WO2012058345A1 - Overmolded polyamide composite structures and processes for their preparation - Google Patents

Overmolded polyamide composite structures and processes for their preparation Download PDF

Info

Publication number
WO2012058345A1
WO2012058345A1 PCT/US2011/057945 US2011057945W WO2012058345A1 WO 2012058345 A1 WO2012058345 A1 WO 2012058345A1 US 2011057945 W US2011057945 W US 2011057945W WO 2012058345 A1 WO2012058345 A1 WO 2012058345A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
component
composite structure
overmolding
fibrous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2011/057945
Other languages
English (en)
French (fr)
Inventor
Andri E. Elia
Olaf Norbert Kirchner
David V. Mesaros
Martyn Douglas Wakeman
Shengmei Yuan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to JP2013536790A priority Critical patent/JP2013542104A/ja
Priority to BR112013007520A priority patent/BR112013007520A2/pt
Priority to EP11782294.0A priority patent/EP2632713A1/en
Priority to CN2011800525856A priority patent/CN103189200A/zh
Publication of WO2012058345A1 publication Critical patent/WO2012058345A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • B29C45/14786Fibrous material or fibre containing material, e.g. fibre mats or fibre reinforced material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • C08K7/20Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2677/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2709/00Use of inorganic materials not provided for in groups B29K2703/00 - B29K2707/00, for preformed parts, e.g. for inserts
    • B29K2709/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/12Mixture of at least two particles made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31623Next to polyamide or polyimide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • Y10T428/31728Next to second layer of polyamide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2041Two or more non-extruded coatings or impregnations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2631Coating or impregnation provides heat or fire protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2631Coating or impregnation provides heat or fire protection
    • Y10T442/2721Nitrogen containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2762Coated or impregnated natural fiber fabric [e.g., cotton, wool, silk, linen, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2861Coated or impregnated synthetic organic fiber fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2926Coated or impregnated inorganic fiber fabric
    • Y10T442/2984Coated or impregnated carbon or carbonaceous fiber fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2926Coated or impregnated inorganic fiber fabric
    • Y10T442/2992Coated or impregnated glass fiber fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/674Nonwoven fabric with a preformed polymeric film or sheet

