WO2012035585A1 - 燃料電池用セパレータ、燃料電池、燃料電池の製造方法 - Google Patents

燃料電池用セパレータ、燃料電池、燃料電池の製造方法 Download PDF

Info

Publication number
WO2012035585A1
WO2012035585A1 PCT/JP2010/005666 JP2010005666W WO2012035585A1 WO 2012035585 A1 WO2012035585 A1 WO 2012035585A1 JP 2010005666 W JP2010005666 W JP 2010005666W WO 2012035585 A1 WO2012035585 A1 WO 2012035585A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
groove portion
fuel cell
shallow groove
fluid
Prior art date
Application number
PCT/JP2010/005666
Other languages
English (en)
French (fr)
Inventor
裕樹 岡部
宏弥 中路
吉田 慎
成孝 浜田
卓也 栗原
研二 佐藤
田中 秀明
信彦 中垣
純史 上田
克彦 木下
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/005666 priority Critical patent/WO2012035585A1/ja
Priority to JP2012533751A priority patent/JP5582193B2/ja
Priority to EP10857221.5A priority patent/EP2618413B1/en
Priority to CN201080069140.4A priority patent/CN103119766B/zh
Priority to US13/822,995 priority patent/US20130177827A1/en
Publication of WO2012035585A1 publication Critical patent/WO2012035585A1/ja
Priority to US15/263,528 priority patent/US10340532B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separator for a fuel cell, a fuel cell, and a method for manufacturing the fuel cell.
  • a plurality of power generation layers including an electrolyte membrane and a pair of electrodes (anode and cathode) separate a fuel gas and an oxidant gas as a reaction gas. It is used in the form of a stack structure that is stacked through. A flow path for flowing a fluid such as a reaction gas or a cooling medium (for example, a coolant) is formed inside the fuel cell.
  • a fluid such as a reaction gas or a cooling medium (for example, a coolant) is formed inside the fuel cell.
  • a plate-like member As a separator for a fuel cell, a plate-like member has a corrugated cross-sectional shape in which a first groove having a concave shape on one surface side and a second groove having a concave shape on the other surface side are alternately arranged.
  • a separator manufactured by processing is known. In such a separator, a flow path for one fluid (for example, coolant) is formed on the one surface side of the first groove portion, and another fluid (for example, fuel) is formed on the other surface side of the second groove portion. Gas) flow paths are formed.
  • a separator for a fuel cell a separator in which a series of quadrangular protrusions arranged in the form of a column group are provided on the surface, and a space between the protrusions functions as a flow path for fluid flowing vertically and horizontally. ing.
  • the flow directions in the fluid channel formed on one surface side and the fluid channel formed on the other surface side are limited to directions parallel to each other. Therefore, the degree of freedom of fluid path setting is low. Therefore, in a fuel cell using this separator, for example, the arrangement of each manifold is restricted, or the degree of freedom in thermal design in the cell plane is reduced. Although it is possible to improve the degree of freedom in setting the flow direction of the two fluid flow paths by adding another separator part, the increase in the number of parts increases the weight, size, and cost. It is not preferable because it is connected.
  • a flow path for allowing fluid to flow vertically and horizontally can be formed on the surface side where the protrusion of the separator is provided. Since the grid-like protrusions are provided on the, and a fluid passage cannot be formed, the fluid passage cannot be formed on both sides only with this separator component.
  • such a subject was a subject common to the separator for not only a polymer electrolyte fuel cell but a general fuel cell.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a fuel cell separator that enables flexible setting of a fluid path while suppressing an increase in the number of parts.
  • the present invention can be realized as the following forms or application examples.
  • a fuel cell separator A first groove having a concave shape on the first surface side and forming a first fluid flow path on the first surface side; and a second surface side opposite to the first surface side And a corrugated portion having a corrugated cross-sectional shape in which the second groove portion that is a concave shape and forms a second fluid flow path on the second surface side is alternately arranged,
  • Each of the second groove portions is a shallow groove portion whose depth when viewed from the second surface side is shallower than other portions, and the shallow groove portion is sandwiched between the first surface side at the position of the shallow groove portion.
  • a separator having at least one shallow groove portion that forms a communication channel that communicates two adjacent channel spaces for the first fluid.
  • each of the second groove portions has a shallow groove portion whose depth when viewed from the second surface side is shallower than other portions, and the shallow groove portion has a shallow groove portion on the first surface side. Since a communication channel that connects two first fluid channel spaces adjacent to each other with the groove portion interposed therebetween is formed, the first fluid channel space and the second fluid channel are formed by this one fuel cell separator.
  • the flow path space for the fluid can be formed, and the flow direction of the first fluid can be freely set without being limited to the direction parallel to the flow direction of the second fluid. Therefore, in this fuel cell separator, the fluid path can be set flexibly while suppressing an increase in the number of components.
  • the separator according to Application Example 1 The combination of the first fluid and the second fluid is a separator that is a combination of any two of a fuel gas, an oxidant gas, and a coolant.
  • the flow direction of the first fluid is not limited to the direction parallel to the flow direction of the second fluid, and can be freely set. Therefore, the first fluid and the second fluid can be controlled while suppressing an increase in the number of parts.
  • the fluid path can be set flexibly.
  • the separator according to Application Example 1 The separator according to Application Example 1, The first fluid is a separator, which is a coolant.
  • the flow direction of the first fluid which is the coolant
  • the flow direction of the first fluid can be freely set without being limited to the direction parallel to the flow direction of the second fluid. The degree can be improved.
  • the separator according to Application Example 1 has a substantially rectangular planar shape, A first opening that constitutes the first fluid manifold and a second opening that constitutes the second fluid manifold, in the vicinity of two outer edges facing each other across the corrugated portion of the separator. A separator is formed.
  • the electrode utilization factor of the fuel cell can be improved by disposing each manifold in the vicinity of two outer edges facing each other across the corrugated portion of the separator. be able to.
  • a cross-sectional shape of the shallow groove portion is a separator in which a curvature radius or a drawing angle on the downstream side of the flow of the first fluid in the communication channel is larger than a curvature radius or a drawing angle on the upstream side.
  • a cross-sectional shape of the shallow groove portion is a separator in which a curvature radius or a draft angle on the downstream side of the flow of the first fluid in the communication channel is smaller than a curvature radius or a draft angle on the upstream side.
  • the flow of the first fluid is suppressed by suppressing the inflow of the first fluid into the portion close to the second surface side of the first fluid channel, and the pressure of the channel is rectified. An increase in loss can be suppressed.
  • the effect of suppressing corrosion by enhancing the corrosion resistance of a region adjacent to the shallow groove portion in the first groove portion, which is a region where the eluate is likely to accumulate, and the first groove portion, which is an area where the coolant is likely to accumulate.
  • Each of the second groove portions has a plurality of the shallow groove portions, The shallow groove portion of each of the second groove portions is formed at a position aligned with the shallow groove portion of the other adjacent second groove portion, On the first surface side of the corrugated portion, on the downstream side in the flow direction of the first fluid in the communication channel of the deep groove portion, located on the extension of the boundary wall between the deep groove portion and the shallow groove portion.
  • the separator is formed with a floor body located on an extension of the floor surface of the shallow groove portion on the downstream side of the shallow groove portion.
  • the first fluid that has passed through the communication channel is prevented from flowing around and flowing into the downstream region of the deep groove portion in the first fluid channel on the downstream side, Inflow to the portion close to the second surface side is suppressed, and the flow of the first fluid can be rectified to suppress an increase in pressure loss of the flow path.
  • Each of the second groove portions has a plurality of the shallow groove portions, The shallow groove portion of each of the second groove portions is formed at a position aligned with the shallow groove portion of the other adjacent second groove portion, The separator which the spacer which fills a space is arrange
  • the first fluid that has passed through the communication channel is prevented from flowing in and flowing into the downstream region of the deep groove portion in the first fluid channel on the downstream side.
  • the flow of the fluid can be rectified to prevent an increase in pressure loss in the flow path.
  • Each of the second groove portions includes a plurality of the shallow groove portions including the normal shallow groove portion and a middle shallow groove portion deeper than the normal shallow groove portion, The shallow groove portion of each second groove portion is formed at a position aligned with the shallow groove portion of the other adjacent second groove portion, The middle shallow groove part which each said 2nd groove part has is a separator arrange
  • the first fluid that has passed through the communication channel formed at the position of the normal shallow groove portion may flow into the communication channel formed at the position of the downstream shallow shallow groove portion.
  • the flow of the first fluid is suppressed to be excessive turbulent flow because the flow is suppressed and promoted to flow into the first fluid flow path instead. The stagnation of the first fluid can be suppressed.
  • Each of the second groove portions has a plurality of the shallow groove portions, A boundary wall between the deep groove portion in each of the second groove portions and the shallow groove portion adjacent to the deep groove portion on the downstream side of the flow of the second fluid in the second fluid flow path is The separator is inclined so as to be located on the downstream side as it is closer to the front surface side of 2.
  • this separator for a fuel cell when the water accumulated at one end on the boundary wall moves to the downstream side when it moves downstream, it is suppressed from collecting on the other boundary wall on the downstream side. It can suppress more reliably. Moreover, it can suppress that the cross-sectional area of a downstream communication flow path reduces by enlarging a width
  • the separator according to Application Example 1 The corrugated portion is a separator including a plurality of types of shallow groove portions having different depths.
  • the power generation distribution and the temperature distribution in the fuel cell can be made uniform by appropriately arranging a plurality of types of shallow grooves having different depths.
  • Each of the second groove portions has a plurality of the shallow groove portions, A boundary wall between the deep groove portion in each of the second groove portions and the shallow groove portion adjacent to the deep groove portion on the downstream side of the flow of the second fluid in the second fluid flow path is The separator which inclines so that it may be located in the said downstream side so that it is far from the surface side of 2.
  • This fuel cell separator further promotes the retention of water in the portion on the boundary wall, so that it is possible to satisfactorily suppress dry-up during high-temperature operation of the fuel cell, reducing power generation efficiency and durability of the electrolyte membrane. Can be satisfactorily suppressed.
  • Each of the second groove portions has a plurality of the shallow groove portions, A separator, wherein a boundary wall between the deep groove portion and the shallow groove portion in each of the second groove portions has a portion inclined by a predetermined angle with respect to a flow direction of the first fluid in the communication channel.
  • the flow direction of a part of the first fluid is defined as an oblique direction along the inclined portion of the boundary wall between the deep groove portion and the shallow groove portion. Therefore, the path of the first fluid can be set more flexibly.
  • the first fluid that has passed through the communication channel flows into the communication channel in which the position of the shallow groove portion in the diagonal direction on the downstream side is formed.
  • the flow direction of the part can be made oblique, and the path of the first fluid can be set more flexibly.
  • Each of the second groove portions has a plurality of the shallow groove portions, The shallow groove portion of each of the second groove portions is in a direction orthogonal to the flow direction of the first fluid in the communication channel with respect to the position of the shallow groove portion of the other adjacent second groove portion.
  • a separator formed at a position shifted by a predetermined distance.
  • the first fluid that has passed through the communication channel does not travel straight downstream, but passes through the first fluid channel, and the communication is formed in the position of the shallow groove portion in the diagonally downstream direction. Since it flows into the flow path, it is possible to suppress stagnation of the first fluid in the first fluid flow path.
  • Each of the second groove portions has a plurality of the shallow groove portions, The diameter of the deep groove part which the 2nd groove part has is larger than the diameter of the shallow groove part.
  • the volume of the portion adjacent to the deep groove portion of the first fluid flow path formed at the position of the first groove portion can be reduced.
  • the stagnation of the first fluid can be suppressed.
  • the diameter of the deep groove portion which is a portion in contact with the member facing the first surface side at the time of lamination, is large, the lamination load per unit area on the surface of the deep groove portion can be reduced, and the fuel due to concentration of the load It is possible to suppress the occurrence of damage to the battery electrodes and the bias in the power generation distribution.
  • Application Example 20 A fuel cell, A power generator layer including an electrolyte membrane, an anode disposed on one side of the electrolyte membrane, and a cathode disposed on the other side of the electrolyte membrane; A fuel cell comprising: the separator according to application example 1 to application example 19 disposed with the power generation body layer interposed therebetween.
  • a fuel cell comprising: a detection unit that detects an abnormality in the first fluid flow path by detecting that the pressure loss in the first fluid flow path is smaller than a predetermined threshold.
  • Application Example 22 A power generator layer including an electrolyte membrane, an anode disposed on one side of the electrolyte membrane, and a cathode disposed on the other side of the electrolyte membrane, and the power generator layer interposed therebetween
  • a separator according to Application Example 3 arranged, and a method of manufacturing a fuel cell, A step of bringing a coolant into contact with the first surface side of the first groove of the separator; And a step of laminating the separator and the power generation layer after the contacting step.
  • Application Example 23 A fuel cell, A plurality of power generation layers including an electrolyte membrane, an anode disposed on one side of the electrolyte membrane, and a cathode disposed on the other side of the electrolyte membrane; The separator according to Application Example 1 disposed on the anode side of each of the power generation layers; And a flat plate-like second separator disposed on the cathode side of each power generation layer.
  • the pressure loss of the first fluid flow path is determined only by the shape of one separator, it is possible to more easily suppress variations in the pressure loss of the first fluid flow path of each cell. it can. Further, in this fuel cell, since the contact area between the separators is not lost due to the positional deviation at the time of stacking, it is easy to ensure the contact area. In addition, since this fuel cell can suppress variations in surface pressure on the power generation layer, it can prevent the generation of gaps between the layers of the power generation layer, prevent water retention, and reduce concentration polarization. it can. Further, in this fuel cell, it is possible to facilitate the separator processing and reduce the cost.
  • the separator is manufactured by pressing a plate-like member,
  • the thickness of the second separator is a fuel cell, which is thinner than the thickness of the plate member used for manufacturing the separator.
  • the thickness and weight of each cell of the fuel cell can be reduced while ensuring good press formability.
  • Application Example 25 The fuel cell according to Application Example 23 or Application Example 24, and At least in a position with unevenness in the separator, a seal portion that seals between the separator and the second separator that faces the separator without the power generator layer interposed therebetween, and is attached to the separator And a seal part that realizes a seal by being pressed against the second separator.
  • Application Example 26 The fuel cell according to Application Example 25, The fuel cell is manufactured by alternately stacking a first cell including an even number of the power generation layers and a second cell including an odd number of the power generation layers, The seal part is provided in the first cell and is not provided in the second cell before the fuel cell is stacked.
  • a fuel cell is manufactured by alternately laminating the first cell provided with the seal portion and the second cell not provided with the seal portion while ensuring reliable sealing performance.
  • the repairability of the fuel cell can be improved.
  • a fuel cell A plurality of power generation layers including an electrolyte membrane, an anode disposed on one side of the electrolyte membrane, and a cathode disposed on the other side of the electrolyte membrane;
  • the separator according to Application Example 1 disposed on the anode side of each of the power generation layers;
  • a flat plate-like second separator disposed on the cathode side of each of the power generation layers;
  • a first seal portion that seals between the separator and the second separator that faces the separator without the power generator layer interposed therebetween;
  • a second seal portion that seals between the anode side and the cathode side at an end of the power generation layer,
  • At least one of the separator and the power generation layer includes the second fluid passage space and the passage space on the opposite side of the second fluid passage space across the first seal.
  • the tunnel flow path forming part is a fuel cell located on
  • the seal portion does not enter the tunnel flow path and the tunnel flow path is not blocked, and the increase in the number of parts is suppressed, while ensuring both the seal and the flow path for the second fluid. Can be realized.
  • the tunnel flow path forming portion includes a third groove portion having a concave shape on the second surface side formed in the separator,
  • the third groove portion is a fuel cell having a depth smaller than that of the deep groove portion of the second groove portion.
  • a seal portion for sealing between the separators can be disposed on the first surface side of the third groove portion.
  • the tunnel flow path forming portion includes a thin portion in which a surface of the power generation layer facing the separator is a portion where the surface of the power generation layer is recessed from the surface of the other portion of the power generation layer.
  • Application Example 30 The fuel cell according to any one of Application Example 27 to Application Example 29,
  • the separator has a plurality of the tunnel flow path forming portions,
  • the plurality of tunnel flow path forming portions extend so that the tunnel flow path forming portion located at the lowest position in the gravitational direction when the fuel cell is used extends to a position closest to the second fluid flow path space.
  • a fuel cell is formed.
  • the generated water is drawn into the tunnel channel located on the lowermost side in the gravitational direction and is prevented from being drawn into the other tunnel channel, so that the other tunnel channel is opened. Is maintained. Therefore, in this fuel cell, drainage of generated water can be promoted, and all tunnel flow paths can be prevented from being blocked.
  • the present invention can be realized in various modes.
  • a fuel cell separator a fuel cell including a fuel cell separator, a fuel cell manufacturing method, a fuel cell system including a fuel cell, and a fuel cell. It can be realized in the form of a moving body such as an automobile equipped with the system.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of a fuel cell system 10 according to a first embodiment of the present invention.
  • 2 is an explanatory diagram showing a planar configuration of a fuel cell 100.
  • FIG. 2 is an explanatory diagram showing a cross-sectional configuration of a fuel cell 100.
  • FIG. 2 is an explanatory diagram showing a cross-sectional configuration of a fuel cell 100.
  • FIG. 2 is an explanatory diagram showing a cross-sectional configuration of a fuel cell 100.
  • FIG. 4 is a perspective view showing a configuration of a corrugated portion WSP of an anode side separator 310.
  • FIG. It is explanatory drawing which shows the cross-sectional structure of the fuel cell 100 in 2nd Example.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of a fuel cell system 10 according to a first embodiment of the present invention.
  • the fuel cell system 10 includes a fuel cell 100.
  • an end plate 110, an insulating plate 120, a current collecting plate 130, a plurality of single cells 140, a current collecting plate 130, an insulating plate 120, and an end plate 110 are stacked in this order.
  • the fuel cell 100 is supplied with hydrogen as a fuel gas from a hydrogen tank 50 storing high-pressure hydrogen through a shut valve 51, a regulator 52, and a pipe 53. Hydrogen is supplied to each single cell 140 via a fuel gas supply manifold, which will be described later, and is used for power generation in each single cell 140. Hydrogen (anode off gas) that has not been used in each single cell 140 is collected via a fuel gas discharge manifold, which will be described later, and discharged to the outside of the fuel cell 100 via a discharge pipe 54.
  • the fuel cell system 10 may include a recirculation mechanism that recirculates the anode off gas to the supply-side piping 53.
  • the fuel cell 100 is also supplied with air as an oxidant gas via an air pump 60 and a pipe 61.
  • Air is supplied to each single cell 140 via an oxidant gas supply manifold, which will be described later, and is used for power generation in each single cell 140.
  • Air (cathode off-gas) that has not been used in each single cell 140 is collected via an oxidant gas discharge manifold, which will be described later, and discharged to the outside of the fuel cell 100 via a pipe 63.
  • Fuel gas and oxidant gas are also referred to as reaction gases.
  • the cooling medium cooled by the radiator 70 is supplied to the fuel cell 100 through the water pump 71 and the pipe 72 in order to cool each unit cell 140 of the fuel cell 100.
  • the cooling medium is guided to each single cell 140 via a cooling medium supply manifold described later, and cools each single cell 140.
  • the cooling medium after cooling each single cell 140 is collected via a cooling medium discharge manifold, which will be described later, and circulates to the radiator 70 via a pipe 73.
  • the cooling medium for example, water, antifreeze water such as ethylene glycol, air, or the like is used.
  • a liquid cooling medium (cooling liquid) is used.
  • the fuel cell system 10 also includes a control unit 80.
  • the control unit 80 is a computer that includes a CPU, a memory, and the like (not shown).
  • the control unit 80 receives signals from a temperature sensor, a pressure sensor, a voltmeter, and the like arranged in each unit of the fuel cell system 10 and controls the entire fuel cell system 10 based on the received signal.
  • FIG. 2 is an explanatory diagram showing a planar configuration of the fuel cell 100.
  • 3 to 5 are explanatory views showing a cross-sectional configuration of the fuel cell 100.
  • FIG. 3 shows a partial cross section of the fuel cell 100 at the position A1-A1 in FIG. 2
  • FIG. 4 shows a partial cross section of the fuel cell 100 at the position B1-B1 in FIG.
  • FIG. 5 shows a partial cross section of the fuel cell 100 at the position C1-C1 in FIG.
  • a fuel gas supply manifold 162 that distributes hydrogen as fuel gas supplied to the fuel cell 100 to each single cell 140, and an oxidation supplied to the fuel cell 100
  • An oxidant gas supply manifold 152 that distributes air as an agent gas to each unit cell 140
  • a fuel gas discharge manifold 164 that collects fuel gas that has not been used in each unit cell 140, and discharges the fuel gas to the outside of the fuel cell 100
  • An oxidant gas discharge manifold 154 that collects oxidant gas that has not been used in each unit cell 140 and discharges the oxidant gas to the outside of the fuel cell 100
  • a coolant that distributes the coolant supplied to the fuel cell 100 to each unit cell 140.
  • Each manifold 174 is a flow channel having a shape extending in a direction substantially parallel to the stacking direction of the fuel cells 100 (that is, a direction substantially perpendicular to the surface direction of the single cell 140).
  • the planar shape of the unit cell 140 is substantially rectangular, and each manifold is disposed in the vicinity of the outer edge in the plane of the unit cell 140.
  • the positions of the fuel gas supply manifold 162 and the coolant supply manifold 172 are positions adjacent to one short side of the outer edges of the unit cell 140, and the fuel gas discharge manifold 164 and the coolant discharge manifold
  • the position 174 is a position adjacent to the other short side of the outer edges of the unit cell 140.
  • the positional relationship between the fuel gas supply manifold 162 and the coolant supply manifold 172 along the short side direction of the outer edge of the unit cell 140 is opposite to the positional relationship between the fuel gas discharge manifold 164 and the coolant discharge manifold 174. It has become.
  • the position of the oxidant gas supply manifold 152 is a position adjacent to the entire long side (the long side far from the fuel gas supply manifold 162) of the outer edges of the unit cell 140, and the oxidant gas.
  • the position of the discharge manifold 154 is a position adjacent to the entirety of the other long side (the long side closer to the fuel gas supply manifold 162) of the outer edges of the single cell 140.
  • the direction in which the single cells 140 are stacked in the fuel cell 100 is referred to as “stacking direction”, and the direction parallel to the main surface of the single cells 140 (ie, the direction substantially perpendicular to the stacking direction) is “ It shall be called “surface direction”.
  • surface direction a direction parallel to the long side of the single cell 140 is referred to as an X direction, and a direction parallel to the short side of the single cell 140 (a direction substantially perpendicular to the X direction) is referred to as a Y direction.
  • the unit cell 140 of the fuel cell 100 includes a membrane electrode assembly in which an anode (anode electrode layer) 214 and a cathode (cathode electrode layer) 215 are disposed on each surface of the electrolyte membrane 212 (see FIG.
  • the power generator layer 200 including the (MEA) 210 is sandwiched between a pair of separators (cathode side separator 320 and anode side separator 310).
  • the membrane electrode assembly 210 further includes an anode side diffusion layer 216 disposed outside the anode 214 and a cathode side diffusion layer 217 disposed outside the cathode 215.
  • the power generation body layer 200 further includes a cathode-side porous flow path layer 230 disposed outside the cathode-side diffusion layer 217 of the membrane electrode assembly 210.
