WO2012053497A1 - 金属材用親水性皮膜、親水化処理剤、及び親水化処理方法 - Google Patents

金属材用親水性皮膜、親水化処理剤、及び親水化処理方法 Download PDF

Info

Publication number
WO2012053497A1
WO2012053497A1 PCT/JP2011/073889 JP2011073889W WO2012053497A1 WO 2012053497 A1 WO2012053497 A1 WO 2012053497A1 JP 2011073889 W JP2011073889 W JP 2011073889W WO 2012053497 A1 WO2012053497 A1 WO 2012053497A1
Authority
WO
WIPO (PCT)
Prior art keywords
cerium
water
hydrophilic
hydrophilic film
treatment agent
Prior art date
Application number
PCT/JP2011/073889
Other languages
English (en)
French (fr)
Inventor
敏壽 片岡
Original Assignee
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パーカライジング株式会社 filed Critical 日本パーカライジング株式会社
Priority to AU2011319006A priority Critical patent/AU2011319006A1/en
Priority to BR112013009683A priority patent/BR112013009683A2/pt
Priority to CN2011800493323A priority patent/CN103154167A/zh
Priority to EP11834336.7A priority patent/EP2639274A4/en
Priority to KR1020137012583A priority patent/KR101512914B1/ko
Priority to US13/878,923 priority patent/US20130196167A1/en
Publication of WO2012053497A1 publication Critical patent/WO2012053497A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1612Non-macromolecular compounds
    • C09D5/1618Non-macromolecular compounds inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/04Arrangements for modifying heat-transfer, e.g. increasing, decreasing by preventing the formation of continuous films of condensate on heat-exchange surfaces, e.g. by promoting droplet formation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention relates to a hydrophilic film formed on the surface of a metal material, a hydrophilic treatment agent for obtaining a hydrophilic film, and a hydrophilic treatment method.
  • An air conditioner having functions such as cooling, heating, and dehumidification includes a heat exchanger fin in its heat exchange section.
  • the fin material for forming this heat exchanger fin is generally lightweight, excellent in workability, and excellent in thermal conductivity, so that metal materials such as aluminum, aluminum alloy, copper, copper alloy, etc. Formed with.
  • Condensation water generated in the heat radiating section and cooling section of the heat exchanger is not quickly removed from the surface of the heat exchanger, but is gradually dried and released into the atmosphere when the air conditioner stops.
  • a high humidity state occurs in the heat exchanger section. Due to this high humidity state, bacteria and molds are likely to grow in the heat exchanger, and when these grow, unpleasant odor is felt when the air conditioner is operated, or the metal material forming the heat exchanger is It causes the problem of corrosion.
  • molds particularly hygroscopic molds, grow in the heat exchanger section, and these molds are involved in unpleasant odors (Non-Patent Documents 1, 2, and 3).
  • Patent Document 1 As a method for imparting hydrophilicity, antibacterial properties, and antifungal properties to the surface of a heat exchanger member, for example, a method using a treatment agent in which polyvinyl alcohol is combined with a specific water-soluble polymer and a crosslinking agent (Patent Document 1). ), A method using a treatment agent in which a specific water-soluble polymer and zinc pyrithione, which is an antibacterial and antifungal component, are combined (Patent Documents 2 and 3), a method using a treatment agent containing antibacterial chitosan (Patent Document 4) ), A method using a treatment agent in which poly (meth) acrylic acid and a specific metal water-soluble compound such as Ce are combined (Patent Document 5) has been proposed.
  • the conventional techniques proposed in Patent Documents 1 to 3 above are techniques that can obtain an antifungal effect by separately adding a substance generally called an antibacterial agent. In order not to impair the desired hydrophilicity, there is a limit.
  • the conventional technique proposed in Patent Document 4 has a problem that although a film having a low contact angle can be obtained, it is not only impossible to prevent the growth of condensed water, but also antifungal property cannot be obtained.
  • an antibacterial component is separately added in addition to the metal water-soluble compound in order to obtain antifungal properties. In this respect, the conventional technique in which the above antibacterial component is added separately. The same problem is concerned.
  • the present invention is to solve the above-mentioned problems of the prior art, and its purpose is to provide a hydrophilic film that suppresses the growth of condensed water and imparts antifungal properties to the surface of the metal material, and the like.
  • An object of the present invention is to provide a hydrophilic treatment agent and a hydrophilic treatment method for obtaining a hydrophilic film.
  • the water contact angle has been measured as a hydrophilicity evaluation method, but the present inventor has found that this evaluation method is not necessarily appropriate. That is, it has been found that a film having a low contact angle cannot always prevent clogging due to condensed water, and only the measurement of the contact angle causes a problem when it is put to practical use.
  • the present inventor further indicates that the hydrophilicity necessary for the metal material used in the heat exchanger is not only sufficient for the water contact angle to be low, but the condensed water generated in the actual use environment spreads quickly and uniformly, In other words, it was found that condensation wettability is important, and an evaluation method was established.
  • a film capable of suppressing the growth of condensed water can be appropriately evaluated. Based on the establishment of such an evaluation method, the present inventor has completed the present invention as a result of earnest research on a hydrophilic film that suppresses the growth of condensed water and imparts antifungal properties.
  • the hydrophilization treatment agent according to the present invention for solving the above-mentioned problems contains water and one or more selected from the poorly water-soluble cerium compound (A) dispersed in the water. It is characterized by doing.
  • the hydrophilic film that can be obtained by using the hydrophilizing agent of the present invention can impart excellent condensation wettability and excellent antifungal property to a metal material, and as a result, clogging of condensed water is caused. Problems such as a decrease in heat exchange efficiency and splashing of water droplets can be solved, and further problems such as generation of unpleasant odor due to mold growth and corrosion of metal materials can be solved.
  • a preferred embodiment of the hydrophilic treatment agent according to the present invention is configured such that the hardly water-soluble cerium compound (A) is dispersed in the water with a particle size of 0.01 to 2.0 ⁇ m.
  • the poorly water-soluble cerium compound (A) is composed of cerium (III) carbonate, cerium fluoride (III), cerium fluoride (IV) and cerium oxide (IV). It comprises so that it may be 1 type, or 2 or more types chosen.
  • the preferred embodiment of the hydrophilic treatment agent according to the present invention is further configured to contain one or more selected from the organic component (B) in the water.
  • the hydrophilic film according to the present invention for solving the above problems is a hydrophilic film formed on the surface of a metal material, and contains one or more kinds selected from a poorly water-soluble cerium compound (A). It is characterized by doing.
  • a preferred embodiment of the hydrophilic film according to the present invention is configured such that the content of the poorly water-soluble cerium compound (A) is 5 to 100% by mass in terms of solid content.
  • the poorly water-soluble cerium compound (A) is selected from cerium (III) carbonate, cerium (III) fluoride, cerium (IV) fluoride and cerium (IV) oxide. It comprises so that 1 type or 2 types or more may be contained.
  • the preferred embodiment of the hydrophilic film according to the present invention is further configured to contain one or more selected from the organic component (B).
  • the hydrophilic film according to the present invention can be obtained by using (1) a hydrophilic treatment agent containing one or more selected from the poorly water-soluble cerium compound (A), (2) the metal material (3) The surface of the metal material that can be obtained by treating the surface with a hydrophilizing agent containing one or more selected from the water-insoluble cerium compound (A) and then drying the surface. Is treated with a hydrophilizing agent containing water and one or more selected from water-insoluble cerium compounds (A) dispersed in the water, and then dried. It can be obtained by a method of forming a hydrophilic film.
  • the hydrophilization treatment method according to the present invention for solving the above-mentioned problems is a method in which part or all of the surface of a metal material is selected from water and a poorly water-soluble cerium compound (A) dispersed in the water 1 It is characterized by forming a hydrophilic film after treatment with a hydrophilizing agent containing seeds or two or more kinds.
  • membrane is a film
  • the metal material according to the present invention for solving the above-described problems is obtained by providing the hydrophilic film according to the present invention on the surface of the metal material.
  • a preferable aspect of the metal material according to the present invention is configured such that the metal material is any one selected from an aluminum material, an aluminum alloy material, a copper material, and a copper alloy material. Moreover, it comprises so that the said metal material may be a member of a heat exchanger.
  • the hydrophilic film obtained by the hydrophilic treatment agent according to the present invention has excellent dew condensation wettability and excellent antifungal properties. If this hydrophilic film is applied to, for example, aluminum, aluminum alloy, copper, or copper alloy material that constitutes a heat exchanger or the like, problems such as a decrease in heat exchange efficiency due to clogging of condensed water and water droplet scattering are solved. Excellent condensation wettability can be imparted. Moreover, generation
  • hydrophilic film The hydrophilic film, the hydrophilic treatment agent and the hydrophilic treatment method according to the present invention will be described in more detail with reference to embodiments.
  • the hydrophilic film according to the present invention is a hydrophilic film formed on the surface of a metal material, and is characterized by containing one or more kinds selected from a poorly water-soluble cerium compound (A).
  • This hydrophilic film gives excellent condensation wettability and antifungal properties to the metal material.
  • the condensation wettability is a method for evaluating the hydrophilicity of a metal material used for a heat exchanger, established by the present inventors. The specific evaluation procedure is as described in the examples described later.
  • the metal material used for the heat exchanger has a low water contact angle.
  • a metal material having excellent dew condensation wettability is used, it is possible to suppress the growth of dew condensation water generated in an actual use environment and spread it uniformly and quickly.
  • the poorly water-soluble cerium compound (A) contained in the hydrophilic film according to the present invention is not particularly limited as long as it is a cerium compound classified as insoluble or hardly soluble in water, and is preferably used. it can.
  • cerium (III) carbonate, cerium (III) fluoride, cerium (IV) fluoride, and cerium (IV) oxide in that the condensation wettability and antifungal properties which are the objects of the present invention are excellent.
  • two or more of these poorly water-soluble cerium compounds can also be contained. If it further states, it is more preferable to contain cerium (IV) oxide from the viewpoint of highly achieving both the condensation wettability and the antifungal property which are the objects of the present invention.
  • cerium (IV) oxide Some of the poorly water-soluble cerium compounds reach cerium (IV) oxide when subjected to external energy such as heat.
  • the hydrophilic film is used in order to obtain the condensation wettability and antifungal properties which are the objects of the present invention.
  • a part or all of the poorly water-soluble cerium compound contained in may be in the form of cerium (IV) oxide.
  • the content of the poorly water-soluble cerium compound (A) contained in the hydrophilic film is preferably 5 to 100% by mass as a solid content ratio with respect to the film quantity of the hydrophilic film.
  • the content is 5% by mass or more, the condensation wettability and antifungal properties which are the objects of the present invention are excellent.
  • the content of the poorly water-soluble cerium compound (A) is more preferably 30 to 100% by mass as a solid content ratio with respect to the coating amount of the hydrophilic coating.
  • the content of the cerium compound (A) is closer to 100% by mass, there is an effect of improving the condensation wettability, which is desirable.
  • content of a cerium compound (A) is "100 mass%" it includes the case where the organic component (B) mentioned later is not included at all and the case where it is not included substantially.
  • “substantially not contained” means a trace amount that does not exhibit the intrinsic action of the organic component (B), for example, about 0.01 to 1.0% by mass.
  • the content (solid content ratio) of the poorly water-soluble cerium compound (A) contained in the hydrophilic film is poorly water-soluble in the hydrophilic treatment agent relative to the total mass excluding water and other volatile components in the hydrophilic treatment agent.
  • cerium compound (A) is poorly water-soluble in the hydrophilic treatment agent relative to the total mass excluding water and other volatile components in the hydrophilic treatment agent.
  • the coating amount of the hydrophilic coating according to the present invention provided on the surface of the metal material is not particularly limited as long as the condensation wettability and the antifungal properties which are the objects of the present invention are obtained, and can be suitably selected.
  • the range of 0.1 to 2.0 g / m 2 is preferable, and the range of 0.1 to 1.0 g / m 2 is more preferable.
  • the coating amount is 0.1 g / m 2 or more, the coating of the metal material becomes sufficient, and the condensation wettability that is the object of the present invention becomes more excellent.
  • the coating amount is 2.0 g / m 2 or less, the condensation wettability and antifungal properties which are the objects of the present invention can be obtained, and an appropriate coating amount can be obtained.
  • the hydrophilic film according to the present invention contains one or more selected from the poorly water-soluble cerium compound (A), it can impart excellent dew condensation wettability and antifungal properties to the metal material.
  • improvement of the persistence (water resistance) of the poorly water-soluble cerium compound (A) in water, and the stable water-soluble cerium compound (A) in the hydrophilic treatment agent for obtaining the hydrophilic film according to the present invention For the purpose of dispersing in water, one or more selected from the organic component (B) can be further contained.
  • the organic component (B) contained in the hydrophilic film is not particularly limited as long as it does not inhibit the condensation wettability and antifungal properties which are the objects of the present invention.
  • Organic acids, surfactants, and polymers Polymers and the like can be suitably used.
  • organic acids include oxalic acid, malonic acid, maleic acid, fumaric acid, succinic acid, malic acid, citric acid, glutamic acid, aspartic acid, tartaric acid, phthalic acid, itaconic acid, melittic acid, trimellitic acid, Trimesic acid, pyromellitic acid, naphthalenetetracarboxylic acid, propanedicarboxylic acid, butanedicarboxylic acid, pentanedicarboxylic acid, hexanedicarboxylic acid, heptanedicarboxylic acid, butanetricarboxylic acid, butanetetracarboxylic acid (for example, 1,2,3,4-) Butanetetracarboxylic acid (BTC)), cyclohexanetetracarboxylic acid, hexanetricarboxylic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, 2-phosphonobutane-1,2,2,
  • Mintetora methylene phosphonic acid
  • Mintetora methylene phosphonic acid
  • examples of the cationic counter ion forming the salt include metal ions such as alkali metal (sodium, potassium, lithium, etc.) ions, alkaline earth metal (magnesium, calcium, barium, etc.) ions, ammonium ions, and the like.
  • surfactants include polyoxyethylene glycol, polyoxyethylene polyoxypropylene glycol, polyoxypropylene glycol, polyoxyethylene alkyl phenyl ether, glycerin fatty acid partial ester, sorbitan fatty acid partial ester, pentaerythritol fatty acid
  • Nonionic (nonionic) surfactants such as partial esters, polyoxyethylene sorbitan acid fatty partial esters, polyoxyethylene alkyl ethers and the like can be mentioned.
  • polyoxyethylene alkyl ether carboxylate N-acyl sarcosine, N-acyl glutamate, dialkyl sulfosuccinate, alkane sulfonate, alpha olefin sulfonate, linear alkyl benzene sulfonate, molecular chain Anionic surface activity such as alkylbenzene sulfonate, naphthalene sulfonate-formaldehyde condensate, alkyl naphthalene sulfonate, N-methyl-N-acyl taurine, polyoxyethylene lauryl ether phosphate, polyoxyethylene alkyl ether phosphate Agents.
  • Examples of the cationic counter ion that forms these salts include metal ions such as alkali metal (sodium, potassium, lithium, etc.) ions, alkaline earth metal (magnesium, calcium, barium, etc.) ions, ammonium ions, and the like. It is done.
  • metal ions such as alkali metal (sodium, potassium, lithium, etc.) ions, alkaline earth metal (magnesium, calcium, barium, etc.) ions, ammonium ions, and the like. It is done.
  • cationic surfactants having a quaternary amine such as alkyltrimethylammonium and alkyldimethylbenzylammonium
  • amphoteric surfactants such as alkylbetaine, alkylamidopropylbetaine and alkyldimethylamine oxide
  • polymer examples include acrylic acid polymer, methacrylic acid polymer, acrylic acid-methacrylic acid copolymer, 2-acrylamido-2-methylpropanesulfonic acid-acrylic acid copolymer, acrylic acid.
  • a phosphonic group-containing polymer polyvinyl alcohol, a derivative of polyvinyl alcohol, a cellulose derivative, a starch derivative, a gelatin derivative, a polymer and a copolymer containing 4-styrenesulfonic acid and / or maleic anhydride, Polystyrene-sulfonic acid, vinylsulfonic acid polymer, isoprenesulfonic acid polymer, N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylcarbazole, 1-vinylimidazole, 2-vinylimidazole, 2-vinylpyridine, 4-vinyl Pyridine, acrylamide, Takuriruamido, polymers and copolymers such as
  • Examples of the cationic counter ion forming the salt include metal ions such as alkali metal (sodium, potassium, lithium, etc.) ions, alkaline earth metal (magnesium, calcium, barium, etc.) ions, ammonium ions, and the like.
  • metal ions such as alkali metal (sodium, potassium, lithium, etc.) ions, alkaline earth metal (magnesium, calcium, barium, etc.) ions, ammonium ions, and the like.
  • the content of the organic component (B) in the hydrophilic film is such that (B) :( A) is 0: 100 to 95: 5 as a solid content ratio (mass ratio) with respect to the poorly water-soluble cerium compound (A). Range.
  • the organic component (B) is positively contained to improve the persistence (water resistance) of the poorly water-soluble cerium compound (A) in water, and the stable dispersion of the poorly water-soluble cerium compound (A) in the hydrophilic treatment agent.
  • (B) :( A) is preferably in the range of 10:90 to 70:30.
  • the ratio of (B) is 10 or more, the water resistance and the dispersibility of the poorly water-soluble cerium compound (A) are excellent.
  • the ratio of (B) is 70 or less, the condensation wettability and the antifungal property are more excellent.
  • organic component (B) those generally classified into nonionic and anionic are preferable.
  • organic acids and the surfactants nonionic and anionic surfactants are preferable.
  • the polymer polymers include polyvinyl alcohol, polyvinyl alcohol derivatives, nonionic polymer polymers such as polymers and copolymers of N-vinylpyrrolidone, acrylic acid polymers, acrylic acid copolymers, and phosphonic group-containing polymers. Anionic polymer is preferred.
  • the hydrophilic film according to the present invention may contain components other than the poorly water-soluble cerium compound (A) and the organic component (B) as long as the object of the present invention is not impaired, but the poorly water-soluble cerium compound.