Definitions

  • the present invention relates to the field of overmolded composite structures and processes for their preparation, particularly it relates to the field of polyamide
  • composite materials are desired due to a unique combination of lightweight, high strength and temperature resistance.
  • thermosetting resins or thermoplastic resins as the polymer matrix.
  • Thermoplastic-based composite structures present several advantages over thermoset-based composite structures such as, for example, the fact that they can be post-formed or reprocessed by the application of heat and pressure, that a reduced time is needed to make the composite structures because no curing step is required, and their increased potential for recycling. Indeed, the time consuming chemical reaction of cross-linking for thermosetting resins (curing) is not required during the processing of thermoplastics.
  • thermoplastic resins polyamides are particularly well suited for manufacturing composite structures.
  • Thermoplastic polyamide compositions are desirable for use in a wide range of applications including parts used in automobiles, electrical/electronic parts, household appliances and furniture because of their good mechanical properties, heat resistance, impact resistance and chemical resistance and because they may be conveniently and flexibly molded into a variety of articles of varying degrees of complexity and intricacy.
  • thermoplastic sheet material useful in forming composites.
  • the disclosed thermoplastic sheet material is made of polyamide 6 and a dibasic carboxylic acid or anhydride or esters thereof and at least one reinforcing mat of long glass fibers encased within said layer.
  • Overmolding involves shaping, e.g. by injection molding, a second polymer part directly onto at least a portion of one or more surfaces of the composite structure, to form a two-part composite structure, wherein the two parts are adhered one to the other at least at one interface.
  • the polymer compositions used to impregnate the fibrous material (i.e. the matrix polymer composition) and the polymer compositions used to overmold the impregnated fibrous material (i.e. the overmolding polymer composition) are desired to have good adhesion one to the other, extremely good dimensional stability and retain their mechanical properties under adverse conditions, including thermal cycling, so that the composite structure is protected under operating conditions and thus has an increased lifetime.
  • thermoplastic polyamide resin compositions that are used to impregnate one or more fibrous layers and to overmold the one or more impregnated fibrous layers may show poor adhesion between the overmolded polymer and the surface of the component comprising the fibrous material, i.e. the composite structure.
  • the poor adhesion may result in the formation of cracks at the interface of the overmolded composite structures leading to reduced mechanical properties, premature aging and problems related to delamination and deterioration of the article upon use and time.
  • thermoplastic polyamide composite structure that exhibits good mechanical properties, especially flexural strength and having at least a portion of its surface allowing a good adhesion between its surface and an
  • overmolding resin comprising a polyamide resin, and an overmolded composite structure that exhibits good mechanical properties made of said composite structure.
  • an overmolded composite structure comprising: i) a first component having a surface, which surface has at least a portion made of a surface resin composition, and comprising a fibrous material selected from non-woven structures, textiles, fibrous battings and combinations thereof, said fibrous material being impregnated with a matrix resin composition, ii) a second component comprising an overmolding resin composition, wherein said second component is adhered to said first component over at least a portion of the surface of said first component , and wherein the surface resin composition wherein the surface resin composition is selected from polyamide compositions comprising a blend of two or more fully aliphatic
  • the matrix resin composition is selected from polyamide compositions comprising a one or more fully aliphatic polyamides having a melting point of at least 250°C.
  • the surface resin composition is selected from polyamide compositions comprising a blend of poly(tetramethylene hexanediamide) (PA46) with one or more fully aliphatic polyamides having a melting point of at least 250°C.
  • the surface resin composition is selected from polyamide compositions comprising a blend of poly(tetramethylene hexanediamide) (PA46) with poly(hexamethylene hexanediamide) (PA66).
  • the surface resin composition and the matrix resin composition are selected from polyamide compositions comprising a blend of
  • PA46 poly(tetramethylene hexanediamide)
  • PA66 poly(hexamethylene hexanediamide)
  • the process for making the overmolding composite structure described above comprises a step of overmolding a second component comprising an overmolding resin composition on the first component described above.
  • the overmolded composite structure according to the present invention has improved impact resistance and flexural strength and shows good adhesion when a part made of an overmolding resin composition comprising a thermoplastic polyamide is adhered onto at least a portion of the surface of the composite structure.
  • a good impact resistance and flexural strenght of the overmolded composite structure and a good adhesion between the composite structure and the overmolding resin leads to structures exhibiting good resistance to deterioration and resistance to delamination of the structure with use and time.
  • melting point in reference to a polyamide refers to the melting point of the pure resin as determined with differential scanning calorimetry (DSC) at a scan rate of 10°C/min in the first heating scan, wherein the melting point is taken at the maximum of the endothermic peak.
  • DSC differential scanning calorimetry
  • more than one heating scans may be performed on a single specimen, and the second and/or later scans may show a different melting behavior from the first scan. This different melting behavior may be observed as a shift in temperature of the maximum of the endothermic peak and/or as a broadening of the melting peak with possibly more than one peaks, which may be an effect of possible transamidation in the case of more than one polyamides.
  • a scan rate is an increase of temperature per unit time. Sufficient energy must be supplied to maintain a constant scan rate of 10°C/min until a temperature of at least 30°C and preferably at least 50°C above the melting point is reached.
  • the present invention relates to overmolded composite structures and processes to make them.
  • the overmolded composite structure according to the present invention comprises at least two components, i.e. a first component and a second component.
  • the first component consists of a composite structure having a surface, which surface has at least a portion made of a surface resin composition, and comprises a fibrous material selected from non-woven structures, textiles, fibrous battings and combinations thereof, said fibrous material being impregnated with a matrix resin composition.
  • the overmolded composite structure may comprise more than one first components, i.e. it may comprise more than one composite structures and may comprise more than one second components.
  • the second component is adhered to the first component over at least a portion of the surface of said first component, the portion of the surface being made of the surface resin composition described herein.
  • the first component may be fully or partially encapsulated by the second component.
  • a fibrous material being impregnated with a matrix resin composition means that the matrix resin composition encapsulates and embeds the fibrous material so as to form an interpenetrating network of fibrous material
  • the term "fiber” refers to a macroscopically homogeneous body having a high ratio of length to width across its cross-sectional area perpendicular to its length.
  • the fiber cross section can be any shape, but is typically round.
  • the fibrous material may be in any suitable form known to those skilled in the art and is preferably selected from non-woven structures, textiles, fibrous battings and combinations thereof.
  • Non-woven structures can be selected from random fiber orientation or aligned fibrous structures. Examples of random fiber orientation include without limitation chopped and continuous material which can be in the form of a mat, a needled mat or a felt.
  • aligned fibrous structures include without limitation unidirectional fiber strands, bidirectional strands, multidirectional strands, multi-axial textiles. Textiles can be selected from woven forms, knits, braids and combinations thereof. The fibrous material can be continuous or discontinuous in form.
  • the first component described herein may comprise one or more fibrous materials.
  • An example of a combination of different fibrous materials is a combination comprising a non-woven structure such as for example a planar random mat which is placed as a central layer and one or more woven continuous fibrous materials that are placed as outside layers. Such a combination allows an improvement of the processing and thereof of the homogeneity of the first component thus leading to improved mechanical properties.
  • the fibrous material may be made of any suitable material or a mixture of materials provided that the material or the mixture of materials withstand the processing conditions used during impregnation by the matrix resin composition and the surface resin composition.
  • the fibrous material comprises glass fibers, carbon fibers, aramid fibers, graphite fibers, metal fibers, ceramic fibers, natural fibers or mixtures thereof; more preferably, the fibrous material comprises glass fibers, carbon fibers, aramid fibers, natural fibers or mixtures thereof; and still more preferably, the fibrous material comprises glass fibers, carbon fibers and aramid fibers or mixture mixtures thereof.
  • natural fiber it is meant any of material of plant origin or of animal origin.
  • the natural fibers are preferably derived from vegetable sources such as for example from seed hair (e.g. cotton), stem plants (e.g. hemp, flax, bamboo; both bast and core fibers), leaf plants (e.g.
  • sisal and abaca examples include agricultural fibers (e.g., cereal straw, corn cobs, rice hulls and coconut hair) or lignocellulosic fiber (e.g. wood, wood fibers, wood flour, paper and wood-related materials).
  • agricultural fibers e.g., cereal straw, corn cobs, rice hulls and coconut hair
  • lignocellulosic fiber e.g. wood, wood fibers, wood flour, paper and wood-related materials.
  • fibrous materials made of different fibers can be used such as for example a composite structure comprising one or more central layers made of glass fibers or natural fibers and one or more surface layers made of carbon fibers or glass fibers.
  • the fibrous material is selected from woven structures, non-woven structures or combinations thereof, wherein said structures are made of glass fibers and wherein the glass fibers are E-glass filaments with a diameter between 8 and 30 microns and preferably with a diameter between 10 to 24 microns.
  • the fibrous material may further contain a thermoplastic material and the materials described above, for example the fibrous material may be in the form of commingled or co-woven yarns or a fibrous material impregnated with a powder made of a thermoplastic material that is suited to subsequent processing into woven or non- woven forms, or a mixture for use as a uni-directional material or a fibrous material impregnated with oligomers that will polymerize in situ during impregnation.
  • a thermoplastic material and the materials described above, for example the fibrous material may be in the form of commingled or co-woven yarns or a fibrous material impregnated with a powder made of a thermoplastic material that is suited to subsequent processing into woven or non- woven forms, or a mixture for use as a uni-directional material or a fibrous material impregnated with oligomers that will polymerize in situ during impregnation.
  • the ratio between the fibrous material and the polymer materials in the first component i.e. the fibrous material in combination with the matrix resin composition and the surface resin composition, is at least 30 volume percent fibrous material and more preferably between 40 and 60 volume percent fibrous material, the percentage being a volume-percentage based on the total volume of the first component.
  • the matrix resin composition of the first component is made of a thermoplastic resin that is compatible with the surface resin composition.
  • the surface resin composition is selected from polyamide compositions comprising a blend of two or more fully aliphatic polyamides having a melting point of at least 250°C.
  • the surface resin composition is selected from polyamide compositions comprising a blend of poly(tetramethylene hexanediamide) (PA46) with one or more fully aliphatic polyamides having a melting point of at least 250°C.
  • the surface resin composition is selected from polyamide compositions comprising a blend of poly(tetramethylene hexanediamide) (PA46) with
  • PA66 poly(hexamethylene hexanediamide)
  • the matrix resin composition is selected from polyamide compositions comprising one or more fully aliphatic polyamides having a melting point of at least 250°C.
  • the matrix resin composition is selected from polyamide compositions comprising a blend of two or more fully aliphatic polyamides having a melting point of at least 250°C. Even more preferably, the matrix resin composition is selected from polyamide compositions comprising a poly(tetramethylene hexanediamide) (PA46) or poly(hexamethylene hexanediamide) (PA66) and mixtures or blends thereof.
  • PA46 poly(tetramethylene hexanediamide)
  • PA66 poly(hexamethylene hexanediamide)
  • the matrix resin composition and the surface resin composition may be identical or different.
  • the matrix resin composition and the surface resin composition are different, it means that their respective blend of polyamides comprises at least one different polyamide, or that their blend of polyamides are the same polyamides but made of different ratios.