  • the electrolyte membrane 212 is a solid polymer membrane formed of a fluorine resin material or a hydrocarbon resin material, and has good proton conductivity in a wet state.
  • the cathode 215 and the anode 214 include, for example, platinum as a catalyst or an alloy made of platinum and another metal.
  • the cathode side diffusion layer 217 and the anode side diffusion layer 216 are formed of, for example, carbon cloth woven with carbon fiber yarns, carbon paper, or carbon felt.
  • the cathode-side porous channel layer 230 is formed of a porous material having gas diffusibility and conductivity, such as a metal porous material (for example, expanded metal) or a carbon porous material.
  • the cathode-side porous channel layer 230 Since the cathode-side porous channel layer 230 has a higher porosity than the cathode-side diffusion layer 217, the cathode-side porous channel layer 230 has a low gas flow resistance inside and functions as an oxidant gas channel through which the oxidant gas flows.
  • the cathode side separator 320 and the anode side separator 310 are manufactured by processing a metal plate. Specifically, the cathode-side separator 320 is manufactured by subjecting a metal plate to a perforating process for forming openings and the like constituting each manifold. As shown in FIGS. 3 to 5, the cathode separator 320 has a flat plate shape. On the other hand, the anode-side separator 310 is manufactured by subjecting a metal plate to a punching process for forming openings and the like constituting each manifold, and a pressing process for bending the metal plate to provide a corrugated cross-sectional portion. As shown in FIGS.
  • the anode side separator 310 has a corrugated portion WSP having a corrugated cross-sectional shape.
  • FIG. 2 the position of the corrugated portion WSP of the anode separator 310 in the plane of the single cell 140 is shown by hatching.
  • FIG. 6 is a perspective view showing the configuration of the corrugated portion WSP of the anode side separator 310.
  • the upper side is the side facing the cathode separator 320 of another adjacent unit cell 140, and the lower side is the side facing the power generation body layer 200.
  • the corrugated portion WSP of the anode side separator 310 is a first groove portion 316 that is concave on the surface side facing the cathode side separator 320 (hereinafter referred to as “first surface side”).
  • a second groove portion 315 that is concave on the surface side facing the power generation body layer 200 has a corrugated cross-sectional shape that is alternately arranged along the X direction. is doing.
  • the planar shape of each first groove 316 and each second groove 315 is a shape extending along the Y direction.
  • the corrugated portion WSP of the anode-side separator 310 is disposed on the first surface side of the first groove portion 316 (the surface side facing the cathode-side separator 320).
  • a space CS is formed.
  • the coolant channel space CS is a space surrounded by the first groove portion 316 of the corrugated portion WSP of the anode side separator 310 and the surface of the cathode side separator 320.
  • the corrugated portion WSP of the anode separator 310 forms a flow path space AS for fuel gas on the second surface side of the second groove portion 315 (surface side facing the power generation body layer 200).
  • the fuel gas passage space AS is a space surrounded by the second groove portion 315 of the corrugated portion WSP of the anode-side separator 310 and the surface of the power generation layer 200. Since the first groove 316 and the second groove 315 have a shape extending along the Y direction, the coolant channel space CS and the fuel gas channel space AS are also spaces extending along the Y direction.
  • each second groove portion 315 of the corrugated portion WSP of the anode-side separator 310 has a shallow groove portion 314.
  • the shallow groove portion 314 has a depth d2 viewed from the second surface side (surface side facing the power generation body layer 200) shallower than the depth d1 of another portion (hereinafter referred to as “deep groove portion 313”). It is.
  • the depth of the second groove portion 315 refers to the position of the outermost portion on the second surface side of the anode separator 310 (that is, the portion in contact with the power generation layer 200).
  • the depth of the fuel gas channel space AS formed on the second surface side of the second groove portion 315 is deep at the position of the deep groove portion 313 and shallow at the position of the shallow groove portion 314.
  • the anode side separator 310 contacts the surface of the cathode side separator 320 at each deep groove portion 313 and does not contact at the shallow groove portion 314 position.
  • the two coolant flows adjacent to each other between the surface of the cathode-side separator 320 and the surface of the cathode-side separator 320 on the first surface side of the corrugated portion WSP of the anode-side separator 310.
  • a communication channel CP that communicates with the path space CS is formed.
  • a plurality of shallow groove portions 314 are formed in each second groove portion 315.
  • the shallow groove part 314 of each 2nd groove part 315 is formed in the position along with the shallow groove part 314 of the other 2nd groove part 315 adjacent along the X direction.
  • each first groove 316 of the anode-side separator 310 has a constant depth as viewed from the first surface side (the surface side facing the cathode-side separator 320).
  • the depth of the first groove 316 refers to the position of the first groove 316 from the position of the outermost part on the first surface side of the corrugated part WSP of the anode side separator 310 (that is, the part in contact with the cathode side separator 320).
  • the depth of the coolant channel space CS formed on the first surface side of the first groove 316 is constant.
  • the anode separator 310 is in contact with the surface of the power generation layer 200 at the position of the entire surface of each first groove 316.
  • the anode-side separator 310 has a fourth groove 312 having a concave shape on the first surface side at positions adjacent to both ends along the Y direction of the corrugated portion WSP.
  • the fourth groove portion 312 is formed continuously in the X direction so as to be adjacent over the entire corrugated portion WSP.
  • the depth of the fourth groove 312 is the same as the depth of the deep groove 313 of the second groove 315. Therefore, in the fuel cell 100 in which the plurality of single cells 140 are stacked, the anode side separator 310 is in contact with the surface of the cathode side separator 320 even at the position of the fourth groove 312.
  • the fourth groove portion 312 has a fuel gas common rail ACR, which is a continuous flow path space for allowing fuel gas to flow along the X direction on the second surface side (surface side facing the power generation body layer 200).
  • ACR is a continuous flow path space for allowing fuel gas to flow along the X direction on the second surface side (surface side facing the power generation body layer 200).
  • FIG. 2 the position of the fuel gas common rail ACR in the plane of the unit cell 140 is shown by hatching.
  • the fuel gas common rail ACR communicates with the fuel gas channel space AS formed by each second groove 315 in the corrugated portion WSP.
  • a seal portion (gasket) 420 for preventing a cross leak between the cathode side and the anode side is arranged on the outer edge portion of the power generation layer 200 of the single cell 140.
  • the seal portion 420 is formed by injection molding using a seal material such as silicon rubber, butyl rubber, or fluorine rubber, for example.
  • the anode-side separator 310 includes a seal portion 430 (FIG. 3) for forming a seal line SL surrounding the oxidant gas supply manifold 152 and the oxidant gas discharge manifold 154. A region where the coolant flows between the seal portion 450 (FIG.
  • Each seal portion has a lip portion (432, 442, 452) having a convex cross-sectional shape, and when each single cell 140 is stacked, each lip portion is compressed by the cathode-side separator 320 facing each other.
  • the seal line SL is formed by being deformed and closely contacting the surface of the cathode side separator 320.
  • a concave shape is formed on the second surface side (surface side facing the power generation body layer 200).
  • the third groove portion 317 is formed.
  • the depth of the third groove 317 is shallower than the deep groove 313 of the fourth groove 312 or the second groove 315.
  • the depth of the third groove 317 is the first surface of the third groove 317 from the position of the outermost part on the second surface side of the anode-side separator 310 (that is, the part in contact with the power generator layer 200).
  • the third groove 317 has one end continuous with the fourth groove 312 that forms the fuel gas common rail ACR, and an opening 318 formed at the other end.
  • the third groove portion 317 configured in this way passes under the seal line SL (the power generation body layer 200 side) by the seal portions 440 and 450 and communicates with the fuel gas flow path space AS, and the fuel gas common rail ACR. And a fuel gas supply manifold 162 and a tunnel passage TR that communicates between the fuel gas common rail ACR and the fuel gas discharge manifold 164 are formed.
  • the entire third groove portion 317 for forming the tunnel channel TR is located on the inner side in the plane direction with respect to the seal portion 420 arranged at the outer edge portion of the power generation body layer 200. Therefore, the tunnel channel TR does not face the seal part 420 throughout, but faces the anode side diffusion layer 216 of the power generation body layer 200.
  • a plurality of tunnel channels TR extending in the X direction are formed side by side along the Y direction by the third groove portion 317.
  • the hydrogen as the fuel gas supplied to the fuel gas supply manifold 162 passes through the upstream side (supply side) tunnel channel TR from the opening 318, and the upstream side fuel gas.
  • the fuel gas common rail ACR is guided along the X direction and diffuses along the X direction, and enters the fuel gas channel space AS communicating with the fuel gas common rail ACR. It flows in the Y direction.
  • hydrogen is used for power generation in the membrane electrode assembly 210.
  • Hydrogen that has not been used for power generation enters the fuel gas common rail ACR from the fuel gas channel space AS and flows in the fuel gas common rail ACR, and flows in the fuel gas common rail ACR.
  • TR is reached and discharged from the opening 318 of the tunnel flow path TR to the fuel gas discharge manifold 164.
  • the air as the oxidant gas supplied to the oxidant gas supply manifold 152 is upstream (supply) provided at a position facing the power generation body layer 200 of the cathode side separator 320.
  • Side) opening 322 enters the inside of the cathode-side porous channel layer 230 and flows while diffusing in the cathode-side porous channel layer 230.
  • the air is used for power generation in the membrane electrode assembly 210.
  • Air that has not been used for power generation is discharged to the oxidant gas discharge manifold 154 through a downstream (discharge side) opening 322 provided at a position facing the power generation body layer 200 of the cathode separator 320.
  • the cooling liquid supplied to the cooling liquid supply manifold 172 is formed on the first surface side of the anode side separator 310 (the surface side facing the cathode side separator 320).
  • the single cell 140 is cooled while flowing vertically and horizontally through the liquid flow path space CS and the communication flow path CP (FIGS. 3, 4 and 6), and discharged to the cooling liquid discharge manifold 174.
  • the anode-side separator 310 includes the first groove portion 316 having a concave shape on the first surface side and the second groove portion 315 having a concave shape on the second surface side.
  • a corrugated portion WSP having a corrugated cross-sectional shape arranged alternately and repeatedly is formed, a coolant channel space CS is formed on the first surface side of the first groove portion 316, and the second groove portion 315 has a second groove portion 315.
  • a fuel gas passage space AS is formed on the surface side.
  • Each of the second groove portions 315 has a shallow groove portion 314 whose depth viewed from the second surface side is shallower than the other portion (deep groove portion 313), and therefore, on the first surface side at the position of the shallow groove portion 314. Then, a communication channel CP is formed which communicates the two adjacent coolant channel spaces CS with the shallow groove portion 314 interposed therebetween. Therefore, in this embodiment, the coolant channel space CS and the fuel gas channel space AS can be formed by only one component, the anode side separator 310, and the coolant channel space CS and the communication flow can be formed.
  • the flow direction of the coolant can be freely set without being limited to the direction parallel to the flow direction of the fuel gas, so the fluid path can be set flexibly while suppressing an increase in the number of parts. can do.
  • the degree of freedom of arrangement of each manifold can be improved, the degree of freedom of thermal design in the single cell 140 can be improved, and the weight of the fuel cell 100 can be reduced. , Miniaturization, and cost reduction can be realized.
  • the anode side separator 310 has a corrugated portion WSP having a corrugated cross section, but the cathode side separator 320 has a flat plate shape. Therefore, in the fuel cell 100 of the present embodiment, the cathode-side separator 320 has the following advantages as compared with the case where the cathode-side separator 320 also has a corrugated portion WSP having a corrugated cross section. That is, in the fuel cell 100 of the present embodiment, the pressure loss of the coolant flow path is determined only by the shape of the anode separator 310, and therefore the variation in the pressure loss of the coolant flow path of each single cell 140 is further increased. It can be easily suppressed.
  • the contact area between the separators is not lost due to the displacement in the stacking, so that the contact area can be easily ensured.
  • variation in the surface pressure on the membrane electrode assembly 210 can be suppressed, so that generation of a gap between the diffusion layer and the catalyst layer is prevented and water is prevented from staying.
  • concentration polarization can be reduced.
  • the thickness of the metal plate used for manufacturing the cathode side separator 320 is thinner than the thickness of the metal plate used for manufacturing the anode side separator 310. Since the anode separator 310 is manufactured by pressing, the limit of thinning is determined by the press formability, and the thickness of the metal plate to be used cannot be reduced to the limit of strength. On the other hand, since the cathode-side separator 320 has a flat plate shape, a thinner metal plate can be used.
  • the single cell 140 is secured while ensuring good press formability. Can be reduced in thickness and weight.
  • the entire third groove portion 317 for forming the tunnel channel TR is located on the inner side along the surface direction with respect to the seal portion 420 disposed at the outer edge portion of the power generation layer 200. Therefore, the seal part 420 does not enter the tunnel channel TR and the tunnel channel TR is not blocked, and the increase in the number of parts is suppressed, and both the seal and the reaction gas channel are ensured. can do.
  • the depth of the third groove 317 for forming the tunnel channel TR is shallower than the deep groove 313 of the second groove 315, and thus the cathode-side separator 320 of the third groove 317.
  • a seal portion 440 between the anode side separator 310 and the cathode side separator 320 can be disposed to surround the region in which the coolant flows.
  • the fuel gas flow direction and the oxidant gas flow direction are opposite to each other in the region facing the corrugated portion WSP of each single cell 140.
  • water water vapor generated by an electrochemical reaction on the cathode side flows from the downstream region along the oxidant gas flow direction on the cathode side to the fuel gas flow direction on the anode side. Further, the water vapor moves to the anode side by the flow of the fuel gas, and further, the drying of the fuel cell 100 as a whole can be suppressed, and the decrease in the power generation performance can be suppressed.
  • the oxidant gas flow path is formed by the cathode-side porous flow path layer 230 having a larger pressure loss than the fuel gas flow path space AS formed by the second groove portion 315.
  • the oxidant gas flow direction is the direction along the short side direction of the single cell 140, good gas distribution along the surface direction of the single cell 140 can be realized.
  • each single cell 140 of the fuel cell 100 of the present embodiment is manufactured (including reassembly after disassembly), before the anode side separator 310 and the power generation layer 200 are stacked, for example, a syringe or a syringe is used.
  • a syringe or a syringe is used.
  • Lamination is performed such that the injected coolant does not flow down.
  • the manufactured fuel cell 100 it is possible to suppress the accumulation of air in the space on the first surface side of the first groove portion 316, to suppress the destabilization of the coolant temperature and the flow rate due to the air accumulation, and the fuel cell It is suppressed that the temperature distribution of 100 becomes non-uniform so that dry-up or flooding is locally generated or the durability of the electrolyte membrane 212 is lowered.
  • stacking should just be a process of making a cooling liquid contact the 1st surface side of the 1st groove part 316, and is the process of immersing the anode side separator 310 whole in the cooling liquid put into the container. There may be.
  • FIG. 7 is an explanatory diagram showing a cross-sectional configuration of the fuel cell 100 according to the second embodiment.
  • FIG. 7 shows a partial cross section of the fuel cell 100 at the position B1-B1 in FIG.
  • the fuel cell 100 of the seventh embodiment is different from the fuel cell 100 of the first embodiment (see FIG. 4) in the configuration of the tunnel flow path TR, and the other points are different from the fuel cell 100 of the first embodiment.
  • the tunnel flow path TR is a flow path that passes under the seal line SL (the power generator layer 200 side) by the seal portions 440 and 450.
  • the tunnel passage TR of the second embodiment communicates between the fuel gas supply manifold 162 and the fuel gas common rail ACR and between the fuel gas discharge manifold 164 and the fuel gas common rail ACR. This is a flow path.
  • the tunnel channel TR is formed by providing the anode-side separator 310 with the third groove 317.
  • the anode-side diffusion layer 216 has a thin surface in which the surface facing the anode-side separator 310 recedes from the surface of the other part.
  • the thin portion TP extends along the X direction from a position facing the fuel gas common rail ACR to a position outside the seal portions 440 and 450 (side closer to the fuel gas supply manifold 162) through the bottom of the seal portions 440 and 450. It is formed continuously and communicates with an opening 318 formed in the anode separator 310 at an outer position. Note that a plurality of tunnel channels TR are formed side by side along the Y direction, as in the first embodiment shown in FIG.
  • the fuel gas common rail ACR diffuses in the fuel gas common rail ACR along the X direction, and enters the fuel gas passage space AS communicated with the fuel gas common rail ACR.
  • the fuel gas passage space AS flows along the Y direction.
  • hydrogen is used for power generation in the membrane electrode assembly 210.
  • Hydrogen that has not been used for power generation enters the fuel gas common rail ACR from the fuel gas channel space AS and flows in the fuel gas common rail ACR, and flows in the fuel gas common rail ACR.
  • TR is reached and discharged from the opening 318 of the tunnel flow path TR to the fuel gas discharge manifold 164.
  • the tunnel channel TR is formed by providing the anode-side diffusion layer 216 with the thin portion TP. Therefore, even in the position where the tunnel channel TR is formed. Since there is no need to provide a convex portion on the first surface side of the anode side separator 310 (the surface side facing the cathode side separator 320), the height of the seal portions 440 and 450 at the position of the tunnel channel TR is reduced. Can be suppressed, and good sealing properties can be secured. Further, in the fuel cell 100 of the second embodiment, as in the first embodiment, the seal portion 420 does not enter the tunnel channel TR and the tunnel channel TR is not blocked, and the increase in the number of parts is suppressed. At the same time, it is possible to realize both the seal and the securing of the reaction gas flow path.
  • the anode-side separator 310 is provided with a third groove 317, and the anode-side diffusion layer 216 facing the third groove 317 is provided with a thin portion TP.
  • the tunnel channel TR may be formed. In this way, the tunnel flow path TR is suppressed while suppressing both the depth of the third groove 317 and the thickness reduction amount in the thin part TP of the anode-side diffusion layer 216 (that is, the difference between the thickness of other parts).
  • the height of the anode-side diffusion layer 216 can be ensured, the increase in the overall thickness of the anode-side diffusion layer 216 and the suppression of the decrease in the strength and the suppression of the decrease in the height of the seal portions 440 and 450 can be achieved. .
  • FIG. 8 is an explanatory diagram showing a configuration in the vicinity of the tunnel flow path TR in the fuel cell 100 of the third embodiment.
  • FIG. 8 shows the tunnel channel TR and the plane of the fuel gas common rail ACR communicating with the tunnel channel TR and a cross section at the positions of A2-A2 and B2-B2 on the plane.
  • the fuel cell 100 of the third embodiment is different from the fuel cell 100 of the first embodiment in the configuration of the tunnel flow path TR, and the other points are the same as the fuel cell 100 of the first embodiment.
  • Tunnel channel TR passes under seal line SL (power generation body layer 200 side) by seal portions 440 and 450, and between fuel gas supply manifold 162 and fuel gas common rail ACR and between fuel gas discharge manifold 164 and fuel gas. This is a flow path communicating with the common rail ACR.
  • the three tunnel channels TR are arranged in the Y direction by the three third grooves 317. Is formed.
  • the fuel cell 100 of the third embodiment is arranged and used so that the third groove 317 shown at the bottom of the three third grooves 317 shown in FIG.
  • the third groove 317 shown at the bottom in FIG. 8 is formed so as to extend to a position closest to the fuel gas common rail ACR communicating with the fuel gas passage space AS (right side in FIG. 8). Has been.
  • the generated water generated by power generation enters the fuel gas common rail ACR.
  • the generated water that has entered the fuel gas common rail ACR moves along the fuel gas flow.
  • the produced water moves to the boundary with the tunnel flow path TR in the fuel gas common rail ACR, and is brought into the tunnel flow path TR by capillary action when it contacts the tunnel flow path TR.
  • the tunnel channel TR formed by the third groove portion 317 located on the lowermost side in the gravity direction extends to a position closest to the fuel gas common rail ACR, the generated water is located on the lowermost side in the gravity direction. It is drawn into the tunnel channel TR located at.
  • the generated water is suppressed from being drawn into the other tunnel channel TR, the other tunnel channel TR is not blocked by the generated water and is kept open.
  • FIG. 9 is an explanatory diagram showing a configuration in the vicinity of the tunnel flow path TR in a modification of the third embodiment.
  • FIG. 9 schematically shows the positional relationship near the boundary between the fuel gas common rail ACR and the tunnel flow path TR.
  • the upper direction in FIG. 9 is the upper side in the direction of gravity
  • the lower direction in FIG. 9 is the lower side in the direction of gravity.
  • the length of only the tunnel channel TR positioned at the lowermost side in the gravitational direction is set to be longer than the length of the other tunnel channel TR, whereby the tunnel positioned at the lowermost side in the gravitational direction.
  • the flow path TR may be extended to a position closest to the fuel gas common rail ACR. Alternatively, as shown in FIG.
  • the lengths of all the tunnel channels TR are substantially the same, but the tunnel channels positioned at the lowest position in the gravitational direction are shifted by shifting the arrangement along the X direction.
  • TR may be extended to a position closest to the fuel gas common rail ACR.
  • FIG. 9 (c) by increasing the length of each tunnel channel TR toward the tunnel channel TR located on the lower side in the gravitational direction, the tunnel channel TR located on the lowermost side in the gravitational direction. May be extended to a position closest to the fuel gas common rail ACR.
  • the fuel gas in each tunnel channel TR is used.
  • a configuration may be adopted in which the position of the boundary with the common rail ACR is substantially the same.
  • FIG. 8 the case where the tunnel channel TR is formed by providing the third groove portion 317 in the anode side separator 310 has been described. However, as in the second embodiment (FIG. 7), the anode side diffusion layer 216 is formed.
  • the tunnel channel TR is formed by providing the thin part TP
  • the tunnel channel TR formed by the thin part TP located on the lowermost side in the gravitational direction is positioned closest to the fuel gas common rail ACR. It is possible to prevent all the tunnel channels TR from being blocked by extending to the maximum.
  • FIG. 10 is an explanatory diagram showing a planar configuration of the fuel cell 100 according to the fourth embodiment.
  • 11 and 12 are explanatory views showing a cross-sectional configuration of the fuel cell 100 in the fourth embodiment.
  • 11 shows a partial cross section of the fuel cell 100 at the position A1-A1 in FIG. 10
  • FIG. 12 shows a partial cross section of the fuel cell 100 at the position B1-B1 in FIG.
  • the fuel cell 100 of the fourth embodiment is different from the fuel cell 100 of the first embodiment in terms of the relationship between the tunnel flow path TR and the fuel gas common rail ACR, and the other points are the fuel cells of the first embodiment. 100.
  • the seal portion 440 for forming the seal line SL surrounding the region in which the coolant flows is provided inside rather than outside the fuel gas common rail ACR.
  • the inside of the fuel gas common rail ACR means the downstream side of the fuel gas common rail ACR with respect to the supply side (upstream side) fuel gas common rail ACR, and the exhaust side (downstream side) fuel gas common rail ACR.
  • ACR it means the upstream side of the fuel gas common rail ACR.
  • a seal portion 460 surrounding the fuel gas supply manifold 162 and the supply side fuel gas common rail ACR, and a seal portion 460 surrounding the fuel gas discharge manifold 164 and the discharge side fuel gas common rail ACR are arranged.
  • a third groove 317 is provided between each fuel gas common rail ACR and the corrugated portion WSP, so that the power generator is under the seal line SL by the seal portions 450 and 460.
  • a tunnel flow path TR is formed to communicate between the fuel gas common rail ACR and the fuel gas flow path space AS through the layer 200 side.