  • the aspect containing only (A) and the aspect containing only a cerium compound (A) and an organic component (B) are preferable.
  • the formation method of the hydrophilic film according to the present invention is not particularly limited.
  • the hydrophilic film according to the present invention can be obtained by applying the hydrophilic treatment agent according to the present invention to the surface of the metal material and then drying it.
  • the hydrophilizing agent according to the present invention used for forming a hydrophilic film having excellent dew condensation wettability and antifungal property is composed of water and a poorly water-soluble cerium compound (A) dispersed in the water. 1 type or 2 types or more selected.
  • the poorly water-soluble cerium compound (A) those used in the above-described hydrophilic film according to the present invention can be used.
  • the poorly water-soluble cerium compound (A) is one or more selected from cerium carbonate (III), cerium fluoride (III), cerium fluoride (IV) and cerium oxide (IV). Is preferred.
  • the 1 type (s) or 2 or more types chosen from an organic component (B) can be contained in the said water.
  • an organic component (B) what is used for the hydrophilic membrane
  • the hydrophilic treatment agent according to the present invention may contain components other than the poorly water-soluble cerium compound (A) and the organic component (B) in water, as long as the object of the present invention is not impaired.
  • An embodiment containing only the poorly water-soluble cerium compound (A) and an embodiment containing only the cerium compound (A) and the organic component (B) are preferred.
  • the poorly water-soluble cerium compound (A) is dispersed in the water with a particle diameter in a predetermined range.
  • the particle diameter is preferably 0.01 ⁇ m or more.
  • the particle diameter is 0.01 ⁇ m or more, since the bonding force between the particles is not so strong when applied to the surface of the metal material, aggregation of the particles is suppressed even after drying, and a uniform film is formed. Therefore, the excellent condensation wettability which is the object of the present invention is obtained.
  • the particle diameter is preferably 2.0 ⁇ m or less, and more preferably 1.0 ⁇ m or less. Within the above range, the problem of the hydrophilic film falling off from the metal material hardly occurs, and excellent dew condensation wettability, which is an object of the present invention, is obtained.
  • the “particle diameter” refers to a cumulative average diameter (Median diameter) measured by a dynamic light scattering method regardless of primary particles and secondary particles.
  • An example of a measuring instrument based on the dynamic light scattering method is UPA-EX150 manufactured by Nikkiso Co., Ltd.
  • the measurement principle by the dynamic scattering method is that the weak scattered light from the particle and the reference wave are mixed with the incident light (laser light) (heterodyne method), taken out as an electrical signal by a photodetector, and frequency analysis ( The particle size distribution can be obtained by performing FFT.
  • UPA-EX150 a specific measurement method using UPA-EX150 is shown.
  • the device specifications of UPA-EX150 are that the light source is a semiconductor laser of 780 nm and 3 mW, and the optical probe is an internal probe system.
  • the measurement method is to dilute the hydrophilization treatment agent according to the present invention with deionized water so that the concentration of the poorly water-soluble cerium compound (A) is about 0.01%, and then thoroughly stir and disperse it into the measurement section. And measure.
  • the measurement conditions are a measurement time of 180 seconds, no circulation, the particle conditions are transmission of particle permeability, the shape is non-spherical, the refractive index is 1.81 (default setting of the apparatus), and the solvent conditions are solvent. Water and solvent refractive index were set to 1.333.
  • the method for controlling the particle diameter of the poorly water-soluble cerium compound (A) is not particularly limited.
  • a scale-down method of pulverizing with a ball mill, a jet mill, a sand mill, or the like examples thereof include a method or a redox method, a physical vapor deposition method, a laser evaporation method, and a chemical vapor deposition method in which reaction is performed in a gas phase.
  • the method for dispersing the poorly water-soluble cerium compound (A) and the organic component (B) in water is not particularly limited.
  • the above-described ball mill, jet mill, sand mill, or the like may be used for dispersion, or a stirrer may be used for dispersion.
  • Hydrophilic treatment method A method for forming a hydrophilic treatment film on a metal material or a heat exchanger using the metal material as a member using the hydrophilic treatment agent will be described.
  • a part or all of the surface of the metal material is treated with the hydrophilic treatment agent according to the present invention, and then dried to form the hydrophilic film according to the present invention.
  • the metal material is preferably cleaned in advance with an alkaline or acidic aqueous cleaning agent, but cleaning may be omitted if cleaning is not required.
  • a rust prevention process Well-known chromate, zinc phosphate, titanium type
  • membranes a chemical conversion treatment film
  • the method of treatment is not particularly limited, and examples thereof include a method of applying with an appropriate application means.
  • the application means include a roll coating method, a spray method, and an immersion method.
  • Heat drying is not particularly limited as long as the water contained in the hydrophilic film is volatilized, and it is preferably dried in the range of 100 to 250 ° C. for 5 seconds to 120 minutes, more preferably 100 ° C. to 200 ° C.
  • the drying temperature is 100 ° C. or higher, the time until water sufficiently evaporates from the film is short, and the working efficiency is excellent.
  • the drying temperature is 250 ° C. or lower, the bond of the poorly water-soluble cerium compound (A) does not become so strong, and the water resistance and the condensation wettability are excellent.
  • the metal material is not particularly limited, but is preferably an aluminum material, an aluminum alloy material, a copper material, or a copper alloy material used for applications in which hydrophilicity is particularly required.
  • An exchanger is preferred.
  • the metal material which concerns on this invention is a metal material which provided the said hydrophilic film
  • the metal material is preferably any one selected from an aluminum material, an aluminum alloy material, a copper material, and a copper alloy material, and is preferably a member of a heat exchanger.
  • FIG. 1 is a schematic cross-sectional view showing an example of the metal material of the present invention.
  • the configuration in FIG. 1 is an example, and the present invention is not limited to the illustrated configuration.
  • both surfaces of a metal material 1 that is a material to be coated have corrosion-resistant films 2 and 2 ′ provided as necessary.
  • a hydrophilic film 3, 3 ′ is provided on the corrosion resistant film 2, 2 ′. Note that the corrosion-resistant coatings 2 and 2 ′ may not be provided, and the hydrophilic coating 3 may be provided only on a required surface (one surface).
  • the hydrophilic film according to the present invention has excellent hydrophilicity and antifungal properties.
  • dew condensation water Excellent condensation wettability that solves problems such as a decrease in heat exchange efficiency due to clogging and scattering of water droplets can be imparted.
  • problems such as generation of unpleasant odor due to mold growth and corrosion of metal materials can be suppressed.
  • the hydrophilic film according to the present invention can maintain excellent condensation wettability and antifungal properties even during long-term use.
  • a hydrophilic film in which a hydrophilic film is formed on a part or all of the surface, excellent condensation that solves problems such as a decrease in heat exchange efficiency due to clogging of condensed water and scattering of water droplets. Since a hydrophilic film with wettability is formed, it has extremely high practical value when applied to a heat exchanger, and is not only highly adaptable to air conditioner parts but also applicable to a wide range of other uses. Can do.
  • the present invention will be specifically described with reference to examples and comparative examples.
  • the hydrophilic treatment methods for obtaining the hydrophilic films of Examples 1 to 48 and the hydrophilic films of Comparative Examples 1 to 8 are shown below. However, these examples do not limit the scope of the present invention.
  • the particle size was measured by the following method. The same applies to other examples and comparative examples.
  • the obtained hydrophilizing agent was diluted with deionized water so that the concentration of the poorly water-soluble cerium compound (A) was about 0.01%, and then well stirred and dispersed. And put it in the measuring section.
  • the measurement conditions are a measurement time of 180 seconds, no circulation, the particle conditions are transmission of particle permeability, the shape is non-spherical, the refractive index is 1.81 (default setting of the apparatus), and the solvent conditions are The solvent was water and the solvent refractive index was 1.333.
  • cerium (III) carbonate octahydrate high-purity reagent: Kanto Chemical Co., Inc.
  • An aqueous dispersion having a particle size of 2.5 ⁇ m was obtained and used as a hydrophilic treatment
  • An aqueous dispersion having a particle size of 2.0 ⁇ m was obtained and used as a hydrophilic treatment
  • An aqueous dispersion having a particle size of 1.0 ⁇ m was obtained and used as a hydrophilic
  • An aqueous dispersion having a particle size of 0.5 ⁇ m was obtained and used as a hydrophil
  • An aqueous dispersion having a particle size of 0.1 ⁇ m was obtained and used as a hydrophilic
  • PVS Physical Vapor Synthesis
  • An aqueous dispersion having a diameter of 0.02 ⁇ m was obtained and used as a hydrophilic treatment agent. After dipping and applying the metal material in the hydrophilizing agent, the electric furnace was hung in a blow dryer adjusted to 160 ° C. and heat-dried for 10 minutes. The coating amount on the test material was 0.5 g / m as dry solid content. A hydrophilic film of m 2 was formed.
  • PVS Physical Vapor Synthesis
  • PVS Physical Vapor Synthesis
  • An aqueous dispersion having a diameter of 0.02 ⁇ m was obtained and used as a hydrophilic treatment agent. After immersing and applying the metal material in the hydrophilizing agent, the electric furnace was hung in a blow dryer adjusted to 160 ° C. and heat-dried for 10 minutes. The coating amount on the test material was 0.1 g / kg as a dry solid content. A hydrophilic film of m 2 was formed.
  • PVS Physical Vapor Synthesis
  • An aqueous dispersion having a diameter of 0.02 ⁇ m was obtained and used as a hydrophilic treatment agent. After dipping and applying the metal material in the hydrophilizing agent, the electric furnace was hung in an air dryer adjusted to 160 ° C. and dried by heating for 10 minutes. The coating amount on the test material was 0.3 g / m as dry solid content. A hydrophilic film of m 2 was formed.
  • PVS Physical Vapor Synthesis
  • An aqueous dispersion having a diameter of 0.02 ⁇ m was obtained and used as a hydrophilic treatment agent. After immersing and applying the metal material in the hydrophilizing agent, the electric furnace was hung in a blow dryer adjusted to 160 ° C. and dried by heating for 10 minutes. The coating amount on the test material was 2.0 g / m as dry solid content. A hydrophilic film of m 2 was formed.
  • aqueous dispersion of cerium (IV) oxide / total amount 3.0 g / 100 g produced by the same method as in Example 18.
  • aqueous dispersion of cerium (IV) oxide / total amount 3.0 g / 100 g produced by the same method as in Example 18.
  • aqueous dispersion of cerium (IV) oxide / total amount 3.0 g / 100 g produced by the same method as in Example 18. 70 g of an aqueous solution dissolved in water so as to be 3.0
  • aqueous dispersion of cerium (IV) oxide / total amount 3.0 g / 100 g prepared by the same method as in Example 18. 10 g of an aqueous solution dissolved in water so as to be 3.0 g
  • aqueous dispersion of cerium (IV) oxide / total amount 3.0 g / 100 g produced by the same method as in Example 14. 70 g of an aqueous solution dissolved in water so as to be 3.0
  • aqueous dispersion of cerium (IV) oxide / total amount 3.0 g / 100 g produced by the same method as in Example 15. 70 g of an aqueous solution dissolved in water so as to be 3.0 g
  • aqueous dispersion of cerium (IV) oxide / total amount 3.0 g / 100 g produced by the same method as in Example 19. 70 g of an aqueous solution dissolved in water so as to be 3.0
  • Example 36 After immersing and applying the test material to the hydrophilization treatment agent produced in the same manner as in Example 31, the electric furnace was hung in a blow dryer adjusted to 100 ° C. and dried by heating for 10 minutes, and the film was coated on the test material. A hydrophilic film having a dry solid content of 0.5 g / m 2 was formed.
  • Example 37 After immersing and applying the test material to the hydrophilization treatment agent produced by the same method as in Example 31, it was hung in an air dryer adjusted to 200 ° C. in an electric furnace and dried by heating for 10 minutes. Formed a hydrophilic film having a dry solid content of 0.5 g / m 2 .
  • polyvinyl alcohol GOHSENOL NM-11: Nippon Synthetic Chemical Industry Co., Ltd.
  • the electric furnace After immersing the test material in the hydrophilizing agent and applying it, the electric furnace was hung in a blow dryer adjusted to 160 ° C. and heat-dried for 10 minutes. The coating amount on the test material was 0.5 g / m as dry solid content. A hydrophilic film of m 2 was formed.
  • Example 48 2.
  • an aqueous dispersion of cerium (IV) oxide / total amount 3.0 g / 100 g prepared by the same method as in Example 18, polyvinyl pyrrolidone (PVP K30: IS Japan Co., Ltd.) as a solid content concentration; 10 g of an aqueous solution dissolved in water so as to be 0 g / 100 g was added to obtain a hydrophilic treatment agent.
  • the electric furnace was hung in a blow dryer adjusted to 160 ° C. and heat-dried for 10 minutes.
  • the coating amount on the test material was 0.5 g / m as dry solid content.
  • a hydrophilic film of m 2 was formed.
  • polyvinyl alcohol Gosenol NM-11: Nippon Synthetic Chemical Industry Co., Ltd.
  • ⁇ Comparative Example 7> Dissolve 1.5 g of chitosan (Chitosan VL: Dainichi Seika Kogyo Co., Ltd.) and 1.5 g of 1,2,3,4-butanetetracarboxylic acid (Ricacid BT-W: Shin Nippon Rika Co., Ltd.) in water to make the total amount. 100 g of the aqueous solution was used as a hydrophilic treatment agent. After immersing the test material in the hydrophilizing agent and applying it, the electric furnace was hung in a blow dryer adjusted to 160 ° C. and heat-dried for 10 minutes. The coating amount on the test material was 0.5 g / m as dry solid content. A hydrophilic film of m 2 was formed.
  • ⁇ Comparative Example 8> An aqueous solution in which 10.0 g of cerium (III) chloride (high purity reagent: Kanto Chemical Co., Inc.) and 5 g of hydrogen peroxide (35% reagent: Wako Pure Chemical Industries, Ltd.) were added to water to make a total amount of 1 L was used as a chemical conversion treatment solution. .
  • the chemical conversion solution is heated to 45 ° C, the test material is immersed for 30 minutes, washed with water, hung in an air dryer adjusted to 100 ° C for 10 minutes, and dried for 10 minutes.
  • a chemical conversion film having a Ce adhesion amount of 0.1 g / m 2 was formed.
  • Tables 1 and 2 show the conditions of Examples 1 to 48, and Table 3 shows the conditions of Comparative Examples 1 to 8.
  • “wt%” is synonymous with “mass%”.
  • Test materials used in Examples 1 to 27, 29 to 48, and Comparative Examples 1 to 8 were aluminum alloy materials having a thickness of 0.8 mm, a width of 70 mm, and a length of 150 mm, equivalent to a commercial product JIS A 1000.
  • the test material used in Example 28 was a commercially available JIS C 1000 equivalent copper alloy material having a thickness of 0.8 mm, a width of 70 mm, and a length of 150 mm.
  • test material was treated by adjusting the alkaline degreasing agent “Fine Cleaner 315” (manufactured by Nihon Parkerizing Co., Ltd.) to a chemical concentration of 20 g / L and a bath temperature of 60 ° C. After immersion in a bath for 2 minutes to remove dust and oil adhering to the surface, the alkali remaining on the surface was washed with tap water and used.
  • the alkaline degreasing agent “Fine Cleaner 315” manufactured by Nihon Parkerizing Co., Ltd.
  • the film performance was evaluated by the following evaluation method.
  • ⁇ Antifungal evaluation> After immersing the evaluation material in deionized water for 480 hours, a 40 mm ⁇ 40 mm size test piece was cut out from what was dried by heating in an air dryer adjusted to 50 ° C. for 1 hour and allowed to cool to room temperature. It was. The test specimen is sprayed with a mixed spore suspension of the following 4 species as test bacteria, covered, and cultured for 7 days at 27 ° C. And evaluated with the following rating numbers (based on JIS-Z-2911-2000).
  • ⁇ Contact angle with water> The material to be evaluated was immersed in deionized water for 480 hours, then heated and dried for 1 hour in a blast dryer adjusted to 50 ° C. and allowed to cool to room temperature. 2 ⁇ l of deionized water is dropped on the evaluation material, and the contact angle of the formed water droplet is measured with a contact angle meter (trade name: CA-X type, manufactured by Kyowa Interface Science Co., Ltd.). And evaluated.
  • Film remaining ratio is 90% or more 4: Film remaining ratio is 70% or more and less than 90% 3: Film remaining ratio is 60% or more and less than 80% 2: Film remaining ratio exceeds 0% and less than 60% 1: Film remaining Rate is 0%
  • Ce residual ratio (B) / (A) ⁇ 100 (%)
  • Ce residual ratio is 90% or more 4: Ce residual ratio is 80% or more and less than 90% 3: Ce residual ratio is 60% or more and less than 80% 2: Ce residual ratio is more than 0% and less than 60% 1: Ce residual Rate is 0%
  • Comparative Examples 1 and 2 are films obtained from a hydrophilizing agent obtained by dissolving a water-soluble cerium compound in water, but water resistance was not obtained. This shows that it is important to use a poorly water-soluble cerium compound.
  • Comparative Example 3 is a film of only polyvinyl alcohol, and although the contact angle with water is generally at a level considered to be hydrophilic, it can be seen that the condensation wettability and antifungal properties which are the objects of the present invention cannot be obtained.
  • Comparative Example 4 shows a case where an organic component is combined with a water-soluble cerium compound. Although the water resistance (film residual property) and Ce residual property are improved as compared with Comparative Examples 1 and 2, the condensation wettability and It turns out that moldability is not obtained.
  • Comparative Examples 5 and 6 show the case where ZPT and ZnO, which are generally known to have antifungal properties, are combined with PVA. In addition to the fact that these films do not provide condensation wettability, both are immersed in deionized water. It can be seen that the residual Zn afterwards is low and antifungal properties cannot be obtained. Comparative Example 7 shows a case where chitosan generally known to have antibacterial properties is used. In addition to the fact that condensation wettability cannot be obtained with this film, antifungal property is seen despite good water resistance. Absent. That is, it can be seen that chitosan has no antifungal property.
  • Comparative Example 8 is a case where a chemical conversion film was obtained by a chemical conversion treatment of a Ce compound, and although this film has a high Ce residual property, the condensation wettability and antifungal properties which are the objects of the present invention cannot be obtained. I understand.
  • FIG. 2 is a graph showing the relationship between the result of “contact angle (after deionized water immersion)”, which is a general hydrophilicity evaluation method, and the result of “condensation wettability” used as an evaluation method in Examples. is there.
  • the plot in FIG. 2 shows the correlation between the contact angle (horizontal axis, raw data) and condensation wettability (vertical axis, rating number) of various coatings including Examples 1 to 48 and Comparative Examples 3 to 8.

