WO2012036210A1 - 水系塗料組成物および該水系塗料組成物を用いた防錆方法 - Google Patents

水系塗料組成物および該水系塗料組成物を用いた防錆方法 Download PDF

Info

Publication number
WO2012036210A1
WO2012036210A1 PCT/JP2011/071015 JP2011071015W WO2012036210A1 WO 2012036210 A1 WO2012036210 A1 WO 2012036210A1 JP 2011071015 W JP2011071015 W JP 2011071015W WO 2012036210 A1 WO2012036210 A1 WO 2012036210A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
group
carbon atoms
coating
coating composition
Prior art date
Application number
PCT/JP2011/071015
Other languages
English (en)
French (fr)
Inventor
昌満 岡田
功 遠藤
Original Assignee
中国塗料株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国塗料株式会社 filed Critical 中国塗料株式会社
Priority to ES11825210.5T priority Critical patent/ES2539694T3/es
Priority to CN201180040137.4A priority patent/CN103068943B/zh
Priority to BR112013006118A priority patent/BR112013006118A2/pt
Priority to EP11825210.5A priority patent/EP2617786B1/en
Priority to JP2012534038A priority patent/JP5721725B2/ja
Priority to KR1020147036305A priority patent/KR20150008921A/ko
Priority to KR1020137007028A priority patent/KR101714826B1/ko
Publication of WO2012036210A1 publication Critical patent/WO2012036210A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/10Anti-corrosive paints containing metal dust
    • C09D5/106Anti-corrosive paints containing metal dust containing Zn
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Definitions

