーエンジニアリングプラスチック等を用いることができる。汎用プラスチックとしては、ポリエチレン(高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン)、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、アクリロニトリルブタジエンスチレン樹脂(ABS樹脂)、アクリロニトリルスチレン樹脂(AS樹脂)、アクリル樹脂、ポリテトラフルオロエチレンなどが挙げられる。また、エンジニアリングプラスチックとしては、特に限定するものではないが、例えば、ポリアミド、ナイロン、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル(m-PPE、変性PPE)、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレンテレフタレートガラス樹脂(PET-G)、環状ポリオレフィン、グラスファイバー強化型ポリエチレンテレフタレート(FRP)などが挙げられる。また、スーパーエンジニアリングプラスチックとしては、特に限定するものではないが、ポリフェニレンスルフィド、ポリスルホン、ポリエーテルスルホン、非晶ポリアリレート、液晶ポリエステル、ポリエーテルエーテルケトン、ポリアミドイミド、ポリイミド、ポリアミドなどが挙げられる。
 また絶縁体として無機誘電体材料を用いることもできる。これら具体例としては、特に限定するものではないが、ガラス、シリコン、ジルコニア、陶磁器、アルミナ、チタニア、シリコンカーバイト、シリコンナイトライドなどが挙げられる。
 プラズマの発生に必要な電源として、交流の高電圧電源を用いる。交流とは周波数が10Hz~100MHzを示し、好ましくは50Hz~100kHz、更に好ましくは5kHz~20kHzである。交流電圧は60V~100万Vの範囲でプラズマ発生が可能であるが、好ましくは1,000V~20,000V、更に好ましくは5,000V~10,000Vである。
 基板上の膜へのプラズマ照射時間は通常、数分~数時間であり、例えば5分間~24時間、5分間~10時間、10分間~2時間、又は20分間~1時間程度のプラズマ照射を行うことができる。
 また、基板上の膜は室温(約20℃)でプラズマを照射することができるが、この基板を加熱して、すなわち膜を加熱しながらプラズマ照射することもできる。加熱温度は50~450℃、又は100~250℃程度である。
 本発明において用いるプラズマ発生用ガスは特に限定されるものではないが、電離可能なガスであれば何でも使うことができる。
 詳細には、上記条件で発生させたプラズマを反応活性種として使用するとき、プラズマ発生用ガスとして放電管内又は平板電極間に導入するガスは第18族元素(ヘリウム、ネオン、アルゴン、クリプトン、キセノン)、水素、窒素、酸素、一酸化炭素、二酸化炭素(炭酸ガス)、窒素酸化物(一酸化窒素、二酸化窒素)、アンモニア、ハロゲン、ハロゲン化水素、二硫化硫黄、硫化水素、水蒸気、シラン、GeH4、PH4、AsH3、及びB26からなる群から選ばれる少なくとも1種のガスが用いられる。
 通常、大気圧下安定にプラズマ生成する場合ヘリウムガスが用いられる。これはヘリウムは電離した後、基底状態に戻る際に準安定状態(メタステーブル)を形成し、これにより安定にプラズマ生成することができるためである。
 一方、窒素や酸素に関しても同様に気体の電離は可能であるが、この場合もヘリウムを混合するほうが安定なプラズマを生成することができる。
 すなわちプラズマ発生用ガスとして、ヘリウム単独ガス、又はヘリウムと水素、酸素、窒素、二酸化炭素ガス、一酸化炭素、フッ素、及び塩素からなる群より選ばれる少なくとも1種のガスとの混合ガスとして用いることが可能である。混合ガスはヘリウム1容積に対して、水素、酸素、窒素、二酸化炭素ガス、一酸化炭素、フッ素、及び塩素からなる群より選ばれる少なくとも1種のガスを10容積以下、好ましくは0.1容積以下、更に好ましくは0.001容積以下とすることができる。混合ガスは2種である必要はなく、3種以上のガスの混合でも用いることができる。
 プラズマ発生用ガスを2種以上混合することで、発生するプラズマ及びその2次生成物であるラジカルの状態を変えることができ、これはプラズマの発光スペクトルで観察することができる。例えばヘリウムに窒素を導入することで、ヘリウムの電離エネルギーが窒素分子を励起し、それにより紫外光に相当するエネルギーを取り出すことができる(図3を参照)。また、窒素ガス中でヘリウムを電離することにより窒素ガス由来の様々なラジカル、イオン種が生成される。
 用いられるガスの流量はプラズマパラメーターに影響するファクターであるが、一般にその流量は1ミリリットル/秒以上であり、1,000ミリリットル/秒以下の範囲で使用可能である。好ましくは10ミリリットル/秒以上で500ミリリットル/秒以下、更に好ましくは30ミリリットル/秒以上で100ミリリットル/秒以下で使用することができる。
 以上、生成したプラズマを膜に照射することにより、膜の構成物質の形態(結晶構造)を変化させることができる。特に限定するものではないが、例えばCVDにより形成されたアモルファスシリコン膜に対して前記プラズマを照射すると、容易にその結合状態を変化させ得る。
