WO2012046308A1 - ポリフェニレンエーテル系樹脂組成物の製造方法 - Google Patents

ポリフェニレンエーテル系樹脂組成物の製造方法 Download PDF

Info

Publication number
WO2012046308A1
WO2012046308A1 PCT/JP2010/067509 JP2010067509W WO2012046308A1 WO 2012046308 A1 WO2012046308 A1 WO 2012046308A1 JP 2010067509 W JP2010067509 W JP 2010067509W WO 2012046308 A1 WO2012046308 A1 WO 2012046308A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyphenylene ether
ppe
resin
kneading
resin composition
Prior art date
Application number
PCT/JP2010/067509
Other languages
English (en)
French (fr)
Inventor
田尻 敏之
Original Assignee
三菱エンジニアリングプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱エンジニアリングプラスチックス株式会社 filed Critical 三菱エンジニアリングプラスチックス株式会社
Priority to KR1020127032712A priority Critical patent/KR101746893B1/ko
Priority to CN201080067837.8A priority patent/CN102985489B/zh
Priority to JP2012520394A priority patent/JP5119373B2/ja
Priority to PCT/JP2010/067509 priority patent/WO2012046308A1/ja
Publication of WO2012046308A1 publication Critical patent/WO2012046308A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/06Making preforms by moulding the material
    • B29B11/10Extrusion moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/482Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs
    • B29B7/483Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs the other mixing parts being discs perpendicular to the screw axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/488Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
    • B29B7/489Screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/625Screws characterised by the ratio of the threaded length of the screw to its outside diameter [L/D ratio]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/919Thermal treatment of the stream of extruded material, e.g. cooling using a bath, e.g. extruding into an open bath to coagulate or cool the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • B29B7/845Venting, degassing or removing evaporated components in devices with rotary stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/86Component parts, details or accessories; Auxiliary operations for working at sub- or superatmospheric pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92942Moulded article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92971Fluids, e.g. for temperature control or of environment