  • the tunnel channel TR is formed at a plurality of positions along the extending direction of the fuel gas common rail ACR.
  • hydrogen as fuel gas supplied to the fuel gas supply manifold 162 is guided into the fuel gas common rail ACR on the supply side (upstream side), and the fuel gas common rail ACR Is diffused along the X direction, enters the fuel gas channel space AS through the tunnel channel TR, and flows in the fuel gas channel space AS along the Y direction. At this time, hydrogen is used for power generation in the membrane electrode assembly 210. Hydrogen that has not been used for power generation enters the fuel gas common rail ACR from the fuel gas passage space AS through the tunnel passage TR and flows into the fuel gas common rail ACR. To the fuel gas discharge manifold 164.
  • the seal portion 440 for forming the seal line SL surrounding the region in which the coolant flows is disposed inside the fuel gas common rail ACR, and the tunnel Since the flow channel TR is also formed inside the fuel gas common rail ACR, the flow channel TR is compared with the fuel cell 100 of the first embodiment in which the tunnel flow channel TR is formed outside the fuel gas common rail ACR. Pressure loss can be reduced.
  • another common rail may be provided further inside the tunnel channel TR formed inside the fuel gas common rail ACR. In this way, the fuel gas distribution can be further improved.
  • another tunnel channel TR may be provided inside the fuel gas common rail ACR, as in the fourth embodiment.
  • FIG. 13 is an explanatory diagram showing a cross-sectional configuration of the anode-side separator 310 of the fuel cell 100 according to the fifth embodiment.
  • FIG. 13 shows a cross section along the X direction passing through the position of the shallow groove portion 314 (see FIGS. 4 and 6) of the anode-side separator 310.
  • FIG. 13 shows a communication channel CP formed between the shallow groove portion 314 of the anode side separator 310 and the cathode side separator 320, and a coolant formed between the first groove portion 316 and the cathode side separator 320.
  • the flow direction of the cooling liquid in the uneven cooling liquid flow path constituted by the flow path space CS is indicated by an arrow.
  • the left side of the figure is the upstream side
  • the right side of the figure is the downstream side.
  • the fuel cell 100 of the fifth embodiment is different from the fuel cell 100 of the first embodiment in the shape of the shallow groove portion 314 of the anode side separator 310, and the other points are the same as the fuel cell 100 of the first embodiment. It is.
  • the cross-sectional shape of the shallow groove portion 314 is such that the curvature radius Ra on the downstream side of the coolant flow in the communication channel CP is larger than the curvature radius Rb on the upstream side. .
  • the anode separator 310 having such a shallow groove portion 314 having a cross-sectional shape can be manufactured by pressing a metal plate.
  • the anode-side separator 310 may be manufactured by cutting out a metal plate or a resin carbon plate or etching the metal plate.
  • the anode separator 310 may be manufactured by resin carbon injection molding.
  • the coolant that has passed through the communication channel CP is transferred to the cathode separator 320 in the downstream coolant channel space CS. Instead of passing straight through the portion on the near side (the upper portion in the figure), it flows into the portion near the power generator layer 200 (the anode side diffusion layer 216) (the lower portion in the figure). Is promoted. However, if the curvature radius Ra on the downstream side of the coolant flow in the communication channel CP is simply increased, the cross-sectional area of the fuel gas channel space AS formed on the power generator layer 200 side of the shallow groove portion 314 is reduced.
  • the cross-sectional shape of the shallow groove portion 314 is made such that the curvature radius Ra on the downstream side of the coolant flow in the communication channel CP is larger than the curvature radius Rb on the upstream side. It is possible to suppress the stagnation of the cooling liquid in the cooling liquid channel space CS and suppress the cooling performance of the fuel cell 100 from being lowered while suppressing the reduction of the cross-sectional area of the flow channel space AS.
  • the downstream curvature radius Ra is preferably larger than 0.5
  • the upstream curvature radius Rb is preferably smaller than 0.1.
  • FIG. 14 is an explanatory diagram showing a cross-sectional configuration of the anode separator 310 of the fuel cell 100 according to a modification of the fifth embodiment.
  • the cross-sectional shape of the shallow groove portion 314 is such that the drawing angle ⁇ B on the downstream side of the coolant flow in the communication channel CP is larger than the drawing angle ⁇ A on the upstream side. It has become.
  • the drawing angle is an angle formed between the center line of the wall of the shallow groove portion 314 that forms the boundary between the communication channel CP and the coolant channel space CS and the vertical direction.
  • the downstream drawing angle ⁇ B of the cooling fluid flow in the communication channel CP is made larger than the upstream drawing angle ⁇ A in this way, similarly, the cooling fluid that has passed through the communication channel CP becomes the downstream cooling fluid channel.
  • the downstream draft angle ⁇ B is preferably larger than 45 degrees
  • the upstream draft angle ⁇ A is preferably smaller than 30 degrees.
  • FIG. 15 is an explanatory diagram showing a cross-sectional configuration of the anode-side separator 310 of the fuel cell 100 according to the sixth embodiment.
  • FIG. 15 shows a cross section along the X direction passing through the position of the shallow groove portion 314 (see FIGS. 4 and 6) of the anode-side separator 310.
  • FIG. 15 shows a communication channel CP formed between the shallow groove portion 314 of the anode side separator 310 and the cathode side separator 320, and a coolant formed between the first groove portion 316 and the cathode side separator 320.
  • the flow direction of the cooling liquid in the uneven cooling liquid flow path constituted by the flow path space CS is indicated by an arrow.
  • the left side of the figure is the upstream side
  • the right side of the figure is the downstream side.
  • the fuel cell 100 of the sixth embodiment differs from the fuel cell 100 of the fifth embodiment shown in FIG. 13 in the shape of the shallow groove portion 314 of the anode side separator 310, and the other points are the same as those of the fifth embodiment. Similar to the fuel cell 100.
  • the cross-sectional shape of the shallow groove portion 314 is such that the curvature radius Ra on the downstream side of the coolant flow in the communication channel CP is smaller than the curvature radius Rb on the upstream side. .
  • the curvature radius Ra on the downstream side of the coolant flow in the communication channel CP is reduced in this way, the coolant that has passed through the communication channel CP passes through the power generator layer 200 ( In the anode side diffusion layer 216) is suppressed from flowing into the portion (the lower portion in the figure), and the flow of the coolant is rectified.
  • the coolant flows into the portion of the coolant flow path space CS closer to the power generator layer 200 the flow of the coolant becomes turbulent, increasing the pressure loss of the flow path, and the load of the water pump 71 is reduced. Increases fuel consumption.
  • the cross-sectional shape of the shallow groove portion 314 is formed such that the curvature radius Ra on the downstream side of the coolant flow in the communication channel CP is smaller than the curvature radius Rb on the upstream side. It is possible to suppress the inflow of the cooling liquid into the portion of the flow path space CS closer to the power generation body layer 200 and rectify the flow of the cooling liquid to suppress an increase in the pressure loss of the flow path.
  • the downstream radius of curvature Ra is preferably smaller than 0.1
  • the upstream radius of curvature Rb is preferably larger than 0.5.
  • FIG. 16 is an explanatory diagram showing a cross-sectional configuration of the anode separator 310 of the fuel cell 100 in a modification of the sixth embodiment.
  • the cross-sectional shape of the shallow groove portion 314 is such that the downstream draft angle ⁇ B of the coolant flow in the communication channel CP is smaller than the upstream draft angle ⁇ A. It has become.
  • FIG. 17 is an explanatory diagram showing the configuration of the anode separator 310 of the fuel cell 100 in the seventh embodiment.
  • the fuel cell 100 of the seventh embodiment is the fuel cell of the first embodiment in that a predetermined surface treatment is applied to the first surface of the anode side separator 310 (the surface on the side facing the cathode side separator 320).
  • the other points are the same as the fuel cell 100 of the first embodiment.
  • the anode separator 310 when the anode separator 310 is manufactured, honing is performed on the entire first surface of the corrugated portion WSP as a hydrophilic treatment, and immersion plating is further performed on the entire first surface. After the plating process, the anode separator 310 is dried with the first surface facing up, whereby the plating solution flows into the first groove 316 and the plating layer becomes thick. Next, a water repellent such as Teflon (Teflon is a registered trademark) resin is sprayed on the region S1 of the first groove 316 adjacent to the shallow groove 314 to increase the water repellency in the region S1.
  • Teflon Teflon is a registered trademark
  • the anode-side separator 310 manufactured in this way has high corrosion resistance and water repellency in the region S1 adjacent to the shallow groove portion 314 in the first groove portion 316 on the first surface side of the corrugated portion WSP.
  • the surface region S2 has high hydrophilicity.
  • the region S1 adjacent to the shallow groove portion 314 in the first groove portion 316 is a place where the eluate from the components of the fuel cell system 10 tends to accumulate, but in the anode side separator 310 of the seventh embodiment, the region S1 has a high corrosion resistance. Therefore, corrosion of the anode side separator 310 can be suppressed. Further, the communication channel CP formed by the shallow groove portion 314 is relatively low in height and easily increases in pressure loss. However, in the anode-side separator 310 of the seventh embodiment, the surface region S2 of the shallow groove portion 314 is highly hydrophilic. Therefore, an increase in pressure loss can be suppressed by reducing the pipe friction coefficient.
  • the region S1 adjacent to the shallow groove portion 314 in the first groove portion 316 is a portion where the coolant is easily accumulated, and the coolant accumulated when the single cell 140 is disassembled due to repair or the like spills out, thereby reducing workability.
  • the region S1 has high water repellency, so that the cooling liquid runs out and the cooling liquid is less likely to accumulate, and the workability at the time of decomposition is improved. The decrease can be suppressed.
  • the same effect as that of the seventh embodiment described above can be obtained. That is, when the anode-side separator 310 is manufactured, the first surface of the corrugated portion WSP is subjected to a carbon coating as a corrosion-resistant treatment, and further, the entire first surface is subjected to UV treatment to make the surface hydrophilic. Resin coating is performed on the region S1 adjacent to the shallow groove portion 314 in the groove portion 316 to improve water repellency.
  • the anode-side separator 310 manufactured in this way also has high corrosion resistance and water repellency in the region S1 adjacent to the shallow groove portion 314 in the first groove portion 316 on the first surface side of the corrugated portion WSP.
  • the surface region S2 has high hydrophilicity.
  • FIG. 18 is an explanatory diagram showing the configuration of the anode separator 310 of the fuel cell 100 in the eighth embodiment.
  • FIG. 18A shows a partial planar configuration of the first surface side of the anode-side separator 310 (the surface side facing the cathode-side separator 320), and FIG. The cross-sectional configuration at the position A3-A3 in (a) is shown.
  • FIG. 18C shows a perspective view of the vicinity of the deep groove portion 313 and the shallow groove portion 314.
  • the fuel cell 100 of the eighth embodiment is different from the fuel cell 100 of the first embodiment in that a wall body 352 and a floor body 354 are formed on the first surface side of the corrugated portion WSP of the anode side separator 310.
  • the other points are the same as those of the fuel cell 100 of the first embodiment. More specifically, in the anode side separator 310 of the eighth embodiment, on the downstream side in the coolant flow direction in the communication channel CP of the deep groove portion 313, on the extension of the boundary wall BW between the deep groove portion 313 and the shallow groove portion 314.
  • a wall body 352 is formed.
  • the wall body 352 is manufactured as a separate part using the same material (metal in this embodiment) as that of the anode-side separator 310 and is bonded to the surface of the first groove 316 of the anode-side separator 310.
  • the shape of the wall body 352 has a triangular prism shape in order to ensure a sufficient adhesion area.
  • a floor body 354 located on the extension of the floor surface BP of the shallow groove portion 314 is formed on the downstream side of the shallow groove portion 314.
  • the floor body 354 is manufactured as a separate part using the same material (metal in this embodiment) as the anode-side separator 310, and is bonded to the downstream side wall surface of the shallow groove portion 314 of the anode-side separator 310.
  • the shape of the floor body 354 has a triangular prism shape in order to ensure a sufficient adhesion area. It is desirable that the downstream end of the floor body 354 is located downstream from the downstream end of the shallow groove portion 314. That is, in FIG. 18B, the distance L1 is preferably larger than the distance L0.
  • the coolant that has passed through the communication channel CP is used for the coolant on the downstream side.
  • the flow path space CS the flow around the downstream side of the deep groove 313 is suppressed, and the flow space CS is suppressed from flowing into the portion near the power generator layer 200 (the anode diffusion layer 216).
  • the flow of the coolant is rectified. Therefore, in the fuel cell 100 of the eighth embodiment, it is suppressed that the coolant flow becomes turbulent and the pressure loss of the flow path increases, the load of the water pump 71 increases and the fuel consumption deteriorates.
  • the shape of the wall body 352 is not limited to the triangular prism shape as long as it has a wall located on the extension of the boundary wall BW, and the material of the wall body 352 is not limited to metal.
  • the shape of the floor body 354 is not limited to the triangular prism shape as long as it has a floor located on the extension of the floor surface BP, and the material of the floor body 354 is not limited to metal.
  • the wall body 352 and the floor body 354 may be formed integrally with the anode side separator 310 when the anode side separator 310 is pressed.
  • FIG. 18D shows a configuration in which the floor body 354 is formed integrally with the anode side separator 310 when the anode side separator 310 is pressed. In this way, processing effort can be reduced.
  • FIG. 19 is an explanatory diagram showing the configuration of the anode separator 310 of the fuel cell 100 according to the ninth embodiment.
  • FIG. 19A shows a partial planar configuration of the first surface side of the anode-side separator 310 (the surface side facing the cathode-side separator 320), and
  • FIG. 19C shows a cross-sectional configuration at the position A4-A4 in FIG. 19A, and
  • FIG. 19C shows a cross-sectional configuration at the position B4-B4 in FIG.
  • the fuel cell 100 according to the ninth embodiment differs from the fuel cell 100 according to the first embodiment in that a spacer 362 is disposed on the first surface side of the corrugated portion WSP of the anode-side separator 310. Is the same as the fuel cell 100 of the first embodiment. Specifically, in the anode side separator 310 of the ninth embodiment, a spacer 362 that fills the space is disposed at a position adjacent to the deep groove portion 313 in the first groove portion 316.
  • the spacer 362 is preferably formed of a conductive material (for example, metal or carbon), but can also be formed of a non-conductive material (for example, resin).
  • the spacer 362 may be formed so as to block all of the coolant channel space CS formed on the first surface side of the first groove 316, or the cathode side separator 320 of the coolant channel space CS. It may be formed so as to close a part of the side close to the power generation body layer 200 so that the side close to is open.
  • the spacer 362 is disposed in the corrugated portion WSP of the anode side separator 310, the coolant that has passed through the communication channel CP is in the downstream coolant channel space CS.
  • the flow around the downstream side of the deep groove portion 313 is suppressed and the flow of the coolant is rectified, and the coolant is suppressed from staying in the downstream region of the deep groove portion 313. Therefore, in the fuel cell 100 of the ninth embodiment, the flow of the coolant becomes turbulent, the pressure loss of the flow path is increased, the load on the water pump 71 is increased, and fuel consumption is prevented from deteriorating. Corrosion of the anode separator 310 due to the retention of the coolant is suppressed.
  • the spacer 362 may be formed integrally with the anode side separator 310 when the anode side separator 310 is pressed.
  • the cathode-side separator 320 facing the anode-side separator 310 is pressed, and the protrusion formed on the surface of the cathode-side separator 320 when the fuel cell 100 is stacked is replaced with the first groove 316 of the anode-side separator 310. It is also possible to enter the position adjacent to the deep groove portion 313 and to function as the spacer 362.
  • FIG. 20 is an explanatory diagram showing the configuration of the anode separator 310 of the fuel cell 100 according to the tenth embodiment.
  • the fuel cell 100 of the tenth embodiment is different from the fuel cell 100 of the first embodiment in the configuration of the second groove 315 of the anode side separator 310, and the other points are the same. It is the same.
  • each second groove portion 315 of the anode separator 310 has a plurality of shallow groove portions 314, and each shallow groove portion 314 is adjacent to each other.
  • the other second groove portion 315 is formed at a position aligned with the shallow groove portion 314.
  • each second groove portion 315 has a plurality of shallow groove portions 314 including a normal shallow groove portion 314a and a middle shallow groove portion 314b deeper than the normal shallow groove portion 314a. This is different from the first embodiment.
  • the depth of the middle shallow groove portion 314b is intermediate between the depth of the normal shallow groove portion 314a and the depth of the deep groove portion 313.
  • the cross-sectional area of the communication channel CP formed at the position of the middle shallow groove portion 314b is smaller than the cross-sectional area of the communication channel CP formed at the position of the normal shallow groove portion 314a.
  • the depth of the second groove portion 315 (the deep groove portion 313 and the shallow groove portion 314) is determined from the outermost position on the second surface side of the anode-side separator 310 by the second groove portion 315. The distance along the stacking direction to the outermost position on the surface side of 1 is meant.
  • the communication channel CP is present at the position of the middle shallow groove portion 314b even though the cross-sectional area is small, an excessive turbulent flow is suppressed, and the turbulent flow causes a pressure loss of the channel.
  • the increase of the load of the water pump 71 and the deterioration of fuel consumption are suppressed. Therefore, in the fuel cell 100 according to the tenth embodiment, the cooling of the fuel cell 100 is suppressed by suppressing the stagnation of the cooling liquid in the cooling liquid channel space CS while suppressing the excessive turbulent flow of the cooling liquid. A decrease in performance can be suppressed.
  • normal shallow groove portions 314a and middle shallow groove portions 314b are alternately arranged in each second groove portion 315.
  • the cooling performance of the fuel cell 100 can be improved.
  • a large number of middle shallow groove portions 314b may be arranged in a region close to the inlet of the oxidant gas (that is, a region close to the oxidant gas supply manifold 152).
  • the arrangement pattern of the normal shallow groove portion 314a and the middle shallow groove portion 314b in each second groove portion 315 can be arbitrarily set. For example, two normal shallow groove portions 314a and one middle shallow groove portion 314b are alternately arranged. An arrangement pattern that is repeatedly arranged may be adopted.
  • FIG. 21 is an explanatory diagram showing the configuration of the anode-side separator 310 of the fuel cell 100 according to a modification of the tenth embodiment.
  • the depth of the middle shallow groove portion 314b in the anode side separator 310 of the tenth embodiment shown in FIG. 20 is the same as the depth of the deep groove portion 313.
  • the middle shallow groove portion 314 b is integrated with the deep groove portion 313.
  • the coolant that has passed through the communication channel CP formed at the position of the normal shallow groove portion 314a is promoted to flow into the coolant channel space CS on the downstream side. Therefore, it is possible to suppress the stagnation of the coolant in the coolant channel space CS and suppress the deterioration of the cooling performance of the fuel cell 100.
  • FIG. 22 is an explanatory diagram showing the configuration of the anode separator 310 of the fuel cell 100 in the eleventh embodiment.
  • FIG. 22 shows a cross section along the Y direction passing through the position of the second groove 315 (see FIGS. 4 and 6) of the anode-side separator 310.
  • FIG. 22 shows a fuel gas channel space formed between the second groove portion 315 (the deep groove portion 313 and the shallow groove portion 314) of the anode side separator 310 and the power generation layer 200 (the anode side diffusion layer 216).
  • the direction of hydrogen flow in the AS is indicated by arrows.
  • the upper side of the figure is the upstream side
  • the lower side of the figure is the downstream side.
  • the fuel cell 100 of the eleventh embodiment is different from the fuel cell 100 of the first embodiment in the configuration of the anode side separator 310, and the other points are the same as the fuel cell 100 of the first embodiment.
  • each second groove portion 315 of the anode-side separator 310 has a plurality of shallow groove portions 314, as in the first embodiment.
  • the boundary wall BW between the deep groove portion 313 and the shallow groove portion 314 adjacent to the deep groove portion 313 on the downstream side of the hydrogen flow in the fuel gas passage space AS is formed on the second surface side ( It differs from the first embodiment in that it is inclined to be located on the downstream side as it is closer to the surface side facing the power generation layer 200. That is, in the eleventh embodiment, the boundary wall BW is inclined by a predetermined angle ⁇ C from the stacking direction.
  • the boundary wall BW when the boundary wall BW is parallel to the stacking direction, water flows into the portion Px on the boundary wall BW on the downstream side of the deep groove portion 313 in the fuel gas channel space AS at the position of the deep groove portion 313. May easily accumulate, and the anode separator 310 may corrode. In particular, the closer to the downstream side of the fuel gas passage space AS, the more water tends to accumulate in the portion Px.
  • the boundary wall BW between the deep groove portion 313 and the shallow groove portion 314 adjacent to the deep groove portion 313 on the downstream side is inclined so as to be positioned on the downstream side closer to the second surface side. Therefore, water is prevented from staying in the portion Px on the boundary wall BW, and corrosion of the anode side separator 310 can be suppressed.
  • FIG. 23 is an explanatory diagram showing the configuration of the anode-side separator 310 of the fuel cell 100 according to a modification of the eleventh embodiment. Also in the modification of the eleventh embodiment shown in FIG. 23, the boundary wall between the deep groove portion 313 and the shallow groove portion 314 adjacent to the deep groove portion 313 on the downstream side of the hydrogen flow in the fuel gas passage space AS. The BW is inclined so as to be positioned on the downstream side as it is closer to the second surface side. In the modification of the eleventh embodiment, as shown in FIG. 23, in each second groove portion 315, the shallow groove portion 314 located on the downstream side of the hydrogen flow in the fuel gas channel space AS has a deeper depth d ( That is, d10 ⁇ d11 ⁇ d12).
  • the shallow groove portion 314 located on the downstream side has a larger width W along the hydrogen flow direction (that is, W10 ⁇ W11 ⁇ W12). Therefore, in the modification of the eleventh embodiment, the shallow groove portion 314 located on the downstream side is formed on the first surface side (side facing the cathode separator 320) of the shallow groove portion 314 by increasing the depth d. Although the height of the communication channel CP becomes smaller, by increasing the width W of the shallow groove portion 314 located on the downstream side, it is possible to suppress a decrease in the cross-sectional area of the downstream communication channel CP. .
  • FIG. 24 is an explanatory diagram showing the configuration of the anode separator 310 of the fuel cell 100 in the twelfth embodiment.
  • FIG. 24 shows a cross section along the Y direction passing through the position of the second groove 315 (see FIGS. 4 and 6) of the anode-side separator 310.
  • FIG. 24 shows a fuel gas channel space formed between the second groove portion 315 (the deep groove portion 313 and the shallow groove portion 314) of the anode-side separator 310 and the power generator layer 200 (the anode-side diffusion layer 216 thereof).
  • the direction of hydrogen flow in the AS is indicated by arrows.
  • the fuel cell 100 of the twelfth embodiment is different from the fuel cell 100 of the first embodiment in the configuration of the anode-side separator 310, and the other points are the same as the fuel cell 100 of the first embodiment.
  • each second groove portion 315 of the anode-side separator 310 has a plurality of shallow groove portions 314, as in the first embodiment.
  • the plurality of shallow groove portions 314 include a plurality of types of shallow groove portions 314 having different depths d.
  • the depth d of each shallow groove portion 314 has a relationship of d21> d22> d23> d24.
  • the flow rate of hydrogen in the fuel gas passage space AS formed on the second surface side of the anode separator 310 is relatively high (that is, the pressure is Therefore, the current density is large and the calorific value is large. Since the flow rate of the coolant in the communication channel CP formed on the first surface side of the anode side separator 310 at the same position is relatively large, the amount of cooling heat is large.