  • the present invention relates to a water-based paint composition, and more specifically, a water-based paint composition (water-based binder composition) which is a binder composition, and a water-based paint composition (water-based rust-proof paint composition) which is a rust-proof paint composition. Thing).
  • a water-based paint composition water-based binder composition
  • a water-based paint composition water-based rust-proof paint composition
  • the present invention also relates to a method for rust-proofing a base material such as a steel material using a water-based paint composition such as the water-based rust-proof paint composition.
  • solvent-based coating compositions contain various volatile organic solvents (organic solvents) in order to improve the dispersibility of a binder such as a polymer or to adjust the viscosity of the composition.
  • organic solvent may be used as a solvent in preparing the polymer component of the binder. Therefore, the organic solvent may be contained in the coating composition together with the polymer component as a binder.
  • solvent-based ones are mainly used in coating compositions containing a hydrolytic condensate (polyorganosiloxane) or metal oxide of a silane compound as a binder.
  • a solvent-based rust preventive coating composition containing tetraethyl silicate (binder), zinc dust (rust preventive pigment), and a large amount of organic solvent is known.
  • the organic solvent can uniformly dissolve the binder, it is possible to reduce the occurrence of excessive thickening and insoluble matter (gel). That is, the organic solvent is considered to have an effect of suppressing a local deterioration reaction or decomposition reaction of the coating composition that is likely to occur in an excessively thickened portion or a non-dissolved material (gel).
  • the organic solvent can chemically stabilize the coating composition.
  • the composition can be easily applied using various known methods.
  • the organic solvent is efficiently volatilized from the applied composition, so that the coating composition is cured in a relatively short time to form a coating film.
  • a solvent-based coating composition containing a hydrolytic condensate of a silane compound as a binder is suitably used as a solvent-based binder composition or a solvent-based anticorrosive coating composition. Moreover, the uses of these compositions are diverse.
  • this solvent-based binder composition is specifically a coating agent used on the surface of a substrate such as mica plate, glass laminate, glass sleeve, rubber, plastic, leather, asbestos binder, asbestos Anti-scattering curing agent and surface reinforcing agent for spraying materials, primary curing agent for anti-scattering when removing asbestos spraying material, metallic anti-corrosion pigment, anti-fouling agent, surface protective agent, stone anti-staining agent and repellent Applications as a water solution and heat resistant paint, additives thereof, binders and additives of various paints, and the like can be mentioned.
  • a substrate such as mica plate, glass laminate, glass sleeve, rubber, plastic, leather, asbestos binder, asbestos Anti-scattering curing agent and surface reinforcing agent for spraying materials, primary curing agent for anti-scattering when removing asbestos spraying material, metallic anti-corrosion pigment, anti-fouling agent, surface protective agent, stone anti-staining agent and repellent Applications as a water solution and
  • the main uses of the solvent-based anticorrosive coating composition containing the binder include primary anticorrosive coating compositions and thick-coated inorganic zinc coating compositions (dry film thickness: for example, 50 to 200 ⁇ m). .
  • the primary rust preventive paint composition is rusting on the surface of steel used in automobiles, home appliances, large steel structures (ships, bridges, plants, etc.), transport containers, land tanks, etc. during manufacture and construction. It is used for the purpose of preventing the primary.
  • Examples of the primary rust preventive paint composition include organic primary rust preventive paint compositions such as wash primer, non-zinc epoxy primer, and epoxy zinc rich primer, and inorganic zinc primary rust preventive paint compositions. Among these, inorganic zinc primary rust preventive coating compositions having excellent weldability are widely used.
  • the thick-coated inorganic zinc coating composition is used in cargo tanks and ballast tanks of ships such as chemical tankers and methanol special ships. These cargo tanks and ballast tanks are caused by load resistance to cargoes such as refined petroleum products and chemical products, anti-corrosion properties against tank washing water (fresh water, sea water), and distortion and temperature changes of the steel sheet caused by water pressure during ballast water injection. Mechanical properties that can sufficiently cope with the expansion and contraction of steel materials are required, but the above thick coated inorganic zinc coating composition exhibits these favorable properties.
  • the thick-coated inorganic zinc coating composition is suitably used in ballast tanks that require long-term corrosion resistance to seawater.
  • the solvent-based thick-coated inorganic zinc coating composition containing polyorganosiloxane has characteristics such as workability, physical properties such as coating strength and flexibility, and long-term anticorrosion properties compared to the epoxy resin-based coating composition. And inferior. Therefore, at present, epoxy resin coating compositions are widely used as thick-coated inorganic zinc coating compositions. Solvent-based coating compositions containing metal oxides as binders are also used as various coating agents, although not as much as coating compositions containing polyorganosiloxanes as binders.
  • VOC countermeasures reduction of environmental load
  • a solvent-free or low-solvent coating composition As means for eliminating the solvent or reducing the solvent, for example, high solidification has been proposed in which the solid content of a binder such as a polymer is increased or a reactive monomer is used as a diluent.
  • water or a surfactant as a diluent instead of an organic solvent (water dispersion prescription such as an emulsification prescription or a suspension prescription) has been studied.
  • the surfactant has a function of facilitating water dispersion of the binder and maintaining the dispersion state well for a certain period.
  • a coating composition in which water is dispersed by a forced method using a mechanical pressure in the presence of a surfactant, there is little sedimentation of components such as a binder in the coating composition.
  • stability in terms of less thickening of the composition is good, when a coating film is formed from the composition, the surface-active agent remains in the coating film, so that the top coat adhesion, etc. May get worse. Therefore, it is desirable that the binder be water soluble so that a surfactant may not be used.
  • such a coating composition is required to have good curability and drying properties when it is formed with a water-soluble coating, but it is extremely difficult to achieve both of these properties. .
  • the coating film formed from the composition also requires good weldability and cutability in addition to good water resistance, corrosion resistance, top coat adhesion, etc., but it is difficult to achieve both properties. It was.
  • water-based paint compositions water-based paint compositions
  • solvent-based paint compositions are disclosed in patent documents. 1-9.
  • the binder is a hydrolysis condensate (polyorganosiloxane) of a silane compound (patent documents 1 to 6) and a metal oxide sol (patents). It can be roughly divided into References 7-9). Further, in Patent Documents 1 to 5, the binder contained in the coating composition is a hydrolysis condensate prepared from alkoxysilane. In Patent Document 6, an amino group-containing silane coupling agent (amino group-containing silane compound) is used. The hydrolysis condensate prepared from Patent Document 1 (Japanese Patent Laid-Open No.
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-144020 discloses phosphoric acid, phosphorous acid, hypophosphorous acid in an aqueous solution containing a silane coupling agent (specifically, various alkoxysilanes) and hydrolysis condensates thereof.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-105401 discloses a water dispersibility containing a binder and a pigment obtained by reacting an amino group-containing alkoxysilane with an epoxy group-containing alkoxysilane in the presence of a relatively strong acid.
  • Patent Document 4 Japanese Patent Publication No.
  • Patent Document 5 International Publication WO2008 / 003695 pamphlet describes, in an aqueous solution, (a) a polymer formed from a 4-substituted alkoxysilane compound, a functional tri-substituted alkoxysilane compound and, if necessary, an aqueous colloidal silica dispersant.
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2008-150537
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2008-150537
  • a composition is described, specifically, a water-soluble or hydrolyzable amino group-containing silane coupling agent as a binder, at least one of tin and a tin-containing alloy having white rust prevention properties, and zinc.
  • Patent Document 7 Japanese Patent Publication No. 56-29904 discloses an inorganic film forming composition comprising water-dispersible colloidal silica, urea or thiourea, water-soluble lithium polysilicate, and zinc powder.
  • Patent Document 8 International Publication WO2008 / 128932 pamphlet discloses a coating composition comprising i) zinc powder and / or a zinc alloy, and ii) colloidal silica surface-treated with a silane compound under specific conditions. Yes.
  • Patent Document 9 Japanese Patent Publication No. 2005-510484 discloses an aqueous shop primer composition containing aqueous silica sol, zinc powder or zinc alloy as a binder.
  • JP 2002-121485 A JP 2000-144020 A JP 2002-105401 A Special table 2008-528741 International Publication WO2008 / 003695 Pamphlet JP 2008-150537 A Japanese Patent Publication No.56-29904 International Publication WO2008 / 128932 Pamphlet Japanese translation of PCT publication No. 2005-510484
  • the water-based paint compositions of these patent documents all have problems in various characteristics including problems of drying properties such as long-term curing and heating. The range will be limited.
  • the binder is a hydrolysis condensate of an alkoxysilane compound
  • the by-product after hydrolysis is alcohol, which is less corrosive or irritating and volatile. Therefore, it can be easily removed by distillation or the like, and the hydrolysis condensate is easily purified.
  • the obtained water-based coating composition can improve the properties such as drying (curing characteristics), water resistance, anticorrosion, and film strength in a well-balanced manner. could not.
  • water-based anticorrosive paint compositions containing such binders have not only these characteristics, but also rust-proofing properties and topcoat films. In this case, only insufficient properties were exhibited in terms of the properties (overcoating properties) and weldability.
  • the binder is a hydrolysis condensate of an amino group-containing alkoxysilane
  • the amino group reacts when preparing the binder (hydrolysis condensate). It acts as a catalyst, and the reaction for producing the hydrolysis condensate proceeds excessively. For this reason, problems such as gelation may occur during reaction or storage.
  • Patent Document 6 when the binder is not an alkoxysilane compound but a hydrolysis condensate of an amino group-containing silane, an amino group derived from the amino group-containing silane and zinc present in the binder The interaction with anti-corrosion pigments such as will become stronger.
  • the object to be coated is a steel material or the like, iron atoms are ionized to generate rust, but zinc is ionized by an acid, and the generated zinc ions prevent the ionization of the iron atoms to prevent rust. It is said to demonstrate.
  • the amino group derived from the amino group-containing silane contained in the binder interacts with zinc (perhaps zinc, an amphoteric metal, forms a complex with the amino group or a substance close thereto).
  • zinc perhaps zinc, an amphoteric metal, forms a complex with the amino group or a substance close thereto.
  • efficient ionization of zinc is inhibited, and as a result, the possibility of impairing the rust preventive action of zinc is increased. That is, in order to impart water solubility, the hydrolyzed condensate obtained from the amino group-containing alkoxysilane has an advantage in that it has good water solubility. Instead of improving the improvement of the rust-preventing effect, which is a problem of the above, it is reduced, and it cannot necessarily be said to be an effective composition.
  • Patent Documents 6 to 9 when the binder is an inorganic oxide sol, there seems to be room for improvement in properties such as drying properties, curing properties, water resistance, corrosion resistance, and coating strength. It is.
  • the surface of a coating film (coating layer) formed of an aqueous coating composition containing an alkali metal silicate (a mixture of silicon oxide and alkali metal oxide) as disclosed in Patent Document 7 is further overcoated.
  • an alkali metal silicate a mixture of silicon oxide and alkali metal oxide
  • various problems occur due to the action (alkalinity) of the alkali metal remaining on the surface of the coating layer. For example, the occurrence of blistering in the top coat film or the occurrence of white rust due to corrosion of zinc when the aqueous coating composition contains zinc.
  • the binder is an aqueous silica sol such as water glass or colloidal silica water dispersant (for example, Patent Documents 8 to 9), and the binder has a large content of excess ammonium compound or alkali metal oxide, Similar problems arise when the pH of the binder is on the alkali side.
  • the present inventors have studied acetoxysilane, ketoximesilane, and the like as raw material silanes. Especially, the reactivity is extremely high, but the reaction is irritating and corrosive.
  • a hydrolyzed condensate obtained by hydrolyzing and condensing a specific silane compound such as chlorosilane, which has been avoided with respect to the generation of hydrogen chloride gas, under a specific pH condition It has been found that the conventional problems can be solved by using it in a coating composition, and the present invention has been completed. That is, the present invention uses substantially the same dryness, curability and coating properties (coating properties) as those of a coating film formed from a solvent-based coating composition using a conventional organic solvent as a diluent while using water as a diluent solvent.
  • An object of the present invention is to provide a water-based coating composition that can exhibit an effect that cannot be achieved by a conventional water-based coating composition, such that a coating film having excellent film strength can be formed in a well-balanced manner.
  • a hydrolysis condensate obtained by hydrolysis and condensation reaction of a specific silane compound such as chlorosilane in the presence of a metal oxide sol is included, as described later, Interaction between the group and the metal oxide sol can also be expected, and a binder composition and a rust-preventive coating composition that can form higher strength coating film strength can be provided.
  • the water-based paint composition according to the present invention comprises a hydrolysis reaction and condensation of a silane raw material (a) containing a silane compound (a1) represented by the following formula (I) under conditions of pH 0.4 to 8.0. It is characterized by containing a binder (A) containing a hydrolysis condensate obtained by reaction and water (B).
  • R 1a to R 6a are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or a carbon number.
  • R a is hydrogen An atom or an alkyl group having 1 to 10 carbon atoms
  • R b is an alkylene group having 2 to 4 carbon atoms
  • c is an integer having 1 to 15 carbon atoms.
  • R 7a is an alkylene group having 1 to 10 carbon atoms), or —OR 8a (R 8a is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or 1 to 10 carbon atoms). Up to 10 alkenyl groups). , At least one of R 1a to R 6a is a halogen atom.
  • Y is an oxygen atom or an alkylene group having 1 to 10 carbon atoms.
  • the silane raw material (a) preferably contains a silane compound (a2) represented by the following general formula (II) in addition to the silane compound (a1).
  • R 1b to R 6b are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, Is an aryl group of 6 to 12, Z—R 7b — (Z is a hydroxy group, an epoxy group, an acryloxy group, a methacryloxy group, or R a ′ O— (R b ′ O) c ′-(R a ′ is A hydrogen atom or an alkyl group having 1 to 10 carbon atoms, R b ′ is an alkylene group having 2 to 4 carbon atoms, and c ′ is an integer from 1 to 15.
  • R 7b is an alkylene group having 1 to 10 carbon atoms
  • —OR 8b R 8b is an alkyl group having 1 to 10 carbon atoms, or 1 to 10 carbon atoms
  • Alkenyl group up to) hydroxyl group, or acyl
  • At least one of R 1b to R 6b is a hydroxyl group
  • —OR 8b group R 8b is an alkyl group having 1 to 10 carbon atoms
  • Z—R 7b — Z is an epoxy group
  • R 7b is an alkylene group having 1 to 10 carbon atoms.
  • Or an acyl group Or an acyl group.
  • Y ′ is an oxygen atom or an alkylene group having 1 to 10 carbon atoms.
  • the binder (A) contains the silane raw material (a) in the presence of a metal oxide sol (C) containing a metal oxide represented by the following chemical formula (III). It preferably contains a hydrolysis-condensation product obtained by hydrolysis reaction and condensation reaction, and the metal oxide.
  • M represents Si, Al or Ti.
  • P and r each independently represents an integer of 1 to 3.
  • At least one of R 1b to R 6b in the general formula (II) is preferably a glycidoxy group in view of water solubility and storage stability.
  • Y in the formula (I) is preferably an alkylene group having 1 to 10 carbon atoms.
  • the metal oxide sol (C) is preferably an anhydrous silicate sol.
  • the silicic anhydride sol is preferably a fumed silica sol.
  • the metal oxide sol (C) is a colloidal silica water dispersant
  • the colloidal silica water dispersant has a pH of 7 or less, and a Na 2 O content of 400 ppm or less. Preferably there is.
  • the metal oxide sol (C) is preferably a sol containing fumed alumina or fumed titania.
  • the aqueous coating composition of the present invention further contains a pigment, and the ratio ((PVC) / (CPVC)) of pigment volume concentration (PVC) to critical pigment volume concentration (CPVC) in the aqueous coating composition is greater than 1. It is preferable.
  • the water-based coating composition of the present invention preferably further contains a rust preventive pigment (D).
  • the rust preventive pigment (D) contains zinc powder and / or zinc alloy powder having an average particle diameter of 2 to 20 ⁇ m.
  • the water-based coating composition of the present invention preferably further contains metallic molybdenum and / or a molybdenum compound as the white rust inhibitor (E).
  • the aqueous coating composition of the present invention is preferably used as a binder composition.
  • the water-based paint composition of the present invention is preferably used as a rust preventive paint composition.
  • the water-based paint composition of the present invention is preferably a primary rust preventive paint composition.
  • the water-based paint composition of the present invention is preferably a thick-coated inorganic zinc paint composition.
  • the primary rust-prevention coating method for a steel material comprises applying the primary rust-prevention coating composition to the surface of the steel material, and then curing the applied coating composition to form a primary rust-prevention coating film. Is formed.
  • the method of rust-proof coating of steel materials is to apply the above thick-coated inorganic zinc paint composition on the surface of the steel material, and then cure the applied paint composition to form a thick-coated inorganic zinc rust-preventive coating film. It is characterized by making it.
  • the steel structure of the present invention is characterized in that it has a primary rust-preventing coating film formed from the primary rust-preventing coating composition on the surface of the steel material.
  • the steel structure of the present invention is characterized by having a thick-coated inorganic zinc anticorrosive coating film formed from the thick-coated inorganic zinc paint composition on the surface of the steel material.
  • the water-based coating composition according to the present invention has substantially the same drying property, curability and coating properties as a coating film formed from a solvent-based coating composition using a conventional organic solvent as a diluent while using water as a diluent solvent.
  • the rust-preventive coating composition is made of zinc as a rust-preventing coating film while using water as a diluent solvent.
  • Conventional water-based rust prevention that maintains both the rust-prevention properties inherent to rust-prevention pigments, and has both excellent weldability and cutting performance equivalent to those of conventional solvent-based rust-prevention paint compositions. The effect which was not able to be done with the coating film which consists of compositions can be exhibited.
  • the rust-preventing method of the present invention retains the rust-preventing property inherent to rust-preventing pigments such as zinc, and is almost as excellent as a rust-preventing coating film formed from a solvent-based rust-preventive coating composition.
  • a rust-preventing coating film having both excellent weldability and cutting performance on the surface of a base material such as a steel material.
  • FIG. 1 is a diagram showing an IR chart (after dehydration) of the binder composition of Example 1.
  • FIG. 2 is a GPC chart (after dehydration) of the binder composition of Example 1.
  • FIG. 3 is a diagram showing an Si 29 NMR chart of the binder composition of Example 1.
  • FIG. 4 is an IR chart (after dehydration) of the binder composition of Example 2.
  • 5 is a GPC chart (after dehydration) of the binder composition of Example 2.
  • FIG. 6 is a diagram showing an IR chart (after dehydration) of the binder composition of Example 3.
  • FIG. 7 is a GPC chart (after dehydration) of the binder composition of Example 3.
  • FIG. 8A shows a sandblasted plate (upper plate and lower plate) (steel plate for welding test) used in the weldability test of the top coat film formed from the primary anticorrosive paint composition of the example or comparative example.
  • FIG. 8B is a diagram showing a welding mode (outline of the welding method) carried out in the weldability test of the top coat film.
  • the aqueous coating composition according to the present invention is obtained by subjecting a silane raw material (a) containing the specific silane compound (a1) described below to a hydrolysis reaction and a condensation reaction under the conditions of pH 0.4 to 8.0.
  • the binder (A) containing a hydrolysis-condensation product and water (B) are contained.
  • Binder (A) The binder (A) comprises a silane raw material (a) containing a silane compound (a1) represented by the following general formula (I) as a silane raw material (a) under the condition of pH 0.4 to 8.0.
  • the hydrolysis condensate obtained by a hydrolysis reaction and a condensation reaction is included.
  • the binder (A) may contain an optional component excluding water, if necessary, in addition to the hydrolysis condensate, or may consist of only the hydrolysis condensate. Good.
  • the silane raw material (a) is a silane compound (a silane compound (a2), a silane compound (a3), etc.) other than the silane compound (a1) as described later, if necessary. May be included.
  • R 1a to R 6a each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or 6 carbon atoms.
  • Z—R 7a — (Z is a halogen atom, a hydroxy group, an epoxy group (eg, glycidoxy group, 3,4-epoxycyclohexyl group, etc.), acryloxy group, methacryloxy group, or R a O — (R b O) c — (R a is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, R b is an alkylene group having 2 to 4 carbon atoms, and c is 1 to 15 And R 7a is an alkylene group having 1 to 10 carbon atoms), or —OR 8a (R 8a is a hydrogen atom and has 1 carbon atom). Alkyl groups from 1 to 10, Or an alkenyl group having 1 to 10 carbon atoms). At least one of R 1a to R 6a is a halogen atom.
  • Y is an oxygen atom or an alkylene group having 1 to 10 carbon atoms.
  • M represents 0 or 1
  • p represents an integer of 0 or more.
  • the silane raw material (a) may consist of only the silane compound (a1) alone (that is, 100 parts by weight of the silane compound (a1) in 100 parts by weight of the silane raw material (a)). May be.) However, (1) To prevent the hydrolytic condensation reaction from proceeding rapidly due to the excessively high reactivity between the silane compound (a1) and water, and preventing the formation of water-insoluble products such as gels ( 2) To obtain an appropriate reactivity and to introduce an appropriate functional group, or (3) A compound having an appropriate molecular weight and structure can be obtained, and finally a desired effect (for example, adhesion to a substrate) In addition to the silane compound (a1), it is preferable to include a silane compound (a2) to be described later from the viewpoint that a water-based coating composition capable of forming a coating film capable of exhibiting an improvement in coating film strength) can be obtained.
  • the binder (A) comprises a hydrolysis condensate obtained by subjecting the silane raw material (a) to a hydrolysis reaction and a condensation reaction in the presence of a metal oxide sol (C) described later, and the metal. It is preferable that an oxide is included.
  • the obtained hydrolysis condensate is a single hydrolysis condensate having a structural unit derived from the silane compound (a1).
  • the silane raw material (a) contains a silane compound (a2) in addition to the silane compound (a1)
  • the resulting hydrolysis condensate is derived from these silane compounds (a1), (a2), etc.
  • the hydrolysis condensate is prepared by subjecting the silane raw material (a) to hydrolysis / condensation reaction in the presence of the metal oxide sol (C) described later, the binder (A) is obtained by hydrolysis. It is a composite containing the condensate and the metal oxide contained in the metal oxide sol (C).
  • the preparation containing the prepared hydrolysis condensate is usually a transparent aqueous solution (when the hydrolysis condensate is water-soluble) or a cloudy aqueous dispersion (the hydrolysis condensate is hardly water-soluble). If water dispersible).
  • the pH when the silane raw material (a) undergoes hydrolysis reaction and condensation reaction is 0.4 to 8.0, and the drying property and curability of the coating film and the coating film properties (coating film strength) ) Is more preferably pH 0.7 to 6.0, more preferably pH 0.9 to 5.0.
  • the pH condition refers to the fact that the silane raw material (a) is consistently subjected to hydrolysis reaction / condensation reaction within the above specific pH range from the start to the end of the reaction. Means not to deviate from.
  • the binder (A) comprises a hydrolysis condensate obtained by subjecting the silane raw material (a) to a hydrolysis reaction and a condensation reaction in the presence of a metal oxide sol (C) described later, and a metal oxide.
  • a hydrolysis condensate obtained by subjecting the silane raw material (a) to a hydrolysis reaction and a condensation reaction in the presence of a metal oxide sol (C) described later, and a metal oxide.
  • a silane raw material (a) containing methyltrichlorosilane as the silane compound (a1) and ⁇ -glycidoxypropyltrimethoxysilane as the silane compound (a2) described below is subjected to hydrolysis and condensation reaction to obtain a hydrolysis condensate.
  • the process in which a certain binder (A) is generated will be described as an example.
  • the reactions represented by the following chemical reaction formulas (i) to (iii) correspond to reactions in Example 2 described later.
  • methyltrichlorosilane and ⁇ -glycidoxypropyltrimethoxysilane are each hydrolyzed to generate silanol groups (Si—OH groups).
  • these hydrolysis reactions generally do not proceed at once, but seem to proceed step by step.
  • a dehydration condensation reaction is performed between the hydroxyl groups of the silanol groups (Si—OH groups) generated in the above reaction formulas (i) and / or (ii) to form siloxane Bonding (Si-O-Si) occurs.
  • the siloxane bond generated by the dehydration condensation reaction between the silanol group generated in the above reaction formula (i) and the silanol group generated in (ii) is shown in only one place for convenience. The other siloxane bonds are not explicitly shown.
  • a silanol group can produce a siloxane bond by random dehydration condensation reaction, without distinguishing what originates from reaction formula (i), and what originates in reaction formula (ii).
  • the pH may be adjusted with a silane compound having an acidic group such as an acetic acid group (CH 3 COO—) and a halogen atom such as a chlorine atom directly bonded to a Si atom as the silane compound (a1).
  • a silane compound having an acidic group such as an acetic acid group (CH 3 COO—) and a halogen atom such as a chlorine atom directly bonded to a Si atom as the silane compound (a1).
  • a silane compound can easily lower the pH because by-products of hydrogen halides such as hydrogen chloride and acidic substances such as acetic acid are by-produced by the hydrolysis reaction.
  • the pH may be adjusted according to the pH of the sol.
  • the hydrolysis and condensation reaction proceeds sufficiently even under non-catalytic conditions to obtain a hydrolyzed condensate.
  • the reaction system includes acid catalysts such as hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, formic acid, activated clay, zeolite, sodium hydroxide, potassium hydroxide, ammonia, tetraammonium hydroxide, etc.
  • Alkali catalyst Dibutyltin dilaurate, Dibutyltin dimaleate, Dibutyltin diacetate, Stanas octoate, Diiropropoxybisacetylacetone titanate, Aluminum metal butyrate, Aluminum isopropylate and other metal oxides, Iron oxide, Zinc oxide and other metal oxides A catalyst such as may be added.
  • the silane raw material (a) when the silane raw material (a) is composed only of the silane compound (a1) alone, the silane raw material may be subjected to a hydrolysis reaction and a condensation reaction in an organic solvent such as alcohols as necessary.
  • the binder (A) contains an organic solvent together with the hydrolysis condensate, and the aqueous paint composition of the present invention is prepared using the binder (A) containing such an organic solvent. May be.
  • the binder from which the organic solvent has been removed by means of adsorption removal with synthetic zeolite, distillation or distillation under reduced pressure, etc. It is preferable that the water-based coating composition of the present invention is prepared using (A).
  • the above hydrolysis reaction / condensation reaction is carried out safely and efficiently by appropriately using a commercially available reactor.
  • a reactor is selected according to the production amount and performance, and examples thereof include a batch reactor and a continuous reactor, and a combination reactor may be used.
  • the hydrolysis reaction and condensation reaction time of the silane compound (a1) (including silane compound (a2) as necessary) contained as the silane raw material (a) is preferably 1 hour to 18 hours, and preferably 3 hours to 10 hours is more preferable.
  • the silane compound (a1), the silane compound (a2) and the like can be hydrolyzed with water under appropriate conditions.
  • the hydrolysis and condensation reaction can be completed in the aging step at from 70 to 70 ° C.
  • the scale of the reaction (container) becomes as large as 2 kL to 10 kL, the process time may be greatly extended due to the difference in heat transfer efficiency between heating and cooling.
  • reaction time is not specifically limited.
  • the binder (A) In the presence of a metal oxide sol (C) described later, when a hydrolysis condensate obtained by hydrolysis reaction and condensation reaction and a metal oxide are included, the stability of the metal oxide is reduced (metal oxidation) It may cause gelation). On the other hand, when the reaction time is excessively long, a thermal deterioration reaction is accompanied, and a product having poor storage stability is obtained or gelation is caused.
  • reaction temperature of the hydrolysis reaction and the condensation reaction is preferably around 3 to 90 ° C., more preferably 5 to 80 ° C., and still more preferably from the viewpoint of securing an appropriate reaction rate and avoiding a thermal degradation reaction. Is about 8 to 70 ° C.
  • the reaction under the above conditions proceeds in a shorter time as the reaction temperature is higher, and on the contrary, it takes a longer time when the reaction temperature is lower.
  • hydrogen halide such as hydrogen chloride produced from the silane compound (a1) is accompanied by a considerable exotherm when dissolved in water. Consideration is made so that such heat generation can be controlled. For example, it is necessary to appropriately adjust the supply rate of the silane compound to the reaction tank (in the case of dropping through a funnel, the dropping rate). However, when the cooling device such as chiller or brine, which is a refrigerant having a temperature lower than that of industrial water, has sufficient cooling capacity, it is not necessary to make such a supply rate so much a problem, considering the reactivity of the silane compound, etc. It is determined.
  • the number average molecular weight of the hydrolyzed condensate is usually 140 to 500,000. Yes, preferably 200 to 100,000, more preferably 300 to 30,000 In such a molecular weight range, while maintaining the solubility in water, The curability can be exhibited at a satisfactory level.
  • the average particle of the composite composed of the metal oxide and the hydrolysis condensate is usually 1 to 500 nm, preferably Is 4 to 300 nm, more preferably 5 to 200 nm.
  • the composite is present in the stable region as colloidal particles, there is no concern about the gelation of the hydrolyzed condensate or the sedimentation of the components, the dispersibility is good as a binder, and the paint The drying property and curability of the coating film formed from the composition are also good.
  • the composite is not only a case where a metal oxide and a hydrolysis condensate are simply mixed (mixture), but also a metal oxide and a hydrolysis condensate via a chemical or physical bond. This includes cases where
  • silane compound (a1), silane compound (a2) and metal oxide sol (C) Silane compound (a1), silane compound (a2) and metal oxide sol (C)
  • silane compounds (a1) to (a4) and the metal oxide sol (C) will be described.
  • silane compound (a1) The silane compound (a1) contained in the silane raw material (a) is represented by the following general formula (I) (the structural formula is the following structural formula (I ′)).
  • R 1a to R 6a are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, An alkenyl group of up to 5, an aryl group of 6 to 12 carbon atoms, Z—R 7a — (Z is a halogen atom, a hydroxy group, an epoxy group (eg, glycidoxy group, 3,4-epoxycyclohexyl group, etc.), An acryloxy group, a methacryloxy group, or R a O— (R b O) c — (R a is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R b is an alkylene having 2 to 4 carbon atoms.
  • R 7a is an alkylene group having from 1 to 10 carbon atoms
  • R 8a is a hydrogen atom, the number of carbon atoms Alkyl group of from 1 to 10, or carbon atoms, is an alkenyl group having from 1 to 10.
  • At least one of R 1a to R 6a is a halogen atom.
  • Y is an oxygen atom or an alkylene group having 1 to 10 carbon atoms.
  • R 1a to R 6a is a hydrolyzable halogen atom,
  • the compound (a1) has good reactivity and is easily available.
  • Y is an oxygen atom or an alkylene group having 1 to 10 carbon atoms.
  • an alkylene group having 1 to 10 carbon atoms is preferable.
  • An alkylene group having 2 to 5 carbon atoms is more preferable.
  • the silane compound (a1) is a functional group directly bonded to the Si atom (in the general formula (I) and the structural formula (I ′), R 1a to R 6a ) are each independently a halogen atom (preferably a chlorine atom), an alkyl group having 1 to 10 carbon atoms, or —OR 8a (R 8a is an alkyl group having 1 to 10 carbon atoms).
  • R 1a to R 6a are halogen atoms (preferably chlorine atoms).
  • p is an integer of 1 to 2
  • m is 1
  • Y is preferably an alkylene group having 1 to 10 carbon atoms (preferably an alkylene group having 2 to 5 carbon atoms).
  • silane compound (a1) represented by the following general formula (I) (as the structural formula, the following structural formula (I ′)) will be shown.
  • chlorosilanes tetrachlorosilane, trichlorosilane, methyltrichlorosilane, ethyltrichlorosilane, vinyltrichlorosilane, n-propyltrichlorosilane, i-propyltrichlorosilane, n-butyltrichlorosilane, sec-butyltrichlorosilane, t -Butyltrichlorosilane, n-pentyltrichlorosilane, n-hexyltrichlorosilane, n-octyltrichlorosilane, methyldichlorosilane, dimethyldichlorosilane, methylethyldichlorosilane, methylvinyldichlorosilane, dimethylchlorosilane, diethylchlorosilane, trimethylchlorosilane, Vinyl
  • the silane compound (a1) is a silane compound in which the chlorine atom of these chlorosilanes is substituted with fluorine, bromine, or iodine, that is, fluorosilanes such as trimethylfluorosilane, trimethylbromosilane, trimethyliodosilane, and bromosilanes.
  • fluorine, bromine, or iodine that is, fluorosilanes such as trimethylfluorosilane, trimethylbromosilane, trimethyliodosilane, and bromosilanes.
  • iodosilanes may be used.
  • Silane compounds in which the chlorine atom of the above chlorosilanes is substituted with a fluorine atom, a bromine atom or an iodine atom are commercially available.
  • a silane compound (a1) having an alkoxy group together with a halogen atom is also useful as a functional group directly bonded to the Si atom.
  • these silane compounds (a1) include methyldichloromethoxysilane, methylchlorodiethoxysilane, and methyldimethoxy.
  • Chlorosilane methyldi i-propoxychlorosilane, ethyl n-butoxydibromosilane, dimethoxychlorosilane, ⁇ -chloropropyltrimethoxysilane, ⁇ -chloropropyltriethoxysilane, ⁇ -chloropropyltripropoxysilane, ⁇ -chloropropylmethyldimethoxysilane, ⁇ -chloropropylmethyldiethoxysilane, ⁇ -chloropropyldimethylethoxysilane, ⁇ -chloropropylethyldimethoxysilane, ⁇ -chloropropylethyldiethoxysilane, etc.
  • the silane compound (a1) may be a polysilane such as disilanes (when m is 0 and p is an integer of 1 or more in the general formula (I) and the structural formula (I ′)). Useful.
  • polysilanes include alkylene group-containing disilyl compounds such as disilanes such as trimethyltrichlorodisilane, dimethyltetrachlorodisilane, trimethyltrimethoxydisilane, and dimethyltetramethoxydisilane.
  • disilylethanes produced by an addition reaction between a disilane compound using platinum or a platinum compound as a catalyst and a silane compound such as vinylchlorosilane, allylchlorosilane, or a hydrogen atom-containing chlorosilane, Silylpropanes are also useful compounds as the silane compound (a1).
  • -CH CH 2
  • -CH 2 -CH CH 2
  • the functional group to be displayed is omitted.
  • examples of the disilane compound as the silane compound (a1) include disilylalkyls (for example, disilylethanes, disilylpropanes, disilylbutanes, etc.).
  • disilylethanes examples include Cl 3 SiCH 2 CH 2 SiCl 3 , (CH 3 O) 2 ClSiCH 2 CH 2 SiCl 3 , (CH 3 O) 3 SiCH 2 CH 2 SiCl 3 , Cl (CH 3 O) 2 SiCH 2 CH 2 Si (CH 3 O) Cl 2, Cl (C 2 H 5 O) 2 SiCH 2 CH 2 Si (C 2 H 5 O) Cl 2, (CH 3 O) 3 SiCH 2 CH 2 Si (C 2 H 5 O) 3, Cl 2 (CH 3) SiCH 2 CH 2 SiCl 3, (CH 3 O) 2 ClSiCH 2 CH 2 Si (CH 3) Cl 2, (CH 3 O) 2 (CH 3) SiCH 2 CH 2 Si (CH 3) Cl 2, Cl 2 (C 6 H 5) SiCH 2 CH 2 SiCl 3, (CH 3 O) 2 (C 6 H 5) SiCH 2 CH 2 Si (CH 3 O) Cl 2, compounds such as Cl 2 (C 6 H 5) SiCH 2 CH 2 Si (C 2 H 5 O) 3 It may also be mentioned.
  • disilylpropanes examples include (C 6 H 5 ) (CH 3 ) ClSiCH 2 CH 2 CH 2 Si (CH 3 ) Cl 2 , (C 2 H 5 O) 2 (CH 3 ) SiCH 2 CH 2 CH 2 Si (CH 3 ) Cl 2 , (C 2 H 5 O) 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) Cl 2 , (CH 3 O) 3 SiCH 2 CH 2 CH 2 Si (C 2 H 5 O) 3 , (C 2 H 5 O) 3 SiCH 2 CH 2 CH 2 Si (C 2 H 5 O) Cl 2 , (C 2 H 5 O) 3 SiCH 2 CH 2 CH 2 SiCl 3 , Cl 3 SiCH 2 CH 2 CH 2 SiCl 3 , (CH 3 O) 3 SiCH 2 CH 2 CH 2 SiCl 3 , Cl (CH 3 O) 2 SiCH 2 CH 2 CH 2 SiCl 3 , Cl (CH 3 O) 2 SiCH 2 CH 2 CH 2 SiCl 3 , Cl (CH 3 O) 2 SiCH 2 CH 2 CH 2
  • disilylbutanes examples include (CH 3 O) 2 ClSiCH 2 CH 2 CH 2 CH 2 SiCl 3 , (C 2 H 5 O) 3 SiCH 2 CH 2 CH 2 CH 2 SiCl 3 , Cl (CH 3 O ) 2 SiCH 2 CH 2 CH 2 CH 2 Si (CH 3 O) Cl 2 , (C 2 H 5 O) 3 SiCH 2 CH 2 CH 2 CH 2 Si (C 2 H 5 O) Cl 2 , (CH 3 O ) 3 SiCH 2 CH 2 CH 2 CH 2 Si (C 2 H 5 O) 3, (C 2 H 5 O) 3 SiCH 2 CH 2 CH 2 CH 2 Si (CH 3) Cl 2, (C 2 H 5 O ) 2 (CH 3 ) SiCH 2 CH 2 CH 2 CH 2 Si (CH 3 ) Cl 2 , (C 6 H 5 ) (CH 3 ) ClSiCH 2 CH 2 CH 2 CH 2 Si (CH 3 ) Cl 2 Also mentioned.
  • chlorosilanes that is, R 1a to R 6a in the general formula (I) and the structural formula (I ′) At least one of them is a chlorine atom), and among chlorosilanes, tetrachlorosilane and methyltrichlorosilane are more preferable.
  • silane compound (a2) The silane raw material (a) may contain, in addition to the silane compound (a1), a silane compound (a2) represented by the following general formula (II) (the structural formula is the following structural formula (II ′)). Good.
  • R 1b to R 6b each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or 2 to 5 carbon atoms.
  • Alkenyl group, aryl group having 6 to 12 carbon atoms, Z—R 7b — Z is a hydroxy group, an epoxy group (eg, glycidoxy group, 3,4-epoxycyclohexyl group, etc.), acryloxy group, methacryloxy group) group, or R a'O- (R b'O) c'-
  • R a ' is a hydrogen atom or an alkyl group of from 1 carbon atoms, up to 10, R b' is from 4 to 2 carbon atoms
  • An alkylene group, c ′ is an integer from 1 to 15.)
  • R 7b is an alkylene group having from 1 to 10 carbon atoms.
  • —OR 8b R 8b is alkyl of from
  • Y ′ is an oxygen atom or an alkylene group having 1 to 10 carbon atoms.
  • M ′ represents 0 or 1
  • p ′ represents an integer of 0 or more (for example, m ′ is 1 and p ′ is an integer of 0 to 10 (preferably 0 to 5)).
  • silane compound (a2) is an epoxy group because of its good water solubility and storage stability.
  • R 1b to R 6b is Z—R 7b — (Z is an epoxy group)
  • R 7b is preferably an alkylene group having 1 to 10 carbon atoms), more preferably a glycidoxy group as the epoxy group (more preferably a silane compound (a2) having a glycidoxy group).
  • the drying properties (curing characteristics) of the coating film formed from the coating composition etc. ⁇ -glycidoxypropyltrimethoxysilane is more preferred.
  • silane compound (a2) having a hydroxyl group (—OH) examples include trimethylsilanol, triethylsilanol, triisopropylsilanol, trinormal butylsilanol and the like.
  • silane compound (a2) having an alkoxy group examples include trimethoxysilane, triethoxysilane, tri-n-propoxysilane, tri-i-propoxysilane, n- Butoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltriisopropoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, Vinyltriisopropoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldiisopropoxysilane, dimethylmethoxyethoxysilane, dimethylmethoxyisopropoxysilane, methylethyldimeth
  • Examples of the silane compound (a2) having an epoxy group include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycol.
  • Sidoxypropyltri-i-propoxysilane ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -glycidoxypropyldimethylethoxysilane, ⁇ -glycidoxypropylethyldimethoxysilane, ⁇ -glycidoxypropylethyldiethoxysilane, ⁇ - (3,4 epoxycyclohexyl) ethyltrimethoxysilane, ⁇ - (3,4epoxycyclohexyl) ethyltriethoxysilane, ⁇ - (3,4 epoxyepoxycyclohexyl) ethyltrii -Propoki Examples include silane, ⁇ - (3,4-epoxycyclohexyl) ethylmethyldimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) e
  • silane compound (a2) having an acyl group examples include methyltriacetoxysilane, ethyltriacetoxysilane, vinyltriacetoxysilane, dimethyldiacetoxysilane, triethylmethoxysilane, and tetraacetoxysilane.
  • Examples of the oligomer type silane compound (a2) include tetramethoxydisiloxane, tetraethoxydisiloxane, dimethyltetramethoxydisiloxane, methylethyltetramethoxydisiloxane, trimethylpentamethoxytrisiloxane, and tetramethyltetramethoxycyclotetrasiloxane. It is done.
  • polymer type silane compound (a2) examples include hydrolysis condensates (alkyl silicates) such as orthoethoxysilane, orthomethoxysilane, orthoisopropoxysilane, methyltrimethoxysilane, and methyltriethoxysilane.
  • hydrolysis condensates alkyl silicates
  • silane compounds examples include ethyl silicate 40, ethyl silicate 45, methyl silicate 51, and methyl silicate 56 (all manufactured by Tama Chemical Industries). Of these, hydrolyzed condensates of methyltrimethoxysilane and methyltriethoxysilane are preferred from the standpoint of availability and reactivity.
  • the content of the silane compound (a2) is preferably 10 to 5000 parts by weight, more preferably 30 to 3000 parts by weight, and still more preferably 50 to 2000 parts by weight with respect to 100 parts by weight of the silane compound (a1). Part.
  • the content of the silane compound (a2) is less than the above range, the polymerization derived from the silane compound (a2) with respect to the number of polymerization reaction points (OH groups generated by hydrolysis) derived from the silane compound (a1) Since the number of reaction points (OH groups generated by hydrolysis) is too small, the ratio of the structural units derived from the silane compound (a2) among the structural units in the obtained hydrolysis condensate is reduced. Therefore, it may be difficult to obtain an appropriate molecular weight or structure.
  • the number of polymerization reaction points (OH groups generated by hydrolysis) derived from the silane compound (a2) is different from the number of polymerization reaction points (generated by hydrolysis) derived from the silane compound (a1). Since the number of (OH groups) is too small, the ratio of the structural units derived from the silane compound (a1) among the structural units in the obtained hydrolysis condensate is small, and appropriate molecular design cannot be performed.
  • the ratio of the tetrafunctional silane compound to 100 parts by weight of the trifunctional silane compound is preferably 0.1 to 200 parts by weight, more preferably 1 to 100 parts by weight, and still more preferably 5 to 5. 80 parts by weight.
  • the tetrafunctional silane compound when the tetrafunctional silane compound is less than the above range, the tetrafunctional silane compound with respect to the number of polymerization reaction points (OH groups generated by hydrolysis) derived from the trifunctional silane compound. Since the number of polymerization reaction points (OH groups generated by hydrolysis) derived from is too small, it is difficult to obtain an appropriate molecular weight and structure. Results in inferior results in sedimentation and gelation.
  • the trifunctional silane compound and the tetrafunctional silane compound are defined as R 1b to R 6b in the general formula (II) and the structural formula (II ′) are hydroxyl groups and —OR 8b groups (R 8b is carbon number) Is an alkyl group of 1 to 10), and a silane compound having three and four functional groups selected from the group consisting of acyl groups, respectively.
  • the water-solubility of the hydrolyzed condensate is appropriately designed based on the molecular structure of the hydrolyzed condensate to be prepared (number of cross-links, molecular weight distribution, type of end groups, presence of hydrolyzing end-groups with condensation reactivity, molecular weight). And the storage stability can be improved, and the curability of the coating film formed from the coating composition can be adjusted.
  • the silane raw material (a) contains the silane compound (a1), preferably the silane compound (a1) and the silane compound (a2), but if necessary, the silane compound (a1) and the silane compound Unlike (a2), and a hydrolyzable and condensable silane compound (a silane compound (silane compound (a3)) that forms a hydrolytic condensate by a hydrolysis reaction and a condensation reaction with the silane compound (a1).
  • the silane compound (a3) include silane compounds (oxime-based silane compounds) in which at least one ketoxime group (for example, the following functional group) is bonded to a Si atom.
  • the metal oxide sol (C) contains a metal oxide represented by the following chemical formula (III), and may contain a solid solution of the metal oxide and various doping compounds.
  • the particle diameter of the metal oxide refers to the average particle diameter measured based on “(4) Measurement of average particle diameter” in “ ⁇ Evaluation method / Evaluation criteria>” below.
  • Examples of the metal oxide sol (C) include a colloidal solution (sol) containing silica (SiO 2 ), alumina (Al 2 O 3 ), and titania (titanium oxide) as the metal oxide.
  • the silane raw material (a) It is subjected to hydrolysis reaction and condensation reaction.
  • metal oxide sol alumina sol containing alumina (aluminum oxide)
  • alumina sol alumina (aluminum oxide)
  • alumina sol alumina sol
  • alumina sol alumina sol
  • alumina sol alumina sol
  • alumina sol alumina sol
  • alumina sol alumina sol
  • alumina sol alumina sol
  • alumina sol alumina sol
  • alumina sol aluminum oxide
  • -10A “(manufactured by Kawaken Fine Chemical Co., Ltd., colloidal aqueous solution containing 10% by weight boehmite alumina per 100% by weight of sol.
  • the metal oxide sol (titania sol) containing titania (titanium oxide) include “VP Disp. W740X, VP Disp.
  • W2730X manufactured by Nippon Aerosil Co., Ltd.
  • These products have a content of 10 to 40% by weight using a powerful disperser, and once the particles of fumed alumina or fumed titania synthesized by the flame hydrolysis method (Evonik industries AG catalog) are used as water.
  • the particle size of the aggregated particles produced by agglomeration of these particles (primary particles) is uniform and stable, but the particle size is colloidal silica synthesized by a wet method. Is generally larger than
  • the level of impurities is 2 to 3 orders of magnitude less than that of the wet method made by granulating from water, but it is difficult to completely disperse to the primary particles.
  • the diameter is about 5 to 10 times that of the wet method, and the physical properties of the coating film obtained from the coating composition using it may be inferior, but it is advantageous for fine adjustment of rust prevention.
  • the metal oxide sol (C) containing anhydrous silicic acid is an aqueous dispersion of anhydrous silicic acid (so-called silicon dioxide (silica)) and is referred to as anhydrous silicic acid sol.
  • the anhydrous silicic acid sol may be prepared by a known method. Among them, the anhydrous silicic acid sol prepared by using a silica slurry, a colloidal silica water dispersant or water glass prepared by a wet method as a raw material is 10 The primary particle size is about ⁇ 20 nm.
  • silica particles contained in such a sol is almost the same regardless of the wet or dry (smoke) preparation conditions, and the components contained in the sol are also composed of impurities in the alkali metal oxide composition ratio.
  • an anhydrous silicic acid sol prepared by a wet method is preferred from the viewpoint that the chemical properties are almost the same.
  • the types of silicic anhydride sols are spreading, and not only the above-described wet method, but also an aqueous dispersion of dry silica prepared by a dry method is manufactured and marketed.
  • Such a high-purity silicic acid synthesized, not a natural product, is widely used because it exhibits chemically and physically stable characteristics. From this viewpoint, an aqueous dispersion of dry silica is also preferable as the silicic acid sol.
  • fumed silicic acid sols are preferable from the viewpoint that there are few impurities such as Na 2 O.
  • the fumed silicic acid sol include those obtained by producing fumed silica by an existing method and then uniformly dispersing the fumed silica in water using a powerful disperser.
  • fumed silicic acid sols examples include “Aerodisp W7215S”, “Aerodisp WK7330”, “Aerodisp W7512S” manufactured by Nippon Aerosil Co., Ltd., and the like.
  • These fumed silicic acid sols are sols obtained by dispersing fumed silica synthesized by a flame hydrolysis method in water.
  • SiO 2 content in ⁇ fog silica in is, for example, 99.8% by weight or more.
  • the pH of these fumed silicic acid sols is, for example, 2 to 6, and the content of silicic anhydride in the sol is, for example, about 5 to 50% by weight.
  • metal oxide sol (C) a series of anhydrous silicic acid sols generally called colloidal silica water dispersants can be used, but in particular, the degree of purification is raised, and the content of Na 2 O in the sol is 400 ppm. Those reduced to (mass ppm) or less are preferred.
  • the metal oxide sol (C) is a colloidal silica water dispersant (silica sol),
  • the colloidal silica aqueous dispersant preferably has a pH of 7 or less and a Na 2 O content of 400 ppm or less.
  • colloidal silica water dispersants examples include “Snowtex O”, “Snowtex OL”, “Snowtex O-33”, and “Snowtex O-40” manufactured by Nissan Chemical Co., Ltd. These have an SiO 2 content in the solid content (100 wt%) of 99 wt% or more and Na 2 O of 400 wt ppm or less, and the pH in the colloidal silica water dispersant is 2 to 4, and on the acidic side is there.
  • the average particle size of silica particles contained in these colloidal silica aqueous dispersants is 4 to 6 nm (Snowtex OX), 8 to 11 nm (Snowtex OS), 10 to 20 nm (Snowtex O), 20 to 30 nm (Snow). Tex O-40) or 40 to 50 nm (Snowtex OL), and the silica (SiO 2 ) concentration is about 10 to 40% by weight per 100% by weight of the colloidal silica water dispersant.
  • the metal oxide sol (C) containing silicic anhydride is preferably an aqueous dispersion of silica particles in which alumina is incorporated as a doping oxide.
  • examples of such metal oxide sol (C) include “Aerodisp. W1714” (manufactured by Nippon Aerosil Co., Ltd.) and “Aerodisp. W1824” (manufactured by Nippon Aerosil Co., Ltd.).
  • the content of the metal oxide in the metal oxide sol (C) is not particularly limited, but in a commercial product, it is usually about 10 to 40% by weight per 100% by weight of the metal oxide sol.
  • the content of the hydrolytic condensate per 100 parts by weight of the metal oxide sol (C) is preferably 0.05 to 200 parts by weight, more preferably 0.2 to 50 parts by weight, The amount is preferably 0.5 to 30 parts by weight.
  • the content of the hydrolysis condensate is typically 0.1 to 150 parts by weight. In this case, the content of the hydrolysis condensate is preferably 0.5 to 80 parts by weight, more preferably 1 to 50 parts by weight.
  • the pH of the metal oxide sol (C) varies depending on the commercially available product, but when it is acidic, the anticorrosion paint, in particular, the storage stability of the paint is improved, or the dried coating film formed using the paint.
  • the anticorrosive property of the silane compound (a1) becomes good, and it is easy to adjust the pH conditions in the hydrolysis / condensation reaction of the silane compound (a1) to the range of 0.4 to 8.0.
  • the pH range in the hydrolysis / condensation reaction of the silane compound (a1) is preferably 7.0 or less, more preferably 5.0 or less, and further preferably 4.0 or less.
  • the pH In order to prevent agglomeration of metal oxide colloidal particles, it is necessary that the pH be 0.4 or more. If the pH is less than 0.4, agglomeration of metal oxide colloidal particles is preferable. Incurs no results.
  • an acid may be added to adjust the pH range.
  • Specific examples of the acid to be added include hydrochloric acid, acetic acid, phosphoric acid, sulfuric acid, nitric acid, formic acid, propionic acid, acrylic acid, methacrylic acid, chlorous acid, hypochlorous acid, and sulfurous acid.
  • an acid diluted with water it is preferable to use as appropriate.
  • the primary rust preventive coating composition is required to have good adhesion to a coating film formed on the coating film made of the coating composition, together with a rust preventing effect including a long-term white rust preventing effect.
  • the coating composition itself having a rust preventive effect is known, there is no known composition that achieves both weldability and good cutability. Specifically, when a substrate with a coating film formed using a coating composition is subjected to welding or melt cutting, the coating film is exposed to high temperature conditions (at least 800 ° C.
  • a highly reactive chlorosilane such as chlorosilane (at least one of R 1a to R 6a in the general formula (I) and the structural formula (I ′)) is used.
  • a binder (A) comprising an oxide. In this case, since the binder (A) is exposed to extremely low pH conditions, there is a concern about aggregation of the metal oxide sol (C), so the amount of the chlorosilanes added is appropriately limited. .
  • the coating composition of the present invention may contain an alkali silicate (C ′).
  • the alkali silicate (C ′) include lithium silicate, sodium silicate, ammonium silicate and the like.
  • lithium silicate include lithium silicate 35, lithium silicate 45, lithium silicate 75, ammonium silicate (all manufactured by Nippon Chemical Industry), sodium silicate 1 type, sodium silicate 2 types (manufactured by Sanko Colloid Chemical) ) And the like.
  • the amount of this component added is usually 0 to 1 part by weight, preferably 0 to 0.5 part by weight, more preferably 0 to 0.3 part by weight, based on 1 part by weight of the binder (A).