Definitions

  • the present invention relates to a method for producing a polyphenylene ether-based resin composition, and more specifically, a polyphenylene ether-based resin for producing a polyphenylene ether-based resin composition having a good color tone, excellent solvent resistance, and less occurrence of burning with high production efficiency.
  • the present invention relates to a method for producing a resin composition.
  • Polyphenylene ether-based resins are engineering plastics with excellent heat resistance, electrical characteristics, and chemical resistance, but on the other hand, they themselves have the disadvantage of poor flowability and difficulty in molding.
  • polyphenylene ether-based resins are usually in the form of a powder that is taken out from the polymerization apparatus. This is easy to slip on the screw surface of an extruder or the like, making the meterability unstable and disadvantageous in terms of moldability. .
  • Patent Document 1 for the purpose of improving the molding processability, fluidity and impact resistance of polyphenylene ether, a material containing a polystyrene resin has been developed (see Patent Document 1) and used in many fields as one of engineering plastics. ing.
  • pellets As a form of a raw material when molding a thermoplastic resin, it is usually provided as a small resin lump called a pellet.
  • a polyphenylene ether resin with a polystyrene resin into pellets, the polyphenylene ether resin (usually in powder form) and the polystyrene resin are supplied to an extruder, extruded as a strand-like molten resin, water tank, etc. After cooling, the pellets are cut by a pelletizer to form pellets.
  • the polyphenylene ether resin has a high glass transition temperature (Tg: about 210 ° C.), the molding temperature has to be increased, and it tends to cause discoloration due to thermal denaturation. Even when a polystyrene resin is blended, This discoloration problem is a big problem.
  • the polystyrene resin since the polystyrene resin has a low melting point, it melts faster than the polyphenylene ether resin in the solid transport section in the extruder, and the polyphenylene ether resin powder adheres to this, and is easily burned to become foreign matter. It is a big problem.
  • the resin composition of a polyphenylene ether resin or a polyphenylene ether resin and a polystyrene resin has a defect that the solvent resistance is inferior, and when it comes into contact with an organic solvent such as alcohol or hexane under stress. , Since it tends to crack (stress crack resistance is not good), its use is limited.
  • the polyphenylene ether-based resin since the polyphenylene ether-based resin usually uses a powder product as it is taken out from the polymerization apparatus, it is powdery and has a low apparent density.
  • the feeding part (feeding part) of the feedstock becomes poor and feed necks are likely to occur, and when the resin is melted in the kneading part such as the kneading disk part in the extruder, the air flows backward, There is a problem that the conveyance of the sheet is obstructed, the extrusion amount is reduced, and the productivity is lowered at a stretch.
  • the object of the present invention is to provide a resin composition having improved solvent resistance from polyphenylene ether-based resin and polystyrene-based resin, without causing color tone deterioration, without generating foreign matter due to burning. It is providing the manufacturing method of the polyphenylene ether-type resin composition which can be manufactured efficiently.
  • the present inventors have used a polyphenylene ether-based resin containing 0.05 to 10 ppm of copper element derived from a polymerization catalyst as a polyphenylene ether-based resin. Resin particles having a specific average particle diameter and apparent density are used as the resin, and these are supplied to a twin-screw extruder having a specific screw configuration, heated, melted, and kneaded. It has been found that the above problem can be solved by obtaining a resin composition in which a high molecular weight product is produced, and the present invention has been completed.
  • a polyphenylene ether resin As a polyphenylene ether resin, a copper component derived from a polymerization catalyst is used as a copper element, and a polyphenylene ether resin containing 0.05 to 10 ppm is used.
  • polystyrene resin particles having an average particle diameter of 1 to 5 mm and an apparent density of 0.5 to 0.7 g / cm 3 are used.
  • a double screw extruder having a length of 10 to 80 in terms of L / D, having at least one kneading zone, and having a total L / D of 3 to 18 in the kneading zone.
  • a polyphenylene ether-based ultrahigh molecular weight polymer having a molecular weight of 500,000 or more was produced in the resin composition in an amount of 0.015 to 0.6% by mass.
  • a method for producing a polyphenylene ether-based resin composition is provided, which is characterized in that an ether-based resin composition is obtained.
  • the polyphenylene ether-based resin is characterized in that 5 to 150 parts by mass of the polystyrene-based resin is blended with respect to 100 parts by mass of the polyphenylene ether-based resin.
  • a method for producing a resin composition is provided.
  • the polyphenylene ether-based resin has a number of terminal hydroxyl groups of 0.15 to 1.5 with respect to 100 phenylene ether units.
  • a method for producing a polyphenylene ether-based resin composition is provided.
  • the screw configuration of the kneading zone of the extruder is an element having a boosting capability with the element promoting the kneading upstream. Is disposed on the downstream side, and a method for producing a polyphenylene ether-based resin composition is provided.
  • the polyphenylene ether-based resin composition is extruded in a strand form from an extruder, and is cooled by running in a cooling medium.
  • Install a guide roller with grooves in the cooling medium The strand is pulled so as to be in contact with the groove of the guide roller, and
  • Vr (cm / sec) and the moving speed of the outer peripheral surface of the guide roller in contact with the strand Vr (cm / sec)
  • the strand temperature is adjusted to 80 ° C. to 160 ° C. by cooling, and the cutting is performed within this temperature range.
  • a method of manufacturing an article is provided.
  • a molded product formed by molding the polyphenylene ether-based resin composition obtained by the production method of any one of the first to sixth inventions.
  • a resin composition having improved solvent resistance from a polyphenylene ether-based resin and a polystyrene-based resin, without causing color tone deterioration, without generating foreign matter due to burning. can be produced efficiently.
  • FIG. 1 It is a figure which shows an example of the kneading disc structure preferably used for the extruder used by this invention. It is explanatory drawing of the kneading disk preferably used for the extruder used by this invention. It is whole explanatory drawing of the process from the strand extrusion process used by this invention to a strand cutter. It is a partial side view which shows one embodiment of the guide roller used at a strand conveyance process.
  • the method for producing the polyphenylene ether-based resin composition of the present invention involves kneading a polyphenylene ether-based resin and a polystyrene resin in a molten state, and then extruding to produce a polyphenylene ether-based resin composition.
  • a polyphenylene ether resin a polyphenylene ether resin containing 0.05 to 10 ppm of copper element derived from the polymerization catalyst is used.
  • polystyrene resin particles having an average particle diameter of 1 to 5 mm and an apparent density of 0.5 to 0.7 g / cm 3 are used.
  • a double screw extruder having a length of 10 to 80 in terms of L / D, having at least one kneading zone, and having a total L / D of 3 to 18 in the kneading zone.
  • a polyphenylene ether-based ultrahigh molecular weight polymer having a molecular weight of 500,000 or more was produced in the resin composition in an amount of 0.015 to 0.6% by mass.
  • An ether-based resin composition is obtained.
  • Polyphenylene ether resin used in the present invention (hereinafter sometimes abbreviated as "PPE") is a heavy chain having a structural unit represented by the following general formula (1) in the main chain. It may be a homopolymer or a copolymer.
  • R 1 may be the same or different, and represents a hydrogen atom, a halogen atom, a primary or secondary alkyl group, an aryl group, an aminoalkyl group, a haloalkyl group, an alkoxy group, or a haloalkoxy group.
  • R 2 may be the same or different and each represents a hydrogen atom, a halogen atom, a primary or secondary alkyl group, an aryl group, a haloalkyl group, an alkoxy group, or a haloalkoxy group, provided that two R 1 is not both a hydrogen atom.
  • R 1 when R 1 is a halogen atom, a chlorine atom or a bromine atom is preferable.
  • R 1 is a primary alkyl group
  • preferred examples in the case where R 1 is a primary alkyl group include methyl, ethyl, n-propyl, n-butyl, n-amyl, isoamyl
  • An alkyl group having 1 to 10 carbon atoms such as a methylbutyl group, an n-hexyl group, a 2,3-dimethylbutyl group, a 2-, 3- or 4-methylpentyl group, or a heptyl group
  • Preferred examples when R 1 is a secondary alkyl group are alkyl groups having 4 to 10 carbon atoms such as isopropyl, sec-butyl or 1-ethylpropyl.
  • R 1 is an aryl group is a phenyl group
  • R 1 is an aminoalkyl group is one having 1 to 5 carbon atoms such as a dimethylamino group, a diethylamino group, and a dibutylamino group.
  • R 2 is a haloalkyl group include groups in which one or more hydrogen atoms of the above-described groups are substituted with halogen atoms as preferable examples of the alkyl group.
  • Preferable examples in the case of an alkoxy group include alkoxy groups corresponding to the groups described above as preferable examples of the alkyl group, and examples of the haloalkoxy group include one or more hydrogen atoms in the alkoxy group. And groups substituted with a halogen atom.
  • R 1 is preferably a hydrogen atom, a primary or secondary alkyl group, or an aryl group.
  • R 2 is a primary and secondary alkyl group, an aryl group, a haloalkyl group, an alkoxy group, or a haloalkoxy group, the same group as in R 1 Is mentioned.
  • R 1 and R 2 are preferably a hydrogen atom, a primary or secondary alkyl group, or an aryl group, R 1 is more preferably an alkyl group or a phenyl group, and an alkyl group having 1 to 4 carbon atoms. Particularly preferably, R 2 is more preferably a hydrogen atom.
  • PPE in this invention is represented by General formula (1) in order to adjust molecular weight and improve various characteristics, such as melt viscosity and impact strength, in the range which does not impair the performance of this invention.
  • a repeating unit other than the structure may be included.
  • Suitable PPE includes poly (2,6-dimethyl-1,4-phenylene ether), poly (2,6-diethyl-1,4-phenylene ether), poly (2,6-dipropyl-1,4-phenylene ether). 2,6-dialkylphenylene ethers alone such as phenylene ether), poly (2-ethyl-6-methyl-1,4-phenylene ether), poly (2-methyl-6-propyl-1,4-phenylene ether) A polymer is mentioned.
  • 2,6-dimethylphenol / 2,3,6-trimethylphenol copolymer, 2,6-dimethylphenol / 2,3,6-triethylphenol copolymer, 2,6-diethylphenol / 2,3 2,6-dialkylphenol / 2,3,6-trialkylphenol copolymers such as 2,6-tripropylphenol copolymer and 2,6-dipropylphenol / 2,3,6-trimethylphenol copolymer are also preferred. .
  • a graft copolymer obtained by graft-polymerizing styrene to poly (2,6-dimethyl-1,4-phenylene ether), and a styrene to a 2,6-dimethylphenol / 2,3,6-trimethylphenol copolymer are also preferred.
  • graft copolymers obtained by graft polymerization are also preferred.
  • poly (2,6-dimethyl-1,4-phenylene ether) and 2,6-dimethylphenol / 2,3,6-trimethylphenol random copolymer are particularly preferable.
  • the molecular weight of PPE is preferably 0.2 to 0.8 dl / g, more preferably 0.3 to 0.6 dl / g in intrinsic viscosity measured at 30 ° C. in chloroform. If a material having an intrinsic viscosity of less than 0.2 dl / g is used, the mechanical strength tends to decrease when a molded product is produced using the resulting resin composition. On the other hand, when a material having a value larger than 0.8 dl / g is used, the fluidity of the resin composition is deteriorated and the molding process tends to be difficult. Two or more kinds of PPE may be used in combination, and in this case, those having different intrinsic viscosities may be mixed to obtain a desired intrinsic viscosity.
  • the PPE used in the present invention is preferably a polyphenylene ether having a number of terminal hydroxyl groups in the range of 0.15 to 1.5 with respect to 100 phenylene ether units.
  • the amount of terminal hydroxyl groups is less than 0.15 with respect to 100 phenylene ether units, the compatibility with the styrene resin is lowered, and when the resulting resin composition is used as a molded product, poor appearance occurs. In some cases, the color tone may deteriorate under a high temperature atmosphere. On the other hand, if it exceeds 1.5, the thermal stability tends to decrease.
  • a more preferable number of terminal hydroxyl groups is 0.2 to 1.3 with respect to 100 phenylene ether units. The presence of this terminal hydroxyl group is considered to help the formation of the ultra high molecular weight substance described later.
  • the unit having a terminal hydroxyl group examples include 3,5-dimethyl-4-hydroxyphenyl group, 3,5-diethyl-4-hydroxyphenyl group, 3,5-dipropyl-4-hydroxyphenyl group, 3 -Methyl-5-ethyl-4-hydroxyphenyl group, 3-methyl-5-propyl-4-hydroxyphenyl group, 2,3,5-trimethyl-4-hydroxyphenyl group and the like.
  • Polyphenylene ethers with less than 0.15 terminal hydroxyl groups have poor compatibility with styrenic resins, which may result in poor appearance of the molded product and delamination, as well as elongation at break and surface impact strength. Is prone to decline. Moreover, since the thermal stability in a high temperature atmosphere is also lowered, the color tone tends to deteriorate.
  • a method for obtaining PPE having a terminal hydroxyl group number of 0.15 or more is also described in Japanese Patent Publication No. 61-20576.
  • 2,6-dimethylxylenol is added to a compound of cuprous salt and amine.
  • the catalyst is deactivated by a method such as adding a compound that forms copper and a chelate compound to the polyphenylene ether solution, It can be obtained by stirring the polyphenylene ether solution in an atmosphere avoiding oxygen contamination.
  • the preparation method of the amount of terminal hydroxyl groups is known, and is known to vary depending on the conditions for polymerizing the phenolic compound and the conditions for the quinone reaction after the termination of the polymerization.
  • a quinone compound can be added to cause a quinone reaction to increase the hydroxyl group concentration.
  • 0.05 to 10 ppm of a component derived from the polymerization catalyst is present in the PPE as a copper element.
  • the component derived from this polymerization catalyst can be present by leaving the catalyst that has undergone the polymerization of PPE to some extent, but the polymerization catalyst component may be added later to the PPE.
  • a metal compound based catalyst such as copper, manganese, cobalt and the like is known, but it is used industrially as a catalyst for oxidative polymerization using oxygen gas or air. It is what is, CuCl, CuBr, Cu 2 SO 4, CuCl 2, CuBr 2, CuSO 4, such as copper salts of CuI, etc. one or two or more may be used.
  • ultra high molecular weight a component derived from the polymerization catalyst is present, and PPE and polystyrene resin are kneaded in a molten state in an extruder, as will be described in detail later.
  • Ultra high molecular weight usually means a polymer having a molecular weight of about several hundred thousand to several million. However, in the present invention, for convenience of confirmation measurement, and conventionally, a polymer having a molecular weight of 500,000 or more is used. The definition is based on the abundance.
  • the ultra-high molecular weight body means a molecular weight of 500,000 or more, and a polyphenylene ether resin having a molecular weight of 500,000 or more is present in the resin composition in an amount of 0.015 to 0.6% by mass. It is preferable to achieve the effects of the present invention.
  • ultra-high molecular weight polymers are externally added to PPE.
  • PPE polytetrafluoroethylene or the like
  • it has improved productivity during extrusion molding, smoothness of the surface of the molded product, and good appearance.
  • Polytetrafluoroethylene or the like is added and mixed.
  • such an ultra-high molecular weight polyethylene or the like tends to be agglomerated when added externally, and it is also a fact that defects such as so-called fish eyes and surface defects called burrs are likely to be good and bad.
  • the addition of the ultra high molecular weight substance to the PPE is not an external addition, but by making the PPE ultra high molecular weight at the time of kneading the PPE and the polystyrene resin, it is less likely to become loose and fish eyes. It was found that an ultra-high molecular weight body (resin) dispersed (in a spread form) can be produced.
  • the reason why the component derived from the polymerization catalyst is present in the PPE is to help the production of an ultra high molecular weight product.
  • the amount of the polymerization catalyst-derived component in the PPE is 0.05 to 10 ppm as a copper element (metal component) although it depends on the type of catalyst. Although the polymerization catalyst has been described above, a part of the polymerization catalyst for PPE may remain active or may be added later. As described above, copper chloride is generally used as the polymerization catalyst. Therefore, the amount of copper element has a meaning as the amount of the polymerization catalyst or the amount of the component derived from the polymerization catalyst. When taken as the abundance of the polymerization catalyst, the amount of copper element indicates the amount of only the copper portion in the catalyst component.
  • the amount of the copper element depends on the amount of the ultra high molecular weight product, but it is usually sufficient to leave (or add) about 0.05 to 1 ppm as the copper element. However, in some cases, by leaving (adding) a relatively large amount of 1 to 10 ppm as a copper element, the formation of an ultrahigh molecular weight body is stable, which may be suitable for use. What is necessary is just to select suitably according to the use of a resin, a target product, etc.
  • the amount of elemental copper is adjusted by applying a method such as adjusting the degree of catalyst removal in order to leave the catalyst during polymerization of PPE, or adjusting the amount of the deactivator that deactivates the catalyst.
  • a predetermined amount of copper compound may be added to the PPE from which the catalyst has been removed.
  • the amount of the ultra high molecular weight substance (above 500,000) varies to some extent depending on the amount of polymerization catalyst, kneading conditions, etc., but is usually 0.015 to 0.6% by mass with respect to the total amount of PPE and polystyrene resin. It is. Further, the preferable range of the copper element is 0.1 to 9 ppm, more preferably 0.2 to 8 ppm.
  • polyphenylene ether in which the number of terminal hydroxyl groups of PPE is in the range of 0.15 to 1.5 with respect to 100 phenylene ether units. It is considered that the amount of is also involved in the formation of a good ultra high molecular weight product.
  • the amount of terminal hydroxyl groups is less than 0.15 with respect to 100 phenylene ether units, the surface appearance of the polystyrene resin composition with polyphenylene ether deteriorates, and when it exceeds 1.5, the thermal stability decreases. End up.
  • PS resin a polymer of a styrene monomer, which can be copolymerized with a styrene monomer. Examples thereof include a copolymer with a monomer and a styrene-based graft copolymer.
  • the PS resin used in the present invention means a polymer or copolymer containing 50% by mass or more of a repeating unit derived from an aromatic vinyl compound, or a rubber-modified polymer of these polymers.
  • aromatic vinyl compound examples include ⁇ -alkyl-substituted styrenes such as styrene and ⁇ -methylstyrene, nuclear alkyl-substituted styrenes such as p-methylstyrene, o-ethylstyrene, vinyltoluene, o- or p-dichlorostyrene. It is done.
  • Monomers other than aromatic vinyl compounds include vinyl cyanide compounds such as acrylonitrile, methacrylonitrile, ethacrylonitrile, and (meth) acrylic and methacrylic acid methyl, ethyl, propyl, n-butyl, n-hexyl, and the like.
  • Acrylic ester compounds such as maleimide, N-methylmaleimide, N-cyclohexylmaleimide and N-phenylmaleimide, acrylamide compounds such as acrylamide and N-methylacrylamide, and unsaturated acid anhydrides such as maleic anhydride and itaconic anhydride , Unsaturated acids such as acrylic acid and methacrylic acid, glycidyl acrylate, glycidyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate and methoxypolyethylene glycol methacrylate Various vinyl compounds etc. may be mentioned.
  • PS resin examples include polystyrene, acrylonitrile-styrene resin (AS resin), methyl methacrylate-styrene resin (MS resin), and the like.
  • the weight average molecular weight of these styrene-based resins is usually 50,000 or more, preferably 100,000 or more, more preferably 150,000 or more, and the upper limit is usually 500,000 or less. Yes, preferably 400,000 or less, more preferably 300,000 or less.
  • the styrene resin used in the present invention may be a polymer obtained by modifying the above-mentioned various polymers with rubber.
  • the rubber include polybutadiene, styrene-butadiene copolymer, polyisoprene, and ethylene-propylene copolymer.
  • examples include coalescence.
  • rubber-modified polystyrene (HIPS resin), acrylonitrile-butadiene-styrene resin (ABS resin), methyl methacrylate-butadiene-styrene resin (MBS resin), and butadiene of the ABS resin are made of an ethylene-propylene copolymer.
  • Substituted resin (AES resin) etc. are mentioned.
  • polystyrene and rubber-modified polystyrene are preferable in terms of compatibility with PPE.
  • HIPS resin rubber-modified polystyrene
  • PS resin it is preferable to use particles having an average particle diameter of 1 to 5 mm and an apparent density of 0.5 to 0.7 g / cm 3 .
  • the glass transition temperature of PS resin is 100 ° C., which is much lower than that of PPE. Therefore, PS resin tends to start melting earlier than powdered PPE in the solid conveyance region of the extruder (when powdered PS is used as PS resin, it is melted particularly quickly).
  • This melted PS resin becomes a binder, and PPE adheres to the extruder cylinder wall and screw surface of the solid transport section. PPE easily undergoes a cross-linking reaction due to a transfer reaction of polymer chains caused by heat. As a result, burnt foreign matter is generated and mixed into the product.
  • the average particle size of the PS resin is 1 mm or more, the PS particles are slowly melted in the solid conveyance region, and are less likely to adhere to the cylinder wall and the screw surface. Therefore, it is difficult for burnt foreign matter to be generated.
  • a screw-type feeder (quantitative supply device) is usually provided in front of the extruder, but when large pellets are used, PS particles are sandwiched between the screw and the wall of the feeder, and between the screws. Stop the feeder screw.
  • PS particles are sandwiched between the screw and the wall of the feeder, and between the screws. Stop the feeder screw.
  • the particle size of PS particles is 5 mm or more, classification with PPE resin is facilitated. PS apparent density of the resin is likely to occur classification as PPE resins larger than even 0.7 g / cm 3 when 0.5 g / cm 3 less than.
  • the PS resin particles are well compatible with PPE, increase the fluidity of PPE, prevent the ultra-high molecular weight material generated in PPE from becoming lumps (aggregated foreign matter), and the ultra-high molecular weight generated in PPE. It is thought that it plays an important role of making the state in which the object is stretched and spread and dispersed in the PPE.
  • the PPE and PS resin are supplied to a twin-screw extruder and heated, melted and kneaded.
  • the twin-screw extruder used in the present invention has at least one kneading zone having a strong dispersion and mixing property, a raw material supply port, a vent port, and a barrel provided with a jacket, and is arranged in the interior thereof.
  • a plurality of grooves are engraved on the surface, and are usually composed of two screws rotating in the same direction and a die attached to the tip of the extruder.
  • a plurality of knees are provided in the middle of the screw.
  • the kneading part constituted by the ding disk is provided in a form that meshes with each other or a form that does not mesh with each other, and further has a transport zone that transports the material after kneading.
  • the average particle diameter in this invention was performed as follows. That is, the particles were passed through a sieve having an opening of 1 mm, and the particles of less than 1 mm were defined by a volume average measured by a laser diffraction particle size distribution analyzer.
  • measurement was performed by a wet method (solvent: isopropyl alcohol) using a “laser diffraction scattering type particle size distribution measuring device Laser Micro Sizer LMS-2000e” manufactured by Seishin Enterprise Co. Ltd. Particles of 1 mm or more were measured with a vernier caliper to determine the volume average particle diameter.
  • grain was calculated
  • the apparent density is obtained by dividing the mass (g) by the apparent volume (cm 3 ) (g / cm 3 unit) from the bulk density measurement specified in JIS K5101 (static method, but not using a filter). Is required.
  • the blending ratio of PPE and PS resin particles is preferably 5 to 150 parts by mass of PS resin particles with respect to 100 parts by mass of PPE.
  • PS resin is well compatible with PPE. However, if there is too much PS resin (ie, if there are few PPE components), the heat resistance and mechanical strength of the molded product will be insufficient. This makes it difficult to form thin-walled molded products.
  • the blending amount of the PS resin is less than 5 parts by mass, the color tone of the resin composition is deteriorated, and when it exceeds 150 parts by mass, heat resistance and impact resistance are deteriorated.
  • a more preferable blending amount is 10 to 120 parts by mass, particularly 15 to 90 parts by mass.
  • the PPE and PS resin are supplied to a twin screw extruder and heated, melted and kneaded.
  • twin-screw extruders a co-rotating twin-screw extruder can give sufficient shear stress to knead both resins well, while a single-screw extruder is sufficient to knead. Shear stress cannot be applied.
  • a single screw extruder is insufficient, and it is preferable to use a twin screw extruder having a large shear stress.
  • twin-screw extruders There are mainly two types of twin-screw extruders, the same direction rotating type and the different direction rotating type, but it is preferable to use the same direction rotating type biaxial having the largest shear stress. Further, it is preferable to provide a mixed zone provided with a kneading disk for homogeneous kneading, formation of a good ultra high molecular weight substance, and uniform dispersion.
  • the twin-screw extruder used in the present invention has at least one kneading zone having a strong dispersion and mixing property, a raw material supply port, a vent port, and a barrel provided with a jacket, and is arranged in the interior thereof.
  • a plurality of grooves are engraved on the surface, and are usually composed of two screws rotating in the same direction and a die attached to the tip of the extruder.
  • a plurality of knees are provided in the middle of the screw.
  • the kneading part constituted by the ding disk is provided in a form that meshes with each other or a form that does not mesh with each other, and further has a transport zone that transports the material after kneading.
  • the L / D of the entire screw (full length) of the twin-screw extruder used in the present invention is 10 to 80, and the total L / D of the kneading zone is 3 to 18.
  • the L / D in the present invention means a length with unitless dimensions.
  • L is the length, meaning the length of the screw, the length of the extruder, and the length of the kneading zone, and D is the cylinder diameter.
  • the optimum twin-screw co-rotating extruder used in the present invention has a kneading zone, and in this kneading zone, PPE and PS resin are kneaded by applying a strong shearing force, so that an ultra-high molecular weight body is generated satisfactorily.
  • Ultra high molecular weight substances are likely to become lumps (lumps) after generation, but they are considered to become ultra high molecular weight substances in an expanded state without being damped by being generated under a strong shearing force.
  • the length of the kneading zone for producing a good ultra high molecular weight product and obtaining a dispersed state is 3 to 18 in terms of L / D.
  • kneading zones There may be a plurality of kneading zones, but if the total L / D of the kneading zone is less than 3, kneading is insufficient and the PPE resin and the PS resin are not sufficiently compatible, or the superpolymer Insufficient production of ingredients. On the other hand, if it exceeds 18, the heat generation becomes remarkable, the color tone is deteriorated, and unevenness is likely to occur. Heat and a strong shearing force are required to produce a preferable amount of the ultra high molecular weight material and to prevent the ultra high molecular weight material from becoming “poppy”. PPE resin tends to undergo a main chain transfer reaction at a high temperature, and thus, crosslinking tends to proceed.
  • the remaining catalyst is also considered to promote crosslinking (or polymerization).
  • This PPE cross-linked product can aggregate and cause blisters.
  • a strong shearing force is required. That is, it is desirable to stir before the agglomerate aggregates to suppress agglomeration and to have a function of breaking the agglomerates when agglomerated (likely).
  • a co-rotating twin screw extruder is suitable.
  • the screw configuration (kneading zone) described later is also an important point.
  • the kneading zone is a portion that imparts shearing, distribution, diffusion, elongation flow action, etc. to the raw material by a screw and a barrel in order to knead both resins uniformly.
  • the length of the screw portion corresponding to the kneading zone is in the range of 3 to 18 in terms of L / D with respect to the total length of the screw. Within this range, it may be divided into two or more.
  • the screw for the twin-screw extruder is preferably composed of parts corresponding to the respective parts of the extruder.
  • a site consisting of a feed screw that transports the raw resin from the supply port toward the tip (feed zone), and a highly dispersible element group (kneading) for melting and kneading both raw material resins sent from the supply zone
  • a portion having an element that promotes the pressure and an element having a pressure increasing ability
  • a portion comprising a feed screw for conveying the material kneaded in the kneading section zone to the tip of the extruder.
  • the element that promotes kneading is arranged on the upstream side, and the element having a boosting ability is arranged on the downstream side.
  • elements that promote kneading include (A) progressive kneading disc element, (B) orthogonal kneading disc element, (C) wide kneading disc element, and (D) progressive feed mixing screw element.
  • the kneading part constituted by the kneading disks is regularly arranged so that, for example, a plurality of kneading disks of an elliptical shape, a triangular shape, a quadrangular shape, etc. are engaged between two screws or not. It is configured by shifting the direction and overlapping. For example, in the case of a progressive feeding disk structure using five elliptical kneading disks, as shown in FIG. 1, each kneading disk of one screw is set in the screw feeding direction, as shown in FIG.
  • the oval kneading discs shown in the figure are shifted by a twist angle ⁇ (clockwise when viewed from the upstream side to the downstream side in the resin flow direction), and the five screws are overlapped, and each kneading of the other screw Similarly, the discs are moved in the same direction, with the phase shifted with respect to one screw, and five discs are stacked.
  • the (A) progressive kneading disc element has two or more blades and a blade twist angle ⁇ of 10 degrees to 75 degrees.
  • the blade width La / D of the progressive feed kneading disc element is 0.08 to 0.4, and is generally called R kneading. Even if the twist angle ⁇ is smaller than 10 degrees or larger than 75 degrees, the conveying ability is lowered. Further, even if the blade width La / D is smaller than 0.08 or larger than 0.4, the conveying ability is insufficient.
  • the blade width La / D per needing disk is a value obtained by dividing the length L of the needing disk by the screw diameter D and further dividing by the number of blades.
  • the orthogonal kneading disk element has two or more blades and a twist angle ⁇ of the blades of 75 to 105 degrees. Since the blades are installed approximately 90 degrees apart, the force to send out the resin is weak, but the kneading force is strong.
  • the blade width La / D of the orthogonal kneading disc element is 0.08 to 0.4, and is generally called N kneading. If it is narrower than 0.08, the kneading is weak, and if it is larger than 0.4, the kneading is too strong, causing deterioration of the resin.
  • the wide kneading disc element has three or one blade, the twist angle ⁇ is in the range of ⁇ 10 degrees to +10 degrees, and the blade width La / D is 0.3 to 2.
  • the twist angle ⁇ is in the range of ⁇ 10 degrees to +10 degrees
  • the blade width La / D is 0.3 to 2.
  • wide kneading When La / D is narrower than 0.3, kneading is weakened, and when La / D is larger than 2, kneading is too strong, causing deterioration of the resin.
  • the (D) forward feed mixing screw element is a forward screw mixing screw in which a screw thread (flight part) is cut out. Two or one may be sufficient, and the number of notches is preferably 5 to 15 per screw lead. Also included is a gear type mixing screw.
  • the screw element length L / D is preferably 0.3-2. If it is longer than 2, a strong shearing force is generated, causing deterioration of the resin. If it is shorter than 0.3, the shearing force is small, and the resin cannot be sufficiently melt-kneaded.
  • An “element with a boosting ability” is an element that works in the direction of damming the resin that is being sent or returning the resin that is being sent, and damming the resin by providing it on the downstream side of the element that promotes kneading. , To exert a strong kneading effect.
  • Examples of elements having the above-described boosting ability include (E) reverse feed kneading disk element, (F) reverse feed screw element, (G) reverse feed mixing screw element, and (H) seal ring element.
  • the reverse feeding kneading disc element has two or more blades, and the twist angle ⁇ of the blades is ⁇ 10 degrees to ⁇ 75 degrees.
  • the blade width La / D is 0.08 to 0.4, and is generally called L kneading. Even if the blade width La / D is smaller than 0.08 or larger than 0.4, the pressurizing force of the resin is weakened, resulting in insufficient kneading.
  • the reverse feed screw element is said to be a reverse screw, and the lead length is preferably 0.4 to 2 in terms of L / D.
  • the lead length is the length of the screw when the screw rotates 360 degrees, and is sometimes called the pitch. When the lead is shorter than 0.4, the pressure rises too much, and when it is longer than 2, the pressure gradient is lowered, resulting in insufficient kneading.
  • the screw element length L / D is preferably 0.3 to 2 in order to obtain a good pressurizing effect.
  • the reverse feed mixing screw element is a reverse screw mixing screw in which a crest (flight portion) of the screw is cut out. Two or one may be sufficient, and the number of notches is preferably 5 to 15 per screw lead. Also included is a gear type mixing screw.
  • the screw element length L / D is preferably 0.3 to 2 in order to obtain a good pressurizing effect.
  • the seal ring element is a ring-shaped element that narrows the gap between the screw and the cylinder to block the flow of the resin and obtains a pressure increasing effect and is inscribed in the cylinder.