Abstract

【課題】金属材の表面に、結露水の成長を抑制し、かつ、抗カビ性を付与する親水性皮膜及びそれを形成するための親水化処理剤を提供する。 【解決手段】水難溶性のセリウム化合物(A)から選ばれる1種又は2種以上を含有する親水化処理剤及びこれにより得られる親水性皮膜によって、上記課題を解決する。水難溶性のセリウム化合物(A)は、炭酸セリウム(III)、フッ化セリウム(III)、フッ化セリウム(IV)及び酸化セリウム(IV)から選ばれる1種又は2種以上であることが好ましい。この親水性皮膜を金属材の表面に形成することで、結露水の成長を抑制し、かつ、抗カビ性を付与することができる。

Description

金属材用親水性皮膜、親水化処理剤、及び親水化処理方法
 本発明は、金属材の表面に形成する親水性皮膜、親水性皮膜を得るための親水化処理剤、及び親水化処理方法に関する。
 冷房、暖房、除湿等の機能を備えた空調器(エアコン)は、その熱交換部に熱交換器用フィンを備えている。この熱交換器用フィンを形成するためのフィン材は、一般に軽量で加工性に優れ、しかも熱伝導性に優れていることが望まれることから、アルミニウム、アルミニウム合金、銅、銅合金等の金属材で形成される。
 従来、熱伝導性に優れる金属材を部材とし、各種組み付け方法により形成された熱交換器の多くは、放熱効果又は冷却効果を向上させるために、放熱部及び冷却部の表面積をできるだけ大きくとるように設計されている。これにより主たる放熱部及び冷却部であるフィンの間隔は極めて狭くなっている。そのため、エアコンを稼働(冷却)して大気中の水分がフィンの表面で凝縮して結露が起こると、その結露水はフィンの表面の疎水性が高いほど水滴になり易く、水滴の成長によりフィン間で目詰まりが発生する。目詰まりが発生すると、通風抵抗が増大することで熱交換効率が低下し、機能が損なわれる。さらには、目詰まりした水滴が飛散するという問題を生じる。
 また、熱交換器の放熱部及び冷却部で発生した結露水は、熱交換器の表面から速やかに除去されるものではなく、エアコンが停止すると徐々に乾燥して大気中へ放出されるために、熱交換器部では高湿度の状態が発生する。このような高湿度の状態により、熱交換器部ではバクテリアやカビが発育し易くなり、これらが発育するとエアコンを稼動した際に不快な臭気が感じられたり、熱交換器を形成する金属材が腐食したりするという問題を生じる。また、特に熱交換器部では、カビ類、特に好湿性のカビ類の発育があり、これらカビ類が不快な臭気に関与するとの報告がされている(非特許文献1、2、3)。
 そこで、結露水による目詰まりの発生、及びバクテリアやカビの発育等の問題を解決するために、熱交換器の部材表面に親水性、抗菌性及び抗カビ性を有する親水性皮膜を付与させる方法が提案され、実施されている。
 熱交換器の部材表面に親水性、抗菌性及び抗カビ性を付与させる方法としては、例えば、ポリビニルアルコールと特定の水溶性高分子及び架橋剤とを組み合わせた処理剤を用いる方法(特許文献1)、特定の水溶性高分子と抗菌抗カビ成分であるジンクピリチオンとを組み合わせた処理剤を用いる方法(特許文献2、3)、抗菌性を有するキトサンを含有する処理剤を用いる方法(特許文献4)、ポリ(メタ)アクリル酸とCe等の特定の金属水溶性化合物とを組み合わせた処理剤を用いる方法(特許文献5)等が提案されている。
防菌防黴Vol.21,No.7,p.385~389,1993 防菌防黴Vol.22,No.5,p.277~282,1994 防菌防黴Vol.36,No.6,p.359~363,2008
特開平5-302042号公報 特開2000-171191号公報 特開2006-78134号公報 特開2002-105241号公報 特開平5-222334号公報
 しかしながら、上記特許文献1~3で提案された従来技術は、一般に抗菌剤と称される物質を別途添加することで、抗カビ性の効果が得られる技術であり、それら抗菌成分の添加量は、目的とする親水性を損なわないようにするために限りがある。また、上記特許文献4で提案された従来技術は、低接触角の皮膜が得られるものの、結露水の成長を防止することができないだけでなく、抗カビ性が得られない問題がある。上記特許文献5で提案された従来技術は、抗カビ性を得るために、金属水溶性化合物の他に抗菌成分を別途添加しており、その点では、上記した抗菌成分を別途添加する従来技術と同様の問題が懸念される。
 近年では、熱交換器の小型化によるフィン間隔の狭小化はさらに進んでおり、優れた親水性及び優れた抗カビ性が求められる方向にさらに進んでいくことが容易に想像できる。
 本発明は、前記従来技術の有する問題点を解決するためのものであり、その目的は、金属材の表面に、結露水の成長を抑制し、かつ抗カビ性を付与する親水性皮膜、そうした親水性皮膜を得るための親水化処理剤、及び親水化処理方法を提供することにある。
 従来、親水性の評価方法として対水接触角の測定が行われてきたが、本発明者は、この評価方法が必ずしも適切ではないことを見出した。すなわち、低接触角となる皮膜であれば必ずしも結露水による目詰まりを防止できるものではなく、接触角の測定のみでは実用化された際に問題となることを見出した。
 本発明者は、さらに、熱交換器に用いる金属材に必要な親水性とは、対水接触角が低いだけでは十分でなく、実使用環境において発生する結露水が均一にすばやく濡れ広がること、すなわち、結露濡れ性が重要となることを見出し、その評価方法を確立した。本発明者が確立した結露濡れ性の評価方法を用いることにより、結露水の成長を抑制しうる皮膜を適切に評価することができるようになった。
 本発明者は、このような評価方法の確立に基づき、結露水の成長を抑制し、かつ、抗カビ性を付与する親水性皮膜について鋭意研究した結果、本発明を完成した。
 すなわち、上記課題を解決するための本発明に係る親水化処理剤は、水と、該水の中に分散された水難溶性のセリウム化合物(A)から選ばれる1種又は2種以上とを含有することを特徴とする。
 この発明の親水化処理剤を用いて得ることができる親水性皮膜は、金属材に優れた結露濡れ性及び優れた抗カビ性を付与することができ、その結果、結露水の目詰まりが引き起こす熱交換効率の低下、水滴の飛散等の問題を解決することができ、さらに、カビの発育による不快な臭気の発生や金属材の腐食等の問題を解決することができる。
 本発明に係る親水化処理剤の好ましい態様は、前記水難溶性のセリウム化合物(A)が、0.01~2.0μmの粒子径で前記水の中に分散されてなるように構成する。
 本発明に係る親水化処理剤の好ましい態様は、前記水難溶性のセリウム化合物(A)が、炭酸セリウム(III)、フッ化セリウム(III)、フッ化セリウム(IV)及び酸化セリウム(IV)から選ばれる1種又は2種以上であるように構成する。
 本発明に係る親水化処理剤の好ましい態様は、さらに、前記水の中に、有機成分(B)から選ばれる1種又は2種以上を含有するように構成する。
 上記課題を解決するための本発明に係る親水性皮膜は、金属材の表面に形成された親水性皮膜であって、水難溶性のセリウム化合物(A)から選ばれる1種又は2種以上を含有することを特徴とする。
 本発明に係る親水性皮膜の好ましい態様は、前記水難溶性のセリウム化合物(A)の含有量が、固形分比率で5~100質量%であるように構成する。
 本発明に係る親水性皮膜の好ましい態様は、前記水難溶性のセリウム化合物(A)が、炭酸セリウム(III)、フッ化セリウム(III)、フッ化セリウム(IV)及び酸化セリウム(IV)から選ばれる1種又は2種以上を含有するように構成する。
 本発明に係る親水性皮膜の好ましい態様は、さらに、有機成分(B)から選ばれる1種又は2種以上を含有するように構成する。
 本発明に係る親水性皮膜は、(1)水難溶性のセリウム化合物(A)から選ばれる1種又は2種以上を含有する親水化処理剤を用いて得ることができる、(2)前記金属材の前記表面を、本水難溶性のセリウム化合物(A)から選ばれる1種又は2種以上を含有する親水化処理剤で処理した後、乾燥して得ることができる、(3)金属材の表面の一部又は全部を、水と該水の中に分散された水難溶性のセリウム化合物(A)から選ばれる1種又は2種以上とを含有する親水化処理剤で処理した後、乾燥して親水性皮膜を形成する方法で得ることができる。
 上記課題を解決するための本発明に係る親水化処理方法は、金属材の表面の一部又は全部を、水と該水の中に分散された水難溶性のセリウム化合物(A)から選ばれる1種又は2種以上とを含有する親水化処理剤で処理した後、乾燥して親水性皮膜を形成することを特徴とする。この親水性皮膜は、水難溶性のセリウム化合物(A)から選ばれる1種又は2種以上を含有する皮膜である。
 上記課題を解決するための本発明に係る金属材は、金属材の表面に、上記本発明に係る親水性皮膜を設けてなるものである。
 本発明に係る金属材の好ましい態様は、前記金属材が、アルミニウム材、アルミニウム合金材、銅材及び銅合金材から選ばれる何れかであるように構成する。また、前記金属材が、熱交換器の部材であるように構成する。
 本発明に係る親水性処理剤により得られる親水性皮膜は、優れた結露濡れ性及び優れた抗カビ性を有する。この親水性皮膜を、例えば熱交換器等を構成するアルミニウム、アルミニウム合金、銅又は銅合金材に適用すれば、結露水の目詰まりによる熱交換効率の低下、及び水滴飛散等の問題を解決する優れた結露濡れ性を持たせることができる。また、カビの発育による不快な臭気の発生や金属材の腐食等を抑制することができる。さらに、長期の使用時においても優れた結露濡れ性、及びカビの発育による不快な臭気や金属材の腐食の抑制を維持することができる。
本発明に係る親水性皮膜を設けた金属材の一例を示す模式的な断面図である。 一般的な親水性評価方法である「接触角」の結果と、実施例で評価方法として用いた「結露濡れ性」の結果との関係を示すグラフである。
 本発明に係る親水性皮膜、親水化処理剤及び親水化処理方法について、実施の形態を挙げてさらに詳しく説明する。
 [親水性皮膜]
 本発明に係る親水性皮膜は、金属材の表面に形成された親水性皮膜であって、水難溶性のセリウム化合物(A)から選ばれる1種又は2種以上を含有することを特徴とする。この親水性皮膜は、金属材に対して優れた結露濡れ性及び抗カビ性を与える。ここで、結露濡れ性とは、本発明者が確立した、熱交換器に供する金属材の親水性の評価方法である。具体的な評価手順は、後述する実施例に記載のとおりである。
 熱交換器に供する金属材は、対水接触角が低いだけでは十分ではない。結露濡れ性の優れた金属材を用いると、実使用環境において発生する結露水の成長を抑制して、均一にすばやく濡れ広がらせることができる。
 以下、親水性皮膜の構成について説明する。
 (水難溶性のセリウム化合物)
 本発明に係る親水性皮膜が含有する水難溶性のセリウム化合物(A)は、水に対して不溶又は難溶と分類されるセリウム化合物であれば特に限定されるものではなく、好適に用いることができる。
 例えば、炭酸セリウム(III)、フッ化セリウム(III)、フッ化セリウム(IV)、酸化セリウム(IV)、シュウ酸セリウム(III)、リン酸セリウム(III)及び硫化セリウム(III)が挙げられる。中でも、本発明の目的である結露濡れ性及び抗カビ性が優れる点で、炭酸セリウム(III)、フッ化セリウム(III)、フッ化セリウム(IV)及び酸化セリウム(IV)から選ばれることが好ましい。また、こうした水難溶性のセリウム化合物を2種以上含有させることもできる。さらに述べるならば、本発明の目的である結露濡れ性及び抗カビ性を高度に両立する点で、酸化セリウム(IV)を含有することがより好ましい。
 水難溶性のセリウム化合物には、熱等の外的エネルギーを受けると酸化セリウム(IV)に至る化合物もあるが、本発明の目的である結露濡れ性及び抗カビ性を得る点では、親水性皮膜に含有する水難溶性のセリウム化合物の一部又は全部が酸化セリウム(IV)の形態に至っても構わない。
 親水性皮膜が含有する水難溶性のセリウム化合物(A)の含有量は、親水性皮膜の皮膜量に対して、固形分比率として5~100質量%であることが好ましい。含有量が5質量%以上であると、本発明の目的である結露濡れ性や抗カビ性が優れたものとなる。
 特に結露濡れ性の観点からは、水難溶性のセリウム化合物(A)の含有量は、親水性皮膜の皮膜量に対して、固形分比率として30~100質量%であることがより好ましい。セリウム化合物(A)の含有量が100質量%に近い程、結露濡れ性を向上する効果があり、望ましいものとなる。なお、セリウム化合物(A)の含有量が「100質量%」という場合は、後述する有機成分(B)が全く含まれない場合を含むとともに、実質的に含まれない場合も含む。ここで、「実質的に含まれない」とは、有機成分(B)固有の作用を発揮しない程度の微量のことであり、例えば0.01~1.0質量%程度である。
 親水性皮膜が含有する水難溶性のセリウム化合物(A)の含有量(固形分比率)は、親水性処理剤中の水その他の揮発成分を除いた総質量に対する、親水性処理剤中の水難溶性のセリウム化合物(A)の割合により求められる。
 金属材の表面に設ける本発明に係る親水性皮膜の皮膜量は、本発明の目的である結露濡れ性及び抗カビ性が得られれば特に限定されるものではなく好適に選択することができるが、0.1~2.0g/mの範囲が好ましく、0.1~1.0g/mの範囲がより好ましい。皮膜量が0.1g/m以上であると、金属材の被覆が十分になり、本発明の目的である結露濡れ性がより優れたものとなる。また、皮膜量が2.0g/m以下であると、本発明の目的である結露濡れ性や抗カビ性が得られ、かつ、適切な皮膜量となって経済的である。
 (有機成分)
 本発明に係る親水性皮膜は、前記水難溶性のセリウム化合物(A)から選ばれる1種又は2種以上含有することで、優れた結露濡れ性及び抗カビ性を金属材に付与できる。また、水難溶性のセリウム化合物(A)の水に対する残存性(耐水性)の向上、本発明に係る親水性皮膜を得るための親水化処理剤中において水難溶性のセリウム化合物(A)を安定に水の中に分散する目的で、有機成分(B)から選ばれる1種又は2種以上をさらに含有させることができる。
 親水性皮膜が含有する有機成分(B)は、本発明の目的である結露濡れ性及び抗カビ性を阻害しなければ特に限定されるものではなく、有機酸類、界面活性剤類、及び高分子ポリマー類等を好適に用いることができる。