  • the surface resin composition and the matrix resin composition comprise a blend of two or more or more fully aliphatic polyamides having a melting point of at least 250°C in a weight ratio from about 1 :99 to about 95:5, more preferably from about 15:85 to about 85:15. Still more preferably surface resin composition and the matrix resin composition comprises a blend of two or more or more fully aliphatic polyamides having a melting point of at least 250°C in a weight ratio from about 20:80 to about 30:70.
  • the overmolding resin composition may be any polyamide resin, but is preferably a fully aliphatic polyamide resin. It may be the same or different from the surface resin composition and/or the matrix resin composition, and may be a blend of polyamides or a single polyamide resin. In a preferred embodiment it is selected from polyamides having a melting point of at least 250°C.
  • Polyamides are condensation products of one or more dicarboxylic acids and one or more diamines, and/or one or more aminocarboxylic acids, and/or ring-opening polymerization products of one or more cyclic lactams.
  • the two or more fully aliphatic polyamides are formed from aliphatic and alicyclic monomers such as diamines, dicarboxylic acids, lactams, aminocarboxylic acids, and their reactive equivalents.
  • a suitable aminocarboxylic acid is 1 1 -aminododecanoic acid.
  • Suitable lactams include caprolactam and laurolactam.
  • the term "fully aliphatic polyamide” also refers to copolymers derived from two or more such monomers and blends of two or more fully aliphatic polyamides. Linear, branched, and cyclic monomers may be used.
  • Carboxylic acid monomers comprised in the fully aliphatic polyamides are aliphatic carboxylic acids, such as for example adipic acid (C6), pimelic acid (C7), suberic acid (C8), azelaic acid (C9), sebacic acid (C10), dodecanedioic acid (C12) and
  • the aliphatic dicarboxylic acids of the fully aliphatic polyamides are selected from adipic acid and dodecanedioic acid.
  • the fully aliphatic polyamides described herein comprise an aliphatic diamine as previously described.
  • the one or more diamine monomers of the two or more fully aliphatic polyamide copolymer according to the present invention are selected from tetramethylene diamine and hexamethylene diamine.
  • Suitable examples of fully aliphatic polyamides are poly(hexamethylene adipamide (also called polyamide 6,6; polyamide 66, PA66, or nylon 66), and poly(tetramethylene adipamide) (also called polyamide 4,6, polyamide 46, PA46, or nylon 46), and any copolymers and
  • Suitable polyamides having a melting point of at least 250°C are polyamides selected from the group poly(hexamethylene hexanediamide) (PA 66), poly(£-caprolactam/hexamethylene hexanediamide) (PA6/66), (PA6/66/610), poly(£-caprolactam/hexamethylene hexanediamide/hexamethylene dodecanediamide) (PA6/66/612), poly(£-caprolactam/hexamethylene
  • PA6/66/610/612 poly(2-methylpentamethylene hexanediamide/hexamethylene hexanediamide/)
  • PA D6/66 poly(tetramethylene hexanediamide)
  • PA46 poly(tetramethylene hexanediamide)
  • An embodiment of the current invention comprises a matrix resin composition and a surface resin composition comprising a blend of poly(tetramethylene hexanediamide) (PA46) with one or more fully aliphatic polyamides having a melting point of at least 250°C.
  • PA46 poly(tetramethylene hexanediamide)
  • composition comprising a blend of poly(tetramethylene hexanediamide) (PA46) with poly(hexamethylene hexanediamide) (PA66).
  • Another preferred embodiment of the current invention comprise a matrix resin composition comprising a blend of poly(tetramethylene hexanediamide) (PA46) with poly(hexamethylene hexanediamide) (PA66) in a ratio of 50:50.
  • the overmolded composite structure comprises a second component comprising an overmolding resin composition as described above.
  • the second component is adhered to the first component described above over at least a portion of the surface of the first component.
  • composition and/or the overmolding resin composition may further comprise one or more impact modifiers, one or more heat stabilizers, one or more oxidative stabilizers, one or more ultraviolet light stabilizers, one or more flame retardant agents or mixtures thereof.
  • the surface resin composition described herein and/or the matrix resin composition and/or the overmolding resin composition may further comprise one or more reinforcing agents such as glass fibers, glass flakes, carbon fibers, carbon nanotubes, mica, wollastonite, calcium carbonate, talc, calcined clay, kaolin, magnesium sulfate, magnesium silicate, boron nitride, barium sulfate, titanium dioxide, sodium aluminum carbonate, barium ferrite, and potassium titanate.
  • reinforcing agents such as glass fibers, glass flakes, carbon fibers, carbon nanotubes, mica, wollastonite, calcium carbonate, talc, calcined clay, kaolin, magnesium sulfate, magnesium silicate, boron nitride, barium sulfate, titanium dioxide, sodium aluminum carbonate, barium ferrite, and potassium titanate.
  • the one or more reinforcing agents are present in an amount from at or about 1 to at or about 60 wt-%, preferably from at or about 1 to at or about 40 wt-%, or more preferably from at or about 1 to at or about 35 wt-%, the weight percentages being based on the total weight of the surface resin composition or the matrix resin composition or the overmolding resin composition, as the case may be.
  • the matrix resin composition and the surface resin composition may be identical or different.
  • the melt viscosity of the compositions may be reduced and especially the melt viscosity of the matrix resin composition.
  • the surface resin composition described herein and/or the matrix resin composition and/or the overmolding resin composition may further comprise modifiers and other ingredients, including, without limitation, flow enhancing additives, lubricants, antistatic agents, coloring agents (including dyes, pigments, carbon black, and the like), nucleating agents, crystallization promoting agents and other processing aids known in the polymer compounding art.
  • modifiers and other ingredients including, without limitation, flow enhancing additives, lubricants, antistatic agents, coloring agents (including dyes, pigments, carbon black, and the like), nucleating agents, crystallization promoting agents and other processing aids known in the polymer compounding art.
  • Fillers, modifiers and other ingredients described above may be present in the composition in amounts and in forms well known in the art, including in the form of so- called nano-materials where at least one of the dimensions of the particles is in the range of 1 to 1000 nm.
  • the surface resin compositions and the matrix resin compositions and the overmolding resin composition are melt-mixed blends, wherein all of the polymeric components are well-dispersed within each other and all of the non- polymeric ingredients are well-dispersed in and bound by the polymer matrix, such that the blend forms a unified whole.
  • Any melt-mixing method may be used to combine the polymeric components and non-polymeric ingredients of the present invention.
  • the polymeric components and non-polymeric ingredients may be added to a melt mixer, such as, for example, a single or twin-screw extruder; a blender; a single or twin-screw kneader; or a Banbury mixer, either all at once through a single step addition, or in a stepwise fashion, and then melt-mixed.
  • a melt mixer such as, for example, a single or twin-screw extruder; a blender; a single or twin-screw kneader; or a Banbury mixer, either all at once through a single step addition, or in a stepwise fashion, and then melt-mixed.
  • a melt mixer such as, for example, a single or twin-screw extruder; a blender; a single or twin-screw kneader; or a Banbury mixer, either all at once through a single step addition, or in a stepwise fashion, and then melt-mixed.
  • the overmolded composite structure according to the present invention may be manufactured by a process comprising a step of overmolding the first component described above with the overmolding resin composition.
  • overmolding it is meant that a second component comprising the overmolding resin composition described herein is molded or extruded onto at least one portion of the surface of the first component, which surface is made of a surface resin composition.
  • the overmolding process includes that the second component is molded in a mold already containing the first component, the latter having been manufactured beforehand as described hereafter, so that the first and second components are adhered to each other over at least a portion of the surface of the first component.
  • the first component is positioned in a mold having a cavity defining the outer surface of the final overmolded composite structure.
  • the overmolding resin composition may be overmolded on one side or on both sides of the first component and it may fully or partially encapsulate the first component.
  • the overmolding resin composition is then introduced in a molten form.
  • the first component and the second component are adhered together by overmolding.
  • the at least two parts are preferably adhered together by injection or compression molding as an overmolding step, and more preferably by injection molding.
  • the first component according to the present invention may have any shape.
  • the first component according to the present invention is in the form of a sheet structure.
  • the first component may be flexible, in which case it can be rolled.
  • the first component can be made by a process that comprises a step of impregnating the fibrous material with the matrix resin composition, wherein at least a portion of the surface of the first component, i.e. the composite structure, is made of the surface resin composition.
  • the fibrous material is impregnated with the matrix resin by thermopressing. During thermopressing, the fibrous material, the matrix resin composition and the surface resin composition undergo heat and pressure in order to allow the resin compositions to melt and penetrate through the fibrous material and, therefore, to impregnate said fibrous material.
  • thermopressing is made at a pressure between 2 and 100 bars and more preferably between 10 and 40 bars and a temperature which is above the melting point of the matrix resin composition and the surface resin composition, preferably at least about 20°C above the melting point to enable a proper impregnation.
  • Heating may be done by a variety of means, including contact heating, radiant gas heating, infra red heating, convection or forced convection air heating, induction heating, microwave heating or combinations thereof.
  • the impregnation pressure can be applied by a static process or by a continuous process (also known as dynamic process), a continuous process being preferred for reasons of speed.
  • impregnation processes include without limitation vacuum molding, in-mold coating, cross-die extrusion, pultrusion, wire coating type processes, lamination, stamping, diaphragm forming or press-molding, lamination being preferred.
  • heat and pressure are applied to the fibrous material, the matrix resin composition and the surface resin composition through opposing pressured rollers or belts in a heating zone, preferably followed by the continued application of pressure in a cooling zone to finalize consolidation and cool the impregnated fibrous material by pressurized means.
  • lamination techniques include without limation calendering, flatbed lamination and double-belt press lamination. When lamination is used as the impregnating process, preferably a double-belt press is used for lamination.
  • the surface resin composition always faces the environment of the first component so as to be accessible when the overmolding resin composition is applied onto the first component.
  • the matrix resin composition and the surface resin composition are applied to the fibrous material by conventional means such as for example powder coating, film lamination, extrusion coating or a combination of two or more thereof, provided that the surface resin composition is applied on at least a portion of the surface of the composite structure, which surface is exposed to the environment of the first component.
  • a polymer powder which has been obtained by conventional grinding methods is applied to the fibrous material.
  • the powder may be applied onto the fibrous material by scattering, sprinkling, spraying, thermal or flame spraying, or fluidized bed coating methods.
  • the powder coating process may further comprise a step which consists in a post sintering step of the powder on the fibrous material.
  • the matrix resin composition and the surface resin composition are applied to the fibrous material such that at least a portion of the surface of the first component is made of the surface resin composition.
  • thermopressing is performed on the powder coated fibrous material, with an optional preheating of the powder coated fibrous material outside of the pressurized zone.
  • one or more films made of the matrix resin composition and one or more films made of the surface resin composition which have been obtained by conventional extrusion methods known in the art such as for example blow film extrusion, cast film extrusion and cast sheet extrusion are applied to the fibrous material, e.g. by layering.
  • thermopressing is performed on the assembly comprising the one or more films made of the matrix resin composition and the one or more films made of the surface resin composition and the one or more fibrous materials.
  • the films melt and penetrate around the fibrous material as a polymer continuum surrounding the fibrous material.
  • pellets and/or granulates made of the matrix resin composition and pellets and/or granulates made of the surface resin composition are melted and extruded through one or more flat dies so as to form one or more melt curtains which are then applied onto the fibrous material by laying down the one or more melt curtains. Subsequently, thermopressing is performed on the assembly comprising the matrix resin composition, the surface resin composition and the one or more fibrous materials.
  • the transfer time may not be as critical as for conventional composite structures, meaning that the transfer time may be increased thereby increasing the processing window and reducing molding equipment and automation costs.
  • a preheating step may be done by a variety of means, including contact heating, radiant gas heating, infra red heating, convection or forced convection air heating, induction heating, microwave heating or combinations thereof.
  • the first component may be shaped into a desired geometry or configuration, or used in sheet form prior to the step of overmolding the overmolding resin composition.
  • the first component may be flexible, in which case it can be rolled.