  • the screw element length L / D is longer than 2
  • a strong shearing force is generated, which causes deterioration of the resin.
  • the screw element length L / D is shorter than 0.3, the shearing force is small, and it becomes impossible to sufficiently melt and knead the resin.
  • the screw configuration of the kneading zone is a combination of one or more of the above (A), (B), (C) or (D), and the above (E), (F), (G ) Or (H) is preferably used in combination of one or more and one or more of each.
  • (A), (B), (C) or (D) is preferably located upstream of the kneading zone, and (E), (F), (G) or (H) is preferably located downstream.
  • the upstream side means the root of the screw, that is, the side close to the screw driving unit.
  • the number of kneading discs constituting one kneading section is preferably 3 to 200, and more preferably 5 to 50.
  • the kneading part is preferably composed of about 1 to 5 units, more preferably about 1 to 4 units, particularly preferably about 1 to 3 units, and the composition is conveyed between the units. For example, a full flight screw is used.
  • the number of kneading discs per kneading part is less than the above range, the kneading effect tends to be small, whereas when the number exceeds the above range, heat generation due to shearing increases, and it is easy to generate defects that cause appearance defects. Or the color tone tends to deteriorate.
  • the number of revolutions of the extruder is usually 100 to 1,000 rpm. If the screw speed is less than 100 rpm, the resin composition is not sufficiently kneaded, which is not preferable. On the other hand, when the screw rotation speed exceeds 1,000 rpm, shear heat generation becomes large, and color tone deterioration, molecular weight reduction, and flaking are likely to occur.
  • the ultra high molecular weight body of PPE is produced in an amount of 0.015 to 0.6% by mass in the resin composition. It is thought that the formation of ultra high molecular weight is mainly caused by the polymerization or cross-linking of PPE to form ultra high molecular weight, but between PPE molecules via aminoalkyl-substituted terminal groups of PPE. It is also conceivable that the molecular weight increases as a result of the mutual condensation. The investigation of the cause is not yet sufficient, but an ultra-high molecular weight product is formed.
  • the PPE molecules are cross-linked with each other before the PPE is compatibilized with polystyrene by forming the PPE in an extruder and melt-kneading to form an ultrahigh molecular weight component. It is considered that there is a preferable range of the ultrahigh molecular weight that is likely to generate bumps under the conditions where the ultrahigh molecular weight is possible. In addition, it is considered that excellent production of an ultrahigh molecular weight is achieved by using PPE having a terminal OH concentration of PPE of 0.15 to 1.5 per 100 polyphenylene ether units.
  • ultra-high molecular weight product For any reason, an ultra-high molecular weight product has been produced, and it goes without saying that the ultra-high-molecular weight product produced internally in this way is excellent in dispersibility and causes surface defects called lumps and lumps. There are few things. And this ultra high molecular polymer is required in order to express chemical resistance. This ultra high molecular polymer is considered to form a high-level network in the polyphenylene ether resin and prevent chemicals from entering the resin and generating cracks.
  • the amount of ultra high molecular weight polymer having a molecular weight of 500,000 or more was determined as follows. After 20 mg of the pellet is dissolved in 20 ml of chloroform, it is filtered with a filter having an opening of 0.45 ⁇ m to remove large ones that are not exposed to GPC, such as bulk resin and solid contaminants. The solution that passed through this filter was measured by GPC as follows, the amount of ultra-high molecular weight of 500,000 or more was obtained, and the amount obtained by subtracting the amount of polymer of 500,000 or more measured from the original pellet was calculated. The ratio to the mass of the original pellet was determined.
  • GPC Gel permeation chromatography
  • Equipment used HPLC 8020 manufactured by Tosoh Corporation Column: TSK G5000HHR + G3000HHR
  • Solvent Chloroform Detector: UV 283nm
  • Pretreatment 20 mg of the sample was dissolved in 20 ml of chloroform solvent, and then filtered through a 0.45 micron filter. The column temperature was 40 ° C.
  • Molecular weight calculation A calibration curve was prepared and measured using polystyrene standards and standard polystyrene. Standard polystyrene molecular weights of 264, 364, 466, 568, 2800, 16700, 186000, and 1260000 were used.
  • the amount of the ultrahigh molecular weight PPE is 0.015 to 0.6% by mass in the resin composition, but if it is less than 0.015% by mass, the solvent resistance is lowered. Moreover, when it exceeds 0.6 mass%, it will become easy to generate
  • a preferable amount of the ultrahigh molecular weight is 0.02 to 0.4% by mass in the resin composition.
  • PS resin particles and PPE granules As the PS resin, particles having an average particle diameter (volume average particle diameter) of 1 to 5 mm and an apparent density of 0.5 to 0.7 g / cm 3 are used. It is preferable that the pellets are obtained by an ordinary method, that is, those obtained by melt-kneading polystyrene with an extruder, extruding them into strands, and cutting them into a length of about several millimeters with a pelletizer. As the PS resin particles, those having an average particle diameter of 1 to 5 mm and an apparent density of 0.5 to 0.7 g / cm 3 are preferably used from the viewpoint of balance with the PPE granular material.
  • a powdery body having a toluene concentration of 0.01 to 0.5% by mass in PPE is solidified by compressing at a temperature of Tg or less, and the solidified product is pulverized as necessary.
  • Granules having an average particle diameter (volume average particle diameter) of 0.1 to 10 mm, an apparent density of 0.35 to 0.7 g / cm 3 , and a toluene concentration of 0.01 to 0.5% by mass are used. It is desirable to do.
  • the term “particle” means a particle having a small diameter close to the density of the substance, called a granule, a pellet or the like. It may also mean fine powdery particles.
  • the “granular material” is a particle in terms of shape, but is obtained by compressing and solidifying a powder, and means a particle having a larger void ratio in the particle than a pellet or the like.
  • the “molded product” means a so-called molded product or molded product obtained by being extruded from a screw extruder or the like and cooled and solidified, and its shape and size are not limited.
  • the “molded product” may be referred to as “pellet” or “composition pellet”. This is mainly because when the present invention mainly produces a raw material pellet for molding a polyphenylene ether resin. Therefore, it should be understood that the “molded product” is represented by a representative one.
  • the PPE powder is solidified by compressing it at a temperature equal to or lower than the Tg of PPE, and the obtained solidified product is pulverized as necessary to obtain an average particle size of 0. It is preferable to use a granular material adjusted to 1 to 10 mm and an apparent density of 0.35 to 0.7 g / cm 3 .
  • the PPE powder is preferably compressed at a temperature below Tg so that the PPE does not reach a temperature above Tg.
  • the preferable temperature is 0 ° C. to less than Tg, more preferably about 0 to 200 ° C., as long as PPE does not become Tg or higher during compression and pressurization is possible.
  • Any compression method can be used. Although it is possible by a normal press, a simple method is a roll press method in which a PPE powder is passed between a pair of pressure rolls provided facing each other.
  • the pressure roll may be a roll having a smooth surface, or may be one embossed on the roll surface, or one having a hole, a depression, or the like.
  • the PPE powder is in the form of a plate or a sheet, and this may be pulverized to prepare a desired particle size.
  • the roller provided with the hole and the hollow if the magnitude
  • the gap between the rolls is preferably about 1 to 3 mm and the rotation speed of the roll is preferably about 2 to 20 rpm.
  • the support pressure of the pressure roll is preferably about 0.5 to 20 MPa, more preferably 2 to 15 MPa. It was confirmed that the hardness of the obtained granular material varies depending on the strength of compression.
  • the shape of the solidified product various shapes of solidified product are obtained depending on the surface shape / structure of the roller to be used, the presence / absence of pulverization, and the use of an apparatus other than the roller.
  • flat plate shape circular, square, etc.
  • columnar shape columnar shape
  • spherical shape cylindrical shape, flake shape, chip shape, irregular shape, etc.
  • granular shape chip shape, pellet shape, a mixture thereof, etc.
  • the form does not matter.
  • these things may be mixed and powder etc. may be contained.
  • the PPE granules obtained by compression and solidification at Tg or less are those having an average particle diameter of 0.1 to 10 mm and an apparent density of 0.35 to 0.7 g / cm 3. preferable. If the average particle size or apparent density of the solidified product obtained by the above compression is larger than the above range, it is pulverized to adjust the particle size or apparent density.
  • the shape of the granular material is spherical, flat (circular, square, etc.), columnar (cylinder, prism, etc.), cylindrical, chip, irregular, etc., cylindrical, granular, chip, pellet, The shape and form of these mixtures and the like are not limited.
  • the feeding part is poorly entrapped at the time of extrusion molding, and air entrainment is likely to occur, and if it exceeds 10 mm, the PS resin particles to be mixed Are too different from each other and are classified when supplied to the extruder, making uniform mixing difficult and inconvenience in handling.
  • a preferable average particle diameter of the PPE granular material is 0.1 to 10 mm.
  • the apparent density of the granular material is preferably 0.35 to 0.7 g / cm 3 .
  • the granular material contains a lot of air, that is, it is too soft, so when it is applied to an extruder, it is easily disintegrated and there is no difference from the case of using PPE powder. . If it exceeds 0.7 g / cm 3 , it will become too hard and the time to melt in the extruder will be too late than the time to melt the coexisting PS resin particles, so that only poor dispersion and PS resin will melt and the screw surface It is easy to cause slipping and poor extrusion.
  • a more preferable apparent density is 0.37 to 0.68 g / cm 3 , particularly preferably 0.39 to 0.66 g / cm 3 . Since the normal density of PPE is about 1.1 g / cm 3 , in the present invention, it means that it is bulky, that is, a certain amount of voids are formed in the particles.
  • the PPE granular material preferably has a compressive strength of 40 to 4 kg.
  • the compressive strength is less than 40 g, when the granular material is screw-fed from the feeder to the extruder, it is crushed and fine powder is generated, and a feed neck is likely to be generated.
  • the preferred compressive strength is 500 g to 3 kg, more preferably 1 kg to 3 kg.
  • PS resin particles (pellets) and PPE as powder compressed solidified granules that are relatively easily pulverized.
  • the PPE granular material has 1) the content of particles having a particle size of 1000 ⁇ m or more is 50% or more, 2) the content of particles having a particle size of 10 to 100 ⁇ m is 3 to 40%, 3) particles It is desirable that the content of particles having a diameter of 10 ⁇ m or less is within 2%.
  • the dispersibility of a powdery additive can be improved.
  • powder additives having an average particle diameter of about 10 to 100 ⁇ m are often used.
  • the particle diameters are reduced. Therefore, the particles are classified into particles (granular bodies) and powdered bodies at the hopper portion of the extruder, and uniform mixing is not performed, and a molded product having a uniform composition cannot be obtained.
  • the presence of 3 to 40% by mass of particles having a particle size of 10 to 100 ⁇ m as PPE granular material allows the powdered additive to be mixed well with PPE having this particle size, resulting in uniform dispersion throughout the composition. It becomes easy to do. Therefore, when adding a powdery additive to the present composition, it is preferable to use PPE having the particle size distribution as described above.
  • additives can be added to the PPE and the styrene resin as necessary.
  • other components include flame retardants, weather resistance improvers, foaming agents, lubricants, fluidity improvers, impact resistance improvers, dyes, pigments, fillers, reinforcing materials, and dispersants.
  • a phosphorus flame retardant preferably a phosphazene compound, a phosphate compound, or a condensed phosphate ester is blended.
  • the phosphazene compound include a cyclic phenoxy phosphazene compound, a chain phenoxy phosphazene compound, and a crosslinked phenoxy phosphazene compound.
  • phosphate flame retardant examples include triphenyl phosphate, tricresyl phosphate, diphenyl-2-ethyl cresyl phosphate, tri (isopropylphenyl) phosphate, diphenyl cresyl phosphate, tributyl phosphate and the like.
  • the condensed phosphate ester flame retardants include phenyl resorcin polyphosphate, cresyl resorcin polyphosphate, phenyl cresyl resorcin polyphosphate, xylyl resorcin polyphosphate, phenyl-p-tert-butylphenyl resorcin Preferred examples include polyphosphate, phenyl isopropylphenyl resorcinol polyphosphate, cresyl xylyl resorcinol polyphosphate, phenyl isopropylphenyl diisopropylphenyl resorcin polyphosphate, and the like.
  • Phenyl / bisphenol / polyphosphate cresyl / bisphenol / polyphosphate, phenyl / cresyl / bisphenol / polyphosphate, xylyl / bisphenol / polyphosphate, phenyl-p-tert-butylphenyl / bisphenol / polyphosphate, phenyl / isopropylphenyl
  • Preferred examples include bisphenol polyphosphate, cresyl xylyl bisphenol polyphosphate, phenyl isopropylphenyl diisopropylphenyl bisphenol polyphosphate, and the like.
  • the phosphorus-based flame retardant include, for example, “TPP” (triphenyl phosphate), “CR733S” (resorcinol bis (diphenyl phosphate)), “CR741” from Daihachi Chemical Industry Co. Ltd. ”(Bisphenol A bis (diphenyl phosphate)),“ PX200 ”(resorcinol bis (dixylenyl phosphate)),“ ADEKA STAB FP700 ”(ADK STAB FP700) (Bisphenol A bis (diphenyl phosphate)) from ADEKA Corporation (ADEKA Corporation)
  • TPP triphenyl phosphate
  • C733S resorcinol bis (diphenyl phosphate)
  • CR741 from Daihachi Chemical Industry Co. Ltd.
  • PX200 resorcinol bis (dixylenyl phosphate)
  • ADEKA STAB FP700 “ADK STAB FP700” (Bisphenol A
  • the filler and reinforcing material examples include organic or inorganic fillers, organic or inorganic reinforcing materials, and specifically, glass fiber, mica, talc, wollastonite, potassium titanate, calcium carbonate. And silica.
  • the blending of the filler and the reinforcing material is effective for improving rigidity, heat resistance, dimensional accuracy, and the like.
  • the blending ratio of the filler and the reinforcing material is preferably 1 to 80 parts by mass, more preferably 5 to 60 parts by mass with respect to 100 parts by mass of the total resin component.
  • PPE granular materials and PS resin particles having an average particle diameter of 1 to 5 mm and an apparent density of 0.5 to 0.7 g / cm 3 are mixed with a mixer such as a tumbler, and the mixture is mixed with, for example, a twin screw type Feeding is performed from a feeder (raw material supply unit) to a twin screw extruder, preferably a twin screw co-rotating extruder. It is preferable that an inert gas is supplied from the raw material supply port (the hopper of the extruder).
  • the inert gas is a gas inert to PPE such as nitrogen gas and argon gas, and nitrogen gas is usually used.
  • the additive may be added and mixed in a mixer for mixing PPE and PS, or may be added by installing a side feeder in the middle of the extruder barrel.
  • the extrusion screw in the cylinder of the twin screw extruder has a length of 10 to 80 in L / D, has at least one kneading zone, and the total L / D of the kneading zone is 3 to 18 Yes, the resin raw material is smoothly transported and then melt-kneaded, and finally extruded from the discharge nozzle in a strand shape.
  • the screw configuration of the kneading zone is preferably arranged such that the elements (A) to (D) and the like for promoting kneading are arranged upstream, and the elements (E) to (H) and the like having a boosting ability are arranged downstream. Is done.
  • the set temperature and time in the extruder can be arbitrarily selected according to the resin composition, the type of the extruder, etc., but the normal kneading temperature (set temperature) is 200 to 350 ° C., preferably 220 to 320 ° C., kneading time. Is preferably 3 minutes or less. When it exceeds 350 ° C. or 3 minutes, it is difficult to prevent thermal degradation of PPE or PS resin, and physical properties are deteriorated and appearance is liable to occur.
  • the extruder is provided with a decompression vent part.
  • Toluene and the like contained in the PPE granular material are constantly volatilized from the vent part toward the exhaust port to generate an accompanying airflow, Volatile components can be removed with good suction. Therefore, it is possible to suppress the condensation of volatile components in the vicinity of the vent opening, and it is possible to suppress the deterioration products from being mixed into the composition. Therefore, it is possible to produce pellets of resin compositions with excellent quality. It becomes possible.
  • the degree of vacuum in the vent portion of the extruder is preferably 20 ⁇ 10 3 Pa or less, and more preferably 7 ⁇ 10 3 Pa or less. If the degree of vacuum is within the range, it is preferable that volatile components such as toluene are sufficiently removed at the vent portion and do not adversely affect the resin.
  • the melt-kneaded composition is extruded into a string called strand from a discharge nozzle installed at the tip of the kneading extruder.
  • a discharge nozzle installed at the tip of the kneading extruder.
  • dye of a discharge nozzle A well-known thing is used.
  • the diameter of the discharge port of the discharge nozzle is usually about 2 to 10 mm, although it depends on the extrusion pressure and the desired pellet size.
  • FIG. 3 is a diagram schematically showing a process until the strand extruded from the discharge nozzle is processed into pellets.
  • FIG. 4 is a partial side view showing an embodiment of a guide roller used in the strand conveying step.
  • the polyphenylene ether resin composition containing 0.05 to 10 ppm as the copper element of the present invention there is much generation of eyes.
  • the cause of this is not clear, but is considered as follows.
  • the polyphenylene ether ultra-high molecular weight product produced during extrusion has a molecular weight of several hundred thousand or more (standard is 500,000 or more), and therefore has low compatibility with polystyrene molecules and other polyphenylene ether molecules. It is easy to assemble with high molecular weights. When the aggregate becomes too large, it becomes an aggregate.
  • This polyphenylene ether ultra-high molecular weight aggregate becomes a large lump in the compatibilized phase of polyphenylene ether and polystyrene and disturbs the flow under shear flow. It is considered that the turbulence in the flow promotes the generation of eye burrs at the nozzle tip. For this reason, in this invention, it is preferable to remove the spear adhering to the strand at the time of extruding polyphenylene ether. There are various means for this, but it can be simply achieved by using the following guide roller.
  • the strand S is taken up by the take-up rollers 4, 4 ′ and cut into pellets by the pelletizer 5, but is usually cooled in the transport path before being supplied to the pelletizer 5.
  • the cooling medium (usually water) W stored in the cooling tank 2 is conveyed and cooled.
  • the time from when the strand S is pushed out from the discharge nozzle 1 until it enters the cooling medium W is shorter.
  • a guide roller as indicated by 3, 3 ' is generally provided in the transport path of the strand S.
  • the diameter of the guide rollers 3 and 3 ' is usually about 3 to 7 cm.
  • the guide rollers 3 and 3 ′ have a cylindrical shape whose rotation axis is a direction that normally intersects the traveling direction of the strand S, and a plurality of the guide rollers 3 and 3 ′ are extruded in parallel so that the strand S is conveyed along a desired conveyance path.
  • the strand S is supported by a cylindrical surface (outer peripheral surface).
  • the guide rollers 3 and 3 ′ are provided with a plurality of annular (ring-shaped) grooves 32 in the circumferential direction on the roller surface on the circumference of the main shaft 31.
  • the groove 32 receives and supports the traveling strand S, and prevents the strands S in close proximity from coming into contact with each other and fused.
  • the width of the groove 32 is slightly larger than the thickness of the strand S, and the bottom of the groove 32 is preferably arcuate for stable support.
  • the depth of the groove 32 is normally 2 mm to 10 mm.
  • the diameter of the rollers 3, 3 ′ is usually about 3 to 7 cm.
  • the pitch of the grooves 32 (the interval between the adjacent grooves 32) is usually adjusted to the interval between the strands S (the interval between the discharge nozzles 1 of the die). Depending on the diameter of the strand S, the pitch is 5 mm to 20 mm.
  • the number of grooves 32 may be more than the number of strands to be extruded.
  • One or a plurality of guide rollers 3 and 3 ′ are provided at the strand travel position of the cooling tank 2.
  • a strand is stretched between the guide rollers 3 and 3 ′, travels through the cooling tank 2, and is cooled.
  • the guide rollers 3 and 3 ′ are supported so as to be rotatable in the direction b opposite to the traveling direction “a” of the strand S or in the same direction as the traveling direction “a”.
  • the surface of the strand S can be rubbed with the surface in contact with S, and the spear adhering to the surface of the strand S can be rubbed off.
  • at least one of the guide rollers may be rubbed on the surface of the strand S.
  • a drive device may be provided on the guide rollers 3 and 3 ′.
  • the rotation amount is determined within a range in which the running of the strand S is stable.
  • the driving device may not be provided.
  • a certain amount of resistance (at least resistance that does not rotate at the same peripheral speed as the strand S due to the frictional force of the traveling strand S) may be given to rotate the guide rollers 3 and 3 ′.
  • the guide rollers 3 and 3 ′ rotate following the travel of the strand S, but are rotated slower than the travel speed of the strand S (peripheral speed is slow) due to the given resistance, and the strand S on the surface of the groove 32. It becomes possible to rub the surface.
  • a drive device unlike the case of reverse rotation, a configuration that provides resistance to rotation is simpler.
  • the strand S contacts the surface of the guide rollers 3 and 3 ′ while traveling in the cooling medium W, and the difference between the traveling speed of the strand S and the rotation speed (circumferential speed) of the guide rollers 3 and 3 ′.
  • the surface of the strand S is rubbed with the surface of the groove 32, and the spear adhering to the surface of the strand S is removed.
  • it is a guide roller without a groove
  • the specific rotation speed Vr of the guide rollers 3 and 3 ′ (moving speed of the outer peripheral surface) is preferably in a relation of 0.7 ⁇ Vr / Vs ⁇ ⁇ 0.2 with respect to the strand speed Vs.
  • the upper limit is more preferably 0.5 ⁇ Vr / Vs, and the lower limit is more preferably Vr / Vs ⁇ 0.
  • Vs can be the take-up speed of the strand S, and Vr is (Guide roller 3, 3 'radius-groove depth) x 2 ⁇ x 1 minute.
  • Vr / Vs is positive, the guide rollers 3, 3 ′ rotate in the same direction as the strand travel direction a.
  • the guide rollers 3, 3 ′ are in the direction b opposite to the strand travel direction a. This is the case of rotation.
  • One or a plurality of guide rollers 3 and 3 ′ are provided in the cooling tank 2. In the case of a plurality of guide rollers 3 and 3 ′, it is not necessary to rotate all the guide rollers 3 and 3 ′ as described above.
  • the guide roller (3 in FIG. 3) that is inside and closest to the discharge nozzle 1 (die) is operated as described above for effective removal of eyes.
  • the strand S is sent to the pelletizer 5 from the take-up rollers 4, 4 ', and is cut into pellets. It is desirable that cutting is performed when the strand temperature is in the range of 80 to 160 ° C., particularly 90 to 140 ° C. This temperature may be measured with a non-contact type thermometer, but for convenience, it may be substituted by inserting a thermometer into a bag or pellet containing a pellet cut by a cutter.
  • the pellet obtained by the method of the present invention is a molding method generally used for polyphenylene ether resins, that is, injection molding, injection compression molding, hollow molding, extrusion molding, sheet molding, thermoforming, rotational molding, layer molding, It can be molded by various molding methods such as press molding, and is molded into an arbitrary shape and used as a molded product.
  • molded products include parts such as electrical and electronic equipment, OA equipment, information terminal equipment, machine parts, home appliances, vehicle parts, building members, various containers, leisure goods / miscellaneous goods, and lighting equipment. Among these, it is particularly suitable for use in parts such as electric and electronic equipment, OA equipment, information terminal equipment, home appliances, vehicle parts, lighting equipment, and the like.
  • each measurement / evaluation method is as follows. (1) Molecular weight It measured by the method as mentioned above.
  • Intrinsic viscosity of PPE Dissolve 0.5 g of polyphenylene ether as a solution in chloroform to a concentration of 100 ml or more (concentration of 0.5 g / dl or less), measure specific viscosities at different concentrations using an Ubbelohde viscometer at 30 ° C., The intrinsic viscosity was calculated by extrapolating the ratio of viscosity to concentration to 0.
  • Average particle size and particle size distribution (less than 1 mm) Wet method (isopropyl alcohol solvent) using “laser diffraction scattering type particle size distribution measuring device Laser Micro Sizer LMS-2000e” manufactured by Seishin Enterprise Co. Ltd., which is a particle size analyzer for laser diffraction / scattering method. Measured with The volume average particle size was defined as the average particle size ( ⁇ m).
  • PPE-A The evaluation results of PPE-A were as follows. Intrinsic viscosity: 0.48 dl / g Amount of terminal hydroxyl groups: 0.26 per 100 phenylene ether units Average particle size: 90 ⁇ m Copper element content: 0.1ppm Toluene concentration: 1,120ppm The toluene concentration was obtained by dissolving 2 g of a polyphenylene ether resin in 10 ml of chloroform and then precipitating with methanol, and the supernatant was analyzed by gas chromatography to obtain a toluene concentration (%).
  • PPE-B polyphenylene ether
  • PPE-C polyphenylene ether
  • PPE-D polyphenylene ether
  • PPE-E polyphenylene ether
  • Example 1 80 parts by weight of PPE-A, polystyrene pellets HT478 (hereinafter referred to as “PS-A”) manufactured by A & M Styrene Co., Ltd., average pellet weight 23 mg, average particle diameter 3.3 mm (volume average particle diameter), apparent 20 parts by mass of (density 0.62 g / cc) was mixed with a tumbler for 5 minutes. The mixture was transferred to Kubota's twin screw cassette weighing feeder CE-W-2, and from there, a twin-screw co-rotating extruder TEX30 ⁇ (length L / D 52.5) manufactured by Toshiba Machine Co., Ltd.
  • PS-A polystyrene pellets HT478
  • the mixture was fed at a rate of 20 kg / hr, and the mixture was melt-kneaded with an extruder.
  • the screw speed of the extruder was 300 rpm.
  • screw configuration B in which the kneading zone was RRRNNNL was used.
  • R is an R kneading disk (the above (A))
  • N is an N kneading disk (the (B))
  • L is an L kneading disk (the (E)).
  • the kneaded melt was extruded using a die having a hole diameter of 4 mm and 5 holes, made into a strand, cooled in a cooling water tank, and cut with a pelletizer to obtain polyphenylene ether-based resin composition pellets. Extrusion was performed for 1 hour, and the pellets for evaluation were sampled 30 minutes after the start of extrusion. In addition, when the weight of the surrounding area of the die nozzle (5 holes) generated during the 1 hour extrusion was collected and measured, it was 19 mg. The strand was taken up at a speed of 18 m / min, hung on two rolls A and B in the cooling water tank, and cooled in the water tank.
  • the rotational speed of the roll A in the circumferential direction was 5 m / min.
  • the ratio of the circumferential speed of the roll to the strand speed was 0.28.
  • the distance between roll A and roll B was adjusted, and the strand temperature entering the pelletizer was 112 ° C. for cutting. The cutting surface was clean and pellets with a good shape were obtained. In the obtained pellets of 20 kg, only one pellet with adherent was found.
  • This pellet was dried at 120 ° C. for 4 hours, and a molded product having a length of 100 mm ⁇ width of 100 mm ⁇ thickness of 2 mm was obtained using an injection molding machine SH100 manufactured by Sumitomo Heavy Industries, Ltd. under conditions of a cylinder temperature of 290 ° C. and a mold temperature of 100 ° C. Molding was performed, and the color tone yellow index (YI value) was measured. The YI value was 32.
  • the production amount of ultra high molecular weight substance (molecular weight of 50,000 or more) in the pellet was 0.02% by mass.
  • the number of cracks generated per test piece is 27, and ultra high molecular weight components having a molecular weight of 50,0000 or more form a highly entangled structure, improving chemical resistance. I think.
  • the evaluation results are shown in Table 1.
  • Example 1 pellets were produced in the same manner as in Example 1 except that the type of PPE and the type of PS resin were changed to those shown in Table 1.
  • PS-B used in Comparative Example 3 was obtained by freeze-pulverizing PS-A (average particle size of 80 ⁇ m). The evaluation results are shown in Table 1.
  • Example 5 Examples 5 to 15, Comparative Examples 4 to 6)
  • the screw configuration was changed to that shown in Table 2 below.
  • Table 2 screw configurations A to H satisfy the requirements of the present invention, and I, J and single screw extruders have screw configurations corresponding to comparative examples that do not satisfy the requirements.
  • Pellets were obtained in the same manner as in Example 1 except that the discharge amount was 30 kg / hr and the type of PPE was changed to that shown in Table 3.
  • Example 16 (Examples 16 to 20, Comparative Example 7)
  • PPE-C instead of PPE-A, PPE-C was used, and the amount of PPE-C and PS-A was changed to the amount described in Table 4 in the same manner as in Example 1. Got. The evaluation results are shown in Table 4.
  • Example 21 In Example 1, pellets were obtained in the same manner as in Example 1 except that PPE-C and PPE-G shown in Table 5 were used instead of PPE-A. The evaluation results are shown in Table 5. The influence of the amount of terminal OH groups of PPE was verified.
  • Example 23 In Example 1, the strand take-up speed (Vs), the rotational speed (Vr) in the circumferential direction of the roll A, the Vs / Vr ratio, and the strand cutting temperature (in Example 26, the cooling condition was changed by extending the cooling bath). was made in the same manner as in Example 1 except that the temperature was changed to the temperature shown in Table 6. The results are shown in Table 6.
  • indicates that the pellet state is good and the number of pellets with adherence of eyes is within 5/20 kg
  • indicates that the state of pellets is ⁇ , or the number of pellets with adherence of eyes is 5/20 kg or more. Indicates.
  • the pellet state ⁇ indicates that the cutting cut surface is not sharp but has some cracks.
  • Examples 27 to 32 ⁇ Examples of compression granulation> Using a C-102A compactor manufactured by Furukawa Otsuka Steel Co., PPE-D was compressed by adding a feeder rotation speed of 40 rpm, a roll gap of 2 mm, a roll rotation speed of 6 rpm, and a roll support pressure (1.5 to 18 MPa). A compressed product of was obtained. The obtained plate-like compressed product was crushed at 650 rpm with a granulator HB189 manufactured by Furukawa Otsuka Steel Co., Ltd. to obtain compressed granulated products “Com-D1 to D5”. The conditions and characteristics are as shown in Table 7. 80 parts by mass of this compressed granulated product and 20 parts by mass of PS-A (average pellet weight 23 mg, average particle size 3.3 mm (volume average particle size), apparent density 0.62 g / cc) for 5 minutes with a tumbler Mixed.
  • PS-A average pellet weight 23 mg, average particle size 3.3 mm (volume average particle size
  • the mixture was transferred to a twin screw cassette weighing feeder CE-W-2 manufactured by Kubota Corporation, and from there, a twin-screw co-rotating extruder TEX30 ⁇ (length L / D 52.5) manufactured by Toshiba Machine Co., Ltd.
  • the mixture was fed at a rate of 40 kg / hr, and the mixture was melt-kneaded with an extruder.
  • the screw speed of the extruder was 300 rpm.
  • screw configuration B in which the kneading zone was RRRNNNL was used as the screw configuration.
  • R is an R kneading disk (the above (A))
  • N is an N kneading disk (the (B))
  • L is an L kneading disk (the (E)).
  • the kneaded melt was extruded using a die having a hole diameter of 4 mm and 5 holes, made into a strand, cooled in a cooling water tank, and cut with a pelletizer to obtain polyphenylene ether-based resin composition pellets. Extrusion was performed for 1 hour, and the pellets for evaluation were sampled 30 minutes after the start of extrusion.
  • Example 30 and Example 32 since a feed neck occurred within 10 minutes from the start, extrusion was performed by reducing the discharge amount to 30 kg / hr.
  • the obtained pellets for evaluation were evaluated in the same manner as in the previous examples.
  • the degree of polystyrene classification was determined by comparing the glass transition temperature of the pellets using DSC (Differential Scanning Calorimeter: SSC / 5200 manufactured by SEIKO Electronics industrial Co).
  • the glass transition temperature of the initial flow pellet of Example 27 was 187.5 degrees.
  • the glass transition temperature of the wake pellet was 187.3 degrees.
  • the difference obtained by subtracting the glass transition temperature of the downstream flow from the glass transition temperature of the initial flow was 0.2 ° C.
  • the glass transition temperature of the polyphenylene ether / polystyrene resin composition is determined by their quantitative ratio. Polyphenylene ether has a glass transition temperature of 210 ° C. and polystyrene has a glass transition temperature of 100 ° C., which are almost weight average values.
  • This glass transition temperature difference was defined as the degree of classification of the polystyrene resin.
  • the difference of 0.2 ° C. indicates that the polyphenylene ether and polystyrene are hardly classified (mixed uniformly from the initial flow to the back flow).
  • the degree of polystyrene classification was similarly evaluated.
  • Table 7 the ⁇ and ⁇ of the classification evaluation were determined according to the following criteria. ⁇ : ⁇ T is within ⁇ 1 ° C ⁇ : ⁇ T is within ⁇ 3 ° C to ⁇ 1 ° C
  • Example 31 the screw was stopped once by the twin screw cassette weighing feeder CE-W-2. The cause was that coarse and hard particles were sandwiched between the screw and the wall in the polyphenylene ether compression granulated product and stopped.
  • a resin composition having improved color resistance, no occurrence of foreign matter due to burning, and improved solvent resistance from a polyphenylene ether resin and a polystyrene resin raw material can be manufactured with high production efficiency, and good quality molded products can be obtained from the obtained pellets, so a wide range of fields such as electrical and electronic equipment, OA equipment, information terminal equipment, home appliances, vehicle parts, and lighting equipment. Industrial applicability is very high.