 このとき、プラズマジェットを用いる場合、特に限定するものではないが、膜を形成した基板をXYステージに乗せ、プラズマジェットを固定したままX軸方向又はY軸方向にスキャンすることで、プラズマ照射部の結合状態を変化させ得る。プラズマの照射対象がアモルファスシリコン膜の場合、プラズマ照射前後の形態変化をラマン散乱により追跡することができる。ラマン散乱によると、はじめはブロードなアモルファスシリコン由来の結合が200nmから600nmにかけて観察されるが、これがプラズマ照射されるに従い、そのピーク位置をシフトさせながら徐々にブロードなピークの横に鋭い多結晶シリコンのピークが現れるようになる。最終的にアモルファスシリコンのブロードなピークは消失し、多結晶シリコンのピークのみが観察されるようになる。
 このとき、特に放電管に誘電体を用いた熱非平衡型のプラズマを照射した場合、基材自身の温度は上昇しないため、アモルファスシリコン膜の形態のみが変化するにとどまり、基材の変形等は伴わないのが大きな特徴といえる。また、アモルファスシリコンの形態変化は一般に半導体産業で多く必要とされる技術であることから、形態変化中に酸化皮膜が形成されることを嫌う。このため、特に限定するものではないがグローブボックス等酸素を遮断した環境下でのプラズマ処理により酸化膜形成を抑制することが可能である。
 なお、放電管材料に金属管を用いることにより、プラズマ密度を上げることができる。この場合、先述の誘電体を放電管に用いたプラズマに比べ、その周囲温度を若干上げることができる。これによりアモルファスシリコンの結晶化速度は向上することとなる。
 一方、プラズマジェットではXYステージでの照射部移動がそのプロセスの作業時間を限定してしまい、大面積の処理時間が非常に長くなる。
 そこで平面電極を用いた平板電極間にプラズマを生成し、膜を付加した基材をこの平板電極間に設置し、プラズマ照射することによって、大面積の膜を容易に構造変換することが可能である。
 この場合、電極材料は前述したように特に限定するものではないが、前記プラズマジェットのとき同様、誘電体に導電テープ等で高電圧電線を取り付けた電極で、その誘電体同士を対向させた構造でもよいし、また金属電極をそのまま対向させてもよい。
 処理基板はこの対向電極間に設置するが、そのまま下部電極上においてもかまわない。
 以上述べたように、本発明のプラズマアニール装置は従来のレーザーアニール装置に比べ安価であり、かつ従来のような高温を必要とせず、低温での処理により半導体膜を形成できるものであり、半導体デバイスのプラスチック化に非常に有用な技術である。
[実施例1]
 CVD法により形成したアモルファスシリコン膜に対して、金属放電管(ステンレス管)を用いたプラズマ照射装置によりプラズマジェットを照射し、その結晶状態の変化をラマン分光法により解析した。なお同一装置内で成膜とプラズマ照射を行った。
 アモルファスシリコン膜の形成には、グロー放電分解装置に成膜用ガスとして流量200sccmのSiH4と、流量200sccmのHeとを流した。sccmはstandard cc/minの略称であり、1分間当たりのcc(cm3)を意味する。このガスをガス導入口より反応炉内部に導入して基板面に噴出し、ヒーターによって基板を250℃に設定すると共に、基板支持対と電極板の間で高周波電力200Wでグロー放電を行い、5時間かけて膜厚30μmのアモルファスシリコン膜を形成した。
 得られたアモルファスシリコン膜のラマンスペクトルを図4に示す。ラマンスペクトルはブルカーオプティクス社製の顕微レーザーラマンSENTERRAを用い、波長532nmで測定を行った。
 測定結果から200nmから600nmにかけてブロードなピークが観測された。
 次にこの膜に対して、プラズマ照射装置内の放電管に金属放電管(ステンレス管)を用い、生成したプラズマを20℃で30分照射した。このとき印加した電圧は10キロボルト、周波数は10kHzであった。プラズマ照射後のラマンスペクトル測定結果を図5に示す。
 図6に、プラズマ照射前(10)、プラズマ照射後(11)のシリコン膜のラマンスペクトル測定結果を重ねて示す。
 半値幅はプラズマ照射前(10、図4のスペクトル)に比較して、プラズマ照射後(11、図5のスペクトル)には狭くなっていることから、膜の構成物質の結合状態が変化し、アモルファスシリコンからポリシリコンに結晶構造が変化していることが確認された。
 本発明の方法によれば、基板上の膜(被膜)を処理して膜の結晶構造を変化させることができ、かつ生産性に優れたプラズマアニール方法及び装置を提供することができる。
1 放電管
 1-a 高電圧電極
2 電源
3 基板
4 ステージ
5 放電管を用いるプラズマジェット型アニール装置の概略図
6 対向電極
 6a 上部電極  6b 下部電極
7 電源
8 高電圧電極を取り付けた上部電極板
9 対向平板電極を用いるプラズマアニール装置の概略図
10 CVDにより成膜したアモルファスシリコン膜のラマンスペクトル
11 CVDにより成膜したアモルファスシリコン膜に、本発明の方法でプラズマ照射して得られた膜のラマンスペクトル