  • the process for making a shaped first component further comprises a step of shaping the first component, said step arising after the impregnating step.
  • the step of shaping the first component may be done by compression molding, stamping or any technique using heat and/or pressure, compression molding and stamping being preferred.
  • pressure is applied by using a hydraulic molding press.
  • the first component is preheated to a temperature above the melt temperature of the surface resin composition and preferably above the melt temperature of the matrix resin composition by heated means and is transferred to a forming or shaping means such as a molding press containing a mold having a cavity of the shape of the final desired geometry whereby it is shaped into a desired
  • the surface of the first component may be a textured surface so as to increase the relative surface available for overmolding, such textured surface may be obtained during the step of shaping by using a press or a mold having for example porosities or indentations on its surface.
  • overmolding the first component in a single molding station may be used.
  • This one step process avoids the step of compression molding or stamping the first component in a mold or a press, avoids the optional preheating step and the transfer of the preheated first component to the molding station.
  • the first component i.e. the composite structure
  • the molding station comprises a mold having a cavity of the shape of the final desired geometry. The shape of the first component is thereby obtained during overmolding.
  • overmolded composite structures according to the present invention may be used in a wide variety of applications such as for example as components for automobiles, trucks, commercial airplanes, aerospace, rail, household appliances, computer hardware, hand held devices, recreation and sports, structural component for machines, structural components for buildings, structural components for photovoltaic equipments or structural components for mechanical devices.
  • automotive applications include without limitation seating components and seating frames, engine cover brackets, engine cradles, suspension arms and cradles, spare tire wells, chassis reinforcement, floor pans, front-end modules, steering column frames, instrument panels, door systems, body panels (such as horizontal body panels and door panels), tailgates, hardtop frame structures, convertible top frame structures, roofing structures, engine covers, housings for transmission and power delivery components, oil pans, airbag housing canisters, automotive interior impact structures, engine support brackets, cross car beams, bumper beams, pedestrian safety beams, firewalls, rear parcel shelves, cross vehicle bulkheads, pressure vessels such as refrigerant bottles and fire extinguishers and truck compressed air brake system vessels, hybrid internal combustion/electric or electric vehicle battery trays, automotive suspension wishbone and control arms, suspension stabilizer links, leaf springs, vehicle wheels, recreational vehicle and motorcycle swing arms, fenders, roofing frames and tank flaps.
  • automotive applications include without limitation seating components and seating frames, engine cover brackets, engine cradles, suspension arms and cradles, spare tire well
  • Examples of household appliances include without limitation washers, dryers, refrigerators, air conditioning and heating.
  • Examples of recreation and sports include without limitation inline-skate components, baseball bats, hockey sticks, ski and snowboard bindings, rucksack backs and frames, and bicycle frames.
  • Examples of structural components for machines include electrical/electronic parts such as for example housings for hand held electronic devices, computers.
  • Polyamide 1 (PA1 in Tables): an aliphatic polyamide, poly(tetramethylene
  • This polyamide is called PA46 and is commercially available, for example, from DSM corporation.
  • PA1 has a melting point of about 275°C to about 290°C.
  • Polyamide 2 (PA2 in Tables): an aliphatic polyamide made of adipic acid and 1 ,6- hexamethylenediamine with a weight average molecular weight of around 32000
  • This polyamide is called PA6,6 and is commercially available, for example, from E. I. du Pont de Nemours and Company.
  • PA2 has a melting point of about 260°C to about 265°C.
  • Overmolding resin a composition comprising a polyamide (PA2) made of adipic acid and 1 ,6-hexamethylenediamine, 50 percent glass fibers by weight of the total composition.
  • PA2 polyamide
  • the resin is commercially available from E. I. du Pont de Nemours and Company.
  • the resin compositions used in the Examples (abbreviated as "E” in Tables 1 to 3), and Comparative Examples (abbreviated as “C” in Tables 1 to 3) were prepared by melting or melt-blending the ingredients in a twin-screw extruder at about 300 °C in the case of matrix resin and surface resin compositions of E1 to E3, and C1 , C3, and C5, and the surface resin composition of E4 and C7, or at about 280 °C in the case of the matrix resin compositions of E4, C2, C4, and C6 to C8, and the surface resin
  • compositions of C2, C4, C6, and C8 The compositions exited the extruder through an adaptor and a film die at the respective temperatures, and then were cast onto a casting drum at about 100 °C into about 125 micron thick film in the case of the matrix resin and the surface resin compositions of E1 to E3, and C1 , C3, and C5, and the surface resin compositions of E4 and C7, and into about 250 micron thick film in the case of the matrix resin and the surface resin compositions of C2, C4, and C6, and the surface resin compositions of C8, and into about 102 micron thick film in the case of the matrix resin compositions of E4, C7, and C8.
  • the thickness of the films was controlled by the rate of drawing.
  • compositions shown in Tables 1 and 2 and woven continuous glass fiber textile
  • composition one layer of woven continuous glass fiber textile, 4 layers of film of matrix resin composition, one layer of woven continuous glass fiber textile, four layers of film of matrix resin composition, one layer of woven continuous glass fiber textile, and four layers of film of surface resin composition; and in the following sequence for C2, C4, and C6: two layers of film of surface resin composition, one layer of woven continuous glass fiber textile, two layers of film of matrix resin composition, one layer of woven continuous glass fiber textile, two layers of film of matrix resin composition, one layer of woven continuous glass fiber textile, and two layers of film of surface resin composition.
  • the thusly formed composite structures had a thickness of about 1 .6 mm, and glass fiber content in the range of 55 to 60 percent of the total weight of the composite structure.
  • C7, and C8 were prepared by first making a laminate by stacking eight layers having a thickness of about 102 microns and made of PA2 and three layers of woven continuous glass fiber textile (E-glass fibers having a diameter of 17 microns, 0.4% of a silane-based sizing and a nominal roving tex of 1200 g/km that have been woven into a 2/2 twill (balanced weave) with an areal weight of 600 g/m 2 ) in the following sequence: two layers made of PA2, one layer of woven continuous glass fiber textile, two layers of PA2, one layer of woven continuous glass fiber textile, two layers of PA2, one layer of woven continuous glass fiber textile and two layers of PA2.
  • woven continuous glass fiber textile E-glass fibers having a diameter of 17 microns, 0.4% of a silane-based sizing and a nominal roving tex of 1200 g/km that have been woven into a 2/2 twill (balanced weave) with an areal weight of
  • the laminates were prepared using an isobaric double press machine with counter rotating steel belts, both supplied by Held GmbH. The different films enterered the machine from unwinders in the previously defined stacking sequence. The heating zones were about 2000 mm long and the cooling zones were about 1000 mm long. Heating and cooling were maintained without release of pressure.
  • the laminates were prepared with the following conditions: a lamination rate of 1 m/min, a maximum machine temperature of 360 ° C and laminate pressure of 40 bar. The so-obtained laminates had an overall thickness of about 1 .5 mm.
  • the composite structures were compression molded by a Dake Press (Grand Haven, Mich) Model 44-225 (pressure range 0-25K) with an 8 inch platten at a tempertature of about 320°C, held at the temperature for 2 minutes without pressure, then pressed at the 320°C temperature with the following pressures: about 4 bar for about 2 minutes, then with about 23 bar for about 2 additional minutes, and then with about 46 bar for about 2 additional minutes; they were subsequently cooled to ambient temperature.
  • the composite structures used to make overmolded composite structures E4, C7, and C8 and comprising a surface made of the surface polyamide resin compositions as described in Table 3, the matrix resin compositions PA2 and the fibrous material had an overall thickness of about 1 .6 mm.
  • overmolded composite structures listed in Tables 2 and 3 were made by over injection molding about 1 .8 mm of the overmolding resin composition onto the
  • the composite structures for E2 to E4, and C3 to C8, were cut into 5x5" (about 127 mm x 127 mm) specimens and placed into a heating chamber for 3 min at 210°C or for 3 min at 170°C as shown in Tables 2 and 3. Then they were quickly transferred with a robot arm into a mold cavity of an Engel vertical press where the second component was injection molded over the first component by an Engel molding machine. The transfer time from leaving the heating chamber to contact with the overmolding resin was 9 sec. The mold cavity of the Engel molding machine was oil heated at 120 ° C and the injection machine was set at 280 ° C during injection of the overmolding resin onto the composite structures.
  • the composite structures E1 , C1 , and C2 in Table 1 were cut into 1/2" (about 12.7 mm) by 2.5" (about 64 mm) long test specimens (bars) using a MK-377 Tile Saw with a diamond edged blade and water as a lubricant. Flexural Strength was tested on the test specimens via a 3-point bend test.
  • the apparatus and geometry were according to ISO method 178, bending the specimen with a 2.0" support width with the loading edge at the center of the span. The tests were conducted with 1 KN load at 2 mm/min until fracture.
  • overmolded composite structures E2, E3, and C3 to C6 in Table 2 were cut into 1/2" (about 12.7 mm) by 2.5" (about 64 mm) long test specimens (bars) using a MK- 377 Tile Saw with a diamond edged blade and water as a lubricant. Some specimens delaminated on cutting, as shown in Table 2. Flexural Strength was tested on the remaining test specimens via a 3-point bend test. The apparatus and geometry were according to ISO method 178, bending the specimen with a 2.0" support width with the loading edge at the center of the span. The tests were conducted with 1 KN load at 2 mm/min until fracture. The results are shown in Table 2.
  • results in Table 2 demonstrate the superior flexural strength of the overmolded composite structure made of a composite structure made of a blend of aliphatic polyamides selected from a group of polyamides of melting points higher than 250 °C, when compared to the overmolded composite structure made of a composite structure made of a single polyamide from the same group of polyamides.
  • results in Table 2 are also indicative of the bonding strength between the 2 components of the overmolded composite structure.
  • the bond strengths were respectively 61 ,20, and 38 MPa, demonstrating the superior bond strength between a first and second components of overmolded composite structures wherein the first component comprises a surface resin composition made of a blend of 2 or more polyamides selected from group of aliphatic polyamides of melting points higher than 250 °C, than that of overmolded composite structures wherein the first component comprises a surface resin composition made of a single aliphatic polyamide from the same group.
  • the composite structures E4, C7, and C8 comprising a surface made of the surface resin compositions listed in Table 3, the matrix resin compositions listed in Table 3 (PA2) and the fibrous material described above, were over-injection molded with the overmolding resin (Table 3) as described above, by first preheating the 5x5" (about 127 mm x 127 mm) specimens for 3 min at 210°C.
  • the 5x5" specimens of the overmolded composite structures E4, C7, and C8, were cut into 1/2" (about 12.7 mm) x 3" (about 76 mm) test specimens, and were notched by cutting the second component (overmolded resin) up to the interface of the second component and the first component (the composite structure).
  • the notch was made through the width of the second component at about the middle (lengthwise) of the test specimen.
  • the bond strength between the 2 components of the overmolded composite structure was measured on the notched test specimens via a 3 point bend method, modified ISO-178.
  • the apparatus and geometry were according to ISO method 178, bending the specimen with a 2.0" (about 51 mm) support width with the loading edge at the center of the span.
  • the over-molded second component of the specimen was on the tensile side (outer span) resting on the two side supports (at 2" (about 51 mm) apart), while indenting with the single support (the load) on the compression side (inner span) on the composite structure of the specimen. In this test geometry, the notch in the specimens was down (tensile side).
  • the notch was placed 1 ⁇ 4" off center (1 ⁇ 4" away from the load).
  • the tests were conducted at 2 mm/min with a 1 KN load. The test was run until a separation or fracture between the two components of the specimen (delamination) was seen. The stress at that point was recorded.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Moulding By Coating Moulds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
PCT/US2011/057945 2010-10-29 2011-10-27 Overmolded polyamide composite structures and processes for their preparation Ceased WO2012058345A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013536790A JP2013542104A (ja) 2010-10-29 2011-10-27 オーバーモールド成形ポリアミド複合構造及びその製造方法
BR112013007520A BR112013007520A2 (pt) 2010-10-29 2011-10-27 "estrutra compósita sobremoldada e processo para a produção de uma estrutura compósita"
EP11782294.0A EP2632713A1 (en) 2010-10-29 2011-10-27 Overmolded polyamide composite structures and processes for their preparation
CN2011800525856A CN103189200A (zh) 2010-10-29 2011-10-27 重叠注塑的聚酰胺复合结构及其制备方法