Landscapes

  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

 ポリフェニレンエーテル(PPE)とポリスチレン(PS)から、色調に優れ、焼け発生がなく、耐溶剤性に優れた樹脂組成物を効率よく製造する方法を提供する。 PPEとPSを溶融混練した後、押出し成形してPPE系樹脂組成物を製造するにあたり、 重合触媒に由来する成分を、銅元素として、0.05~10ppm含有するPPEを用い、 平均粒径1~5mm、見かけ密度0.5~0.7g/cmのPS粒子を用い、 長さがL/Dで10~80、混練ゾーンを1箇所以上有し、混練ゾーンの合計のL/Dが3~18のスクリュー構成の二軸押出機に供給し、加熱、溶融、混練して、分子量50万以上のPPE系樹脂の超高分子量体を、樹脂組成物中に0.015~0.6質量%生成させたPPE系樹脂組成物を得ることを特徴とするPPE系樹脂組成物の製造方法による。

Description

ポリフェニレンエーテル系樹脂組成物の製造方法
 本発明は、ポリフェニレンエーテル系樹脂組成物の製造方法に関し、詳しくは、色調が良好で耐溶剤性に優れ、焼けの発生の少ないポリフェニレンエーテル系樹脂系組成物を高い生産効率で製造するポリフェニレンエーテル系樹脂組成物の製造方法に関する。
 ポリフェニレンエーテル系樹脂は、耐熱性、電気的特性、耐薬品性に優れたエンジニアリングプラスチックであるが、一方で、それ自身単独では流動性が悪く成形が困難であるという欠点を有している。また、ポリフェニレンエーテル系樹脂は、重合装置から取り出される製品が、通常パウダー状であり、これは押出し機等のスクリュー表面ですべり易く、計量性が不安定となり、成形加工性の点で不利である。このためポリフェニレンエーテルの成型加工性、流動性、耐衝撃性の改良を目的として、ポリスチレン系樹脂を配合した材料が開発され(特許文献1参照)、エンジニアリングプラスチックの一つとして多くの分野に使用されている。
 一方、一般的には、熱可塑性樹脂を成形加工する際の原料の形態としては、通常はペレットと呼ばれる小粒の樹脂塊として供される。ポリフェニレンエーテル系樹脂にポリスチレン樹脂を配合してペレットにするには、ポリフェニレンエーテル系樹脂(通常は粉末状)と、ポリスチレン系樹脂を、押出機に供給し、ストランド状の溶融樹脂として押出し、水槽等で冷却後、ペレタイザーによりカッティングして、ペレットとされる。
 しかし、ポリフェニレンエーテル系樹脂粉末にポリスチレン系樹脂を配合して押出機に供給し押出し成形する際には、粉末状の樹脂に同伴して空気が入り込みやすく、このような空気含有粉末は押出し機のスクリュー送り面で滑り易いためスクリューでの送りが不安定になったり、押出し機中での滞留時間が長くなり、ポリフェニレンエーテル系樹脂を酸化劣化させやすい。
 酸化劣化を防止するには、通常、酸化防止剤を原料に添加する方法(特許文献2参照)があるが、これだけでは効果は十分ではなく、また、窒素ガス等の不活性ガスを押出機に供給する方法(特許文献3参照)も行われているが、単に不活性ガスを供給するだけでは効果は不十分である。
 特に、ポリフェニレンエーテル系樹脂は、ガラス転移温度が高い(Tg:210℃程度)ので、成形温度を高くせざるを得ず、熱変性による変色を起こしやすく、ポリスチレン系樹脂を配合した場合においても、この変色問題は大きな問題である。また、ポリスチレン系樹脂は、融点が低いので、押出機内の固体輸送部でポリフェニレンエーテル系樹脂よりも早く溶融し、これにポリフェニレンエーテル系樹脂粉末が付着し、焼けて異物になりやすく、この点も大きな問題点である。
 さらに、ポリフェニレンエーテル系樹脂、あるいはポリフェニレンエーテル系樹脂とポリスチレン系樹脂との樹脂組成物は、耐溶剤性が劣るという欠点を有しており、応力下にアルコール、ヘキサン等の有機溶剤等と接触すると、ひび割れを起こしやすい(耐ストレスクラック性が良くない)ため、その用途が制限されている。
 また、さらに、ポリフェニレンエーテル系樹脂は、通常、重合装置から取り出されたままのパウダー品を使用するので、粉状で見かけ密度が低く、押出機に供給した際には、空気が入り込み、押出し機のフィーダー部(供給部)での食い込みが悪くなってフィードネックが発生しやすく、また、押出機内のニーディングディスク部等の混練部において、樹脂が溶融される際に、空気が逆流し、樹脂の搬送が妨害されて押出し量を低下させ、生産性が一気に低下してしまうという問題がある。
 こうした状況下、ポリフェニレンエーテル系樹脂とポリスチレン系樹脂から、色調低下を引き起こすことなく、焼けによる異物発生がなく、耐溶剤性が改良された樹脂組成物を、効率よく製造する方法の開発が強く望まれていた。
米国特許第3383435号公報 日本特許公開2003-246865号公報 日本特許公開H06(1995)-206216号公報
 本発明の目的は、上記従来技術の問題点に鑑み、ポリフェニレンエーテル系樹脂とポリスチレン系樹脂から、色調低下を引き起こすことなく、焼けによる異物発生がなく、耐溶剤性が改良された樹脂組成物を効率よく製造することが可能なポリフェニレンエーテル系樹脂組成物の製造方法を提供することにある。
 本発明者らは、上記課題を達成すべく、鋭意検討を重ねた結果、ポリフェニレンエーテル系樹脂として、重合触媒に由来する銅元素を0.05~10ppm含有するポリフェニレンエーテル系樹脂を用い、ポリスチレン系樹脂として特定の平均粒径と見かけ密度を有する樹脂粒子を使用し、これらを特定のスクリュー構成を有する二軸押出機に供給して、加熱、溶融、混練することにより、ポリフェニレンエーテル系樹脂の超高分子量体を生成させた樹脂組成物を得ることにより、上記問題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明の第1の発明によれば、ポリフェニレンエーテル系樹脂とポリスチレン系樹脂を溶融状態で混練した後、押出し成形してポリフェニレンエーテル系樹脂組成物を製造するにあたり、
 ポリフェニレンエーテル系樹脂として、重合触媒に由来する銅成分を、銅元素にして、0.05~10ppm含有するポリフェニレンエーテル系樹脂を用い、
 ポリスチレン系樹脂として、平均粒径1~5mm、見かけ密度0.5~0.7g/cmの粒子を用い、
 上記両樹脂を、長さがL/Dで10~80であり、混練ゾーンを少なくとも1箇所以上有し、混練ゾーンの合計のL/Dが3~18のスクリュー構成である二軸押出機に供給して、加熱、溶融、混練することにより、分子量50万以上のポリフェニレンエーテル系樹脂の超高分子量体を、樹脂組成物中に0.015~0.6質量%の量で生成させたポリフェニレンエーテル系樹脂組成物を得ることを特徴とするポリフェニレンエーテル系樹脂組成物の製造方法が提供される。
 また、本発明の第2の発明によれば、第1の発明において、ポリスチレン系樹脂を、ポリフェニレンエーテル系樹脂100質量部に対して、5~150質量部配合することを特徴とするポリフェニレンエーテル系樹脂組成物の製造方法が提供される。
 また、本発明の第3の発明によれば、第1または第2の発明において、ポリフェニレンエーテル系樹脂が、フェニレンエーテルユニット100個に対する末端水酸基数が0.15~1.5個のものであることを特徴とするポリフェニレンエーテル系樹脂組成物の製造方法が提供される。
 また、本発明の第4の発明によれば、第1~3のいずれかの発明において、前記押出機の混練ゾーンのスクリュー構成は、混練を促進するエレメントを上流側に、昇圧能力のあるエレメントを下流側に配置されることを特徴とするポリフェニレンエーテル系樹脂組成物の製造方法が提供される。
 また、本発明の第5の発明によれば、第1~4のいずれかの発明において、ポリフェニレンエーテル系樹脂組成物を押出し機からストランド状に押し出し、冷却媒体中を走行させて冷却し、ストランドカッターにより切断してペレットを得るにあたり、
 溝が形成されたガイドローラーを冷却媒体中に設置し、
 該ストランドを、ガイドローラーの前記溝内に接するようにして引き取るとともに、
 引き取り速度をVs(cm/秒)、ストランドが接するガイドローラー外周面の移動速度をVr(cm/秒)とした場合に、
 0.7≧Vr/Vs≧-0.2の関係を満たすように、前記引き取り速度及び前記移動速度並びにガイドローラーの回転方向を決定することを特徴とするポリフェニレンエーテル系樹脂組成物の製造方法が提供される。
 また、本発明の第6の発明によれば、第5の発明において、冷却によりストランドの温度を80℃~160℃に調整し、この温度範囲でカッティングすることを特徴とするポリフェニレンエーテル系樹脂組成物の製造方法が提供される。
 さらに、本発明の第7の発明によれば、第1~6のいずれかの発明の製造方法で得られたポリフェニレンエーテル系樹脂組成物を成形してなる成形品が提供される。
 本発明のポリフェニレンエーテル系樹脂組成物の製造方法によれば、ポリフェニレンエーテル系樹脂とポリスチレン系樹脂から、色調低下を引き起こすことなく、焼けによる異物発生もなく、耐溶剤性が改良された樹脂組成物を効率よく製造することが可能である。
本発明で使用する押出機に好ましく使用されるニーディングディスク構成の一例を示す図である。 本発明で使用する押出機に好ましく使用されるニーディングディスクの説明図である。 本発明で使用するストランド押出し工程からストランドカッターに至る工程の全体説明図である。 ストランド搬送工程で使用するガイドローラーの一実施態様を示す部分側面図である。
 以下、本発明について実施形態及び例示物等を示して詳細に説明するが、本発明は以下に示す実施形態及び例示物等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。
 本発明のポリフェニレンエーテル系樹脂組成物の製造方法は、ポリフェニレンエーテル系樹脂とポリスチレン系樹脂を溶融状態で混練した後、押出し成形してポリフェニレンエーテル系樹脂組成物を製造するにあたり、
 ポリフェニレンエーテル系樹脂として、重合触媒に由来する銅元素を0.05~10ppm含有するポリフェニレンエーテル系樹脂を用い、
 ポリスチレン系樹脂として、平均粒径1~5mm、見かけ密度0.5~0.7g/cmの粒子を用い、
 上記両樹脂を、長さがL/Dで10~80であり、混練ゾーンを少なくとも1箇所以上有し、混練ゾーンの合計のL/Dが3~18のスクリュー構成である二軸押出機に供給して、加熱、溶融、混練することにより、分子量50万以上のポリフェニレンエーテル系樹脂の超高分子量体を、樹脂組成物中に0.015~0.6質量%の量で生成させたポリフェニレンエーテル系樹脂組成物を得ることを特徴とする。
 以下、本発明を具体的に説明する。
(1)ポリフェニレンエーテル系樹脂
 本発明で使用するポリフェニレンエーテル系樹脂(以下、「PPE」と略記することもある。)は、下記一般式(1)で表される構造単位を主鎖に有する重合体であって、単独重合体又は共重合体の何れであってもよい。
Figure JPOXMLDOC01-appb-C000001
(式中、Rは、同一でも異なっていてもよく、水素原子、ハロゲン原子、第1級もしくは第2級アルキル基、アリール基、アミノアルキル基、ハロアルキル基、アルコキシ基、又はハロアルコキシ基を表わす。Rは、同一でも異なっていてもよく、水素原子、ハロゲン原子、第1級もしくは第2級アルキル基、アリール基、ハロアルキル基、アルコキシ基、又はハロアルコキシ基を表す。ただし、2つのRが共に水素原子であることはない。)
 一般式(1)において、Rがハロゲン原子の場合、塩素原子または臭素原子が好ましい。前記一般式(1)において、Rが第一級アルキル基である場合の好適な例は、メチル基、エチル基、n-プロピル基、n-ブチル基、n-アミル基、イソアミル基、2-メチルブチル基、n-ヘキシル基、2,3-ジメチルブチル基、2-、3-若しくは4-メチルペンチル基、またはヘプチル基などの、炭素数1~10のアルキル基である。Rが第二級アルキル基である場合の好適な例は、イソプロピル基、sec-ブチル基または1-エチルプロピル基などの、炭素数4~10のアルキル基である。Rがアリール基である場合の好適な例は、フェニル基であり、アミノアルキル基である場合の好適な例は、ジメチルアミノ基、ジエチルアミノ基、ジブチルアミノ基などの、炭素数1~5のアルキル鎖を有するアルキルアミノ基である。Rがハロアルキル基である場合の好適な例としては、アルキル基の好適な例として上述した各基の、1以上の水素原子がハロゲン原子に置換されてなる基が挙げられる。アルコキシ基である場合の好適な例としては、アルキル基の好適な例として上述した各基に対応するアルコキシ基が挙げられ、ハロアルコキシ基の例としては、該アルコキシ基における1以上の水素原子がハロゲン原子で置換されてなる基が挙げられる。Rとしては、水素原子、第一級若しくは第二級アルキル基、アリール基が好ましい。
 一般式(1)において、Rが第一級および第二級アルキル基、アリール基、ハロアルキル基、アルコキシ基、ハロアルコキシ基である場合の好適な例としては、Rにおけるのと同様の基が挙げられる。
 本発明において、RおよびRとしては、水素原子、第一級若しくは二級アルキル基、アリール基が好ましく、Rはアルキル基またはフェニル基がより好ましく、炭素数1~4のアルキル基が特に好ましく、Rは水素原子がより好ましい。
 尚、本発明における、PPEは、本発明の性能を損なわない範囲で、分子量を調節したり、溶融粘度や耐衝撃強度等の各種特性を改良するために、一般式(1)で表される構造以外の繰り返し単位を含んでもよい。
 好適なPPEとしては、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、ポリ(2,6-ジエチル-1,4-フェニレンエーテル)、ポリ(2,6-ジプロピル-1,4-フェニレンエーテル)、ポリ(2-エチル-6-メチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-プロピル-1,4-フェニレンエーテル)等の2,6-ジアルキルフェニレンエーテルの単独重合体が挙げられる。
 また、2,6-ジメチルフェノール/2,3,6-トリメチルフェノール共重合体、2,6-ジメチルフェノール/2,3,6-トリエチルフェノール共重合体、2,6-ジエチルフェノール/2,3,6-トリメチルフェノール共重合体、2,6-ジプロピルフェノール/2,3,6-トリメチルフェノール共重合体等の2,6-ジアルキルフェノール/2,3,6-トリアルキルフェノール共重合体も好ましい。さらには、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)にスチレンをグラフト重合させたグラフト共重合体、2,6-ジメチルフェノール/2,3,6-トリメチルフェノール共重合体にスチレンをグラフト重合させたグラフト共重合体等も好ましい。
 これらのPPEの中でも特に好ましいのは、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)及び2,6-ジメチルフェノール/2,3,6-トリメチルフェノールランダム共重合体である。
 PPEの分子量は、クロロホルム中、30℃で測定した極限粘度が0.2~0.8dl/gのものが好ましく、0.3~0.6dl/gのものがより好ましい。極限粘度が0.2dl/g未満のものを用いたのでは、得られる樹脂組成物を用いて成形品を製造した場合の機械的強度が低下する傾向にある。逆に0.8dl/gより大きいものを用いると、樹脂組成物の流動性が悪化し、成形加工が困難になる傾向にある。PPEは2種以上を併用してもよく、その際には極限粘度の異なるものを混合して所望の極限粘度となるようにしてもよい。
 本発明で使用されるPPEは、末端水酸基の数が、フェニレンエーテルユニット100個に対し0.15~1.5個の範囲であるポリフェニレンエーテルが好ましい。末端水酸基量がフェニレンエーテルユニット100個に対して、0.15個未満であると、スチレン系樹脂との相溶性が低下し、得られた樹脂組成物を成形品とした場合に外観不良が発生することがあり、高温雰囲気下で色調が悪化する場合もある。また1.5個を超えると熱安定性が低下しやすい。より好ましい末端水酸基の数は、フェニレンエーテルユニット100個に対し、0.2~1.3個である。この末端水酸基の存在は、後述する超高分子量体の生成を助けているものとも考えられる。
 末端水酸基を有するユニットとしては、具体的には、3,5-ジメチル-4-ヒドロキシフェニル基、3,5-ジエチル-4-ヒドロキシフェニル基、3,5-ジプロピル-4-ヒドロキシフェニル基、3-メチル-5-エチル-4-ヒドロキシフェニル基、3-メチル-5-プロピル-4-ヒドロキシフェニル基、2,3,5-トリメチル-4-ヒドロキシフェニル基等が挙げられる。末端水酸基の数が0.15個未満のポリフェニレンエーテルでは、スチレン系樹脂との相溶性が低下するので、成形品の外観不良や層状剥離が発生することがあり、さらには破断伸びや面衝撃強度が低下しやすい。また、高温雰囲気での熱安定性も低下するので、色調が悪化しやすい。
 末端水酸基の数が0.15個以上であるPPEを得る方法は、特公昭61-20576号公報にも記載されおり、例えば、2,6-ジメチルキシレノールを、第一銅塩とアミンの化合物を触媒として、トルエン等の溶媒中で酸素存在下に酸化重合反応させ、得られたポリフェニレンエーテル溶液に、銅とキレート化合物を形成する化合物を添加する等の方法で、触媒を失活させた後、酸素の混入を避けた雰囲気下で該ポリフェニレンエーテル溶液を攪拌する等により得ることができる。
 また、末端水酸基の量の調製法は公知であり、フェノール性化合物を重合する条件と重合停止後のキノン反応の条件によって変化することが知られており、一般に重合して得られたポリフェニレンエーテルにキノン化合物を添加してキノン反応させて水酸基濃度を高くすることができる。
 本発明において、PPE中に重合触媒に由来する成分を、銅元素として0.05~10ppm存在させる。この重合触媒に由来する成分は、PPEの重合を行った触媒をある程度残存させることによって存在させることが可能であるが、重合触媒成分をPPEに後添加するようにしてもよい。
 PPEの酸化重合用の触媒としては、銅、マンガン、コバルト等の金属化合物系のものが知られているが、酸素ガス、あるいは空気を用いて酸化重合をする場合の触媒として、工業的に用いられているものは、CuCl、CuBr、CuSO、CuCl、CuBr、CuSO、CuI等の銅塩等の一種または二種以上が用いられる。また、上記触媒に加えて、モノ及びジメチルアミン、モノ及びジエチルアミン、モノ及びジプロピルアミン、モノ-及びジ-n-ブチルアミン、モノ-及びジ-sec-ジプロピルアミン、モノ及びジベンジルアミン、モノ及びジシクロヘキシルアミン、モノ及びジエタノールアミン、エチルメチルアミン、メチルプロピルアミン、ブチルジメチルアミン、アリルエチルアミン、メチルシクロヘキシルアミン、モルホリン、メチル-n-ブチルアミン、エチルイソプロピルアミン、ベンジルメチルアミン、オクチルベンジルアミン、オクチルクロロベンジルアミン、メチル(フェニルエチル)アミン、ベンジルエチルアミン、N-n-ブチルジメチルアミン、N,N´-ジ-tert-ブチルエチレンジアミン、ジ(クロロフェニルエチル)アミン、1-メチルアミノ-4-ペンテン、ピリジン、メチルピリジン、4-ジメチルアミノピリジン、ピペリジン等を一種または二種以上のアミンが、通常、併用される。
 本方法においては、上記重合触媒に由来する成分を存在させ、PPEとポリスチレン系樹脂を、後で詳記するように、押出機内で溶融状態で混練することにより、PPEの高分子量体の生成(超高分子量化)を図るものである。
 超高分子量体とは通常、分子量が数十万程度から数百万程度の重合体を意味するが、本発明においては、確認測定の都合、また慣習上、分子量が50万以上の重合体の存在量をもって定義することとしている。
 従って、以降、超高分子量体は、分子量にして50万以上のものをいい、分子量50万以上のポリフェニレンエーテル系樹脂が、樹脂組成物中に0.015~0.6質量%の量で存在することが本発明の効果を奏する上で好ましい。
 従来技術的には、このような超高分子量の重合体はPPEに外部添加することが行われている。例えば、日本特許公開2009-255585等に開示されているが、押出成形加工時の生産性向上、成形品表面の平滑性がよく外観が良いことから、PPEに超高分子量のポリエチレン、超高分子量のポリ4フッ化エチレン等が添加混合して用いられている。
 しかしながら、このような超高分子量のポリエチレン等は外部添加すると塊状となりやすく、所謂フィッシュアイと呼ばれる欠陥や、ブツ等と呼ばれる表面欠陥となりやすいことも事実で、その効果が良し悪しであった。
 本発明は、このようなPPEへの超高分子量体の添加を外部添加ではなく、PPEとポリスチレン系樹脂の混練時にPPEの超高分子量化を行うことにより、ブツやフィッシュアイになり難い、良好に分散(広がった状体)した超高分子量体(樹脂)を生成させることが出来ることを見出した。
 PPE中に重合触媒由来の成分を存在させる理由は、超高分子量物の生成を助けるためである。PPE中の重合触媒由来成分の存在量は、触媒の種類にもよるが、銅元素(金属成分)として0.05~10ppmである。
 重合触媒は前述もしたが、PPEの重合触媒の一部を活性なまま残存させても良いし、後で添加しても良い。
 重合触媒は前述したように、塩化銅が一般的であり、従って銅元素の量は、重合触媒の存在量、あるいは重合触媒に由来する成分の量としての意味を有する。重合触媒の存在量として捉える場合、銅元素の量は触媒成分中の銅部分のみの量を示している。