  • the alkali silicate (C ′) contributes to an increase in the molecular weight of the produced organopolysiloxane (hydrolysis condensate obtained by hydrolysis reaction and condensation reaction of the silane raw material (a)), and a binder (A It is effective for improving the coating strength and water resistance of a dry coating formed from a coating composition containing
  • Water (B) The water-based coating composition of the present invention contains water (B) in order to dissolve or disperse the hydrolysis condensate.
  • water (B) is water used in the hydrolysis reaction of the silane compound (a1) or the like produced by the condensation reaction when preparing the binder (A) which is the hydrolysis condensate. It may also be water added during the preparation process of mixing the binder (A) and “other components” described later, such as the optional anticorrosive pigment (D). .
  • Water (B) is contained as an essential component of the coating composition, functions as a solvent or dispersant for the binder (A), and has a function of stably holding the binder (A) in the aqueous coating composition. Therefore, the viscosity of an appropriate water-based coating composition can be maintained, and workability such as spraying, brushing, and roller can be favorably maintained. From such a viewpoint, when preparing the water-based coating composition of the present invention, the water (B) is usually 100 to 10,000 parts by weight with respect to 100 parts by weight of the binder (A). The amount is preferably 200 to 5,000 parts by weight, more preferably 300 to 2,000 parts by weight.
  • the water-based coating composition of the present invention contains water with respect to 100 parts by weight of the nonvolatile content of the water-based coating composition.
  • (B) is usually 3 to 5000 parts by weight, preferably 6 to 2500 parts by weight, and more preferably 10 to 1000 parts.
  • the non-volatile content of the water-based coating composition is a non-volatile content obtained by removing 1.5% of the water-based coating composition under a condition of 108 ° C. for 3 hours to remove volatile components.
  • the water-based coating composition of the present invention has the following antirust pigment (D), white rust inhibitor (E), hydrophilic organic solvent (F) ), Inorganic compound powder (G), and other paint additives (H).
  • the aqueous coating composition of the present invention preferably contains a rust preventive pigment (D).
  • the water-based paint composition containing the rust preventive pigment (B) is preferably used as a water-based rust preventive paint composition.
  • the rust preventive pigment (D) is not particularly limited as long as it has rust preventive properties, and examples thereof include zinc powder and zinc alloy powder.
  • examples of the zinc alloy powder include zinc magnesium alloy, zinc molybdenum alloy, zinc beryllium alloy and the like. Moreover, these may be used individually by 1 type and may use 2 or more types together.
  • the rust preventive pigment (D) is a zinc dust and / or zinc alloy powder having an average particle diameter of 2 to 20 ⁇ m from the viewpoint of rust prevention and white rust suppression. It is preferable that The average particle diameter is a value measured by a laser method (for example, using LASER MICRON SIZER 7000S).
  • the content of zinc powder and / or zinc alloy powder is determined by the binder (A) 100 when preparing the water-based paint composition of the present invention.
  • the amount is preferably 30 to 800 parts by weight, more preferably 40 to 600 parts by weight, and still more preferably 70 to 400 parts by weight with respect to parts by weight. If this content is less than the lower limit, sufficient rust preventive properties cannot be obtained, and if it is more than the upper limit, the viscosity increases, which is not only disadvantageous for stirring and coating, but also significantly increases costs. Will be invited.
  • the content of zinc powder and / or zinc alloy powder is the same as that of the water-based rust preventive paint composition.
  • the amount is preferably 10 to 90 parts by weight, more preferably 20 to 80 parts by weight with respect to 100 parts by weight of the nonvolatile content.
  • the non-volatile content of the water-based anticorrosive coating composition is a non-volatile content obtained by removing 1.5% of the water-based anti-corrosive coating composition at 108 ° C. for 3 hours and removing volatile components.
  • White rust inhibitor (E) When the water-based anticorrosive coating composition of the present invention contains zinc dust or zinc alloy powder as the anticorrosive pigment (D) and is used as a primary anticorrosive coating composition (shop primer), the presence of an alkali metal oxide is particularly important. Under alkaline conditions such as, after forming a rust-preventing coating film with the composition, zinc or zinc alloy in the coating film may undergo an oxidation reaction to generate zinc oxide. This zinc oxide forms white rust (white rust) on the surface of the coating film, and when a top coating film is formed on the surface of the coating film with a top coating, adhesion between the coating films decreases. Sometimes.
  • the aqueous rust preventive coating composition of the present invention further includes a zinc antioxidant (white rust inhibitor (E)). It is preferable to contain.
  • white rust inhibitor (E) include molybdenum (metal molybdenum) and / or a molybdenum compound.
  • molybdenum trioxide molybdenum oxide, molybdenum sulfide, molybdenum halide, molybdic acid, ammonium molybdate, phosphomolybdic acid, silicomolybdic acid, alkali metal salt of molybdic acid, alkali metal salt of phosphomolybdic acid , Alkali metal salt of silicomolybdic acid, alkaline earth metal salt of molybdic acid, alkaline earth metal salt of phosphomolybdic acid, alkaline earth metal salt of silicomolybdic acid, manganese salt of molybdic acid, manganese salt of phosphomolybdic acid And manganese salt of silicomolybdic acid, basic nitrogen-containing compound salt of molybdic acid, basic nitrogen-containing compound salt of phosphomolybdic acid, and basic nitrogen-containing compound salt of silicomolybdic acid.
  • the content of the white rust inhibitor (E) is preferably 0.05 parts by weight to 5 parts by weight, more preferably 0.3 parts by weight to 3 parts by weight with respect to 100 parts by weight of the rust preventive pigment (D). More preferred is 0.5 to 2.0 parts by weight.
  • the content of the white rust inhibitor (E) is in the above range, sufficient zinc antioxidant action can be obtained, and the activity of the rust preventive pigment (D) can be prevented from lowering its activity. It is possible to maintain the rust prevention property.
  • Hydrophilic organic solvent (F) The water-based coating composition of the present invention may contain a hydrophilic organic solvent (E) as necessary.
  • hydrophilic organic solvent (F) examples include acetone, methyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, 2-butoxyethanol, 2-ethoxyethanol, 1-methoxy-2-propanol, 1- Ethoxy 2-propanol, ethyl alcohol, 2-methoxyethanol, diacetone alcohol, dioxane, ethylene glycol, ethylene glycol diethyl ether, ethylene glycol dimethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol And monohexyl ether. These may be used alone or in combination of two or more.
  • the water-based coating composition of the present invention contains a hydrophilic organic solvent (F), the antirust pigment (D) and the inorganic powder (G) described later are improved in water solubility and water dispersibility, and coated. It is preferable in terms of improving wettability with an object (base material) and improving drying and curability of the coating film. Further, even when the water-based coating composition of the present invention contains a hydrophilic organic solvent (F), the solubility and water dispersibility of the inorganic powder (G) described later in water, and the object to be coated (base material) From the viewpoint of improving the wettability of the coating film and improving the coating film drying property of the coating film.
  • the amount of the hydrophilic organic solvent (F) added is large, although solubility in water and water dispersibility are improved, it is not preferable from environmental regulations such as VOC reduction. Is 100% by weight, it is desirable to keep it below 15% by weight, preferably below 10% by weight, more preferably below 5% by weight.
  • the water-based coating composition of the present invention comprises a metal powder (G1), a zinc compound powder (G2), a mineral powder (G3), an alkali glass powder (G4), and an inorganic compound powder (G5) that generates pyrolysis gas. May contain at least one inorganic powder (G) selected from (except for zinc dust and zinc alloy powder in the anticorrosive pigment (D)).
  • the water-based coating composition of the present invention contains these inorganic powders (G), a steel sheet with a coating film (steel structure) formed by applying and curing these compositions to the steel sheet is welded. Even if it uses for work, it is preferable at the point that there are few generation
  • the inorganic powder (G) may be added in advance together with the silane raw material (a) when preparing the binder (A). In addition, it may be added to the prepared binder (A) alone or in a mixed state with a rust preventive pigment (D) such as zinc dust and zinc alloy powder and other additive components.
  • the inorganic powder (G) contained in the aqueous coating composition of the present invention is preferably contained in an amount of 70 to 200 parts by weight, more preferably 90 to 150 parts by weight with respect to 100 parts by weight of the binder (A).
  • the inorganic powder (G) contained in the aqueous coating composition of the present invention is preferably 5 to 70 parts by weight, more preferably 10 to 50 parts by weight with respect to 100 parts by weight of the nonvolatile content of the aqueous coating composition. included.
  • the non-volatile content of the water-based coating composition is a non-volatile content obtained by removing 1.5% of the water-based coating composition under a condition of 108 ° C. for 3 hours to remove volatile components.
  • the metal powder (G1) has electrical conductivity and has an effect of enhancing the anticorrosion effect by facilitating the movement of iron ions and zinc ions.
  • Examples of the metal powder (G1) include Fe—Si powder, Fe—Mn powder, Fe—Cr powder, magnetic iron powder, and iron phosphide. Company) ",” Ferromanganese (Kinsei Matec Co., Ltd.) “,” Ferrochrome (Kinsei Matec Co., Ltd.) “,” Sand Iron Powder (Kinsei Matec Co., Ltd.) “,” Ferofos 2132 (Occidental Chemical Corporation) “.
  • Examples of the zinc compound powder (G2) include zinc chloride, zinc oxide, zinc sulfide, and zinc sulfate.
  • the anticorrosive pigment (D) contained in the water-based anticorrosive coating composition of the present invention is metal zinc and / or a zinc alloy
  • the zinc compound powder (G2) is ionized (Zn 2 It is considered that there is an effect of adjusting the activity of the oxidation reaction, such as the degree of + production).
  • the aqueous primary rust preventive coating composition contains the zinc compound powder (G2), it is possible to impart an appropriate rust preventive property to the dried coating film (rust preventing coating film) formed from the composition.
  • zinc compound powder examples include “Zinc oxide 1 type (Sakai Chemical Industry Co., Ltd.)”, “Zinc oxide 3 types (Hakusui Tech Co., Ltd., Sakai Chemical Industry Co., Ltd.)”, and zinc sulfide “Sachtorich” HD (Sachleben Chemie GmbH) ",” Zinc chloride (Nagai Pharmaceutical Co., Ltd.) “, and” Zinc sulfide (Fuji Kasei Co., Ltd.) ".
  • Examples of the mineral powder (G3) include titanium mineral powder, calcium fluoride powder, silica powder, soda feldspar, potash feldspar, zirconium silicate, wollastonite, and diatomaceous earth.
  • Kinseimatic Co., Ltd. Ilmenite Powder (Kinseimatic Co., Ltd.), Fluorite 400 Mesh (Kinseimatic Co., Ltd.), A-PAX (Kinseimatic Co., Ltd.), Ceramic Powder OF-T (Kinsei Co., Ltd.) Matik Co., Ltd.), Aplite (Kinsei Matik Co., Ltd.), Silica MC-O (Maruo Calcium Co., Ltd.), Barite BA (Sakai Chemical Co., Ltd.), Radio Light (Showa Chemical Co., Ltd.) And “Celite 545 (Johnmanville)”.
  • the alkali glass powder (G4) has an effect that alkali metal ions such as Na + and K + contained in the glass powder activate zinc (generation of Zn 2+ ) or stabilize the arc during welding.
  • alkali metal ions such as Na + and K + contained in the glass powder activate zinc (generation of Zn 2+ ) or stabilize the arc during welding.
  • Examples of the alkali glass powder (G4) include those obtained by pulverizing plate glass and bottle glass that are generally used to about 5 ⁇ m to prepare a glass powder, and adjusting the pH of the glass powder to 8 or less by acid cleaning. It is done.
  • “APS-32JISP3801 5 type A (Kinsei Matec Co., Ltd.)” may be mentioned as a commercially available product.
  • the inorganic compound powder (G5) that generates pyrolysis gas is a powder of an inorganic compound that generates gas (for example, CO 2 , F 2 ) by pyrolysis (for example, thermal decomposition at 500 to 1500 ° C.).
  • gas for example, CO 2 , F 2
  • pyrolysis for example, thermal decomposition at 500 to 1500 ° C.
  • Examples of the inorganic compound powder (G5) include calcium fluoride, calcium carbonate, magnesium carbonate, strontium carbonate and the like, and commercially available products such as “fluorite 400 mesh (manufactured by Kinsei Matec Co., Ltd.)”, “NS # 400 ( Nitto Powder Chemical Co., Ltd.), “magnesium carbonate (Tonda Pharmaceutical Co., Ltd.)”, “strontium carbonate A (Honjo Chemical Co., Ltd.)” and the like.
  • the water-based coating composition of the present invention may contain various coating additives (H) such as thixotropic agents, antifoaming agents, wetting agents, and sagging inhibitors as required.
  • coating additives such as thixotropic agents, antifoaming agents, wetting agents, and sagging inhibitors as required.
  • Specific additives for paints (H) include clay precipitation inhibitors such as hectorite, bentonite and smectite, polycarboxylic acid thixotropic agents, fatty acid polyamide thixotropic agents, polyethylene oxide thixotropic agents, urethanes.
  • association type thixotropic agent acrylic polymer type thixotropic agent, modified urea type thixotropic agent, modified silicone type surface conditioner, acrylic polymer type surface conditioner, fluorine-containing polymer type surface conditioner, dialkyl sulfosuccinate type surface conditioner Agents, modified silicone antifoaming agents, polymer antifoaming agents and the like.
  • a silanol group or an alkoxy group is present on the surface of the hydrolysis condensate, an acid, a base compound, or an organic tin compound that has an effect of promoting the reaction between these groups and the substrate surface or the OH group of the pigment.
  • a reaction accelerator such as an aluminum chelate, a titanium compound, or an amine compound may be contained.
  • Pigment volume fraction (PVC) / critical pigment volume fraction (CPVC) The dry paint film comprising the water-based paint composition of the present invention can achieve both good paint film strength and weldability, and further imparts good anti-rust properties to the rust-proof paint film comprising the water-based anti-corrosive paint composition.
  • the ratio ((PVC) / (CPVC)) of the pigment volume concentration (PVC) to the critical pigment volume concentration (CPVC) is preferably larger than 1, and preferably 1 to 1.5. More preferably, it is 1 to 1.35.
  • the pigment volume concentration is a concentration expressed as a percentage of the volume occupied by the pigment in the volume of the entire nonvolatile content of the coating composition (excluding water and organic solvents).
  • “Pigment” in “PVC” and “CPVC” in the present specification is insoluble in water, organic solvents and binders, and is non-film-forming component (all non-volatile components of paint composition (excluding water and organic solvents) And the solid component excluding the hydrolysis condensate).
  • examples of such pigments include "rust preventive pigment (D)", “white rust inhibitor (E)", “inorganic compound powder (G)”, and “other paint additives (H)”. As long as it is not a binder and does not contribute to film formation, other solid components may be included.
  • the non-volatile content is obtained by removing 1.5% of the water-based paint composition at 108 ° C. for 3 hours and removing volatile content.
  • the critical pigment volume concentration is a concentration indicating a state in which the voids between the pigments are filled only with the binder. As shown below, in the vicinity (before and after) of the critical pigment volume concentration (CPVC), the welding characteristics of the dry coating film, the coating film strength, and the rust prevention property of the coating film change rapidly.
  • the binder when the pigment volume fraction (PVC) / critical pigment volume fraction (CPVC) ⁇ 1, the binder is sufficiently filled between pigments such as zinc powder and rust preventive pigment (D) such as inorganic powder. It is in a state. Therefore, although the coating film formed from the composition exhibits high coating strength, the ratio of the binder content to the total amount is excessive. Therefore, when this coating film is subjected to welding operations, the organic matter in the binder component contained in the coating film is gasified or carbonized, resulting in weld defects (pits, gas grooves, blowholes). As a result, the adhesive strength between the welded portions of the coating film may be reduced.
  • PVC pigment volume fraction
  • CPVC critical pigment volume fraction
  • the water-based coating composition of the present invention is preferably a binder composition (water-based binder composition) or a rust-proof coating composition (water-based rust-proof coating composition).
  • Aqueous binder composition is a coating agent used on the surface of base materials such as mica plate, glass laminate, glass sleeve, rubber, plastic, leather, binder for asbestos, curing agent for preventing scattering of asbestos spraying material and surface reinforcing agent , Primary curing agent for preventing scattering when removing asbestos spray material, metallic rust preventive pigment, antifouling agent, surface protective agent, stone antifouling treatment agent, water repellent, heat resistant paint, It is suitably used as an additive and as a binder or additive for various paints.
  • the rust-preventive coating composition of the present invention is preferably a primary rust-preventive coating composition (primary rust-preventing water-based coating composition) or a thick-coated inorganic zinc coating composition (water-based thick-coating inorganic zinc coating composition). is there.
  • the primary rust-preventing water-based paint composition is intended to primarily prevent rusting on the surface of steel used in automobiles, home appliances, large steel structures (ships, bridges, plants, etc.) during manufacturing and construction.
  • it is suitably used as a wash primer, a non-zinc epoxy primer, an epoxy zinc rich primer, and an inorganic zinc primary rust preventive coating composition.
  • the water-based thick-coated inorganic zinc coating composition is suitably used in cargo tanks and ballast tanks of ships such as chemical tankers and methanol special ships, particularly in ballast tanks that require long-term corrosion resistance against seawater.
  • the water-based coating composition of the present invention is produced by adding the binder (A) and water (B) and, if necessary, the above optional components to a stirring / mixing container or the like. And can be produced by stirring and mixing.
  • a hydrolysis condensate obtained by purifying a preparation solution obtained by reacting a specific silane compound is added as a binder (A) to a stirring and mixing vessel or the like.
  • a preparation liquid containing a hydrolysis condensate may be added as a binder (A) to a stirring / mixing container or the like.
  • conventionally known mixing and stirring devices such as an electric stirrer and a sand mill, and a disperser can be used as appropriate.
  • Drying / curing method of water-based paint composition (forming method of coating film)
  • a water-based paint composition coating (dry paint) is applied to the surface of a base material such as steel, iron, stainless steel, or aluminum (forms a wet paint film).
  • the applied coating composition (wet coating film) is dried by heating or by natural drying at room temperature.
  • the water-based coating composition In order to volatilize the solvent more efficiently, it is effective to systemize the water-based coating composition with an efficient heating device.
  • an efficient heating device include a tunnel-type heating system using combustion gas, petroleum burner, heating wire heating, induction heating, far-infrared heating device, etc., direct heating with gas or petroleum burner, or infrared irradiation or induction heating system. Can be mentioned.
  • the anticorrosive coating film according to the present invention such as an anticorrosive coating film and a coated substrate, is obtained by applying the water-based anticorrosive coating composition to a base material such as a steel material, an iron material, a stainless steel material, or an aluminum material (wet A coating film is formed) and the applied composition (wet coating film) is cured.
  • a base material such as a steel material, an iron material, a stainless steel material, or an aluminum material
  • the applied composition (wet coating film) is cured.
  • the rust-preventing coating the primary rust-preventing coating formed by curing the primary rust-preventing water-based coating composition and the thick-coated inorganic zinc rust-preventing formed by curing the aqueous thick-coating inorganic zinc coating composition A coating film is mentioned.
  • the steel structure with a coating film has a rust preventive coating film formed from the aqueous rust preventive coating composition of the present invention on the surface of the steel material.
  • a coating film of a steel structure with a coating film a primary rust-preventing coating film formed from a primary rust-preventing water-based coating composition or a thick-coated inorganic zinc coating formed from a water-based thick-coating inorganic zinc coating composition. Examples include rust coatings.
  • the aqueous solution containing the obtained hydrolysis condensate was subjected to vacuum distillation (40 to 15 kPa ⁇ s), methanol and by-products were distilled off under reduced pressure (distillation amount 131 g), and the reaction product in the reaction vessel was cooled to room temperature. Then, the mixture was filtered under pressure with paper (JISP3801 5 types A) to obtain 292 g of a slightly cloudy water-soluble resin liquid (binder composition 1).
  • FIGS. 1, 2, and 3 respectively.
  • these silane compounds have a lower refractive index than tetrahydrofuran (eluent), so these peaks are in the negative region of the baseline and have a long retention time (12 Minutes) or more).
  • the produced binder appears at a position with a shorter holding time (11 minutes or less). That is, from this peak, it can be confirmed that the silane raw material is hydrolyzed and condensed to be polymerized (presence of hydrolysis condensate).
  • Example 1 the silane raw material was hydrolyzed and dehydrated and condensed to prepare organopolysiloxane (hydrolyzed condensate).
  • Example 2 In Example 1, silica sol (trade name “Snowtex O” manufactured by Nissan Chemical Co., Ltd., SiO 2 concentration per 100% of sol: 20%, pH 2 to 4, content of Na 2 O in the sol: 400 ppm or less) Similar to Example 1 except that 320 g of ion-exchanged water and 24 g of ethanol were added instead of 400 g, and the silane raw material was hydrolyzed and condensed under the conditions of pH 1.5 to 6.5. Thus, 309 g of a transparent water-soluble resin liquid (binder composition 2) containing a hydrolysis-condensation product was prepared. In the process of preparing the binder composition, the amount of by-products distilled off under reduced pressure was 65 g.
  • the IR chart and GPC chart of the binder composition 2 are shown in FIGS. 4 and 5, respectively.
  • the Si—OCH 3 group peak (1086 cm ⁇ 1 ) derived from the alkoxysilane used as the silane raw material is changed to a large absorption by broadening around 1108 cm ⁇ 1 due to the hydrolysis reaction. Yes. From this, it can be understood that organopolysiloxane (Si—O—Si group) appears by hydrolysis / condensation reaction.
  • the peaks of alkoxysilane and chlorosilane appearing in the negative region of the baseline at a position with a long holding time (around 12 minutes) cannot be confirmed. Instead, the appearing peak is shown at a position with a shorter retention time (11 minutes or less). That is, from the peak that appears, it can be confirmed that the silane raw material has undergone a hydrolysis reaction and a condensation reaction to be polymerized (presence of hydrolysis condensate).
  • organopolysiloxane hydrolysis condensate
  • Example 3 In Example 1, except that 3 g of methyltrichlorosilane alone and 24 g of ethanol were added as silane raw materials, and the silane raw material was subjected to a hydrolysis / condensation reaction under the conditions of pH 0.9 to 3.1. In the same manner as in Example 1, 381 g of a slightly cloudy water-soluble resin liquid (binder composition 3) containing a hydrolysis condensate was prepared. In the process of preparing the binder composition, the amount of ethanol distilled off under reduced pressure was 38 g.
  • FIGS. 6 and 7 various charts obtained by IR analysis and GPC analysis are shown in FIGS. 6 and 7, respectively.
  • FIG. 6 in the IR chart, absorption near 1100 cm ⁇ 1 derived from silica is shown as a large peak, and the peak of organopolysiloxane (Si—O—Si group) overlaps with this.
  • organopolysiloxane Si—O—Si group
  • the peaks of alkoxysilane and chlorosilane appearing in the minus region at the position of the long holding time (around 12 minutes) cannot be confirmed. Instead, the appearing peak is shown at a position with a shorter retention time (11 minutes or less). That is, from this peak, it can be confirmed that the silane raw material has undergone a hydrolysis reaction and a condensation reaction to be polymerized (presence of hydrolysis condensate). From the above analysis, in Example 3, it is understood that organopolysiloxane (hydrolysis condensate) was prepared by hydrolysis and dehydration condensation of the silane raw material.
  • Example 2 In Example 1, 40 g of ⁇ -glycidoxypropyltrimethoxysilane alone and 24 g of ethanol were added as silane raw materials, and the silane raw materials were hydrolyzed and condensed under conditions of pH 2.7 to 3.1. Except that, 398 g (binder composition 2 ′) of a slightly cloudy water-soluble resin solution containing a hydrolysis condensate was prepared in the same manner as in Example 1. In the process of preparing the binder composition, the amount of ethanol distilled off under reduced pressure was 55 g. Moreover, each characteristic of binder composition 2 'was evaluated similarly to Example 1, and the obtained result was shown in Table 1.
  • chlorosilane or the silane compound was used under acidic conditions of pH 0.9 to 3.1 or pH 1.5 to 6.5.
  • Hydrolysis condensates are prepared by hydrolysis and dehydration condensation using ⁇ -glycidoxypropyltrimethoxysilane and ⁇ -glycidoxypropyltrimethoxysilane.
  • Table 1 the binder compositions of these examples are superior in single coating properties (film forming properties and water resistance) as compared with the binder compositions of comparative examples, and also have drying properties (curing). And other anti-rust coating properties.
  • Comparative Example 1 using the binder composition 1 ′ (anhydrous silicate sol) were compared with the results of Examples 1 to 3, which were either single coating properties or rust prevention coating properties.
  • the coating film was formed the strength of the formed coating film was extremely weak and was not suitable for practical use.
  • a hydrolyzed condensate is prepared by hydrolyzing and dehydrating and condensing only alkoxysilane under the same acidic condition without using chlorosilane as a silane raw material.
  • the binder composition 2 ′ containing this hydrolyzed condensate is not inferior to Examples 1 to 3 in terms of film forming property and drying property (curing property), but other than these properties (water resistance, pencil hardness) , Nail scratchability) was remarkably inferior.
  • Example 4 In Example 1, silica sol (trade name “Snowtex O” manufactured by Nissan Chemical Industries, SiO 2 concentration per 100% of sol: 20%, pH 2-4, Na 2 O content in sol: 400 ppm Silica sol (trade name “Snowtex O” manufactured by Nissan Chemical Industries, Ltd., concentration of SiO 2 per 100% of sol: 20%, pH 2 to 4, content of Na 2 O in the sol instead of 400 g) : 400 ppm or less) 300 g, 100 g of ion-exchanged water and 24 g of ethanol.
  • silane raw material As a silane raw material, a mixture of 1 g of triethoxysilane and 40 g of ⁇ -glycidoxypropyltrimethoxysilane was added from the first dropping funnel to methyltrichlorosilane. 4 g of each was added from the second dropping funnel to hydrolyze and condense these silane raw materials under the conditions of pH 1.4 to 3.1. Except that, the same procedure as in Example 1, including a hydrolysis-condensation product was prepared fine clouding of the water-soluble resin solution 413 g (binder composition 4). In the process of preparing the binder composition, the amount of ethanol distilled off under reduced pressure was 54 g. Moreover, each characteristic of the binder composition 4 was evaluated in the same manner as in Example 1, and the obtained results are shown in Table 2.
  • Example 5 In Example 1, silica sol (trade name “Snowtex O” manufactured by Nissan Chemical Industries, SiO 2 concentration per 100% of sol: 20%, pH 2-4, Na 2 O content in sol: 400 ppm Silica sol (trade name “Snowtex O” manufactured by Nissan Chemical Co., Ltd., concentration of SiO 2 per 100% sol: 20%, pH 2 to 4, content of Na 2 O in the sol instead of 400 g) : 400 ppm or less) obtained by using 400 g of ethanol and 24 g of ethanol, mixing 1 equivalent of methyltriacetoxysilane and 2 equivalents of methyltrichlorosilane as a silane raw material, and reacting at room temperature for 1 day (hydrolysis / dehydration condensation reaction) 8 g of Preparation A from the first dropping funnel, 40 g of ⁇ -glycidoxypropyltrimethoxysilane from the second dropping funnel, and methyltriacetoxysilane In the same manner as in Example 1, except that g was added from the third
  • binder composition 5 a slightly cloudy water-soluble resin liquid (binder composition 5) containing the product was prepared.
  • the total amount of ethanol, acetic acid and the like distilled off under reduced pressure was 40 g.
  • each characteristic of the binder composition 5 was evaluated in the same manner as in Example 1, and the obtained results are shown in Table 2. The obtained results are shown in Table 2.
  • Example 6 In Example 1, silica sol (trade name “Snowtex O” manufactured by Nissan Chemical Industries, SiO 2 concentration per 100% of sol: 20%, pH 2-4, Na 2 O content in sol: 400 ppm Silica sol (trade name “Snowtex O” manufactured by Nissan Chemical Co., Ltd., concentration of SiO 2 per 100% sol: 20%, pH 2 to 4, content of Na 2 O in the sol instead of 400 g) : 400 ppm or less) 300 g, ion-exchanged water 100 g and ethanol 24 g, 4 g of methyltris (methylethylketoxime) silane as the silane material from the first dropping funnel, and 40 g of ⁇ -glycidoxypropyltrimethoxysilane as the second dropping Add 8 g of 1-trimethoxysilyl 2-trichlorosilylethane from the funnel and add from the third dropping funnel.
  • silica sol trade name “Snowtex O” manufactured by Nissan Chemical Industries, SiO 2 concentration per 100% of sol: 20%,
  • Binder composition 6 a slightly cloudy water-soluble resin liquid containing a hydrolyzed condensate was obtained in the same manner as in Example 1.
  • Binder composition 6 was prepared. In the process of preparing the binder composition, the total amount of ethanol, acetic acid and the like distilled off under reduced pressure was 52 g. Further, in the same manner as in Example 1, each property of the binder composition 6 was evaluated, and the obtained results are shown in Table 2.
  • Example 7 In Example 1, silica sol (trade name “Snowtex O” manufactured by Nissan Chemical Industries, SiO 2 concentration per 100% of sol: 20%, pH 2-4, Na 2 O content in sol: 400 ppm Silica sol (trade name “Snowtex O” manufactured by Nissan Chemical Co., Ltd., concentration of SiO 2 per 100% sol: 20%, pH 2 to 4, content of Na 2 O in the sol instead of 400 g) : 400 ppm or less) 400 g and 24 g of ethanol were used, and 3 g of tetrachlorosilane alone was added to the reaction vessel as a silane raw material, and the silane raw material was hydrolyzed and condensed under the conditions of pH 0.7 to 3.1.
  • silica sol trade name “Snowtex O” manufactured by Nissan Chemical Industries, SiO 2 concentration per 100% of sol: 20%, pH 2-4, Na 2 O content in sol: 400 ppm
  • Silica sol trade name “Snowtex O” manufactured by Nissan Chemical Co., Ltd., concentration of SiO 2 per
  • binder composition 7 a slightly cloudy water-soluble resin liquid (binder composition 7) containing a hydrolysis condensate was prepared.
  • the amount of ethanol distilled off under reduced pressure was 41 g.
  • each characteristic of the binder composition 7 was evaluated in the same manner as in Example 1, and the obtained results are shown in Table 2.
  • Example 8 In Example 1, silica sol (trade name “Snowtex O” manufactured by Nissan Chemical Industries, SiO 2 concentration per 100% of sol: 20%, pH 2-4, Na 2 O content in sol: 400 ppm Silica sol (trade name “Snowtex O” manufactured by Nissan Chemical Co., Ltd., concentration of SiO 2 per 100% sol: 20%, pH 2 to 4, content of Na 2 O in the sol instead of 400 g) : 400 ppm or less) and 400 g of ethanol, and 4 g of methyltrichlorosilane as a silane raw material from a first dropping funnel, a mixture of 40 g of ⁇ -glycidoxypropyltrimethoxysilane and 8 g of methyltris (methylethylketoxime) silane Add them to the reaction vessel from the two-drop funnel and hydrolyze and shrink these silane raw materials under the conditions of pH 2.9 to 3.5.
  • silica sol trade name “Snowtex O” manufactured by Nissan Chemical Industries, SiO 2 concentration per 100% of sol
  • Example 2 Except that reacted, the same procedure as in Example 1, including a hydrolysis-condensation product was cloudy in water-soluble resin solution 423g of the (binder composition 8) was prepared. In the process of preparing the binder composition, the amount of ethanol etc. distilled off under reduced pressure was 49 g. Moreover, each characteristic of the binder composition 8 was evaluated in the same manner as in Example 1, and the obtained results are shown in Table 2.
  • Example 9 In Example 1, silica sol (trade name “Snowtex O” manufactured by Nissan Chemical Co., Ltd., concentration of SiO 2 per 100% of sol: 20%, pH 2 to 4, content of Na 2 O in sol: 400 ppm Silica sol (trade name “Snowtex O” manufactured by Nissan Chemical Industries, Ltd., concentration of SiO 2 per 100% of sol: 20%, pH 2 to 4, content of Na 2 O in the sol instead of 400 g) : 400 ppm or less) Using 400 g of ethanol, 24 g of ethanol and 10 g of lithium silicate, as a silane raw material, 4 g of methyltrichlorosilane was reacted from the first dropping funnel, and 40 g of ⁇ -glycidoxypropyltrimethoxysilane was reacted from the second dropping funnel.
  • silica sol trade name “Snowtex O” manufactured by Nissan Chemical Co., Ltd., concentration of SiO 2 per 100% of sol: 20%, pH 2 to 4, content of Na 2 O in sol instead of 400
  • Example 2 The same as in Example 1 except that these silane raw materials were hydrolyzed and condensed under the conditions of pH 2.2 to 3.1 when added to the container.
  • the amount of ethanol etc. distilled off under reduced pressure was 60 g.
  • each characteristic of the binder composition 9 was evaluated in the same manner as in Example 1, and the obtained results are shown in Table 2.
  • Example 10 In Example 1, silica sol (trade name “Snowtex O” manufactured by Nissan Chemical Industries, SiO 2 concentration per 100% of sol: 20%, pH 2-4, Na 2 O content in sol: 400 ppm The following is used) 250 g of titanium oxide sol (concentration of titanium oxide per 100% of VP Disp W2730X sol: 30%, pH 6.9) and 15 g of ethanol are used instead of 400 g and methyltriacetoxysilane as a silane raw material.
  • silica sol trade name “Snowtex O” manufactured by Nissan Chemical Industries, SiO 2 concentration per 100% of sol: 20%, pH 2-4, Na 2 O content in sol: 400 ppm The following is used
  • 250 g of titanium oxide sol concentration of titanium oxide per 100% of VP Disp W2730X sol: 30%, pH 6.9
  • 15 g of ethanol are used instead of 400 g and methyltriacetoxysilane as a silane raw material.
  • Preparation A obtained by mixing 1 equivalent and 2 equivalents of methyltrichlorosilane and reacting at room temperature for 1 day (hydrolysis / dehydration condensation reaction) was added from the first dropping funnel to ⁇ -glycidoxypropyltri Methyl silicate 51 (“Ms 51”, manufactured by Tama Chemical Industry, which is a hydrolyzate of 25 g of methoxysilane and tetramethoxysilane , Main component: Hydrolysis condensate of tetramethoxysilane (CH 3 O [Si (OCH 3 ) 2 O] n CH 3 , average tetramer)) and a mixture with 5 g are added to the reaction vessel from the second dropping funnel.
  • Ms 51 manufactured by Tama Chemical Industry, which is a hydrolyzate of 25 g of methoxysilane and tetramethoxysilane , Main component: Hydrolysis condensate of tetramethoxysilane (CH 3 O [S
  • silane raw materials were hydrolyzed / condensed under conditions of pH 1.3 to 7.3, and products obtained by hydrolyzing / condensing silane raw materials were not distilled under reduced pressure. Except for this, in the same manner as in Example 1, 296 g of a cloudy water-soluble resin liquid (binder composition 10) containing a hydrolysis condensate was prepared. Further, in the same manner as in Example 1, each property of the binder composition 10 was evaluated, and the obtained results are shown in Table 2.
  • Example 11 In Example 1, silica sol (trade name “Snowtex O” manufactured by Nissan Chemical Industries, SiO 2 concentration per 100% of sol: 20%, pH 2-4, Na 2 O content in sol: 400 ppm In the following, instead of 400 g, 250 g of alumina sol (Aerodisp W630 sol manufactured by Nippon Aerosil Co., Ltd .: 100% alumina concentration: 30%, pH 4) and 50 g of ion-exchanged water were used, and 2.2 g of methyltrichlorosilane was used as a silane raw material.
  • alumina sol Alodisp W630 sol manufactured by Nippon Aerosil Co., Ltd .: 100% alumina concentration: 30%, pH 4
  • Example 1 From one dropping funnel, 25 g of ⁇ -glycidoxypropyltrimethoxysilane is added to the reaction vessel from the second dropping funnel, and these silane raw materials are hydrolyzed and condensed under pH 1.8 to 4.0 conditions. Except that the product obtained by reacting and hydrolyzing / condensing the silane raw material was not distilled under reduced pressure, Example 1 In the same manner as, including a hydrolysis-condensation product was cloudy in water-soluble resin solution 322g of the (binder composition B) was prepared. Moreover, each characteristic of the binder composition 11 was evaluated in the same manner as in Example 1, and the obtained results are shown in Table 2.
  • Example 3 silica sol (trade name “Snowtex O” manufactured by Nissan Chemical Industries, SiO 2 concentration per 100% of sol: 20%, pH 2-4, Na 2 O content in sol: 400 ppm
  • silica sol trade name “Snowtex O” manufactured by Nissan Chemical Industries, SiO 2 concentration per 100% of sol: 20%, pH 2-4, Na 2 O content in sol: 400 ppm
  • an anhydrous silicic acid sol (trade name “Snowtex 20”, manufactured by Nissan Chemical Co., Ltd., concentration of SiO 2 per 100% sol: 20%, pH 9.8, Na 2 O in the sol instead of 400 g) Content: 400 ppm or less) 400 g and ethanol 24 g, 40 g of N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane and methyl silicate 51 (“Ms 51”, manufactured by Tama Chemical Industries, Ltd.
  • Ms 51 N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane and
  • the binder compositions of Examples 4 to 11 were prepared using a raw material silane containing a halogen-based silane compound under conditions within a pH range of 0.4 to 8.0. Yes.
  • the binder composition of Comparative Example 3 is prepared using only an alkoxysilane compound under alkaline conditions of pH 9.8 to 11.8.
  • trichlorosilane was added together with alkoxysilane as a silane raw material under alkaline conditions with a pH of 9.9 as described above, but when this compound was added in an amount of about 1/3 amount.
  • Alkaline conditions of pH 7.5 to 9.9 resulted in a gel-like product having a remarkably high viscosity, and the whole became a gel-like state without reaching the total amount. Therefore, it could not even be used for each evaluation.
  • anhydrous silicic acid sol the average particle diameter of silica particles is different (Examples 4 to 9). Further, as a metal oxide sol, a titanium oxide sol or an alumina sol is used instead of an anhydrous silicic acid sol (Example 10). 11), it was confirmed that various favorable characteristics were obtained.
  • Example 12 to 25 Comparative Examples 5 to 7
  • binder compositions prepared in Examples 1 to 11 and Comparative Examples 1 to 3 Primary rust preventive coating compositions were prepared based on the component compositions shown in Table 3.
  • Each characteristic of the prepared primary rust preventive paint composition was evaluated in accordance with “characteristic evaluation of the primary rust preventive paint composition” described later, and the obtained results are shown in Table 3 (Tables 3 (1) to (2). ))Pointing out toungue.
  • the primary rust preventive coating compositions prepared using the binder compositions of Examples 13, 19, 20 and Comparative Example 7 were subjected to the test conditions of “weldability test” and “cutability test” described later. Based on this, a weldability test and a cutability test were performed. Tables 4 and 5 show the results of the weldability test and the cutability test, respectively.
  • the binder composition 3 ′ prepared under alkaline conditions was used, and the pigment volume fraction (PVC) / critical pigment volume fraction (CPVC) value was set to less than 1.
  • PVC pigment volume fraction
  • CPVC critical pigment volume fraction
  • the binder composition 1, 4, 5 is used as the binder composition and the value of the pigment volume fraction (PVC) / critical pigment volume fraction (CPVC) is set to 1 or more (Example 13) 19 and 20), even at welding speeds of 600 mm / min and 800 mm / min, the number of pits and the length of the gas groove were remarkably small, and the occurrence rate of blowholes was also good at 1% or less.
  • PVC pigment volume fraction
  • CPVC critical pigment volume fraction
  • Example 13 On the other hand, in Examples 13, 19 and 20, all the cutting speeds showed “WES-1 class level” and extremely good results.
  • Examples 26 to 30 The binder composition 5 prepared in Example 5 and the various components shown in Table 6 were blended using a paint shaker to prepare an aqueous thick coating inorganic zinc coating composition. Each characteristic of the prepared water-based thick coating inorganic zinc coating composition was evaluated based on the measurement and evaluation conditions described in “Characteristic evaluation of water-based thick coating inorganic zinc coating composition” described later. The results obtained are shown in Table 6.
  • Binder composition coating film characteristics (single coating film characteristics) The binder composition was diluted with ion-exchanged water and adjusted so that the non-volatile content was 15% by weight. Next, the binder composition with the non-volatile content adjusted is uniformly applied to a cold-rolled steel sheet that has been surface-roughened with sandpaper # 80 using an applicator and cured at room temperature for one day. A coating film for evaluation (single) was prepared.
  • each characteristic was evaluated based on the evaluation criteria using the obtained coating film for evaluation (single).
  • the value of the average film thickness of the coating film for evaluation (single) was computed from the measured value of the film thickness of arbitrary places in the coating-film surface.
  • the range of the average film thickness of each evaluation coating film (independent) in each Example and Comparative Example is 14 to 16 ⁇ m.
  • (1) Film- forming property The degree of uniformity of the coating film for evaluation (single) and the degree of scratching strength by the nail were evaluated. [Evaluation criteria] Uniform scratching strength with nail Uniform cure No scratch 5 Uniform hardening Slightly scratched 4 Some striped patterns are slightly scratched or peeled 3 There is a stripe pattern, but it is cured.
  • Insufficient curing Film is broken into powder 1
  • Water resistance The surface of the coating film for evaluation (single) was lightly rubbed with a paper cloth wetted with water, and the degree of damage to the coating film surface was evaluated in the following five stages. [Evaluation criteria] No damage at all. 5 A slight opacity appears. 4 Somewhat opaque. 3 You can see some cold rolled steel sheets. 2 The coating is completely removed. 1
  • Rust-proof coating film characteristic binder composition, potassium feldspar, zinc powder that is a rust-preventive pigment, and ion-exchanged water were mixed based on the following test composition to prepare a water-based rust-proof paint composition.
  • the non-volatile content of the binder composition contained in the rust preventive paint composition is adjusted to be 10% by weight with respect to 100% by weight of the rust preventive paint composition. .
  • the obtained anti-corrosion coating composition was uniformly applied to a cold-rolled steel sheet (JIS G3141 SPCC-SB 150 mm ⁇ 70 mm ⁇ 0.8 mm) roughened with sandpaper # 80 using an applicator.
  • the coating film for evaluation (rust prevention (uncured)) was prepared, and the coating film in the uncured state of the evaluation antirust coating film (uncured) was further cured at room temperature for 1 day. (Rust prevention) was manufactured.
  • the value of the average film thickness of the coating film for evaluation (rust prevention) was computed from the measured value of the film thickness of arbitrary several places in the coating-film surface.
  • the range of the average film thickness of each coating film for evaluation (rust prevention) in each example and comparative example is 14 to 16 ⁇ m.
  • Characteristic evaluation of primary rust preventive paint composition (I) Characteristics of primary rust preventive paint composition (1) Pot life A can of 1 liter capacity containing the primary anti-corrosive paint composition is sealed, left in a constant temperature room at 23 ° C. for one day, then opened, and the pigment in the primary anti-rust paint composition The sedimentation state was visually confirmed and evaluated based on the following evaluation criteria. Moreover, the dispersibility (redispersibility) after stirring the precipitated pigment (precipitate) was confirmed visually and evaluated based on the following evaluation criteria. [Evaluation criteria]
  • the value of the average film thickness of a primary rust prevention coating film was computed from the measured value of the film thickness of arbitrary places in a coating-film surface.
  • the range of the average film thickness of the primary rust preventive coating film in each example and comparative example is 14 to 16 ⁇ m.
  • Pencil hardness of the primary rust-proof coating film The surface of a mild steel plate (dimensions: 150 mm ⁇ 70 mm ⁇ 2.3 mm) preheated to 45 ° C. is primary using an air spray gun so that the average film thickness is 15 ⁇ m. It painted with the antirust coating composition. Subsequently, it was left to stand for 7 days in a thermostatic chamber at a temperature of 23 ° C. and a relative humidity of 50% to form a top coating film to prepare a test plate. In addition, the value of the average film thickness of top coat film was computed from the measured value of the film thickness of arbitrary places in a coating-film surface. The range of the average film thickness of the top coat film in each example and comparative example is 14 to 16 ⁇ m.
  • the hardness of the coating film was evaluated by the pencil scratch value (hand-scratch method) measurement method defined in JIS 5400, 8.4.2.
  • the bottom surface of a soft steel cylindrical jig with a diameter of 16 mm and a length of 20 mm was adhered to the surface of the primary anticorrosive coating on the test plate with an epoxy adhesive, left for 24 hours, and then cured with a pull gauge (Motofuji).
  • the head of the tool was pulled in the normal direction of the surface of the primary anticorrosive coating, the jig was peeled off from the surface of the top coating film, and the adhesion strength (force required for cohesive failure and / or interface peeling) was measured.
  • the ratio of the area of the primary rust-preventive coating film that has been cohesive to the area of the peel-off surface 100% (cohesive failure area ratio (%))
  • the ratio (interfacial peeling area ratio (%)) was measured by visual observation, and the adhesion state of the primary anticorrosive coating film was evaluated based on the following criteria.
  • 3 The cohesive failure area ratio of the top coat film is 50 to 79%, and the interfacial peel area ratio is 21 to 50%.
  • the cohesive failure area ratio of the top coat film is 20 to 49%, and the interface peel area ratio is 51 to 80%.
  • the area ratio of cohesive failure of the top coat film is 0 to 19%, and the ratio of the interfacial peel area is 81 to 100%.
  • the coating film in a test plate was computed from the measured value of the film thickness of arbitrary places in a coating-film surface.
  • the range of the average film thickness of the coating film in each example and comparative example is 14 to 16 ⁇ m.
  • test plate was placed on an outdoor exposure table (on the site of Otake Research Institute, China Paint Co., Ltd.) and left for 2 months.
  • the test plate is fixed in an inclined state so that the painted surface faces the south side and the test plate is at 45 degrees to the horizontal.
  • the area ratio of white rust or white rust is more than 0.01% and less than 0.03%. 8; The area ratio of white rust or white rust is more than 0.03% and less than 0.1% 7; The area ratio of white rust is more than 0.1% and less than 0.3% 6; White rust area ratio exceeds 0.3% and 1% or less 5; White rust area ratio exceeds 1% and 3% or less 4; White rust area ratio exceeds 3% and 10% or less 3; The area ratio exceeds 10% and is 1/6 (16%) or less 2; The area ratio of white rust exceeds 1/6 (16%) and is 1/3 (33%) or less 1; The area ratio of white rust is 1 / 3 (33%) to 1/2 (50%) or less 0; White rust area ratio is almost 1/2 (50%) to 100% (III) Top coat characteristics (1) Adhesiveness of top coat film The primary rust-preventive coating composition is applied to the blasted surface of a sandblasted plate (JIS G3101, SS400, dimensions: 150 mm ⁇
  • the film was applied using an air spray gun so that the thickness was 15 ⁇ m, and then left in a temperature-controlled room at a temperature of 23 ° C. and a relative humidity of 50% for 1 week to form a primary rust-preventing coating film.
  • a high solid epoxy paint (trade name: Nova 2000, manufactured by China Paint Co., Ltd.) was applied on the primary anticorrosive coating film by spraying and then allowed to stand for 1 week to form a cured coating film (top coating film).
  • the value of the average film thickness of the primary rust preventive coating film and the top coating film was calculated from the measured value of the film thickness at an arbitrary location on each coating film surface.
  • the range of the average film thickness of the primary rust preventive coating film in each example and comparative example is 14 to 16 ⁇ m, and the average film thickness of the top coat film is 310 ⁇ m.
  • the ratio of the area of cohesive failure of the top coating film to the area of 100% of the peeling surface (cohesive failure area ratio; (%)), and the ratio of the area of interfacial peeling between the top coating film and the primary rust preventive coating film (Interfacial peeled area ratio (%)) was measured by visual observation, and the adhesion of the top coat film was evaluated based on the following criteria.
  • 3 The cohesive failure area ratio of the top coat film is 50 to 79%, and the interfacial peel area ratio is 21 to 50%.
  • the cohesive failure area ratio of the top coat film is 20 to 49%, and the interfacial peel area ratio is 51 to 80%.
  • (2) Weldability test On the surface of two sandblasted plates (JIS G 3101, SS400, lower plate dimensions: 600 mm ⁇ 100 mm ⁇ 12 mm, upper plate dimensions: 600 mm ⁇ 50 mm ⁇ 12 mm) preheated to 45 ° C., The primary rust-preventive coating composition is applied using an air spray gun so as to have an average film thickness of 15 ⁇ m, and then dried in a constant temperature room at a temperature of 23 ° C.
  • the antirust coating film was formed to prepare an upper plate and a lower plate as shown in FIG.
  • the black paint part shows a painting location.
  • the value of the average film thickness of a primary antirust coating film was computed from the measured value of the film thickness of arbitrary places in each coating-film surface.
  • the range of the average film thickness of the primary rust preventive coating film in each example and comparative example is 14 to 16 ⁇ m.
  • the upper plate and the lower plate are both layers (initial layer side, final layer side) while maintaining a predetermined torch angle and torch shift by carbon dioxide automatic arc welding. Welded at the same time. Table 8 shows the welding conditions at this time.
  • the value of the average film thickness of the coating film of a test board was computed from the measured value of the film thickness of arbitrary places in a coating-film surface.
  • the range of the average film thickness of the coating film in each example and comparative example is 14 to 16 ⁇ m.
  • Characteristics of water-based thick-coated inorganic zinc paint composition (I) Characteristics of water-based thick-coated inorganic zinc paint composition (1) 100 ml of water-based thick-coated inorganic zinc paint composition is filled in a specific gravity bottle (capacity: 100 ml). The mass of the specific gravity bottle filled with the coating composition was measured. Subsequently, the coating density (g / ml) was calculated by the following formula.
  • an air spray gun is used so that the average film thickness is 15 ⁇ m on the blasted surface of a sandblasted plate (JIS G 3101, SS400, dimensions: 150 mm ⁇ 70 m ⁇ 2.3 mm) preheated to 45 ° C. It painted with the water-system thick coating inorganic zinc coating composition. Subsequently, it was left to stand in a temperature-controlled room at a temperature of 23 ° C. and a relative humidity of 50% for 7 days to form a thick-coated inorganic zinc coating film.
  • a sandblasted plate JIS G 3101, SS400, dimensions: 150 mm ⁇ 70 m ⁇ 2.3 mm
  • the produced test plates A and B were subjected to the following various evaluations.
  • the value of the average film thickness of each thick coating inorganic zinc coating film of the test board A and the test board B was computed from the measured value of the film thickness of arbitrary places in each coating-film surface.
  • the range of the average film thickness of each thick-coated inorganic zinc coating film in each example and comparative example is 110 to 190 ⁇ m.
  • the observed bubble originates in the gas generated at the time of the reaction of the gas embraced at the time of coating-material preparation, a mixing
  • 5 No or no bubbles. 4: There are few air bubbles. 3: Bubbles are considerably observed. 2: Many bubbles are recognized. 1: The entire surface is covered with a large number. (2-3) Adhesion (cross-cut peel test) In accordance with the adhesion test (cross-cut method) specified in JIS K5600-5-6, the thick coated inorganic zinc coating film of test plate A and test plate B was cut to a width of 4 mm using a cutting tool. A lattice was created to create 25 squares of the coating film.
  • the adhesive surface of the transparent pressure-sensitive adhesive tape was placed on the grid so as to be parallel to the cut pair, and the transparent pressure-sensitive adhesive tape was securely adhered while being rubbed with a fingertip.
  • the transparent pressure-sensitive adhesive tape is reliably pulled apart in the direction of 60 ° with respect to the coating surface in 0.5 seconds to 1.0 seconds, and then the number of meshes of the coating film remaining on the lattice ( The number of remaining squares) was counted and evaluated based on the following criteria. [Evaluation criteria] 5: The number of remaining squares is 24 or more. 4: The number of remaining cells is 20 to 23. 3: The number of remaining cells is 15 to 19. 2: The number of remaining cells is 10 to 14.
  • Adhesion (knife cut test) Set so that the blade of the knife is perpendicular to the thick-coated inorganic zinc coating film of test plate A and test plate B, with a 1.5 cm length of cut (vertical cut) as a base point. Four pieces were put at an angle of 50 ° to 50 °, and the degree of peeling of the coating film was observed. Immediately after that, along the incision, the blade of the knife was made almost horizontal and an incision having a width of 1 to 3 mm (incision in the horizontal direction) was made, and the degree of peeling of the coating film was observed. [Evaluation criteria] 5: Even with vertical and horizontal cuts, the coating is normal and attached.
  • [Evaluation criteria] 5 Even after rubbing 20 times or more, the exposure of the substrate and the migration of the pigment are not confirmed at all. 4: The exposure of the substrate cannot be confirmed after rubbing 20 times, but a slight migration of the pigment is confirmed. 3: After 20 rubbing, the exposure of the substrate is not confirmed, but the migration of the pigment is confirmed to some extent. 2: With 20 rubbing, partial exposure of the substrate is confirmed along with the migration of the pigment. 1: With 19 or less rubbing, migration of the pigment is remarkable, and dissolution or destruction of the coating is confirmed until the substrate is exposed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