  • the concentration and humidity of the reaction gas are not uniform in the plane of the single cell 140, and thus the amount of heat generated by power generation is not uniform.
  • the plurality of shallow groove portions 314 include a plurality of types of shallow groove portions 314 having different depths d, by appropriately arranging the shallow groove portions 314, the power generation distribution and the temperature distribution in the single cell 140. Can be made uniform.
  • FIG. 25 is an explanatory diagram showing a control method of the fuel cell 100 in the thirteenth embodiment.
  • the fuel cell With the operation of 100, contamination and bubbles are trapped in a portion adjacent to the deep groove portion 313 in the fuel gas channel space AS.
  • contamination or bubbles are trapped in the portion, as shown in FIG. 25, the turbulent flow of the cooling liquid is suppressed, and the pressure loss of the flow path for the cooling liquid is reduced.
  • the control unit 80 of the fuel cell system 10 measures the pressure loss of the flow path for the coolant and determines whether or not the pressure loss has become smaller than a predetermined threshold Th.
  • the control unit 80 outputs a signal notifying the user of the occurrence of an abnormality in the coolant flow path.
  • the user can be aware that contamination or bubbles have been trapped in the fuel gas flow path space AS of the anode-side separator 310.
  • it is possible to detect the occurrence of abnormality in the coolant flow path with a simple configuration.
  • FIG. 26 is an explanatory diagram showing the configuration of the anode separator 310 of the fuel cell 100 according to the fourteenth embodiment.
  • FIG. 26 shows a cross section along the Y direction passing through the position of the second groove 315 (see FIGS. 4 and 6) of the anode side separator 310.
  • FIG. 26 shows a fuel gas channel space formed between the second groove portion 315 (the deep groove portion 313 and the shallow groove portion 314) of the anode-side separator 310 and the power generator layer 200 (the anode-side diffusion layer 216 thereof).
  • the direction of hydrogen flow in the AS is indicated by arrows.
  • the upper side of the figure is the upstream side
  • the lower side of the figure is the downstream side.
  • the fuel cell 100 of the fourteenth embodiment is different from the fuel cell 100 of the first embodiment in the configuration of the anode-side separator 310, and the other points are the same as the fuel cell 100 of the first embodiment.
  • each second groove portion 315 of the anode-side separator 310 has a plurality of shallow groove portions 314, as in the first embodiment.
  • the boundary wall BW between the deep groove portion 313 and the shallow groove portion 314 adjacent to the deep groove portion 313 on the downstream side of the hydrogen flow in the fuel gas passage space AS is formed on the second surface side ( The point which inclines so that it may be located in the downstream is so far from the surface side which opposes the electric power generation body layer 200). That is, in the fourteenth embodiment, the boundary wall BW is inclined by a predetermined angle ⁇ D from the stacking direction.
  • the boundary wall BW between the deep groove portion 313 and the shallow groove portion 314 adjacent to the deep groove portion 313 on the downstream side is inclined so as to be positioned on the downstream side closer to the second surface side. Therefore, the retention of water in the portion Py on the boundary wall BW is promoted. Therefore, in the fuel cell 100 according to the fourteenth embodiment, it is possible to suppress dry-up during high-temperature operation, and it is possible to suppress a decrease in power generation efficiency and a decrease in durability of the electrolyte membrane 212.
  • the retention of water in the portion Py on the boundary wall BW is promoted by increasing the hydrophilicity of the surface of the deep groove 313 of the anode side separator 310 facing the fuel gas passage space AS. It is good.
  • Examples of the method for increasing hydrophilicity include hydrophilic treatment and treatment for roughening the surface of the anode-side separator 310.
  • FIG. 27 is an explanatory diagram showing the configuration of the anode separator 310 of the fuel cell 100 in the fifteenth embodiment.
  • FIG. 27 shows a partial planar configuration of the anode-side separator 310 on the first surface side (surface side facing the cathode-side separator 320).
  • the fuel cell 100 of the fifteenth embodiment differs from the fuel cell 100 of the first embodiment in the shape of the boundary wall between the deep groove portion 313 and the shallow groove portion 314 of the anode separator 310 and the arrangement of the shallow groove portion 314.
  • the other points are the same as the fuel cell 100 of the first embodiment.
  • the planar shape of the deep groove portion 313 is a substantially regular hexagon. Therefore, the boundary wall between the deep groove portion 313 and the shallow groove portion 314 has a shape having a portion inclined by a predetermined angle with respect to the flow direction of the coolant in the communication flow path CP.
  • the arrangement of the shallow groove portions 314 in the corrugated portion WSP of the anode side separator 310 is a staggered arrangement. That is, the distance L11 along the Y direction of the shallow groove portions 314 of the two adjacent second groove portions 315 is substantially half of the pitch (2 ⁇ L11) of the shallow groove portions 314 in each second groove portion 315.
  • the boundary wall between the deep groove portion 313 and the shallow groove portion 314 has an inclined portion, in the communication channel CP formed at the position of the shallow groove portion 314, the deep groove portion 313 and the shallow groove portion.
  • the flow direction of a part of the cooling liquid can be an oblique direction along the inclined portion of the boundary wall with 314.
  • the shallow groove portions 314 are arranged in a staggered manner, the coolant whose flow direction is oblique may flow directly into the communication channel CP formed at the position of the shallow groove portions 314 located obliquely. Promoted. Therefore, the fuel cell 100 of the fifteenth embodiment can set the coolant path more flexibly.
  • the cooling performance may deteriorate due to insufficient coolant flow rate or air accumulation in the upper region of each unit cell 140 in the direction of gravity. Since the coolant can be guided obliquely upward, it is possible to suppress a decrease in cooling performance over the entire area of the single cell 140.
  • FIG. 28 is an explanatory diagram showing the configuration of the anode-side separator 310 of the fuel cell 100 in a modification of the fifteenth embodiment.
  • the arrangement of the shallow groove portions 314 is a staggered arrangement as in the example of FIG.
  • the planar shape of the deep groove portion 313 is different from the example of FIG.
  • the boundary wall between the deep groove portion 313 and the shallow groove portion 314 has a shape having a portion inclined by a predetermined angle with respect to the flow direction of the coolant in the communication channel CP. Therefore, also in the modification of the fifteenth embodiment shown in FIG. 28, the coolant path can be set more flexibly.
  • the shallow groove portions 314 are arranged in a staggered manner. However, even if the shallow groove portions 314 are not arranged in a staggered manner, the boundary wall between the deep groove portions 313 and the shallow groove portions 314 is formed. If there is a portion inclined by a predetermined angle with respect to the flow direction of the coolant in the communication channel CP, the flow direction of the coolant can be made oblique, and the coolant path can be set more flexibly. Can do. In the example shown in FIGS. 27 and 28, the shallow groove portions 314 are arranged in a staggered manner, but the shallow groove portions 314 of the second groove portions 315 are not arranged in a staggered manner.
  • the flow direction of the cooling liquid is set to an oblique direction.
  • the coolant path can be set more flexibly.
  • FIG. 29 is an explanatory diagram showing the configuration of the anode separator 310 of the fuel cell 100 according to the sixteenth embodiment.
  • FIG. 29 shows a partial planar configuration of the anode side separator 310 on the first surface side (surface side facing the cathode side separator 320).
  • the fuel cell 100 of the sixteenth embodiment is different from the fuel cell 100 of the first embodiment in that the shallow groove portion 314 of the anode separator 310 is arranged, and the other points are the same as the fuel cell 100 of the first embodiment. It is.
  • the shallow grooves 314 are arranged in a staggered manner. That is, the distance L21 along the Y direction of the shallow groove portion 314 of the two adjacent second groove portions 315 is substantially half (2 ⁇ L21) of the pitch of the shallow groove portion 314 in each second groove portion 315.
  • the coolant that has passed through the communication channel CP formed at the position of the shallow groove portions 314 does not go straight downstream and cools down.
  • the liquid flows through the liquid flow channel space CS and flows into the communication flow channel CP where the position of the shallow groove portion 314 in the diagonal direction on the downstream side is formed. Therefore, in the fuel cell 100 according to the sixteenth embodiment, it is possible to suppress the stagnation of the coolant in the coolant channel space CS and to suppress the decrease in the cooling performance of the fuel cell 100.
  • FIG. 30 is an explanatory diagram showing the configuration of the anode side separator 310 of the fuel cell 100 in a modification of the sixteenth embodiment.
  • the distance L22 along the Y direction of the shallow groove portions 314 of the two adjacent second groove portions 315 is approximately a quarter of the pitch (4 ⁇ L22) of the shallow groove portions 314 in each second groove portion 315. It is 1 of. Also in the fuel cell 100 of the modified example of the sixteenth embodiment shown in FIG. 30, it is possible to suppress the stagnation of the coolant in the coolant channel space CS and suppress the deterioration of the cooling performance of the fuel cell 100.
  • FIG. 31 is an explanatory diagram showing the configuration of the anode separator 310 of the fuel cell 100 in the seventeenth embodiment.
  • the second groove portion 315 (the deep groove portion 313 and the shallow groove portion 314) of the corrugated portion WSP of the anode side separator 310 is shown in an enlarged manner.
  • the fuel cell 100 of the seventeenth embodiment is different from the fuel cell 100 of the first embodiment in the configuration of the deep groove portion 313 and the shallow groove portion 314, and the other points are the same as the fuel cell 100 of the first embodiment. is there.
  • the diameter Rm of the deep groove portion 313 is larger than the diameter Rv of the shallow groove portion 314. Therefore, in the seventeenth embodiment, the volume of the portion adjacent to the deep groove portion 313 in the coolant channel space CS (see FIG. 6) formed at the position of the first groove portion 316 of the anode side separator 310 is reduced. It is possible to suppress the stagnation of the coolant in the coolant flow path space CS and suppress the deterioration of the cooling performance of the fuel cell 100.
  • the diameter Rm of the deep groove portion 313 that is a contact portion with the cathode side separator 320 in the anode side separator 310 is large, the stacking load per unit area on the surface of the deep groove portion 313 can be reduced. At the same time, it is possible to prevent the load from being concentrated at the position facing the deep groove portion 313 in the power generation body layer 200 to damage the electrode, or the load distribution on the electrode surface to be biased and the power generation distribution to be biased.
  • FIG. 32 is an explanatory diagram showing the configuration of the anode-side separator 310 of the fuel cell 100 in a modification of the seventeenth embodiment.
  • the width along the Y direction of the deep groove portion 313 (the extending direction of the second groove portion 315 and the first groove portion 316) is the same as in the first embodiment, and the deep groove portion A width Wm along the X direction (the coolant flow direction in the communication flow path CP) of 313 is extended to be larger than the width Wv of the shallow groove portion 314.
  • the width along the Y direction of the deep groove portion 313 the extending direction of the second groove portion 315 and the first groove portion 316
  • the deep groove portion A width Wm along the X direction (the coolant flow direction in the communication flow path CP) of 313 is extended to be larger than the width Wv of the shallow groove portion 314.
  • the volume of the portion adjacent to the deep groove portion 313 in the coolant channel space CS formed at the position of the first groove portion 316 can be effectively reduced.
  • the cooling liquid stagnation in the cooling liquid channel space CS can be suppressed to prevent the cooling performance of the fuel cell 100 from decreasing, and the stack load per unit area on the surface of the deep groove 313 can be reduced, the electrodes can be damaged, and Suppression of bias in power generation distribution is realized.
  • Example 18 33 to 35 are explanatory views showing the configuration of the fuel cell 100 in the eighteenth embodiment.
  • the fuel cell 100 according to the eighteenth embodiment is different from the fuel cell 100 according to the first embodiment in the configuration of the seal portion, and the other points are the same as the fuel cell 100 according to the first embodiment.
  • the fuel cell 100 according to the eighteenth embodiment employs a manufacturing method in which cells with a seal portion and cells without a seal portion are alternately stacked to improve repairability.
  • the tunnel flow channel TR In the portion where the third groove portion 317 (see FIGS. 4 and 5) is provided, the tip portions 452 and 442 of the seal portions 450 and 440 provided on the opposing cathode separator 320 are connected to the third groove portion 317.
  • the sealing performance is ensured by pressing against the surface of the anode side separator 310 provided with. However, it is difficult to ensure the sealing performance by pressing the seal portion against the surface of the anode separator 310 provided with such an uneven shape.
  • an anode separator 310, a power generator layer 200, a cathode separator 320, another anode separator 310, and another power generator layer 200 are laminated.
  • the cell CeA is configured, and the cathode side separator 320, the anode side separator 310, the power generator layer 200, and another anode side separator 310 are stacked to form the cell CeB, and the cell CeA and the cell CeB are formed.
  • the fuel cell 100 is manufactured by alternately laminating. 33 to 35, the cell CeA is provided with seal portions 450 and 420 for securing a seal with the opposing cell CeB, but the cell CeB has a seal with the opposing cell CeA.
  • the seal part for ensuring is not arrange
  • the seal portions 450, 430, 420 arranged in the cell CeA are arranged such that the tips 452, 432, 422 are pressed against the flat surface of the cathode-side separator 320 of the opposite cell CeB. Therefore, a reliable seal line can be formed.
  • the seal portion is not pressed against the surface provided with the uneven shape.
  • the seal portion 450 disposed between the cathode-side separator 320 and the third groove portion 317 of the anode-side separator 310 is formed by filling.
  • a reliable seal line can be formed also in this portion.
  • the eighteenth embodiment employs a manufacturing method for manufacturing the fuel cell 100 by alternately stacking cells with seal portions and cells without seal portions while ensuring reliable sealing performance.
  • the repairability of the fuel cell 100 can be improved.
  • a method of manufacturing the fuel cell 100 by stacking a cell CeA including two power generation layer 200 and a cell CeB including one power generation layer 200 is employed. If the method of manufacturing the fuel cell 100 by stacking the cell CeA including the power generation layer 200 and the cell CeB including the odd number of power generation layers 200 is employed, as in the eighteenth embodiment, reliable sealing performance is achieved. As a result, the repairability of the fuel cell 100 can be improved.
  • FIG. 36 is an explanatory diagram showing a planar configuration of the fuel cell 100 in the nineteenth embodiment.
  • the fuel cell 100 of the nineteenth embodiment is different from the fuel cell 100 of the first embodiment in terms of the arrangement of the manifolds, and the other points are the same as the fuel cell 100 of the first embodiment.
  • the separator 310 forms a flow path (cooling liquid flow path space CS and communication flow path CP (see FIG. 6)) for flowing the cooling liquid vertically and horizontally.
  • the electrode utilization rate is improved and the physique output density and the mass output density are improved as compared with the four-sided arrangement configuration of the manifold.
  • T.A. Variation The present invention is not limited to the above-described examples and embodiments, and can be implemented in various modes without departing from the gist thereof. For example, the following modifications are possible.
  • Modification 1 The configuration of the fuel cell system 10 in each of the above embodiments is merely an example, and various modifications can be made.
  • the membrane electrode assembly 210 includes the anode side diffusion layer 216 and the cathode side diffusion layer 217.
  • the membrane electrode assembly 210 includes at least the anode side diffusion layer 216 and the cathode side diffusion layer 217. One may not be included.
  • the material and manufacturing method of each layer of the fuel cell 100 are specified.
  • the material and manufacturing method are not limited to these materials, and appropriate various materials and manufacturing methods should be used. Can do.
  • the anode separator 310 is manufactured by pressing a metal plate.
  • the anode separator 310 is manufactured by cutting a metal plate or a resin carbon plate or etching a metal plate. Alternatively, it may be manufactured by injection molding of resin carbon.
  • the cathode-side separator 320 may be manufactured by cutting out a resin carbon plate or by injection molding of resin carbon.
  • the fuel cell 100 is a solid polymer fuel cell.
  • the present invention is applicable to other types of fuel cells (for example, direct methanol fuel cells and phosphoric acid fuel cells). Applicable.
  • the anode side separator 310 has a shape having the corrugated portion WSP having a corrugated cross section, while the cathode side separator 320 has a flat plate shape.
  • the anode-side separator 310 may have a flat plate shape while having a corrugated portion WSP having a cross-sectional shape.
  • a porous body flow path layer is provided on the anode side, and oxidation is performed between the cathode side separator 320 and the power generation body layer 200.
  • a flow path for the agent gas is formed, and a flow path for the coolant is formed between the cathode side separator 320 and the anode side separator 310.
  • both the anode side separator 310 and the cathode side separator 320 may have a shape having a corrugated portion WSP having a corrugated cross-sectional shape.
  • the power generation body layer 200 does not include the porous body flow path layer, and a flow path for fuel gas is formed between the anode side separator 310 and the power generation body layer 200, and the cathode side separator 320 and the power generation body layer are formed.
  • An oxidant gas channel is formed between the cathode side separator 320 and the anode side separator 310, and a coolant channel is formed between the cathode side separator 320 and the anode side separator 310.
  • the second groove portions 315 in the corrugated portion WSP of the anode side separator 310 and the cathode side separator 320 are in contact with each other.
  • the shallow groove portion 314 in the second groove portion 315 of the corrugated portion WSP may be provided only in one of the anode side separator 310 and the cathode side separator 320, or may be provided in both. .
  • each of the second groove portions 315 is provided with a plurality of shallow groove portions 314.
  • the cooling liquid The flow direction is not limited to a direction parallel to the flow direction of the fuel gas, and can be set freely.
  • the arrangement pattern of the shallow groove portions 314 on the corrugated portion WSP plane in each of the above embodiments is merely an example, and the arrangement pattern of the shallow groove portions 314 can be arbitrarily changed.
  • the planar shape of the second groove portion 315 and the first groove portion 316 in the anode side separator 310 extends in a certain direction (in the example of FIG. 2, a direction parallel to the short side of the single cell 140).
  • the planar shape of the second groove portion 315 and the first groove portion 316 is different from each manifold as long as the second groove portions 315 and the first groove portions 316 are alternately and repeatedly arranged to form a corrugated cross section.
  • Arbitrary shapes can be adopted depending on the arrangement.
  • the planar shape of the second groove portion 315 and the first groove portion 316 can be a meandering shape.
  • a plurality of tunnel channels TR are formed side by side in the vicinity of the fuel gas supply manifold 162 and the fuel gas discharge manifold 164 of the fuel cell 100 (see FIG. 5 and the like). Only the tunnel channel TR may be formed.
  • the anode-side separator 310 is provided with the fourth groove portion 312 to form the fuel gas common rail ACR, and each fuel gas passage space AS communicates with the fuel gas common rail ACR.
  • the fuel gas common rail ACR may not be formed, and the fuel gas flow passage space AS, the fuel gas supply manifold 162, and the fuel gas discharge manifold 164 may communicate with each other without the fuel gas common rail ACR.
  • Modification 6 In the seventh embodiment, on the first surface side of the corrugated portion WSP of the anode-side separator 310, the coating treatment for increasing the corrosion resistance of the region S1 adjacent to the shallow groove portion 314 in the first groove portion 316, and the first groove portion 316 are performed.
  • the water repellent treatment that increases the water repellency of the region S1 adjacent to the shallow groove portion 314 and the hydrophilic treatment that increases the hydrophilicity in the shallow groove portion 314 are performed, but all three treatments are necessarily performed. There is no need, and if at least one of these processes is performed, the above-described effect corresponding to the process can be obtained.