 銅元素の量は、超高分子量体を生成させる量にもよるが、通常は銅元素として0.05~1ppm程度残留させる(あるいは添加する)ことで十分である。しかし、場合によっては銅元素として1から10ppmという比較的多量を残留させる(添加する)ことで、超高分子量体の生成が安定し、使用上好適な場合がある。樹脂の用途、目的製品等によって適宜選択すればよい。
 銅元素の量の調製は、PPEの重合時の触媒を残存させるには触媒除去の程度を調整したり、触媒を失活させる失活剤の量を調節する等の方法を適用することにより行いうるが、触媒の過剰な残存は変色等の原因となるので、十分な注意が必要である。
 簡便には、触媒を除去したPPEに所定量の銅化合物(重合触媒)を添加してやれば良い。
 重合触媒を銅元素として0.05~10ppm存在させ、PPEとポリスチレン系樹脂を押出機中で溶融状態で混練することにより、分子量50万以上の超高分子量体が存在するようになる。
 超高分子量体の存在量(50万以上のもの)は、重合触媒の量、混練条件等によりある程度変わるが、通常PPEとポリスチレン系樹脂の合計量に対し、0.015~0.6質量%である。
 また、銅元素の好ましい範囲は0.1~9ppm、より好ましくは0.2~8ppmである。
 また、本発明には、PPEの末端水酸基の数が、フェニレンエーテルユニット100個に対し0.15~1.5個の範囲であるポリフェニレンエーテルを用いることが好ましいことを前記したが、この末端水酸基の量は良好な超高分子量体の生成にも関与していると考えられる。末端水酸基量がフェニレンエーテルユニット100個に対して、0.15個未満であると、ポリフェニレンエーテルとのポリスチレン樹脂組成物の表面概観が悪くなり、1.5個を超えると熱安定性が低下してしまう。
(2)ポリスチレン系樹脂
 PPEと併用するポリスチレン系樹脂(以下、PS樹脂と略記する場合がある。)としては、スチレン系単量体の重合体、スチレン系単量体と他の共重合可能な単量体との共重合体、スチレン系グラフト共重合体等が挙げられる。
 本発明で使用するPS樹脂とは、芳香族ビニル化合物から誘導される繰り返し単位を50質量%以上含む重合体または共重合体、またはこれらの重合体がゴム変性されたものを意味する。
 芳香族ビニル化合物としては、スチレン、α-メチルスチレンなどのα-アルキル置換スチレン、p-メチルスチレン、o-エチルスチレン、ビニルトルエン、o-またはp-ジクロロスチレンなどの核アルキル置換スチレンなどが挙げられる。
 芳香族ビニル化合物以外のモノマーとしては、アクリロニトリル、メタクリロニトリル、エタクリロニトリル等のシアン化ビニル化合物、アクリル酸およびメタクリル酸のメチル、エチル、プロピル、n-ブチル、n-ヘキシル等の(メタ)アクリル酸エステル化合物、マレイミド、N-メチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド等のマレイミド化合物、アクリルアミド、N-メチルアクリルアミド等のアクリルアミド化合物、無水マレイン酸、無水イタコン酸等の不飽和酸無水物、アクリル酸、メタクリル酸等の不飽和酸、アクリル酸グリシジル、メタクリル酸グリシジル、アクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシエチルおよびメトキシポリエチレングリコールメタクリレート等の各種のビニル化合物が挙げられる。
 PS樹脂の具体例としては、ポリスチレン、アクリロニトリル-スチレン樹脂(AS樹脂)、メチルメタクリレート-スチレン樹脂(MS樹脂)などが挙げられる。これらスチレン系樹脂の重量平均分子量は、通常、50,000以上であり、好ましくは100,000以上であり、より好ましくは150,000以上であり、また、上限は、通常、500,000以下であり、好ましくは400,000以下であり、より好ましくは300,000以下である。
 本発明で使用するスチレン系樹脂は、上述した各種重合体を、さらにゴムで変性したものであってもよく、ゴムとしては、ポリブタジエン、スチレン-ブタジエン共重合体、ポリイソプレン、エチレン-プロピレン共重合体などが挙げられる。具体的には、ゴム変性ポリスチレン(HIPS樹脂)、アクリロニトリル-ブタジエン-スチレン樹脂(ABS樹脂)、メチルメタクリレート-ブタジエン-スチレン樹脂(MBS樹脂)、前記ABS樹脂のブタジエンを、エチレン-プロピレン共重合体で置換した樹脂(AES樹脂)などが挙げられる。
 スチレン系樹脂としては、ポリスチレン、ゴム変性ポリスチレン(HIPS樹脂)が、PPEとの相溶性の点で好ましい。特に、耐衝撃性が必要な場合は、ゴム変性ポリスチレンがより好ましい。
粉末状PPEとペレット(粒状)PSとを用いて本発明を実施する場合について説明する。
 PS樹脂としては、平均粒径1~5mm、見かけ密度0.5~0.7g/cmの粒子を使用することが好ましい。このようなPS樹脂粒子を粉末状PPEに配合し、溶融混練することにより、焼け異物の発生を抑制することが可能となる。この原因は定かではないが、次の様に考えることができる。即ち、PS樹脂のガラス転移温度は100℃であり、PPEのガラス転移温度210℃に比べはるかに低い。よってPS樹脂は押出機の固体搬送領域で粉末状PPEより早く溶融を開始しやすい(PS樹脂として粉状のPSを用いた場合は特に早く溶融してしまう)。この溶融したPS樹脂がバインダーとなり、固体輸送部の押出機シリンダー壁やスクリューの表面にPPEが付着する。PPEは熱により高分子鎖の転移反応が起こり架橋反応し易い。それにより、焼け異物が発生し、製品中に混入する。しかしながら、PS樹脂の平均粒径が1mm以上であると、PS粒子の固体搬送領域での溶融が遅くなる、そしてシリンダー壁やスクリュー表面への付着も起こり難くなる。そのために焼け異物が発生し難い。
 また平均粒径が5mm以上と大きくなると、押出機へのフィードが困難となる。押出機の手前には通常スクリュー形式のフィーダー(定量供給装置)が設けられているが、大きなペレットを用いるとこのフィーダーのスクリューと壁との間にPS粒子が挟まり、またスクリュー同士の間に挟まり、フィーダーのスクリューを停止させてしまう。
 またPS粒子の粒径が5mm以上だと、PPE樹脂と分級しやすくなる。PS樹脂の見かけ密度が0.5g/cmより小さい場合も0.7g/cmより大きい場合もPPE樹脂と分級が起こりやすくなる。
 PS樹脂粒子はPPEと良好に相溶化し、PPEの流動性を増し、PPE中に発生する超高分子量物がダマ(凝集した異物)になるのを防止し、PPE中に生成した超高分子量物が伸びて広がった形態でPPE中に分散した状態とするという重要な役をなすと考えられる。
 本発明のおいては、上記PPE及びPS樹脂は、二軸押出機に供給され、加熱、溶融、混練される。
 本発明で使用する二軸押出機は、少なくとも1箇所以上の、分散混合性が強い混練ゾーンを有するものであり、原料供給口とベント口、及びジャケットを備えたバレル、その内部に配され、表面に複数条の溝が刻設され、同方向に回転する二本のスクリュー、並びに押出機先端に取り付けられたダイから、通常、構成され、好ましくは、そのスクリュー途中には、複数枚のニーディングディスクによって構成される混練部が、相互に噛み合う形態又は相互に噛み合わない形態で設けられており、さらに、混練後の材料を搬送する搬送ゾーンを有する。
 なお、本発明における平均粒径は、以下の様に行った。即ち、粒子をオープニングが1mmの篩に掛け、1mm未満の粒子はレーザー回折式粒度分布測定装置で測定される体積平均で規定した。本発明では、セイシン企業(Seishin Enterprise Co.Ltd.)製「レーザー回折散乱式粒度分布測定装置Laser Micron Sizer LMS-2000e」を用いて、湿式法(溶媒:イソプロピルアルコール)にて測定を行った。1mm以上の粒子はノギスで測定し、体積平均粒子径を求めた。そして、1mm未満の粒子径と1mm以上の粒子径から粒子全体の平均粒径を求めた。
 また、見かけ密度は、JIS K5101(静置法、但しフィルターは用いない)に規定された嵩密度測定から、質量(g)を見かけの体積(cm)で除する(g/cm単位)ことにより求められる。
 PPEとPS樹脂粒子の配合割合は、PPE100質量部に対し、好ましくはPS樹脂粒子5~150質量部である。PS樹脂はPPEに良く相溶化するが、PS樹脂が多すぎると(すなわちPPE成分が少ないと)、成形品の耐熱性や機械的強度が不足し、逆に、多すぎると流動性が低下し、薄肉成形品の成形が困難になる。PS樹脂の配合量が5質量部未満では、樹脂組成物の色調が悪化し、150質量部を越えると耐熱性や耐衝撃性が低下する。より好ましい配合量は10~120質量部、特には15~90質量部である。
(3)溶融混練
 本発明のおいては、上記PPE及びPS樹脂は、二軸押出機に供給され、加熱、溶融、混練される。
 二軸押出機の中でも同方向回転型の二軸押出機が、両樹脂を良好な混練するのに十分な剪断応力を与えることができ、一方、単軸押出機では、混練するのに十分な剪断応力を与えることができない。
 樹脂を良好に混合・相溶化させるには単軸押出機では不十分で、せん断応力の大きい二軸押出機を用いることが好ましい。二軸押出機の種類として主に同方向回転型、異方向回転型があるが、最もせん断応力の大きい同方向回転型二軸を用いるのが好ましい。更に、均質な混練、良好な超高分子量体の生成、均一分散のためにはニ-ディングディスクの設けられた混連ゾ-ンを設けることが好ましい。
 本発明で使用する二軸押出機は、少なくとも1箇所以上の、分散混合性が強い混練ゾーンを有するものであり、原料供給口とベント口、及びジャケットを備えたバレル、その内部に配され、表面に複数条の溝が刻設され、同方向に回転する二本のスクリュー、並びに押出機先端に取り付けられたダイから、通常、構成され、好ましくは、そのスクリュー途中には、複数枚のニーディングディスクによって構成される混練部が、相互に噛み合う形態又は相互に噛み合わない形態で設けられており、さらに、混練後の材料を搬送する搬送ゾーンを有する。
 本発明で使用する二軸押出機のスクリュー全体(全長)のL/Dは10~80であり、混練ゾーンの合計のL/Dが3~18である。スクリュー全体のL/Dは、10を下回ると、脱気がしにくくなり、またL/Dが80を超えると、樹脂の滞留時間が長くなって樹脂の劣化を生じやすくなる。
 本発明のL/Dとは単位が無次元の長さの意味である。Lとは長さであり、スクリューの長さ、押出機の長さ、混練ゾーンの長さを意味し、Dは、シリンダー直径である。
 本発明に用いる最適な二軸同方向回転押出機は混練ゾーンを有するもので、この混練ゾーンで、PPEとPS樹脂を強いせん断力を加えて混練することにより超高分子量体が良好に生成する。超高分子量体は生成後ダマ(塊状物)になりやすいが、強いせん断力下に生成させることによりダマにならず、広がった状態の超高分子量体物になるものと思われる。
 良好な超高分子量体の生成、及び分散状態を得るための混練ゾーンの長さがL/Dで3~18である。
 本来、超高分子量体の生成は樹脂に加えられたせん断力やせん断力が加えられていた時間によって変化することが考えられるが、せん断力の数値を正確に得ることは難しく、本発明においては強いせん断力を加えることが可能な、二軸押出機を用いることと、混練ゾーンのL/D等で定義することとする。
 また、混練ゾーンは複数個あっても構わないが、混練ゾーンの合計のL/Dは、3を下回ると、混練が不足し、PPE樹脂とPS樹脂が充分相溶化しなかったり、超高分子成分の生成が不足する。また18を超えると、発熱が顕著になり、色調が悪化したり、ブツが発生しやすくなる。
 超高分子量体を好ましい量生成し、かつ超高分子量体が「ブツ」になることを抑制するには熱と強い剪断力が必要である。PPE樹脂は高温で主鎖の転移反応が起こりやすく、それにより架橋が進行しやすい。また触媒が残存していることも架橋(または重合)を促進すると考えられる。
 このPPE架橋体は凝集しブツの原因にもなりうる。これを抑制するには強い剪断力が必要である。すなわち架橋体が凝集する前に攪拌し、凝集を抑制すること、また、凝集してしまった(しそうになった)場合には凝集物を壊す働きのあることが望ましい。
 このような強い剪断力を得るためには同方向回転型の二軸押出機が好適である。
 更に、この強い剪断力で、両樹脂を良好に混練するには、後述するスクリュー構成(混練ゾーン)も重要なポイントとなる。
 混練ゾーンは、両樹脂を均一に混練させるために、スクリュー及びバレルによって、原料に剪断、分配、拡散、伸長流動作用等を与える部分である。混練ゾーン対応するスクリュー部位の長さは、スクリュー全長に対して、L/Dで3~18の範囲内である。この範囲内であれば、二つ以上に分割しても良い。
 二軸押出機用スクリューは、押出機の各部に対応する部位から構成されることが好ましい。すなわち、供給口から先端に向かって原料樹脂を搬送する送りネジからなる部位(供給ゾーン)、供給ゾーンから送られてくる両原料樹脂を溶融、混練するための分散混合性の強いエレメント群(混練を促進するエレメントと昇圧能力のあるエレメント)を有する部位(混練ゾーン)、及び混練部ゾーンで混練した材料を押出機先端へ搬送するための送りネジからなる部位(搬送ゾーン)からなることが好ましい。
 押出機の混練ゾーンのスクリュー構成は、混練を促進するエレメントを上流側に、昇圧能力のあるエレメントを下流側に配置されることが好ましい。
 混練を促進するエレメントとしては、(A)順送りニーディングディスクエレメント、(B)直交ニーディングディスクエレメント、(C)幅広ニーディングディスクエレメント、および(D)順送りミキシングスクリューエレメント等が挙げられる。
 ニーディングディスクによって構成される混練部は、例えば、楕円形状、三角形状、四角形状等のニーディングディスクの複数枚を、二本のスクリュー間で噛み合うように、又は噛み合わないように、規則的に方向をずらせて重列させることにより構成される。
 例えば、楕円形状のニーディングディスクの5枚を用いて順送りのディスク構成とした場合について説明すると、図1に示すように、一方のスクリューの各ニーディングディスクをスクリューの送り方向に、図2に示すような楕円形状のニーディングディスクをねじれ角度θ(樹脂流れ方向の上流側から下流側に見て、時計回りの角度)ずつずらして、5枚を重列させ、他方のスクリューの各ニーディングディスクを同じく送り方向に、一方のスクリューに対して位相をずらして5枚を重列させる。
 前記(A)順送りニーディングディスクエレメントは、羽根が2枚以上で、かつその羽根ねじれ角度θが10度から75度である。羽根を所定角度ずらして設置していくことにより擬似スクリュー構造を形成し樹脂を送り方向に送り出しつつ強いせん断力を加え、混練を行うゾーンとなる。
 順送りニーディングディスクエレメントの羽根の幅La/Dは、0.08~0.4であり、通常Rニーディングと呼ばれている。ねじれ角度θは、10度より小さくても、75度より大きくても搬送能力は低下する。また羽根の幅La/Dが0.08より小さくても、0.4より大きくても搬送能力は不足する。
 なお、本願明細書において、ニィーディングディスクの一枚当たりの羽根の幅La/Dとは、ニィーディングディスクの長さLをスクリュー径Dで割り、更に羽根枚数で割った値である。
 (B)直交ニーディングディスクエレメントは、羽根が2枚以上で、かつ羽根のねじれ角度θが75度から105度である。羽根が略90度ずらして設置されているため樹脂を送り出す力は弱いが混練力は強い。
 直交ニーディングディスクエレメントの羽根の幅La/Dは、0.08~0.4であり、通常Nニーディングと呼ばれている。0.08より狭いと混練が弱くなり、0.4より大きいと混練が強すぎ、樹脂の劣化を引き起こす。
 (C)幅広ニーディングディスクエレメントは、羽根が3枚か1枚でかつねじれ角度θが-10度から+10度の範囲であり、羽根の幅La/Dは、0.3~2である。通常幅広ニーディングと呼ばれている。La/Dが、0.3より狭いと混練が弱くなり、2より大きいと混練が強すぎ樹脂の劣化を引き起こす。
 また、(D)順送りミキシングスクリューエレメントは、スクリューの山(フライト部)を切り欠いた順ネジのミキシングスクリューである。2条でも1条でもよく、切り欠き数は1スクリューリード当たり5~15個であることが好ましい。また、ギアタイプのミキシングスクリューを含む。
 スクリューエレメント長さL/Dは、0.3~2であることが好ましい。2より長いと強いせん断力が発生し、樹脂の劣化を引き起こし、0.3より短いとせん断力が小さく、樹脂を充分溶融混練することが出来なくなる。
 上述した「混練を促進するエレメント」の下流側には「昇圧能力のあるエレメント」が設けられるのが望ましい。
 「昇圧能力のあるエレメント」とは送られてくる樹脂を堰き止めたり、送られてくる樹脂を送り戻す方向に働くエレメントであり、混練を促進するエレメントの下流側に設けることにより樹脂を堰きとめ、強力な混練効果を発揮させるものである。
 前記した昇圧能力のあるエレメントとしては、(E)逆送りニーディングディスクエレメント、(F)逆送りスクリューエレメント、(G)逆送りミキシングスクリューエレメントおよび(H)シールリングエレメント等が挙げられる。
 (E)逆送りニーディングディスクエレメントは、羽根が2枚以上で、かつ羽のねじれ角度θが-10度から-75度である。羽根の幅La/Dは、0.08~0.4であり、通常Lニーディングと呼ばれている。羽根の幅La/Dは、0.08より小さくても、0.4より大きくても樹脂の昇圧力は弱まり、混練不足となる。
 (F)逆送りスクリューエレメントは、逆ネジと言われ、リード長さは、L/Dで0.4から2が好ましい。リード長さとは、スクリューが360度回転したときのスクリューの長さであり、ピッチと呼ぶこともある。リードが0.4より短いと圧力が立ちすぎ、2より長いと圧力勾配が低下し、混練不足となる。
 スクリューエレメント長さL/Dは、0.3~2であることが良好な昇圧効果を得るために好ましい。
 (G)逆送りミキシングスクリューエレメントは、スクリューの山(フライト部)を切り欠いた逆ネジのミキシングスクリューである。2条でも1条でもよく、切り欠き数は1スクリューリード当たり5~15個であることが好ましい。また、ギアタイプのミキシングスクリューを含む。
 スクリューエレメント長さL/Dは、0.3~2であることが良好な昇圧効果で得るために好ましい。
 (H)シールリングエレメントは、スクリューとシリンダーの間隙を狭くして樹脂の流れを堰きとめ、昇圧効果を得るもので、シリンダーに内接するリング状エレメントである。
 シールリングエレメントは、スクリューエレメントの長径とバレルの隙間がL/Dで、0.004~0.1、及びスクリュー長さL/D=0.3~2である。シールリングと呼ばれている。この隙間が0.004より狭すぎると圧力が立ちすぎ、0.1より広すぎると圧力が立たない。
 スクリューエレメント長さL/Dは、2より長いと強いせん断力が発生し、樹脂の劣化を引き起こし、0.3より短いとせん断力が小さく、樹脂を充分溶融混練するころが出来なくなる。
 混練ゾーンのスクリュー構成は、上記(A)、(B)、(C)または(D)の中から1種以上を、各1個以上組み合わせ、かつ、上記(E)、(F)、(G)または(H)の中から1種以上、各1個以上組み合わせ使用することが好ましい。そして(A)、(B)、(C)または(D)は混練ゾーンの上流側に位置し、(E)、(F)、(G)または(H)は下流側に位置するのが好ましい。上流側とは、スクリューの根元、つまりスクリュー駆動部に近い側を意味する。
 また、本発明において、一つの混練部を構成する前記ニーディングディスクの枚数は、3~200枚とするのが好ましく、5~50枚とするのが更に好ましい。そして、それを1ユニットとして、混練部を好ましくは1~5ユニット程度、更に好ましくは1~4ユニット程度、特に好ましくは1~3ユニット程度で構成し、その各ユニット間は、組成物を搬送するための例えばフルフライトスクリューとする。一つの混練部当たりのニーディングディスクの枚数が前記範囲未満では混練効果が小さい傾向となり、一方、前記範囲超過では、剪断による発熱が大きくなって外観不良の原因となるブツ等が発生し易くなったり、色調が悪化し易い傾向となる。
 押出機の回転数は、通常100~1,000rpmである。スクリュー回転数が100rpm未満では樹脂組成物の充分な混練が行われず好ましくない。又、スクリュー回転数が1,000rpmを超えると、剪断発熱が大きくなり色調悪化、分子量低下、ブツの発生が起こりやすくなる。
(4)超高分子量体
 本発明においては、PPEの超高分子量体を、樹脂組成物中に0.015~0.6質量%の量生成することを特徴とするが、本発明者は、超高分子量体の生成が主にはPPEが重合または架橋して超高分子量体となることに起因するものと考えているが、PPEのアミノアルキル置換末端基等を介してのPPE分子間の相互縮合の結果として分子量が増大するということも考えられる。未だ原因の究明は十分ではないが、超高分子量体が生成する。
 また、PPEを押出機にいれて溶融混練することにより、PPEがポリスチレンに相溶化する前にPPE分子同士の架橋が進行し、超高分子量成分が形成されることも考えられる。超高分子量ができる条件ではブツも発生しやすい、好ましい超高分子量の範囲があると考えられる。また、PPEの末端OH濃度がポリフェニレンエーテルユニット100個に対して0.15~1.5個のPPEを用いることにより超高分子量体の良好な生成が行われるとも考えられる。