[課題]水を希釈溶媒としていながらも、従来の有機溶剤を希釈剤とした溶剤系塗料組成物から形成された塗膜とほぼ同等の乾燥性、硬化性および塗膜特性(塗膜強度)がバランスよく優れる塗膜を形成できる水系塗料組成物を提供すること。 [解決手段]特定のシラン化合物(a1)を、0.4~8.0のpH条件下にて加水分解反応および縮合反応させて得られる加水分解縮合物を含む結合剤(A)と、水(B)とを含有する水系塗料組成物。

Description

水系塗料組成物および該水系塗料組成物を用いた防錆方法
 本発明は、水系塗料組成物に関し、より詳しくは、結合剤組成物である水系塗料組成物(水系結合剤組成物)や、防錆塗料組成物である水系塗料組成物(水系防錆塗料組成物)に関する。
 また、本発明は、上記水系防錆塗料組成物等の水系塗料組成物を用いた鋼材等の基材の防錆塗装方法に関する。
従来の溶剤系塗料組成物は、ポリマー等の結合剤の分散性を向上させたり、該組成物の粘度を調整したりするために、各種揮発性有機溶媒(有機溶剤)を含んでいる。また、結合剤のポリマー系成分の調製に、溶媒として有機溶剤が用いられる場合もある。そのため、結合剤としてのポリマー系成分とともに該有機溶剤が、塗料組成物に含まれることもある。
また、シラン化合物の加水分解縮合物(ポリオルガノシロキサン)または金属酸化物を結合剤として含む塗料組成物においても、溶剤系のものが主流である。たとえば、テトラエチルシリケート(結合剤)、亜鉛末(防錆顔料)、さらに多量の有機溶剤を含む溶剤系防錆塗料組成物が知られている。
このような溶剤系塗料組成物において、有機溶剤は、結合剤を均一に溶解させることができるため、過度の増粘や非溶解物(ゲル)などの発生を低減することができる。すなわち、有機溶剤は、過度に増粘した部分や非溶解物(ゲル)において発生し易い、塗料組成物の局所的な劣化反応や分解反応を抑える効果があると考えられる。このように、有機溶剤は塗料組成物を化学的に安定化させることができる。さらには、希釈効果によって、該組成物の粘度を低く維持する機能を有しているために、公知の各種方法を用いて、該組成物の塗装を容易に実施することができる。また、溶剤系塗料組成物を基材に塗布した場合、塗布された該組成物から有機溶剤が効率良く揮発するので、比較的短時間で該塗料組成物が硬化して、塗膜が形成される。
 結合剤としてシラン化合物の加水分解縮合物を含む溶剤系塗料組成物は、溶剤系結合剤組成物や溶剤系防錆塗料組成物として好適に使用される。また、これらの組成物の用途は多岐に亘っている。
 この溶剤系結合剤組成物の主な用途としては、具体的には、マイカ板、ガラス積層板、ガラススリーブ、ゴム、プラスチック、皮革などの基材表面に用いるコート剤、アスベスト用のバインダー、アスベスト吹き付け材の飛散防止用硬化剤や表面補強剤、アスベスト吹き付け材除去時の飛散防止用一次硬化剤、金属系の防錆顔料・汚損防止剤・表面保護剤、石材系の防汚処理剤・撥水剤、耐熱性塗料としての用途や、その添加剤、及び各種塗料の結合剤や添加剤などが挙げられる。
 また、上記結合剤を含む溶剤系防錆塗料組成物の主な用途としては、一次防錆用塗料組成物や厚塗り無機ジンク塗料組成物(乾燥膜厚:たとえば、50~200μm)が挙げられる。
 上記一次防錆塗料組成物は、製造・建設中における、自動車、家電製品、大型鉄鋼構造物(船舶、橋梁、プラントなど)、輸送用コンテナ、陸上タンク等に使用される鉄鋼の表面における発錆を一次的に防止する目的で用いられる。一次防錆塗料組成物としては、ウォッシュプライマー、ノンジンクエポキシプライマー、エポキシジンクリッチプライマーなどの有機一次防錆塗料組成物や、無機ジンク一次防錆塗料組成物が挙げられる。この中でも、溶接性に優れる無機ジンク一次防錆塗料組成物が汎用されている。
 また、上記厚塗り無機ジンク塗料組成物は、ケミカルタンカーやメタノール専用船などの船舶のカーゴタンクやバラストタンクにおいて使用される。これらのカーゴタンクやバラストタンクでは、石油精製品やケミカル製品などの積荷に対する積荷耐性、タンク洗浄水(淡水、海水)に対する防食性および、バラスト注水時の水圧により生じる鋼板の歪や温度変化により生じる鋼材の膨張伸縮に対して十分に対応できる機械的特性等が求められるが、上記厚塗り無機ジンク塗料組成物では、これらの良好な特性が発揮される。特に、上記厚塗り無機ジンク塗料組成物は、海水に対する長期的な防食性が求められるバラストタンクにおいて好適に使用されている。なお、ポリオルガノシロキサンを含む溶剤系厚塗り無機ジンク塗料組成物は、エポキシ樹脂系塗料組成物と比べると、作業性、塗膜強度や可撓性等の物性、長期防食性などの特性の点で、劣っている。そのため、現時点では、厚塗り無機ジンク塗料組成物としては、エポキシ樹脂系塗料組成物が汎用されている。
また、結合剤として金属酸化物を含む溶剤系塗料組成物も、結合剤としてポリオルガノシロキサンを含む塗料組成物程ではないものの、各種コーティング剤として使用されている。
 一方で、近年、多くの国において、VOC対策(環境負荷の低減)が要求されている。そのために、塗料組成物の無溶剤化ないし低溶剤化が求められている。
この無溶剤化ないし低溶剤化の手段としては、たとえば、ポリマーなどの結合剤の固形分量を増大させたり、反応性モノマーを希釈剤として使用したりするハイソリッド化が提案されている。
また、希釈剤として、有機溶剤の代わりに水や界面活性剤を使用する方法(乳化処方や懸濁処方などの水分散処方)による水系化も検討されている。この処方において、界面活性剤は、結合剤を水分散し易くし、一定期間、その分散状態を良好に維持する機能を有する。しかしながら、このように界面活性剤の存在下において機械的圧力などを用いた強制的な方法で水分散されてなる塗料組成物では、塗料組成物中の結合剤等の成分の沈降が少なく、塗料組成物の増粘が少ない等という点での安定性は良好であるものの、該組成物から塗膜を形成した場合、塗膜中に界面活性剤が残留しているために、上塗り付着性などが悪化することがある。したがって、界面活性剤を使用しないで済むように、結合剤は水溶性であることが望ましい。
一方で、このような塗料組成物には、水溶性とともに、塗膜を形成した場合に、良好な硬化性、乾燥性などの特性が求められるが、これらの特性の両立はきわめて困難であった。さらに該組成物により形成された塗膜においても、良好な耐水性、防食性、上塗り付着性などの他に、良好な溶接性や切断性も求められるが、何れの特性の両立も困難であった。
現時点では、水系化された塗料組成物(水系塗料組成物)は、溶剤系塗料組成物と同等の特性を発揮できていないのが実情であるが、このような水系塗料組成物は、特許文献1~9において開示されている。
なお、以下に列挙する特許文献の塗料組成物は、結合剤がシラン化合物の加水分解縮合物(ポリオルガノシロキサン)である場合(特許文献1~6)と、金属酸化物ゾルである場合(特許文献7~9)とに大別できる。さらに、塗料組成物に含まれる結合剤は、特許文献1~5では、アルコキシシランから調製された加水分解縮合物であり、特許文献6では、アミノ基含有シランカップリング剤(アミノ基含有シラン化合物)から調製された加水分解縮合物である。
特許文献1(特開2002-121485号公報)には、スチールファスナーなどの金属支持体の錆止めとして使用される、アルコキシ基を含みかつ水希釈可能である有機官能性シラン及び湿潤剤からなる防食コーティング用水性組成物が開示されている。
特許文献2(特開2000-144020号公報)には、シランカップリング剤(具体的には各種アルコキシシラン)およびその加水分解縮合物を含有する水溶液にリン酸、亜リン酸、次亜リン酸イオンおよびチオカルボニル化合物、チオール化合物や硫化物、過硫酸イオンなどからなる硫黄含有化合物を含む防錆コーティング剤が開示されている。
特許文献3(特開2002-105401号公報)には、アミノ基含有アルコキシシランを比較的強い酸の存在下でエポキシ基含有アルコキシシランと反応させて得られた結合材および顔料を含む水分散性の第一成分と、微粉砕亜鉛末からなる第二成分とを含有する鋼材用水性2成分系保護被覆剤が開示されている。
特許文献4(特表2008-528741号公報)には、アミノ基含有のアルコキシシランとギ酸エステルとの反応等によって得られるN-ホルミル基などを有するシロキサンポリマー(結合剤組成物)が、さらには、該結合剤組成物および亜鉛等の防食顔料を含む防錆塗料組成物が開示されている。
特許文献5(国際公開WO2008/003695号パンフレット)には、水性溶液中において、(a)4置換アルコキシシラン化合物、官能性3置換アルコキシシラン化合物および必要に応じてコロイダルシリカ水分散剤から形成されるポリマーまたはオリゴマー化合物を含む水性結合剤(第一成分)と、(b)亜鉛末などの反応性充填材(第二成分)とを含む2成分系塗料組成物が開示されている。
また、特許文献6(特開2008-150537号公報)には、結合剤として、アミノ基含有シランカップリング剤(アミノ基含有シラン化合物)を反応して調製された加水分解縮合物が含まれる塗料組成物が記載されており、具体的には、結合剤として水溶性もしくは加水分解性のアミノ基含有シランカップリング剤と、白錆防止特性を有する錫および錫含有合金の少なくとも1種と亜鉛とからなる金属顔料とを含む水系防錆塗料が開示されている。
次に、結合剤として金属酸化物ゾルが使用された例を説明する。
特許文献7(特公昭56-29904号公報)には、水分散性のコロイダルシリカ、尿素あるいはチオ尿素、水溶化リチウムポリシリケートおよび亜鉛末からなる無機質皮膜形成用組成物が開示されている。
特許文献8(国際公開WO2008/128932号パンフレット)には、i)亜鉛末および/または亜鉛合金と、ii)特定条件下においてシラン化合物で表面処理されたコロイダルシリカを含むコーティング組成物が開示されている。
特許文献9(特表2005-510584号公報)には、バインダーとして水性シリカゾル、亜鉛末あるいは亜鉛合金を含む水性ショッププライマー組成物が開示されている。
特開2002-121485号公報 特開2000-144020号公報 特開2002-105401号公報 特表2008-528741号公報 国際公開WO2008/003695号パンフレット 特開2008-150537号公報 特公昭56-29904号公報 国際公開WO2008/128932号パンフレット 特表2005-510584号公報
しかしながら、以下に示すように、これらの特許文献の水系塗料組成物では、何れも、長時間の養生や加熱が必要となるといった乾燥性の問題をはじめとして、種々の特性に問題があり、用途範囲が限定されてしまう。
まず、特許文献1~5に記載されているように、結合剤がアルコキシシラン化合物の加水分解縮合物である場合、加水分解後の副生物がアルコールであり、腐食性や刺激性が少なく揮発性が高いため蒸留などで容易に除去でき、加水分解縮合物を精製し易い。また、保存や加水分解反応が簡易な反応容器・反応装置で加水分解縮合物を調製できるといった点で利点があるものの、高分子量の加水分解物を得るには、該シラン化合物の反応性は低いため、生成物の設計における自由度はあまり高くない。つまりアルコキシラン化合物のみでの加水分解反応の場合は、1分子中で反応するアルコキシシリル基の数が少ないため、高分子化が困難であったり(数平均分子量で数百程度)、出発物質として数種のアルコキシシランから、狭い分子量分布を有する共加水分解物を調製しようとしても、分子量分布が広くなり、共加水分解物の構成単位の比率が、出発物質の配合比率から大きく相違してしまうといった、分子設計上の問題があり、所望の分子構造を有する共加水分解物を得ることが困難である。また、このような問題に起因して、得られた水系塗料組成物では、乾燥性(硬化特性)・耐水性・防食性・塗膜強度などの特性を、何れもバランスよく良好にすることはできなかった。また、このような結合剤を含む水系防錆塗料組成物(一次防錆用水系塗料組成物、水系厚塗り無機ジンク塗料組成物)では、これらの特性のみならず、防錆性、上塗り塗膜の特性(上塗り特性)、溶接性においても不十分な特性しか発揮できなかった。
また、特許文献3に開示されているように、結合剤がアミノ基含有アルコキシシランの加水分解縮合物である場合、該結合剤(加水分解縮合物)を調製する際に、該アミノ基が反応触媒として作用し、加水分解縮合物の生成反応が過度に反応が進行してしまう。そのため、反応時や保存時にゲル化などの不具合が発生する可能性がある。このように、アミノ基含有アルコキシシランを使用して得られた加水分解縮合物の分子量の調整は困難である。さらには、該分子量が大きすぎる場合、得られた加水分解縮合物の水分散が困難である。一方で、該分子量が小さい場合や、上記ゲル化の発生を低減するために、原料シランを低濃度で加水分解反応を進めて得られた結合剤成分の濃度が希薄である場合、得られた加水分解縮合物は十分な硬化特性・乾燥性や塗膜の耐水性を発揮できないといった問題が生じる。
さらに、特許文献6に開示されているように、結合剤が、アルコキシシラン化合物ではなくアミノ基含有シランの加水分解縮合物である場合、結合剤に存在するアミノ基含有シラン由来のアミノ基と亜鉛等の防錆顔料との相互作用が強くなってしまう。ここで、塗布対象が鋼材等である場合、鉄原子がイオン化して錆が生成するが、酸により亜鉛がイオン化し、生じた亜鉛イオンが該鉄原子のイオン化を阻止することで防錆作用を発揮すると言われている。結合剤に含まれる上記アミノ基含有シラン由来のアミノ基は、亜鉛と相互作用して(おそらく、両性金属である亜鉛は、アミノ基と錯体あるいはそれに近い物質を形成していると思われる。)、効率的な亜鉛のイオン化を阻害して、結果として、亜鉛の防錆作用を損なう可能性が高くなってしまう。すなわち、水溶性を付与するために、アミノ基含有アルコキシシランから得られた加水分解縮合物は、良好な水溶性を有するという点で利点があるものの、アミノ基含有アルコキシシランを使用したために、本来の課題である防錆効果の向上を改善するどころか、低減させてしまうものであり、必ずしも有効な組成とはいえない。
特許文献6~9に開示されているように、結合剤が無機酸化物ゾルである場合、乾燥性・硬化特性・耐水性・防食性・塗膜強度などの特性に改善の余地があると思われる。
特に、特許文献7に開示されているような、アルカリ金属シリケート(酸化ケイ素とアルカリ金属酸化物との混合物)を含む水系塗料組成物で形成された塗膜(コーティング層)の表面に、さらに上塗り塗料を塗布して上塗り塗膜を形成した場合、コーティング層表面に残存するアルカリ金属の作用(アルカリ性)に起因して、様々な問題が発生する。たとえば、上塗り塗膜における膨れの発生や、該水系塗料組成物に亜鉛が含まれる場合、亜鉛の腐食による白錆の発生が挙げられる。さらには、このような問題が生じるために、上塗り塗料を塗布するに先だって、上記水系塗料組成物の塗膜を基材から除去する除去作業が別途必要になるが、この除去作業の存在は、上塗り塗装の工程上、一工程が確実に増えるという点で大いに不利になってしまう。さらに、高性能の塗料組成物であって白錆の発生を抑制できる塗料を優先的に採用し、該除去作業を採用しない工法が一般化している顧客にとっては、上記組成物は十分な顧客要求を満たすものとはいえなかった。
また、結合剤が、水ガラス、コロイダルシリカ水分散剤等の水性シリカゾルであり(たとえば、特許文献8~9)、その結合剤中に過剰のアンモニウム化合物や、アルカリ金属酸化物の含有量が多く、結合剤のpHがアルカリ側になっている場合においても、同様の問題点が生じる。
このような従来の問題点に対して、本発明者らは鋭意検討の結果、原料シランとして、アセトキシシラン、ケトオキシムシラン等や、特に反応性は極めて高いが、反応時に刺激性でかつ腐食性もある塩化水素ガスを生成する点でむしろ敬遠されてきたクロロシラン等の特定のシラン化合物を、特定のpH条件下で加水分解反応および縮合反応して得られた加水分解縮合物を、結合剤として塗料組成物において使用することで、従来の問題点を解決できることを見出し、本発明を完成させた。
すなわち、本発明は、水を希釈溶媒としていながらも、従来の有機溶剤を希釈剤とした溶剤系塗料組成物から形成された塗膜とほぼ同等の乾燥性、硬化性および塗膜特性(塗膜強度)がバランスよく優れる塗膜を形成できるという、従来の水系塗料組成物では為し得なかった効果を発揮できる水系塗料組成物を提供することを目的とする。
特に、金属酸化物ゾルの存在下において、クロロシラン等の特定のシラン化合物を加水分解反応および縮合反応して得られた加水分解縮合物を含む場合、後述するように、加水分解縮合物の残留官能基と金属酸化物ゾルとの相互作用も期待でき、より強度の高い塗膜強度を形成し得る結合剤組成物および防錆塗料組成物を提供することができる。
 本発明に係る水系塗料組成物は、下記式(I)で表されるシラン化合物(a1)を含むシラン原料(a)を、pH0.4~8.0の条件下にて加水分解反応および縮合反応させて得られる、加水分解縮合物を含む結合剤(A)と、水(B)とを含有することを特徴としている。
Figure JPOXMLDOC01-appb-C000003
(上記式(I)中、R1a~R6aは、それぞれ独立して、水素原子、ハロゲン原子、炭素数が1から10までのアルキル基、炭素数が2から5までのアルケニル基、炭素数が6から12までのアリール基、Z-R7a-(Zは、ハロゲン原子、ヒドロキシ基、エポキシ基、アクリロキシ基、メタクリロキシ基、またはRaO-(RbO)c-(Raは水素原子、または炭素数が1から10までのアルキル基であり、Rbは炭素数が2から4のアルキレン基であり、cは1から15までの整数である。)で表されるポリオキシアルキレン基であり、R7aは炭素数が1から10までのアルキレン基である。)、または-OR8a(R8aは水素原子、炭素数が1から10までのアルキル基、または炭素数が1から10までのアルケニル基である。)であり、
 R1a~R6aの少なくとも1つは、ハロゲン原子である。
 Yは、酸素原子または炭素数が1から10までのアルキレン基である。
 mは、0または1を示し、pは、0以上の整数を示す。)
 本発明の水系塗料組成物において、前記シラン原料(a)が、前記シラン化合物(a1)の他に、下記一般式(II)で表されるシラン化合物(a2)を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000004
(式(上記一般式(II)中、R1b~R6bは、それぞれ独立して、水素原子、炭素数が1から10までのアルキル基、炭素数が2から5までのアルケニル基、炭素数が6から12までのアリール基、Z-R7b-(Zは、ヒドロキシ基、エポキシ基、アクリロキシ基、メタクリロキシ基、またはRa´O-(Rb´O)c´-(Ra´は水素原子、または炭素数が1から10までのアルキル基であり、Rb´は炭素数が2から4のアルキレン基であり、c´は1から15までの整数である。)で表されるポリオキシアルキレン基であり、R7bは炭素数が1から10までのアルキレン基である。)、-OR8b(R8bは炭素数が1から10までのアルキル基、または炭素数が1から10までのアルケニル基である。)、ヒドロキシル基、またはアシル基であり、
 R1b~R6bの少なくとも一つは、ヒドロキシル基、-OR8b基(R8bは炭素数が1から10までのアルキル基である。)、Z-R7b-(Zは、エポキシ基であり、R7bは炭素数が1から10までのアルキレン基である。)またはアシル基である。
 Y´は、酸素原子または炭素数が1から10までのアルキレン基である。
 m´は、0または1を示し、p´は0以上の整数を示す。)
 本発明の水系塗料組成物において、前記結合剤(A)が、前記シラン原料(a)を、下記化学式(III)で表される金属酸化物を含む金属酸化物ゾル(C)の存在下で、加水分解反応および縮合反応して得られる加水分解縮合物、および前記金属酸化物を含むことが好ましい。
  Mpr・・・・(III)
(式(III)中、Mは、Si、AlまたはTiを示す。p、rはそれぞれ独立して、1~3の整数を示す。)
 本発明の水系塗料組成物において、前記式(I)におけるR1a~R6aの少なくとも1つが、塩素原子であることが、加水分解及び脱水縮合反応性に優れ、最終的に所望の効果を有する水系塗料組成物が得られるなどの点で好ましい。
 本発明の水系塗料組成物において、前記一般式(II)におけるR1b~R6bの少なくとも1つが、グリシドキシ基であることが水溶性や保存安定性の点などで好ましい。
 本発明の水系塗料組成物において、前記式(I)におけるYが、炭素数1から10までのアルキレン基であることが好ましい。
 本発明の水系塗料組成物において、前記金属酸化物ゾル(C)が、無水ケイ酸ゾルであることが好ましい。
 本発明の水系塗料組成物において、前記無水ケイ酸ゾルが、煙霧質シリカゾルであることが好ましい。
 本発明の水系塗料組成物において、前記金属酸化物ゾル(C)が、コロイダルシリカ水分散剤であり、該コロイダルシリカ水分散剤における、pHが7以下であり、Na2Oの含有量が400ppm以下であることが好ましい。
 本発明の水系塗料組成物において、前記金属酸化物ゾル(C)が、煙霧質アルミナまたは煙霧質チタニアを含むゾルであることが好ましい。
 本発明の水系塗料組成物において、さらに顔料を含み、水系塗料組成物における、顔料体積濃度(PVC)と臨界顔料体積濃度(CPVC)との比((PVC)/(CPVC))が1より大きいことが好ましい。
 本発明の水系塗料組成物において、さらに防錆顔料(D)を含むことが好ましい。
 本発明の水系塗料組成物において、前記防錆顔料(D)が、2~20μmの平均粒径を有する亜鉛粉末および/または亜鉛合金粉末を含むことが好ましい。
  本発明の水系塗料組成物において、さらに白錆抑制剤(E)として、金属モリブデンおよび/またはモリブデン化合物を含むことが好ましい。
 本発明の水系塗料組成物は、結合剤組成物として用いられることが好ましい。
 本発明の水系塗料組成物は、防錆塗料組成物として用いられることが好ましい。
 本発明の水系塗料組成物は、一次防錆用塗料組成物である事が好ましい。
 本発明の水系塗料組成物は、厚塗り無機ジンク塗料組成物である事が好ましい。
 また、本発明に係る鋼材の一次防錆塗装方法は、鋼材の表面に、上記一次防錆用塗料組成物を塗布し、次いで塗布された該塗料組成物を硬化させて、一次防錆塗膜を形成させることを特徴とする。
 また、鋼材の防錆塗装方法は、鋼材の表面に、上記厚塗り無機ジンク塗料組成物を塗布し、次いで塗布された該塗料組成物を硬化させて、厚塗り無機ジンク防錆塗膜を形成させることを特徴とする。
 また、本発明の鋼構造物は、鋼材の表面に、上記一次防錆用塗料組成物から形成された一次防錆塗膜を有することを特徴とする。
 また、本発明の鋼構造物は、鋼材の表面に、上記厚塗り無機ジンク塗料組成物から形成された厚塗り無機ジンク防錆塗膜を有することを特徴とする。
 本発明にかかる水系塗料組成物は、水を希釈溶媒としていながらも、従来の有機溶剤を希釈剤とした溶剤系塗料組成物から形成された塗膜とほぼ同等の乾燥性、硬化性および塗膜特性(塗膜強度)がバランスよく優れる塗膜を形成できるという、従来の水系塗料組成物では為し得なかった効果を発揮できる。
 また、本発明にかかる水系塗料組成物が防錆塗料組成物として用いられた場合、該防錆塗料組成物は、水を希釈溶媒にしていながらも、得られる防錆塗膜は、亜鉛等の防錆顔料が本来持っている防錆性を保持しつつ、かつ従来の溶剤系防錆塗料組成物からなる塗膜とほぼ同等の優れた溶接性、切断性の両立という、従来の水系防錆組成物からなる塗膜では為し得なかった効果を発揮できる。
 また、本発明の防錆方法は、亜鉛等の防錆顔料が本来持っている防錆性を保持しつつ、かつ溶剤系防錆塗料組成物から形成された防錆塗膜とほぼ同等の優れた溶接性、切断性を両立した防錆塗膜を鋼材等の基材表面に形成することができる。
図1は、実施例1の結合剤組成物のIRチャート(脱水後)を示す図である。 図2は、実施例1の結合剤組成物のGPCチャート(脱水後)を示す図である。 図3は、実施例1の結合剤組成物のSi29NMRチャートを示す図である。 図4は、実施例2の結合剤組成物のIRチャート(脱水後)を示す図である。 図5は、実施例2の結合剤組成物のGPCチャート(脱水後)を示す図である。 図6は、実施例3の結合剤組成物のIRチャート(脱水後)を示す図である。 図7は、実施例3の結合剤組成物のGPCチャート(脱水後)を示す図である。 図8(a)は、実施例または比較例の一次防錆塗料組成物から形成された上塗り塗膜の溶接性試験にて使用されたサンドブラスト処理板(上板および下板)(溶接試験用鋼板と塗装部分)を示す図であり、図8(b)は、上塗り塗膜の溶接性試験で実施された溶接態様(溶接方法概略)を示す図である。
 本発明に係る水系塗料組成物は、以下に述べる特定のシラン化合物(a1)を含むシラン原料(a)を、pH0.4~8.0の条件下にて加水分解反応および縮合反応させて得られる、加水分解縮合物を含む結合剤(A)と、水(B)とを含有する。
結合剤(A)
 結合剤(A)は、シラン原料(a)として、下記一般式(I)で表されるシラン化合物(a1)を含むシラン原料(a)を、pH0.4~8.0の条件下にて加水分解反応および縮合反応して得られる加水分解縮合物を含む。ここで、結合剤(A)は、加水分解縮合物の他に、必要に応じて、水を除く任意成分を含んでいてもよいし、あるいは、加水分解縮合物のみからなるものであってもよい。
 なお、シラン原料(a)は、シラン化合物(a1)の他に、必要に応じて、後述するようなシラン化合物(a1)ではないシラン化合物(シラン化合物(a2)、シラン化合物(a3)等)を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000005
 式(I)中、R1a~R6aは、それぞれ独立して、水素原子、ハロゲン原子、炭素数が1から10までのアルキル基、炭素数が2から5までのアルケニル基、炭素数が6から12までのアリール基、Z-R7a-(Zは、ハロゲン原子、ヒドロキシ基、エポキシ基(たとえば、グリシドキシ基、3,4-エポキシシクロヘキシル基等)、アクリロキシ基、メタクリロキシ基、またはRaO-(RbO)c-(Raは水素原子、または炭素数が1から10までのアルキル基であり、Rbは炭素数が2から4のアルキレン基であり、cは1から15までの整数である。)で表されるポリオキシアルキレン基であり、R7aは炭素数が1から10までのアルキレン基である。)、または-OR8a(R8aは水素原子、炭素数が1から10までのアルキル基、または炭素数が1から10までのアルケニル基である。)であり、
 R1a~R6aの少なくとも1つは、ハロゲン原子である。
 Yは、酸素原子または炭素数が1から10までのアルキレン基である。
 mは、0または1を示し、pは、0以上の整数を示す。
 シラン原料(a)は、このようにシラン化合物(a1)単独のみからなるものであってもよい(すなわち、シラン原料(a)100重量部中、シラン化合物(a1)が100重量部含まれるものであってもよい。)。ただし、(1)シラン化合物(a1)と水との反応性が過度に高いために加水分解縮合反応が早く進行し、ゲル状物等の水不溶性の生成物が生成することを防ぐため、(2)適切な反応性を得かつ適切な官能基の導入を図るため、あるいは(3)適切な分子量と構造の化合物を得ることができ、最終的に所望の効果(例えば、基材に対する付着性や塗膜強度の向上)を発揮できる塗膜を形成可能な水系塗料組成物が得られるという観点からは、シラン化合物(a1)の他に、後述するシラン化合物(a2)を含むことが好ましい。
 また、結合剤(A)と顔料との分散性の向上や、塗料組成物から形成される塗膜の補強性の付与及び、比較的高価なシラン化合物の使用量を減らしてコストを低減するという観点からは、結合剤(A)は、シラン原料(a)を、後述する金属酸化物ゾル(C)の存在下で、加水分解反応および縮合反応して得られる加水分解縮合物、および前記金属酸化物を含むことが好ましい。
 なお、シラン原料(a)がシラン化合物(a1)単独を含む場合、得られる加水分解縮合物は、シラン化合物(a1)から誘導される構成単位を有する単独加水分解縮合物である。また、シラン原料(a)がシラン化合物(a1)の他に、シラン化合物(a2)などを含む場合、得られる加水分解縮合物は、これらのシラン化合物(a1)、(a2)などから誘導される構成単位を有する共加水分解縮合物である。さらに、加水分解縮合物が、シラン原料(a)を後述する金属酸化物ゾル(C)の存在下で加水分解・縮合反応させて調製された場合、結合剤(A)は、得られる加水分解縮合物と、金属酸化物ゾル(C)に含まれる金属酸化物とを含む複合物である。
 調製された加水分解縮合物を含む調製物は、通常、透明な水溶液(加水分解縮合物が水溶性である場合)であるか、あるいは白濁の水分散液(加水分解縮合物が難水溶性で水分散性である場合)である。
 また、シラン原料(a)が加水分解反応および縮合反応する際のpHは、0.4~8.0であり、塗膜の乾燥性と硬化性および乾燥塗膜の塗膜特性(塗膜強度)を一層向上させるという観点からは、pH0.7~6.0であることが好ましく、pH0.9~5.0であることがより好ましい。ここで、上記pH条件は、シラン原料(a)が、終始一貫して、上記の特定pH範囲内の下、加水分解反応・縮合反応する旨を指し、該反応の開始から終了まで上記pH範囲から逸脱しないことを意味する。
 また、結合剤(A)が、シラン原料(a)を、後述する金属酸化物ゾル(C)の存在下で、加水分解反応および縮合反応して得られる加水分解縮合物、および金属酸化物を含む場合、シラン原料(a)が加水分解反応および縮合反応する際のpHが、上記範囲から外れて、下限値よりも低くなった場合、金属酸化物のコロイド粒子の凝集が生じてしまう傾向があり、また、上記範囲より外れて、上限値よりも高くなった場合でも、金属酸化物のコロイド粒子の凝集が生じてしまう傾向がある。このように、シラン原料(a)が加水分解反応および縮合反応する際のpHが、上記範囲から逸脱すると、金属酸化物のコロイド粒子の凝集が生じる傾向にあり、この現象は、金属酸化物のコロイド粒子の安定性(すなわち、保存安定性)の低下に起因するが、結果として、結合剤の安定性(すなわち、保存安定性)が不良になる場合がある。
 以下、シラン化合物(a1)としてメチルトリクロロシランおよび後述のシラン化合物(a2)としてγ-グリシドキシプロピルトリメトキシシランを含むシラン原料(a)を、加水分解および縮合反応して加水分解縮合物である結合剤(A)が生じる過程を例に挙げて説明する。なお、下記化学反応式(i)~(iii)で示される反応は、後述の実施例2における反応に相当する。
 下記、化学反応式(i)および(ii)で示されるように、メチルトリクロロシランおよびγ-グリシドキシプロピルトリメトキシシランは、それぞれ加水分解されて、シラノール基(Si―OH基)を生じる。ここで、これらの加水分解反応は、一般的に、一度に進行するわけではなく、段階的に進行すると思われる。
Figure JPOXMLDOC01-appb-C000006
 次いで、下記反応式(iii)に示されるように、上記反応式(i)および/または(ii)で生じたシラノール基(Si-OH基)のヒドロキシル基間で、脱水縮合反応して、シロキサン結合(Si―O―Si)が生じる。なお、下記反応式(iii)では、上記反応式(i)で生じたシラノール基と、(ii)で生じたシラノール基とが脱水縮合反応して生じたシロキサン結合を1箇所のみの示し、便宜上、他のシロキサン結合の明示は省略している。また、シラノール基は、反応式(i)に由来するものと反応式(ii)に由来するものとの区別なく、ランダムに脱水縮合反応してシロキサン結合を生じ得る。
 そのようにして、多数のシロキサン結合が形成されて(すなわち高分子化して)、加水分解縮合物が生じる。
Figure JPOXMLDOC01-appb-C000007
 なお、該pHは、シラン化合物(a1)として、酢酸基(CH3COO-)などの酸性基およびSi原子に直接結合した塩素原子等のハロゲン原子を有するシラン化合物で調整されてもよい。このようなシラン化合物は、加水分解反応により、塩化水素などのハロゲン化水素や酢酸等の酸性物質が副生するために、pHを容易に低下させることができる。また、後述するように、金属酸化物ゾル(C)を使用する場合は、該ゾルのpHによって、上記pHを調整してもよい。
 なお、本発明では、特定のシラン化合物を特定条件下で加水分解・脱水縮合反応させているので、無触媒条件下でも十分に加水分解反応および縮合反応が進行して加水分解縮合物が得られるが、上記pH範囲から逸脱しない限り、反応系に、塩酸、硫酸、リン酸、酢酸、ギ酸、活性白土、ゼオライトなどの酸触媒や、水酸化ナトリウム、水酸化カリウム、アンモニア、テトラアンモニウムハイドロオキサイドなどのアルカリ触媒、ジブチルスズジラウレート、ジブチルスズジマレート、ジブチルスズジアセテート、スタナスオクトエート、ジイロプロポキシビスアセチルアセトンチタネート、アルミニウムブチレート、アルミニウムイソプロピレート等の有機金属化合物、酸化鉄、酸化亜鉛等の金属酸化物などの触媒を添加してもよい。
 また、シラン原料(a)がシラン化合物(a1)単独のみからなる場合、必要に応じてアルコール類などの有機溶剤中で、該シラン原料を加水分解反応および縮合反応させてもよい。この場合、結合剤(A)は、加水分解縮合物とともに有機溶剤を含むことになるが、このような有機溶剤を含む結合剤(A)を用いて、本発明の水系塗料組成物を調製してもよい。しかしながら、引火点を高いレベルに保持するためや、VOC対策(環境負荷の低減)のために、合成ゼオライトでの吸着除去、蒸留あるいは減圧留去等の除去手段によって有機溶剤が除去された結合剤(A)を用いて、本発明の水系塗料組成物が調製されることが好ましい。
 上記加水分解反応・縮合反応は、市販されている反応器を適宜用いることで、安全かつ効率的に実施される。このような反応器としては、生産量や性能に応じて選択されるが、回分式反応器、連続反応式反応器が挙げられ、これらの組合せ方式の反応器であってもよい。
 また、シラン原料(a)として含まれるシラン化合物(a1)(必要によりシラン化合物(a2)等も含む。)の加水分解反応および縮合反応の時間は、1時間~18時間が好ましく、3時間~10時間がより好ましい。上記加水分解反応および縮合反応の時間がこの範囲にあると、シラン化合物(a1)やシラン化合物(a2)等が水と適切な条件で加水分解反応することができ、反応後の、たとえば50℃から70℃における熟成工程で加水分解及び縮合反応を完結させることができる。ただし、反応(容器)のスケールが2kL~10kLなどと大きくなった場合は、加熱や冷却の伝熱効率の差で工程時間は大きく伸びることもある。また、スタティックミキサーなどの混合エレメントを内蔵した連続反応装置で連続的に反応させる場合、反応時間は特に限定されるものではない。
 なお、上記反応時間が極端に短い場合(例:1時間程度か、それ以下。)は十分な分子量の化合物が得られなかったり、特に、結合剤(A)が、シラン原料(a)を、後述する金属酸化物ゾル(C)の存在下で、加水分解反応および縮合反応して得られる加水分解縮合物、および金属酸化物を含む場合、金属酸化物の安定性が低下して(金属酸化物の凝集が起こって)ゲル化の原因となったりする。一方、上記反応時間が過度に長すぎた場合は、熱的な劣化反応が伴い、保存安定性が悪い生成物が得られたり、ゲル化の原因になったりする。
 また、上記加水分解反応および縮合反応の反応温度は、適切な反応速度を確保しかつ熱的劣化反応を避けるという観点からは、好ましくは3~90℃付近、より好ましく5~80℃、さらに好ましくは、8~70℃程度である。なお、上記条件での反応は、反応温度が高いほど、短時間で反応は進行し、反対に反応温度が低いと長時間要する。
 なお、上記加水分解縮合物を調製するにあたり、シラン化合物(a1)から生成する塩化水素等のハロゲン化水素は、水へ溶解する際に、相当な発熱を伴うが、該反応温度の範囲は、かかる発熱を制御できるように考慮される。たとえば、シラン化合物の反応槽への供給速度(漏斗を介した滴下の場合は滴下速度)を適宜調節する必要がある。ただし、工業用水よりも低温の冷媒であるチラーやブラインなど冷却装置が十分な冷却能力を有する場合、かかる供給速度をそれほど問題にする必要はなく、シラン化合物の反応性などを考慮して、適宜決定される。短時間に反応を完結させた場合も、長時間かけて十分に反応させた場合も分子量分布に多少の違いは認められるが、得られた加水分解縮合物の保存安定性や、それを含む結合剤を用いた場合の塗膜の硬化特性や塗膜強度といった特性には顕著な差は見られないことが多い。
 上記加水分解縮合物の数平均分子量(GPCによる測定(具体的には、下記「<評価方法・評価基準>」の「((2)GPC測定条件」を参照))は、通常140~500,000であり、好ましくは200~100,000であり、より好ましくは300~30,000である。このような分子量範囲であれば、水に対する溶解性も保持しつつ、結合剤として塗膜の乾燥性や硬化性を満足できるレベルで発揮できる。
 また、上記加水分解縮合物が含まれた反応生成物が、金属酸化物ゾル(C)に由来する金属酸化物を含む場合、該金属酸化物と加水分解縮合物とからなる複合物の平均粒子径(動的光散乱法による測定(具体的には、下記「<評価方法・評価基準>」の「(4)平均粒径の測定」を参照))は、通常1~500nmであり、好ましくは4~300nmであり、より好ましくは5~200nmである。このような範囲であれば、該複合物は、コロイダル粒子として安定領域に存在し、加水分解縮合物のゲル化や、成分の沈降の懸念がなく、結合剤としても分散性が良好で、塗料組成物から形成された塗膜の乾燥性や硬化性も良好である。なお、上記複合物とは、金属酸化物と加水分解縮合物とが単に混合されてなる場合(混合物)のみならず、金属酸化物と加水分解縮合物とが化学的または物理的結合を介してなる場合も含む。
  (シラン化合物(a1)、シラン化合物(a2)および金属酸化物ゾル(C))
 以下、シラン化合物(a1)~(a4)および金属酸化物ゾル(C)について説明する。
(シラン化合物(a1))
 シラン原料(a)に含まれるシラン化合物(a1)は、下記一般式(I)(構造式としては、下記構造式(I´))に表わされる。
Figure JPOXMLDOC01-appb-C000008
(上記一般式(I)および構造式(I´)中、R1a~R6aは、それぞれ独立して、水素原子、ハロゲン原子、炭素数が1から10までのアルキル基、炭素数が2から5までのアルケニル基、炭素数が6から12までのアリール基、Z-R7a-(Zは、ハロゲン原子、ヒドロキシ基、エポキシ基(たとえば、グリシドキシ基、3,4-エポキシシクロヘキシル基等)、アクリロキシ基、メタクリロキシ基、またはRaO-(RbO)c-(Raは水素原子、または炭素数が1から10までのアルキル基であり、Rbは炭素数が2から4のアルキレン基であり、cは1から15までの整数である。)で表されるポリオキシアルキレン基であり、R7aは炭素数が1から10までのアルキレン基である。)、または-OR8a(R8aは水素原子、炭素数が1から10までのアルキル基、または炭素数が1から10までのアルケニル基である。)であり、
 R1a~R6aの少なくとも1つは、ハロゲン原子である。
 Yは、酸素原子または炭素数が1から10までのアルキレン基である。
 mは、0または1を示し、pは、0以上の整数を示す。)