  • Coolant discharge manifold 200 Power generation layer 210 ... Membrane electrode assembly 212 ... Electrolyte membrane 214 ... Anode 215 ... Cathode 216 ... Anode side diffusion layer 217 ... Cathode side diffusion layer 230 ... Caso 310-side anode channel 312 ... fourth groove 313 ... deep groove 314 ... shallow groove 315 ... second groove 316 ... first groove 317 ... third groove 318 ... opening 320 ... cathode Side separator 322 ... opening 352 ... wall body 354 ... floor body 362 ... spacer 420, 430, 440, 450, 460 ... seal part 452 ... tip

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 燃料電池用のセパレータは、第1の表面側に凹な形状であり第1の表面側に第1の流体用の流路を形成する第1の溝部と、第1の表面側とは反対の第2の表面側に凹な形状であり第2の表面側に第2の流体用の流路を形成する第2の溝部と、が交互に繰り返し並んだ波形断面形状を有する波形部を備える。各第2の溝部は、第2の表面側から見た深さが他の部分より浅い浅溝部であって、浅溝部の位置の第1の表面側に、浅溝部を挟んで隣接する2つの第1の流体用の流路空間を連通する連通流路を形成する少なくとも1つの浅溝部を有する。

Description

燃料電池用セパレータ、燃料電池、燃料電池の製造方法
 本発明は、燃料電池用セパレータ、燃料電池および燃料電池の製造方法に関する。
 一般に、燃料電池、例えば固体高分子型燃料電池は、電解質膜および一対の電極(アノードおよびカソード)を含む複数の発電体層が、反応ガスとしての燃料ガスおよび酸化剤ガスを分離するためのセパレータを介して積層されたスタック構造の形態で利用される。燃料電池の内部には、反応ガスや冷却媒体(例えば冷却液)といった流体を流動させるための流路が形成される。
 燃料電池用のセパレータとして、板状部材を、一方の表面側に凹な形状の第1の溝部と他方の表面側に凹な形状の第2の溝部とが交互に繰り返し並んだ波形断面形状に加工して製造されたセパレータが知られている。このようなセパレータでは、第1の溝部の上記一方の表面側に一の流体(例えば冷却液)用の流路が形成され、第2の溝部の上記他方の表面側に他の流体(例えば燃料ガス)用の流路が形成される。また、燃料電池用のセパレータとして、表面に柱群の形で配置された一連の四角形の突出部が設けられ、突出部間の空間が流体を縦横に流動させる流路として機能するセパレータが知られている。
 しかしながら、上記従来の波形加工が施されたセパレータでは、一方の表面側に形成される流体用流路と他方の表面側に形成される流体用流路とにおける流れ方向が互いに平行な方向に限定されるため、流体の経路設定の自由度が低い。そのため、このセパレータを用いた燃料電池では、例えば各マニホールドの配置に制約が生じたり、セル面内の熱設計の自由度が低下したりする。なお、別のセパレータ部品を追加することにより、2つの流体用流路の流れ方向の設定の自由度を向上させることは可能であるが、部品点数の増加は重量、大きさ、コストの増加につながるため好ましくない。また、上記従来の四角形の突出部が設けられたセパレータでは、セパレータの突出部が設けられた表面側には流体を縦横に流動させる流路を形成することができるが、セパレータの反対の表面側には格子状の突出部が設けられて流体用の流路を形成することができないため、このセパレータ部品のみでは両側に流体用流路を形成することができない。
 なお、このような課題は、固体高分子型燃料電池用に限らず一般の燃料電池用のセパレータに共通の課題であった。
 本発明は、上記の課題を解決するためになされたものであり、部品点数の増加を抑制しつつ流体の経路の柔軟な設定を可能とする燃料電池用セパレータを提供することを目的とする。
 上記課題の少なくとも一部を解決するために、本発明は、以下の形態または適用例として実現することが可能である。
[適用例1]燃料電池用のセパレータであって、
 第1の表面側に凹な形状であり前記第1の表面側に第1の流体用の流路を形成する第1の溝部と、前記第1の表面側とは反対の第2の表面側に凹な形状であり前記第2の表面側に第2の流体用の流路を形成する第2の溝部と、が交互に繰り返し並んだ波形断面形状を有する波形部を備え、
 各前記第2の溝部は、前記第2の表面側から見た深さが他の部分より浅い浅溝部であって、前記浅溝部の位置の前記第1の表面側に、前記浅溝部を挟んで隣接する2つの前記第1の流体用の流路空間を連通する連通流路を形成する少なくとも1つの浅溝部を有する、セパレータ。
 この燃料電池用セパレータでは、各第2の溝部が第2の表面側から見た深さが他の部分より浅い浅溝部を有しており、浅溝部の位置の第1の表面側に、浅溝部を挟んで隣接する2つの第1の流体用の流路空間を連通する連通流路が形成されるため、この1つの燃料電池用セパレータで第1の流体用の流路空間および第2の流体用の流路空間を形成することができると共に、第1の流体の流れ方向を第2の流体の流れ方向に平行な方向に限定されず自由に設定することができる。そのため、この燃料電池用セパレータでは、部品点数の増加を抑制しつつ流体の経路を柔軟に設定することができる。
[適用例2]適用例1に記載のセパレータであって、
 前記第1の流体および前記第2の流体の組み合わせは、燃料ガスと酸化剤ガスと冷却液との内のいずれか2つの組み合わせである、セパレータ。
 この燃料電池用セパレータでは、燃料ガスと酸化剤ガスと冷却液との内のいずれか2つの組み合わせである第1の流体および前記第2の流体の組み合わせ用の流路空間を形成することができると共に、第1の流体の流れ方向を第2の流体の流れ方向に平行な方向に限定されず自由に設定することができるため、部品点数の増加を抑制しつつ第1の流体および第2の流体の経路を柔軟に設定することができる。
[適用例3]適用例1に記載のセパレータであって、
 前記第1の流体は、冷却液である、セパレータ。
 この燃料電池用セパレータでは、冷却液である第1の流体の流れ方向を第2の流体の流れ方向に平行な方向に限定されず自由に設定することができるため、燃料電池の熱設計の自由度を向上させることができる。
[適用例4]適用例1に記載のセパレータであって、
 前記セパレータの平面形状は略矩形であり、
 前記セパレータの前記波形部を挟んで対向する2つの外縁辺付近に、前記第1の流体用のマニホールドを構成する第1の開口と前記第2の流体用のマニホールドを構成する第2の開口とが形成されている、セパレータ。
 この燃料電池用セパレータでは、各マニホールドをセパレータの波形部を挟んで対向する2つの外縁辺付近に配置することにより、燃料電池の電極利用率を向上させることができる。
ことができる。
[適用例5]適用例1に記載のセパレータであって、
 各前記第2の溝部の有する前記浅溝部は、隣接する他の前記第2の溝部の有する前記浅溝部と並んだ位置に形成されており、
 前記浅溝部の断面形状は、前記連通流路における前記第1の流体の流れの下流側の曲率半径または抜き角度が上流側の曲率半径または抜き角度より大きい形状である、セパレータ。
 この燃料電池用セパレータでは、第2の流体用流路の断面積が縮小することを抑制しつつ、第1の流体用流路における第1の流体の淀みを抑制することができる。
[適用例6]適用例1に記載のセパレータであって、
 各前記第2の溝部の有する前記浅溝部は、隣接する他の前記第2の溝部の有する前記浅溝部と並んだ位置に形成されており、
 前記浅溝部の断面形状は、前記連通流路における前記第1の流体の流れの下流側の曲率半径または抜き角度が上流側の曲率半径または抜き角度より小さい形状である、セパレータ。
 この燃料電池用セパレータでは、第1の流体用流路の第2の表面側に近い部分内への第1の流体の流入を抑制し、第1の流体の流れを整流して流路の圧力損失の増大を抑制することができる。
[適用例7]適用例3に記載のセパレータであって、
 前記波形部の前記第1の表面側には、前記第1の溝部において前記浅溝部に隣接する領域の耐食性を高める被膜処理と、前記第1の溝部において前記浅溝部に隣接する領域の撥水性を高める撥水処理と、前記浅溝部における親水性を高める親水処理と、の少なくとも1つが施されている、セパレータ。
 この燃料電池用セパレータでは、溶出物が溜まりやすい領域である第1の溝部における浅溝部に隣接する領域の耐食性を高めて腐食を抑制する効果と、冷却液が溜まりやすい領域である第1の溝部における浅溝部に隣接する領域の撥水性を高めて冷却液の溜まりを抑制する効果と、比較的高さが低く圧力損失が増大しやすい浅溝部の親水性を高めて圧力損失の増大を抑制する効果と、の少なくとも1つを奏する。
[適用例8]適用例1に記載のセパレータであって、
 各前記第2の溝部は、複数の前記浅溝部を有し、
 各前記第2の溝部の有する前記浅溝部は、隣接する他の前記第2の溝部の有する前記浅溝部と並んだ位置に形成されており、
 前記波形部の前記第1の表面側において、前記深溝部の前記連通流路における前記第1の流体の流れ方向の下流側に、前記深溝部と前記浅溝部との境界壁の延長上に位置する壁体が形成されていると共に、前記浅溝部の前記下流側に、前記浅溝部の床面の延長上に位置する床体が形成されている、セパレータ。
 この燃料電池用セパレータでは、連通流路を通過した第1の流体が下流側の第1の流体用流路において、深溝部の下流側の領域に回り込んで流入することが抑制されると共に、第2の表面側に近い部分に流入することが抑制され、第1の流体の流れを整流して流路の圧力損失の増大を抑制することができる。
[適用例9]適用例1に記載のセパレータであって、
 各前記第2の溝部は、複数の前記浅溝部を有し、
 各前記第2の溝部の有する前記浅溝部は、隣接する他の前記第2の溝部の有する前記浅溝部と並んだ位置に形成されており、
 前記波形部の前記第1の表面側において、前記第1の溝部において前記深溝部に隣接する位置に、空間を充填するスペーサーが配置されている、セパレータ。
 この燃料電池用セパレータでは、連通流路を通過した第1の流体が下流側の第1の流体用流路において、深溝部の下流側の領域に回り込んで流入することが抑制され、第1の流体の流れを整流して流路の圧力損失の増大を抑制することができる。
[適用例10]適用例1に記載のセパレータであって、
 各前記第2の溝部は、通常の前記浅溝部と、通常の前記浅溝部よりも深さの深い中浅溝部と、を含む複数の前記浅溝部を有し、
 各前記第2の溝部の有する前記浅溝部は、隣接する他の前記第2の溝部の前記浅溝部と並んだ位置に形成されており、
 各前記第2の溝部の有する前記中浅溝部は、隣接する前記第2の溝部の有する通常の前記浅溝部に対向する位置に配置される、セパレータ。
 この燃料電池用セパレータでは、通常の浅溝部の位置に形成される連通流路を通過した第1の流体が、下流側の中浅溝部の位置に形成される連通流路内に流入することが抑制され、代わりに第1の流体用流路内に流入することが促進されるため、第1の流体の流れが過度な乱流となることを抑制しつつ、第1の流体用流路における第1の流体の淀みを抑制することができる。
[適用例11]適用例1に記載のセパレータであって、
 各前記第2の溝部は、複数の前記浅溝部を有し、
 各前記第2の溝部における前記深溝部と、前記第2の流体用流路における前記第2の流体の流れの下流側において前記深溝部と隣接する前記浅溝部と、の境界壁は、前記第2の表面側に近いほど前記下流側に位置するように傾いている、セパレータ。
 この燃料電池用セパレータでは、境界壁上の部分に水が滞留することが抑制され、セパレータの腐食を抑制することができる。
[適用例12]適用例11に記載のセパレータであって、
 各前記第2の溝部の有する複数の前記浅溝部は、前記第2の流体用流路における前記第2の流体の流れの下流側に位置する前記浅溝部ほど深さが深く、かつ、前記下流側に位置する前記浅溝部ほど前記第2の流体の流れ方向に沿った幅が大きい、セパレータ。
 この燃料電池用セパレータでは、境界壁上の部分に一端溜まった水が下流側に移動する際に下流側の別の境界壁上に落ちてそこに溜まることが抑制されるため、セパレータの腐食をより確実に抑制することができる。また、下流側に位置する浅溝部ほど幅を大きくすることによって、下流側の連通流路の断面積が減少することを抑制することができる。
[適用例13]適用例1に記載のセパレータであって、
 前記波形部は、深さの互いに異なる複数種類の前記浅溝部を含む、セパレータ。
 この燃料電池用セパレータでは、深さの互いに異なる複数種類の浅溝部を適切に配置することにより、燃料電池における発電分布および温度分布の均一化を図ることができる。
[適用例14]適用例1に記載のセパレータであって、
 各前記第2の溝部は、複数の前記浅溝部を有し、
 各前記第2の溝部における前記深溝部と、前記第2の流体用流路における前記第2の流体の流れの下流側において前記深溝部と隣接する前記浅溝部と、の境界壁は、前記第2の表面側から遠いほど前記下流側に位置するように傾いている、セパレータ。
 この燃料電池用セパレータでは、境界壁上の部分における水の滞留が促進されるため、燃料電池の高温運転時のドライアップを抑制することができ、発電効率の低下および電解質膜の耐久性の低下を抑制することができる。
[適用例15]適用例14に記載のセパレータであって、
 前記第2の表面側において、各前記第2の溝部の前記浅溝部に親水性を高める親水処理が施されている、セパレータ。
 この燃料電池用セパレータでは、境界壁上の部分における水の滞留がさらに促進されるため、燃料電池の高温運転時のドライアップを良好に抑制することができ、発電効率の低下および電解質膜の耐久性の低下を良好に抑制することができる。
[適用例16]適用例1に記載のセパレータであって、
 各前記第2の溝部は、複数の前記浅溝部を有し、
 各前記第2の溝部における前記深溝部と前記浅溝部との境界壁は、前記連通流路における前記第1の流体の流れ方向に対して所定の角度だけ傾いた部分を有する、セパレータ。
 この燃料電池用セパレータでは、浅溝部の位置に形成された連通流路において、深溝部と浅溝部との境界壁の傾いた部分に沿って第1の流体の一部の流れ方向を斜め方向とすることができるため、第1の流体の経路をより柔軟に設定することができる。
[適用例17]適用例16に記載のセパレータであって、
 各前記第2の溝部の有する前記浅溝部は、隣接する他の前記第2の溝部の有する前記浅溝部の位置に対して前記連通流路における前記第1の流体の流れ方向に直交する方向に所定の距離だけずれた位置に配置されている、セパレータ。
 この燃料電池用セパレータでは、連通流路を通過した第1の流体が、下流側斜め方向の浅溝部の位置の形成された連通流路内に流入することが促進され、第1の流体の一部の流れ方向を斜め方向とすることができ、第1の流体の経路をより柔軟に設定することができる。
[適用例18]適用例1に記載のセパレータであって、
 各前記第2の溝部は、複数の前記浅溝部を有し、
 各前記第2の溝部の有する前記浅溝部は、隣接する他の前記第2の溝部の有する前記浅溝部の位置に対して前記連通流路における前記第1の流体の流れ方向に直交する方向に所定の距離だけずれた位置に形成されている、セパレータ。
 この燃料電池用セパレータでは、連通流路を通過した第1の流体は、真っ直ぐ下流側に進まず、第1の流体用流路を通って下流側斜め方向の浅溝部の位置の形成された連通流路に流入するため、第1の流体用流路における第1の流体の淀みを抑制することができる。
[適用例19]適用例1に記載のセパレータであって、
 各前記第2の溝部は、複数の前記浅溝部を有し、
 前記第2の溝部の有する前記深溝部の径は、前記浅溝部の径より大きい、セパレータ。
 この燃料電池用セパレータでは、第1の溝部の位置に形成される第1の流体用流路の内の深溝部に隣接する部分の体積を低減することができ、第1の流体用流路における第1の流体の淀みを抑制することができる。また、積層時に第1の表面側に対向する部材と接触する部分である深溝部の径が大きいため、深溝部の表面における単位面積あたり積層荷重を低減することができると共に、荷重の集中による燃料電池の電極の損傷や発電分布の偏りの発生を抑制することができる。
[適用例20]燃料電池であって、
 電解質膜と前記電解質膜の一方の側に配置されたアノードと前記電解質膜の他方の側に配置されたカソードとを含む発電体層と、
 前記発電体層を間に挟んで配置された適用例1ないし適用例19に記載のセパレータと、を備える、燃料電池。
 この燃料電池では、セパレータとしての部品点数の増加を抑制しつつ流体の経路を柔軟に設定することができる。
[適用例21]適用例20に記載の燃料電池であって、さらに、
 前記第1の流体用流路における圧力損失が所定の閾値より小さくなったことを検出することにより、前記第1の流体用流路における異常を検出する検出部を備える、燃料電池。
 この燃料電池では、簡単な構成で、第1の流体用流路内にコンタミネーションや気泡がトラップされたといった第1の流体用流路における異常の発生を検知することができる。
[適用例22]電解質膜と前記電解質膜の一方の側に配置されたアノードと前記電解質膜の他方の側に配置されたカソードとを含む発電体層と、前記発電体層を間に挟んで配置された適用例3に記載のセパレータと、を有する燃料電池の製造方法であって、
 前記セパレータの前記第1の溝部の前記第1の表面側に冷却液を接触させる工程と、
 前記接触させる工程の後に、前記セパレータと前記発電体層とを積層する工程と、を備える、方法。
 この方法では、第1の溝部の第1の表面側の空間に空気が溜まることが抑制され、空気溜まりによる冷却液温度や流量の不安定化が抑制され、燃料電池の温度分布が不均一となって局所的にドライアップやフラッディングが発生したり電解質膜の耐久性が低下したりすることが抑制される。
[適用例23]燃料電池であって、
 電解質膜と前記電解質膜の一方の側に配置されたアノードと前記電解質膜の他方の側に配置されたカソードとを含む複数の発電体層と、
 各前記発電体層の前記アノード側に配置された適用例1に記載のセパレータと、
 各前記発電体層の前記カソード側に配置された平坦な板状の第2のセパレータと、を備える、燃料電池。
 この燃料電池では、第1の流体用流路の圧力損失一方のセパレータの形状のみによって決定されるため、各セルの第1の流体用流路の圧力損失のばらつきをより容易に抑制することができる。また、この燃料電池では、積層の際の位置ずれによってセパレータ間の接触面積がロスすることがないため、接触面積の確保が容易である。また、この燃料電池では、発電体層への面圧ばらつきを抑制することができるため、発電体層の層間における隙間の発生を防止し、水の滞留を防止し、濃度分極を低減することができる。また、この燃料電池では、セパレータ加工の容易化、低コスト化を図ることができる。
[適用例24]適用例23に記載の燃料電池であって、
 前記セパレータは、板状部材をプレス加工して製造され、
 前記第2のセパレータの厚さは、前記セパレータの製造に用いられる前記板状部材の厚さより薄い、燃料電池。
 この燃料電池では、良好なプレス成形性を確保しつつ、燃料電池の各セルの厚さおよび重量を低減することができる。
[適用例25]適用例23または適用例24に記載の燃料電池であって、さらに、
 少なくとも前記セパレータにおける凹凸のある位置において、前記セパレータと、前記発電体層を介さずに前記セパレータに対向する前記第2のセパレータと、の間をシールするシール部であって、前記セパレータに貼り付けられると共に前記第2のセパレータに押し付けられることによりシールを実現するシール部を備える、燃料電池。
 この燃料電池では、セパレータにおける凹凸のある位置においても、シール部によって確実なシールラインを形成することができる。
[適用例26]適用例25に記載の燃料電池であって、
 前記燃料電池は、偶数個の前記発電体層を含む第1のセルと、奇数個の前記発電体層を含む第2のセルと、を交互に積層することにより製造され、
 前記シール部は、前記燃料電池の積層前において、前記第1のセルに設けられ、前記第2のセルには設けられない、燃料電池。
 この燃料電池では、確実なシール性能を担保しつつ、シール部が設けられた第1のセルとシール部が設けられていない第2のセルとを交互に積層して燃料電池を製造することにより燃料電池のリペアビリティーを向上させることができる。
[適用例27]燃料電池であって、
 電解質膜と前記電解質膜の一方の側に配置されたアノードと前記電解質膜の他方の側に配置されたカソードとを含む複数の発電体層と、
 各前記発電体層の前記アノード側に配置された適用例1に記載のセパレータと、
 各前記発電体層の前記カソード側に配置された平坦な板状の第2のセパレータと、
 前記セパレータと、前記発電体層を介さずに前記セパレータに対向する前記第2のセパレータと、の間をシールする第1のシール部と、
 前記発電体層の端部において、前記アノード側と前記カソード側との間をシールする第2のシール部と、を備え、
 前記セパレータと前記発電体層との少なくとも一方は、前記第2の流体用流路空間と前記第1のシールを挟んで前記第2の流体用流路空間の反対側の流路空間とを前記第1のシールによるシールラインの下を通って連通するトンネル流路を形成するためのトンネル流路形成部を有し、
 前記トンネル流路形成部は、前記第2のシール部より前記発電体層の面方向に沿った内側に位置する、燃料電池。
 この燃料電池では、トンネル流路にシール部が侵入してトンネル流路が閉塞されることがなく、部品点数の増加を抑制しつつ、シールと第2の流体用の流路確保との両立を実現することができる。
[適用例28]適用例27に記載の燃料電池であって、
 前記トンネル流路形成部は、前記セパレータに形成された前記第2の表面側に凹な形状の第3の溝部を含み、
 前記第3の溝部は、前記第2の溝部の有する前記深溝部よりも深さが浅い、燃料電池。
 この燃料電池では、第3の溝部の第1の表面側に、セパレータ間をシールするシール部を配置することができる。
[適用例29]適用例27または適用例28に記載の燃料電池であって、
 前記トンネル流路形成部は、前記発電体層の前記セパレータに対向する側の表面が前記発電体層の他の部分の表面より後退している部分である薄部を含む、燃料電池。
 この燃料電池では、トンネル流路が形成される位置においても、セパレータの第1の表面側に凸な部分を設ける必要がないため、トンネル流路の位置におけるシール部の高さの減少を抑制することができ、良好なシール性を確保することができる。
[適用例30]適用例27ないし適用例29のいずれかに記載の燃料電池であって、
 前記セパレータは、複数の前記トンネル流路形成部を有し、
 前記複数の前記トンネル流路形成部は、前記燃料電池の使用時において最も重力方向下側に位置する前記トンネル流路形成部が前記第2の流体用流路空間に最も近い位置まで伸びるように形成されている、燃料電池。
 この燃料電では、生成水は、最も重力方向下側に位置するトンネル流路内に引き込まれ、他のトンネル流路内に引き込まれることが抑制されるため、他のトンネル流路が開通した状態が維持される。そのため、この燃料電池では、生成水の排水を促進することができると共に、すべてのトンネル流路が閉塞されることを防止することができる。
 なお、本発明は、種々の態様で実現することが可能であり、例えば、燃料電池用セパレータ、燃料電池用セパレータを備える燃料電池、燃料電池の製造方法、燃料電池を備える燃料電池システム、燃料電池システムを備える自動車等の移動体等の形態で実現することができる。
本発明の第1実施例における燃料電池システム10の概略構成を示す説明図である。 燃料電池100の平面構成を示す説明図である。 燃料電池100の断面構成を示す説明図である。 燃料電池100の断面構成を示す説明図である。 燃料電池100の断面構成を示す説明図である。 アノード側セパレータ310の波形部WSPの構成を示す斜視図である。 第2実施例における燃料電池100の断面構成を示す説明図である。 第3実施例の燃料電池100におけるトンネル流路TR付近の構成を示す説明図である。 第3実施例の変形例におけるトンネル流路TR付近の構成を示す説明図である。 第4実施例における燃料電池100の平面構成を示す説明図である。 第4実施例における燃料電池100の断面構成を示す説明図である。 第4実施例における燃料電池100の断面構成を示す説明図である。 第5実施例における燃料電池100のアノード側セパレータ310の断面構成を示す説明図である。 第5実施例の変形例における燃料電池100のアノード側セパレータ310の断面構成を示す説明図である。 第6実施例における燃料電池100のアノード側セパレータ310の断面構成を示す説明図である。 第6実施例の変形例における燃料電池100のアノード側セパレータ310の断面構成を示す説明図である。 第7実施例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。 第8実施例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。 第9実施例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。 第10実施例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。 第10実施例の変形例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。 第11実施例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。 第11実施例の変形例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。 第12実施例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。 第13実施例における燃料電池100の制御方法を示す説明図である。 第14実施例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。 第15実施例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。 第15実施例の変形例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。 第16実施例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。 第16実施例の変形例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。 第17実施例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。 第17実施例の変形例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。 第18実施例における燃料電池100の構成を示す説明図である。 第18実施例における燃料電池100の構成を示す説明図である。 第18実施例における燃料電池100の構成を示す説明図である。 第19実施例における燃料電池100の平面構成を示す説明図である。