 有機酸類の具体的な例としては、シュウ酸、マロン酸、マレイン酸、フマル酸、コハク酸、リンゴ酸、クエン酸、グルタミン酸、アスパラギン酸、酒石酸、フタル酸、イタコン酸、メリト酸、トリメリト酸、トリメシン酸、ピロメリト酸、ナフタレンテトラカルボン酸、プロパンジカルボン酸、ブタンジカルボン酸、ペンタンジカルボン酸、ヘキサンジカルボン酸、ヘプタンジカルボン酸、ブタントリカルボン酸、ブタンテトラカルボン酸(例えば、1,2,3,4-ブタンテトラカルボン酸(BTC))、シクロヘキサンテトラカルボン酸、ヘキサントリカルボン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、2-ホスホノブタン-1,2,4-トリカルボン酸(PBTC)、ニトリロトリスメチレンホスホン酸、エチレンジアミンテトラ(メチレンホスホン酸)等が挙げられ、これら有機酸の塩であっても構わない。塩を形成するカチオン性対イオンとしては、例えば、アルカリ金属(ナトリウム、カリウム、リチウム等)イオン、アルカリ土類金属(マグネシウム、カルシウム、バリウム等)イオン等の金属イオン、アンモニウムイオン等が挙げられる。
 界面活性剤類の具体的な例としては、ポリオキシエチレングリコール、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシプロピレングリコール、ポリオキシエチレンアルキルフェニールエーテル、グリセリン脂肪酸部分エステル、ソルビタン脂肪酸部分エステル、ペンタエリスリトール脂肪酸部分エステル、ポリオキシエチレンソルビタン酸脂肪部分エステル、ポリオキシエチレンアルキルエーテル等の非イオン性(ノニオン性)界面活性剤が挙げられる。
 また、ポリオキシエチレンアルキルエーテルカルボン酸塩、N-アシルサルコシン酸塩、N-アシルグルタミン酸塩、ジアルキルスルホコハク酸塩、アルカンスルホン酸塩、アルファオレフィン・スルホン酸塩、直鎖アルキルベンゼンスルホン酸塩、分子鎖アルキルベンゼンスルホン酸塩、ナフタレンスルホン酸塩-ホルムアルデヒド縮合物、アルキルナフタレンスルホン酸塩、N-メチル-N-アシルタウリン、ポリオキシエチレンラウリルエーテルリン酸、ポリオキシエチレンアルキルエーテルリン酸等のアニオン性界面活性剤が挙げられる。これらの塩を形成するカチオン性対イオンとしては、例えば、アルカリ金属(ナトリウム、カリウム、リチウム等)イオン、アルカリ土類金属(マグネシウム、カルシウム、バリウム等)イオン等の金属イオン、アンモニウムイオン等が挙げられる。
 また、アルキルトリメチルアンモニウム、アルキルジメチルベンジルアンモニウム等四級アミンを有するカチオン性界面活性剤、アルキルベタイン、アルキルアミドプロピルベタイン、アルキルジメチルアミンオキシド等の両性界面活性剤が挙げられる。
 前記高分子ポリマーの具体的な例としては、アクリル酸重合体、メタクリル酸重合体、アクリル酸-メタクリル酸共重合体、2-アクリルアミド-2-メチルプロパンスルホン酸-アクリル酸共重合体、アクリル酸を含有する共重合体、ホスホン基含有ポリマー、ポリビニルアルコール、ポリビニルアルコールの誘導体、セルロース誘導体、澱粉誘導体、ゼラチン誘導体、4-スチレンスルホン酸及び/又は無水マレイン酸を含有する重合体及び共重合体、ポリスチレン-スルホン酸、ビニルスルホン酸重合体、イソプレンスルホン酸重合体、N-ビニルピロリドン、N-ビニルカプロラクタム、N-ビニルカルバゾール、1-ビニルイミダゾール、2-ビニルイミダゾール、2-ビニルピリジン、4-ビニルピリジン、アクリルアミド、メタクリルアミド、アミノ官能性アクリレート、メタクリレート等の重合体及び共重合体、水溶性ナイロン、ポリエチレンイミン、ポリイミド等が挙げられ、高分子ポリマーの有する官能基が塩であっても構わない。塩を形成するカチオン性対イオンとしては、例えば、アルカリ金属(ナトリウム、カリウム、リチウム等)イオン、アルカリ土類金属(マグネシウム、カルシウム、バリウム等)イオン等の金属イオン、アンモニウムイオン等が挙げられる。
 親水性皮膜中の有機成分(B)の含有量は、水難溶性のセリウム化合物(A)に対して、固形分比率(質量比)として(B):(A)が0:100~95:5の範囲である。有機成分(B)を積極的に含有させて水難溶性のセリウム化合物(A)の水に対する残存性(耐水性)の向上、親水化処理剤中における水難溶性のセリウム化合物(A)の安定分散の観点からは、(B):(A)が10:90~70:30の範囲内であることが好ましい。前記(B)の比率が10以上であると、耐水性、及び、水難溶性のセリウム化合物(A)の分散性が優れたものとなる。前記(B)の比率が70以下であると、結露濡れ性及び抗カビ性がより優れたものとなる。
 有機成分(B)としては、一般にノニオン性、アニオン性に分類されるものが好ましい。上記有機酸類と上記界面活性剤類では、ノニオン性、及びアニオン性界面活性剤が好ましい。上記高分子ポリマーでは、ポリビニルアルコール、ポリビニルアルコールの誘導体、N-ビニルピロリドンの重合体及び共重合体等のノニオン性高分子ポリマー、アクリル酸重合体、アクリル酸共重合体、ホスホン基含有ポリマー等のアニオン性高分子ポリマーが好ましい。
 本発明に係る親水性皮膜は、本発明の目的を損なわない範囲で、前記水難溶性のセリウム化合物(A)及び有機成分(B)以外の成分を含んでいてもよいが、水難溶性のセリウム化合物(A)のみを含有する態様、セリウム化合物(A)及び有機成分(B)のみを含有する態様が好ましい。
 本発明に係る親水性皮膜は、形成方法を特に限定されないが、例えば、前記金属材の前記表面に、本発明に係る親水化処理剤を塗布した後、乾燥して得ることができる。
 [親水化処理剤及び親水化処理方法]
 以下、親水性皮膜を得るための親水化処理剤及び親水化処理方法について説明する。
 優れた結露濡れ性及び抗カビ性を有する親水性皮膜を形成するために用いる本発明に係る親水化処理剤は、水と、該水の中に分散された水難溶性のセリウム化合物(A)から選ばれる1種又は2種以上とを含有する。
 水難溶性のセリウム化合物(A)としては、上述した本発明に係る親水性皮膜に用いられるものを用いることができる。中でも、前記水難溶性のセリウム化合物(A)が、炭酸セリウム(III)、フッ化セリウム(III)、フッ化セリウム(IV)及び酸化セリウム(IV)から選ばれる1種又は2種以上であるのが好ましい。
 また、前記水の中に、有機成分(B)から選ばれる1種又は2種以上を含有させることができる。有機成分(B)としては、上述した本発明に係る親水性皮膜に用いられるものを用いることができる。
 本発明に係る親水化処理剤は、本発明の目的を損なわない範囲で、水の中に、水難溶性のセリウム化合物(A)及び有機成分(B)以外の成分を含んでいてもよいが、水難溶性のセリウム化合物(A)のみを含有する態様、セリウム化合物(A)及び有機成分(B)のみを含有する態様が好ましい。
 さらに述べるならば、水難溶性のセリウム化合物(A)が、所定範囲の粒子径で前記水の中に分散されていることが好ましい。具体的には、粒子径は、0.01μm以上であることが好ましい。粒子径が0.01μm以上であると、金属材の表面に塗布したときに、粒子同士の結合力がそれほど強くないため、乾燥を経ても粒子同士の凝集が抑制されるとともに、均一な皮膜が得られるため、本発明の目的である優れた結露濡れ性が得られる。
 一方、粒子径は、2.0μm以下であることが好ましく、1.0μm以下であることがより好ましい。上記範囲であると、親水性皮膜が金属材から脱落する問題が起こりにくく、本発明の目的である優れた結露濡れ性が得られる。
 なお、本発明において、「粒子径」とは、一次粒子、二次粒子は問わず、動的光散乱法により測定した際の累積平均径(Median径)を指す。動的光散乱法による測定機器としては、例えば日機装株式会社製UPA-EX150等が挙げられる。動的散乱法による測定原理は、入射光(レーザー光)に対して、粒子からの微弱な散乱光と基準波とを混合(ヘテロダイン法)し、光検出器により電気信号として取り出し、周波数解析(FFT)することで粒度分布を得ることができる。
 次に、UPA-EX150を用いた具体的な測定手法を示す。UPA-EX150の装置仕様は、光源が半導体レーザー780nm、3mWで、光学プローブが内部プローブ方式となる。測定手法は、本発明に係る親水化処理剤を水難溶性のセリウム化合物(A)の濃度が0.01%程度になるように脱イオン水で希釈した後、良く攪拌分散させて測定部に投入し、測定する。測定条件は、測定時間180秒、循環なしとし、粒子条件としては、粒子透過性を透過、形状を非球形、屈折率を1.81(装置のデフォルト設定)とし、溶媒条件としては、溶媒を水、溶媒屈折率を1.333とした。
 水難溶性のセリウム化合物(A)の粒子径を制御する方法は、特に限定されるものではなく、例えばボールミル、ジェットミル又はサンドミル等により粉砕するスケールダウン法、セリウムイオンを酸化還元し粒子化する凝集法又は酸化還元法、物理気相成長法、レーザー蒸発法、及び気相中で反応させる化学気相成長法等が挙げられる。
 水の中に、水難溶性のセリウム化合物(A)及び有機成分(B)を分散する方法は、特に限定されない。上述したボールミル、ジェットミル又はサンドミル等を用いて分散してもよく、攪拌機を用いて分散してもよい。
 [親水化処理方法]
 前記親水化処理剤を用いて、金属材や金属材を部材とした熱交換器に親水性処理皮膜を形成する方法について説明する。本発明に係る親水化処理方法は、金属材の表面の一部又は全部を、上記本発明に係る親水化処理剤で処理した後、乾燥して上記本発明に係る親水性皮膜を形成する。
 金属材は、予めアルカリ性又は酸性の水系洗浄剤によって清浄化することが好ましいが、洗浄を必要としない場合には清浄化を省略してもよい。また、必要に応じて、無処理の状態で、又は清浄化処理した後、本発明に係る親水化処理剤を塗布する前に、金属材に防錆処理を施してもよい。防錆処理としては特に限定されないが、公知のクロメート、りん酸亜鉛、チタン系、ジルコン系、有機皮膜等の耐食皮膜(化成処理皮膜又は耐食プライマー層)が挙げられる。
 このようにして無処理の金属材、又は清浄化処理、防錆処理等を適宜施した金属材の表面の一部又は全部を、必要な皮膜量が得られるよう、親水化処理剤で処理する。処理の方法は、特に限定されず、例えば、適当な塗布手段で塗布する方法が挙げられる。塗布手段としては、例えば、ロールコート法、スプレー法及び浸漬法等が挙げられる。
 親水化処理剤で処理した後は、加熱乾燥等により乾燥させる。加熱乾燥は親水性皮膜が含有する水が揮散すれば特に限定されるものではなく、100~250℃の範囲で5秒~120分間乾燥することが好ましく、100℃~200℃がより好ましい。乾燥温度が100℃以上であると、皮膜から十分に水が蒸発するまでの時間が短く、作業効率に優れる。また、乾燥温度が250℃以下であると、水難溶性のセリウム化合物(A)の結合がそれほど強固になることがなく、耐水性とともに、結露濡れ性も優れたものとなる。
 金属材としては、特に限定されるものではないが、特に親水性が要求される用途に用いられるアルミニウム材、アルミニウム合金材、銅材又は銅合金材が好ましく、さらにはこれらを部材として形成した熱交換器が好ましい。
 [金属材]
 本発明に係る金属材は、表面に上記親水性皮膜を設けた金属材である。金属材は、アルミニウム材、アルミニウム合金材、銅材及び銅合金材から選ばれる何れかであるのが好ましく、また、熱交換器の部材であるのが好ましい。
 図1は、本発明の金属材の一例を示す模式的な断面図である。図1の構成は一例であって、本発明は図示の構成のみに限定されない。図1の例では、被塗布材である金属材1の両面は、必要に応じて設けられる耐食皮膜2,2’を有している。そして、その耐食皮膜2,2’上に、親水性皮膜3,3’が設けられている。なお、耐食皮膜2,2’は無くてもよく、また、親水性皮膜3は必要とされる面(片面)のみに設けられていてもよい。
 以上のように、本発明に係る親水性皮膜、親水化処理剤、親水化処理方法及び金属材について説明した。本発明に係る親水性皮膜は、優れた親水性及び抗カビ性を有し、例えば熱交換器等を構成するアルミニウム材、アルミニウム合金材、銅材又は銅合金材に適用すれば、結露水の目詰まりによる熱交換効率の低下、水滴の飛散等の問題を解決する、優れた結露濡れ性を付与することができる。また、カビの発育による不快な臭気の発生や金属材の腐食等の問題を抑制することができる。さらに、本発明に係る親水性皮膜は、長期の使用時においても優れた結露濡れ性と抗カビ性を維持することができる。
 また、親水性皮膜がその一部又は全部に形成されてなる本発明の金属材によれば、結露水の目詰まりによる熱交換効率の低下や水滴の飛散等の問題を解決する、優れた結露濡れ性を有する親水性皮膜が形成されているので、熱交換器に適用した場合の実用的価値が極めて高く、さらにエアコン部品への適応性が高いだけでなくその他の広い用途にも適用することができる。
 本発明を、実施例と比較例とを挙げて具体的に説明する。実施例1~48の親水性皮膜、及び比較例1~8の親水性皮膜を得るための親水化処理方法を以下に示す。但し、これらの実施例は、本発明の範囲をこれらに限定するものではない。
 <実施例1>
 炭酸セリウム(III)・8水和物(高純度試薬:関東化学株式会社)に、炭酸セリウム(III)/全量=3.0g/100gとなるよう水を加えた後、サンドミルにて粉砕し、炭酸セリウム(III)の粒子径が2.0μmの水分散液を得て、親水化処理剤とした。次いで、親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 なお、粒子径の測定は、以下の方法により行った。他の実施例及び比較例においても同様である。測定装置にはUPA-EX150を用い、得られた親水化処理剤を水難溶性のセリウム化合物(A)の濃度が0.01%程度になるように脱イオン水で希釈した後、良く攪拌分散して測定部に投入し、測定した。その際の測定条件は、測定時間180秒、循環なしとし、粒子条件としては、粒子透過性を透過、形状を非球形、屈折率を1.81(装置のデフォルト設定)とし、溶媒条件としては、溶媒を水、溶媒屈折率を1.333とした。
 <実施例2>
 炭酸セリウム(III)・8水和物(高純度試薬:関東化学株式会社)に、炭酸セリウム(III)/全量=3.0g/100gとなるよう水を加えた後、サンドミルにて粉砕し、炭酸セリウム(III)の粒子径が1.0μmの水分散液を得て、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例3>
 炭酸セリウム(III)・8水和物(高純度試薬:関東化学株式会社)に、炭酸セリウム(III)/全量=3.0g/100gとなるよう水を加えた後、サンドミルにて粉砕し、炭酸セリウム(III)の粒子径が0.5μmの水分散液を得て、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例4>