 また、Si原子に直接結合する官能基(一般式(I)および構造式(I´)中、R1a~R6a)の少なくとも1つは、加水分解性基であるハロゲン原子であるので、シラン化合物(a1)は、反応性が良好で、かつ入手し易い。
 また、Yは、酸素原子または炭素数が1から10までのアルキレン基であるが、入手がし易く、反応性が良好であるという観点からは、炭素数1から10までのアルキレン基が好ましく、炭素数2から5までのアルキレン基がより好ましい。
 また、加水分解及び脱水縮合反応性に優れるという観点からは、シラン化合物(a1)は、Si原子に直接結合する官能基(一般式(I)および構造式(I´)中、R1a~R6a)は、それぞれ独立して、ハロゲン原子(好ましくは塩素原子)、炭素数が1から10までのアルキル基、または-OR8a(R8aは、炭素数が1から10までのアルキル基である。)であり、Si原子に直接結合する官能基(一般式(I)および構造式(I´)中、R1a~R6a)の少なくとも3つは、ハロゲン原子(好ましくは塩素原子)であり、pが0~4の整数(好ましくは0または1、特に好適にはp=0)であることが好ましい。ここで、pが1~2の整数である場合、mは1であり、Yは炭素数が1から10までのアルキレン基(好ましくは炭素数2から5までのアルキレン基)であることが好ましい。
 以下、下記一般式(I)(構造式としては、下記構造式(I´))に表わされるシラン化合物(a1)の具体例を示す。
 まず、クロロシラン類としては、テトラクロロシラン、トリクロロシラン、メチルトリクロロシラン、エチルトリクロロシラン、ビニルトリクロロシラン、n-プロピルトリクロロシラン、i-プロピルトリクロロシラン、n-ブチルトリクロロシラン、sec-ブチルトリクロロシラン、t-ブチルトリクロロシラン、n-ペンチルトリクロロシラン、n-ヘキシルトリクロロシラン、n-オクチルトリクロロシラン、メチルジクロロシラン、ジメチルジクロロシラン、メチルエチルジクロロシラン、メチルビニルジクロロシラン、ジメチルクロロシラン、ジエチルクロロシラン、トリメチルクロロシラン、ビニルジメチルクロロシラン、ビニルジエチルクロロシラン、アリルトリクロロシラン、メチルアリルジクロロシラン、γ-アクリロキシプロピルトリクロロシラン、γ-メタクリロキシプロピルトリクロロシランなどが挙げられる。
 さらには、シラン化合物(a1)は、これらのクロロシラン類の塩素原子がフッ素、臭素、ヨウ素に置換されたシラン化合物、すなわち、トリメチルフロロシラン、トリメチルブロモシラン、トリメチルヨードシランなどのフロロシラン類、ブロモシラン類、あるいはヨードシラン類であってもよい。なお、上記のクロロシラン類の塩素原子がフッ素原子、臭素原子またはヨウ素原子に置換されたシラン化合物は市販されている。
 Si原子に直接結合する官能基として、ハロゲン原子とともにアルコキシ基を有するシラン化合物(a1)も有用であり、これらのシラン化合物(a1)としては、メチルジクロロメトキシシラン、メチルクロロジエトキシシラン、メチルジメトキシクロロシラン、メチルジi-プロポキシクロロシラン、エチルn-ブトキシジブロモシラン、ジメトキシクロロシラン、γ-クロロプロピルトリメトキシシラン、γ-クロロプロピルトリエトキシシラン、γ-クロロプロピルトリプロポキシシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルメチルジエトキシシラン、γ-クロロプロピルジメチルエトキシシラン、γ-クロロプロピルエチルジメトキシシラン、γ-クロロプロピルエチルジエトキシシランなどが挙げられる。
 また、上記シラン化合物(a1)は、ジシラン類(一般式(I)および構造式(I´)中、mが0であり、pが1以上の整数である場合)などのポリシランであっても有用である。このようなポリシランとしては、トリメチルトリクロロジシラン、ジメチルテトラクロロジシラン、トリメチルトリメトキシジシラン、ジメチルテトラメトキシジシランなどのジシラン類などのアルキレン基含有ジシリル化合物が挙げられる。
また、下記式で示されるように、白金や白金化合物を触媒として用いた、ジシラン化合物と、ビニルクロロシランやアリルクロロシラン、水素原子含有クロロシランなどのシラン化合物との付加反応によって生成されるジシリルエタン類、ジシリルプロパン類もシラン化合物(a1)として有用な化合物である。なお、下記化学反応式中では、-CH=CH2、-CH2-CH=CH2、-CH2-CH2-、-CH2-CH2-CH2-以外の、Si原子に直接結合する官能基の表示を省略している。
Figure JPOXMLDOC01-appb-C000009
 また、シラン化合物(a1)としてのジシラン化合物としては、ジシリルアルキル類(たとえば、ジシリルエタン類、ジシリルプロパン類、ジシリルブタン類等)が挙げられる。
 上記ジシリルエタン類の例としては、Cl3SiCH2CH2SiCl3、(CH3O)2ClSiCH2CH2SiCl3、(CH3O)3SiCH2CH2SiCl3、Cl(CH3O)2SiCH2CH2Si(CH3O)Cl2、Cl(C25O)2SiCH2CH2Si(C25O)Cl2、(CH3O)3SiCH2CH2Si(C25O)3、Cl2(CH3)SiCH2CH2SiCl3、(CH3O)2ClSiCH2CH2Si(CH3)Cl2、(CH3O)2(CH3)SiCH2CH2Si(CH3)Cl2、Cl2(C65)SiCH2CH2SiCl3、(CH3O)2(C65)SiCH2CH2Si(CH3O)Cl2、Cl2(C65)SiCH2CH2Si(C25O)3などの化合物も挙げられる。
 また、ジシリルプロパン類の例としては、(C65)(CH3)ClSiCH2CH2CH2Si(CH3)Cl2、(C25O)2(CH3)SiCH2CH2CH2Si(CH3)Cl2、(C25O)3SiCH2CH2CH2Si(CH3)Cl2、(CH3O)3SiCH2CH2CH2Si(C25O)3、(C25O)3SiCH2CH2CH2Si(C25O)Cl2、(C25O)3SiCH2CH2CH2SiCl3、Cl3SiCH2CH2CH2SiCl3、(CH3O)3SiCH2CH2CH2SiCl3、Cl(CH3O)2SiCH2CH2CH2Si(CH3O)Cl2、Cl(C25O)2SiCH2CH2CH2Si(C25O)Cl2、(CH3O)3SiCH2CH2CH2Si(C25O)3、Cl2(CH3)SiCH2CH2CH2SiCl3、(CH3O)2ClSiCH2CH2CH2Si(CH3)Cl2、(CH3O)2(CH3)SiCH2CH2CH2Si(CH3)Cl2、Cl2(C65)SiCH2CH2CH2SiCl3、(CH3O)2(C65)SiCH2CH2CH2Si(CH3O)Cl2、Cl2(C65)SiCH2CH2CH2Si(C25O)3などの化合物も挙げられる。
 また、ジシリルブタン類の例としては、(CH3O)2ClSiCH2CH2CH2CH2SiCl3、(C25O)3SiCH2CH2CH2CH2SiCl3、Cl(CH3O)2SiCH2CH2CH2CH2Si(CH3O)Cl2、(C25O)3SiCH2CH2CH2CH2Si(C25O)Cl2、(CH3O)3SiCH2CH2CH2CH2Si(C25O)3、(C25O)3SiCH2CH2CH2CH2Si(CH3)Cl2、(C25O)2(CH3)SiCH2CH2CH2CH2Si(CH3)Cl2、(C65)(CH3)ClSiCH2CH2CH2CH2Si(CH3)Cl2などの化合物も挙げられる。
 上述の不飽和基含有シランよりも長いアルキレン基を持ったシラン化合物を用いて調製すると、更に長鎖のアルキレン基含有ジシリル化合物が得られる。
 以上、シラン化合物(a1)の具体例を列挙したが、この中でも、得られる塗料組成物の塗膜の乾燥性、硬化特性や、該組成物から形成された乾燥塗膜の塗膜強度、防錆性が良好であることと、入手が容易で、かつ取扱いも比較的容易であることを考慮すると、クロロシラン類(すなわち、一般式(I)および構造式(I´)におけるR1a~R6aの少なくとも1つが、塩素原子であること)が好ましく、さらには、クロロシラン類の中でもテトラクロロシラン、メチルトリクロロシランがさらに好ましい。
(シラン化合物(a2))
 シラン原料(a)は、上記シラン化合物(a1)の他に、下記一般式(II)(構造式としては、下記構造式(II´))に表わされるシラン化合物(a2)を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000010
 上記式(一般式(II)および構造式(II´))中、R1b~R6bは、それぞれ独立して、水素原子、炭素数が1から10までのアルキル基、炭素数が2から5までのアルケニル基、炭素数が6から12までのアリール基、Z-R7b-(Zは、ヒドロキシ基、エポキシ基(たとえば、グリシドキシ基、3,4-エポキシシクロヘキシル基等)、アクリロキシ基、メタクリロキシ基、またはRa´O-(Rb´O)c´-(Ra´は水素原子、または炭素数が1から10までのアルキル基であり、Rb´は炭素数が2から4のアルキレン基であり、c´は1から15までの整数である。)で表されるポリオキシアルキレン基であり、R7bは炭素数が1から10までのアルキレン基である。)、-OR8b(R8bは炭素数が1から10までのアルキル基、または炭素数が1から10までのアルケニル基である。)、ヒドロキシル基、またはアシル基であり、
 R1b~R6bの少なくとも一つは、ヒドロキシル基、-OR8b基(R8bは炭素数が1から10までのアルキル基である。)、Z-R7b-(Zは、エポキシ基であり、R7bは炭素数が1から10までのアルキレン基である。)またはアシル基である。
 Y´は、酸素原子または炭素数が1から10までのアルキレン基である。
 m´は、0または1を示し、p´は0以上の整数を示す(たとえば、m´が1であり、p´が0~10(好ましくは0~5)の整数である。)。
 以下、このようなシラン化合物(a2)の具体例として各種シラン化合物を列挙するが、この中でも、水溶性または保存安定性などの点で良好であることから、シラン化合物(a2)は、エポキシ基を有するシラン化合物(a2)であること(一般式(II)および構造式(II´)中、R1b~R6bの少なくとも1つは、Z-R7b-(Zは、エポキシ基であり、R7bは炭素数が1から10までのアルキレン基である)ことが好ましく、当該エポキシ基として、グリシドキシ基を有することがより好ましい(グリシドキシ基を有するシラン化合物(a2)であることがより好ましい。)。
 さらには、得られる結合剤(A)を含む塗料組成物から形成された乾燥塗膜の塗膜強度や、塗料組成物から形成された塗膜の乾燥性(硬化特性)などを考慮した場合は、γ-グリシドキシプロピルトリメトキシシランがより好ましい。
 ヒドロキシル基(-OH)を有するシラン化合物(a2)としては、トリメチルシラノール、トリエチルシラノール、トリイソプロピルシラノール、トリノルマルブチルシラノールなどが挙げられる。
 アルコキシ基(-OR、R:炭素数1~5程度のアルキル基)を有するシラン化合物(a2)としては、トリメトキシシラン、トリエトキシシラン、トリn-プロポキシシラン、トリi-プロポキシシラン、n-ブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリイソプロポキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリイソプロポキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジイソプロポキシシラン、ジメチルメトキシエトキシシラン、ジメチルメトキシイソプロポキシシラン、メチルエチルジメトキシシラン、メチルエチルジエトキシシラン、トリメチルメトキシシラン、トリエチルトリエトキシシラン、トリイソプロピルメトキシシラン、ビニルジメチルメトキシシラン、アリルトリメトキシシラン、アリルメチルジエトキシシランが挙げられる。
 エポキシ基(たとえば、グリシドキシ基、3,4-エポキシシクロヘキシル基等)を有するシラン化合物(a2)としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリi-プロポキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルジメチルエトキシシラン、γ-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルエチルジエトキシシラン、β-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4エポキシシクロヘキシル)エチルトリエトキシシラン、β-(3,4エポキシシクロヘキシル)エチルトリi―プロポキシシラン、β-(3,4エポキシシクロヘキシル)エチルメチルジメトキシシラン、β-(3,4エポキシシクロヘキシル)エチルメチルジエトキシシラン、β-(3,4エポキシシクロヘキシル)エチルメチルジi―プロポキシシラン等が挙げられる。
 アシル基を有するシラン化合物(a2)としては、メチルトリアセトキシシラン、エチルトリアセトキシシラン、ビニルトリアセトキシシラン、ジメチルジアセトキシシラン、トリエチルメトキシシラン、テトラアセトキシシランなどが挙げられる。
 また、シラン化合物(a2)は上述のようなモノマータイプ(一般式(II)および構造式(II´)中、p´=0)ではなく、オリゴマー・ポリマータイプ(一般式(II)および構造式(II´)中、p´≧1)であってもよい。
 オリゴマータイプのシラン化合物(a2)としては、テトラメトキシジシロキサン、テトラエトキシジシロキサン、ジメチルテトラメトキシジシロキサン、メチルエチルテトラメトキシジシロキサン、トリメチルペンタメトキシトリシロキサン、テトラメチルテトラメトキシシクロテトラシロキサンなどが挙げられる。
 ポリマータイプのシラン化合物(a2)としては、オルトエトキシシラン、オルトメトキシシラン、オルトイソプロポキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン等の、加水分解縮合物(アルキルシリケート)が挙げられる。
 上記シラン化合物として、市販品としては、エチルシリケート40、エチルシリケート45、メチルシリケート51、メチルシリケート56などがあげられる(いずれも多摩化学工業製)。この中でも、入手の容易性や反応性の点などから、メチルトリメトキシシラン、メチルトリエトキシシランの加水分解縮合物が好ましい。
 シラン化合物(a1)100重量部に対して、シラン化合物(a2)の含有量は、好ましくは10から5000重量部であり、より好ましくは30から3000重量部であり、更に好ましくは50から2000重量部である。シラン化合物(a2)の含有量が上記範囲より少ない場合、シラン化合物(a1)に由来する重合反応点(加水分解にて生じるOH基)の数に対して、シラン化合物(a2)に由来する重合反応点(加水分解にて生じるOH基)の数が過小であるために、得られる加水分解縮合物中の構成単位のうち、シラン化合物(a2)にから誘導される構成単位の比率が小さくなり、適切な分子量や構造が得られにくくなることがある。また上記範囲を超える場合、シラン化合物(a2)に由来する重合反応点(加水分解にて生じるOH基)の数に対して、シラン化合物(a1)に由来する重合反応点(加水分解にて生じるOH基)の数が過小であるために、得られる加水分解縮合物中の構成単位のうち、シラン化合物(a1)に由来する構成単位の比率が小さくなり、適切な分子設計ができなくなる。
 またシラン化合物(a2)における、3官能性シラン化合物100重量部に対する4官能性シラン化合物の比率は、好ましくは0.1から200重量部、より好ましくは1から100重量部、更に好ましくは5から80重量部である。これらの含有比率において、4官能性シラン化合物が上記範囲より少ない場合は、3官能性シラン化合物に由来する重合反応点(加水分解にて生じるOH基)の数に対して、4官能性シラン化合物に由来する重合反応点(加水分解にて生じるOH基)の数が過小であるために、適切な分子量や構造が得られにくく、また上記範囲より過剰な場合は高分子化しすぎるため、溶解性が劣る結果となり、沈降やゲル化を引き起こすため望ましくない。
 なお、3官能性シラン化合物および4官能性シラン化合物とは、一般式(II)および構造式(II´)中のR1b~R6bが、ヒドロキシル基、-OR8b基(R8bは炭素数が1から10までのアルキル基である。)、およびアシル基からなる群から選択される官能基を、それぞれ、3つ有しているシラン化合物および4つ有しているシラン化合物を指す。
 調製される加水分解縮合物の分子構造(架橋数・分子量分布・末端基の種類・加水分解・縮合反応性を有する末端基の有無・分子量)を適宜設計して、加水分解縮合物の水溶性や保存安定性を向上させたり、塗料組成物から形成された塗膜の硬化性を調整したりできる。
 なお、本発明では、シラン原料(a)は、シラン化合物(a1)を、好ましくはシラン化合物(a1)およびシラン化合物(a2)を含むが、必要に応じて、シラン化合物(a1)およびシラン化合物(a2)とは異なり、かつ、加水分解性および縮合性のシラン化合物(シラン化合物(a1)とともに加水分解反応および縮合反応して加水分解縮合物の構成単位となるシラン化合物(シラン化合物(a3))を含んでいてもよい。シラン化合物(a3)としては、Si原子に、少なくとも1つケトオキシム基(たとえば下記官能基)が結合しているシラン化合物(オキシム系シラン化合物)が挙げられ、該オキシム系シラン化合物としては、たとえばメチルトリス(メチルエチルケトオキシム)シランが挙げられる。
金属酸化物ゾル(C)
 金属酸化物ゾル(C)は、下記化学式(III)で示される金属酸化物を含み、該金属酸化物の固溶体や各種ドーピング化合物を含んでいてもよい。
  Mpr・・・・(III)
(式(III)中、Mは、Si、AlまたはTiを示す。p、rはそれぞれ独立して、1~3の整数を示す。)
 なお、本項目において、金属酸化物の粒径は、下記「<評価方法・評価基準>」の「(4)平均粒径の測定」に基づいて測定される平均粒子径を指す。
 金属酸化物ゾル(C)としては、金属酸化物としてシリカ(SiO2)、アルミナ(Al23)、チタニア(酸化チタン)を含むコロイド溶液(ゾル)が挙げられ、前記シラン原料(a)の加水分解反応および縮合反応に供される。
 アルミナ(酸化アルミニウム)を含む金属酸化物ゾル(アルミナゾル)としては、市販品としては、「Aerodisp.W630、VP Disp.W630X」(日本アエロジル(株)社製、アルミナの水分散液)、「アルミナゾル-10A」(川研ファインケミカル(株)社製、ゾル100重量%あたり10重量%のベーマイトアルミナを含むコロイド水溶液)が挙げられる。チタニア(酸化チタン)を含む金属酸化物ゾル(チタニアゾル)としては、市販品としては、「VP Disp.W740X、VP Disp.W2730X」(日本アエロジル(株)社製)がある。なお、これらの製品は強力な分散機を用いて10~40重量%の含有量で、一旦、火炎加水分解法(Evonik industriues AG社カタログ)で合成した煙霧質アルミナまたは煙霧質チタニアの粒子を水に分散されてなるものであり、これらの粒子(一次粒子)が凝集して生じた凝集粒子の粒径も均一であるために、安定であるが、粒子径は湿式法で合成されるコロイダルシリカよりも一般には大きいものである。
 また、水中から造粒させる工程で作られる湿式法のものよりも不純物のレベル(不純物の含有率)が2から3桁少ないというメリットはあるが、一次粒子まで完全分散させることが難しいため、粒子径が湿式法のものに対して5から10倍程度であり、それを用いた塗料組成物から得られる塗膜物性は劣る場合もあるが微妙な防錆性の調整には有利である。
 無水ケイ酸を含む金属酸化物ゾル(C)は、無水ケイ酸(いわゆる二酸化ケイ素(シリカ))の水分散液であり、無水ケイ酸ゾルと称される。該無水ケイ酸ゾルは、公知の方法で調製されたものでよく、中でも、湿式法で調製されたシリカスラリー、コロイダルシリカ水分散剤または水ガラスなどを原料として調製された無水ケイ酸ゾルは、10~20nm程度の一次粒子径を有する。
このようなゾルに含まれるシリカ粒子の粒子径は湿式や乾式(煙霧質)の調製条件にかかわらず、ほぼ共通であり、ゾル中に含まれる成分も、不純物のアルカリ金属酸化物の構成比率に多少の差が見られるものの、化学的特性はほぼ同一であるという観点から、湿式法で調製された無水ケイ酸ゾルが好ましい。また、最近では、無水ケイ酸ゾルの種類は広がりつつあり、上記の湿式法のみならず、乾式法で調製された乾式シリカの水分散液も製造・市販されている。このような、天然物ではなく、合成された高純度の無水ケイ酸は化学的、物理的に安定な特性を示すため、汎用されている。この観点から、無水ケイ酸ゾルとして、乾式シリカの水分散液も好ましい。
 さらには、無水ケイ酸ゾルの中でも、Na2Oなどの不純物が少ないという観点からは、煙霧質ケイ酸ゾルが好ましい。煙霧質ケイ酸ゾルとしては、既存の方法で煙霧質シリカを製造した後、この煙霧質シリカを強力な分散機を用いて水に均一に分散されてなるものが挙げられる。
 このような煙霧質ケイ酸ゾルの市販品としては、日本アエロジル株式会社製の「Aerodisp W7215S」、「Aerodisp WK7330」、「Aerodisp W7512S」などが挙げられる。これらの煙霧性ケイ酸ゾルは、火炎加水分解法で合成された煙霧質シリカを水に分散してなるゾルである。なお、該煙霧性シリカ中におけるSiO2含有量は、たとえば99.8重量%以上である。また、これらの煙霧質ケイ酸ゾルのpHはたとえば2~6であり、該ゾル中の無水ケイ酸の含有量は、たとえば5~50重量%程度である。
 金属酸化物ゾル(C)として、一般にコロイダルシリカ水分散剤と称される一連の無水ケイ酸ゾルも使用可能であるが、中でも特に精製度を上げて、ゾル中のNa2Oの含有量が400ppm(質量ppm)以下に低減されたものが好ましい。
 さらには、塗料組成物から形成される乾燥塗膜の上に更に塗膜(上塗り塗膜)を形成した場合、上塗り塗料との付着性の悪化を抑えるとともに、塗料組成物から形成される塗膜の硬化性・乾燥性や作業性を維持し、かつ乾燥塗膜の防錆性がより向上するといった観点からは、前記金属酸化物ゾル(C)が、コロイダルシリカ水分散剤(シリカゾル)であり、該コロイダルシリカ水分散剤おける、pHが7以下であり、Na2Oの含有量が400ppm以下であることが好ましい。このようなコロイダルシリカ水分散剤としては、日産化学株式会社製の「スノーテックスO」、「スノーテックスOL」、「スノーテックスO-33」、「スノーテックスO-40」などが挙げられる。これらは、固形分(100重量%)中のSiO2含有量が99重量%以上でかつNa2Oが400重量ppm以下であるとともに、コロイダルシリカ水分散剤におけるpHが2から4であり酸性側である。また、これらのコロイダルシリカ水分散剤に含まれるシリカ粒子の平均粒子径は4~6nm(スノーテックス OX)、8~11nm(スノーテックス OS)、10~20nm(スノーテックス O)、20~30nm(スノーテックス O-40)あるいは40~50nm(スノーテックス OL)のものであり、コロイダルシリカ水分散剤100重量%あたり、シリカ(SiO2)濃度は10~40重量%程度ある。
 また、無水ケイ酸を含む金属酸化物ゾル(C)は、アルミナがドーピング酸化物として取り込まれたシリカ粒子の水分散液であることが好ましい。このような金属酸化物ゾル(C)としては、「Aerodisp.W1714」(日本アエロジル社製),「Aerodisp.W1824」(日本アエロジル社製)が挙げられる。
 なお、金属酸化物ゾル(C)中の金属酸化物の含有量は、特に限定されないが、市販品では、金属酸化物ゾル100重量%あたり、通常は10~40重量%程度である。
 該金属酸化物ゾル(C)100重量部当たり、加水分解縮合物の含有量は、好ましくは0.05重量部から200重量部であり、より好ましくは0.2重量部から50重量部、更に好ましくは0.5重量部から30重量部である。金属酸化物ゾル(C)に含まれる金属酸化物100重量部に当てはめると、典型的には、加水分解縮合物の含有量は、0.1重量部から150重量部である。また、この場合、加水分解縮合物の含有量は、好ましくは0.5重量部から80重量部、更に好ましくは1重量部から50重量部である。
 また金属酸化物ゾル(C)のpHは、市販品によって異なるが、酸性である場合、防食塗料として、特に該塗料の保存安定性を向上させたり、該塗料を用いて形成された乾燥塗膜の防食性が良好になるといった点で好都合な面が多く、シラン化合物(a1)の加水分解・縮合反応におけるpH条件を、0.4~8.0の範囲に合わせるのに容易である。
 なお、シラン化合物(a1)の加水分解・縮合反応におけるpHの範囲は好ましくは7.0以下であり、より好ましくは5.0以下、更に好ましくは4.0以下である。金属酸化物のコロイド粒子の凝集を防止するためには、pHを0.4以上にする必要があり、pHが0.4より小さくなると、金属酸化物のコロイド粒子の凝集が生じてしまうという好ましくない結果を招来する。
 また、このようなpHの範囲を調整するにあたり、酸を添加してもよい。添加される酸としては、具体的には塩酸、酢酸、燐酸、硫酸、硝酸、ギ酸、プロピオン酸、アクリル酸、メタクリル酸、亜塩素酸、次亜塩素酸、亜硫酸などが挙げられる。なお、pHを微調整するにあたって、適宜、水で希釈された酸が使用されることが好ましい。
 一方、一次防錆塗料組成物は、長期的な白錆防止効果を含めた防錆効果とともに、該塗料組成物からなる塗膜上に形成される塗膜との良好な付着性が求められる。さらに、防錆効果を具備する塗料組成物自体は知られているものの、溶接性や良好な切断性を両立するものは知られていない。具体的には、塗料組成物を用いて形成された塗膜付基材を溶接、あるいは溶融切断に供する場合、該塗膜は高温条件下(最低でも800℃以上)に曝され、乾燥塗膜の溶接面あるいは切断面に燃焼物が生じるが、この燃焼物が溶接や溶融切断の処理スピードや、溶融切断の切断面の形状、溶接の強度に影響を与えないと言った、溶接性や良好な切断性を得ることが要求される。このような特性を得るためには、乾燥塗膜中(つまり、塗料組成物中)に含まれる有機成分をできるだけ減らすことが求められる。
 このような要求を満足するという観点からは、シラン化合物(a1)として、反応性の高いクロロシラン等のクロロシラン類(一般式(I)および構造式(I´)におけるR1a~R6aの少なくとも1つが、塩素原子であるシラン化合物(a1))を、コロイダルシリカ水分散剤などの金属酸化物ゾル(C)の存在下において、加水分解反応および縮合反応して得られた加水分解縮合物、および金属酸化物を含む結合剤(A)を用いると有利である。なお、この場合は結合剤(A)が著しく低いpH条件下に曝されているために、金属酸化物ゾル(C)の凝集が懸念されるため、上記クロロシラン類の添加量が適宜制限される。
(アルカリシリケート(C´))
本発明の塗料組成物は、アルカリシリケート(C´)を含んでいてもよい。アルカリシリケート(C´)としては、リチウムシリケート、ナトリウムシリケート、アンモニウムシリケートなどである。リチウムシリケートの例としては、ケイ酸リチウム35、ケイ酸リチウム45、ケイ酸リチウム75、アンモニウムシリケート(いずれも日本化学工業製)、ケイ酸ナトリウム1種、ケイ酸ナトリウム2種(三興コロイド化学製)などが挙げられる。
この成分の添加量は結合剤(A)1重量部に対し、通常0から1重量部、好ましくは0から0.5重量部、更に好ましくは0から0.3重量部である。
このアルカリシリケート(C´)は、生成したオルガノポリシロキサン(シラン原料(a)を加水分解反応および縮合反応して得られる加水分解縮合物)の分子量増大に寄与し、それを含む結合剤(A)を含む塗料組成物から形成された乾燥塗膜の塗膜強度や耐水性の向上を図るのに有効である。
水(B)
 本発明の水系塗料組成物は、加水分解縮合物を溶解または分散させるために水(B)を含有する。ここで、水(B)は、上記加水分解縮合物である結合剤(A)を調製する際に縮合反応で生じた水や、シラン化合物(a1)等の加水分解反応に使用された水であってもよいし、結合剤(A)と、任意成分である防錆顔料(D)等の、後述する「その他の成分」とを混合する調製過程において、加えられた水であってもよい。
 水(B)は、塗料組成物の必須成分として含まれ、結合剤(A)の溶媒あるいは分散剤として機能し、水系塗料組成物中で結合剤(A)を安定に保持する機能を有する。そのために、適切な水系塗料組成物の粘度を保ち、スプレー・刷毛・ローラーなどの作業性を良好に維持できる。このような観点から、本発明の水系塗料組成物を調製する際には、水(B)は、結合剤(A)100重量部に対して、通常、100~10,000重量部であり、好ましくは200~5,000重量部であり、より好ましくは300~2,000重量部で配合される。また、基準量を水系塗料組成物の不揮発分100重量部とした場合、同様な観点から、本発明の水系塗料組成物中には、水系塗料組成物の不揮発分100重量部に対して、水(B)は、通常、3~5000重量部であり、好ましくは6~2500重量部であり、より好ましくは10~1000で含まれている。なお、水系塗料組成物の不揮発分とは、水系塗料組成物1.5gを108℃の条件下で3時間保持して揮発分を除去して得られた不揮発分である。
その他の成分
 本発明の水系塗料組成物は、上記成分の他に、必要に応じて、以下に列挙するような防錆顔料(D)、白錆抑制剤(E)、親水性有機溶剤(F)、無機化合物粉末(G)、その他の塗料用添加剤(H)などを含んでいてもよい。
防錆顔料(D)
 本発明の水系塗料組成物は、防錆顔料(D)を含有することが好ましい。該防錆顔料(B)を含む水系塗料組成物は、好適に水系防錆塗料組成物として用いられる。
 防錆顔料(D)としては、防錆性を有する限り特に限定されるものではないが、亜鉛末、亜鉛合金粉末が挙げられる。亜鉛合金粉末としては、亜鉛マグネシウム合金、亜鉛モリブデン合金、亜鉛ベリリウム合金などの粉末が挙げられる。また、これらは、1種単独で用いてもよく、2種以上を併用してもよい。
 また、防錆顔料(D)は、防錆性および白錆抑制の観点から、防錆顔料(D)は、平均粒径が2μm~20μmの平均粒径を有する亜鉛末および/または亜鉛合金粉末であることが好ましい。なお、該平均粒径は、レーザー法(例えば、LASER MICRON SIZER 7000S使用)により測定された値である。
 また、水系塗料組成物を水系防錆塗料組成物とした場合、亜鉛末および/または亜鉛合金粉末の含有量は、本発明の水系塗料組成物を調製する際には、結合剤(A)100重量部に対して、好ましくは30~800重量部であり、より好ましくは40~600重量部、更に好ましくは70~400重量部である。この含有量が下限値よりも少ない場合は十分な防錆性が得られず、また上限値よりも多い場合は粘度の上昇を招き、攪拌や塗装に不利であるばかりでなく、大幅なコストアップを招来してしまう。
 たとえば、水系防錆塗料組成物を一次防錆用水系塗料組成物または水系厚塗り無機ジンク塗料組成物とした場合、亜鉛末および/または亜鉛合金粉末の含有量は、水系防錆塗料組成物の不揮発分100重量部に対して、好ましくは10~90重量部であり、より好ましくは20~80重量部である。ここで、水系防錆塗料組成物の不揮発分とは、水系防錆塗料組成物1.5gを108℃の条件下で3時間保持して揮発分を除去して得られた不揮発分である。
白錆抑制剤(E)
 本発明の水系防錆塗料組成物が、防錆顔料(D)として亜鉛末または亜鉛合金粉末を含み、一次防錆塗料組成物(ショッププライマー)として使用される場合、特にアルカリ金属酸化物の存在などによるアルカリ条件下にある場合、該組成物で防錆塗膜を形成させた後に、塗膜中の亜鉛または亜鉛合金が酸化反応をすることで、酸化亜鉛が生成してしまうことがある。この酸化亜鉛は塗膜表面に白色の錆(白錆)を形成してしまい、該塗膜の表面に上塗り塗料で上塗り塗膜が形成された場合、塗膜間の付着性が低下してしまうことがある。このような問題に対しては、上塗り塗料を塗布するに先だって、防錆塗膜を適当な手段により除去する除去作業を必要とするが、顧客要求や特定の用途によっては、このような除去作業は全く許されないことがある。このように強く要求されている、白錆の発生を低減することができるという観点からは、本発明の水系防錆塗料組成物は、さらに亜鉛の酸化防止剤(白錆抑制剤(E))を含むことが好ましい。白錆抑制剤(E)としては、モリブデン(金属モリブデン)および/またはモリブデン化合物が挙げられる。
 このモリブデン化合物としては、三酸化モリブデン、モリブデン酸化物、硫化モリブデン、モリブデンハロゲン化物、モリブデン酸、モリブデン酸アンモニウム、リンモリブデン酸、珪モリブデン酸、モリブデン酸のアルカリ金属塩、リンモリブデン酸のアルカリ金属塩、珪モリブデン酸のアルカリ金属塩、モリブデン酸のアルカリ土類金属塩、リンモリブデン酸のアルカリ土類金属塩、珪モリブデン酸のアルカリ土類金属塩、モリブデン酸のマンガン塩、リンモリブデン酸のマンガン塩、珪モリブデン酸のマンガン塩、モリブデン酸の塩基性窒素含有化合物塩、リンモリブデン酸の塩基性窒素含有化合物塩、珪モリブデン酸の塩基性窒素含有化合物塩などが挙げられる。これらは、1種単独で用いてもよく、2種以上を併用してもよい。
 白錆抑制剤(E)の含有量は、防錆顔料(D)100重量部に対して、好ましくは0.05重量部~5重量部、より好ましくは0.3重量部~3重量部、さらに好ましくは0.5重量部~2.0重量部である。
 白錆抑制剤(E)の含有量が、上記範囲にある場合、十分な亜鉛の酸化防止作用が得られるとともに、防錆顔料(D)の防錆能力の活性の低下を防いで、塗膜の防錆性を維持することができる。
親水性有機溶剤(F)
 本発明の水系塗料組成物は、必要に応じて親水性有機溶剤(E)を含有していてもよい。
 この親水性有機溶剤(F)としては、アセトン、メチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、2-ブトキシエタノール、2-エトキシエタノール、1-メトキシー2プロパノール、1-エトキシ2-プロパノール、エチルアルコール、2-メトキシエタノール、ジアセトンアルコール、ジオキサン、エチレングリコール、エチレングリコールジエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテルなどが挙げられる。これらは、1種単独で用いてもよく、2種以上を併用してもよい。
 本発明の水系塗料組成物が親水性有機溶剤(F)を含む場合、防錆顔料(D)や、後述する無機粉末(G)の水への溶解性・水分散性の向上、および被塗物(基材)との湿潤性の改善、および塗膜の乾燥性・硬化性が向上する点で好ましい。また、本発明の水系塗料組成物が親水性有機溶剤(F)を含む場合においても、後述する無機粉末(G)の水への溶解性や水分散性、および被塗物(基材)との湿潤性の改善、および塗膜の塗膜乾燥性が向上する点で好ましい。ただし、親水性有機溶剤(F)の添加量が多い場合は、水への溶解性や水分散性が向上するものの、VOC低減という環境上の規制からは好ましくないため、通常、塗料組成物全体を100重量%とした場合、15重量%未満、好ましくは10重量%未満、さらに好ましくは5重量%未満に留めることが望ましい。
無機粉末(G)
 本発明の水系塗料組成物は、金属粉末(G1)、亜鉛化合物粉末(G2)、鉱物粉末(G3)、アルカリガラス粉末(G4)および熱分解ガスを発生させる無機化合物粉末(G5)からなる群から選ばれる少なくとも1種の無機粉末(G)(ただし、防錆顔料(D)における亜鉛末、亜鉛合金粉末を除く)を含有していてもよい。
 本発明の水系塗料組成物が、これらの無機粉末(G)を含んでいる場合、これらの組成物を鋼板に塗布し硬化させて形成された塗膜付の鋼板(鋼構造物)を、溶接作業に供しても、溶接欠陥(ピット、ガス溝およびブローホール)の発生が少ないという点で好ましい。本発明の水系塗料組成物が、無機粉末(G)を含む場合、該無機粉末(G)は、結合剤(A)を調製する際に、シラン原料(a)とともに、予め添加されてもよいし、調製された結合剤(A)に、単独でまたは、亜鉛末、亜鉛合金粉末などの防錆顔料(D)やその他の添加成分とともに混合された状態で添加されてもよい。
 本発明の水系塗料組成物中に含まれる無機粉末(G)は、結合剤(A)100重量部に対して、好ましくは70~200重量部、より好ましくは90~150重量部含まれる。
 また、本発明の水系塗料組成物中に含まれる無機粉末(G)は、水系塗料組成物の不揮発分100重量部に対して、好ましくは5~70重量部、より好ましくは10~50重量部含まれる。ここで、水系塗料組成物の不揮発分とは、水系塗料組成物1.5gを108℃の条件下で3時間保持して揮発分を除去して得られた不揮発分である。
 前記金属紛末(G1)は、導電性を有し、鉄イオンや亜鉛イオンの移動を容易にして防食効果を高めるという作用を有する。この金属紛末(G1)としては、Fe-Si粉、Fe-Mn粉、Fe-Cr粉、磁鉄粉、リン化鉄などが挙げられ、市販品であれば、「フェロシリコン(キンセイマテック株式会社)」、「フェロマンガン(キンセイマテック株式会社)」、「フェロクロム(キンセイマテック株式会社)」、「砂鉄粉(キンセイマテック株式会社)」、「フェロフォス2132(オキシデンタル ケミカルコーポレーション)」が挙げられる。
 前記亜鉛化合物紛末(G2)としては、塩化亜鉛、酸化亜鉛、硫化亜鉛、硫酸亜鉛などが挙げられる。亜鉛化合物粉末(G2)は、本発明の水系防錆塗料組成物に含まれる防錆顔料(D)が金属亜鉛および/または亜鉛合金である場合、金属亜鉛および/または亜鉛合金のイオン化(Zn2+の生成)の程度などの、酸化反応の活性度を調整する作用があると考えられている。水系一次防錆塗料組成物が亜鉛化合物粉末(G2)を含有する場合、該組成物から形成された乾燥塗膜(防錆塗膜)に適切な防錆性を付与できる。亜鉛化合物粉末(G2)の市販品としては、「酸化亜鉛1種(堺化学工業株式会社)」、「酸化亜鉛3種(ハクスイテック株式会社、堺化学工業株式会社)」、硫化亜鉛としては「Sachtolich HD (Sachleben Chemie GmbH)」、「塩化亜鉛(株式会社 長井製薬所)」、「硫化亜鉛(富士化成株式会社)」が挙げられる。
 前記鉱物粉末(G3)としては、チタン鉱物粉、フッ化カルシウム粉、シリカ粉、ソーダ長石、カリ長石、珪酸ジルコニウム、珪灰石、珪藻土などが挙げられ、市販品であれば、「ルチルフラワーS(キンセイマティック株式会社)」、「イルメナイト粉(キンセイマティック株式会社)、「蛍石400メッシュ(キンセイマティック株式会社)」、「A-PAX(キンセイマティック株式会社)」、「セラミックパウダーOF-T(キンセイマティック株式会社)」、「アプライト(キンセイマティック株式会社)」、「シリカMC-O(丸尾カルシウム株式会社)」、「バライトBA(堺化学株式会社)」、「ラジオライト(昭和化学工業株式会社)」、「セライト545(ジョンマンビル社)」などが挙げられる。
 前記アルカリガラス粉末(G4)は、該ガラス粉末に含まれるNa+やK+などのアルカリ金属イオンが亜鉛を活性化させたり(Zn2+の生成)、溶接時にアークを安定化させるという作用を有する。このアルカリガラス粉末(G4)としては、一般に普及している板ガラスや瓶ガラスを5μm程度までに粉砕してガラス粉末を調製し、酸洗浄で該ガラス粉末のpHを8以下に調整したものが挙げられる。このようなアルカリガラス粉末としては、市販品であれば、「APS-32JISP3801 5種A(キンセイマテック株式会社)」が挙げられる。