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US40816610P 2010-10-29 2010-10-29
US61/408,166 2010-10-29
US41010010P 2010-11-04 2010-11-04
US41010410P 2010-11-04 2010-11-04
US41010810P 2010-11-04 2010-11-04
US41009310P 2010-11-04 2010-11-04
US61/410,093 2010-11-04
US61/410,104 2010-11-04
US61/410,108 2010-11-04
US61/410,100 2010-11-04

Publications (1)

Publication Number Publication Date
WO2012058345A1 true WO2012058345A1 (en) 2012-05-03

Family

ID=44936546

Family Applications (11)

Application Number Title Priority Date Filing Date
PCT/US2011/057945 Ceased WO2012058345A1 (en) 2010-10-29 2011-10-27 Overmolded polyamide composite structures and processes for their preparation
PCT/US2011/057953 Ceased WO2012058352A1 (en) 2010-10-29 2011-10-27 Polyamide composite structures and processes for their preparation
PCT/US2011/057946 Ceased WO2012058346A1 (en) 2010-10-29 2011-10-27 Polyamide composite structures and processes for their preparation
PCT/US2011/057948 Ceased WO2012058348A1 (en) 2010-10-29 2011-10-27 Overmolded polyamide composite structures and processes for their preparation
PCT/US2011/057985 Ceased WO2012058368A1 (en) 2010-10-29 2011-10-27 Polyamide composite structures and processes for their preparation
PCT/US2011/057969 Ceased WO2012058359A1 (en) 2010-10-29 2011-10-27 Composite structures having improved heat aging and interlayer bond strength
PCT/US2011/058005 Ceased WO2012058379A2 (en) 2010-10-29 2011-10-27 Composite structures having improved heat aging and interlayer bond strength
PCT/US2011/057951 Ceased WO2012058350A2 (en) 2010-10-29 2011-10-27 Polyamide composite structures and processes for their preparation
PCT/US2011/057952 Ceased WO2012058351A1 (en) 2010-10-29 2011-10-27 Overmolded polyamide composite structures and processes for their preparation
PCT/US2011/057997 Ceased WO2012058374A1 (en) 2010-10-29 2011-10-27 Overmolded polyamide composite structures and processes for their preparation
PCT/US2011/057979 Ceased WO2012058366A1 (en) 2010-10-29 2011-10-27 Composite structures having improved heat aging and interlayer bond strength

Family Applications After (10)

Application Number Title Priority Date Filing Date
PCT/US2011/057953 Ceased WO2012058352A1 (en) 2010-10-29 2011-10-27 Polyamide composite structures and processes for their preparation
PCT/US2011/057946 Ceased WO2012058346A1 (en) 2010-10-29 2011-10-27 Polyamide composite structures and processes for their preparation
PCT/US2011/057948 Ceased WO2012058348A1 (en) 2010-10-29 2011-10-27 Overmolded polyamide composite structures and processes for their preparation
PCT/US2011/057985 Ceased WO2012058368A1 (en) 2010-10-29 2011-10-27 Polyamide composite structures and processes for their preparation
PCT/US2011/057969 Ceased WO2012058359A1 (en) 2010-10-29 2011-10-27 Composite structures having improved heat aging and interlayer bond strength
PCT/US2011/058005 Ceased WO2012058379A2 (en) 2010-10-29 2011-10-27 Composite structures having improved heat aging and interlayer bond strength
PCT/US2011/057951 Ceased WO2012058350A2 (en) 2010-10-29 2011-10-27 Polyamide composite structures and processes for their preparation
PCT/US2011/057952 Ceased WO2012058351A1 (en) 2010-10-29 2011-10-27 Overmolded polyamide composite structures and processes for their preparation
PCT/US2011/057997 Ceased WO2012058374A1 (en) 2010-10-29 2011-10-27 Overmolded polyamide composite structures and processes for their preparation
PCT/US2011/057979 Ceased WO2012058366A1 (en) 2010-10-29 2011-10-27 Composite structures having improved heat aging and interlayer bond strength

Country Status (6)

Country Link
US (12) US20120108122A1 (enExample)
EP (11) EP2632713A1 (enExample)
JP (12) JP2014502222A (enExample)
CN (11) CN103180134B (enExample)
BR (10) BR112013010466A2 (enExample)
WO (11) WO2012058345A1 (enExample)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015017570A1 (en) * 2013-08-01 2015-02-05 Invista North America S.A R.L. Continuous fiber thermoplastic composites
WO2015024912A1 (de) * 2013-08-21 2015-02-26 Basf Se Compositkunststoffteil mit verbesserter adhäsion zwischen den enthaltenen kunststoffkomponenten
WO2015024911A1 (de) * 2013-08-21 2015-02-26 Basf Se Compositkunststoffteil mit verbesserter wärmealterungsbeständigkeit
WO2015024913A1 (de) * 2013-08-21 2015-02-26 Basf Se Verfahren zur herstellung eines compositkunststoffteils (ck)
WO2016073045A1 (en) * 2014-11-05 2016-05-12 E. I. Du Pont De Nemours And Company Improved thermoplastic composites
WO2019016374A1 (de) * 2017-07-21 2019-01-24 Lanxess Deutschland Gmbh Türmodul
EP3078475B1 (de) 2015-04-07 2019-01-30 Ems-Patent Ag Herstellungsverfahren eines mit einem verstärkungselement verstärkten formkörpers
EP3763860A4 (en) * 2018-03-05 2021-08-25 Asahi Kasei Kabushiki Kaisha THERMOPLASTIC RESIN COATED REINFORCING FIBER COMPOSITE THREAD, COMPOSITE YARN PRODUCTION PROCESS, CONTINUOUS FIBER REINFORCED RESIN MOLDING, AND COMPOSITE MATERIAL MOLDING PRODUCTION PROCESS
US11214025B2 (en) 2014-11-07 2022-01-04 Mclaren Automotive Limited Fibre-reinforced components
WO2025017254A1 (fr) * 2023-07-18 2025-01-23 Safran Procede de recyclage de piece composite a matrice organique thermoplastique