Claims (12)

  1. 基板上の膜に大気圧プラズマを照射する工程(A)を含む、膜の構成物質の結晶構造を変化させることを特徴とする膜の製造方法。
  2. 工程(A)が、周波数が10ヘルツ~100メガヘルツ、電圧が60ボルト~100万ボルトで通電することにより大気圧下でプラズマを生成させ、生成したプラズマを直接に基板上の膜に照射する工程である、請求項1に記載の膜の製造方法。
  3. 工程(A)が、周波数が10ヘルツ~100メガヘルツ、電圧が60ボルト~100万ボルトで、放電管の高電圧電極に通電するか又は2枚の対向電極のどちらか一方に通電するとともに、前記放電管の内部に又は前記2枚の対向電極間にプラズマ発生用ガスを流すことにより大気圧下でプラズマを生成させ、生成したプラズマを直接に基板上の膜に照射する工程である、請求項1に記載の膜の製造方法。
  4. 工程(A)に用いられる放電管が、無機誘電体材料、有機高分子、又は金属からなる、請求項3に記載の膜の製造方法。
  5. 工程(A)に用いられる2枚の対向電極が、平板誘電体又は平板金属からなる、請求項3に記載の膜の製造方法。
  6. 工程(A)に用いられる平板誘電体が、無機誘電体材料又は有機高分子からなる、請求項5に記載の膜の製造方法。
  7. 工程(A)に用いられるプラズマ発生用ガスが、ヘリウム、アルゴン、クリプトン、キセノン、水素、窒素、酸素、二硫化硫黄、硫化水素、水蒸気、一酸化炭素、二酸化炭素、アンモニア、窒素酸化物、ハロゲン、ハロゲン化水素、シラン、GeH4、PH4、AsH3、及びB26からなる群から選ばれる少なくとも1種のガスである、請求項3乃至請求項6のいずれか1項に記載の膜の製造方法。
  8. 前記プラズマ発生用ガスとして酸素を用いない場合、工程(A)が酸素濃度100ppm以下に保たれているチャンバー内で行われる、請求項3乃至請求項7のいずれか1項に記載の膜の製造方法。
  9. 工程(A)において、基板上の膜を加熱しながらプラズマを照射する、請求項1乃至請求項8のいずれか1項に記載の膜の製造方法。
  10. 請求項1乃至請求項9のいずれか1項に記載の(A)工程を含む膜の構成物質の結晶構造を変化させる方法。
  11. 請求項1乃至請求項9のいずれか1項に記載の(A)工程の膜の製造方法に用いられるプラズマ発生装置。
  12. 請求項1乃至請求項9のいずれか1項に記載の(A)工程を経て製造された電子デバイス。
PCT/JP2011/075068 2010-11-04 2011-10-31 プラズマアニール方法及びその装置 WO2012060325A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137013656A KR20140067956A (ko) 2010-11-04 2011-10-31 플라즈마 어닐링 방법 및 그 장치
KR1020197016611A KR102192283B1 (ko) 2010-11-04 2011-10-31 플라즈마 어닐링 방법 및 그 장치
JP2012541852A JP6328882B2 (ja) 2010-11-04 2011-10-31 プラズマアニール方法及びその装置
US13/883,042 US11511316B2 (en) 2010-11-04 2011-10-31 Plasma annealing method and device for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010247339 2010-11-04
JP2010-247339 2010-11-04

Publications (1)

Publication Number Publication Date
WO2012060325A1 true WO2012060325A1 (ja) 2012-05-10