 いずれの理由にしろ、超高分子量体は生成しており、このように内部生成した超高分子量体は云うまでも無く、分散性は良好であり、ブツ、ダマと呼ばれる表面欠陥の原因となることは少ない。そして、この超高分子重合体は、耐薬品性を発現するために必要である。この超高分子重合体はポリフェニレンエーテル樹脂中で高度なネットワークを形成し、薬品が樹脂中に進入しクラックを発生するのを防止していると考えられる。
 分子量50万以上の超高分子量体の生成量は以下のようにして求めた。
 ペレット20mgを20mlのクロロホルムに溶解した後、目開き0.45μmのフィルターでろ過し、塊状樹脂、固形混入物等のGPCにかからない大きなものを除去する。このフィルターを通過した溶液を以下のようにGPCにて測定し、500,000以上の超高分子量体の量を求め、これから元のペレットで測定した50万以上の重合体量を減じた量を、元のペレットの質量に対する割合を求めた。
ゲル浸透クロマトグラフ法(GPC)
 使用装置:東ソー社製HPLC8020
 カラム:TSK G5000HHR+G3000HHR
 溶媒:クロロホルム
 検出器:UV283nm
 前処理:試料の20mgを20mlのクロロホルム溶媒に溶解した後、0.45ミクロンのフィルターで濾過して測定した。カラム温度は40℃とした。
 分子量計算:ポリスチレン換算、標準ポリスチレンを用いて検量線を作成し測定した。
 標準ポリスチレンの分子量は264、 364、 466、 568、 2800、 16700、 186000、 1260000のものを使用した。
 PPEの超高分子量体の量は、樹脂組成物中に0.015~0.6質量%であるが、0.015質量%を下回ると、耐溶剤性が低下する。また、0.6質量%を超えると、ブツが発生し易くなる。超高分子量体の好ましい量は、樹脂組成物中に0.02~0.4質量%である。
(5)PS樹脂粒子およびPPE粒状物
 PS樹脂としては、平均粒径(体積平均粒子径)1~5mm、見かけ密度0.5~0.7g/cmの粒子を使用するが、この粒子は通常の方法によりペレット化したもの、すなわち、ポリスチレンを押出機により溶融混練し、ストランド状に押し出し、ペレタイザーにより長さ数mm程度にカットして得たものであることが好ましい。PS樹脂粒子としては、平均粒径1~5mm、見かけ密度0.5~0.7g/cmの物が、PPE粒状物とのバランスの点から、好適に用いられる。
 本発明の方法においては、PPEとして、PPE中のトルエン濃度が0.01~0.5質量%である粉状体をTg以下の温度で圧縮することにより固化し、固化物を必要に応じ粉砕して得られた平均粒径(体積平均粒子径)0.1~10mm、見かけ密度0.35~0.7g/cm、トルエン濃度が0.01~0.5質量%の粒状物を使用することが望ましい。
 本明細書において「粒子」とは、グラニュール、ペレット等と呼ばれる、その物質の密度に近い小径の粒を意味する。また、粉状の微細な粒子を意味している場合もある。
 また、「粒状物」とは、形状的には粒であるが、粉体を圧縮して固めたものであり、ペレット等よりも粒内の空隙率の大きい粒を意味している。
 更に、本明細書において「成形物」とはスクリュー式押出機等から押し出され、冷却固化されて得られる所謂、成形品、成形体を意味し、その形状、大きさは問わない。具体的にはストランド、ペレットに代表され、フイルム、シート、筒状体等用途に応じ各種の形態のものを意味する。
 さらに、本明細書において、「成形物」を「ペレット」または「組成物ペレット」と表記する場合があるが、これは、本発明は主にポリフェニレンエーテル系樹脂の成形用原料ペレットを製造する際に用いられるためであり、「成形物」を代表的なもので表現したものと解されたい。
 さらに、本発明においては、PPE樹脂としては、PPE粉状体を、PPEのTg以下の温度で圧縮することにより固化し、得られた固化物を、必要に応じ、粉砕して平均粒径0.1~10mm、見かけ密度0.35~0.7g/cmに調整した粒状物を使用することが好ましい。
 PPE粉状体の圧縮は、PPEがTg以上の温度にならないよう、Tg以下の温度で行うのが好ましい。その好ましい温度としては、0℃~Tg未満、より好ましくは0~200℃程度で、圧縮時にPPEがTg以上になることなく、加圧が可能であればよい。
 圧縮の方法はいかなる方法でも採用できる。通常のプレスによっても可能であるが、簡便な方法としては、対向して設けられた一対の加圧ロールの間にPPE粉状体を通過させるロールプレス方法が挙げられる。加圧ロールは表面が平滑なロールでもよく、またロール表面にエンボス加工したものや穴、窪み等を有するものであってもよい。表面が平滑なロールやエンボスロールを用いた場合はPPE粉状体が板状、シート状となるが、これを粉砕して所望の粒径に調製すればよい。また、穴や窪みを設けたローラーを使用する場合には穴や窪みの大きさを所望の大きさに調整すれば直接所望の粒径の粒状物を得ることも可能である。
 ロールの間隙は1~3mm程度、ロール回転数は2~20rpm程度が好ましく、加圧ロールの支持圧力は、0.5~20MPa程度が好ましく、より好ましくは2~15MPaである。圧縮の強さにより、得られる粒状物の硬度が変動することが確認された。
 固化物の形状としては、用いるローラーの表面形状・構造、粉砕の有無等、ローラー以外の装置の使用等によって種々の形状の固化物となる。例えば平板状(円形、角形等)、柱状(円柱、角柱等)、球状、円筒状、フレーク状、チップ状、不定形状等、もしくは、顆粒状、チップ状、ペレット状、これらの混合物等、その形態は問わない。また、これらのものが混在したものであってもよく、また粉体等が含まれていてもよい。
 本発明では、Tg以下で圧縮・固化して得たPPEの粒状物として、平均粒径が0.1~10mm、見かけ密度が0.35~0.7g/cmのものを使用するのが好ましい。
 上記した圧縮により得られた固化物の平均粒径や見かけ密度が、上記範囲より大きい場合には粉砕して、粒度や見かけ密度を調整する。
 粒状物の形状としては、球状、平板状(円形、角形等)、柱状(円柱、角柱等)、円筒状、チップ状、不定形状等、円筒状、もしくは、顆粒状、チップ状、ペレット状、これらの混合物等、その形状、形態は問わない。
 PPE粒状物の平均粒径が、0.1mm未満では、押出し成形時に供給部での食い込みが悪く、空気の巻き込みを起こして、フィードネックを発生しやすく、10mmを超えると、混合するPS樹脂粒子との径が違いすぎ、押出機に供給する際に分級してしまい均一な混合が難しくなるし、取り扱い上も不都合が多い。PPE粒状物の好ましい平均粒子径は0.1~10mmである。
 また、粒状物の見かけ密度は、0.35~0.7g/cmであることが好ましい。0.35/cm未満では、粒状物中に空気が多く含まれる、すなわち柔らかすぎるため押出機に掛けた際、簡単に崩壊しやすく、PPEの粉体を用いた場合と差がなくなってしまう。0.7g/cmを超えると、硬くなりすぎて、押出機中で溶融する時期が、並存するPS樹脂粒子の溶融する時期より遅くなりすぎ、分散不良やPS樹脂のみが溶融してスクリュー表面で滑りを起こし押出不良を起こす原因となりやすい。より好ましい見かけ密度は、0.37~0.68g/cm、特に好ましくは0.39~0.66g/cmである。PPEの通常の密度は、1.1g/cm程度であるから、本発明においては、嵩高くする、すなわち、粒子内にある程度空隙を形成している、ことを意味する。
 また、PPE粒状物は、圧縮強さが40g~4kgであることが好ましい。圧縮強さが40g未満では、粒状物をフィーダーから押出機にスクリューフィードする際に、砕けて微粉が発生しフィードネックを発生しやすく、圧縮強さが4kgを超えると、粒状物フィーダーから押出機にスクリューフィードする際にスクリュー間や内壁との間で粒状物が挟まりスクリュー停止する事態が発生しやすい。好ましい圧縮強さは、500g~3kg、より好ましくは1kg~3kgである。
 PPE粒状物の圧縮強度をこの範囲とすることにより、並存するPS樹脂粒子との溶融のタイミング・バランスが良くなると考えられる。
 すなわち、Tgの高いPPE(Tgは通常210℃)を、ある程度崩壊し易い圧縮固化物とし、PPEより融点の低いPS樹脂(Tgは通常100℃)を粒子(溶融成形する等して空隙の少ない粒子(ペレット)としたもの)を用いることにより、両者を混合して押出機に供給した場合に、PPE粒状物が崩壊されてスクリューで送られて行く中に、PS樹脂粒子(ペレット)がその外表面から溶融されてPPEに混ざり込むこととなる。
 このような混合状態とすることにより、溶融温度(押出機中での溶融時点)差のあるPPEとPS樹脂が良好な相溶状態となるものと考えられる。
 従って、PS樹脂を粒子(ペレット)とし、PPEを比較的粉砕されやすい粉体圧縮固化粒状物とすることに意味がある。
 さらに、PPE粒状物は、1)粒子径が1000μm以上の粒子の含有量が50%以上であり、2)粒子径が10~100μmの粒子の含有量が3~40%であり、3)粒子径が10μm以下の粒子の含有量が2%以内とされていることが、望ましい。
 このような粒径構成とすることにより粉状添加剤の分散性を向上させることが出来る。すなわち、粉状の添加剤は平均粒径にして10~100μm程度の粒径のものが多く用いられるが、これらの粉状添加剤をPPE粒状物、PS樹脂粒子に直接添加すると、その粒径の違いから分級してしまい、押出機のホッパー部分で粒子(粒状体)と粉状体に分かれ、均一な混合が行われず、均質な組成の成形品が得られなくなる。
 しかし、PPE粒状物として粒子径が10~100μmの粒子を3~40質量%存在させることにより、この粒径のPPEに粉状添加剤がよく混合し、結果的に組成物全体に均一に分散し易くなる。
 従って、粉状添加剤を本組成物に添加しようとする場合には上述のような粒子径分布を有するPPEを用いることが好ましい。
(6)添加剤
 本発明においては、上記PPEおよびスチレン系樹脂に、必要に応じて他の成分を添加できる。
 他の成分としては、例えば、難燃剤、耐侯性改良剤、発泡剤、滑剤、流動性改良剤、耐衝撃性改良剤、染料、顔料、充填材、補強材、分散剤等が挙げられる。
 添加剤のうち、難燃剤としては、リン系難燃剤、好ましくは、ホスファゼン系化合物、フォスフェート系化合物、縮合リン酸エステルが配合される。
 ホスファゼン化合物としては、例えば、環状フェノキシホスファゼン化合物、鎖状フェノキシホスファゼン化合物および架橋フェノキシホスファゼン化合物が挙げられる。
 ホスフェート系難燃剤としては、例えば、トリフェニルホスフェート、トリクレジルホスフェート、ジフェニル-2-エチルクレジルホスフェート、トリ(イソプロピルフェニル)ホスフェート、ジフェニルクレジルホスフェート、トリブチルホスフェート等が挙げられる。
 縮合リン酸エステル系難燃剤としては、フェニル・レゾルシン・ポリホスフェート、クレジル・レゾルシン・ポリホスフェート、フェニル・クレジル・レゾルシン・ポリホスフェート、キシリル・レゾルシン・ポリホスフェート、フェニル-p-tert-ブチルフェニル・レゾルシン・ポリホスフェート、フェニル・イソプロピルフェニル・レゾルシン・ポリホスフェート、クレジル・キシリル・レゾルシン・ポリホスフェート、フェニル・イソプロピルフェニル・ジイソプロピルフェニル・レゾルシンポリホスフェート等が好ましい例として挙げられる。
 また、フェニル・ビスフェノール・ポリホスフェート、クレジル・ビスフェノール・ポリホスフェート、フェニル・クレジル・ビスフェノール・ポリホスフェート、キシリル・ビスフェノール・ポリホスフェート、フェニル-p-tert-ブチルフェニル・ビスフェノール・ポリホスフェート、フェニル・イソプロピルフェニル・ビスフェノールポリホスフェート、クレジル・キシリル・ビスフェノール・ポリホスフェート、フェニル・イソプロピルフェニル・ジイソプロピルフェニル・ビスフェノールポリホスフェート等が好ましい例として挙げられる。
 リン系難燃剤の具体例としては、例えば、大八化学工業社(Daihachi Chemical Indusrty Co.Ltd)の、「TPP」(トリフェニルホスフェート)、「CR733S」(レゾルシノールビス(ジフェニルホスフェート))、「CR741」(ビスフェノールAビス(ジフェニルホスフェート))、「PX200」(レゾルシノールビス(ジキシレニルホスフェート))、ADEKA社(ADEKA Corporation)の「アデカスタブFP700」(ADK STAB FP700)(ビスフェノールAビス(ジフェニルホスフェート))といった市販品が好ましく利用できる。
 また、充填材や補強材としては、有機又は無機の充填材、有機又は無機の補強材等が例示され、具体的には、ガラス繊維、マイカ、タルク、ワラストナイト、チタン酸カリウム、炭酸カルシウム、シリカ等が挙げられる。充填材及び補強材の配合は、剛性、耐熱性、寸法精度等の向上に有効である。充填材及び補強材の配合割合としては、樹脂成分の合計100質量部に対し、好ましくは1~80質量部であり、より好ましくは5~60質量部である。
(7)樹脂組成物(ペレット)の製造
 以下、上記した本発明の樹脂組成物(ペレット)の製造方法の好ましい一実施態様を説明するが、本発明は、以下の実施態様に限定して解釈されるものではないことは勿論である。
(i)重合触媒に由来する成分を、銅元素として0.05~10ppm含有し、好ましくはトルエン含有量が上記量に調整されたPPE(好ましくは粉状体)を、好ましくは加圧ロール等を用いて圧縮して固形化し、板状、塊状物を得、この固形化物を、必要により、グラニュレーター等で粉砕し、所定の平均粒径と見かけ密度、でかつ特定のトルエン含有量のPPE粒状物とする。
(ii)PPE粒状物と、平均粒径1~5mm、見かけ密度0.5~0.7g/cmのPS樹脂粒子をタンブラー等の混合器で混合し、混合物を、例えば二軸スクリュー式のフィーダー(原料の定量供給機)から二軸押出機、好ましくは二軸同方向回転押出機にフィードする。原料供給口(押出機のホッパー)からは不活性ガスが供給されているのが好ましい。不活性ガスは、窒素ガス、アルゴンガス等のPPEに対して不活性なガスであって、通常は窒素ガスが用いられる。
 添加剤の配合は、PPEとPSを混合する混合器に添加混合してもよく、押出機バレルの途中にサイドフィーダーを設置して添加してもよい。
(iii)二軸押出機シリンダー内の押出しスクリューは、長さがL/Dで10~80であり、混練ゾーンを少なくとも1箇所以上有し、混練ゾーンの合計のL/Dが3~18であり、樹脂原料のスムーズな輸送と、ついで溶融混練を行い、そして最後に吐出ノズルからストランド状に押し出される。
 混練ゾーンのスクリュー構成は、好ましくは、前記(A)~(D)等の混練を促進するエレメントを上流側に、前記(E)~(H)等の昇圧能力のあるエレメントを下流側に配置される。このような配置とすることにより、樹脂に強力なせん断を加え、混練と超高分子量体の生成を行う。
 押出機における設定温度と時間は、樹脂組成や押出機の種類等により、任意に選ぶことができるが、通常混練温度(設定温度)は、200~350℃、好ましくは220~320℃、混練時間は、3分以下が好ましい。350℃又は3分を超えると、PPEやPS樹脂の熱劣化を防ぎにくく、物性低下と外観不良を生じやすい。
 押出機には、減圧ベント部が設けられているのが好ましく、PPE粒状物に含有されるトルエン等が、ベント部より排気口に向かって常時揮発し、随伴気流を発生させることで、他の揮発成分を良好に吸引除去することができる。従って、揮発成分がベント口近辺で結露することを抑制することができ、それらの劣化物が組成物に混入するのが抑制されるので、品質の優れた樹脂組成物のペレットを製造することが可能となる。
 押出機のベント部における真空度は、20×10Pa以下にするのが好ましく、7×10Pa以下がより好ましい。真空度がかかる範囲であれば、トルエン等の揮発成分がベント部で十分に除去され、樹脂に悪影響を及ぼすことがなく好ましい。
(iv)溶融混練された組成物は、混練押出機先端に設置される吐出ノズルからストランドと呼ばれるひも状に押出される。吐出ノズルのダイの形状は特に制限はなく、公知のものが使用される。吐出ノズルの吐出口の直径は、押出し圧、所望するペレットの寸法にもよるが、通常2~10mm程度である。
 図3は、吐出ノズルから押し出されたストランドをペレットに加工するまでの工程を模式的に示した図である。
 図4は、ストランド搬送工程で使用するガイドローラーの一実施態様を示す部分側面図である。
 本発明の銅元素として0.05~10ppmを含有するポリフェニレンエーテル樹脂組成物は目ヤニの発生が多い。この原因は定かではないが、以下の様に考えられる。すなわち、押出し中にできたポリフェニレンエーテル超高分子量体は分子量が数十万以上(目安は50万以上)であるために、ポリスチレン分子や他のポリフェニレンエーテル分子との相溶性が低く、ポリフェニレンエーテル超高分子量体同士で集合し易い。その集合体があまりに大きくなると凝集物となる。このポリフェニレンエーテル超高分子量体集合体はポリフェニレンエーテルとポリスチレンの相溶化相のなかで、大きな塊となり剪断流動下でその流れを乱す。その流れの乱れがノズル先端での目ヤニの発生を促進していると考えられる。
 このため、本発明では、ポリフェニレンエーテルを押し出す際のストランドに付着する目ヤニを除去する事が好ましい。その手段は種々あるが、簡便には以下のようなガイドローラーを用いることによって達成される。
 ストランドSは、引き取りローラー4、4’によって引き取られ、ペレタイザー5によってペレット状に切断されるが、ペレタイザー5に供給される前の搬送経路において冷却されるのが通常である。具体的には図3に示すように、冷却槽2に溜められた冷却媒体(通常は水)W中を搬送されるようにして、冷却される。樹脂の劣化を少なくするために、ストランドSが吐出ノズル1から押し出されてから冷却媒体Wに入るまでの時間は短い方が良い。通常は、吐出ノズル1から押し出されてから1秒以内に冷却媒体93に入るのが良い。
 そのため、吐出ノズル1からほぼ最短距離で冷却媒体Wへ向かうように搬送することが好ましく、また、冷却媒体Wで冷却される時間が長くなるように搬送することが好ましい。このような条件を満たす搬送経路を実現するため、ストランドSの搬送経路には3,3’で示すようなガイドローラーが設けられるのが一般的である。ガイドローラー3,3’の径は通常3~7cm程度である。
(v)このようなガイドローラー3,3’を利用して、ストランドSの表面に付着した目ヤニを除去することが可能である。
 具体的には、ガイドローラー3,3’の少なくとも一方を、ストランドSの走行(搬送)方向aとは逆方向bに回転させるか、ストランドSの走行速度(引取り速度)よりも遅い周速度でストランドSの走行方向aと同じ方向に回転させることである(あるいは、回転させない状態で保持してもよい)。
 ガイドローラー3,3’は、通常ストランドSの走行方向と交差する方向を回転軸とした円筒形状を有し、ストランドSが所望の搬送経路で搬送されるよう、複数本が平行して押し出されるストランドSを円筒面(外周面)で支持する。
 通常、ガイドローラー3,3’は、図4(a)に示すように、その主軸31の円周上のローラー表面には、周方向に環状(リング状)の溝32が複数設けられる。溝32は走行するストランドSを受け入れて支持し、接近した位置にあるストランドS同士が接触し融着することを防ぐ。
 通常、溝32の幅は、ストランドSの太さより若干広めで、溝32の底部は弧状とされていることが安定した支持を行うために好ましい。また、溝32の深さは、通常2mm~10mmである。ローラー3、3’の直径は、通常3~7cm程度である。
 更に、溝32のピッチ(隣り合う溝32の間隔)は、通常、ストランドSの間隔(ダイの吐出ノズル1の間隔)に合わせる。ストランドSの径にもよるがピッチは5mmから20mmである。溝32の数は押し出されるストランドの数以上であれば良い。
 ガイドローラー3,3’は、冷却槽2のストランド走行位置に1本あるいは複数本設けられる。複数本の場合はガイドローラー3,3’間にストランドが掛け渡されて冷却槽2中を走行し冷却される。
 ガイドローラー3,3’はストランドSの走行方向aと逆方向bまたは走行方向aと同じ方向に回転可能に支持されており、回転不能に支持されてもよい。ストランドSの走行(搬送)速度に対してガイドローラー3,3’の溝32の移動(回転)速度が相対的に遅くなるようにガイドローラー3,3’を支持することにより、溝32とストランドSとが接する面でストランドSの表面を擦り、ストランドSの表面に付着した目ヤニを擦り取ることができる。なお、ガイドローラーが複数設けられている場合には、その少なくとも一つにおいてストランドSの表面を擦るようにすればよい。
 ガイドローラー3,3’をストランドSの走行方向aと逆方向bに回転させるには、ガイドローラー3,3’に駆動装置を設ければ良い。この場合、ストランドSと溝32の表面との抵抗が大きすぎるとストランドSの走行が不安定になる場合が有るので、ストランドSの走行が安定する範囲で回転量を定める。
 ガイドローラー3,3’を走行方向aと同じ方向に回転させる場合には駆動装置を設けなくてもよい。ガイドローラー3,3’を回転させるのにある程度の抵抗(少なくとも、走行するストランドSの摩擦力によりストランドSと同じ周速度で回転することがない程度の抵抗)を与えれば良い。これにより、ガイドローラー3,3’はストランドSの走行に追従して回転するが、与えられた抵抗によりストランドSの走行速度より遅く(周速度が遅く)回転し、溝32の表面でストランドSの表面を擦ることが可能になる。駆動装置を設けることも可能であるが、逆回転の場合と異なり、回転に抵抗を与える構成の方が簡便である。