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9149990B2 (en) * 2007-03-30 2015-10-06 Airbus Operations Gmbh Apparatus for the forming of a lay-up of fibre composite material
US20120108122A1 (en) * 2010-10-29 2012-05-03 E. I. Du Pont De Nemours And Company Overmolded polyamide composite structures and processes for their preparation
US8691911B2 (en) 2011-01-31 2014-04-08 E I Du Pont De Nemours And Company Melt-blended thermoplastic composition
CN102858879B (zh) 2011-04-12 2013-12-04 三菱瓦斯化学株式会社 聚酰胺树脂系复合材料及其制造方法
JP6120287B2 (ja) * 2011-04-28 2017-04-26 ディーエスエム アイピー アセッツ ビー.ブイ. 被潤滑摺動システム用摺動要素
EP2841503B1 (en) * 2012-04-27 2018-08-29 DSM IP Assets B.V. Electrically conductive polyamide substrate
JP5820927B2 (ja) * 2012-05-15 2015-11-24 帝人株式会社 補強用炭素繊維束、その製造方法及びそれを用いた複合体の製造方法
US9284436B2 (en) * 2012-07-05 2016-03-15 Teijin Limited Material for molding, shaped product therefrom, and method for manufacturing shaped product
JP5971049B2 (ja) * 2012-09-14 2016-08-17 東レ株式会社 ポリアミド樹脂組成物
US8777264B2 (en) * 2012-10-05 2014-07-15 GM Global Technology Operations LLC Steering column assembly for a motor vehicle
FR3008984B1 (fr) * 2013-07-24 2017-04-28 Rhodia Operations Articles obtenus a partir d'une composition polymerique, procede de preparation et utilisations
PT3039060T (pt) 2013-08-30 2021-08-02 Continental Structural Plastics Inc Sobremoldagem com fibras não orientadas
EP2860009B1 (de) * 2013-10-11 2019-01-09 Ems-Patent Ag Verfahren zu der Herstellung von verstärkten Formkörper
CN105705565B (zh) * 2013-11-14 2018-06-01 Ems 专利股份公司 用于大型模制件的聚酰胺模塑料
PL2878630T3 (pl) * 2013-11-28 2020-06-01 Lanxess Deutschland Gmbh Kompozycje poliamidowe
JP6256012B2 (ja) * 2014-01-08 2018-01-10 王子ホールディングス株式会社 多層成形品
JP2015131394A (ja) * 2014-01-09 2015-07-23 東レ株式会社 繊維強化熱可塑性樹脂一体化構造体
JP2015140353A (ja) * 2014-01-27 2015-08-03 東レ株式会社 繊維強化熱可塑性樹脂組成物およびその製造方法ならびに繊維強化熱可塑性樹脂成形体の製造方法
JP6511226B2 (ja) * 2014-05-29 2019-05-15 三菱エンジニアリングプラスチックス株式会社 繊維強化樹脂材料、樹脂成形品および繊維強化樹脂材料の製造方法
US9302414B2 (en) * 2014-06-24 2016-04-05 Ford Global Technologies Molded active plastics components for a vehicle airbag assembly
US9667112B2 (en) 2014-08-28 2017-05-30 General Electric Company Rotor slot liners
US9641037B2 (en) 2014-08-28 2017-05-02 General Electric Company Stator slot liners
FI3186286T3 (fi) 2014-09-26 2024-07-10 Renmatix Inc Selluloosaa sisältävät koostumukset ja niiden valmistusmenetelmät
EP3201272A1 (en) * 2014-09-30 2017-08-09 E. I. du Pont de Nemours and Company Acoustic emission reduction of composites containing semi-aromatic polyamides
US10907769B2 (en) 2014-11-28 2021-02-02 Mitsubishi Gas Chemical Company, Inc. Pressure vessel, liner and method for manufacturing a pressure vessel
EP3233472A1 (en) * 2014-12-17 2017-10-25 E. I. du Pont de Nemours and Company Glass and carbon fiber composites and uses thereof
EP3093312A1 (de) * 2015-05-12 2016-11-16 LANXESS Deutschland GmbH Thermoplastische formmassen
KR101751247B1 (ko) * 2015-06-16 2017-06-28 한국엔지니어링플라스틱 주식회사 내마찰성 및 내마모성이 향상된 폴리아미드 수지 조성물
DE112016004611T5 (de) * 2015-10-09 2018-06-28 E.I. Du Pont De Nemours And Co. Umspritzte Kohlefaserstrukturen mit angepasstem Hohlraumgehalt und Verwendungen davon
JP6703389B2 (ja) * 2015-10-20 2020-06-03 ダイセルポリマー株式会社 成形品の製造方法
US11198766B2 (en) * 2015-11-24 2021-12-14 Teijin Limited Method for producing molded article
US9840989B2 (en) 2015-11-30 2017-12-12 Ford Global Technologies, Llc Soft engine cover for intake manifold
CN108367470B (zh) * 2015-12-17 2021-02-05 帝斯曼知识产权资产管理有限公司 在金属表面上塑料包覆成型的方法和塑料-金属混杂部件
JP7375290B2 (ja) * 2015-12-18 2023-11-08 ディーエスエム アイピー アセッツ ビー.ブイ. 圧力容器
KR20170073994A (ko) 2015-12-21 2017-06-29 현대자동차주식회사 고내열성 및 내산화성 폴리아마이드 수지 조성물
JP6616227B2 (ja) 2016-03-30 2019-12-04 三菱重工業株式会社 前妻構体及び車両
EP3257893B1 (de) 2016-06-15 2018-12-26 LANXESS Deutschland GmbH Faser-matrix-halbzeug
CA2973879A1 (en) * 2016-07-19 2018-01-19 University Of Guelph Biocarbon and nylon based hybrrid carbonaceous biocomposites and methods of making those and using thereof
KR101810004B1 (ko) * 2016-08-03 2017-12-19 아우토리브 디벨롭먼트 아베 자동차의 에어백 하우징
JP7039823B2 (ja) * 2016-10-13 2022-03-23 三菱ケミカル株式会社 炭素繊維強化プラスチック積層体およびその製造方法
JP7003417B2 (ja) * 2017-02-17 2022-02-04 三菱ケミカル株式会社 炭素繊維ポリアミド樹脂複合プリプレグの製造方法、及び炭素繊維ポリアミド樹脂複合材
JP6708582B2 (ja) * 2017-04-10 2020-06-10 トヨタ自動車株式会社 車両のサスペンションアーム
JP2019026670A (ja) * 2017-07-26 2019-02-21 旭化成株式会社 ポリアミド組成物および成形品
US20210147641A1 (en) 2018-04-03 2021-05-20 Renmatix, Inc. Composites containing cellulose-based compositions
CN111727110B (zh) * 2018-04-25 2022-03-29 旭化成株式会社 连续纤维增强树脂成型体、及其制造方法
CN112566782A (zh) * 2018-07-16 2021-03-26 康宁公司 具冷弯玻璃基板的车辆内部系统及其形成方法
CN112752793B (zh) * 2018-07-30 2024-01-30 奥升德功能材料运营有限公司 尼龙三元共聚物
WO2020024242A1 (en) * 2018-08-03 2020-02-06 Polyone Corporation Non-blooming thermoplastic polyurethane compounds and thermoplastic articles molded therefrom
CN109265720A (zh) * 2018-09-11 2019-01-25 浙江奔富新能源股份有限公司 耐氢氟酸尼龙膜及其制备方法
WO2020092761A1 (en) * 2018-10-31 2020-05-07 Shakespeare Company, Llc Clear polyamide resins, articles, and methods
CN113272366A (zh) 2019-01-10 2021-08-17 艾维恩股份有限公司 具有包覆成型刚性部分的弹性柔性复合制品
US12472729B2 (en) 2019-04-08 2025-11-18 Owens Corning Intellectual Capital, Llc Composite nonwoven mat and method of making the same
IT201900013803A1 (it) * 2019-08-02 2021-02-02 Radici Partecipazioni S P A Manufatti costituiti da accoppiamento di due parti poliammidiche, di cui una fibrorinforzata, e processi per la loro produzione
KR102081154B1 (ko) * 2019-09-06 2020-02-25 한국엔지니어링플라스틱 주식회사 반도체 트레이용 폴리아미드 수지 조성물
JP6853868B2 (ja) * 2019-11-06 2021-03-31 三菱重工業株式会社 前妻構体及び車両
JP7335144B2 (ja) * 2019-11-26 2023-08-29 旭化成株式会社 連続繊維強化樹脂複合材料及びその製造方法
IT201900022884A1 (it) * 2019-12-03 2020-03-03 Univ Degli Studi Di Modena E Reggio Emilia Materiale composito formato da un biofiller e da una matrice termoplastica e procedimento per realizzare un articolo con un tale materiale composito
JP2023504365A (ja) * 2019-12-05 2023-02-03 ディーエスエム アイピー アセッツ ビー.ブイ. 圧縮リミッター
RU2741945C1 (ru) * 2019-12-28 2021-01-29 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Способ распределения наночастиц на основе углерода, при производстве нанокомпозиционных однонаправленных термопластичных лент
KR102439566B1 (ko) * 2021-05-03 2022-09-01 금오공과대학교 산학협력단 Lft 공정에 의한 탄소섬유 강화 pa6 복합재의 제조방법 및 이에 따라 제조된 탄소섬유 강화 pa6 복합재
CN114474557B (zh) * 2021-12-31 2023-11-10 富联裕展科技(深圳)有限公司 金属塑胶结合件及其形成方法、电子产品壳体
CN116079991A (zh) * 2023-01-12 2023-05-09 东华大学 一种预优化界面的高性能混杂成型热塑性复合材料混合成型工艺
FR3146828A1 (fr) 2023-03-20 2024-09-27 Arkema France Structure composite surmoulée
FR3146829A1 (fr) 2023-03-20 2024-09-27 Arkema France Structure composite surmoulée
CN116790116B (zh) * 2023-04-27 2024-05-07 珠海万通特种工程塑料有限公司 半芳香族聚酰胺组合物及其制备方法与应用
EP4520503A1 (en) * 2023-06-27 2025-03-12 Rohr, Inc. Thermoplastic composite components and method for forming same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3920879A (en) * 1971-11-01 1975-11-18 Allied Chem Glass fiber filled polyamide composites
US4255219A (en) 1978-08-28 1981-03-10 Allied Chemical Corporation Process for making composite laminated polyamide sheet material
FR2501571A1 (fr) * 1981-03-12 1982-09-17 Renault Pieces moulees renforcees par des profiles realises par pultrusion
US5731375A (en) * 1994-09-05 1998-03-24 Hyundai Motor Company Polyamide resin compositions
US20100249307A1 (en) * 2007-10-30 2010-09-30 Ems-Patent Ag Moulding compounds for producing moulded parts for drinking water
US20100256262A1 (en) * 2007-09-03 2010-10-07 Unitika Ltd. Resin composition and molded body using the same
US20100279111A1 (en) * 2007-11-16 2010-11-04 Ems-Patent Ag Filled polyamide molding materials
WO2011014754A1 (en) * 2009-07-30 2011-02-03 E. I. Du Pont De Nemours And Company Heat resistant polyamide composite structures and processes for their preparation
WO2011014751A1 (en) * 2009-07-30 2011-02-03 E. I. Du Pont De Nemours And Company Overmolded heat resistant polyamide composite structures and processes for their preparation
US20110105655A1 (en) * 2007-11-16 2011-05-05 Ems-Patent Ag Filled polyamide molding materials