Family

ID=46024439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075068 WO2012060325A1 (ja) 2010-11-04 2011-10-31 プラズマアニール方法及びその装置

Country Status (5)

Country Link
US (1) US11511316B2 (ja)
JP (1) JP6328882B2 (ja)
KR (2) KR102192283B1 (ja)
TW (1) TWI579900B (ja)
WO (1) WO2012060325A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101391939B1 (ko) * 2012-11-26 2014-05-07 주식회사 다원시스 플라즈마 이온 주입에 의한 비결정질 반도체 박막을 결정화하는 방법 및 장치
JP2014232699A (ja) * 2013-05-30 2014-12-11 学校法人文理学園 プラズマ処理装置及びプラズマ処理方法
WO2019065544A1 (ja) * 2017-09-28 2019-04-04 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置及び記録媒体

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012307082A1 (en) * 2011-09-09 2014-04-17 Panorama Synergy Ltd Method of crystallising thin films
CN104822219B (zh) * 2015-05-18 2017-09-19 京东方科技集团股份有限公司 等离子发生器、退火设备、镀膜结晶化设备及退火工艺
WO2020263555A1 (en) 2019-06-24 2020-12-30 Corning Incorporated Rf plasma optical fiber annealing apparatuses, systems, and methods of using the same
FR3100924B1 (fr) * 2019-09-13 2022-02-04 Commissariat Energie Atomique Traitement d’un film mince par plasma d’hydrogène et polarisation pour en améliorer la qualité cristalline
KR102502074B1 (ko) * 2020-08-31 2023-02-21 남부대학교 산학협력단 플라즈마 스택 볼륨 유전체 장벽 방전형 플라즈마 발생시스템
KR102688353B1 (ko) * 2021-06-30 2024-07-26 세메스 주식회사 기판 처리 장치 및 기판 처리 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250488A (ja) * 1995-01-13 1996-09-27 Seiko Epson Corp プラズマ処理装置及びその方法
JPH11145148A (ja) * 1997-11-06 1999-05-28 Tdk Corp 熱プラズマアニール装置およびアニール方法
JP2008053634A (ja) * 2006-08-28 2008-03-06 Seiko Epson Corp 半導体膜の製造方法、半導体素子の製造方法、電気光学装置、電子機器
JP2009200314A (ja) * 2008-02-22 2009-09-03 Saitama Univ 非晶質薄膜の結晶化方法及び装置、並びに薄膜トランジスタの製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2730693B2 (ja) * 1988-09-14 1998-03-25 住友電気工業株式会社 薄膜形成法
JPH03135018A (ja) 1989-10-20 1991-06-10 Hitachi Ltd 半導体装置の製造方法およびその装置
JPH06173044A (ja) 1992-12-09 1994-06-21 Kyocera Corp アモルファスシリコン系成膜方法
JP2003100652A (ja) 1995-07-25 2003-04-04 Semiconductor Energy Lab Co Ltd 線状パルスレーザー光照射装置及び照射方法
JP3057065B2 (ja) 1997-12-03 2000-06-26 松下電工株式会社 プラズマ処理装置及びプラズマ処理方法
JP2001085701A (ja) 1999-04-06 2001-03-30 Matsushita Electric Ind Co Ltd 多層構造を有する素子、その素子の製造装置、及びその素子の製造方法
JP2002164543A (ja) 2000-11-28 2002-06-07 Seiko Epson Corp 半導体装置、電気光学装置およびそれらの製造方法
GB0217553D0 (en) 2002-07-30 2002-09-11 Sheel David W Titania coatings by CVD at atmospheric pressure
JP2004296729A (ja) * 2003-03-26 2004-10-21 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2005003634A (ja) * 2003-06-16 2005-01-06 Canon Inc エキシマレーザー光に対する光学素子の透過率測定装置および測定方法
US20050194099A1 (en) * 2004-03-03 2005-09-08 Jewett Russell F.Jr. Inductively coupled plasma source using induced eddy currents
JP4701376B2 (ja) 2004-08-23 2011-06-15 国立大学法人埼玉大学 薄膜結晶化方法
WO2006048650A1 (en) 2004-11-05 2006-05-11 Dow Corning Ireland Limited Plasma system
US8232729B2 (en) 2006-12-12 2012-07-31 Osaka University Plasma producing apparatus and method of plasma production
ITMI20070350A1 (it) * 2007-02-23 2008-08-24 Univ Milano Bicocca Metodo di lavorazine a plasma atmosferico per il trattamento dei materiali
GB0717430D0 (en) * 2007-09-10 2007-10-24 Dow Corning Ireland Ltd Atmospheric pressure plasma
JP2009212346A (ja) * 2008-03-05 2009-09-17 Panasonic Corp プラズマドーピング方法及び装置
JP2010056483A (ja) * 2008-08-29 2010-03-11 Osaka Univ 膜製造方法
JP5207535B2 (ja) 2008-10-21 2013-06-12 国立大学法人埼玉大学 非晶質薄膜の結晶化装置及び方法、並びに薄膜トランジスタの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250488A (ja) * 1995-01-13 1996-09-27 Seiko Epson Corp プラズマ処理装置及びその方法
JPH11145148A (ja) * 1997-11-06 1999-05-28 Tdk Corp 熱プラズマアニール装置およびアニール方法
JP2008053634A (ja) * 2006-08-28 2008-03-06 Seiko Epson Corp 半導体膜の製造方法、半導体素子の製造方法、電気光学装置、電子機器
JP2009200314A (ja) * 2008-02-22 2009-09-03 Saitama Univ 非晶質薄膜の結晶化方法及び装置、並びに薄膜トランジスタの製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101391939B1 (ko) * 2012-11-26 2014-05-07 주식회사 다원시스 플라즈마 이온 주입에 의한 비결정질 반도체 박막을 결정화하는 방법 및 장치
JP2014232699A (ja) * 2013-05-30 2014-12-11 学校法人文理学園 プラズマ処理装置及びプラズマ処理方法
WO2019065544A1 (ja) * 2017-09-28 2019-04-04 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置及び記録媒体
CN110870047A (zh) * 2017-09-28 2020-03-06 株式会社国际电气 半导体器件的制造方法、衬底处理装置及记录介质
JPWO2019065544A1 (ja) * 2017-09-28 2020-04-30 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置及び記録媒体
US11664275B2 (en) 2017-09-28 2023-05-30 Kokusai Electric Corporation Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
CN110870047B (zh) * 2017-09-28 2024-03-05 株式会社国际电气 半导体器件的制造方法、衬底处理装置及记录介质