 炭酸セリウム(III)・8水和物(高純度試薬:関東化学株式会社)に、炭酸セリウム(III)/全量=3.0g/100gとなるよう水を加えた後、サンドミルにて粉砕し、炭酸セリウム(III)の粒子径が0.1μmの水分散液を得て、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例5>
 フッ化セリウム(III)(試薬:和光純薬工業株式会社)に、フッ化セリウム(III)/全量=3.0g/100gとなるよう水を加えた後、サンドミルにて粉砕し、フッ化セリウム(III)の粒子径2.0μmの水分散液を得て、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例6>
 フッ化セリウム(III)(試薬:和光純薬工業株式会社)に、フッ化セリウム(III)/全量=3.0g/100gとなるよう水を加えた後、サンドミルにて粉砕し、フッ化セリウム(III)の粒子径1.0μmの水分散液を得て、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例7>
 フッ化セリウム(III)(試薬:和光純薬工業株式会社)に、フッ化セリウム(III)/全量=3.0g/100gとなるよう水を加えた後、サンドミルにて粉砕し、フッ化セリウム(III)の粒子径0.5μmの水分散液を得て、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例8>
 フッ化セリウム(III)(試薬:和光純薬工業株式会社)に、フッ化セリウム(III)/全量=3.0g/100gとなるよう水を加えた後、サンドミルにて粉砕し、フッ化セリウム(III)の粒子径0.1μmの水分散液を得て、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例9>
 フッ化セリウム(IV)(試薬:和光純薬工業株式会社)に、フッ化セリウム(IV)/全量=3.0g/100gとなるよう水を加えた後、サンドミルにて粉砕し、フッ化セリウム(IV)の粒子径2.0μmの水分散液を得て、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例10>
 フッ化セリウム(IV)(試薬:和光純薬工業株式会社)に、フッ化セリウム(IV)/全量=3.0g/100gとなるよう水を加えた後、サンドミルにて粉砕し、フッ化セリウム(IV)の粒子径1.0μmの水分散液を得て、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例11>
 フッ化セリウム(IV)(試薬:和光純薬工業株式会社)に、フッ化セリウム(IV)/全量=3.0g/100gとなるよう水を加えた後、サンドミルにて粉砕し、フッ化セリウム(IV)の粒子径0.5μmの水分散液を得て、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例12>
 フッ化セリウム(IV)(試薬:和光純薬工業株式会社)に、フッ化セリウム(IV)/全量=3.0g/100gとなるよう水を加えた後、サンドミルにて粉砕し、フッ化セリウム(IV)の粒子径0.1μmの水分散液を得て、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例13>
 酸化セリウム(IV)(試薬:和光純薬工業株式会社)に、酸化セリウム(IV)/全量=3.0g/100gとなるよう水を加えた後、サンドミルにて粉砕し、酸化セリウム(IV)の粒子径2.5μmの水分散液を得て、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例14>
 酸化セリウム(IV)(試薬:和光純薬工業株式会社)に、酸化セリウム(IV)/全量=3.0g/100gとなるよう水を加えた後、サンドミルにて粉砕し、酸化セリウム(IV)の粒子径2.0μmの水分散液を得て、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例15>
 酸化セリウム(IV)(試薬:和光純薬工業株式会社)に、酸化セリウム(IV)/全量=3.0g/100gとなるよう水を加えた後、サンドミルにて粉砕し、酸化セリウム(IV)の粒子径1.0μmの水分散液を得て、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例16>
 酸化セリウム(IV)(試薬:和光純薬工業株式会社)に、酸化セリウム(IV)/全量=3.0g/100gとなるよう水を加えた後、サンドミルにて粉砕し、酸化セリウム(IV)の粒子径0.5μmの水分散液を得て、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例17>
 酸化セリウム(IV)(試薬:和光純薬工業株式会社)に、酸化セリウム(IV)/全量=3.0g/100gとなるよう水を加えた後、サンドミルにて粉砕し、酸化セリウム(IV)の粒子径0.1μmの水分散液を得て、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例18>
 Physical Vapor Synthesis(PVS)法により製造された一般に市販される酸化セリウム(IV)微粒子を、酸化セリウム(IV)/全量=3.0g/100gとなるよう水を加え、酸化セリウム(IV)の粒子径0.02μmの水分散液を得て、親水化処理剤とした。親水化処理剤に金属材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例19>
 Physical Vapor Synthesis(PVS)法により製造された一般に市販される酸化セリウム(IV)微粒子を、酸化セリウム(IV)/全量=3.0g/100gとなるよう水を加えた後、超音波を当て、酸化セリウム(IV)の粒子径0.01μmの水分散液を得て、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例20>
 実施例17と同様の方法で作製した酸化セリウム(IV)/全量=3.0g/100gの水分散液50gに、実施例8と同様の方法で作製したフッ化セリウム(III)/全量=3.0g/100gの水分散液50gを加えて親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例21>
 Physical Vapor Synthesis(PVS)法により製造された一般に市販される酸化セリウム(IV)微粒子を、酸化セリウム(IV)/全量=1.0g/100gとなるよう水を加え、酸化セリウム(IV)の粒子径0.02μmの水分散液を得て、親水化処理剤とした。親水化処理剤に金属材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.1g/mの親水性皮膜を形成した。
 <実施例22>
 Physical Vapor Synthesis(PVS)法により製造された一般に市販される酸化セリウム(IV)微粒子を、酸化セリウム(IV)/全量=2.0g/100gとなるよう水を加え、酸化セリウム(IV)の粒子径0.02μmの水分散液を得て、親水化処理剤とした。親水化処理剤に金属材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.3g/mの親水性皮膜を形成した。
 <実施例23>
 Physical Vapor Synthesis(PVS)法により製造された一般に市販される酸化セリウム(IV)微粒子を、酸化セリウム(IV)/全量=5.0g/100gとなるよう水を加え、酸化セリウム(IV)の粒子径0.02μmの水分散液を得て、親水化処理剤とした。親水化処理剤に金属材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として1.0g/mの親水性皮膜を形成した。
 <実施例24>
 Physical Vapor Synthesis(PVS)法により製造された一般に市販される酸化セリウム(IV)微粒子を、酸化セリウム(IV)/全量=10.0g/100gとなるよう水を加え、酸化セリウム(IV)の粒子径0.02μmの水分散液を得て、親水化処理剤とした。親水化処理剤に金属材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として2.0g/mの親水性皮膜を形成した。
 <実施例25>
実施例18と同様の方法で作製した酸化セリウム(IV)/全量=3.0g/100gの水分散液を親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を100℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例26>
 実施例18と同様の方法で作製した酸化セリウム(IV)/全量=3.0g/100gの水分散液を親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉200℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例27>
 実施例18と同様の方法で作製した酸化セリウム(IV)/全量=3.0g/100gの水分散液を親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉250℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例28>
 実施例18と同様の方法で作製した酸化セリウム(IV)/全量=3.0g/100gの水分散液を親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例29>
 実施例18と同様の方法で作製した酸化セリウム(IV)/全量=3.0g/100gの水分散液5gに、ポリビニルアルコール(ゴーセノールNM-11:日本合成化学工業株式会社)を固形分濃度として3.0g/100gとなるよう水に溶解した水溶液95gを加え、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例30>
 実施例18と同様の方法で作製した酸化セリウム(IV)/全量=3.0g/100gの水分散液20gに、ポリビニルアルコール(ゴーセノールNM-11:日本合成化学工業株式会社)を固形分濃度として3.0g/100gとなるよう水に溶解した水溶液80gを加え、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例31>
 実施例18と同様の方法で作製した酸化セリウム(IV)/全量=3.0g/100gの水分散液30gに、ポリビニルアルコール(ゴーセノールNM-11:日本合成化学工業株式会社)を固形分濃度として3.0g/100gとなるよう水に溶解した水溶液70gを加え、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例32>
 実施例18と同様の方法で作製した酸化セリウム(IV)/全量=3.0g/100gの水分散液90gに、ポリビニルアルコール(ゴーセノールNM-11:日本合成化学工業株式会社)を固形分濃度として3.0g/100gとなるよう水に溶解した水溶液10gを加え、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例33>
 実施例14と同様の方法で作製した酸化セリウム(IV)/全量=3.0g/100gの水分散液30gに、ポリビニルアルコール(ゴーセノールNM-11:日本合成化学工業株式会社)を固形分濃度として3.0g/100gとなるよう水に溶解した水溶液70gを加え、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例34>
 実施例15と同様の方法で作製した酸化セリウム(IV)/全量=3.0g/100gの水分散液30gに、ポリビニルアルコール(ゴーセノールNM-11:日本合成化学工業株式会社)を固形分濃度として3.0g/100gとなるよう水に溶解した水溶液70gを加え、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例35>
 実施例19と同様の方法で作製した酸化セリウム(IV)/全量=3.0g/100gの水分散液30gに、ポリビニルアルコール(ゴーセノールNM-11:日本合成化学工業株式会社)を固形分濃度として3.0g/100gとなるよう水に溶解した水溶液70gを加え、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例36>
 実施例31と同様の方法で作製した親水化処理剤に試験材を浸漬して塗布した後、電気炉を100℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例37>
 実施例31と同様の方法で作製した親水化処理剤に試験材を浸漬して塗布した後、電気炉200℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例38>
 実施例18と同様の方法で作製した酸化セリウム(IV)/全量=3.0g/100gの水分散液90gに、ポリアクリル酸(ジュリマーAC-10L:東亞合成株式会社)を固形分濃度として3.0g/100gとなるよう水に溶解した水溶液10gを加え、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例39>
 実施例18と同様の方法で作製した酸化セリウム(IV)/全量=3.0g/100gの水分散液30gに、ポリアクリル酸(ジュリマーAC-10L:東亞合成株式会社)を固形分濃度として3.0g/100gとなるよう水に溶解した水溶液70gを加え、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例40>
 実施例18と同様の方法で作製した酸化セリウム(IV)/全量=3.0g/100gの水分散液20gに、ポリアクリル酸(ジュリマーAC-10L:東亞合成株式会社)を固形分濃度として3.0g/100gとなるよう水に溶解した水溶液80gを加え、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例41>
 実施例18と同様の方法で作製した酸化セリウム(IV)/全量=3.0g/100gの水分散液30gに、ポリアクリル酸(ジュリマーAC-10L:東亞合成株式会社)を固形分濃度として3.0g/100gとなるよう水に溶解した水溶液35gと、ポリビニルアルコール(ゴーセノールNM-11:日本合成化学工業株式会社)を固形分濃度として3.0g/100gとなるよう水に溶解した水溶液35gとを加え、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例42>