Family Cites Families (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL129542C (enExample) 1961-08-31 1900-01-01
JPS5061449A (enExample) 1973-10-02 1975-05-27
GB1585085A (en) * 1976-06-21 1981-02-25 Ici Ltd Polyamide compositions
JPS5493043A (en) 1977-12-29 1979-07-23 Unitika Ltd Resin composition and its production
US4346194A (en) * 1980-01-22 1982-08-24 E. I. Du Pont De Nemours And Company Toughened polyamide blends
JPS56109247A (en) * 1980-01-22 1981-08-29 Du Pont Polyamide blend
KR900004934B1 (ko) * 1987-04-22 1990-07-12 주식회사 코오롱 폴리아미드 수지 조성물
US4943404A (en) * 1987-11-13 1990-07-24 Phillips Petroleum Company Process for producing a fiber reinforced thermoplastic article
DE3917600A1 (de) * 1989-05-31 1990-12-06 Basf Ag Thermoplastische formmassen aus teilaromatischen und amorphen copolyamiden
SE9200564L (sv) 1992-02-26 1993-03-15 Perstorp Ab Dendritisk makromolekyl av polyestertyp, foerfarande foer framstaellning daerav samt anvaendning daerav
DE59305110D1 (de) * 1992-06-04 1997-02-27 Ciba Geigy Ag Stabilisierte chlorhaltige Polymerzusammensetzungen
JP2878933B2 (ja) * 1992-06-25 1999-04-05 旭化成工業株式会社 ポリアミド樹脂組成物および表面光沢性の優れた成形品
US5437899A (en) * 1992-07-14 1995-08-01 Composite Development Corporation Structural element formed of a fiber reinforced thermoplastic material and method of manufacture
US5492980A (en) 1992-10-12 1996-02-20 Kishimoto Sangyo Co., Ltd. Thermoplastic molding resin composition
JPH0790178A (ja) * 1993-09-21 1995-04-04 Mitsubishi Chem Corp ポリアミド樹脂組成物
WO1995015354A1 (en) * 1993-12-01 1995-06-08 Alliedsignal Inc. Films produced by bubble formation of compositions of polyamide and functionalized polyolefin
US5424344A (en) * 1994-01-05 1995-06-13 E. I. Dupont De Nemours And Company Flame retardant polyamide compositions
US5830528A (en) * 1996-05-29 1998-11-03 Amcol International Corporation Intercalates and exfoliates formed with hydroxyl-functional; polyhydroxyl-functional; and aromatic compounds; composites materials containing same and methods of modifying rheology therewith
SE509240C2 (sv) 1996-05-28 1998-12-21 Perstorp Ab Termoplastisk kompound bestående av en termoplastisk polymer bunden till en dendritisk eller hyperförgrenad makromolekyl samt komposition och produkt därav
AU6491698A (en) * 1997-03-14 1998-10-12 E.I. Du Pont De Nemours And Company Composite sheet material comprising polyamide film and fabric
TW359642B (en) * 1997-04-21 1999-06-01 Toray Industries Resin composition for fiber-reinforced complex material, prepreg and fiber-reinforced complex material
DE19731230A1 (de) * 1997-07-21 1999-01-28 Basf Ag Statistische Copolyamide enthaltende Formmassen, Verfahren zu ihrer Herstellung und ihre Verwendung
JPH11198325A (ja) * 1998-01-13 1999-07-27 Mitsubishi Eng Plast Corp ポリアミド樹脂製一体成形品
JP4008156B2 (ja) * 1998-06-08 2007-11-14 三菱エンジニアリングプラスチックス株式会社 ポリアミド樹脂製一体成形品
JP2008274305A (ja) 1999-03-30 2008-11-13 Ube Ind Ltd 良好な流動性を有するポリアミド組成物
JP4284808B2 (ja) 1999-03-30 2009-06-24 宇部興産株式会社 射出溶着用材料
EP1088852B1 (en) 1999-09-29 2007-02-28 Toyo Boseki Kabushiki Kaisha Inorganic reinforced polyamide resin compositions
JP3089802U (ja) 2000-01-06 2002-11-15 ザ・バートン・コーポレイション 多数の材料から形成されるハイバック
US6497959B1 (en) 2000-03-30 2002-12-24 General Electric Company Use of dendrimers as a processing aid and surface modifier for thermoplastic resins
DE10057455C2 (de) * 2000-11-20 2003-11-06 Ems Chemie Ag Polyamid-Formmassen mit verbesserten Eigenschaften
DE50113321D1 (de) 2001-03-15 2008-01-10 Ems Chemie Ag Gefüllte, thermoplastische Polyamidformmassen mit verbesserten Eigenschaften
CA2386717A1 (en) * 2001-05-21 2002-11-21 Kuraray Co., Ltd. Polyamide composition
DE10132928A1 (de) 2001-07-03 2003-01-16 Buehler Ag Modifizierte nachkondensierte Polyester
FR2830255B1 (fr) 2001-10-01 2004-10-22 Rhodia Industrial Yarns Ag Materiaux composites comprenant un materiau de renfort et comme matrice thermoplastique un polyamide etoile, article compose precurseur de ces materiaux et produits obtenus a partir de ces materiaux
EP1388564A1 (en) * 2002-08-08 2004-02-11 DSM IP Assets B.V. Polyamide composition, process of preparation and use for making moulded articles
US20110217495A1 (en) * 2002-08-27 2011-09-08 Ems-Chemie Ag Polyamide moulding materials for the production of moulded articles having reduced surface carbonization
DE10239326A1 (de) * 2002-08-27 2004-03-18 Ems-Chemie Ag Hochviskose Formmassen mit nanoskaligen Füllstoffen
US20070167552A1 (en) * 2002-08-27 2007-07-19 Georg Stoeppelmann Polyamide moulding materials for the production of moulded articles having reduced surface carbonization
DE10255044A1 (de) 2002-11-26 2004-06-03 Bayer Ag Verwendung von verzweigten Fließhilfsmitteln in hochfließfähigen Polymerzusammensetzungen
US7122255B2 (en) * 2002-12-10 2006-10-17 E. I. Du Pont Canada Company Multilayered composite polyamide articles and processes for their preparation
US20040242737A1 (en) * 2003-04-14 2004-12-02 Georgios Topulos Polyamide composition for blow molded articles
US20040260035A1 (en) 2003-06-11 2004-12-23 Issam Dairanieh Crystallizable thermoplastic resins and dendrimers with improved fabrication characteristics
EP1498445A1 (en) 2003-07-18 2005-01-19 DSM IP Assets B.V. Heat stabilized moulding composition
EP1658163B1 (en) 2003-08-19 2020-01-01 Solvay Specialty Polymers USA, LLC. Impact-modified polyamide hollow body
JP4359107B2 (ja) 2003-08-27 2009-11-04 三菱エンジニアリングプラスチックス株式会社 自動車用樹脂製複合部品
DE102004005657A1 (de) 2004-02-04 2005-08-25 Basf Ag Fließfähige Polyesterformmassen
US20050203223A1 (en) * 2004-03-09 2005-09-15 Mitsubishi Engineering-Plastics Corporation Flame-retardant polyamide resin composition and extrusion-molded product
US20060036044A1 (en) * 2004-08-13 2006-02-16 Cheng Paul P Transparent polyamide compositions and articles made therefrom
CN100577739C (zh) * 2004-09-30 2010-01-06 丰田合成株式会社 树脂合成物和树脂成型品及其制造方法
EP1683830A1 (en) 2005-01-12 2006-07-26 DSM IP Assets B.V. Heat stabilized moulding composition
EP1681313A1 (en) * 2005-01-17 2006-07-19 DSM IP Assets B.V. Heat stabilized moulding composition
WO2007036929A2 (en) * 2005-09-29 2007-04-05 Nilit Ltd. Modified polyamides, uses thereof and process for their preparation
EP1788027B1 (de) * 2005-11-18 2007-07-18 EMS-Chemie AG Verstärkte Polyamidformmassen
EP1788026B1 (de) * 2005-11-18 2007-07-18 EMS-Chemie AG Verstärkte Polyamidformmassen
US8003202B2 (en) 2006-06-16 2011-08-23 E.I. Du Pont De Nemours And Company Semiaromatic polyamide composite article and processes for its preparation
US8853324B2 (en) * 2006-11-22 2014-10-07 E I Du Pont De Nemours And Company Mobile telephone housing comprising polyamide resin composition
EP2123716B1 (en) * 2006-12-20 2016-08-24 Toyobo Co., Ltd. Crystalline polyamide based resin composition
US20080161503A1 (en) * 2006-12-29 2008-07-03 E.I. Du Pont De Nemours And Company Composition Comprising Ethylene Copolymer and Polyamide
JP4949913B2 (ja) * 2007-04-12 2012-06-13 旭化成ケミカルズ株式会社 ガラス長繊維強化ポリアミド樹脂ペレットおよびその成形品
US7691311B2 (en) * 2007-04-27 2010-04-06 Vec Industries, L.L.C. Method for manufacturing a glass fiber reinforced article, and a glass fiber reinforced article
EP2314644B1 (de) * 2007-08-24 2012-08-22 EMS-Patent AG Mit flachen Glasfasern verstärkte Hochtemperatur-Polyamidformmassen
DE102008057026A1 (de) * 2007-11-12 2009-05-28 Medicoat Ag Implantat und Verfahren zur Beschichtung eines Implantats
US20090127740A1 (en) * 2007-11-19 2009-05-21 E.I. Du Pont De Nemours And Company Use of polyamide compositions for making molded articles having improved adhesion, molded articles thereof and methods for adhering such materials
FR2928102B1 (fr) * 2008-03-03 2012-10-19 Arkema France Structure multicouche comprenant au moins une couche stabilisee
WO2010014795A1 (en) * 2008-07-30 2010-02-04 E. I. Du Pont De Nemours And Company Thermoplastic articles including polyhydroxy polymers
JP2010037358A (ja) * 2008-07-31 2010-02-18 Toray Ind Inc 繊維強化成形基材の製造方法
CN101735478A (zh) * 2008-11-07 2010-06-16 E.I.内穆尔杜邦公司 用于聚合物的热稳定剂
US8476354B2 (en) * 2008-12-23 2013-07-02 E I Du Pont De Nemours And Company Low sink marks and excellent surface appearance reinforced polyamide compositions
WO2010081873A1 (en) * 2009-01-16 2010-07-22 Dsm Ip Assets B.V. Polyamide films for flexible printed circuit boards
TWI473846B (zh) * 2009-01-16 2015-02-21 Dsm Ip Assets Bv 透明膜
KR20110117120A (ko) * 2009-01-29 2011-10-26 도요 보세키 가부시키가이샤 유리 섬유 강화 폴리아미드 수지 조성물
US20100267355A1 (en) 2009-04-17 2010-10-21 Varney Douglas W Method for allowing Reestablishment of A call to A mobile terminal that is blocked from receiving calls
US20100291821A1 (en) * 2009-05-12 2010-11-18 E. I. Du Pont De Nemours And Company Polyamide composite structures and processes for their preparation
FR2947823B1 (fr) * 2009-07-09 2012-12-28 Rhodia Operations Article polyamide composite
US20110028060A1 (en) * 2009-07-30 2011-02-03 E .I. Du Pont De Nemours And Company Heat resistant semi-aromatic polyamide composite structures and processes for their preparation
US20120108122A1 (en) * 2010-10-29 2012-05-03 E. I. Du Pont De Nemours And Company Overmolded polyamide composite structures and processes for their preparation