 このように、ストランドSは、冷却媒体W中を走行しながらガイドローラー3,3’の表面と接触し、ストランドSの走行速度とガイドローラー3,3’の回転速度(周速度)との差によってストランドSの表面が溝32の表面で擦られ、ストランドSの表面に付着する目ヤニが除去される。また、溝が無いガイドローラーであっても、ストランドがガイドローラー表面で擦られることにより、ある程度の目ヤニ除去効果はある。
 この効果は、ストランドSの走行速度と同じ周速度でガイドローラー3,3’を回転させた場合には得られないものである。ストランドSの走行速度とガイドローラー3,3’の周速度を略同速度とした場合には、ストランドSの表面を擦ることが出来ないだけでなく、むしろ溝32の表面によって目ヤニをストランドに張り付けたり、埋め込んだりすることになることも考えられる。
 具体的なガイドローラー3,3’の回転(外周面の移動速度)速度Vrは、ストランドの速度Vsに対して、0.7≧Vr/Vs≧-0.2の関係であることが好ましい。上限は、より好ましくは0.5≧Vr/Vsであり、下限は、より好ましくはVr/Vs≧0である。VsはストランドSの引き取り速度とすることができ、Vrは、
(ガイドローラー3,3’の半径-溝深さ)×2π×1分間の回転数
で求まる。Vr/Vsが正の場合、ガイドローラー3,3’がストランド走行方向aと同方向に回転する場合であり、負の場合は、ガイドローラー3,3’がストランド走行方向aと逆方向bに回転する場合である。
 ガイドローラー3,3’は、冷却槽2中に1本あるいは複数本設けられるが、複数本の場合は全てのガイドローラー3,3’を上述のような回転とする必要はなく、冷却媒体2中にあり、吐出ノズル1(ダイス)に最も近いガイドローラー(図3では3)を上記のように作動させるのが目ヤニ除去に効果的である。
(vi)ストランドSは、引き取りローラー4、4’からペレタイザー5に送られ、カッティングされて、ペレットとされる。カッティングは、ストランド温度が80~160℃、特には90~140℃の範囲にある時に切断するようにすることが望ましい。
 この温度は非接触式の温度計によって測定すればよいが、簡便にはカッターによって切断されたペレットを収容する袋や容器中のペレットに温度計を差し込んで測定することによって代用すれば良い。
 本発明の方法によって得られたペレットは、ポリフェニレンエーテル系樹脂に一般に用いられている成形法、すなわち射出成形、射出圧縮成形、中空成形、押出成形、シート成形、熱成形、回転成形、積層成形、プレス成形等の各種成形法によって成形することができ、任意の形状に成形して成形品として用いる。
 成形品の例を挙げると、電気電子機器、OA機器、情報端末機器、機械部品、家電製品、車輌部品、建築部材、各種容器、レジャー用品・雑貨類、照明機器等の部品が挙げられる。これらの中でも、特に電気電子機器、OA機器、情報端末機器、家電製品、車両部品、照明機器等の部品へ用いて好適である。
 以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定して解釈されるものではない。
[1.測定・評価方法]
 以下の実施例及び比較例において、各測定・評価方法は、次の通りである。
(1)分子量
 前述したとおりの方法で測定した。
(2)色調(YI値)
 実施例及び比較例で得られたペレットの色調の測定は、ペレットを120℃で4時間乾燥し、住友重機社製射出成形機SH100を用いて、シリンダー温度290℃、金型温度100℃の条件で、縦100mm×横100mm×厚さ2mmの成形品を成形し、色調イエローインデックス(YI値)を測定した。日本電色社製の色度計「Spectr Color Meter S2000」で、色調YI値を求めた。
 また、YI値を以下の3段階にて評価を行った。
  ○:YI値 40未満
  △:YI値 40以上から50未満
  ×:YI値 50以上
(3)耐薬品性
 得られたペレットを120℃4時間乾燥し、住友重機社製射出成形機SH100を用いて、ISO金型タイプAで試験片を作成した(ISO3167、ISO294-1)。
 試験片表面に0.5%の撓み(曲げ)を加え、イソプロパノールとn-ヘキサンの重量比1:1の混合溶液に23℃、1時間浸漬後、1本の試験片当たりのクラックの発生本数を数えた。数が少ない程、耐薬品性が優れている。
 また、発生本数により、以下の3段階にて評価を行った。
  ○:30本未満
  △:30本以上から40本未満
  ×:40本以上
(4)PPEの末端基の種類及び数:
 13C-核磁気共鳴吸収スペクトルを、日本電子(株)製のJNM-A400で、CDClを溶媒とし、テトラメチルシランを基準とし、測定モードは13C-NMR完全デカップリングモードとして、測定し、Macromolecules、1990年、Vol.23、1318~1329頁に記載の方法により、水酸基末端の種類及び数(100個あたりの個数)を求めた。
(5)PPEの極限粘度:
 ポリフェニレンエーテル0.5gを溶液として100ml以上(濃度0.5g/dl以下)となるようにクロロホルムで溶解し、30℃においてウベローデ型の粘度計を用いて、異なる濃度における比粘度を測定し、比粘度と濃度との比を、濃度を0に外挿することにより極限粘度を算出した。
(6)銅元素含有率
 ポリフェニレンエーテル樹脂を硝酸で分解した後に、残渣中の銅を原子吸光分析により定量し、ポリフェニレンエーテル樹脂中の銅元素含有率(ppm)を算出した。
(7)平均粒子径及び粒径分布(1mm未満)
 レーザー回折・散乱法の粒度分析計であるセイシン企業(Seishin Enterprise Co.Ltd.)製「レーザー回折散乱式粒度分布測定装置Laser Micron Sizer LMS-2000e」を使用して、湿式法(イソプロピルアルコール溶媒)で測定した。体積平均粒子径を平均粒子径(μm)とした。
(8)見掛け密度
 JIS K5101に準拠して、静置法にてフィルターは使用せずに、測定した。
(9)ヤケ異物評価
 ペレット50gを熱プレス(260℃)でプレスし0.3mmのシートを成形した。そのプレスを目視観察し焼け異物の量を数え、以下の3段階評価を行った。
  ○:焼け異物 1個以下
  △:焼け異物 2個~4個
  ×:焼け異物 5個以上
(10)総合評価
 以下の3段階で、総合評価を行った。
  ○:色調、耐溶剤性、焼け異物で、全て○である。
  △:色調、耐溶剤性、焼け異物のいずれかで、△があるが、×は無い。
  ×:色調、耐溶剤性、焼け異物のいずれかで、×がある。
〔ポリフェニレンエーテルの製造例〕
(1)ポリフェニレンエーテル(PPE-A)の製造
 空気吹き込み管の付いた重合反応器に、コンデンサーを2段直列に繋いだ。コンデンサーの温度が約0℃になるように冷媒を流し温度調節をし、缶出液のトルエン相は連続的に重合器内に戻すようにした。臭化第二銅220g、ジブチルアミン4,000g、トルエン98,000gの触媒溶液中に空気をモノマー1kgあたり、10NL/分で供給しながら、2,6-ジメチルフェノール23,500gをトルエンに54,000gに溶かした溶液を40分かけて滴下し、40℃で重合をおこなった。
 モノマー滴下130分後、エチレンジアミン4酢酸ナトリウム(以下、EDTA4ナトリウムという。)を触媒銅に対し1.5倍モル量溶解した水溶液(水溶液量は重合反応液全量に対し0.2重量倍)を攪拌しながら反応液に加え、反応を停止した。
 攪拌を停止した後、静置分離した水溶液を系外に排出し、更に純水5,500gを反応液に添加して10分間攪拌し、10分間静置した後に分離した水層を系外に排出した。更に同様の操作を繰り返した。すなわち、2回目は、EDTA4ナトリウムを使用触媒銅の0.5倍モル量溶解した水溶液(水溶液量は重合反応液全量に対し0.2重量倍)を攪拌しながら反応液に加え静置分離した。
 その後、上記同様に純水6,000gを反応液に添加して10分間攪拌し、10分間静値した後に分離した水層を系外に排出した。得られた反応液にほぼ等容のメタノールを添加して、ポリフェニレンエーテルを沈殿させた。PPEの沈殿をろ過し、更に適量のメタノールでポリフェニレンエーテルを洗浄した後に、140℃程度で1時間強乾燥させ、以下の粉末状ポリフェニレンエーテル(以下、「PPE-A」と略記する。)を得た。
 PPE-Aの評価結果は、次のとおりであった。
 極限粘度:0.48dl/g
 末端水酸基量:フェニレンエーテルユニット100個に対し、0.26個
 平均粒子径:90μm
 銅元素含有量:0.1ppm
 トルエン濃度:1,120ppm
 なお、トルエン濃度は10mlのクロロホルムにポリフェニレンエーテル系樹脂2gを溶解後、メタノールで析出させ、上澄み液をガスクロマトグラフィーで分析し、トルエン濃度(%)を得た。
(2)ポリフェニレンエーテル(PPE-B)の製造
 2回目のEDTA4ナトリウムの量を使用触媒の0.3倍モル量にした以外はPPE-Aと同様に行って、PPE-Bを得た。
 PPE-Bの評価結果は、次のとおりであった。
  極限粘度:0.48dl/g
  末端水酸基量:フェニレンエーテルユニット100個に対し、0.23個
  銅元素含有率:0.5ppm
  トルエン濃度:1,200ppm
(3)ポリフェニレンエーテル(PPE-C)の製造
 2回目のEDTA4ナトリウムの量を使用触媒の0.2倍モル量にした以外は、PPE-Aと同様に行って、PPE-Cを得た。
 PPE-Cの評価結果は、次のとおりであった。
 極限粘度:0.48dl/g
 末端水酸基量:フェニレンエーテルユニット100個に対し、0.25個
 銅含有率:1.2ppm
 トルエン濃度:1,150ppm
(4)ポリフェニレンエーテル(PPE-D)の製造
 2回目のEDTA4ナトリウムの量を使用触媒の0.1倍モル量にした以外は、PPE-Aと同様に行って、PPE-Dを得た。
 PPE-Dの評価結果は、次のとおりであった。
 極限粘度:0.48dl/g
 末端水酸基量:フェニレンエーテルユニット100個に対し、0.22個
 銅含有率:5.2ppm
 トルエン濃度:1,230ppm
(5)ポリフェニレンエーテル(PPE-E)の製造
 2回目の触媒洗浄を実施しなかった以外は、PPE-Aと同様に行って、PPE-Eを得た。
 PPE-Eの評価結果は、次のとおりであった。
 極限粘度:0.48dl/g
 末端水酸基量:フェニレンエーテルユニット100個に対し、0.27個
 銅含有率:11.4ppm
 トルエン濃度:1,420ppm
(6)ポリフェニレンエーテル(PPE-F)の製造
 2回目の触媒洗浄処理(EDTA4ナトリウムの量を使用触媒の0.5倍)を実施したあとに、更に同じ触媒洗浄処理を実施した以外は、PPE-Aと同様に行って、PPE-Fを得た。
 PPE-Fの評価結果は、次のとおりであった。
 極限粘度:0.48dl/g
 末端水酸基量:フェニレンエーテルユニット100個に対し、0.21個
 銅含有率:0.04ppm
 トルエン濃度:970ppm
(7)ポリフェニレンエーテル(PPE-G)の製造
 トルエンに54,000gに溶かした溶液を70分かけて滴下し、40℃で重合をおこない、モノマー滴下110分後、EDTA4ナトリウムを触媒銅に対し1.5倍モル量溶解した水溶液(水溶液量は重合反応液全量に対し0.2重量倍)を攪拌しながら反応液に加え反応を停止した以外はPPE-Cと同様に製造した。
 PPE-Fの評価結果は、次のとおりであった。
 極限粘度:0.48dl/g
 末端水酸基量:フェニレンエーテルユニット100個に対し、0.12個
 銅含有率:1.2ppm
 トルエン濃度:1,120ppm
(実施例1)
 PPE-Aを80質量部と、エー・アンド・エム スチレン社製のポリスチレンペレットHT478(以下、「PS-A」という。平均ペレット重量23mg、平均粒径3.3mm(体積平均粒子径)、見かけ密度0.62g/cc)20質量部を、タンブラーで5分間混合した。
 混合物をクボタ社製の2軸スクリュー式カセットウェイングフィーダーCE-W-2に移し、そこから東芝機械社製の二軸同方向回転押出機TEX30α(長さL/Dで52.5)で、20kg/hrの速度でフィードし、押出機で混合物を溶融混練した。押出機のスクリュー回転数は300rpmとした。
 スクリュー構成は、混練ゾーンがRRRNNLの構成であるスクリュー構成Bを用いた。
 ここで、Rは、Rニーディングディスク(前記した(A))、Nは、Nニーディングディスク(前記(B))、Lは、Lニーディングディスク(前記(E))である。
 各ニーディングディスクの長さLは、L/D=1.0とし、混練ゾーンの合計長さは、L/D=6.0とした。
 混練溶融物を、穴径4mm、5穴のダイスを使って押出し、ストランド状にして、冷却水槽で冷却し、ペレタイザーでカッティングし、ポリフェニレンエーテル系樹脂組成物ペレットを得た。1時間押出しをし、押出し開始から30分後に評価用ペレットをサンプリングした。
 なお、この1時間の押出しの間に発生したダイノズル(5穴)周辺のメヤニを捕集し、重量を測定すると19mgあった。ストランドは、18m/minの速度で引き取り、冷却水槽中の2本のロールA、ロールBに掛けて、水槽で冷却した。この時にロールAの周方向の回転速度は5m/minであった。ロールの周方向速度をストランド速度の比率は0.28であった。ロールAとロールBの間隔を調整し、ペレタイザーに入るストランド温度を112℃にしてカッティングした。カッティング面は綺麗であり、良好な形状のペレットが得られた。得られたペレット20kg中にはメヤニが付着したペレットは1つしか発見されなかった。
 このペレットを120℃で4時間乾燥し、住友重機社製射出成形機SH100を用いて、シリンダー温度290℃、金型温度100℃の条件で、縦100mm×横100mm×厚さ2mmの成形品を成形し、色調イエローインデックス(YI値)を測定した。YI値は32であった。ペレット中の超高分子量体(分子量50,0000以上)の生成量は、0.02質量%であった。
 また、耐薬品性試験においては、1本の試験片当たりのクラックの発生本数は27本であり、分子量50,0000以上の超高分子量成分が高度な絡み合い構造を形成し、耐薬品性が向上したと考える。
 評価結果を表1に示す。
(実施例2~4、比較例1~3)
 実施例1において、PPEの種類、PS樹脂の種類を表1に記載のものに変更した以外は、実施例1と同様にしてペレットを製造した。なお、比較例3に使用したPS-Bは、PS-Aを凍結粉砕(平均粒径80μm)したものである。
 評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
(実施例5~15、比較例4~6)
 実施例1において、スクリュー構成を下記表2に記載のスクリュー構成のものに変更しして行った。表2中、スクリュー構成A~Hは本発明の要件を満たすものであり、I、Jおよび単軸押出機は要件を満たさない比較例相当のスクリュー構成のものである。吐出量を30kg/hrとし、またPPEの種類を表3のものに変更した以外は、実施例1と同様にしてペレットを得た。
Figure JPOXMLDOC01-appb-T000003
 上記表2において、スクリュー構成の記号は以下のとおりである。
  R :Rニーディングディスク(前記した(A))
  N :Nニーディングディスク(前記(B))
  L :Lニーディングディスク(前記(E))
  Rm:順ネジ切り欠きミキシングスクリュー(前記(D))
  Ls:逆ネジスクリュー(前記(F))
  - :普通の送りスクリュー
 各ニーディングディスクの長さLは、全てL/D=1.0のニーディングスクリューを使用した。混練ゾーンの合計長さはL/D=6.0とした。
 評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
(実施例16~20、比較例7)
 実施例1において、PPE-Aの代わりに、PPE-Cを使用し、PPE-CとPS-Aの配合量を表4に記載した量とした以外は、実施例1と同様にして、ペレットを得た。
 評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000005
(実施例21~22)
 実施例1において、PPE-Aの代わりに、表5に記載のPPE-C、PPE-Gにした以外は実施例1と同様にして、ペレットを得た。
 評価結果を表5に示す。PPEの末端OH基量による影響を検証した。
Figure JPOXMLDOC01-appb-T000006
(実施例23~26)
 実施例1において、ストランドの引き取り速度(Vs)、ロールAの周方向の回転速度(Vr)、Vs/Vr比およびストランドカッティング温度(実施例26は冷却槽を延長して冷却条件を変えた)を、表6に記載の温度にした以外は、実施例1と同様にして、ペレットを製造した。
 結果を表6に示す。
 なお、表6中の総合評価において、○は、ペレット状態良好で目ヤニ付着ペレットが5個/20kg以内、△は、ペレット状態が△か、目ヤニ付着ペレットが5個/20kg以上であることを示す。ペレット状態△とはカッティング切断面が鋭利でなく、一部割れがあることを示す。
Figure JPOXMLDOC01-appb-T000007
(実施例27~32)<圧縮造粒の実施例>
 PPE-Dを、古川大塚鉄鋼社製C-102Aコンパクターを用いて、フィーダー回転数40rpm、ロール間隙2mm、ロール回転数6rpm、ロール支持圧(1.5~18MPa)を加え、圧縮し、板状の圧縮物を得た。
 得られた板状圧縮物を、古川大塚鉄鋼社製のグラニュレーターHB189で、650rpmで解砕(crush)し、圧縮造粒物「Com-D1~D5」を得た。それらの条件と特性は表7のとおりである。
 この圧縮造粒物80質量部と、前記PS-A(平均ペレット重量23mg、平均粒径3.3mm(体積平均粒子径)、見かけ密度0.62g/cc)20質量部を、タンブラーで5分間混合した。
 混合物をクボタ社製の2軸スクリュー式カセットウェイングフィーダーCE-W-2に移し、そこから東芝機械社製の二軸同方向回転押出機TEX30α(長さL/Dで52.5)で、40kg/hrの速度でフィードし、押出機で混合物を溶融混練した。押出機のスクリュー回転数は300rpmとした。
 スクリュー構成は、混練ゾーンがRRRNNLの構成であるスクリュー構成Bを用いた。
 ここで、Rは、Rニーディングディスク(前記した(A))、Nは、Nニーディングディスク(前記(B))、Lは、Lニーディングディスク(前記(E))である。
 各ニーディングディスクの長さLは、L/D=1.0とし、混練ゾーンの合計長さは、L/D=6.0とした。
 混練溶融物を、穴径4mm、5穴のダイスを使って押出し、ストランド状にして、冷却水槽で冷却し、ペレタイザーでカッティングし、ポリフェニレンエーテル系樹脂組成物ペレットを得た。1時間押出しをし、押出し開始から30分後に評価用ペレットをサンプリングした。
 実施例30、実施例32では、スタート10分以内にフィードネックが発生したので、吐出量を30kg/hrに下げて押出した。得られた評価用ペレットをこれまでの実施例同様に評価した。
 また押出開始5分後の初流ペレットと、押出し最後1分前の後流のペレット(後流ペレット)をサンプリングし、ポリスチレンの「分級」度合いを比較した。
 分級とは粒径の異なるPPE粒子とPS粒子を混合した場合、押出機のホッパー等で振動が加わることにより相分離を起こし、粒径の大きい粒子(今回の場合はPS粒子)がホッパーの上方に滞留する現象を云い、結果として、初流(押出し初期)の樹脂成分と後流(押出し後期)の樹脂成分に違いを生じる現象である。
 ポリスチレンの分級度合いは、ペレットをDSC(示差走査熱量測定装置:セイコー電子(SEIKO Electronics industrial Co)社製SSC/5200)を用いて、ガラス転移温度を比較することから求めた。実施例27の初流ペレットのガラス転移温度は187.5度であった。後流ペレットのガラス転移温度は187.3度であった。初流のガラス転移温度から後流のガラス転移温度を引いた差は、0.2℃であった。
 ポリフェニレンエーテル/ポリスチレン樹脂組成物のガラス転移温度はそれらの量比により決まる。ポリフェニレンエーテルのガラス転移温度は210℃、ポリスチレンのガラス転移温度は100℃であり、ほぼ重量平均値となる。このガラス転移温度差をポリスチレン樹脂の分級度合いとした。0.2℃差とはポリフェニレンエーテルとポリスチレンが殆ど分級していない(初流から後流まで均一に混じっている)ことを示している。
 他の実施例も同様にポリスチレンの分級度合いを評価した。
 なお、表7における分級評価の○、△は、以下の基準で判定した。
  ○:ΔTが±1℃以内
  △:ΔTが±3℃から±1℃の範囲
 なお、実施例31では、2軸スクリュー式カセットウェイングフィーダーCE-W-2でスクリューが1回停止した。ポリフェニレンエーテル圧縮造粒品の中で、粗大で硬い粒子がスクリューと壁の間に挟まり、停止させたことが原因であった。
Figure JPOXMLDOC01-appb-T000008
 本発明のポリフェニレンエーテル系樹脂組成物の製造方法によれば、ポリフェニレンエーテル系樹脂とポリスチレン系樹脂原料から、色調低下がなく、焼けによる異物発生がなく、耐溶剤性が改良された樹脂組成物(ペレット)を高い生産効率で製造でき、得られたペレットからは良好な品質の成形品が得られるので、電気電子機器、OA機器、情報端末機器、家電製品、車両部品、照明機器等の広い分野に適用でき、産業上の利用性は非常に高い。
 S ストランド
 1 吐出ノズル
 2 冷却媒体槽
 3、3’ ガイドローラー
 4、4’ 搬送ローラー
 5 ペレタイザー
 32 溝