 熱分解ガスを発生させる無機化合物粉末(G5)とは、熱分解(たとえば500~1500℃での熱分解)によって、ガス(たとえば、CO2、F2)を発生する無機化合物の粉末であって、該G5成分を含む塗料組成物から形成された塗膜付基材を溶接する際に、溶接時の溶融プール内において、結合剤などに含まれる有機分から発生したガスから生じた気泡を、無機化合物粉末(G5)由来のガスとともに、溶融プール内から除去する作用を有する。この無機化合物粉末(G5)としては、フッ化カルシウム、炭酸カルシウム、炭酸マグネシウム、炭酸ストロンチウムなどが挙げられ、市販品であれば「蛍石400メッシュ(キンセイマテック社製)」、「NS#400(日東粉化社製)」、「炭酸マグネシウム(富田製薬社製)」、「炭酸ストロンチウムA(本荘ケミカル社製)」などが挙げられる。
その他の塗料用添加剤(H)
 本発明の水系塗料組成物は、必要に応じて、揺変剤、消泡剤、湿潤剤、タレ防止剤などの各種の塗料用添加物(H)を含んでいてもよい。具体的な塗料用添加剤(H)としては、ヘクトライト、ベントナイト、スメクタイト等のクレイ系沈殿防止剤、ポリカルボン酸系揺変剤、脂肪酸ポリアマイド系揺変剤、酸化ポリエチレン系揺変剤、ウレタン会合系揺変剤、アクリルポリマー系揺変剤、変性ウレア系揺変剤、変性シリコーン系表面調整剤、アクリルポリマー系表面調整剤、フッ素含有ポリマー系表面調整剤、ジアルキルスルホ琥珀酸塩系表面調整剤、変性シリコーン系消泡剤、ポリマー系消泡剤などが挙げられる。
 また、前記加水分解縮合物の表面にシラノール基やアルコキシ基が存在する場合、これらの基と基材表面や顔料のOH基との反応促進効果を有するような、酸、塩基化合物、有機スズ化合物、アルミニウムキレート、チタン系化合物、アミン系化合物などの反応促進剤を含有してもよい。
顔料体積率(PVC)/臨界顔料体積率(CPVC)
 本発明の水系塗料組成物からなる乾燥塗膜が、良好な塗膜強度と溶接性との両立できることや、さらに該水系防錆塗料組成物からなる防錆塗膜に良好な防錆性を付与できる観点からは、顔料体積濃度(PVC)と臨界顔料体積濃度(CPVC)との比((PVC)/(CPVC))が、1よりも大きいことが好ましく、1~1.5であることがより好ましく、1~1.35であることがさらに好ましい。
 顔料体積濃度(PVC)とは、塗料組成物の不揮発分全体(水、有機溶剤を除いた全体)の体積において、顔料が占める体積の比率を、百分率で表した濃度である。本明細書の「PVC」および「CPVC」における「顔料」とは、水や有機溶剤、結合剤に不溶で、非塗膜形成性成分(塗料組成物の不揮発分全体(水、有機溶剤を除いた全体)から上記加水分解縮合物を除いた固形成分)を指す。なお、このような顔料としては、たとえば、「防錆顔料(D)」、「白錆抑制剤(E)」、「無機化合物粉末(G)」、「その他の塗料用添加剤(H)が挙げられ、結合剤ではない(塗膜形成に寄与しない)限り、それ以外の固形成分も含み得る。
 なお、上記不揮発分とは、水系塗料組成物1.5gを108℃の条件下で3時間保持して揮発分を除去して得られるものである。
 また、臨界顔料体積濃度(CPVC)とは、上記顔料間の空隙が結合剤のみで充填されてる状態を示す濃度である。以下に示すように、臨界顔料体積濃度(CPVC)近傍(前後)においては、乾燥塗膜の溶接特性、塗膜強度および塗膜の防錆性が急激に変化する。
 たとえば、顔料体積率(PVC)/臨界顔料体積率(CPVC)<1である場合は、亜鉛末や無機系粉末等の防錆顔料(D)などの顔料間が、結合剤に十分充填されている状態である。そのため、該組成物から形成される塗膜では、高い塗膜強度が示されるものの、全体量に対して、結合剤の含有量の比率が過大になる。そのため、この塗膜を溶接作業に供すると、塗膜に含まれる結合剤成分中の有機物がガス化したり、あるいは炭化したりして、溶接欠陥(ピット、ガス溝、ブローホール)が発生することになり、延いては、塗膜の溶接部位間の接着強度の低下を招く場合がある。
 一方で、顔料体積率(PVC)/臨界顔料体積率(CPVC)>1.5の場合は、顔料間には、結合剤が十分に充填されないでいるため、空隙が形成されている状態である。このような組成物中においては、顔料同士をつなぐ(介在する)結合剤が不足し、このような組成物から形成された塗膜は、多孔質になってしまう。すなわち、この状態においては、結合剤の量が少ないために、溶接欠陥が発生した乾燥塗膜の溶接部位間における接着強度の低下を低減することができるものの、十分な塗膜強度が得られにくい傾向にある。
水系塗料組成物の用途
 本発明の水系塗料組成物は、好ましくは結合剤組成物(水系結合剤組成物)または防錆塗料組成物(水系防錆用塗料組成物)である。
 水系結合剤組成物は、マイカ板、ガラス積層板、ガラススリーブ、ゴム、プラスチック、皮革などの基材表面に用いるコート剤、アスベスト用のバインダー、アスベスト吹き付け材の飛散防止用硬化剤や表面補強剤、アスベスト吹き付け材除去時の飛散防止用一次硬化剤、金属系の防錆顔料・汚損防止剤・表面保護剤、石材系の防汚処理剤・撥水剤、耐熱性塗料としての用途や、その添加剤、及び各種塗料の結合剤や添加剤として好適に使用される。
 また、本発明の防錆塗料組成物は、好ましくは一次防錆用塗料組成物(一次防錆用水系塗料組成物)または厚塗り無機ジンク塗料組成物(水系厚塗り無機ジンク塗料組成物)である。
 一次防錆用水系塗料組成物は、製造・建設中における、自動車、家電製品、大型鉄鋼構造物(船舶、橋梁、プラントなど)に使用される鉄鋼表面の発錆を一次的に防止する目的で用いられるが、具体例としては、ウォッシュプライマー、ノンジンクエポキシプライマー、エポキシジンクリッチプライマー、無機ジンク一次防錆塗料組成物として好適に使用される。
 水系厚塗り無機ジンク塗料組成物は、ケミカルタンカーやメタノール専用船などの船舶のカーゴタンク、バラストタンク、特に海水に対する長期的な防食性が求められるバラストタンクにおいて好適に使用される。
水系塗料組成物の製造方法
 このような本発明の水系塗料組成物の製造は、結合剤(A)と水(B)と、必要に応じて上記の任意成分を攪拌・混合容器等に添加して、攪拌・混合等することにより製造することができる。ここで、攪拌・混合するに当たっては、特定シラン化合物を反応させて得られた調製液を精製して得られた加水分解縮合物を結合剤(A)として、攪拌・混合容器等に添加してもよいし、加水分解縮合物を含む調製液を結合剤(A)として、攪拌・混合容器等に添加してもよい。また、なお、攪拌・混合するにあたり、電動攪拌機、サンドミルなど、従来公知の混合・攪拌装置、および分散機を適宜用いることができる。
水系塗料組成物の乾燥・硬化方法(塗膜の形成方法)
 通常、水系塗料組成物の塗膜(乾燥塗膜)は、鋼材、鉄材、ステンレス材等の鉄材、アルミ材等の基材の表面に、水系塗料組成物を塗布し(ウェット塗膜を形成し)、次いで塗布された該塗料組成物(ウェット塗膜)を加熱乾燥したり、あるいは室温において自然乾燥したりすることで硬化させて形成される。
 水系塗料組成物は、溶媒をより効率的に揮散させるために、効率的な加熱装置とのシステム化が有効である。具体的には、燃焼ガス、石油バーナー、電熱線加熱、誘導加熱、遠赤外線加熱装置などによるトンネル型の加熱システムやガスや石油バーナーによる直接加熱あるいは赤外線照射や誘導加熱システムなどとの組み合わせなどが挙げられる。
防錆塗膜、塗膜付き基材等
 本発明に係る防錆塗膜は、前記水系防錆塗料組成物を鋼材、鉄材、ステンレス材等の鉄材、アルミ材等の基材に塗布し(ウェット塗膜を形成し)、塗布された該組成物(ウェット塗膜)を硬化させて形成されたものである。防錆塗膜としては、一次防錆用水系塗料組成物を硬化させて形成された一次防錆塗膜や、水系厚塗り無機ジンク塗料組成物を硬化させて形成された厚塗り無機ジンク防錆塗膜が挙げられる。
 塗膜付き鋼構造物は、鋼材の表面に、本発明の水系防錆塗料組成物から形成された防錆塗膜を有する。また、塗膜付き鋼構造物の塗膜としては、一次防錆用水系塗料組成物から形成された一次防錆塗膜や、水系厚塗り無機ジンク塗料組成物から形成された厚塗り無機ジンク防錆塗膜が挙げられる。
 以下、実施例に基づき、本発明について更に具体的に説明するが、本発明は、これらの実施例により何ら限定されるものではない。なお、「実施例」の項において、「%」とは、特に断りがない限り、重量%を示す。
[実施例1]
[結合剤組成物1の調製]
攪拌器、水冷コンデンサー、滴下ロート、温度計、加熱冷却機器を備えた反応容器に、無水ケイ酸ゾル(商品名「スノーテックスO」、日産化学社製、ゾル100%あたりのSiO2の濃度:20%、pH2~4、ゾル中のNa2Oの含有量:400ppm以下)400gを仕込み30℃に保持した。そこに、シラン原料として、γ-グリシドキシプロピルトリメトキシシラン40g、メチルトリクロロシラン3gを、それぞれ、第一滴下ロート、第二滴下ロートから同時に1時間かけて滴下した。
滴下終了後、50℃で約1時間保持し、70℃まで昇温して2時間熟成させて、上記シラン原料の加水分解反応および縮合反応を進行させて、加水分解縮合物を得た。なお、この反応が起きている液中のpHは0.9から3.1であった。
次いで、得られた加水分解縮合物を含む水溶液を減圧蒸留(40~15kPa・s)に供して、メタノールおよび副生物を減圧留去し(留去量131g)、反応容器内の反応物を室温まで冷却し、ロ紙(JISP3801 5種A)で加圧濾過して、微白濁水溶性樹脂液(結合剤組成物1)292gを得た。
 [結合剤組成物1の評価]
 後述する「評価基準」における「結合剤組成物の特性」に準拠して、結合剤組成物1の特性を評価した。また、「結合剤組成物塗膜の特性(単独塗膜特性)」、「防錆塗膜の特性」に準拠して、それぞれ、結合剤組成物1の塗膜が形成された評価用塗膜(単独)、結合剤組成物1を含む防錆塗料組成物の塗膜が形成された評価用塗膜(防錆)を作製し、各評価用塗膜の特性を評価した。
 ここで、結合剤組成物1の、IR分析、GPC分析、Si29NMR分析により得られた各チャートを、それぞれ図1、図2、図3に示す。
 図1に示されるように、IRチャートには、シリカに由来する1100cm-1付近の吸収が大きなピークとして示されており、また、1050~1120cm-1付近において、オルガノポリシロキサン(Si-O-Si基)のピークが出現していると思われるが確認は難しい。
 図2のSi29NMRチャートにおいては、シリカの吸収に相当するピーク(-98ppmから-120ppm)と、各種シランの加水分解反応および縮合反応によって生成した加水分解縮合物のシロキサン結合(Si-O-Si基)に相当するピーク(-50ppmから-70ppm)が分離した状態で確認される。
 アルコキシシランおよびクロロシランが存在する場合のGPCチャートでは、これらのシラン化合物は、テトラヒドロフラン(溶離液)より屈折率が小さいために、これらのピークは、ベースラインのマイナス領域に、かつ長い保持時間(12分以上)の位置にて示されることになる。
 しかしながら、図3にて示されるように、生成した結合剤はより短い保持時間(11分以下)の位置にて出現していることが確認できる。すなわち、このピークから、上記シラン原料は加水分解反応および縮合反応し、高分子化していること(加水分解縮合物の存在)が確認できる。
 以上の分析から、実施例1では、シラン原料が加水分解および脱水縮合してオルガノポリシロキサン(加水分解縮合物)が調製されたことが理解される。
 [実施例2]
 実施例1において、無水ケイ酸ゾル(商品名「スノーテックスO」日産化学社製、ゾル100%あたりのSiO2の濃度:20%、pH2~4、該ゾル中のNa2Oの含有量:400ppm以下)400gの代わりにイオン交換水320gおよびエタノール24gを添加して、pH1.5~6.5の条件下で該シラン原料を加水分解・縮合反応させたこと以外は、実施例1と同様にして、加水分解縮合物を含む、透明な水溶性樹脂液309g(結合剤組成物2)を調製した。なお、結合剤組成物の調製過程にて、減圧留去された副生物等の量は65gであった。
 また、実施例1と同様にして、結合剤組成物2の各特性を評価し、得られた結果を表1に示した。
 結合剤組成物2のIRチャート、GPCチャートを、それぞれ図4、図5に示す。図4のIRチャートにおいて、シラン原料として使用されたアルコキシシランに由来するSi-OCH3基のピーク(1086cm-1)が、加水分解反応によって、1108cm-1付近におけるブロードで大きな吸収に変化している。このことにより、加水分解・縮合反応により、オルガノポリシロキサン(Si-O-Si基)が出現していることが理解できる。
 また、図5のGPCチャートにおいては、長い保持時間(12分付近)の位置で、かつベースラインのマイナス領域に出現するアルコキシシランおよびクロロシランのピークを確認できない。その代わり、出現したピークは、より短い保持時間(11分以下)の位置にて示されている。すなわち、この出現したピークから、上記シラン原料は加水分解反応および縮合反応し、高分子化していること(加水分解縮合物の存在)を確認できる。
 以上の分析から、実施例2では、シラン原料が加水分解および脱水縮合してオルガノポリシロキサン(加水分解縮合物)が調製されたことが理解される。
 [実施例3]
 実施例1において、シラン原料としてメチルトリクロロシラン3g単独、およびエタノール24gを添加して、pH0.9~3.1の条件下で該シラン原料を加水分解・縮合反応させたこと以外は、実施例1と同様にして、加水分解縮合物を含む、微白濁の水溶性樹脂液381g(結合剤組成物3)を調製した。なお、結合剤組成物の調製過程にて、減圧留去されたエタノール等の量は38gであった。
 また、実施例1と同様にして、結合剤組成物3の各特性を評価し、得られた結果を表1に示した。
 ここで、IR分析、GPC分析で得られた各種チャートを、それぞれ図6、図7に示す。図6に示されるように、IRチャートには、シリカに由来する1100cm-1付近の吸収が大きなピークとして示されており、またオルガノポリシロキサン(Si-O-Si基)のピークはこれに重なっているために確認は難しいが、1260cm-1において、メチルトリクロロシランが加水分解しても保持されているSi-CH3結合に由来する特有の鋭いピークが出現していることが理解できる。
 また、図7に示されるGPCチャートにおいては、長い保持時間(12分付近)の位置にマイナス領域に出現する、アルコキシシランおよびクロロシランのピークを確認できない。その代わり、出現したピークは、より短い保持時間(11分以下)の位置にて示されている。すなわち、このピークから、上記シラン原料は加水分解反応および縮合反応し、高分子化していること(加水分解縮合物の存在)を確認できる。以上の分析から、実施例3では、シラン原料が加水分解および脱水縮合してオルガノポリシロキサン(加水分解縮合物)が調製されたことが理解される。
 [比較例1]
 無水ケイ酸を含む無水ケイ酸ゾル(商品名「スノーテックスO」日産化学社製、ゾル100%あたりのSiO2の濃度:20%、pH2~4、ゾル中のNa2Oの含有量:400ppm以下)400gを、結合剤組成物(結合剤組成物1´)とした。また、実施例1と同様にして、結合剤組成物1´の各特性を評価し、得られた結果を表1に示した。
 [比較例2]
 実施例1において、シラン原料として、γ-グリシドキシプロピルトリメトキシシラン40g単独、およびエタノール24gを添加して、pH2.7~3.1の条件下で該シラン原料を加水分解・縮合反応させたこと以外は、実施例1と同様にして、加水分解縮合物を含む、微白濁の水溶性樹脂液398g(結合剤組成物2´)を調製した。なお、結合剤組成物の調製過程にて、減圧留去されたエタノール等の量は55gであった。また、実施例1と同様にして、結合剤組成物2´の各特性を評価し、得られた結果を表1に示した。
Figure JPOXMLDOC01-appb-T000011
 上述のように、実施例1~3においては、結合剤組成物を調製するにあたり、pH0.9~3.1またはpH1.5~6.5の酸性条件下で、クロロシランを、または該シラン化合物とγ-グリシドキシプロピルトリメトキシシランとをシラン原料として、加水分解・脱水縮合して加水分解縮合物が調製されている。表1に示されるように、これらの実施例の結合剤組成物は、比較例の結合剤組成物と比べて、単独塗膜特性(造膜性・耐水性)に優れるとともに、乾燥性(硬化特性)をはじめとして、各種防錆塗膜特性にも優れていた。
 一方で、結合剤組成物1´(無水ケイ酸ゾル)を用いた比較例1の結果は、実施例1~3の結果と比べて、単独塗膜特性および防錆塗膜特性の何れの特性においても劣っているばかりではなく、一応、塗膜が形成されるものの、形成された塗膜の強度が極めて弱く、実用には向かないレベルであった。
 また、比較例2の結合剤組成物では、同様の酸性条件下で、シラン原料としてクロロシランを用いずに、アルコキシシランのみを加水分解・脱水縮合させて加水分解縮合物が調製されている。この加水分解縮合物を含む結合剤組成物2´は、造膜性や乾燥性(硬化特性)について、実施例1~3と比べて遜色はないものの、これらの特性以外(耐水性、鉛筆硬度、爪引掻き性)については著しく劣っていた。
 [実施例4]
 実施例1において、無水ケイ酸ゾル(商品名「スノーテックスO」日産化学社製、ゾル100%あたりのSiO2の濃度:20%、pH2~4、ゾル中のNa2Oの含有量:400ppm以下)400gの代わりに、無水ケイ酸ゾル(商品名「スノーテックスO」日産化学社製、ゾル100%あたりのSiO2の濃度:20%、pH2~4、ゾル中のNa2Oの含有量:400ppm以下)300g、イオン交換水100gおよびエタノール24gを使用し、シラン原料として、トリエトキシシラン1gとγ-グリシドキシプロピルトリメトキシシラン40gとの混合物を第一滴下ロートから、メチルトリクロロシラン4gを第二滴下ロートからそれぞれ添加して、pH1.4~3.1の条件下でこれらのシラン原料を加水分解・縮合反応させたこと以外は、実施例1と同様にして、加水分解縮合物を含む、微白濁の水溶性樹脂液413g(結合剤組成物4)を調製した。なお、結合剤組成物の調製過程にて、減圧留去されたエタノール等の量は54gであった。また、実施例1と同様にして、結合剤組成物4の各特性を評価し、得られた結果を表2に示した。
 [実施例5]
 実施例1において、無水ケイ酸ゾル(商品名「スノーテックスO」日産化学社製、ゾル100%あたりのSiO2の濃度:20%、pH2~4、ゾル中のNa2Oの含有量:400ppm以下)400gの代わりに、無水ケイ酸ゾル(商品名「スノーテックスO」日産化学社製、ゾル100%あたりのSiO2の濃度:20%、pH2~4、ゾル中のNa2Oの含有量:400ppm以下)400gおよびエタノール24gを使用し、シラン原料として、メチルトリアセトキシシラン1当量とメチルトリクロロシラン2当量を混合して1日室温で反応(加水分解・脱水縮合反応)させて得られた調製物A8gを第一滴下ロートから、γ-グリシドキシプロピルトリメトキシシラン40gを第二滴下ロートから、またメチルトリアセトキシシラン4gを第三滴下ロートからそれぞれ添加して、pH1.2~3.1の条件下でこれらのシラン原料を加水分解・縮合反応させたこと以外は、実施例1と同様にして、加水分解縮合物を含む、微白濁の水溶性樹脂液435g(結合剤組成物5)を調製した。なお、結合剤組成物の調製過程にて、減圧留去されたエタノールや酢酸等の合計量は40gであった。また、実施例1と同様にして、結合剤組成物5の各特性を評価し、得られた結果を表2に示した。得られた結果を表2に示す。
 [実施例6]
 実施例1において、無水ケイ酸ゾル(商品名「スノーテックスO」日産化学社製、ゾル100%あたりのSiO2の濃度:20%、pH2~4、ゾル中のNa2Oの含有量:400ppm以下)400gの代わりに、無水ケイ酸ゾル(商品名「スノーテックスO」日産化学社製、ゾル100%あたりのSiO2の濃度:20%、pH2~4、ゾル中のNa2Oの含有量:400ppm以下)300g、イオン交換水100gおよびエタノール24gを使用し、シラン原料として、メチルトリス(メチルエチルケトオキシム)シラン4gを第一滴下ロートから、γ-グリシドキシプロピルトリメトキシシラン40gを第二滴下ロートから、また1-トリメトキシシリル2-トリクロロシリルエタン8gを第三滴下ロートからそれぞれ添加して、pH2.4~3.1の条件下でこれらのシラン原料を加水分解・縮合反応させたこと以外は、実施例1と同様にして、加水分解縮合物を含む、微白濁の水溶性樹脂液421g(結合剤組成物6)を調製した。なお、結合剤組成物の調製過程にて、減圧留去されたエタノールや酢酸等の合計量は52gであった。また、実施例1と同様にして、結合剤組成物6の各特性を評価し、得られた結果を表2に示した。
 [実施例7]
 実施例1において、無水ケイ酸ゾル(商品名「スノーテックスO」日産化学社製、ゾル100%あたりのSiO2の濃度:20%、pH2~4、ゾル中のNa2Oの含有量:400ppm以下)400gの代わりに、無水ケイ酸ゾル(商品名「スノーテックスO」日産化学社製、ゾル100%あたりのSiO2の濃度:20%、pH2~4、ゾル中のNa2Oの含有量:400ppm以下)400gおよびエタノール24gを使用し、シラン原料として、テトラクロロシラン3g単独を反応容器に添加して、pH0.7~3.1の条件下で該シラン原料を加水分解・縮合反応させたこと以外は、実施例1と同様にして、加水分解縮合物を含む、微白濁の水溶性樹脂液382g(結合剤組成物7)を調製した。なお、結合剤組成物の調製過程にて、減圧留去されたエタノール等の量は41gであった。また、実施例1と同様にして、結合剤組成物7の各特性を評価し、得られた結果を表2に示した。
 [実施例8]
 実施例1において、無水ケイ酸ゾル(商品名「スノーテックスO」日産化学社製、ゾル100%あたりのSiO2の濃度:20%、pH2~4、ゾル中のNa2Oの含有量:400ppm以下)400gの代わりに、無水ケイ酸ゾル(商品名「スノーテックスO」日産化学社製、ゾル100%あたりのSiO2の濃度:20%、pH2~4、ゾル中のNa2Oの含有量:400ppm以下)400gおよびエタノール24gを使用し、シラン原料として、メチルトリクロロシラン4gを第一滴下ロートから、γ-グリシドキシプロピルトリメトキシシラン40gとメチルトリス(メチルエチルケトオキシム)シシラン8gの混合物を第二滴下ロートから、反応容器に添加して、pH2.9~3.5の条件下でこれらのシラン原料を加水分解・縮合反応させたこと以外は、実施例1と同様にして、加水分解縮合物を含む、白濁の水溶性樹脂液423g(結合剤組成物8)を調製した。なお、結合剤組成物の調製過程にて、減圧留去されたエタノール等の量は49gであった。また、実施例1と同様にして、結合剤組成物8の各特性を評価し、得られた結果を表2に示した。
 [実施例9]
 実施例1において、無水ケイ酸ゾル(商品名「スノーテックスO」日産化学社製、ゾル100%あたりのSiO2の濃度:20%、pH2~4、ゾル中のNa2Oの含有量:400ppm以下)400gの代わりに、無水ケイ酸ゾル(商品名「スノーテックスO」日産化学社製、ゾル100%あたりのSiO2の濃度:20%、pH2~4、ゾル中のNa2Oの含有量:400ppm以下)400g、エタノール24gおよびリチウムシリケート10gを使用し、シラン原料として、メチルトリクロロシラン4gを第一滴下ロートから、γ-グリシドキシプロピルトリメトキシシラン40gを第二滴下ロートから、反応容器に添加して、pH2.2~3.1の条件下でこれらのシラン原料を加水分解・縮合反応させたこと以外は、実施例1と同様にして、加水分解縮合物を含む、白濁の水溶性樹脂液410g(結合剤組成物9)を調製した。なお、結合剤組成物の調製過程にて、減圧留去されたエタノール等の量は60gであった。また、実施例1と同様にして、結合剤組成物9の各特性を評価し、得られた結果を表2に示した。
 [実施例10]
 実施例1において、無水ケイ酸ゾル(商品名「スノーテックスO」日産化学社製、ゾル100%あたりのSiO2の濃度:20%、pH2~4、ゾル中のNa2Oの含有量:400ppm以下)400gの代わりに、酸化チタンゾル(日本アエロジル社製VP Disp W2730X ゾル100%あたりの酸化チタンの濃度:30%、pH6.9)250gおよびエタノール15gを使用し、シラン原料として、メチルトリアセトキシシラン1当量とメチルトリクロロシラン2当量を混合して1日室温で反応(加水分解・脱水縮合反応)させて得られた調製物A7.5gを第一滴下ロートから、γ-グリシドキシプロピルトリメトキシシラン25gとテトラメトキシシランの加水分解物であるメチルシリケート51(「Ms 51」多摩化学工業製、主成分:テトラメトキシシランの加水分解縮合物(CH3O[Si(OCH32O]nCH3、平均4量体))5gとの混合物を第二滴下ロートから、反応容器に添加して、pH1.3~7.3の条件下でこれらのシラン原料を加水分解・縮合反応させたこと、およびシラン原料を加水分解・縮合反応して得られた生成物を減圧蒸留しなかったこと以外は、実施例1と同様にして、加水分解縮合物を含む、白濁の水溶性樹脂液296g(結合剤組成物10)を調製した。また、実施例1と同様にして、結合剤組成物10の各特性を評価し、得られた結果を表2に示した。
 [実施例11]
 実施例1において、無水ケイ酸ゾル(商品名「スノーテックスO」日産化学社製、ゾル100%あたりのSiO2の濃度:20%、pH2~4、ゾル中のNa2Oの含有量:400ppm以下)400gの代わりに、アルミナゾル(日本アエロジル社製Aerodisp W630 ゾル100%あたりのアルミナ濃度:30%、pH4)250gおよびイオン交換水50gを使用し、シラン原料として、メチルトリクロロシラン2.2gを第一滴下ロートから、γ-グリシドキシプロピルトリメトキシシラン25gを第二滴下ロートから、反応容器に添加して、pH1.8~4.0の条件下でこれらのシラン原料を加水分解・縮合反応させたこと、およびシラン原料を加水分解・縮合反応して得られた生成物を減圧蒸留しなかったこと以外は、実施例1と同様にして、加水分解縮合物を含む、白濁の水溶性樹脂液322g(結合剤組成物B)を調製した。また、実施例1と同様にして、結合剤組成物11の各特性を評価し、得られた結果を表2に示した。
 [比較例3]
 実施例1において、無水ケイ酸ゾル(商品名「スノーテックスO」日産化学社製、ゾル100%あたりのSiO2の濃度:20%、pH2~4、ゾル中のNa2Oの含有量:400ppm以下)400gの代わりに、アルカリ性である無水ケイ酸ゾル(商品名「スノーテックス20」 日産化学社製、ゾル100%あたりのSiO2の濃度:20%、pH9.8、ゾル中のNa2Oの含有量:400ppm以下)400gおよびエタノール24gを使用し、シラン原料として、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン40gとメチルシリケート51(「Ms 51」多摩化学工業製、主成分:テトラメトキシシランの加水分解縮合物(CH3O[Si(OCH32O]nCH3(平均4量体))8gとの混合物を、反応容器に添加して、pH9.8~11.8の条件下で加水分解・縮合反応させたこと以外は、実施例1と同様にして、加水分解縮合物を含む、微白濁の水溶性樹脂液402g(結合剤組成物3´)を調製した。なお、結合剤組成物の調製過程にて、減圧留去されたエタノール等の量は68gであった。また、実施例1と同様にして、結合剤組成物3´の各特性を評価し、得られた結果を表2に示した。
 [比較例4]
 攪拌器、水冷コンデンサー、滴下ロート、温度計、加熱冷却機器を備えた反応容器に、アルカリ性である無水ケイ酸ゾル(商品名「スノーテックス20」 日産化学社製、ゾル100%あたりのSiO2の濃度:20%、pH9.8、ゾル中のNa2Oの含有量:400ppm以下)300g、イオン交換水100gおよびエタノール24gを仕込み30℃に保持した。そこに、シラン原料として、トリエトキシシラン1gとγ-グリシドキシプロピルトリメトキシシラン40gとの混合物を第一滴下ロートから、メチルトリクロロシラン4gを第二滴下ロートから、同時に1時間かけて滴下した。ここで、反応液のpHは、7.5~9.9であった。
 原料シランを滴下して数分経過後には、白色のゲル状の加水分解縮合物が生成し、20分後には、反応液全体が増粘したため中断した。このゲル状物は粘性が著しく高かったために、該ゲル状物を結合剤組成物として、各特性評価に供することができなかった。
Figure JPOXMLDOC01-appb-T000012
 表2に示されるように、実施例4~11の結合剤組成物は、pH0.4~8.0の範囲内の条件下において、ハロゲン系シラン化合物を含む原料シランを使用して調製されている。一方、比較例3の結合剤組成物は、pH9.8~11.8のアルカリ性条件下において、アルコキシシラン化合物のみを使用して調製されている。比較例4では、pHが9.9のアルカリ性の条件下において、上述のように、シラン原料として、アルコキシシランとともにトリクロロシランが添加されているものの、この化合物が1/3量程度の添加の時点で(pH7.5~9.9のアルカリ性条件下)粘性が著しく高いゲル状物が生じてしまい、全量添加まで至らずに全体がゲル状になった。そのため、各評価に供することさえできなかった。
 ここで、表2における各例の特性結果によると、各実施例では、単独塗膜特性および防錆塗膜特性の何れにおいても良好な結果が示されたのに対して、比較例3では、造膜性および乾燥性(硬化特性)は同等の結果が得られたものの、他の特性、特に鉛筆硬度においては著しく劣った結果となった。
 原料シランとして、クロロシラン単独での使用(実施例7)、クロロシランとアルコキシシランとの併用(実施例4)、クロロシランとアルコキシシランとオキシム系シラン化合物の併用(実施5,6,8)、リチウムシリケートの存在下でのクロロシランとアルコキシシランとの併用(実施例9)の何れの場合においても、良好な各種特性が得られることが確認できた。
 無水ケイ酸ゾルとして、シリカ粒子の平均粒子径が異なっていたり(実施例4~9)、さらに金属酸化物ゾルとして無水ケイ酸ゾルの代わりに、酸化チタンゾルやアルミナゾルを使用したり(実施例10~11)しても、良好な各種特性が得られることも確認できた。
 [実施例12~25、比較例5~7]
 実施例1~11および比較例1~3において調製された結合剤組成物を用い、表3に示す成分組成に基づいて、一次防錆塗料組成物を調製した。調製された一次防錆塗料組成物の各特性を、後述する「一次防錆塗料組成物の特性評価」に準拠して評価し、得られた結果を表3(表3(1)~(2))に示した。
 さらに、実施例13,19,20および比較例7の結合剤組成物を用いて調製された一次防錆塗料組成物については、後述する「溶接性試験」および「切断性試験」の試験条件に基づいて、溶接性試験および切断性試験を実施した。表4、表5に、溶接性試験、切断性試験のそれぞれの結果を示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 結合剤組成物として無水ケイ酸ゾルを使用した場合(比較例5)、クロロシランを用いないで調製された結合剤組成物2´を使用した場合(比較例6)、およびシラン化合物をアルカリ条件下で加水分解・縮合反応させて調製された結合剤組成物3´を使用した場合(比較例7)では、一次防錆塗膜の鉛筆硬度や、一次防錆塗膜および上塗り塗膜における付着性が不十分であるとともに、一次防錆塗膜の防錆性(発錆・白錆)も極端に劣る結果が見られた。
 一方で、これらの特性について、比較例5~7と実施例12~25を対比すると、各実施例では、各比較例に比べて、良好な結果が示されている。
Figure JPOXMLDOC01-appb-T000015
 表4の溶接性試験の結果を参照すると、アルカリ条件下で調製された結合剤組成物3´を使用し、顔料体積率(PVC)/臨界顔料体積率(CPVC)の値を1未満に設定された場合(比較例7)では、溶接速度600mm/分及び800mm/分において、ピット数が多く発生し、ガス溝の長さも長く、ブローホール発生率も非常に高く、溶接時に欠陥が多く発生することが分かる。
 一方、結合剤組成物として、結合剤組成物1,4,5が使用され、顔料体積率(PVC)/臨界顔料体積率(CPVC)の値を1以上に設定されている場合(実施例13,19および20)、溶接速度600mm/分及び800mm/分においても、ピット数およびガス溝の長さは著しく小さく、ブローホールの発生率も1%以下と良好であった。
Figure JPOXMLDOC01-appb-T000016
 また、表5の切断性試験結果を参照すると、比較例7においては、「WES-3級レベル」(切断速度450、500mm/分)であり、550mm/分の切断速度においては、フレームアウトしていた。
 一方、実施例13,19および20においては、何れの切断速度でも、「WES-1級レベル」と、著しく良好な結果が示された。
[実施例26~30]
 実施例5で調製された結合剤組成物5と、表6に示される各種成分を、ペイントシェイカーを用いて配合して、水系厚塗り無機ジンク塗料組成物を調製した。調製された水系厚塗り無機ジンク塗料組成物の各特性を、後述する「水系厚塗り無機ジンク塗料組成物の特性評価」に記載の測定・評価条件に準拠して評価した。得られた結果を表6に示す。
Figure JPOXMLDOC01-appb-T000017
 表6に示されるように、実施例26~30の水系厚塗り無機ジンク塗料組成物の各特性は、現在主流の溶剤系厚塗り無機ジンク塗料組成物と比較しても遜色はなかった。
<評価方法・評価基準>
結合剤組成物の評価
(I)結合剤組成物の特性
(1)IR測定条件
装置      : パーキンエルマー社製 スペクトラムワン
試料作成法   : KBR法
標準物質    : ポリスチレン
脱水方法    : 結合剤組成物をナス形フラスコにとり、少量のメタノールを数回に分けて加えながら、ロータリーエバポレーターで水を共沸させながら除去した。その際の最高到達減圧度は2.8kPa・Sで、フラスコ温度は30℃以下に抑えることにより、粘稠で透明な液体(IR測定サンプル)を調製した。
(2)GPC測定条件
装置       : 東ソー社製、 HLC-8120GPC
カラム      : 東ソー社製SuperH2000+H4000、6mm(内径)、各15cm(長さ)
溶離液      : テトラヒドロフラン(THF)
流速       : 0.500ml/min
検出器      : RI
カラム恒温槽温度 : 40℃
標準物質     : ポリスチレン
サンプル調製法  : IR測定時に調製されたIR測定サンプルを少量取りテトラヒドロフランを加えてシリカを析出させた。さらに少量の塩化カルシウムを加えてさらに脱水し、その溶液をメンブレムフィルターで濾過して沈殿したシリカと塩化カルシウムを除去し、GPC測定サンプルを得た。
(3)NMR測定条件
装置    : Bruker社製 ADVANCE III
プローブ  : 10mmΦ Si専用プローブ
溶離液   : D2
測定核   : Si29
測定条件  : 59.2 degrees pulse、繰返時間 1.3sec.、積算回数 1024、測定時間 10時間19分
(4)平均粒径の測定
 所定のセル(容量15ml)にイオン交換水3.5mlを取り、サンプルとして結合剤組成物を数滴、滴下して、イオン交換水中に分散させ測定液を調製し、以下の条件にて、結合剤組成物に含まれる粒子の平均粒径を測定した。
装置    : 大塚電子社製 Photal FPAR-1000
測定方式  : 動的光散乱法
溶媒    : 水
温度    : 22℃
(5)pHの測定
 得られた結合剤組成物のpHを以下の条件にて測定した。
装置   : 東亜DKK社製  pHメーター HM-30R
測定方式 : ガラス電極
溶媒   : 水
温度   : 室温
(6)不揮発分の含有率
 得られた結合剤組成物1.5g(A1)を108℃の条件下で3時間保持して揮発分を除去した。次いで、残った不揮発分の量(A2)を測定し、結合剤組成物に含まれる不揮発分の含有率(A2/A1×100(%))を測定した。
(7)保存安定性の評価
 得られた結合剤組成物50gを50mlガラスビンに入れ、恒温乾燥機に供し、50℃の温度条件下にて、ガラスビン中の結合剤組成物のゲル化するまで目視にて観察した。
(II)結合剤組成物塗膜特性(単独塗膜特性)
 結合剤組成物をイオン交換水で希釈して不揮発分が15重量%の濃度になるように調整した。次いで、不揮発分の濃度が調整された結合剤組成物を、サンドペーパー#80で面粗し処理された冷間圧延鋼板に、アプリケータを用いて均一に塗布し、室温で1日硬化させて評価用塗膜(単独)を作製した。
 得られた評価用塗膜(単独)を用いて、評価基準に準拠して、各特性を評価した。なお、評価用塗膜(単独)の平均膜厚の値を、塗膜面において任意の箇所の膜厚の測定値から算出した。各実施例および比較例における各評価用塗膜(単独)の平均膜厚の範囲は、14~16μmである。
(1)造膜性
評価用塗膜(単独)の均一度と、爪による引掻き強度の程度を評価した。
[評価基準]
  均一性       爪による引掻き強度
  均一硬化      全くキズがつかない         5
  均一硬化      かすかにキズがつく         4
  一部に縞模様    かすかにキズがつくか剥離      3
  縞模様があるが硬化 塗膜に簡単にキズがつくか剥離    2
  硬化が不十分    塗膜が粉状に破壊          1
(2)耐水性
評価用塗膜(単独)の塗膜表面を水で濡らした紙ウェスで軽くこすり、塗膜表面の損傷の程度を次の5段階で評価した。
[評価基準]
  全く損傷なし。          5
  かすかに不透明感が出る。          4
  多少不透明になる。        3
  一部冷間圧延鋼板素地が見える。  2
  塗膜が完全に除去される。          1
(III)防錆塗膜特性
 結合剤組成物と、カリ長石、防錆顔料である亜鉛末、イオン交換水を以下の試験組成に基づいて、混合し、水系防錆塗料組成物を調製した。ここで、該防錆塗料組成物中に含まれる、結合剤組成物の不揮発分の含有量は、該防錆塗料組成物100重量%に対して、10重量%になるように調整されている。
 得られた防錆塗料組成物を、サンドペーパー#80で面粗しを施した冷間圧延鋼板(JIS G3141 SPCC-SB 150mm×70mm×0.8mm)に、アプリケータを用いて均一に塗布して、評価用塗膜(防錆(未硬化))を作成し、さらに評価用防錆塗膜(未硬化)の未硬化状態の塗膜を、室温で1日硬化させて、評価用塗膜(防錆)を製造した。なお、評価用塗膜(防錆)の平均膜厚の値を、塗膜面において任意の数箇所の膜厚の測定値から算出した。各実施例および比較例における各評価用塗膜(防錆)の平均膜厚の範囲は、14~16μmである。
水系防錆塗料組成物  (重量部)
    結合剤組成物(不揮発分)        10
    カリ長石                18
    亜鉛末                 36
    イオン交換水              残部
      合計               100
 