 次に、本発明の実施の形態を実施例に基づいて説明する。
A.第1実施例:
 図1は、本発明の第1実施例における燃料電池システム10の概略構成を示す説明図である。燃料電池システム10は、燃料電池100を備えている。燃料電池100は、エンドプレート110と、絶縁板120と、集電板130と、複数の単セル140と、集電板130と、絶縁板120と、エンドプレート110と、が、この順に積層されたスタック構造を有している。
 燃料電池100には、高圧水素を貯蔵した水素タンク50から、シャットバルブ51、レギュレータ52、配管53を介して、燃料ガスとしての水素が供給される。水素は、後述する燃料ガス供給マニホールドを介して各単セル140に供給され、各単セル140における発電に利用される。各単セル140において利用されなかった水素(アノードオフガス)は、後述する燃料ガス排出マニホールドを介して集約され、排出配管54を介して燃料電池100の外部に排出される。なお、燃料電池システム10は、アノードオフガスを供給側の配管53に再循環させる再循環機構を有するとしてもよい。
 燃料電池100には、また、エアポンプ60、配管61を介して、酸化剤ガスとしての空気が供給される。空気は、後述する酸化剤ガス供給マニホールドを介して各単セル140に供給され、各単セル140における発電に利用される。各単セル140において利用されなかった空気(カソードオフガス)は、後述する酸化剤ガス排出マニホールドを介して集約され、配管63を介して燃料電池100の外部に排出される。燃料ガスおよび酸化剤ガスは、反応ガスとも呼ばれる。
 さらに、燃料電池100には、燃料電池100の各単セル140を冷却するため、ウォーターポンプ71および配管72を介して、ラジエータ70により冷却された冷却媒体が供給される。冷却媒体は、後述する冷却媒体供給マニホールドを介して各単セル140に導かれ、各単セル140を冷却する。各単セル140を冷却した後の冷却媒体は、後述する冷却媒体排出マニホールドを介して集約され、配管73を介してラジエータ70に循環する。冷却媒体としては、例えば水、エチレングリコール等の不凍水、空気などが用いられる。本実施例では、液体の冷却媒体(冷却液)が使用される。
 燃料電池システム10は、また、制御部80を備えている。制御部80は、図示しないCPUやメモリ等を備えたコンピュータである。制御部80は、燃料電池システム10の各部に配された温度センサや圧力センサ、電圧計等からの信号を受領し、受領した信号に基づき燃料電池システム10全体の制御を行う。
 図2は、燃料電池100の平面構成を示す説明図である。また、図3~5は、燃料電池100の断面構成を示す説明図である。図3には、図2のA1-A1の位置における燃料電池100の部分断面を示しており、図4には、図2のB1-B1の位置における燃料電池100の部分断面を示しており、図5には、図2のC1-C1の位置における燃料電池100の部分断面を示している。
 燃料電池100の内部には、図2に示すように、燃料電池100に供給された燃料ガスとしての水素を各単セル140に分配する燃料ガス供給マニホールド162と、燃料電池100に供給された酸化剤ガスとしての空気を各単セル140に分配する酸化剤ガス供給マニホールド152と、各単セル140において利用されなかった燃料ガスを集めて燃料電池100の外部に排出する燃料ガス排出マニホールド164と、各単セル140において利用されなかった酸化剤ガスを集めて燃料電池100の外部に排出する酸化剤ガス排出マニホールド154と、燃料電池100に供給された冷却液を各単セル140に分配する冷却液供給マニホールド172と、各単セル140から排出される冷却液を集めて燃料電池100の外部に排出する冷却液排出マニホールド174と、が形成されている。上記各マニホールドは、燃料電池100の積層方向に略平行な方向(すなわち単セル140の面方向に略垂直な方向)に伸びる形状の流路である。
 図2に示すように、単セル140の平面形状は略長方形であり、各マニホールドは単セル140の平面における外縁辺付近に配置されている。具体的には、燃料ガス供給マニホールド162および冷却液供給マニホールド172の位置は、単セル140の外縁辺の内の一方の短辺に隣接した位置であり、燃料ガス排出マニホールド164および冷却液排出マニホールド174の位置は、単セル140の外縁辺の内の他方の短辺に隣接した位置である。単セル140の外縁辺の短辺方向に沿った燃料ガス供給マニホールド162と冷却液供給マニホールド172との位置関係は、燃料ガス排出マニホールド164と冷却液排出マニホールド174との位置関係と逆の関係になっている。また、酸化剤ガス供給マニホールド152の位置は、単セル140の外縁辺の内の一方の長辺(燃料ガス供給マニホールド162から遠い方の長辺)の全体に隣接した位置であり、酸化剤ガス排出マニホールド154の位置は、単セル140の外縁辺の内の他方の長辺(燃料ガス供給マニホールド162から近い方の長辺)の全体に隣接した位置である。
 なお、本明細書では、燃料電池100において単セル140を積層する方向を「積層方向」と呼ぶものとし、単セル140の主表面に平行な方向(すなわち積層方向と略垂直な方向)を「面方向」と呼ぶものとする。また、面方向の内、単セル140の長辺に平行な方向をX方向と呼び、単セル140の短辺に平行な方向(X方向に略垂直な方向)をY方向と呼ぶものとする。
 図3~5に示すように、燃料電池100の単セル140は、電解質膜212のそれぞれの面にアノード(アノード電極層)214、カソード(カソード電極層)215が配置された膜電極接合体(MEA)210を含む発電体層200を、一対のセパレータ(カソード側セパレータ320およびアノード側セパレータ310)によって挟持した構成となっている。膜電極接合体210は、さらに、アノード214の外側に配置されたアノード側拡散層216と、カソード215の外側に配置されたカソード側拡散層217と、を含んでいる。また、発電体層200は、さらに、膜電極接合体210のカソード側拡散層217の外側に配置されたカソード側多孔体流路層230を含んでいる。
 電解質膜212は、フッ素系樹脂材料あるいは炭化水素系樹脂材料で形成された固体高分子膜であり、湿潤状態において良好なプロトン導電性を有する。カソード215およびアノード214は、例えば、触媒としての白金または白金と他の金属からなる合金を含んでいる。カソード側拡散層217およびアノード側拡散層216は、例えば、炭素繊維からなる糸で織成したカーボンクロス、あるいはカーボンペーパーまたはカーボンフェルトによって形成されている。カソード側多孔体流路層230は、金属多孔体(例えばエキスパンドメタル)やカーボン多孔体などのガス拡散性および導電性を有する多孔質の材料で形成されている。カソード側多孔体流路層230は、カソード側拡散層217より空孔率が高いため、内部におけるガスの流動抵抗が低く、酸化剤ガスが流動する酸化剤ガス用流路として機能する。
 カソード側セパレータ320およびアノード側セパレータ310は、金属板を加工して製造される。具体的には、カソード側セパレータ320は、金属板に、各マニホールドを構成する開口等を形成するための孔空け加工を施して製造される。図3~5に示すように、カソード側セパレータ320は、平坦な板状形状である。一方、アノード側セパレータ310は、金属板に、各マニホールドを構成する開口等を形成するための孔空け加工と共に、金属板を折り曲げて波形断面形状の部分を設けるプレス加工を施して製造される。図3,4に示すように、アノード側セパレータ310は、波形断面形状の波形部WSPを有する。図2には、単セル140の平面におけるアノード側セパレータ310の波形部WSPの位置をハッチングにより示している。
 図6は、アノード側セパレータ310の波形部WSPの構成を示す斜視図である。図6において、上方は、隣接する他の単セル140のカソード側セパレータ320に対向する側であり、下方は、発電体層200に対向する側である。図6および図4に示すように、アノード側セパレータ310の波形部WSPは、カソード側セパレータ320に対向する表面側(以下、「第1の表面側」と呼ぶ)に凹な第1の溝部316と、発電体層200に対向する表面側(以下、「第2の表面側」と呼ぶ)に凹な第2の溝部315と、がX方向に沿って交互に繰り返し並んだ波形断面形状を有している。各第1の溝部316および各第2の溝部315の平面形状は、Y方向に沿って伸びる形状である。
 図6および図4に示すように、アノード側セパレータ310の波形部WSPは、第1の溝部316の第1の表面側(カソード側セパレータ320に対向する表面側)に、冷却液用の流路空間CSを形成する。冷却液用流路空間CSは、アノード側セパレータ310の波形部WSPの第1の溝部316とカソード側セパレータ320の表面とに囲まれた空間である。また、アノード側セパレータ310の波形部WSPは、第2の溝部315の第2の表面側(発電体層200に対向する表面側)に、燃料ガス用の流路空間ASを形成する。燃料ガス用流路空間ASは、アノード側セパレータ310の波形部WSPの第2の溝部315と発電体層200の表面とに囲まれた空間である。第1の溝部316および第2の溝部315は、Y方向に沿って伸びる形状であるため、冷却液用流路空間CSおよび燃料ガス用流路空間ASもY方向に沿って伸びる空間となる。
 図6および図3,4に示すように、アノード側セパレータ310の波形部WSPの各第2の溝部315は、浅溝部314を有している。浅溝部314は、第2の表面側(発電体層200に対向する表面側)から見た深さd2が他の部分(以下、「深溝部313」と呼ぶ)の深さd1よりも浅い部分である。ここで、第2の溝部315(深溝部313および浅溝部314)の深さとは、アノード側セパレータ310の第2の表面側の最外部(すなわち発電体層200に接触する部分)の位置から、第2の溝部315の第1の表面側の最外部(すなわち第2の溝部315の積層方向に略垂直な部分)の位置までの積層方向に沿った距離を意味する。そのため、第2の溝部315の第2の表面側に形成される燃料ガス用流路空間ASの深さは、深溝部313の位置において深く、浅溝部314の位置において浅くなる。また、複数の単セル140が積層された燃料電池100において、アノード側セパレータ310は、各深溝部313の位置でカソード側セパレータ320の表面と接触し、浅溝部314の位置では接触しない。従って、アノード側セパレータ310の波形部WSPの浅溝部314の位置の第1の表面側には、カソード側セパレータ320の表面との間に、浅溝部314を挟んで隣接する2つの冷却液用流路空間CSを連通する連通流路CPが形成される。図6に示すように、本実施例では、各第2の溝部315に複数の浅溝部314が形成されている。また、各第2の溝部315の浅溝部314は、X方向に沿って隣接する他の第2の溝部315の浅溝部314と並んだ位置に形成されている。
 一方、図6および図4に示すように、アノード側セパレータ310の各第1の溝部316は、第1の表面側(カソード側セパレータ320に対向する表面側)から見た深さが一定である。ここで、第1の溝部316の深さとは、アノード側セパレータ310の波形部WSPの第1の表面側の最外部(すなわちカソード側セパレータ320に接触する部分)の位置から、第1の溝部316の第2の表面側の最外部(すなわち第1の溝部316の積層方向に略垂直な部分)の位置までの積層方向に沿った距離を意味する。そのため、第1の溝部316の第1の表面側に形成される冷却液用流路空間CSの深さは一定となる。また、複数の単セル140が積層された燃料電池100において、アノード側セパレータ310は、各第1の溝部316の全面の位置で発電体層200の表面と接触する。
 図3に示すように、アノード側セパレータ310は、波形部WSPのY方向に沿った両端に隣接した位置に、第1の表面側に凹な形状の第4の溝部312を有している。第4の溝部312は、図4に示すように、波形部WSPの全体にわたって隣接するように、X方向に連続して形成されている。第4の溝部312の深さは、第2の溝部315の深溝部313の深さと同じである。そのため、複数の単セル140が積層された燃料電池100において、アノード側セパレータ310は、第4の溝部312の位置でもカソード側セパレータ320の表面と接触する。また、第4の溝部312は、第2の表面側(発電体層200に対向する表面側)に、燃料ガスをX方向に沿って流動させる連続した流路空間である燃料ガス用コモンレールACRを形成する。図2には、単セル140の平面における燃料ガス用コモンレールACRの位置をハッチングにより示している。図3に示すように、燃料ガス用コモンレールACRは、波形部WSPにおける各第2の溝部315により形成される燃料ガス用流路空間ASと連通している。
 図3,4に示すように、単セル140の発電体層200の外縁部には、カソード側とアノード側との間のクロスリークを防止するためのシール部(ガスケット)420が配置されている。シール部420は、例えば、シリコンゴム、ブチルゴム、フッ素ゴム等のシール材料を用いた射出成形により形成される。
 また、アノード側セパレータ310のカソード側セパレータ320に対向する側の表面には、図2に示す各マニホールドを囲むシールラインSLや冷却液を流動させる領域を囲むシールラインSLを形成するための各種シール部(ガスケット)が配置されている。具体的には、図3に示すように、アノード側セパレータ310には、酸化剤ガス供給マニホールド152および酸化剤ガス排出マニホールド154を囲むシールラインSLを形成するためのシール部430(図3)と、燃料ガス供給マニホールド162および燃料ガス排出マニホールド164を囲むシールラインSLを形成するためのシール部450(図4)と、アノード側セパレータ310とカソード側セパレータ320との間において冷却液を流動させる領域を囲むシールラインSLを形成するためのシール部440(図3,4)と、が配置されている。各シール部は、凸型断面形状のリップ部(432,442,452)を有しており、各単セル140が積層される際に、各リップ部が対向するカソード側セパレータ320により圧縮されて変形し、カソード側セパレータ320の表面に密着することにより、シールラインSLが形成される。
 図4,5に示すように、アノード側セパレータ310の燃料ガス供給マニホールド162および燃料ガス排出マニホールド164の付近には、第2の表面側(発電体層200に対向する表面側)に凹な形状の第3の溝部317が形成されている。第3の溝部317の深さは、第4の溝部312や第2の溝部315の深溝部313よりも浅い。ここで、第3の溝部317の深さは、アノード側セパレータ310の第2の表面側の最外部(すなわち発電体層200に接触する部分)の位置から第3の溝部317の第1の表面側の最外部(すなわち第3の溝部317の積層方向に略垂直な部分)の位置までの積層方向に沿った距離を意味する。また、第3の溝部317は、一方の端部が、燃料ガス用コモンレールACRを形成する第4の溝部312と連続しており、他方の端部に開口318が形成されている。
 このように構成された第3の溝部317は、シール部440,450によるシールラインSLの下(発電体層200側)を通って、燃料ガス用流路空間ASに連通する燃料ガス用コモンレールACRと燃料ガス供給マニホールド162との間および燃料ガス用コモンレールACRと燃料ガス排出マニホールド164との間を連通するトンネル流路TRを形成する。トンネル流路TRを形成するための第3の溝部317は、その全体が、発電体層200の外縁部に配置されたシール部420よりも面方向に沿って内側に位置している。そのため、トンネル流路TRは、全体にわたって、シール部420に対向することはなく、発電体層200のアノード側拡散層216に対向する。本実施例では、第3の溝部317により、X方向に伸びる複数のトンネル流路TRがY方向に沿って並んで形成される。
 図3,4において矢印で示すように、燃料ガス供給マニホールド162に供給された燃料ガスとしての水素は、開口318から上流側(供給側)のトンネル流路TR内を通って上流側の燃料ガス用コモンレールACRに導かれ、燃料ガス用コモンレールACR内をX方向に沿って拡散すると共に、燃料ガス用コモンレールACRに連通した燃料ガス用流路空間AS内に進入し、燃料ガス用流路空間AS内をY方向に沿って流動する。このとき、水素は、膜電極接合体210における発電に利用される。発電に利用されなかった水素は、燃料ガス用流路空間ASから下流側(排出側)の燃料ガス用コモンレールACR内に進入し、燃料ガス用コモンレールACR内を流動して下流側のトンネル流路TRに至り、トンネル流路TRの開口318から燃料ガス排出マニホールド164へと排出される。
 一方、図3において矢印で示すように、酸化剤ガス供給マニホールド152に供給された酸化剤ガスとしての空気は、カソード側セパレータ320の発電体層200に対向する位置に設けられた上流側(供給側)の開口322を通ってカソード側多孔体流路層230の内部に進入し、カソード側多孔体流路層230内を拡散しつつ流動する。このとき、空気は、膜電極接合体210における発電に利用される。発電に利用されなかった空気は、カソード側セパレータ320の発電体層200に対向する位置に設けられた下流側(排出側)の開口322を通って酸化剤ガス排出マニホールド154へと排出される。
 また、図2において矢印で示すように、冷却液供給マニホールド172に供給された冷却液は、アノード側セパレータ310の第1の表面側(カソード側セパレータ320に対向する表面側)に形成された冷却液用流路空間CSおよび連通流路CP(図3,4,6)を通って縦横に流動しつつ単セル140を冷却し、冷却液排出マニホールド174へと排出される。
 以上説明したように、本実施例では、アノード側セパレータ310が、第1の表面側に凹な形状の第1の溝部316と第2の表面側に凹な形状の第2の溝部315とが交互に繰り返し並んだ波形断面形状を有する波形部WSPを有し、第1の溝部316の第1の表面側には冷却液用流路空間CSが形成され、第2の溝部315の第2の表面側には燃料ガス用流路空間ASが形成される。そして、各第2の溝部315は、第2の表面側から見た深さが他の部分(深溝部313)より浅い浅溝部314を有するため、浅溝部314の位置の第1の表面側に、浅溝部314を挟んで隣接する2つの冷却液用流路空間CSを連通する連通流路CPが形成される。そのため、本実施例では、アノード側セパレータ310という1つの部品のみで冷却液用流路空間CSおよび燃料ガス用流路空間ASを形成することができると共に、冷却液用流路空間CSおよび連通流路CPを形成することによって冷却液の流れ方向を燃料ガスの流れ方向に平行な方向に限定されず自由に設定することができるため、部品点数の増加を抑制しつつ流体の経路を柔軟に設定することができる。例えば、本実施例のアノード側セパレータ310を用いれば、各マニホールドの配置の自由度を向上させたり単セル140内の熱設計の自由度を向上させたりすることができると共に、燃料電池100の軽量化、小型化、低コスト化を実現することができる。
 また、本実施例の燃料電池100では、アノード側セパレータ310は波形断面形状の波形部WSPを有するが、カソード側セパレータ320は平坦な板状形状である。そのため、本実施例の燃料電池100では、カソード側セパレータ320も波形断面形状の波形部WSPを有する場合と比較して、以下の有利な点を有する。すなわち、本実施例の燃料電池100では、冷却液用流路の圧力損失がアノード側セパレータ310の形状のみによって決定されるため、各単セル140の冷却液用流路の圧力損失のばらつきをより容易に抑制することができる。また、本実施例の燃料電池100では、積層の際の位置ずれによってセパレータ間の接触面積がロスすることがないため、接触面積の確保が容易である。また、本実施例の燃料電池100では、膜電極接合体210への面圧ばらつきを抑制することができるため、拡散層と触媒層との間における隙間の発生を防止し、水の滞留を防止し、濃度分極を低減することができる。また、本実施例の燃料電池100では、セパレータ加工の容易化、低コスト化を図ることができる。
 なお、本実施例の燃料電池100において、カソード側セパレータ320の製造に用いられる金属板の厚さは、アノード側セパレータ310の製造に用いられる金属板の厚さよりも薄いことが好ましい。アノード側セパレータ310は、プレス加工を施して製造されるため、薄板化の限界がプレス成形性により決まり、使用する金属板の厚さを強度上の限界まで薄くすることができない。一方、カソード側セパレータ320は平坦な板状形状であるため、より薄い金属板を用いることができる。そのため、カソード側セパレータ320の製造に用いられる金属板の厚さをアノード側セパレータ310の製造に用いられる金属板の厚さよりも薄くすることにより、良好なプレス成形性を確保しつつ、単セル140の厚さおよび重量を低減することができる。
 また、本実施例では、トンネル流路TRを形成するための第3の溝部317の全体が、発電体層200の外縁部に配置されたシール部420よりも面方向に沿って内側に位置しているため、トンネル流路TRにシール部420が侵入してトンネル流路TRが閉塞されることがなく、部品点数の増加を抑制しつつ、シールと反応ガスの流路確保との両立を実現することができる。また、本実施例では、トンネル流路TRを形成するための第3の溝部317の深さは、第2の溝部315の深溝部313よりも浅いため、第3の溝部317のカソード側セパレータ320側に、冷却液を流動させる領域を囲むためのアノード側セパレータ310とカソード側セパレータ320との間のシール部440を配置することができる。
 また、本実施例の燃料電池100では、各単セル140の波形部WSPに対向する領域において、燃料ガス流れ方向と酸化剤ガス流れ方向とが反対方向となっている。このようないわゆるカウンターフロー構成とすることにより、カソード側における電気化学反応によって生成された水(水蒸気)が、カソード側の酸化剤ガス流れ方向に沿った下流領域からアノード側の燃料ガス流れ方向に沿った上流領域に移動し、さらに水蒸気が燃料ガス流れによってアノード側を移動することにより、燃料電池100全体の乾燥を抑制することができ、ひいては発電性能の低下を抑制することができる。また、本実施例の燃料電池100では、酸化剤ガス用流路が、第2の溝部315により形成される燃料ガス用流路空間ASより圧力損失の大きいカソード側多孔体流路層230によって形成されているが、酸化剤ガス流れ方向が単セル140の短辺方向に沿った方向であるため、単セル140の面方向に沿った良好なガス分配を実現することができる。
 また、本実施例の燃料電池100の各単セル140の製造(解体後の再組み立てを含む)の際には、アノード側セパレータ310と発電体層200とを積層する前に、例えばスポイトや注射器を用いてアノード側セパレータ310の第1の溝部316の第1の表面側(カソード側セパレータ320に対向する表面側)への冷却液の注入が行われる。積層は、注入された冷却液が流れ落ちないようにして行われる。そのため、製造された燃料電池100では、第1の溝部316の第1の表面側の空間に空気が溜まることが抑制され、空気溜まりによる冷却液温度や流量の不安定化が抑制され、燃料電池100の温度分布が不均一となって局所的にドライアップやフラッディングが発生したり電解質膜212の耐久性が低下したりすることが抑制される。なお、積層前に実行される工程は、第1の溝部316の第1の表面側に冷却液を接触させる工程であればよく、アノード側セパレータ310全体を容器に入れた冷却液に浸す工程であってもよい。
B.第2実施例:
 図7は、第2実施例における燃料電池100の断面構成を示す説明図である。図7には、図2のB1-B1の位置における燃料電池100の部分断面を示している。第7実施例の燃料電池100は、トンネル流路TRの構成の点で第1実施例の燃料電池100(図4参照)と異なっており、その他の点は第1実施例の燃料電池100と同様である。ここで、トンネル流路TRは、シール部440,450によるシールラインSLの下(発電体層200側)を通る流路である。第2実施例のトンネル流路TRは、第1実施例と同様に、燃料ガス供給マニホールド162と燃料ガス用コモンレールACRとの間および燃料ガス排出マニホールド164と燃料ガス用コモンレールACRとの間を連通する流路である。
 図4に示すように、第1実施例の燃料電池100では、アノード側セパレータ310に第3の溝部317を設けることによりトンネル流路TRが形成される。これに対し、図7に示すように、第2実施例の燃料電池100では、アノード側拡散層216に、アノード側セパレータ310に対向する側の表面が他の部分の表面より後退している薄部TPを設けることによりトンネル流路TRが形成される。薄部TPは、アノード側拡散層216を切り欠いたり圧縮したりすることにより形成される。薄部TPは、X方向に沿って、燃料ガス用コモンレールACRに対向する位置からシール部440,450の下を経てシール部440,450より外側(燃料ガス供給マニホールド162に近い側)の位置まで連続して形成され、外側の位置においてアノード側セパレータ310に形成された開口318に連通している。なお、トンネル流路TRは、図5に示した第1実施例と同様に、Y方向に沿って複数並んで形成される。