Claims (7)

  1.  ポリフェニレンエーテル系樹脂とポリスチレン系樹脂を溶融状態で混練した後、押出し成形してポリフェニレンエーテル系樹脂組成物を製造するにあたり、
     ポリフェニレンエーテル系樹脂として、重合触媒に由来する銅成分を、銅元素にして、0.05~10ppm含有するポリフェニレンエーテル系樹脂を用い、
     ポリスチレン系樹脂として、平均粒径1~5mm、見かけ密度0.5~0.7g/cmの粒子を用い、
     上記両樹脂を、長さがL/Dで10~80であり、混練ゾーンを少なくとも1箇所以上有し、混練ゾーンの合計のL/Dが3~18のスクリュー構成である二軸押出機に供給して、加熱、溶融、混練することにより、分子量50万以上のポリフェニレンエーテル系樹脂の超高分子量体を、樹脂組成物中に0.015~0.6質量%の量で生成させたポリフェニレンエーテル系樹脂組成物を得ることを特徴とするポリフェニレンエーテル系樹脂組成物の製造方法。
  2.  ポリスチレン系樹脂を、ポリフェニレンエーテル系樹脂100質量部に対して、5~150質量部配合することを特徴とする請求項1に記載のポリフェニレンエーテル系樹脂組成物の製造方法。
  3.  ポリフェニレンエーテル系樹脂が、フェニレンエーテルユニット100個に対する末端水酸基数が0.15~1.5個のものであることを特徴とする請求項1または2に記載のポリフェニレンエーテル系樹脂組成物の製造方法。
  4.  前記押出機の混練ゾーンのスクリュー構成は、混練を促進するエレメントを上流側に、昇圧能力のあるエレメントを下流側に配置されることを特徴とする請求項1~3のいずれかに記載のポリフェニレンエーテル系樹脂組成物の製造方法。
  5.  ポリフェニレンエーテル系樹脂組成物を押出し機からストランド状に押し出し、冷却媒体中を走行させて冷却し、ストランドカッターにより切断してペレットを得るにあたり、
     溝が形成されたガイドローラーを冷却媒体中に設置し、
     該ストランドを、ガイドローラーの前記溝内に接するようにして引き取るとともに、
     引き取り速度をVs(cm/秒)、ストランドが接するガイドローラー外周面の移動速度をVr(cm/秒)とした場合に、
     0.7≧Vr/Vs≧-0.2の関係を満たすように、前記引き取り速度及び前記移動速度並びにガイドローラーの回転方向を決定することを特徴とする請求項1~6のいずれかに記載のポリフェニレンエーテル系樹脂組成物の製造方法。
  6.  冷却によりストランドの温度を80℃~160℃に調整し、この温度範囲でカッティングすることを特徴とする請求項5に記載のポリフェニレンエーテル系樹脂組成物の製造方法。
  7.  請求項1~6のいずれかに記載の製造方法で得られたポリフェニレンエーテル系樹脂組成物を成形してなる成形品。
PCT/JP2010/067509 2010-10-06 2010-10-06 ポリフェニレンエーテル系樹脂組成物の製造方法 WO2012046308A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127032712A KR101746893B1 (ko) 2010-10-06 2010-10-06 폴리페닐렌에테르계 수지 조성물의 제조 방법
CN201080067837.8A CN102985489B (zh) 2010-10-06 2010-10-06 聚苯醚系树脂组合物的制造方法
JP2012520394A JP5119373B2 (ja) 2010-10-06 2010-10-06 ポリフェニレンエーテル系樹脂組成物の製造方法
PCT/JP2010/067509 WO2012046308A1 (ja) 2010-10-06 2010-10-06 ポリフェニレンエーテル系樹脂組成物の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/067509 WO2012046308A1 (ja) 2010-10-06 2010-10-06 ポリフェニレンエーテル系樹脂組成物の製造方法

Publications (1)

Publication Number Publication Date
WO2012046308A1 true WO2012046308A1 (ja) 2012-04-12

Family

ID=45927326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067509 WO2012046308A1 (ja) 2010-10-06 2010-10-06 ポリフェニレンエーテル系樹脂組成物の製造方法

Country Status (4)

Country Link
JP (1) JP5119373B2 (ja)
KR (1) KR101746893B1 (ja)
CN (1) CN102985489B (ja)
WO (1) WO2012046308A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251005A (ja) * 2011-05-12 2012-12-20 Mitsubishi Engineering Plastics Corp 導電性ポリフェニレンエーテル系樹脂組成物の製造方法
JP2013000913A (ja) * 2011-06-13 2013-01-07 Asahi Kasei Chemicals Corp 押出機およびそれを用いた溶融混練方法
JP2014117813A (ja) * 2012-12-13 2014-06-30 Jsp Corp 熱可塑性樹脂発泡ブロー成形体の製造方法及び熱可塑性樹脂発泡ブロー成形体
JP2016164260A (ja) * 2015-02-20 2016-09-08 スティア エンジニアリング プライベート リミテッド スチレン樹脂及びポリフェニレンエーテルを含むブレンド
JP2018193471A (ja) * 2017-05-17 2018-12-06 三菱エンジニアリングプラスチックス株式会社 樹脂組成物および成形品
JP6690762B1 (ja) * 2019-06-27 2020-04-28 東洋紡株式会社 ペレットの製造方法
JP6745049B1 (ja) * 2019-06-27 2020-08-26 東洋紡株式会社 ペレットの製造方法
JP2023011323A (ja) * 2021-07-12 2023-01-24 長瀬産業株式会社 熱可塑性ポリマー造粒物および熱可塑性ポリマー造粒物の製造方法
JP7409900B2 (ja) 2019-04-19 2024-01-09 旭化成株式会社 ポリフェニレンエーテル系樹脂組成物の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150034468A (ko) 2013-09-26 2015-04-03 현대모비스 주식회사 차량용 램프장치
JP6581064B2 (ja) 2016-10-28 2019-09-25 旭化成株式会社 ポリフェニレンエーテル粉体と製造方法
WO2021060210A1 (ja) * 2019-09-24 2021-04-01 東洋紡株式会社 ポリフェニレンエーテル溶融押出成形体、及び、ポリフェニレンエーテル溶融押出成形体の製造方法
CN115197415B (zh) * 2021-04-13 2023-08-22 南通星辰合成材料有限公司 一种超低铜含量的聚苯醚树脂及其制备方法
WO2023076070A1 (en) * 2021-10-29 2023-05-04 Exxonmobil Chemical Patents Inc. Extrusion processes for functionalized polymer compositions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1024483A (ja) * 1996-07-12 1998-01-27 Asahi Chem Ind Co Ltd 粉体用押出機及びそれを用いた押出方法
JPH10180840A (ja) * 1996-12-24 1998-07-07 Asahi Chem Ind Co Ltd 高生産押出機及びそれを用いた押出方法
JP2004099682A (ja) * 2002-09-06 2004-04-02 Asahi Kasei Chemicals Corp ポリフェニレンエーテルを製造する方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1024483A (ja) * 1996-07-12 1998-01-27 Asahi Chem Ind Co Ltd 粉体用押出機及びそれを用いた押出方法
JPH10180840A (ja) * 1996-12-24 1998-07-07 Asahi Chem Ind Co Ltd 高生産押出機及びそれを用いた押出方法
JP2004099682A (ja) * 2002-09-06 2004-04-02 Asahi Kasei Chemicals Corp ポリフェニレンエーテルを製造する方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251005A (ja) * 2011-05-12 2012-12-20 Mitsubishi Engineering Plastics Corp 導電性ポリフェニレンエーテル系樹脂組成物の製造方法
JP2013000913A (ja) * 2011-06-13 2013-01-07 Asahi Kasei Chemicals Corp 押出機およびそれを用いた溶融混練方法
JP2014117813A (ja) * 2012-12-13 2014-06-30 Jsp Corp 熱可塑性樹脂発泡ブロー成形体の製造方法及び熱可塑性樹脂発泡ブロー成形体
JP2016164260A (ja) * 2015-02-20 2016-09-08 スティア エンジニアリング プライベート リミテッド スチレン樹脂及びポリフェニレンエーテルを含むブレンド
JP2018111832A (ja) * 2015-02-20 2018-07-19 スティア エンジニアリング プライベート リミテッド スチレン樹脂及びポリフェニレンエーテルを含むブレンド
JP2018193471A (ja) * 2017-05-17 2018-12-06 三菱エンジニアリングプラスチックス株式会社 樹脂組成物および成形品
JP7409900B2 (ja) 2019-04-19 2024-01-09 旭化成株式会社 ポリフェニレンエーテル系樹脂組成物の製造方法
WO2020261890A1 (ja) * 2019-06-27 2020-12-30 東洋紡株式会社 ペレットの製造方法
JP6745049B1 (ja) * 2019-06-27 2020-08-26 東洋紡株式会社 ペレットの製造方法
WO2020261889A1 (ja) * 2019-06-27 2020-12-30 東洋紡株式会社 ペレットの製造方法
JP2021003856A (ja) * 2019-06-27 2021-01-14 東洋紡株式会社 ペレットの製造方法
JP2021003855A (ja) * 2019-06-27 2021-01-14 東洋紡株式会社 ペレットの製造方法
CN113727823A (zh) * 2019-06-27 2021-11-30 东洋纺株式会社 粒料的制造方法
EP3991936A4 (en) * 2019-06-27 2022-08-17 Toyobo Co., Ltd. TABLET PRODUCTION METHOD
JP6690762B1 (ja) * 2019-06-27 2020-04-28 東洋紡株式会社 ペレットの製造方法
CN113727823B (zh) * 2019-06-27 2024-03-01 东洋纺Mc株式会社 粒料的制造方法
JP2023011323A (ja) * 2021-07-12 2023-01-24 長瀬産業株式会社 熱可塑性ポリマー造粒物および熱可塑性ポリマー造粒物の製造方法
JP7425774B2 (ja) 2021-07-12 2024-01-31 長瀬産業株式会社 熱可塑性ポリマー造粒物および熱可塑性ポリマー造粒物の製造方法

Also Published As

Publication number Publication date
CN102985489B (zh) 2015-06-10
CN102985489A (zh) 2013-03-20
KR20130114586A (ko) 2013-10-17
JP5119373B2 (ja) 2013-01-16
KR101746893B1 (ko) 2017-06-14
JPWO2012046308A1 (ja) 2014-02-24

Similar Documents

Publication Publication Date Title
JP5119373B2 (ja) ポリフェニレンエーテル系樹脂組成物の製造方法
JP5066634B2 (ja) ポリフェニレンエーテル系樹脂成形物の製造方法
JP5393411B2 (ja) ポリフェニレンエーテル系樹脂組成物成形体の製造方法
JP7026559B2 (ja) 熱可塑性樹脂組成物の製造方法
JPH06114833A (ja) Ppo:psブレンドから揮発性物質を除去する方法
JP2018048227A (ja) 熱可塑性樹脂組成物の製造方法
JP2004514574A (ja) 熱可塑性樹脂ブレンドの成形及び加工方法
US11286367B2 (en) Pellet and thermoplastic resin composition
EP0904908A1 (en) Method for making thermoplastic resin pellets
JP5715484B2 (ja) 導電性ポリフェニレンエーテル系樹脂組成物の製造方法
TWI523744B (zh) 聚苯醚系樹脂組成物的製造方法
JP7170566B2 (ja) 樹脂組成物の製造方法
EP1431345A1 (en) Poly(arylene ether) composition
TWI438241B (zh) 聚苯醚系樹脂成形物的製造方法
JP3465969B2 (ja) 難燃性樹脂組成物の製造法
JPH07216100A (ja) 難燃樹脂材料製造用ペレット、及び難燃樹脂材料の製造方法
WO2001068766A2 (en) Flame retardant, high impact monovinylidene aromatic polymer composition
CN108329677B (zh) 聚苯醚系树脂组合物、聚苯醚系树脂颗粒以及聚苯乙烯系树脂颗粒的制造方法
CN107022184B (zh) 配管用成型品
JP6533456B2 (ja) 食品容器
JP3558381B2 (ja) 難燃樹脂組成物の製造方法
WO2022196340A1 (ja) ポリフェニレンエーテルペレット、及び、その製造方法
JP2023030683A (ja) スチレン系樹脂組成物及びスチレン系樹脂組成物の製造方法
JP2020175649A (ja) ポリフェニレンエーテル系樹脂組成物の製造方法
CN117062870A (zh) 高冲击强度热塑性组合物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080067837.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012520394

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858116

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127032712

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858116

Country of ref document: EP

Kind code of ref document: A1