 得られた評価用塗膜(防錆)を用いて、評価基準に準拠して、各特性を評価した。なお、乾燥性を評価するに当たり、評価用塗膜(防錆)ではなく、評価用塗膜(防錆(未硬化))を使用した。
 (1)乾燥性(硬化特性)
  評価用塗膜(防錆(未硬化))の塗膜表面を指で軽く押させ付けながら粘着状況を観察し、 粘着性が消失し、完全に乾燥した際の経過時間を次の5段階で評価した。
[評価基準]
  5分以内    5
  7分以内    4
  10分以内   3
  15分以内   2
  15分超    1
 (2)耐水性
 評価用塗膜(防錆)の塗膜表面を水で濡らした紙ウェスで軽くこすり、塗膜表面の損傷の程度を次の5段階で評価した。
[評価基準]
  全く損傷なし。           5
  かすかに不透明感が出る。      4
  多少不透明になる。         3
  一部冷間圧延鋼板素地が見える。   2
  防錆塗膜が完全に除去される。    1
  (3)爪引掻き性
  評価用塗膜(防錆)の塗膜表面を爪で軽く引掻き、塗膜表面に生じた損傷の程度を次の5段階で評価した。
[評価基準]
  損傷なし。                   5
  かすかに傷が残る。               4
  明らかに引掻き傷が残る。            3
  一部冷間圧延鋼板の素地見えるまで損傷している。 2
  冷間圧延鋼板の素地が全体に見える。       1
 (4)鉛筆硬度
 評価用塗膜(防錆)の塗膜表面を、JIS K5600 8.4.2鉛筆引掻き値(手かき法)測定法に準拠して鉛筆の芯で引掻き、塗膜に傷を残さない硬さの鉛筆硬度(6Bから9Hまで)を記録した。
 一次防錆塗料組成物の特性評価
 (I)一次防錆塗料組成物の特性 
 (1)ポットライフ
 一次防錆塗料組成物が含まれる容量1リットルの缶を密封し、23℃の恒温室内に一日静置した後、缶を開封し、一次防錆塗料組成物中の顔料の沈降状態を目視にて確認し、下記評価基準に基づいて評価した。また、沈殿している顔料(沈殿物)を攪拌した後の分散性(再分散性)を目視にて確認し、下記評価基準に基づいて評価した。
[評価基準]
Figure JPOXMLDOC01-appb-T000018
 (II)一次防錆塗膜特性
 (1) 半硬化時間
予め45℃に加熱されたサンドブラスト処理板、(JIS G 3101,SS400、寸法「:150mm×70m×2.3mm」)を基材とし、この基材のブラスト処理面を、平均膜厚が15μmとなるようにエアスプレーガンを用いて一次防錆塗料組成物で塗装し、次いでJIS K5600 1-6の規格に従い温度23℃、相対湿度50%の恒温室内に1分間放置して、部分的に硬化した一次防錆塗膜を形成して、試験板を作製した。なお、一次防錆塗膜の平均膜厚の値を、塗膜面において任意の箇所の膜厚の測定値から算出した。各実施例および比較例における一次防錆塗膜の平均膜厚の範囲は、14~16μmである。
作製された試験板の塗膜表面を親指で、塗膜表面に対して垂直方向に押さえつけながら、試験板を約90度回転させて塗膜を破壊するように力を加えた。塗膜が破壊された場合、再度、上記条件の恒温室内に、1分間放置して硬化を進行させ、塗膜を押さえつける場所を変えながらこの操作を繰り返し、基材が見えなくなるまでの時間を測定して、測定された時間を半硬化時間とする。
 (2) 一次防錆塗膜の鉛筆硬度
 予め45℃に加熱された軟鋼板(寸法:150mm×70mm×2.3mm)表面を、平均膜厚が15μmとなるようにエアスプレーガンを用いて一次防錆塗料組成物で塗装した。次いで温度23℃、相対湿度50%の恒温室内に7日間放置して、上塗り塗膜を形成し試験板を作製した。なお、上塗り塗膜の平均膜厚の値を、塗膜面において任意の箇所の膜厚の測定値から算出した。各実施例および比較例における上塗り塗膜の平均膜厚の範囲は、14~16μmである。
 作製された試験板をJIS5400,8.4.2で定められた鉛筆引っかき値(手かき法)測定法により、塗膜の硬度を評価した。
 (3) 一次防錆塗膜の付着性
 予め45℃に加熱されたサンドブラスト処理板(JISG3101,SS400、寸法「:150mm×70mm×2.3mm」)を基材とし、この基材のブラスト処理表面を、平均膜厚が15μmとなるようにエアスプレーガンを用いて一次防錆塗料組成物で塗装した。次いで温度23℃、相対湿度50%の恒温室内に1週間放置して、一次防錆塗膜を形成し試験板を作製した。
 試験板の一次防錆塗膜表面に直径16mm、長さが20mmの軟鋼製の円筒形治具の底面をエポキシ系の接着剤で接着し、24時間放置した後、プルゲージ(モトフジ製)で治具の頭部を一次防錆塗膜表面の法線方向に引っ張り、治具を上塗り塗膜表面から剥離して、付着強度(凝集破壊および/または界面剥離に要した力)を測定した。
 また、剥離面の面積100%に対する、凝集破壊された一次防錆塗膜の面積の比率(凝集破壊面積率;(%))、および基材と一次防錆塗膜との界面剥離の面積の比率(界面剥離面積率(%))を目視により測定し、一次防錆塗膜の付着状況を以下の基準に基づいて評価した。
[評価基準]
5;一次防錆塗膜の凝集破壊面積率が100%である。
4:上塗り塗膜の凝集破壊面積率が80~99%であり、界面剥離面積率が1~20%である。
3:上塗り塗膜の凝集破壊面積率50~79%であり、界面剥離面積率が21~50%である。
2:上塗り塗膜の凝集破壊面積率20~49%であり、界面剥離面積率が51~80%である。
1:上塗り塗膜の凝集破壊面積率0~19%であり、界面剥離面積の比率が81~100%である。
 (4)一次防錆塗膜の防錆性(発錆・白錆)
 予め45℃に加熱されたサンドブラスト処理板(JISG3101,SS400、寸法:150mm×70mm×2.3mm)のブラスト処理面を、平均膜厚が15μmとなるようにエアスプレーガンを用いて一次防錆塗料組成物で塗装した。
 次いでJIS K5600 1-6の規格に従い温度23℃、相対湿度50%の恒温室内で1週間乾燥させて、試験板を作成した。なお、試験板における塗膜の平均膜厚の値を、塗膜面において任意の箇所の膜厚の測定値から算出した。各実施例および比較例における上記塗膜の平均膜厚の範囲は、14~16μmである。
 次いで、この試験板を屋外暴露台(中国塗料(株)大竹研究所敷地内)に設置し、2ヶ月間放置した。ここで、試験板の塗装面が南側を向き、かつ、試験板が水平に対して45度となるように傾いた状態で固定されている。
 2ヶ月の放置後の試験板全面に対する、発錆した試験板表面および白錆が形成された試験板表面の面積比率(%)を測定して、発錆の状態および白錆の発生状態を評価した。評価基準を下記のとおりである。
[発錆の状態の評価基準(ASTM D610)]
   10;発錆を認めない、または発錆の面積比率は0.01%以下
    9;極僅かな発錆、または発錆の面積比率は0.01%を超え0.03%以下
    8;僅かな発錆、または発錆の面積比率は0.03%を超え0.1%以下
    7;発錆の面積比率は0.1%を超え0.3%以下
    6;明瞭な点錆、または発錆の面積比率は0.3%を超え1%以下
    5;発錆の面積比率は1%を超え3%以下
    4;発錆の面積比率は3%を超え10%以下
    3;発錆の面積比率は10%を超え1/6(16%)以下
    2;発錆の面積比率は1/6(16%)を超え1/3(33%)以下
    1;発錆の面積比率は1/3(33%)を超え1/2(50%)以下
    0;発錆の面積比率はほぼ1/2(50%)を超え100%まで
[白錆の発生状態の評価基準]
   10;白錆を認めない、または白錆の面積比率は0.01%以下
    9;極僅かな白錆、または白錆の面積比率は0.01%を超え0.03%以下
    8;僅かな白錆、または白錆の面積比率は0.03%を超え0.1%以下
    7;白錆の面積比率は0.1%を超え0.3%以下
    6;明瞭な白錆の点、または白錆の面積比率は0.3%を超え1%以下
    5;白錆の面積比率は1%を超え3%以下
    4;白錆の面積比率は3%を超え10%以下
    3;白錆の面積比率は10%を超え1/6(16%)以下
    2;白錆の面積比率は1/6(16%)を超え1/3(33%)以下
    1;白錆の面積比率は1/3(33%)を超え1/2(50%)以下
    0;白錆の面積比率はほぼ1/2(50%)を超え100%まで
 (III)上塗り塗膜特性
 (1) 上塗り塗膜の付着性
 予め45℃に加熱されたサンドブラスト処理板(JISG3101,SS400、寸法:150mm×70mm×2.3mm)のブラスト処理表面に、一次防錆塗料組成物を、平均膜厚が15μmとなるようにエアスプレーガンを用いて塗装し、次いで温度23℃、相対湿度50%の恒温室内に1週間放置して、一次防錆塗膜を形成した。この一次防錆塗膜上に、ハイソリッドのエポキシ塗料(商品名:ノバ2000、中国塗料社製)をスプレーで塗布した後1週間放置して硬化塗膜(上塗り塗膜)を形成した。
 なお、一次防錆塗膜および上塗り塗膜の平均膜厚の値を、各塗膜面において任意の箇所の膜厚の測定値から算出した。各実施例および比較例における一次防錆塗膜の平均膜厚の範囲は、14~16μmであり、および上塗り塗膜の平均膜厚310μmである。
 上塗り塗膜の表面に直径16mm、長さが20mmの軟鋼製の円筒形治具の底面をエポキシ系の接着剤で貼り付けて24時間放置した後、プルゲージ(モトフジ製)で治具の頭部を上塗り塗膜表面の垂直方向に引っ張り、治具を上塗り塗膜表面から剥離して、付着強度(凝集破壊および/または界面剥離に要した力)を測定した。
 また、剥離面の面積100%に対する、凝集破壊された上塗り塗膜の面積の比率(凝集破壊面積率;(%))、および上塗り塗膜と一次防錆塗膜との界面剥離の面積の比率(界面剥離面積率(%))を目視により測定し、上塗り塗膜の付着状況を、以下の基準に基づいて評価した。
[評価基準]
5:上塗り塗膜の凝集破壊面積率が100%である。
4:上塗り塗膜の凝集破壊面積率が80~99%であり、界面剥離面積率が1~20%である。
3:上塗り塗膜の凝集破壊面積率が50~79%であり、界面剥離面積率が21~50%である。
2:上塗り塗膜の凝集破壊面積率が20~49%であり、界面剥離面積率が51~80%である。
1:上塗り塗膜の凝集破壊面積率が0~19%であり、界面剥離面積率が81~100%である。
(2)溶接性試験
 予め45℃に加熱された2枚のサンドブラスト処理板(JIS G 3101,SS400、下板寸法:600mm×100mm×12mm、上板寸法:600mm×50mm×12mm)の表面に、一次防錆塗料組成物を平均膜厚15μmとなるようにエアスプレーガンを用いて塗装し、次いでJIS K5600 1-6に従い温度23℃、相対湿度50%の恒温室内で1週間乾燥させて、一次防錆塗膜を形成して、図8(a)に示されるような上板および下板を準備した。なお、図8(a)の中において、黒塗りの部分は、塗装箇所を示す。また、一次防錆塗膜の平均膜厚の値を、各塗膜面において任意の箇所の膜厚の測定値から算出した。各実施例および比較例における一次防錆塗膜の平均膜厚の範囲は、14~16μmである。
 次いで、炭酸ガス自動アーク溶接法により、図8(b)に示されるように、所定のトーチ角度とトーチシフトを保ちつつ、上板と下板とを両層(初層側、終層側)同時に溶接した。このときの溶接条件を表8に示す。
 次いで、溶接性は次のように評価した。
 まず、溶接部のうち、溶接前の仮付け部を含む溶接始端部および終端部の長さ各50mmの範囲を除く長さ500mmの範囲に発生したピット数(個)およびガス溝長さ(mm)を確認した。さらに、初層側の溶接線にレーザーノッチ(V字型カット)を入れ、終層側溶接部を溶接線に沿ってプレスで破断し、破断面に発生しているブローホールの合計面積(ブローホールの幅×長さ×個数)を評価面積で割り、ブローホール発生率(%)を算出した。
Figure JPOXMLDOC01-appb-T000019
 (3)切断性試験
予め45℃に加熱されたサンドブラスト処理鋼板(JIS G 3101,SS400、寸法300mm×600mm×12mm)のブラスト処理表面に、一次防錆塗料組成物を平均膜厚15μmとなるようにエアスプレーガンを用いて塗装し、次いで、JIS K5600 1-6に従い温度23℃、相対湿度50%の恒温恒湿室内で7日間乾燥させて、試験板を作製した。この試験板を、表9に記載の切断条件に基づいて、切断し、得られた切断面を、日本溶接協会のWES2801ガス切断標準(1980年)基準に基づいて評価した。なお、試験板の塗膜の平均膜厚の値を、塗膜面において任意の箇所の膜厚の測定値から算出した。各実施例および比較例における上記塗膜の平均膜厚の範囲は、14~16μmである。
Figure JPOXMLDOC01-appb-T000020
 水系厚塗り無機ジンク塗料組成物の特性評価
 (I)水系厚塗り無機ジンク塗料組成物の特性
 (1)塗料密度
 金属製比重瓶(容量100ml)に水系厚塗り無機ジンク塗料組成物を100ml充填し、該塗料組成物が充填された比重瓶の質量を測った。次いで、以下の計算式で塗料密度(g/ml)を算出した。
Figure JPOXMLDOC01-appb-M000021
 (2)不揮発分の含有率
 水系厚塗り無機ジンク塗料組成物1.5g(A1(g))を108℃の条件下で3時間保持して揮発分を除去した。次いで、残った不揮発分の量(A2(g))を測定し、下記式に基づいて、水系厚塗り無機ジンク塗料組成物に含まれる不揮発分の含有率(%)を算出した。
 不揮発分の含有率(%)=A2/A1×100
 (II)厚塗り無機ジンク塗膜の特性評価
 (1)塗膜密度
 各固形分(不揮発分)(顔料類、樹脂等)の真比重および配合量から、各固形分の容積を算出した。次いで、下記式に基づいて、塗膜密度(g/ml)を算出した。
Figure JPOXMLDOC01-appb-M000022
 (2)厚塗り無機ジンク塗膜の特性
 予め45℃に加熱された軟鋼板(寸法:150mm×70mm×2.3mm)表面を、平均膜厚が150μmとなるようにエアスプレーガンを用いて水系厚塗り無機ジンク塗料組成物で塗装した。次いで温度23℃、相対湿度50%の恒温室内に7日間放置して、厚塗り無機ジンク塗膜を形成して、試験板Aを作製した。
 また、予め45℃に加熱されたサンドブラスト処理板(JIS G 3101,SS400、寸法:150mm×70m×2.3mm)のブラスト処理面に、平均膜厚が15μmとなるようにエアスプレーガンを用いて水系厚塗り無機ジンク塗料組成物で塗装した。次いで温度23℃、相対湿度50%の恒温室内に7日間放置して、厚塗り無機ジンク塗膜を形成して、試験板Bを作製した。
 作製された試験板AおよびBを、以下の各種評価に供した。なお、試験板Aおよび試験板Bの各厚塗り無機ジンク塗膜の平均膜厚の値を、各塗膜面において任意の箇所の膜厚の測定値から算出した。各実施例および比較例における各厚塗り無機ジンク塗膜の平均膜厚の範囲は、何れも110~190μmである。
 (2-1)外観特性(クラックの有無)
 試験板A及び試験板Bの厚塗り無機ジンク塗膜表面に生じたクラックを観察し、以下の評価基準に基づいて、外観性を評価した。
[評価基準]
   5 : クラックなし
   4 : 長さ2mm以下のクラック2本未満
   3 : 長さ2から3mm以下のクラック3本未満
   2 : 長さ3から10mm以下のクラック3本未満
   1 : 長さ10mmより長いクラックが3本以上
(2-2)発泡性(塗膜内部)
 試験板A及び試験板Bの厚塗り無機ジンク塗膜を、ナイフを用いて、切断し、限度見本と比較しながら、切断面から観察される気泡の数を目視により観察し、下記基準に基づいて評価した。
 なお、観察された気泡は、塗料調製時に抱き込まれた気体、配合成分、配合成分と溶剤との反応によって発生した気体に由来するものである。
[評価基準]
   5 : 気泡が全くないか微少である。
   4 : 気泡が少ない。
   3 : 気泡がかなり認められる。
   2 : 気泡が多数認められる。
   1 : ほぼ全面が多数に覆われている。
(2-3)付着性(碁盤目剥離試験)
 JIS K5600-5-6に規定された付着性試験(クロスカット法)に準拠して、試験板A及び試験板Bの厚塗り無機ジンク塗膜を、切り込み工具を用いて4mm幅でカットし、格子を作成し塗膜のマス目を25個作成した。
 次いで、透明感圧付着テープの接着面を、カットされた一組に平行になるように格子の上に置き、透明感圧付着テープを指先で擦りながら確実に付着させた。5分経過後に、透明感圧付着テープを塗膜面に対して60°方向に0.5秒から1.0秒で確実に引き離した後に、格子に残存している塗膜のマス目数(残存マス目数)をカウントし、以下の基準に基づいて評価した。
[評価基準]
   5 : 残存マス目数が、24個以上である。
   4 : 残存マス目数が、20個~23個である。
   3 : 残存マス目数が、15個~19個である。
   2 : 残存マス目数が、10個~14個である。
   1 : 残存マス目数が、9個以下である。
(2-4)付着性(ナイフカット試験)
 試験板A及び試験板Bの厚塗り無機ジンク塗膜に対して、ナイフの刃が垂直にあたるようにセットし、一点を基点として、1.5cmの長さの切込み(垂直方向の切り込み)を30°から50°の角度で4本入れ、塗膜の剥離の程度を観察した。また、その直後に、切込みに沿って、ナイフの刃をほぼ水平にして幅が1mmから3mmの切込み(水平方向の切り込み)を入れ、塗膜の剥離の程度を観察した。
[評価基準]
   5 : 垂直、水平方向の切込みでも塗膜に異常がなく、付着している。
   4 : 水平の切り込みで、切込みの基点付近に剥離が認められる。
   3 : 水平の切り込みで、切込みに沿った部分に剥離が認められる。
   2 : 垂直の切り込みで、切込みの基点付近に剥離が認められる。
   1 : 垂直の切込みで剥離が認められる。
(2-5)ラビング性
 水またはメチルエチルケトン(MEK)を滲みこませたティッシュペーパーで、試験板Aの厚塗り無機ジンク塗膜表面を数センチの範囲で往復させ、塗膜からティッシュペーパーへの顔料の移行(塗膜の溶解や破壊)の程度を観察し、以下の評価基準に基づいて、ラビング性を評価した。
[評価基準]
 5 :20回以上擦っても、基材の露出および顔料の移行は全く確認されない。
 4 :20回の擦りで、基材の露出は確認できないが、顔料の移行が僅かに移行が確認される。
 3 :20回の擦りで、基材の露出は確認されないが、顔料の移行が多少確認される。
 2 :20回の擦りで、顔料の移行とともに、基材の部分的な露出が確認される。
 1 :19回以下の擦りで、顔料の移行が著しく、さらに基材が露出するまで塗膜の溶解または破壊が確認される。