 実施例18と同様の方法で作製した酸化セリウム(IV)/全量=3.0g/100gの水分散液90gに、2-ホスホノブタン-1,2,4-トリカルボン酸(キレストPH-430:キレスト株式会社)を固形分濃度として3.0g/100gとなるよう水に溶解した水溶液10gを加え、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例43>
 実施例18と同様の方法で作製した酸化セリウム(IV)/全量=3.0g/100gの水分散液90gに、1,2,3,4-ブタンテトラカルボン酸(リカシッドBT-W:新日本理化株式会社)を固形分濃度として3.0g/100gとなるよう水に溶解した水溶液10gを加え、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例44>
 実施例18と同様の方法で作製した酸化セリウム(IV)/全量=3.0g/100gの水分散液90gに、アニオン性界面活性剤であるアルキルフェニルエーテルジスルホン酸Na(ペレックスSS-H:花王株式会社)を固形分濃度として3.0g/100gとなるよう水に溶解した水溶液10gを加え、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例45>
 実施例18と同様の方法で作製した酸化セリウム(IV)/全量=3.0g/100gの水分散液90gに、ノニオン性界面活性剤であるポリオキシアルキレンアルキルエーテル(ノイゲンET-116C:第一工業製薬株式会社)を固形分濃度として3.0g/100gとなるよう水に溶解した水溶液10gを加え、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例46>
 実施例18と同様の方法で作製した酸化セリウム(IV)/全量=3.0g/100gの水分散液90gに、スルホン酸基含有ポリアクリル酸(アロン-A6021:東亞合成株式会社)を固形分濃度として3.0g/100gとなるよう水に溶解した水溶液10gを加え、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例47>
 実施例18と同様の方法で作製した酸化セリウム(IV)/全量=3.0g/100gの水分散液90gに、ポリアクリルアミド(シャロールAM-253P:第一工業製薬株式会社)を固形分濃度として3.0g/100gとなるよう水に溶解した水溶液10gを加え、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <実施例48>
 実施例18と同様の方法で作製した酸化セリウム(IV)/全量=3.0g/100gの水分散液90gに、ポリビニルピロリドン(PVP K30:アイエスピー・ジャパン株式会社)を固形分濃度として3.0g/100gとなるよう水に溶解した水溶液10gを加え、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <比較例1>
 硝酸セリウム(III)・6水和物(高純度試薬:関東化学株式会社)に、硝酸セリウム(III)/全量=3.0g/100gとなるよう水を加えて溶解し親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <比較例2>
 塩化セリウム(III)(高純度試薬:関東化学株式会社)に、塩化セリウム(III)/全量=3.0g/100gとなるよう水を加えて溶解し親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <比較例3>
 ポリビニルアルコール(ゴーセノールNM-11:日本合成化学工業株式会社)を固形分濃度として3.0g/100gとなるよう水に溶解した水溶液を親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <比較例4>
 比較例1と同様の方法で作製した硝酸セリウム(III)/全量=3.0g/100gの水溶液30gに、ポリビニルアルコール(ゴーセノールNM-11:日本合成化学工業株式会社)を固形分濃度として3.0g/100となるよう水に溶解した水溶液70gを加え、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <比較例5>
 ポリビニルアルコール(ゴーセノールNM-11:日本合成化学工業株式会社)を固形分濃度として3.0g/100gとなるよう水に溶解した水溶液95gに、2-ピリジンギオール-1-オキサイド亜鉛塩(ホクサイドZPT:北興産業株式会社)の固形分濃度が3.0g/100gとなるよう水に分散した水分散液5gを加え、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <比較例6>
 ポリビニルアルコール(ゴーセノールNM-11:日本合成化学工業株式会社)を固形分濃度として3.0g/100gとなるよう水に溶解した水溶液95gに、酸化亜鉛(NANOBYK-3820:ビックケミージャパン)の固形分濃度が3.0g/100gとなるよう水に分散した水分散液5gを加え、親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <比較例7>
 キトサン(キトサンVL:大日精化工業株式会社)1.5gと1,2,3,4-ブタンテトラカルボン酸(リカシッドBT-W:新日本理化株式会社)1.5gを水に溶解し全量を100gとした水溶液を親水化処理剤とした。親水化処理剤に試験材を浸漬して塗布した後、電気炉を160℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量が乾燥固形分として0.5g/mの親水性皮膜を形成した。
 <比較例8>
 塩化セリウム(III)(高純度試薬:関東化学株式会社)10.0g、過酸化水素(35%試薬:和光純薬工業株式会社)5gを水に加え総量1Lとした水溶液を化成処理液とした。化成処理液を45℃に加温し、試験材を30分間浸漬した後、水洗し、電気炉を100℃に調整した送風乾燥機内で吊るして10分間加熱乾燥し、試験材上に皮膜量がCe付着量として0.1g/mの化成皮膜を形成した。
 表1と表2に実施例1~48の条件を示し、表3に比較例1~8の条件を示す。なお、表1~表3中の「wt%」は「質量%」と同義である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 <試験材>
 実施例1~27、29~48及び比較例1~8に用いた試験材は、市販品のJIS A 1000相当の、厚さ0.8mm、幅70mm、長さ150mmのアルミニウム合金材であった。実施例28に用いた試験材は、市販のJIS C 1000相当の厚さ0.8mm、幅70mm、長さ150mmの銅合金材であった。
 <試験材の洗浄方法>
 前記実施例及び比較例の皮膜を設けるに当たり、前記の試験材を、アルカリ系脱脂剤「ファインクリーナー315」(日本パーカライジング株式会社製)を薬剤濃度:20g/L、浴温度60℃に調整した処理浴に2分間浸漬処理し、表面に付着しているゴミや油を除去した後、表面に残存しているアルカリ分を水道水により洗浄し用いた。
 実施例及び比較例で得られた皮膜を設けた試験材を評価材として、下記の評価方法により皮膜性能の評価を行った。
 <結露濡れ性評価>
 評価材を脱イオン水に480時間浸漬させた後、50℃に調整した送風乾燥器内で1時間加熱乾燥し室温まで放冷したものから、40mm×40mmサイズの試験片を切り出し、評価に用いた。温度25℃、湿度60%RHに調整した雰囲気の中で、試験片を5℃に冷却し5分間冷却した後の試験片表面の結露水の状態を目視にて観察し、表4に示すレイティングナンバーにて評価した。
 <結露濡れ性評価基準>
Figure JPOXMLDOC01-appb-T000004
 <抗カビ性評価>
 評価材を脱イオン水に480時間浸漬させた後、50℃に調整した送風乾燥器内で1時間加熱乾燥し室温まで放冷したものから、40mm×40mmサイズの試験片を切り出し、評価に用いた。試験片に対して試験菌として下記の4菌種の混合胞子懸濁液を噴霧し、蓋をして27℃で7日間培養した後のカビの繁殖状態を、試験片面積におけるカビの占有面積により測定し、下記に示すレイティングナンバーにて評価した(JIS-Z-2911-2000に準拠)。
 [試験菌]
 ・Aspergillus niger(IFO6341)
 ・Penicillium funiclosum(IFO6345)
 ・Cladosporium cladosporioides(IFO6348)
 ・Aureobasidium pullulans(IFO6353)
 <抗カビ性評価基準>
 5:占有面積1%未満
 4:占有面積1%以上10%未満
 3:占有面積10%以上30%未満
 2:占有面積30%以上60%未満
 1:占有面積60%以上
 <対水接触角>
 評価材を脱イオン水に480時間浸漬させた後、50℃に調整した送風乾燥器内で1時間加熱乾燥し室温まで放冷したものを評価に用いた。評価材上に2μlの脱イオン水を滴下し、形成された水滴の接触角を接触角計(商品名:CA-X型、協和界面科学株式会社製)により測定し、下記に示すレイティングナンバーにて評価した。
 <耐水接触角評価基準>
 5:接触角が10°未満
 4:接触角が10°以上20°未満
 3:接触角が20°以上30°未満
 2:接触角が30°以上40°未満
 1:接触角が40°以上
 <親水性皮膜の耐水性評価試験>
 評価材を脱イオン水に480時間浸漬する前後の質量測定を行い、下記に示す式により皮膜残存率を求め、下記に示すレイティングナンバーにて耐水性を評価した。
 皮膜残存率=(C-A)/(B-A)×100(%)
 A:皮膜を設ける前の試験材質量(g)
 B:皮膜を設けた後の評価材質量(g)
 C:評価材を脱イオン水中に480時間浸漬した後、乾燥した評価材質量(g)
 なお、乾燥した評価材とは、50℃に調整した送風乾燥器内で1時間加熱乾燥し室温まで放冷したものを指す。
 <耐水性評価基準>
 5:皮膜残存率が90%以上
 4:皮膜残存率が70%以上90%未満
 3:皮膜残存率が60%以上80%未満
 2:皮膜残存率が0%を超え60%未満
 1:皮膜残存率が0%
 <水難溶性のセリウム化合物の耐水性評価試験>
 評価材を脱イオン水に480時間浸漬する前後のCe量を、蛍光X線分析装置(商品名ZSX-100:株式会社リガク製)を用いて測定を行い、下記に示す式によりCe残存率を求め、下記に示すレイティングナンバーにて耐水性を評価した。なお、比較例5、6については、同様の方法により、Zn残存率を求めて耐水性を評価した。比較例3、7については、この評価試験は行わなかった。
 Ce残存率=(B)/(A)×100(%)
 A:脱イオン水浸漬前のCe量(mg/m
 B:脱イオン水に480時間浸漬した後のCe量(mg/m
 <Ce残存性の評価基準>
 5:Ce残存率が90%以上
 4:Ce残存率が80%以上90%未満
 3:Ce残存率が60%以上80%未満
 2:Ce残存率が0%を超え60%未満
 1:Ce残存率が0%
 前記した皮膜性能の各評価において、レイティングナンバーが3以上であれば合格レベルとした。評価結果を表5及び表6に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表5及び表6に示した結果から明らかなように、実施例1~48の親水性皮膜は、いずれも結露濡れ性及び抗カビ性に優れていた。
 一方、比較例1、2は、水溶性のセリウム化合物を水に溶解した親水化処理剤から得た皮膜であるが、耐水性が得られなかった。これにより、水難溶性のセリウム化合物を用いることが重要であることがわかる。比較例3は、ポリビニルアルコールのみの皮膜であり、対水接触角は一般に親水性とされるレベルではあるものの、本発明の目的である結露濡れ性や抗カビ性が得られないことが分かる。比較例4は、水溶性のセリウム化合物に有機成分を組み合わせた場合を示し、比較例1、2に比較して耐水性(皮膜残存性)及びCe残存性が向上するものの、結露濡れ性や抗カビ性が得られないことがわかる。比較例5、6は、一般に抗カビ性を有することが知られるZPT及びZnOをPVAに組み合わせた場合を示し、これらの皮膜では結露濡れ性が得られないことに加え、何れも脱イオン水浸漬後のZn残存性が低く、抗カビ性が得られないことがわかる。比較例7は、一般に抗菌性を有することが知られるキトサンを用いた場合を示し、この皮膜では結露濡れ性が得られないことに加え、良好な耐水性にもかかわらず抗カビ性が見られない。すなわちキトサンに抗カビ性がないことがわかる。比較例8は、Ce化合物の化成処理により化成皮膜を得た場合であり、この皮膜は高いCe残存性が得られるものの、本発明の目的である結露濡れ性や抗カビ性が得られないことがわかる。
 <接触角と結露濡れ性>
 次に、接触角と結露濡れ性について説明する。図2は、一般的な親水性評価方法である「接触角(脱イオン水浸漬後)」の結果と、実施例で評価方法として用いた「結露濡れ性」の結果との関係を示すグラフである。図2中のプロットは、実施例1~48及び比較例3~8を含む各種皮膜の接触角(横軸、生データ)と結露濡れ性(縦軸、レイティングナンバー)との相関を示す。
 図2に示すように、接触角が小さくなるほど結露濡れ性は向上する一般的な傾向が見られたが、一般的に親水性があるとみなせる接触角が40°未満の領域でも、結露濡れ性に差が見られた。すなわち、10°未満の低接触角でも結露濡れ性が十分でないケースもあれば、30°~40°前後でも結露濡れ性を満たすケースもあった。このことは、接触角により親水性と定義される皮膜あっても、表4中のレイティングナンバー「2」「1」に示すように結露水が粒子状に成長し、フィン間の目詰まりを起こす場合があり得ることを示している。
 以上のことから、結露水によるフィンの目詰まりを防止する皮膜の評価方法として、接触角の評価のみでは十分でなく、本発明者が確立した結露濡れ性の評価結果を加えて判断することが望ましい。特に、実施例で用いたような、早い結露段階(5分間冷却させた際の表面の結露状態)での濡れ広がりに着目して評価することが実態に即した評価方法と言うことができ、この評価基準を満たす親水性皮膜が本発明の課題を解決することができる。
 1 金属材(被塗布材)
 2,2’ 耐食皮膜(耐食皮膜は無くても良い)
 3,3’ 親水性皮膜
 10 親水性皮膜が設けられた金属材