 第2実施例の燃料電池100では、図7において矢印で示すように、燃料ガス供給マニホールド162に供給された燃料ガスとしての水素は、開口318から上流側(供給側)のトンネル流路TR内を通って上流側の燃料ガス用コモンレールACRに導かれ、燃料ガス用コモンレールACR内をX方向に沿って拡散すると共に、燃料ガス用コモンレールACRに連通した燃料ガス用流路空間AS内に進入し、燃料ガス用流路空間AS内をY方向に沿って流動する。このとき、水素は、膜電極接合体210における発電に利用される。発電に利用されなかった水素は、燃料ガス用流路空間ASから下流側(排出側)の燃料ガス用コモンレールACR内に進入し、燃料ガス用コモンレールACR内を流動して下流側のトンネル流路TRに至り、トンネル流路TRの開口318から燃料ガス排出マニホールド164へと排出される。
 以上説明したように、第2実施例の燃料電池100では、アノード側拡散層216に薄部TPを設けることによってトンネル流路TRが形成されるため、トンネル流路TRが形成される位置においても、アノード側セパレータ310の第1の表面側(カソード側セパレータ320に対向する表面側)に凸な部分を設ける必要がないため、トンネル流路TRの位置におけるシール部440,450の高さの減少を抑制することができ、良好なシール性を確保することができる。また、第2実施例の燃料電池100では、第1実施例と同様に、トンネル流路TRにシール部420が侵入してトンネル流路TRが閉塞されることがなく、部品点数の増加を抑制しつつシールと反応ガスの流路確保との両立を実現することができる。
 なお、第1実施例の燃料電池100(図4)のようにアノード側セパレータ310に第3の溝部317を設けると共に、第3の溝部317に対向するアノード側拡散層216に薄部TPを設けることにより、トンネル流路TRを形成するとしてもよい。このようにすれば、第3の溝部317の深さとアノード側拡散層216の薄部TPにおける厚さ減少量(すなわち、他の部分の厚さとの差)とを共に抑制しつつトンネル流路TRの高さを確保することができるため、アノード側拡散層216の全体厚さの増加や強度の低下の抑制と、シール部440,450の高さの減少の抑制と、を両立させることができる。
C.第3実施例:
 図8は、第3実施例の燃料電池100におけるトンネル流路TR付近の構成を示す説明図である。図8には、トンネル流路TRおよびトンネル流路TRに連通する燃料ガス用コモンレールACRの平面と、当該平面におけるA2-A2およびB2-B2の位置における断面を示している。第3実施例の燃料電池100は、トンネル流路TRの構成の点で第1実施例の燃料電池100と異なっており、その他の点は第1実施例の燃料電池100と同様である。トンネル流路TRは、シール部440,450によるシールラインSLの下(発電体層200側)を通り、燃料ガス供給マニホールド162と燃料ガス用コモンレールACRとの間および燃料ガス排出マニホールド164と燃料ガス用コモンレールACRとの間を連通する流路である。
 図8に示すように、第3実施例の燃料電池100では、第1実施例(図5参照)と同様に、3つの第3の溝部317によって3つのトンネル流路TRがY方向に並んで形成されている。第3実施例の燃料電池100は、図8に示す3つの第3の溝部317の内の最も下に示した第3の溝部317が最も重力方向下側に位置するように配置されて使用される。第3実施例では、図8において最も下に示した第3の溝部317が燃料ガス用流路空間ASに連通する燃料ガス用コモンレールACRに最も近い位置(図8の右側)まで伸びるように形成されている。
 燃料ガス用コモンレールACR内には発電によって生成された生成水が進入する。燃料ガス用コモンレールACR内に進入した生成水は、燃料ガス流れにのって移動する。生成水は、燃料ガス用コモンレールACRにおけるトンネル流路TRとの境界まで移動し、トンネル流路TRに接触すると、毛細管現象によってトンネル流路TR内に引き込まれる。本実施例では、最も重力方向下側に位置する第3の溝部317によって形成されたトンネル流路TRが燃料ガス用コモンレールACRに最も近い位置まで伸びているため、生成水は最も重力方向下側に位置するトンネル流路TR内に引き込まれる。一方、他のトンネル流路TRに生成水が引き込まれることが抑制されるため、他のトンネル流路TRは生成水によって閉塞されず開通した状態が維持される。そのため、第3実施例の燃料電池100では、燃料ガス用コモンレールACRからの排水が促進されると共に、すべてのトンネル流路TRが閉塞されることを防止することができる。トンネル流路TRが完全に閉塞されると氷点下において再始動ができなくなるおそれがあるが、本実施例ではそのような事態の発生を回避することができる。
 図9は、第3実施例の変形例におけるトンネル流路TR付近の構成を示す説明図である。図9には、燃料ガス用コモンレールACRとトンネル流路TRとの境界付近の位置関係を概略的に示している。図9における上方向が重力方向上側であり、図9における下方向が重力方向下側である。図9(a)に示すように、最も重力方向下側に位置するトンネル流路TRのみの長さを他のトンネル流路TRの長さより長くすることによって、最も重力方向下側に位置するトンネル流路TRを燃料ガス用コモンレールACRに最も近い位置まで伸ばすようにしてもよい。あるいは、図9(b)に示すように、すべてのトンネル流路TRの長さは略同一であるが、X方向に沿った配置をずらすことによって、最も重力方向下側に位置するトンネル流路TRを燃料ガス用コモンレールACRに最も近い位置まで伸ばすようにしてもよい。また、図9(c)に示すように、各トンネル流路TRの長さを重力方向下側に位置するトンネル流路TRほど長くすることによって、最も重力方向下側に位置するトンネル流路TRを燃料ガス用コモンレールACRに最も近い位置まで伸ばすようにしてもよい。
 なお、図8に示すトンネル流路TRの構成は、燃料ガス排出マニホールド164に近い方の側についてのみ採用し、燃料ガス供給マニホールド162に近い方の側については、各トンネル流路TRの燃料ガス用コモンレールACRとの境界の位置を略同一とした構成を採用するものとしてもよい。また、図8では、アノード側セパレータ310に第3の溝部317を設けることによりトンネル流路TRを形成する場合について説明したが、第2実施例(図7)のように、アノード側拡散層216に薄部TPを設けることによりトンネル流路TRを形成する場合についても同様に、最も重力方向下側に位置する薄部TPによって形成されたトンネル流路TRを燃料ガス用コモンレールACRに最も近い位置まで伸ばすことにより、すべてのトンネル流路TRが閉塞されることを防止することができる。
D.第4実施例:
 図10は、第4実施例における燃料電池100の平面構成を示す説明図である。また、図11,12は、第4実施例における燃料電池100の断面構成を示す説明図である。図11には、図10のA1-A1の位置における燃料電池100の部分断面を示しており、図12には、図10のB1-B1の位置における燃料電池100の部分断面を示している。
 第4実施例の燃料電池100は、トンネル流路TRと燃料ガス用コモンレールACRとの関係の点で第1実施例の燃料電池100と異なっており、その他の点は第1実施例の燃料電池100と同様である。図10,11に示すように第4実施例の燃料電池100では、冷却液を流動させる領域を囲むシールラインSLを形成するためのシール部440が、燃料ガス用コモンレールACRの外側ではなく内側に配置されている。ここで、燃料ガス用コモンレールACRの内側とは、供給側(上流側)の燃料ガス用コモンレールACRに関しては燃料ガス用コモンレールACRより下流側を意味し、排出側(下流側)の燃料ガス用コモンレールACRに関しては燃料ガス用コモンレールACRより上流側を意味する。また、燃料ガス供給マニホールド162および供給側の燃料ガス用コモンレールACRを囲むシール部460と、燃料ガス排出マニホールド164および排出側の燃料ガス用コモンレールACRを囲むシール部460とが、配置されている。
 また、図11に示すように、各燃料ガス用コモンレールACRと波形部WSPとの間には、第3の溝部317が設けられることにより、シール部450,460によるシールラインSLの下(発電体層200側)を通って燃料ガス用コモンレールACRと燃料ガス用流路空間ASとの間を連通するトンネル流路TRが形成されている。トンネル流路TRは、燃料ガス用コモンレールACRの延伸方向に沿った複数の位置に形成される。
 図11,12において矢印で示すように、燃料ガス供給マニホールド162に供給された燃料ガスとしての水素は、供給側(上流側)の燃料ガス用コモンレールACR内に導かれ、燃料ガス用コモンレールACR内をX方向に沿って拡散しつつ、トンネル流路TR内を通って燃料ガス用流路空間AS内に進入し、燃料ガス用流路空間AS内をY方向に沿って流動する。このとき、水素は、膜電極接合体210における発電に利用される。発電に利用されなかった水素は、燃料ガス用流路空間ASからトンネル流路TRを通って下流側(排出側)の燃料ガス用コモンレールACR内に進入し、燃料ガス用コモンレールACR内を流動して燃料ガス排出マニホールド164へと排出される。
 以上説明したように、第4実施例の燃料電池100では、冷却液を流動させる領域を囲むシールラインSLを形成するためのシール部440が燃料ガス用コモンレールACRの内側に配置されており、トンネル流路TRも燃料ガス用コモンレールACRの内側に形成されているため、トンネル流路TRが燃料ガス用コモンレールACRの外側に形成される第1実施例の燃料電池100と比較して、流路の圧力損失を低減することができる。
 なお、第4実施例の燃料電池100において、燃料ガス用コモンレールACRの内側に形成されたトンネル流路TRのさらに内側に別のコモンレールを設けるとしてもよい。このようにすれば、燃料ガスの分配性をさらに向上させることができる。また、第1実施例の燃料電池100において、第4実施例と同様に、燃料ガス用コモンレールACRの内側に、別のトンネル流路TRを設けるとしてもよい。
E.第5実施例:
 図13は、第5実施例における燃料電池100のアノード側セパレータ310の断面構成を示す説明図である。図13には、アノード側セパレータ310の浅溝部314(図4,6参照)の位置を通るX方向に沿った断面を示している。図13には、アノード側セパレータ310の浅溝部314とカソード側セパレータ320との間に形成された連通流路CPと、第1の溝部316とカソード側セパレータ320との間に形成された冷却液用流路空間CSと、により構成された凹凸のある冷却液用の流路における冷却液の流れ方向を矢印で示している。図13に示す例では、図の左側が上流側であり、図の右側が下流側である。
 第5実施例の燃料電池100は、アノード側セパレータ310の浅溝部314の形状の点で第1実施例の燃料電池100と異なっており、その他の点は第1実施例の燃料電池100と同様である。第5実施例では、図13に示すように、浅溝部314の断面形状は、連通流路CPにおける冷却液流れの下流側の曲率半径Raが上流側の曲率半径Rbより大きい形状となっている。
 なお、このような断面形状の浅溝部314を有するアノード側セパレータ310は、金属板のプレス加工によって製造することができる。アノード側セパレータ310を、金属板や樹脂カーボン板の削り出しや金属板のエッチングによって製造するものとしてもよい。また、アノード側セパレータ310を、樹脂カーボンの射出成形によって製造するものとしてもよい。
 このように連通流路CPにおける冷却液流れの下流側の曲率半径Raを大きくすると、連通流路CPを通過した冷却液が、下流側の冷却液用流路空間CSにおいて、カソード側セパレータ320に近い側の部分(図の上側の部分)を真っ直ぐに通過するのではなく、発電体層200(のアノード側拡散層216)に近い側の部分(図の下側の部分)内に流入することが促進される。ただし、単純に連通流路CPにおける冷却液流れの下流側の曲率半径Raを大きくすると、浅溝部314の発電体層200側に形成される燃料ガス用流路空間ASの断面積が小さくなる。第5実施例の燃料電池100では、浅溝部314の断面形状を、連通流路CPにおける冷却液流れの下流側の曲率半径Raが上流側の曲率半径Rbより大きい形状とすることにより、燃料ガス用流路空間ASの断面積が縮小することを抑制しつつ、冷却液用流路空間CSにおける冷却液の淀みを抑制して燃料電池100の冷却性能の低下を抑制することができる。なお、例えば浅溝部314の深さd2が1mmである場合には、下流側の曲率半径Raは0.5より大きいことが好ましく、上流側の曲率半径Rbは0.1より小さいことが好ましい。
 図14は、第5実施例の変形例における燃料電池100のアノード側セパレータ310の断面構成を示す説明図である。第5実施例の変形例では、図14に示すように、浅溝部314の断面形状は、連通流路CPにおける冷却液流れの下流側の抜き角度θBが上流側の抜き角度θAより大きい形状となっている。ここで、抜き角度とは、連通流路CPと冷却液用流路空間CSとの境界を構成する浅溝部314の壁体の中心線と鉛直方向との為す角度である。
 このように連通流路CPにおける冷却液流れの下流側の抜き角度θBを上流側の抜き角度θAより大きくすると、同様に、連通流路CPを通過した冷却液が下流側の冷却液用流路空間CSにおいて発電体層200に近い側の部分(図の下側の部分)内に流入することが促進されるため、燃料ガス用流路空間ASの断面積が縮小することを抑制しつつ、冷却液用流路空間CSにおける冷却液の淀みを抑制して燃料電池100の冷却性能の低下を抑制することができる。なお、下流側の抜き角度θBは45度より大きいことが好ましく、上流側の抜き角度θAは30度より小さいことが好ましい。
F.第6実施例:
 図15は、第6実施例における燃料電池100のアノード側セパレータ310の断面構成を示す説明図である。図15には、アノード側セパレータ310の浅溝部314(図4,6参照)の位置を通るX方向に沿った断面を示している。図15には、アノード側セパレータ310の浅溝部314とカソード側セパレータ320との間に形成された連通流路CPと、第1の溝部316とカソード側セパレータ320との間に形成された冷却液用流路空間CSと、により構成された凹凸のある冷却液用の流路における冷却液の流れ方向を矢印で示している。図15に示す例では、図の左側が上流側であり、図の右側が下流側である。
 第6実施例の燃料電池100は、アノード側セパレータ310の浅溝部314の形状の点で図13に示した第5実施例の燃料電池100と異なっており、その他の点は第5実施例の燃料電池100と同様である。第6実施例では、図15に示すように、浅溝部314の断面形状は、連通流路CPにおける冷却液流れの下流側の曲率半径Raが上流側の曲率半径Rbより小さい形状となっている。
 このように連通流路CPにおける冷却液流れの下流側の曲率半径Raを小さくすると、連通流路CPを通過した冷却液が、下流側の冷却液用流路空間CSにおいて、発電体層200(のアノード側拡散層216)に近い側の部分(図の下側の部分)内に流入することが抑制され、冷却液の流れが整流される。冷却液用流路空間CSの発電体層200に近い側の部分内に冷却液が流入すると、冷却液の流れが乱流となって流路の圧力損失が増大し、ウォーターポンプ71の負荷が増大して燃費が悪化する。第6実施例の燃料電池100では、浅溝部314の断面形状を、連通流路CPにおける冷却液流れの下流側の曲率半径Raが上流側の曲率半径Rbより小さい形状とすることにより、冷却液用流路空間CSの発電体層200に近い側の部分内への冷却液の流入を抑制し、冷却液の流れを整流して流路の圧力損失の増大を抑制することができる。なお、例えば浅溝部314の深さd2が1mmである場合には、下流側の曲率半径Raは0.1より小さいことが好ましく、上流側の曲率半径Rbは0.5より大きいことが好ましい。
 図16は、第6実施例の変形例における燃料電池100のアノード側セパレータ310の断面構成を示す説明図である。第6実施例の変形例では、図16に示すように、浅溝部314の断面形状は、連通流路CPにおける冷却液流れの下流側の抜き角度θBが上流側の抜き角度θAより小さい形状となっている。
 このように連通流路CPにおける冷却液流れの下流側の抜き角度θBを上流側の抜き角度θAより小さくすると、同様に、冷却液用流路空間CSの発電体層200に近い側の部分内への冷却液の流入を抑制し、冷却液の流れを整流して流路の圧力損失の増大を抑制することができる。
G.第7実施例:
 図17は、第7実施例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。第7実施例の燃料電池100は、アノード側セパレータ310の第1の表面(カソード側セパレータ320に対向する側の表面)に所定の表面処理が施されている点で第1実施例の燃料電池100と異なっており、その他の点は第1実施例の燃料電池100と同様である。
 第7実施例では、アノード側セパレータ310の製造の際に、波形部WSPの第1の表面全体に親水処理としてホーニングを施し、さらに第1の表面全体に浸漬メッキを施す。メッキ処理の後、第1の表面を上にしてアノード側セパレータ310を乾かすことにより、第1の溝部316にメッキ液が流れてメッキ層が厚くなる。次に、第1の溝部316における浅溝部314に隣接する領域S1へテフロン(テフロンは登録商標)樹脂等の撥水剤を吹き付け、領域S1における撥水性を高める。このようにして製造されたアノード側セパレータ310は、波形部WSPの第1の表面側の第1の溝部316における浅溝部314に隣接する領域S1において高い耐食性および撥水性を有し、浅溝部314の表面領域S2において高い親水性を有する。
 第1の溝部316における浅溝部314に隣接する領域S1は、燃料電池システム10の部品からの溶出物が溜まりやすい場所であるが、第7実施例のアノード側セパレータ310では、領域S1が高い耐食性を有するため、アノード側セパレータ310の腐食を抑制することができる。また、浅溝部314により形成される連通流路CPは、比較的高さが低く圧力損失が増大しやすいが、第7実施例のアノード側セパレータ310では、浅溝部314の表面領域S2が高い親水性を有するため、管摩擦係数を低減して圧力損失の増大を抑制することができる。また、第1の溝部316における浅溝部314に隣接する領域S1は、冷却液が溜まりやすい部分であり、修理等で単セル140を分解する際に溜まった冷却液がこぼれ出て作業性を低下させる恐れがあるが、第7実施例のアノード側セパレータ310では、領域S1が高い撥水性を有するため、冷却液の液切れが向上して冷却液が溜まりにくくなり、分解の際の作業性の低下を抑制することができる。
 なお、アノード側セパレータ310の製造の際に以下の処理を行っても、上述した第7実施例と同様の効果が得られる。すなわち、アノード側セパレータ310の製造の際に、波形部WSPの第1の表面全体に耐食処理としてカーボンコートを施し、さらに第1の表面全体にUV処理を行って表面を親水化し、第1の溝部316における浅溝部314に隣接する領域S1に樹脂塗装を行って撥水性を高める。このようにして製造されたアノード側セパレータ310も、波形部WSPの第1の表面側の第1の溝部316における浅溝部314に隣接する領域S1において高い耐食性および撥水性を有し、浅溝部314の表面領域S2において高い親水性を有する。
H.第8実施例:
 図18は、第8実施例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。図18(a)には、アノード側セパレータ310の第1の表面側(カソード側セパレータ320に対向する表面側)の一部の平面構成を示しており、図18(b)には、図18(a)のA3-A3の位置における断面構成を示している。また、図18(c)には、深溝部313および浅溝部314付近の斜視図を示している。
 第8実施例の燃料電池100は、アノード側セパレータ310の波形部WSPの第1の表面側に壁体352および床体354が形成されている点で第1実施例の燃料電池100と異なっており、その他の点は第1実施例の燃料電池100と同様である。より詳細には、第8実施例のアノード側セパレータ310では、深溝部313の連通流路CPにおける冷却液流れ方向の下流側に、深溝部313と浅溝部314との境界壁BWの延長上に位置する壁体352が形成されている。本実施例では、壁体352は、アノード側セパレータ310と同じ材料(本実施例では金属)を用いて別部品として製作され、アノード側セパレータ310の第1の溝部316表面に接着される。壁体352の形状は、十分な接着面積を確保するために、三角柱形状となっている。
 また、第8実施例のアノード側セパレータ310では、浅溝部314の下流側に、浅溝部314の床面BPの延長上に位置する床体354が形成されている。本実施例では、床体354は、アノード側セパレータ310と同じ材料(本実施例では金属)を用いて別部品として製作され、アノード側セパレータ310の浅溝部314の下流側壁面に接着される。床体354の形状は、十分な接着面積を確保するために、三角柱形状となっている。なお、床体354の下流側先端は、浅溝部314の下流側先端より下流側に位置することが望ましい。すなわち、図18(b)において、距離L1は距離L0より大きいことが望ましい。
 第8実施例の燃料電池100では、アノード側セパレータ310の波形部WSPに壁体352および床体354が形成されているため、連通流路CPを通過した冷却液が、下流側の冷却液用流路空間CSにおいて、深溝部313の下流側の領域に回り込んで流入することが抑制されると共に、発電体層200(のアノード側拡散層216)に近い側の部分に流入することが抑制され、冷却液の流れが整流される。そのため、第8実施例の燃料電池100では、冷却液の流れが乱流となって流路の圧力損失が増大しウォーターポンプ71の負荷が増大して燃費が悪化することが抑制される。
 なお、壁体352の形状は、境界壁BWの延長上に位置する壁を有すれば三角柱形状に限られず、また、壁体352の材料は金属に限られない。同様に、床体354の形状は、床面BPの延長上に位置する床を有すれば三角柱形状に限られず、また、床体354の材料は金属に限られない。また、壁体352および床体354をアノード側セパレータ310のプレス加工の際にアノード側セパレータ310と一体として形成するとしてもよい。図18(d)には、床体354をアノード側セパレータ310のプレス加工の際にアノード側セパレータ310と一体として形成した場合の構成を示している。このようにすれば、加工手間の低減を図ることができる。
I.第9実施例:
 図19は、第9実施例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。図19(a)には、アノード側セパレータ310の第1の表面側(カソード側セパレータ320に対向する表面側)の一部の平面構成を示しており、図19(b)には、図19(a)のA4-A4の位置における断面構成を示しており、図19(c)には、図19(a)のB4-B4の位置における断面構成を示している。
 第9実施例の燃料電池100は、アノード側セパレータ310の波形部WSPの第1の表面側にスペーサー362が配置されている点で第1実施例の燃料電池100と異なっており、その他の点は第1実施例の燃料電池100と同様である。具体的には、第9実施例のアノード側セパレータ310では、第1の溝部316における深溝部313に隣接する位置に、空間を充填するスペーサー362が配置されている。スペーサー362は、導電性がある材料(例えば金属やカーボン)により形成されることが好ましいが、導電性のない材料(例えば樹脂)により形成されることも可能である。スペーサー362は、第1の溝部316の第1の表面側に形成される冷却液用流路空間CSを全部塞ぐように形成されてもよいし、冷却液用流路空間CSのカソード側セパレータ320に近い側は開放されるようにして発電体層200に近い側の一部を塞ぐように形成されてもよい。
 第9実施例の燃料電池100では、アノード側セパレータ310の波形部WSPにスペーサー362が配置されているため、連通流路CPを通過した冷却液が、下流側の冷却液用流路空間CSにおいて、深溝部313の下流側の領域に回り込んで流入することが抑制されて冷却液の流れが整流されると共に、冷却液が深溝部313の下流側の領域に滞留することが抑制される。そのため、第9実施例の燃料電池100では、冷却液の流れが乱流となって流路の圧力損失が増大しウォーターポンプ71の負荷が増大して燃費が悪化することが抑制されると共に、冷却液の滞留によってアノード側セパレータ310が腐食することが抑制される。
 なお、スペーサー362をアノード側セパレータ310のプレス加工の際にアノード側セパレータ310と一体として形成するとしてもよい。あるいは、アノード側セパレータ310に対向するカソード側セパレータ320にプレス加工を施して、燃料電池100の積層時に、カソード側セパレータ320表面に形成された凸部を、アノード側セパレータ310の第1の溝部316における深溝部313に隣接する位置に突入させてスペーサー362として機能させることも可能である。
J.第10実施例:
 図20は、第10実施例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。第10実施例の燃料電池100は、アノード側セパレータ310の第2の溝部315の構成の点で第1実施例の燃料電池100と異なっており、その他の点は第1実施例の燃料電池100と同様である。
 図20に示すように、第10実施例では、第1実施例と同様に、アノード側セパレータ310の各第2の溝部315は複数の浅溝部314を有し、各浅溝部314は、隣接する他の第2の溝部315の浅溝部314と並んだ位置に形成されている。第10実施例では、各第2の溝部315が、通常の浅溝部314aと、通常の浅溝部314aよりも深さの深い中浅溝部314bと、を含む複数の浅溝部314を有している点が第1実施例と異なっている。中浅溝部314bの深さは、通常の浅溝部314aの深さと深溝部313の深さとの中間である。そのため、中浅溝部314bの位置に形成される連通流路CPの断面積は、通常の浅溝部314aの位置に形成される連通流路CPの断面積より小さくなる。なお、上述したように、第2の溝部315(深溝部313および浅溝部314)の深さは、アノード側セパレータ310の第2の表面側の最外部の位置から、第2の溝部315の第1の表面側の最外部の位置までの積層方向に沿った距離を意味する。また、各第2の溝部315の有する中浅溝部314bは、隣接する第2の溝部315の有する通常の浅溝部314aに対向する位置に配置されている。そのため、中浅溝部314bの位置に形成される連通流路CPの上流側には、通常の浅溝部314aの位置に形成される連通流路CPが配置される。