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3920879A (en) * 1971-11-01 1975-11-18 Allied Chem Glass fiber filled polyamide composites
US4255219A (en) 1978-08-28 1981-03-10 Allied Chemical Corporation Process for making composite laminated polyamide sheet material
FR2501571A1 (fr) * 1981-03-12 1982-09-17 Renault Pieces moulees renforcees par des profiles realises par pultrusion
US5731375A (en) * 1994-09-05 1998-03-24 Hyundai Motor Company Polyamide resin compositions
US20100256262A1 (en) * 2007-09-03 2010-10-07 Unitika Ltd. Resin composition and molded body using the same
US20100249307A1 (en) * 2007-10-30 2010-09-30 Ems-Patent Ag Moulding compounds for producing moulded parts for drinking water
US20100279111A1 (en) * 2007-11-16 2010-11-04 Ems-Patent Ag Filled polyamide molding materials
US20110105655A1 (en) * 2007-11-16 2011-05-05 Ems-Patent Ag Filled polyamide molding materials
WO2011014754A1 (en) * 2009-07-30 2011-02-03 E. I. Du Pont De Nemours And Company Heat resistant polyamide composite structures and processes for their preparation
WO2011014751A1 (en) * 2009-07-30 2011-02-03 E. I. Du Pont De Nemours And Company Overmolded heat resistant polyamide composite structures and processes for their preparation

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015017570A1 (en) * 2013-08-01 2015-02-05 Invista North America S.A R.L. Continuous fiber thermoplastic composites
US10202498B2 (en) 2013-08-21 2019-02-12 Basf Se Composite plastic part with improved adhesion between the plastic components contained in the composite plastic part
KR102318323B1 (ko) 2013-08-21 2021-10-28 바스프 에스이 플라스틱 복합 부품의 제조 방법
WO2015024913A1 (de) * 2013-08-21 2015-02-26 Basf Se Verfahren zur herstellung eines compositkunststoffteils (ck)
WO2015024912A1 (de) * 2013-08-21 2015-02-26 Basf Se Compositkunststoffteil mit verbesserter adhäsion zwischen den enthaltenen kunststoffkomponenten
KR20160045834A (ko) * 2013-08-21 2016-04-27 바스프 에스이 플라스틱 복합 부품의 제조 방법
KR102330567B1 (ko) * 2013-08-21 2021-11-25 바스프 에스이 복합 플라스틱 부품에 함유된 플라스틱 성분들 간의 접착이 개선된 복합 플라스틱 부품
US10030110B2 (en) 2013-08-21 2018-07-24 Basf Se Composite plastic part with improved resistance to heat aging
KR20160045808A (ko) * 2013-08-21 2016-04-27 바스프 에스이 복합 플라스틱 부품에 함유된 플라스틱 성분들 간의 접착이 개선된 복합 플라스틱 부품
WO2015024911A1 (de) * 2013-08-21 2015-02-26 Basf Se Compositkunststoffteil mit verbesserter wärmealterungsbeständigkeit
US10583595B2 (en) 2013-08-21 2020-03-10 Basf Se Method for producing a composite plastic part (CK)
WO2016073045A1 (en) * 2014-11-05 2016-05-12 E. I. Du Pont De Nemours And Company Improved thermoplastic composites
US11214025B2 (en) 2014-11-07 2022-01-04 Mclaren Automotive Limited Fibre-reinforced components
US10843389B2 (en) 2015-04-07 2020-11-24 Ems-Patent Ag Moulded article reinforced with a reinforcing element, method for production thereof and use thereof
EP3078475B1 (de) 2015-04-07 2019-01-30 Ems-Patent Ag Herstellungsverfahren eines mit einem verstärkungselement verstärkten formkörpers
EP3078475B2 (de) 2015-04-07 2025-01-22 Ems-Chemie Ag Herstellungsverfahren eines mit einem verstärkungselement verstärkten formkörpers
WO2019016374A1 (de) * 2017-07-21 2019-01-24 Lanxess Deutschland Gmbh Türmodul
EP3763860A4 (en) * 2018-03-05 2021-08-25 Asahi Kasei Kabushiki Kaisha THERMOPLASTIC RESIN COATED REINFORCING FIBER COMPOSITE THREAD, COMPOSITE YARN PRODUCTION PROCESS, CONTINUOUS FIBER REINFORCED RESIN MOLDING, AND COMPOSITE MATERIAL MOLDING PRODUCTION PROCESS
WO2025017254A1 (fr) * 2023-07-18 2025-01-23 Safran Procede de recyclage de piece composite a matrice organique thermoplastique
FR3151237A1 (fr) * 2023-07-18 2025-01-24 Safran Procede de recyclage de piece composite a matrice organique thermoplastique

Also Published As

Publication number Publication date
US20120108128A1 (en) 2012-05-03
EP2632712A1 (en) 2013-09-04
US20120108123A1 (en) 2012-05-03
JP5932816B2 (ja) 2016-06-08
CN103201101B (zh) 2017-03-01
BR112013010473A2 (pt) 2016-08-02
CN103221209A (zh) 2013-07-24
EP2632709B1 (en) 2019-11-20
JP2013542341A (ja) 2013-11-21
US20120108127A1 (en) 2012-05-03
CN103201100B (zh) 2016-11-09
WO2012058368A1 (en) 2012-05-03
WO2012058348A1 (en) 2012-05-03
JP2013540883A (ja) 2013-11-07
CN103201101A (zh) 2013-07-10
EP2632717B1 (en) 2019-07-03
CN103209831A (zh) 2013-07-17
BR112013010463A2 (pt) 2016-08-02
US20120108131A1 (en) 2012-05-03
CN103180134A (zh) 2013-06-26
EP2632715A1 (en) 2013-09-04
WO2012058379A2 (en) 2012-05-03
US20120108129A1 (en) 2012-05-03
BR112013010469A2 (pt) 2017-09-12
BR112013009344A2 (pt) 2019-09-24
EP2632711B1 (en) 2019-05-15
US20120108136A1 (en) 2012-05-03
US20120108122A1 (en) 2012-05-03
US9475265B2 (en) 2016-10-25
WO2012058350A2 (en) 2012-05-03
CN103328203B (zh) 2015-07-29
US20160214359A1 (en) 2016-07-28
US20120108130A1 (en) 2012-05-03
JP6027012B2 (ja) 2016-11-16
WO2012058366A1 (en) 2012-05-03
EP2632709A1 (en) 2013-09-04
JP5911877B2 (ja) 2016-04-27
BR112013010222A2 (pt) 2016-09-13
US20120108125A1 (en) 2012-05-03
BR112013010224A2 (pt) 2016-09-13
BR112013007232A2 (pt) 2016-06-14
JP2013542295A (ja) 2013-11-21
WO2012058346A1 (en) 2012-05-03
CN103189200A (zh) 2013-07-03
JP2013545637A (ja) 2013-12-26
WO2012058350A3 (en) 2012-07-12
JP2016117914A (ja) 2016-06-30
JP2013543803A (ja) 2013-12-09
JP2014502222A (ja) 2014-01-30
CN103237655A (zh) 2013-08-07
WO2012058352A1 (en) 2012-05-03
US20120108126A1 (en) 2012-05-03
EP2632710A1 (en) 2013-09-04
CN103328203A (zh) 2013-09-25
EP2632714A1 (en) 2013-09-04
CN103201100A (zh) 2013-07-10
WO2012058351A1 (en) 2012-05-03
EP2632716A1 (en) 2013-09-04
CN103180134B (zh) 2016-11-09
JP2013543802A (ja) 2013-12-09
EP2632719A2 (en) 2013-09-04
JP2013545636A (ja) 2013-12-26
BR112013010227A2 (pt) 2016-09-13
EP2632711A2 (en) 2013-09-04
CN103237654A (zh) 2013-08-07
EP2632717A1 (en) 2013-09-04
JP5931890B2 (ja) 2016-06-08
JP2013543906A (ja) 2013-12-09
WO2012058359A1 (en) 2012-05-03
CN103180133A (zh) 2013-06-26
JP2013540884A (ja) 2013-11-07
JP5972891B2 (ja) 2016-08-17
US9597861B2 (en) 2017-03-21
JP5878544B2 (ja) 2016-03-08
BR112013010220A2 (pt) 2019-09-24
US20120108124A1 (en) 2012-05-03
WO2012058374A1 (en) 2012-05-03
CN103221208A (zh) 2013-07-24
BR112013010466A2 (pt) 2016-08-02
WO2012058379A3 (en) 2012-07-19
JP2013542104A (ja) 2013-11-21
CN103221208B (zh) 2017-05-17
EP2632713A1 (en) 2013-09-04
EP2632718A1 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
EP2632709B1 (en) Polyamide composite structures and processes for their preparation
EP2430080B1 (en) Overmolded polyamide composite structures and processes for their preparation
EP3010713B1 (en) Hybrid glass fibers carbon fibers thermoplastic composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11782294

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011782294

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013536790

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013007520

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013007520

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130328