Claims (13)

  1.  水と、該水の中に分散された水難溶性のセリウム化合物(A)から選ばれる1種又は2種以上とを含有することを特徴とする親水化処理剤。
  2.  前記水難溶性のセリウム化合物(A)が、0.01~2.0μmの粒子径で前記水の中に分散されてなる、請求項1に記載の親水化処理剤。
  3.  前記水難溶性のセリウム化合物(A)が、炭酸セリウム(III)、フッ化セリウム(III)、フッ化セリウム(IV)及び酸化セリウム(IV)から選ばれる1種又は2種以上である、請求項1又は2に記載の親水化処理剤。
  4.  さらに、前記水の中に、有機成分(B)から選ばれる1種又は2種以上を含有する、請求項1~3の何れか1項に記載の親水化処理剤。
  5.  金属材の表面に形成された親水性皮膜であって、水難溶性のセリウム化合物(A)から選ばれる1種又は2種以上を含有することを特徴とする親水性皮膜。
  6.  前記水難溶性のセリウム化合物(A)の含有量が、固形分比率で5~100質量%である、請求項5に記載の親水性皮膜。
  7.  前記水難溶性のセリウム化合物(A)が、炭酸セリウム(III)、フッ化セリウム(III)、フッ化セリウム(IV)及び酸化セリウム(IV)から選ばれる1種又は2種以上である、請求項5又は6に記載の親水性皮膜。
  8.  さらに、有機成分(B)から選ばれる1種又は2種以上を含有する、請求項5~7の何れか1項に記載の親水性皮膜。
  9.  前記金属材の前記表面を、請求項1~4の何れか1項に記載の親水化処理剤で処理した後、乾燥して得られる、請求項5~8の何れか1項に記載の親水性皮膜。
  10.  金属材の表面の一部又は全部を、請求項1~4の何れか1項に記載の親水化処理剤で処理した後、乾燥して請求項5~9の何れか1項に記載の親水性皮膜を形成することを特徴とする親水化処理方法。
  11.  表面に請求項5~9の何れか1項に記載の親水性皮膜を設けた金属材。
  12.  前記金属材が、アルミニウム材、アルミニウム合金材、銅材、銅合金材の何れかである、請求項11に記載の金属材。
  13.  熱交換器の部材である、請求項11又は12に記載の金属材。
PCT/JP2011/073889 2010-10-19 2011-10-18 金属材用親水性皮膜、親水化処理剤、及び親水化処理方法 WO2012053497A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2011319006A AU2011319006A1 (en) 2010-10-19 2011-10-18 Hydrophilic film formed on a surface of a metal material, hydrophilization treatment agent and hydrophilization treatment method
BR112013009683A BR112013009683A2 (pt) 2010-10-19 2011-10-18 filme hidrofílico formado sobre uma superfície de um material metálico, agente de tratamento de hidrofilização e processo de tratamento de hidrofilização
CN2011800493323A CN103154167A (zh) 2010-10-19 2011-10-18 金属材料用亲水性被膜、亲水化处理剂以及亲水化处理方法
EP11834336.7A EP2639274A4 (en) 2010-10-19 2011-10-18 HYDROPHILIC FILM FOR METAL MATERIAL, HYDROPHILICATION TREATMENT AND HYDROPHILATION TREATMENT PROCESS
KR1020137012583A KR101512914B1 (ko) 2010-10-19 2011-10-18 금속재용 친수성 피막, 친수화 처리제 및 친수화 처리 방법
US13/878,923 US20130196167A1 (en) 2010-10-19 2011-10-18 Hydrophilic film formed on a surface of a metal material, hydrophilization treatment agent and hydrophilization treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-234993 2010-10-19
JP2010234993A JP2012087213A (ja) 2010-10-19 2010-10-19 金属材用親水性皮膜、親水化処理剤、及び親水化処理方法