Claims (22)

  1.  下記一般式(I)で表されるシラン化合物(a1)を含むシラン原料(a)を、pH0.4~8.0の条件下にて加水分解反応および縮合反応させて得られる、加水分解縮合物を含む結合剤(A)と、水(B)とを含有する水系塗料組成物。
    Figure JPOXMLDOC01-appb-C000001
    (上記式(I)中、R1a~R6aは、それぞれ独立して、水素原子、ハロゲン原子、炭素数が1から10までのアルキル基、炭素数が2から5までのアルケニル基、炭素数が6から12までのアリール基、Z-R7a-(Zは、ハロゲン原子、ヒドロキシ基、エポキシ基、アクリロキシ基、メタクリロキシ基、またはRaO-(RbO)c-(Raは水素原子、または炭素数が1から10までのアルキル基であり、Rbは炭素数が2から4のアルキレン基であり、cは1から15までの整数である。)で表されるポリオキシアルキレン基であり、R7aは炭素数が1から10までのアルキレン基である。)、または-OR8a(R8aは水素原子、炭素数が1から10までのアルキル基、または炭素数が1から10までのアルケニル基である。)であり、
     R1a~R6aの少なくとも1つは、ハロゲン原子である。
     Yは、酸素原子または炭素数が1から10までのアルキレン基である。
     mは、0または1を示し、pは、0以上の整数を示す。)
  2.  前記シラン原料(a)が、前記シラン化合物(a1)の他に、下記一般式(II)で表されるシラン化合物(a2)を含む、請求項1に記載の水系塗料組成物。
    Figure JPOXMLDOC01-appb-C000002
    (上記一般式(II)中、R1b~R6bは、それぞれ独立して、水素原子、炭素数が1から10までのアルキル基、炭素数が2から5までのアルケニル基、炭素数が6から12までのアリール基、Z-R7b-(Zは、ヒドロキシ基、エポキシ基、アクリロキシ基、メタクリロキシ基、またはRa´O-(Rb´O)c´-(Ra´は水素原子、または炭素数が1から10までのアルキル基であり、Rb´は炭素数が2から4のアルキレン基であり、c´は1から15までの整数である。)で表されるポリオキシアルキレン基であり、R7bは炭素数が1から10までのアルキレン基である。)、-OR8b(R8bは、炭素数が1から10までのアルキル基、または炭素数が1から10までのアルケニル基である。)、ヒドロキシル基、またはアシル基であり、
     R1b~R6bの少なくとも一つは、ヒドロキシル基、-OR8b基(R8bは炭素数が1から10までのアルキル基である。)、Z-R7b-(Zは、エポキシ基であり、R7bは炭素数が1から10までのアルキレン基である。)またはアシル基である。
     Y´は、酸素原子または炭素数が1から10までのアルキレン基である。
     m´は、0または1を示し、p´は0以上の整数を示す。)
  3.  前記結合剤(A)が、前記シラン原料(a)を、下記化学式(III)で表される金属酸化物を含む金属酸化物ゾル(C)の存在下で、加水分解反応および縮合反応して得られる加水分解縮合物、および前記金属酸化物を含む、請求項1または2に記載の水系塗料組成物。
      Mpr・・・・(III)
    (式(III)中、Mは、Si、AlまたはTiを示す。p、rはそれぞれ独立して、1~3の整数を示す。)
  4.  前記式(I)におけるR1a~R6aの少なくとも1つが、塩素原子である、請求項1~3の何れか一項に記載の水系塗料組成物。
  5.  前記一般式(II)におけるR1b~R6bの少なくとも1つが、グリシドキシ基である、請求項2または3に記載の水系塗料組成物。
  6.  前記式(I)におけるYが、炭素数1から10までのアルキレン基である、請求項1~5の何れか一項に記載の水系塗料組成物。
  7.  前記金属酸化物ゾル(C)が、無水ケイ酸ゾルである、請求項3~6のいずれかに記載の水系塗料組成物。
  8.  前記無水ケイ酸ゾルが、煙霧質シリカゾルである、請求項7に記載の水系塗料組成物。
  9.  前記金属酸化物ゾル(C)が、コロイダルシリカ水分散剤であり、該コロイダルシリカ水分散剤における、pHが7以下であり、Na2Oの含有量が400ppm以下である、請求項3~6のいずれかに記載の水系塗料組成物。
  10. 前記金属酸化物ゾル(C)が、煙霧質アルミナまたは煙霧質チタニアを含むゾルである、請求項3~6の何れかに記載の水系塗料組成物。
  11.  さらに顔料を含み、水系塗料組成物における、顔料体積濃度(PVC)と臨界顔料体積濃度(CPVC)との比((PVC)/(CPVC))が1より大きい、請求項1~10の何れか一項に記載の水系塗料組成物。
  12.  さらに防錆顔料(D)を含む、請求項1~11の何れか一項に記載の水系塗料組成物。
  13.  前記防錆顔料(D)が、2~20μmの平均粒径を有する亜鉛粉末および/または亜鉛合金粉末を含む、請求項12に記載の水系塗料組成物。
  14.  さらに白錆抑制剤(E)として、金属モリブデンおよび/またはモリブデン化合物を含む請求項1~13のいずれかに記載の水系塗料組成物。
  15.  結合剤組成物として用いられる、請求項1~11のいずれかに記載の水系塗料組成物。
  16.  防錆塗料組成物として用いられる、請求項12~14のいずれかに記載の水系塗料組成物。
  17.  一次防錆用塗料組成物である、請求項16に記載の水系塗料組成物。
  18.  厚塗り無機ジンク塗料組成物である、請求項16に記載の水系塗料組成物。
  19.  鋼材の表面に、請求項17に記載の一次防錆用塗料組成物を塗布し、次いで塗布された該塗料組成物を硬化させて、一次防錆塗膜を形成させる鋼材の一次防錆塗装方法。
  20.  鋼材の表面に、請求項18に記載の厚塗り無機ジンク塗料組成物を塗布し、次いで塗布された該塗料組成物を硬化させて、厚塗り無機ジンク防錆塗膜を形成させる鋼材の防錆塗装方法。
  21.  鋼材の表面に、請求項17に記載の一次防錆用塗料組成物から形成された一次防錆塗膜を有する鋼構造物。
  22.  鋼材の表面に、請求項18に記載の厚塗り無機ジンク塗料組成物から形成された厚塗り無機ジンク防錆塗膜を有する鋼構造物。
PCT/JP2011/071015 2010-09-14 2011-09-14 水系塗料組成物および該水系塗料組成物を用いた防錆方法 WO2012036210A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES11825210.5T ES2539694T3 (es) 2010-09-14 2011-09-14 Composición de recubrimiento acuosa y método para impedir la herrumbre usando dicha composición de recubrimiento acuosa
CN201180040137.4A CN103068943B (zh) 2010-09-14 2011-09-14 水性涂料组合物及使用该水性涂料组合物的防锈方法
BR112013006118A BR112013006118A2 (pt) 2010-09-14 2011-09-14 composição aquosa de revestimento e método para prevenção de oxidação usando a composição de revestimento aquoso
EP11825210.5A EP2617786B1 (en) 2010-09-14 2011-09-14 Aqueous coating composition and corrosion prevention method using said aqueous coating composition
JP2012534038A JP5721725B2 (ja) 2010-09-14 2011-09-14 水系塗料組成物および該水系塗料組成物を用いた防錆方法
KR1020147036305A KR20150008921A (ko) 2010-09-14 2011-09-14 수계 도료 조성물 및 이 수계 도료 조성물을 사용한 방청방법
KR1020137007028A KR101714826B1 (ko) 2010-09-14 2011-09-14 수계 도료 조성물 및 이 수계 도료 조성물을 사용한 방청방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010205319 2010-09-14
JP2010-205319 2010-09-14

Publications (1)

Publication Number Publication Date
WO2012036210A1 true WO2012036210A1 (ja) 2012-03-22

Family

ID=45831666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071015 WO2012036210A1 (ja) 2010-09-14 2011-09-14 水系塗料組成物および該水系塗料組成物を用いた防錆方法

Country Status (7)

Country Link
EP (1) EP2617786B1 (ja)
JP (1) JP5721725B2 (ja)
KR (2) KR20150008921A (ja)
CN (1) CN103068943B (ja)
BR (1) BR112013006118A2 (ja)
ES (1) ES2539694T3 (ja)
WO (1) WO2012036210A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213211A (ja) * 2012-03-31 2013-10-17 Pangang Group Panzhihua Iron & Steel Research Inst Co Ltd 金属保護コーティング剤、その使用、およびそれを使用する溶融めっき金属材料
WO2014119784A1 (ja) * 2013-02-04 2014-08-07 関西ペイント株式会社 一次防錆塗料組成物、及びそれを塗装してなる塗装鋼構造物
KR20150013907A (ko) * 2012-07-20 2015-02-05 주고꾸 도료 가부시키가이샤 1차 방청 도료 조성물 및 그의 용도
CN105176160A (zh) * 2015-10-21 2015-12-23 苏州赛斯德工程设备有限公司 一种抗氧化性能高的水性涂料及其制备方法
JP2016121278A (ja) * 2014-12-25 2016-07-07 中国塗料株式会社 水系防食塗料組成物
WO2019245326A1 (en) * 2018-06-22 2019-12-26 Ppgssc Co., Ltd. Anti-corrosive coating composition and anti-corrosive layer using the same
CN110691835A (zh) * 2017-04-06 2020-01-14 日产化学美国公司 耐盐水性二氧化硅溶胶
WO2020045487A1 (ja) * 2018-08-31 2020-03-05 中国塗料株式会社 防錆塗料組成物およびその用途
CN113429860A (zh) * 2021-07-13 2021-09-24 安徽江锐新材料有限公司 一种速干型水性环氧富锌底漆及其制备工艺
JP2021529221A (ja) * 2018-09-21 2021-10-28 青▲島▼理工大学Qingdao University Of Technology アルミナゾル−シラン複合材料及びその製造方法と応用
CN114381148A (zh) * 2021-12-03 2022-04-22 广东红日星实业有限公司 一种处理剂及其制备方法和应用

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9243150B2 (en) * 2005-04-21 2016-01-26 The United States Of America As Represented By The Secretary Of The Navy Oxide coated metal pigments and film-forming compositions
EP2792768A1 (en) 2013-04-16 2014-10-22 Coventya SAS Suspension for improving the corrosion inhibition of steel, method for protecting steel from corrosion and uses of the suspension
CN105715003B (zh) * 2016-01-20 2020-04-28 宁波红杉高新材料有限公司 烤瓷铝板及其制备方法
KR101865092B1 (ko) * 2016-02-23 2018-07-12 이태용 방청용 도료 조성물
US10669426B2 (en) * 2016-03-31 2020-06-02 Nissan Chemical Industries, Ltd. Inorganic oxide microparticles having amphiphilic organic silane compound bonded thereto, organic solvent dispersion thereof, and composition for film formation
CN107118666A (zh) * 2017-06-22 2017-09-01 合肥佳洋电子科技有限公司 一种油烟机外壳的防锈涂层及其制备方法
CN109535957A (zh) * 2017-08-16 2019-03-29 3M创新有限公司 防尘涂层组合物、涂布制品及其制备方法
EP3705544A4 (en) * 2017-10-31 2021-08-18 Chugoku Marine Paints, Ltd. RUST PROTECTIVE COATING COMPOSITION AND ITS USE
TWI723441B (zh) * 2019-06-28 2021-04-01 長興材料工業股份有限公司 有機矽改性丙烯酸樹脂及其製備方法
CN110791101B (zh) * 2019-11-19 2021-07-06 广州信粤新材料科技有限公司 一种有机硅防水耐老化材料及其制备方法
KR102357081B1 (ko) * 2019-12-12 2022-01-28 주식회사 포스코 내열성 및 테이프 부착성이 우수한 전기아연도금 강판용 코팅 조성물, 이를 이용하여 표면처리된 강판 및 그 제조 방법
KR102164573B1 (ko) * 2020-06-02 2020-10-13 한선경 강 구조물 표면보호용 강재 도장재 조성물 및 이를 이용한 강 구조물의 보수도장공법
CN114032025B (zh) * 2020-07-21 2022-11-18 中国石油化工股份有限公司 免硅化胶塞用覆膜组合物、免硅化胶塞用涂覆液及其制备方法、制备免硅化胶塞的方法
CN112358802A (zh) * 2020-12-11 2021-02-12 成都新柯力化工科技有限公司 一种仿电镀涂层的纳米水性涂料及制备方法
FR3130854A1 (fr) * 2021-12-21 2023-06-23 Nof Metal Coatings Europe Revêtement anticorrosion
CN114934631B (zh) * 2022-06-23 2023-12-01 安徽众霸新材料科技有限公司 一种水性油漆铝单板及其涂装工艺
CN115948063A (zh) * 2022-10-19 2023-04-11 昆明理工大学 一种硅酸盐改性硅溶胶基水性无机涂料
WO2024092328A1 (pt) * 2022-10-31 2024-05-10 Cia. Industrial H. Carlos Schneider Composição de um revestimento e respectivo processo de aplicação em substratos metálicos

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629904B2 (ja) 1974-12-20 1981-07-11
JPH05263069A (ja) * 1992-03-19 1993-10-12 Shin Etsu Polymer Co Ltd 結霜防止性付与組成物
JPH07209504A (ja) * 1994-01-26 1995-08-11 Dainippon Printing Co Ltd 光学皮膜形成コーティング用組成物、その製造方法、光学皮膜形成方法および光学皮膜
JPH1060375A (ja) * 1996-08-22 1998-03-03 Toshiba Silicone Co Ltd 防錆用コーティング剤組成物および基材の防錆方法
JPH1171682A (ja) * 1997-06-24 1999-03-16 Nippon Sheet Glass Co Ltd 撥水性物品の製造方法、撥水性物品および撥水性被膜形成用溶液
JP2000095999A (ja) * 1998-07-24 2000-04-04 Ge Toshiba Silicones Co Ltd 防錆・耐汚染性保護コ―ティング剤組成物
JP2000144020A (ja) 1998-11-18 2000-05-26 Nippon Paint Co Ltd 亜鉛被覆鋼および無被覆鋼の防錆コーティング剤
JP2002105401A (ja) 2000-09-25 2002-04-10 Sigma Coatings Bv 水性2成分系保護被覆組成物
JP2002121485A (ja) 2000-10-18 2002-04-23 Metal Coatings Internatl Inc 錆止めを施すための水−希釈可能なコーティング組成物
JP2005510584A (ja) 2001-09-11 2005-04-21 アクゾ ノーベル コーティングス インターナショナル ビー ヴィ 金属基材のためのコーティング組成物
JP2007262257A (ja) * 2006-03-29 2007-10-11 Jsr Corp ポリマーおよびその製造方法、絶縁膜形成用組成物、絶縁膜の製造方法、ならびにシリカ系絶縁膜
WO2008003695A1 (en) 2006-07-04 2008-01-10 Sigmakalon B.V. A paint composition
JP2008150537A (ja) 2006-12-19 2008-07-03 Tsubakimoto Chain Co 水系防錆塗料
JP2008528741A (ja) 2005-01-25 2008-07-31 シグマ・コーテイングス・ベー・ブイ 結合剤組成物
WO2008128932A1 (en) 2007-04-19 2008-10-30 Akzo Nobel Coatings International B.V. Coating composition for metal substrates
JP2009091545A (ja) * 2007-09-20 2009-04-30 Jgc Catalysts & Chemicals Ltd シリカ系被膜形成用塗布液、その調製方法および該塗布液から得られるシリカ系絶縁膜

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629904A (en) 1979-08-18 1981-03-25 Yanmar Agricult Equip Harvester
JPH06240207A (ja) * 1993-02-22 1994-08-30 Matsushita Electric Works Ltd コーティング用組成物
DE10056343A1 (de) * 2000-11-14 2002-05-16 Degussa Kontinuierliches Verfahren zur Herstellung von Organoalkoxysiloxanen
JP2004001298A (ja) * 2002-05-31 2004-01-08 Matsushita Electric Works Ltd 塗装品、有機塗料及び水系シリコーン塗料
EP1500686B1 (en) * 2003-07-22 2011-07-13 Hoden Seimitsu Kako Kenkyusho Co., Ltd. Rust inhibitive treatment method for metals
JP2009191130A (ja) * 2008-02-13 2009-08-27 Wacker Asahikasei Silicone Co Ltd 自動車塗装面用コーティング剤組成物

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629904B2 (ja) 1974-12-20 1981-07-11
JPH05263069A (ja) * 1992-03-19 1993-10-12 Shin Etsu Polymer Co Ltd 結霜防止性付与組成物
JPH07209504A (ja) * 1994-01-26 1995-08-11 Dainippon Printing Co Ltd 光学皮膜形成コーティング用組成物、その製造方法、光学皮膜形成方法および光学皮膜
JPH1060375A (ja) * 1996-08-22 1998-03-03 Toshiba Silicone Co Ltd 防錆用コーティング剤組成物および基材の防錆方法
JPH1171682A (ja) * 1997-06-24 1999-03-16 Nippon Sheet Glass Co Ltd 撥水性物品の製造方法、撥水性物品および撥水性被膜形成用溶液
JP2000095999A (ja) * 1998-07-24 2000-04-04 Ge Toshiba Silicones Co Ltd 防錆・耐汚染性保護コ―ティング剤組成物
JP2000144020A (ja) 1998-11-18 2000-05-26 Nippon Paint Co Ltd 亜鉛被覆鋼および無被覆鋼の防錆コーティング剤
JP2002105401A (ja) 2000-09-25 2002-04-10 Sigma Coatings Bv 水性2成分系保護被覆組成物
JP2002121485A (ja) 2000-10-18 2002-04-23 Metal Coatings Internatl Inc 錆止めを施すための水−希釈可能なコーティング組成物
JP2005510584A (ja) 2001-09-11 2005-04-21 アクゾ ノーベル コーティングス インターナショナル ビー ヴィ 金属基材のためのコーティング組成物
JP2008528741A (ja) 2005-01-25 2008-07-31 シグマ・コーテイングス・ベー・ブイ 結合剤組成物
JP2007262257A (ja) * 2006-03-29 2007-10-11 Jsr Corp ポリマーおよびその製造方法、絶縁膜形成用組成物、絶縁膜の製造方法、ならびにシリカ系絶縁膜
WO2008003695A1 (en) 2006-07-04 2008-01-10 Sigmakalon B.V. A paint composition
JP2008150537A (ja) 2006-12-19 2008-07-03 Tsubakimoto Chain Co 水系防錆塗料
WO2008128932A1 (en) 2007-04-19 2008-10-30 Akzo Nobel Coatings International B.V. Coating composition for metal substrates
JP2009091545A (ja) * 2007-09-20 2009-04-30 Jgc Catalysts & Chemicals Ltd シリカ系被膜形成用塗布液、その調製方法および該塗布液から得られるシリカ系絶縁膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2617786A4 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213211A (ja) * 2012-03-31 2013-10-17 Pangang Group Panzhihua Iron & Steel Research Inst Co Ltd 金属保護コーティング剤、その使用、およびそれを使用する溶融めっき金属材料
KR20150013907A (ko) * 2012-07-20 2015-02-05 주고꾸 도료 가부시키가이샤 1차 방청 도료 조성물 및 그의 용도
KR101711273B1 (ko) 2012-07-20 2017-02-28 주고꾸 도료 가부시키가이샤 1차 방청 도료 조성물 및 그의 용도
WO2014119784A1 (ja) * 2013-02-04 2014-08-07 関西ペイント株式会社 一次防錆塗料組成物、及びそれを塗装してなる塗装鋼構造物
CN104968740A (zh) * 2013-02-04 2015-10-07 关西涂料株式会社 一次防锈涂料组合物及涂装该组合物而成的涂装钢结构物
KR101792081B1 (ko) 2013-02-04 2017-11-01 간사이 페인트 가부시키가이샤 1차 방청 도료 조성물, 및 그것을 도장하여 이루어지는 도장 강철구조물
JP2016121278A (ja) * 2014-12-25 2016-07-07 中国塗料株式会社 水系防食塗料組成物
CN105176160A (zh) * 2015-10-21 2015-12-23 苏州赛斯德工程设备有限公司 一种抗氧化性能高的水性涂料及其制备方法
US10975289B2 (en) 2017-04-06 2021-04-13 Nissan Chemical America Corporation Hydrocarbon formation treatment micellar solutions
CN110691835A (zh) * 2017-04-06 2020-01-14 日产化学美国公司 耐盐水性二氧化硅溶胶
JP2020516757A (ja) * 2017-04-06 2020-06-11 ニッサン ケミカル アメリカ コーポレイション ブライン抵抗性シリカゾル
JP7083051B2 (ja) 2017-04-06 2022-06-09 ニッサン ケミカル アメリカ コーポレイション ブライン抵抗性シリカゾル
JP2021088503A (ja) * 2017-04-06 2021-06-10 ニッサン ケミカル アメリカ コーポレイション ブライン抵抗性シリカゾル
CN110691835B (zh) * 2017-04-06 2022-12-09 日产化学美国公司 耐盐水性二氧化硅溶胶
US11401454B2 (en) 2017-04-06 2022-08-02 Nissan Chemical America Corporation Hydrocarbon formation treatment micellar solutions
WO2019245326A1 (en) * 2018-06-22 2019-12-26 Ppgssc Co., Ltd. Anti-corrosive coating composition and anti-corrosive layer using the same
WO2020045487A1 (ja) * 2018-08-31 2020-03-05 中国塗料株式会社 防錆塗料組成物およびその用途
JPWO2020045487A1 (ja) * 2018-08-31 2021-08-10 中国塗料株式会社 防錆塗料組成物およびその用途
JP7247203B2 (ja) 2018-08-31 2023-03-28 中国塗料株式会社 防錆塗料組成物およびその用途
JP2021529221A (ja) * 2018-09-21 2021-10-28 青▲島▼理工大学Qingdao University Of Technology アルミナゾル−シラン複合材料及びその製造方法と応用
JP7333082B2 (ja) 2018-09-21 2023-08-24 青▲島▼理工大学 アルミナゾル-シラン複合材料及びその製造方法と応用
CN113429860A (zh) * 2021-07-13 2021-09-24 安徽江锐新材料有限公司 一种速干型水性环氧富锌底漆及其制备工艺
CN114381148A (zh) * 2021-12-03 2022-04-22 广东红日星实业有限公司 一种处理剂及其制备方法和应用

Also Published As

Publication number Publication date
EP2617786A1 (en) 2013-07-24
KR101714826B1 (ko) 2017-03-09
CN103068943B (zh) 2015-07-15
ES2539694T3 (es) 2015-07-03
JP5721725B2 (ja) 2015-05-20
KR20150008921A (ko) 2015-01-23
EP2617786B1 (en) 2015-04-08
BR112013006118A2 (pt) 2016-05-31
CN103068943A (zh) 2013-04-24
KR20130070634A (ko) 2013-06-27
EP2617786A4 (en) 2014-03-19
JPWO2012036210A1 (ja) 2014-02-03

Similar Documents

Publication Publication Date Title
JP5721725B2 (ja) 水系塗料組成物および該水系塗料組成物を用いた防錆方法
US11168221B2 (en) Aqueous corrosion protection formulation based on silanes
TWI477565B (zh) 用於金屬基材之塗料組合物
CN104603213B (zh) 包含空心玻璃球和导电颜料的防腐蚀锌底漆涂料组合物
KR101493074B1 (ko) 낮은 voc 에폭시 실란 올리고머 및 이를 함유하는조성물들
ES2220446T3 (es) Composicion de revestimiento para sustratos metalicos.
CN105315886B (zh) 混合式涂料及相关的施加方法
JP5182535B2 (ja) 水性シロキサン塗料組成物及びその製造方法、表面処理剤、表面処理鋼材並びに塗装鋼材
CA2926194A1 (en) Transparent hydrophobic coating materials with improved durability and methods of making same
WO2007102514A1 (ja) 被膜形成用塗布液、その製造方法、その被膜、及び反射防止材
CN110546211A (zh) 作为锌粉漆的储存稳定前体的水性溶胶-凝胶组合物
JP7467453B2 (ja) 一次防錆塗料組成物、一次防錆塗膜付き基板およびその製造方法
KR101743065B1 (ko) 오염방지와 난연기능이 강화된 친환경 표면보호재 조성물 및 이를 이용한 구조물 표면보호 공법
JP6393016B1 (ja) コーティング組成物及び表面保護被膜形成方法
US20190031918A1 (en) Curable surface-protective coating composition, processes for its preparation and application to a metallic substrate and resulting coated metallic substrate
JP6093912B1 (ja) 金属材料用表面処理剤、および、表面処理被膜付き金属材料
CN104926369A (zh) 防滑件及其制备方法
JP2008274242A (ja) 水性塗料組成物、有機無機複合塗膜、シラン縮合物分散体及びその製造方法
EP3298085B1 (en) Water-based zinc-rich pre-construction primer
JP2011006613A (ja) 硬化性樹脂組成物およびハードコートフィルムまたはシート
JP2024001729A (ja) 金属顔料組成物の製造方法
JP2012092281A (ja) ウレタン樹脂組成物、コーティング剤、プラスチック基材用コーティング剤及びそれらを用いて得られる硬化物ならびに硬化物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040137.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825210

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011825210

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012534038

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137007028

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013006118

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013006118

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130314