Also Published As

Publication number Publication date
US20130224396A1 (en) 2013-08-29
KR20140067956A (ko) 2014-06-05
JPWO2012060325A1 (ja) 2014-05-12
JP6328882B2 (ja) 2018-05-23
TW201239951A (en) 2012-10-01
KR102192283B1 (ko) 2020-12-17
US11511316B2 (en) 2022-11-29
KR20190070998A (ko) 2019-06-21
TWI579900B (zh) 2017-04-21

Similar Documents

Publication Publication Date Title
JP6328882B2 (ja) プラズマアニール方法及びその装置
Rybin et al. Efficient nitrogen doping of graphene by plasma treatment
TWI406809B (zh) 碳構造體之製造裝置及製造方法
Mariotti et al. Surface-engineered silicon nanocrystals
JP2010103455A (ja) プラズマ処理装置
JP6191887B2 (ja) プラズマ処理装置
JP2012149278A (ja) シリコン含有膜の製造方法
US20210147972A1 (en) Method and device for promoting adhesion of metallic surfaces
JP5156552B2 (ja) ガスバリアフィルムの製造方法
Ayesh et al. Mechanisms of Ti nanocluster formation by inert gas condensation
TW201540663A (zh) 製造由碳構成之奈米結構之裝置及方法
JP2015111543A (ja) プラズマ処理装置及び方法、並びに電子デバイスの製造方法
JP2009290025A (ja) 中性粒子照射型cvd装置
JP2008075122A (ja) プラズマcvd装置及びプラズマcvd方法
JP2012176865A (ja) 窒化炭素及び窒化炭素の製造方法
JP5899422B2 (ja) 誘導結合型プラズマ処理装置及び方法
JP6493658B2 (ja) 高撥水性フィルムの製造方法
KR101543495B1 (ko) 플라즈마 발생부를 포함하는 폴리실리콘 제조 장치 및 이를 이용한 폴리실리콘 제조 방법
JP2008251956A (ja) 酸化膜の形成方法及びその装置
JP6064176B2 (ja) 誘導結合型プラズマ処理装置及び方法
JP2726149B2 (ja) 薄膜形成装置
US9691593B2 (en) Plasma processing device and plasma processing method
WO2022191245A1 (ja) Iii族窒化物半導体の製造方法および製造装置
KR20130017476A (ko) 플라즈마 발생장치 및 기판의 플라즈마 처리방법
US20230049702A1 (en) Device for plasma treatment of electronic materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837975

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012541852

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13883042

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137013656

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11837975

Country of ref document: EP

Kind code of ref document: A1