Publications (1)

Publication Number Publication Date
WO2012053497A1 true WO2012053497A1 (ja) 2012-04-26

Family

ID=45975208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073889 WO2012053497A1 (ja) 2010-10-19 2011-10-18 金属材用親水性皮膜、親水化処理剤、及び親水化処理方法

Country Status (9)

Country Link
US (1) US20130196167A1 (ja)
EP (1) EP2639274A4 (ja)
JP (1) JP2012087213A (ja)
KR (1) KR101512914B1 (ja)
CN (1) CN103154167A (ja)
AU (1) AU2011319006A1 (ja)
BR (1) BR112013009683A2 (ja)
TW (1) TW201229223A (ja)
WO (1) WO2012053497A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2592131A3 (en) * 2011-11-14 2013-06-12 Advanced Technology Materials, Inc. Aqueous cerium-containing solution having an extended bath lifetime for removing mask material
WO2020129963A1 (ja) * 2018-12-18 2020-06-25 東レ株式会社 酸化セリウムのナノ粒子、核酸の分解方法、ポリペプチドの分解方法、酸化セリウムのナノ粒子の製造方法、酸化剤、抗酸化剤、抗カビ剤および抗ウイルス剤

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158919A1 (ja) * 2010-06-18 2011-12-22 花王株式会社 発熱具
WO2016021071A1 (ja) 2014-08-08 2016-02-11 日本パーカライジング株式会社 アルミニウム含有金属材料用親水化処理剤
WO2017150353A1 (ja) * 2016-03-03 2017-09-08 株式会社デンソー 熱交換器
JP6713337B2 (ja) * 2016-04-22 2020-06-24 三菱マテリアル電子化成株式会社 防汚性膜形成用液組成物及びその製造方法
JP7283533B2 (ja) * 2019-03-06 2023-05-30 Toto株式会社 塗装体およびコーティング組成物
US20230159782A1 (en) * 2020-03-20 2023-05-25 The Regents Of The University Of California Aqueous Dispersion of Cerium (III) Carbonate Particles
CN112759277B (zh) * 2020-12-02 2022-03-08 中国科学院大连化学物理研究所 一种氧化铈超亲水光学薄膜的制备方法
CN117651838A (zh) * 2021-07-02 2024-03-05 栗田工业株式会社 利用蒸汽的传热效率改善方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145263A (ja) * 1984-12-19 1986-07-02 Nippon Seihaku Kk フイン材コ−テイング用組成物
JPH05222334A (ja) 1992-02-07 1993-08-31 Nippon Paint Co Ltd 親水性表面処理剤、親水性表面処理浴、及び親水性表面処理方法
JPH05302042A (ja) 1992-04-24 1993-11-16 Nippon Paint Co Ltd アルミニウム製熱交換器用親水化表面処理剤、及び親水化表面処理方法
JP2000171191A (ja) 1998-12-07 2000-06-23 Nippon Parkerizing Co Ltd 抗菌防かび性に優れたアルミニウム合金製フィン材、及びそれを具備するエアコンディショナー用熱交換器
JP2000248381A (ja) * 1999-02-26 2000-09-12 Nippon Light Metal Co Ltd アルミニウム材の親水性処理方法及びその下地処理剤並びに親水性塗料
JP2001089752A (ja) * 1995-12-22 2001-04-03 Toto Ltd 光半導体の光励起に応じて親水化される部材及びその製造方法
JP2002105241A (ja) 2000-07-12 2002-04-10 Dainichiseika Color & Chem Mfg Co Ltd 水性溶液組成物および物品の表面改質方法
JP2005054116A (ja) * 2003-08-06 2005-03-03 Univ Nihon 硬質塗膜の製造方法
JP2006078134A (ja) 2004-09-13 2006-03-23 Matsushita Electric Ind Co Ltd アルミニウムフィン材
JP2007313422A (ja) * 2006-05-25 2007-12-06 Matsushita Electric Works Ltd 易水洗性被膜の製造方法及び物品
JP2009506186A (ja) * 2005-08-30 2009-02-12 ラペイル 少なくとも一つのウレイド官能基を担持したラテックス組成物の、木材に接着させるための使用

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2208771T3 (es) * 1995-12-22 2004-06-16 Toto Ltd. Procedimiento fotocatalitico para hacer hidrofila una superficie y material compuesto con una superficie hidrofila fotocataliticamente.
JP3962123B2 (ja) * 1997-06-09 2007-08-22 新日本製鐵株式会社 有機系表面処理金属板および有機系金属表面処理液
CN1245471C (zh) * 1996-09-30 2006-03-15 日立化成工业株式会社 氧化铈研磨剂以及基板的研磨方法
JP3746400B2 (ja) * 1999-06-29 2006-02-15 三菱製紙株式会社 インクジェット記録媒体
JP4532690B2 (ja) * 2000-07-24 2010-08-25 新日本製鐵株式会社 樹脂系耐食性層を有する金属材
JP3772658B2 (ja) * 2000-09-13 2006-05-10 東陶機器株式会社 光触媒性コーティング組成物
US6586483B2 (en) * 2001-01-08 2003-07-01 3M Innovative Properties Company Foam including surface-modified nanoparticles
JP2002294175A (ja) * 2001-03-28 2002-10-09 Nippon Paint Co Ltd 陰極電着塗料組成物
BE1015823A3 (fr) * 2003-12-17 2005-09-06 Ct Rech Metallurgiques Asbl Procede de revetement d'une surface metallique par une couche ultrafine.
JP2006176635A (ja) * 2004-12-22 2006-07-06 Matsushita Electric Works Ltd 水系親水性塗料組成物およびこれを用いた塗装品
KR100935568B1 (ko) * 2005-01-07 2010-01-07 로디아 쉬미 세륨의 콜로이드성 분산액을 함유하는 수성 페인트 조성물
KR100812052B1 (ko) * 2005-11-14 2008-03-10 주식회사 엘지화학 탄산세륨 분말, 산화세륨 분말, 그 제조방법, 및 이를포함하는 cmp 슬러리
US20080124467A1 (en) * 2006-03-30 2008-05-29 Jean-Paul Chapel Modified surfaces and method for modifying a surface
JP5401316B2 (ja) * 2006-09-29 2014-01-29 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド 加水分解性有機官能性シランの部分および/または完全縮合物の貯蔵に安定な組成物
JP4719662B2 (ja) * 2006-11-21 2011-07-06 日本パーカライジング株式会社 環境対応型プレコート金属材料用水系表面処理剤、並びに表面処理金属材料及び環境対応型プレコート金属材料
JP5089316B2 (ja) * 2007-10-02 2012-12-05 日本ペイント株式会社 金属表面処理組成物、この組成物を用いたアルミニウム系金属基材の表面処理方法、及びこの方法を用いて製造されたアルミニウム系金属表面処理基材
JP5509078B2 (ja) * 2008-07-16 2014-06-04 日本パーカライジング株式会社 水系金属表面処理剤及び表面処理金属材料

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145263A (ja) * 1984-12-19 1986-07-02 Nippon Seihaku Kk フイン材コ−テイング用組成物
JPH05222334A (ja) 1992-02-07 1993-08-31 Nippon Paint Co Ltd 親水性表面処理剤、親水性表面処理浴、及び親水性表面処理方法
JPH05302042A (ja) 1992-04-24 1993-11-16 Nippon Paint Co Ltd アルミニウム製熱交換器用親水化表面処理剤、及び親水化表面処理方法
JP2001089752A (ja) * 1995-12-22 2001-04-03 Toto Ltd 光半導体の光励起に応じて親水化される部材及びその製造方法
JP2000171191A (ja) 1998-12-07 2000-06-23 Nippon Parkerizing Co Ltd 抗菌防かび性に優れたアルミニウム合金製フィン材、及びそれを具備するエアコンディショナー用熱交換器
JP2000248381A (ja) * 1999-02-26 2000-09-12 Nippon Light Metal Co Ltd アルミニウム材の親水性処理方法及びその下地処理剤並びに親水性塗料
JP2002105241A (ja) 2000-07-12 2002-04-10 Dainichiseika Color & Chem Mfg Co Ltd 水性溶液組成物および物品の表面改質方法
JP2005054116A (ja) * 2003-08-06 2005-03-03 Univ Nihon 硬質塗膜の製造方法
JP2006078134A (ja) 2004-09-13 2006-03-23 Matsushita Electric Ind Co Ltd アルミニウムフィン材
JP2009506186A (ja) * 2005-08-30 2009-02-12 ラペイル 少なくとも一つのウレイド官能基を担持したラテックス組成物の、木材に接着させるための使用
JP2007313422A (ja) * 2006-05-25 2007-12-06 Matsushita Electric Works Ltd 易水洗性被膜の製造方法及び物品

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANTIBACTERIAL AND ANTIFUNGAL AGENTS, vol. 21, no. 7, 1993, pages 385 - 389
ANTIBACTERIAL AND ANTIFUNGAL AGENTS, vol. 22, no. 5, 1994, pages 277 - 282
ANTIBACTERIAL AND ANTIFUNGAL AGENTS, vol. 36, no. 6, 2008, pages 359 - 363
See also references of EP2639274A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2592131A3 (en) * 2011-11-14 2013-06-12 Advanced Technology Materials, Inc. Aqueous cerium-containing solution having an extended bath lifetime for removing mask material
US8618036B2 (en) 2011-11-14 2013-12-31 International Business Machines Corporation Aqueous cerium-containing solution having an extended bath lifetime for removing mask material
WO2020129963A1 (ja) * 2018-12-18 2020-06-25 東レ株式会社 酸化セリウムのナノ粒子、核酸の分解方法、ポリペプチドの分解方法、酸化セリウムのナノ粒子の製造方法、酸化剤、抗酸化剤、抗カビ剤および抗ウイルス剤
US11937598B2 (en) 2018-12-18 2024-03-26 Toray Industries, Inc. Cerium oxide nanoparticle, decomposition method of nucleic acid, decomposition method of polypeptide, method of producing cerium oxide nanoparticle, oxidizing agent, antioxidant, antifungal agent, and anti-virus agent

Also Published As

Publication number Publication date
JP2012087213A (ja) 2012-05-10
US20130196167A1 (en) 2013-08-01
KR20130084667A (ko) 2013-07-25
EP2639274A4 (en) 2014-06-11
CN103154167A (zh) 2013-06-12
KR101512914B1 (ko) 2015-04-16
TW201229223A (en) 2012-07-16
BR112013009683A2 (pt) 2016-07-12
AU2011319006A1 (en) 2013-05-02
EP2639274A1 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
WO2012053497A1 (ja) 金属材用親水性皮膜、親水化処理剤、及び親水化処理方法
KR101503988B1 (ko) 표면 처리 피막을 갖는 알루미늄 또는 알루미늄 합금 재료 및 그 표면 처리 방법
JP5570127B2 (ja) 親水化処理剤、アルミニウム含有金属材及びアルミニウム合金製熱交換器
US10591228B2 (en) Antifouling coating, heat exchanger provided with same, and method for manufacturing heat exchanger
JP6184051B2 (ja) アルミニウム製熱交換器の表面処理方法
JP5503556B2 (ja) アルミニウム含有金属材用親水化処理剤、親水化処理方法及び親水化処理されたアルミニウム含有金属材
RU2692361C2 (ru) Твердый смазочный материал для оцинкованной стали
CN104271800A (zh) 铝制热交换器的表面处理方法
JP5586834B2 (ja) 熱交換器用アルミニウムフィン材
JP4558875B2 (ja) 熱交換器フィン材用親水化処理組成物
TWI665295B (zh) 含有鋁之金屬材料用之親水化處理劑
JP2000171191A (ja) 抗菌防かび性に優れたアルミニウム合金製フィン材、及びそれを具備するエアコンディショナー用熱交換器
JP5653325B2 (ja) アルミニウム製フィン材
JP2011214106A (ja) アルミニウム基材用耐食処理剤、及びそれを用いたアルミニウム基材の耐食処理方法
WO2017038251A1 (ja) 表面処理剤、皮膜の製造方法及び皮膜付き金属材料
JP5566835B2 (ja) 塗料組成物およびこれを用いたアルミニウムフィン材
JP2002038134A (ja) 熱交換器フィン材用親水化処理組成物
JPH05302042A (ja) アルミニウム製熱交換器用親水化表面処理剤、及び親水化表面処理方法
JP2015190744A (ja) 熱交換器用アルミニウム製フィン材
JP5567301B2 (ja) 熱交換器フィン材用の親水化処理組成物
JP2021095475A (ja) 凍結抑制塗膜材料、それを用いる塗布方法およびその用途
WO2021199876A1 (ja) アルミニウム製フィン材
CN117516250A (zh) 铝制翅片材
JP2001329377A (ja) 熱交換器フィン材用親水化処理組成物
JP2008093905A (ja) アルミニウム塗装板及びこれを用いたプレコートアルミニウムフィン材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180049332.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834336

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13878923

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011319006

Country of ref document: AU

Date of ref document: 20111018

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137012583

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011834336

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013009683

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013009683

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130419