 第10実施例の燃料電池100では、中浅溝部314bの位置に形成される断面積のより小さい連通流路CPの上流側に通常の浅溝部314aの位置に形成される断面積のより大きい連通流路CPが配置されるため、通常の浅溝部314aの位置に形成される連通流路CPを通過した冷却液が、下流側の中浅溝部314bの位置に形成される連通流路CP内に流入することが抑制され、代わりに冷却液用流路空間CS内に流入することが促進される。ただし、中浅溝部314bの位置に断面積が小さいながらも連通流路CPが存在するために、冷却液の流れが過度な乱流となることが抑制され、乱流によって流路の圧力損失が増大しウォーターポンプ71の負荷が増大し燃費が悪化することが抑制される。そのため、第10実施例の燃料電池100では、冷却液の流れが過度な乱流となることを抑制しつつ、冷却液用流路空間CSにおける冷却液の淀みを抑制して燃料電池100の冷却性能の低下を抑制することができる。
 なお、第10実施例では、図20に示すように、各第2の溝部315に通常の浅溝部314aと中浅溝部314bとが交互に配置されることが好ましい。このような配置パターンを採用すれば、波形部WSPの全領域にわたって冷却液用流路空間CSにおける冷却液の淀みを良好に抑制することができると共に、冷却液の流量の均一化を図ることができ、燃料電池100の冷却性能を向上させることができる。また、中浅溝部314bは、酸化剤ガスの入口に近い領域(すなわち酸化剤ガス供給マニホールド152に近い領域)に多く配置されているとしてもよい。このようにすれば、酸化剤ガスの入口に近い領域を良好に冷却することができ、単セル140の乾燥を抑制することができる。なお、各第2の溝部315における通常の浅溝部314aと中浅溝部314bとの配置パターンは任意に設定可能であり、例えば、2つの通常の浅溝部314aと1つの中浅溝部314bとが交互に繰り返し配置される配置パターンが採用されてもよい。
 図21は、第10実施例の変形例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。図21に示す第10実施例の変形例のアノード側セパレータ310では、図20に示す第10実施例のアノード側セパレータ310における中浅溝部314bの深さが深溝部313の深さと同じとなっている。すなわち、第10実施例の変形例では、中浅溝部314bが深溝部313と一体となっている。第10実施例の変形例でも、通常の浅溝部314aの位置に形成される連通流路CPを通過した冷却液が、下流側の冷却液用流路空間CS内に流入することが促進されるため、冷却液用流路空間CSにおける冷却液の淀みを抑制して燃料電池100の冷却性能の低下を抑制することができる。
K.第11実施例:
 図22は、第11実施例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。図22には、アノード側セパレータ310の第2の溝部315(図4,6参照)の位置を通るY方向に沿った断面を示している。図22には、アノード側セパレータ310の第2の溝部315(深溝部313および浅溝部314)と発電体層200(のアノード側拡散層216)との間に形成された燃料ガス用流路空間ASにおける水素の流れ方向を矢印で示している。図22に示す例では、図の上方が上流側であり、図の下方が下流側である。第11実施例の燃料電池100は、アノード側セパレータ310の構成の点で第1実施例の燃料電池100と異なっており、その他の点は第1実施例の燃料電池100と同様である。
 図22に示すように、第11実施例では、第1実施例と同様に、アノード側セパレータ310の各第2の溝部315は複数の浅溝部314を有している。第11実施例では、深溝部313と、燃料ガス用流路空間ASにおける水素の流れの下流側において当該深溝部313と隣接する浅溝部314と、の境界壁BWが、第2の表面側(発電体層200に対向する表面側)に近いほど下流側に位置するように傾いている点が、第1実施例と異なっている。すなわち、第11実施例では、当該境界壁BWが、積層方向から所定の角度θCだけ傾いている。
 アノード側セパレータ310において、境界壁BWが積層方向に平行である場合には、深溝部313の位置の燃料ガス用流路空間ASにおける深溝部313の下流側の境界壁BW上の部分Pxに水が溜まりやすく、アノード側セパレータ310が腐食するおそれがある。特に、燃料ガス用流路空間ASの下流側に近いほど、当該部分Pxに多くの水が溜まりやすい。第11実施例では、深溝部313と、下流側において当該深溝部313と隣接する浅溝部314と、の境界壁BWが、第2の表面側に近いほど下流側に位置するように傾いているため、当該境界壁BW上の部分Pxに水が滞留することが抑制され、アノード側セパレータ310の腐食を抑制することができる。
 図23は、第11実施例の変形例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。図23に示した第11実施例の変形例においても、深溝部313と、燃料ガス用流路空間ASにおける水素の流れの下流側において当該深溝部313と隣接する浅溝部314と、の境界壁BWが、第2の表面側に近いほど下流側に位置するように傾いている。第11実施例の変形例では、図23に示すように、各第2の溝部315において、燃料ガス用流路空間ASにおける水素流れの下流側に位置する浅溝部314ほど深さdが深い(すなわち、d10<d11<d12)。そのため、第11実施例の変形例では、境界壁BW上の部分Pxに一端溜まった水が下流側に移動する際に、下流側の別の境界壁BW上に落ちてそこに溜まることが抑制されるため、アノード側セパレータ310の腐食をより確実に抑制することができる。また、第11実施例の変形例では、図23に示すように、下流側に位置する浅溝部314ほど水素流れ方向に沿った幅Wが大きい(すなわち、W10<W11<W12)。そのため、第11実施例の変形例では、下流側に位置する浅溝部314ほど深さdを深くすることによって浅溝部314の第1の表面側(カソード側セパレータ320に対向する側)に形成される連通流路CPの高さが小さくなるものの、下流側に位置する浅溝部314ほど幅Wを大きくすることによって、下流側の連通流路CPの断面積が減少することを抑制することができる。
L.第12実施例:
 図24は、第12実施例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。図24には、アノード側セパレータ310の第2の溝部315(図4,6参照)の位置を通るY方向に沿った断面を示している。図24には、アノード側セパレータ310の第2の溝部315(深溝部313および浅溝部314)と発電体層200(のアノード側拡散層216)との間に形成された燃料ガス用流路空間ASにおける水素の流れ方向を矢印で示している。第12実施例の燃料電池100は、アノード側セパレータ310の構成の点で第1実施例の燃料電池100と異なっており、その他の点は第1実施例の燃料電池100と同様である。
 図24に示すように、第12実施例では、第1実施例と同様に、アノード側セパレータ310の各第2の溝部315は複数の浅溝部314を有している。第12実施例では、複数の浅溝部314が、深さdの互いに異なる複数種類の浅溝部314を含んでいる。例えば、図24に示す例では、各浅溝部314の深さdは、d21>d22>d23>d24の関係となっている。
 例えば比較的深い深さd21の浅溝部314の位置では、アノード側セパレータ310の第2の表面側(発電体層200に対向する表面側)に形成される燃料ガス用流路空間ASにおける水素の流速は比較的遅い(すなわち圧力は比較的小さい)ため、電流密度は小さく発熱量が小さい。同じ位置においてアノード側セパレータ310の第1の表面側(カソード側セパレータ320に対向する表面側)に形成される連通流路CPにおける冷却液の流量は比較的小さいため、冷却熱量は小さい。一方、例えば比較的浅い深さd24の浅溝部314の位置では、アノード側セパレータ310の第2の表面側に形成される燃料ガス用流路空間ASにおける水素の流速は比較的早い(すなわち圧力は比較的大きい)ため、電流密度は大きく発熱量は大きい。同じ位置においてアノード側セパレータ310の第1の表面側に形成される連通流路CPにおける冷却液の流量は比較的大きいため、冷却熱量は大きい。
 このように、浅溝部314の深さが異なると、浅溝部314の位置における発電の電流密度や発熱量および冷却液による冷却熱量が異なる。一般に、燃料電池100の単セル140では、単セル140の面内において反応ガスの濃度や湿度は均一ではなく、従って発電に伴う発熱量も均一ではない。本実施例では、複数の浅溝部314が、深さdの互いに異なる複数種類の浅溝部314を含んでいるため、浅溝部314を適切に配置することにより、単セル140における発電分布および温度分布の均一化を図ることができる。
M.第13実施例:
 図25は、第13実施例における燃料電池100の制御方法を示す説明図である。第1実施例のように、アノード側セパレータ310に第1の溝部316と第2の溝部315とを設け、さらに、第2の溝部315に深溝部313と浅溝部314とを設けると、燃料電池100の運転に伴い、燃料ガス用流路空間ASにおける深溝部313に隣接する部分にコンタミネーションや気泡がトラップされる。当該部分にコンタミネーションや気泡がトラップされると、図25に示すように、冷却液の乱流が抑制され、冷却液用の流路の圧力損失が低下する。
 本実施例では、燃料電池システム10の制御部80が、冷却液用の流路の圧力損失を計測し、当該圧力損失が所定の閾値Thより小さくなったか否かを判定する。制御部80は、圧力損失が所定の閾値Thより小さくなったことを検出すると、冷却液用の流路における異常の発生をユーザーに知らせる信号を出力する。これにより、ユーザーは、アノード側セパレータ310の燃料ガス用流路空間AS内にコンタミネーションや気泡がトラップされたことを覚知することができる。このように、本実施例では、簡単な構成で冷却液用の流路における異常の発生を検知することができる。
N.第14実施例:
 図26は、第14実施例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。図26には、アノード側セパレータ310の第2の溝部315(図4,6参照)の位置を通るY方向に沿った断面を示している。図26には、アノード側セパレータ310の第2の溝部315(深溝部313および浅溝部314)と発電体層200(のアノード側拡散層216)との間に形成された燃料ガス用流路空間ASにおける水素の流れ方向を矢印で示している。図26に示す例では、図の上方が上流側であり、図の下方が下流側である。第14実施例の燃料電池100は、アノード側セパレータ310の構成の点で第1実施例の燃料電池100と異なっており、その他の点は第1実施例の燃料電池100と同様である。
 図26に示すように、第14実施例では、第1実施例と同様に、アノード側セパレータ310の各第2の溝部315は複数の浅溝部314を有している。第14実施例では、深溝部313と、燃料ガス用流路空間ASにおける水素の流れの下流側において当該深溝部313と隣接する浅溝部314と、の境界壁BWが、第2の表面側(発電体層200に対向する表面側)から遠いほど下流側に位置するように傾いている点が、第1実施例と異なっている。すなわち、第14実施例では、当該境界壁BWが、積層方向から所定の角度θDだけ傾いている。
 第14実施例では、深溝部313と、下流側において当該深溝部313と隣接する浅溝部314と、の境界壁BWが、第2の表面側に近いほど下流側に位置するように傾いているため、当該境界壁BW上の部分Pyにおける水の滞留が促進される。そのため、第14実施例の燃料電池100では、高温運転時のドライアップを抑制することができ、発電効率の低下および電解質膜212の耐久性の低下を抑制することができる。
 なお、第14実施例において、アノード側セパレータ310の深溝部313の燃料ガス用流路空間ASに対向する表面の親水性を高めることによって境界壁BW上の部分Pyにおける水の滞留を促進するものとしてもよい。親水性を高める方法としては、親水処理やアノード側セパレータ310の表面を粗す処理が挙げられる。
O.第15実施例:
 図27は、第15実施例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。図27には、アノード側セパレータ310の第1の表面側(カソード側セパレータ320に対向する表面側)の一部の平面構成を示している。
 第15実施例の燃料電池100は、アノード側セパレータ310の深溝部313と浅溝部314との境界壁の形状および浅溝部314の配置の点で第1実施例の燃料電池100と異なっており、その他の点は第1実施例の燃料電池100と同様である。第15実施例のアノード側セパレータ310では、深溝部313の平面形状は略正六角形である。そのため、深溝部313と浅溝部314との境界壁は、連通流路CPにおける冷却液の流れ方向に対して所定の角度だけ傾いた部分を有する形状となっている。また、アノード側セパレータ310の波形部WSPにおける浅溝部314の配置は千鳥配置となっている。すなわち、隣接する2つの第2の溝部315の浅溝部314のY方向に沿った距離L11は、各第2の溝部315における浅溝部314のピッチ(2×L11)の略半分となっている。
 第15実施例の燃料電池100では、深溝部313と浅溝部314との境界壁が傾いた部分を有するため、浅溝部314の位置に形成された連通流路CPにおいて、深溝部313と浅溝部314との境界壁の傾いた部分に沿って冷却液の一部の流れ方向を斜め方向とすることができる。また、浅溝部314の配置が千鳥配置であるため、流れ方向が斜め方向になった冷却液がそのまま斜め方向に位置する浅溝部314の位置に形成された連通流路CP内に流入することが促進される。そのため、第15実施例の燃料電池100は、冷却液の経路をより柔軟に設定することができる。例えば燃料電池100では、各単セル140の重力方向上側の領域において、冷却液の流量が不足したり空気が溜まったりして冷却性能が低下する場合があるが、本実施例のアノード側セパレータ310を用いれば、冷却液を斜め上方に導くことができるため、単セル140の全領域にわたって冷却性能の低下を抑制することができる。
 図28は、第15実施例の変形例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。図28に示した第15実施例の変形例では、図27の例と同様に、浅溝部314の配置は千鳥配置である。また、図28に示した第15実施例の変形例では、深溝部313の平面形状が、図27の例と異なり、矩形の対角を切り落としたような形状となっているが、やはり同様に、深溝部313と浅溝部314との境界壁が連通流路CPにおける冷却液の流れ方向に対して所定の角度だけ傾いた部分を有する形状となっている。そのため、図28に示した第15実施例の変形例においても、冷却液の経路をより柔軟に設定することができる。
 なお、図27,28に示した例では、浅溝部314の配置が千鳥配置となっているが、浅溝部314の配置が千鳥配置でなくとも、深溝部313と浅溝部314との境界壁が連通流路CPにおける冷却液の流れ方向に対して所定の角度だけ傾いた部分を有すれば、冷却液の流れ方向を斜め方向とすることができ、冷却液の経路をより柔軟に設定することができる。また、図27,28に示した例では、浅溝部314の配置が千鳥配置となっているが、浅溝部314の配置が、千鳥配置でなくとも、各第2の溝部315の浅溝部314が隣接する他の第2の溝部315の浅溝部314の位置に対して所定の方向に所定の距離だけずれた位置に形成されるような配置であれば、冷却液の流れ方向を斜め方向とすることができ、冷却液の経路をより柔軟に設定することができる。
P.第16実施例:
 図29は、第16実施例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。図29には、アノード側セパレータ310の第1の表面側(カソード側セパレータ320に対向する表面側)の一部の平面構成を示している。
 第16実施例の燃料電池100は、アノード側セパレータ310の浅溝部314の配置の点で第1実施例の燃料電池100と異なっており、その他の点は第1実施例の燃料電池100と同様である。第16実施例のアノード側セパレータ310では、浅溝部314の配置は千鳥配置となっている。すなわち、隣接する2つの第2の溝部315の浅溝部314のY方向に沿った距離L21は、各第2の溝部315における浅溝部314のピッチの略半分(2×L21)となっている。
 第16実施例の燃料電池100では、浅溝部314の配置が千鳥配置であるため、浅溝部314の位置に形成される連通流路CPを通過した冷却液は、真っ直ぐ下流側に進まず、冷却液用流路空間CSを通って下流側斜め方向の浅溝部314の位置の形成される連通流路CPに流入する。そのため、第16実施例の燃料電池100では、冷却液用流路空間CSにおける冷却液の淀みを抑制して燃料電池100の冷却性能の低下を抑制することができる。
 図29に示した例では、浅溝部314の配置が千鳥配置となっているが、浅溝部314の配置が、千鳥配置でなくとも、各第2の溝部315の浅溝部314が隣接する他の第2の溝部315の浅溝部314の位置に対して所定の方向に所定の距離だけずれた位置に形成されるような配置であれば、冷却液用流路空間CSにおける冷却液の淀みを抑制して燃料電池100の冷却性能の低下を抑制することができる。図30は、第16実施例の変形例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。図30の例では、隣接する2つの第2の溝部315の浅溝部314のY方向に沿った距離L22は、各第2の溝部315における浅溝部314のピッチ(4×L22)の略4分の1となっている。図30に示した第16実施例の変形例の燃料電池100においても、冷却液用流路空間CSにおける冷却液の淀みを抑制して燃料電池100の冷却性能の低下を抑制することができる。
Q.第17実施例:
 図31は、第17実施例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。図31には、アノード側セパレータ310の波形部WSPの第2の溝部315(深溝部313および浅溝部314)を拡大して示している。第17実施例の燃料電池100は、深溝部313および浅溝部314の構成の点で第1実施例の燃料電池100と異なっており、その他の点は第1実施例の燃料電池100と同様である。
 図31に示すように、第17実施例では、深溝部313の径Rmは浅溝部314の径Rvより大きい。そのため、第17実施例では、アノード側セパレータ310の第1の溝部316の位置に形成される冷却液用流路空間CS(図6参照)の内の深溝部313に隣接する部分の体積を低減することができ、冷却液用流路空間CSにおける冷却液の淀みを抑制して燃料電池100の冷却性能の低下を抑制することができる。さらに、第17実施例では、アノード側セパレータ310におけるカソード側セパレータ320との接触部分である深溝部313の径Rmが大きいため、深溝部313の表面における単位面積あたり積層荷重を低減することができると共に、発電体層200における深溝部313に対向する位置に荷重が集中して電極が損傷したり、電極面における荷重分布が偏って発電分布に偏りが発生したりすることが抑制される。
 図32は、第17実施例の変形例における燃料電池100のアノード側セパレータ310の構成を示す説明図である。図32に示す第17実施例の変形例では、深溝部313のY方向(第2の溝部315および第1の溝部316の延伸方向)に沿った幅は第1実施例と変わらず、深溝部313のX方向(連通流路CPにおける冷却液流れ方向)に沿った幅Wmが伸張されて、浅溝部314の幅Wvよりも大きくなっている。図32に示す第17実施例の変形例では、第1の溝部316の位置に形成される冷却液用流路空間CSにおける深溝部313に隣接する部分の体積を有効に低減することができ、冷却液用流路空間CSにおける冷却液の淀みを抑制して燃料電池100の冷却性能の低下を抑制することができると共に、深溝部313の表面における単位面積あたり積層荷重の低減、電極の損傷および発電分布の偏りの抑制が実現される。
R.第18実施例:
 図33~35は、第18実施例における燃料電池100の構成を示す説明図である。第18実施例の燃料電池100は、シール部の構成の点で第1実施例の燃料電池100と異なっており、その他の点は第1実施例の燃料電池100と同様である。
 第18実施例の燃料電池100は、リペアビリティー向上のために、シール部が設けられたセルとシール部が設けられていないセルとを交互に積層して製造する製造方法が採用される。ここで、第1実施例の燃料電池100において、シール部が設けられたセルとシール部が設けられていないセルとを交互に積層して製造する製造方法を採用しようとすると、トンネル流路TRを形成するための第3の溝部317(図4,5参照)が設けられた部分において、対向するカソード側セパレータ320に設けられたシール部450,440の先端452,442を第3の溝部317が設けられたアノード側セパレータ310の表面に押し付けることによりシール性を確保することとなる。しかし、このような凹凸形状が設けられたアノード側セパレータ310の表面にシール部を押し付けることによりシール性を確保することは困難である。
 第18実施例では、図33~35に示すように、アノード側セパレータ310と、発電体層200と、カソード側セパレータ320と、別のアノード側セパレータ310と、別の発電体層200とが積層されてセルCeAが構成され、カソード側セパレータ320と、アノード側セパレータ310と、発電体層200と、別のアノード側セパレータ310とが積層されてセルCeBが構成され、セルCeAとセルCeBとが交互に積層されることにより燃料電池100が製造される。そして、図33~35に示すように、セルCeAには対向するセルCeBとのシールを確保するためのシール部450,420が配置されているが、セルCeBには対向するセルCeAとのシールを確保するためのシール部は配置されていない。
 第18実施例では、セルCeAに配置されたシール部450,430,420は、その先端452,432,422が、対向するセルCeBのカソード側セパレータ320の平坦な表面に押し付けられるように配置されているため、確実なシールラインを形成することができる。シール部が凹凸形状が設けられた表面に押し付けることはない。また、図35に示すように、セルCeAおよびセルCeBにおいてカソード側セパレータ320とアノード側セパレータ310の第3の溝部317の部分との間に配置されるシール部450は充填により形成されるため、この部分においても確実なシールラインを形成することができる。そのため、第18実施例では、確実なシール性能を担保しつつ、シール部が設けられたセルとシール部が設けられていないセルとを交互に積層して燃料電池100を製造する製造方法を採用して燃料電池100のリペアビリティーを向上させることができる。
 なお、第18実施例では、2つの発電体層200を含むセルCeAと1つの発電体層200を含むセルCeBとを積層して燃料電池100を製造する方法を採用しているが、偶数個の発電体層200を含むセルCeAと奇数個の発電体層200を含むセルCeBとを積層して燃料電池100を製造する方法を採用すれば、第18実施例と同様に、確実なシール性能を担保しつつ燃料電池100のリペアビリティーを向上させることができる。
S.第19実施例:
 図36は、第19実施例における燃料電池100の平面構成を示す説明図である。第19実施例の燃料電池100は、各マニホールドの配置の点で第1実施例の燃料電池100と異なっており、その他の点は第1実施例の燃料電池100と同様である。
 図36に示すように、第19実施例の燃料電池100では、単セル140において、アノード側セパレータ310の波形部WSPを挟んで対向する2つの外縁辺(図36の例では長辺)付近にすべてのマニホールドが配置されており、他の2つの外縁辺(図36の例では短辺)付近にはマニホールドは配置されていない。すなわち、第19実施例の燃料電池100では、いわゆるマニホールドの2辺配置が実現されている。このようなマニホールドの2辺配置は、アノード側セパレータ310の両側に形成される流路の方向が平行な方向に固定された従来の燃料電池100では困難であったが、本実施例ではアノード側セパレータ310によって冷却液を縦横に流動させる流路(冷却液用流路空間CSおよび連通流路CP(図6参照))が形成されるために実現可能である。本実施例の燃料電池100では、マニホールドの2辺配置構成を採用しているため、マニホールドの4辺配置構成と比較して電極利用率が向上し、体格出力密度や質量出力密度が向上する。
T.変形例:
 なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
T1.変形例1:
 上記各実施例における燃料電池システム10の構成は、あくまで一例であり、種々変形可能である。例えば、上記各実施例では、膜電極接合体210がアノード側拡散層216およびカソード側拡散層217を含むとしているが、膜電極接合体210がアノード側拡散層216およびカソード側拡散層217の少なくとも一方を含まないとしてもよい。
 また、上記各実施例では、燃料電池100の各層の材料や製造方法を特定しているが、これらの材料や製造方法に限定されるものではなく、適正な種々の材料や製造方法を用いることができる。例えば、上記各実施例では、アノード側セパレータ310は金属板にプレス加工を施して製造されるとしているが、アノード側セパレータ310は、金属板や樹脂カーボン板の削り出しや金属板のエッチングによって製造されるとしてもよいし、樹脂カーボンの射出成形によって製造されるとしてもよい。同様に、カソード側セパレータ320は、樹脂カーボン板の削り出しや樹脂カーボンの射出成形によって製造されるとしてもよい。
 また、上記各実施例では、燃料電池100は固体高分子型燃料電池であるとしているが、本発明は他の種類の燃料電池(例えば、ダイレクトメタノール形燃料電池やリン酸形燃料電池)にも適用可能である。
T2.変形例2:
 上記各実施例では、アノード側セパレータ310が波形断面形状の波形部WSPを有する形状である一方、カソード側セパレータ320は平坦な板状形状であるとしているが、反対に、カソード側セパレータ320が波形断面形状の波形部WSPを有する形状である一方、アノード側セパレータ310は平坦な板状形状であるとしてもよい。この場合には、発電体層200にカソード側多孔体流路層230が含まれない代わりにアノード側に多孔体流路層が設けられ、カソード側セパレータ320と発電体層200との間に酸化剤ガス用の流路が形成されると共にカソード側セパレータ320とアノード側セパレータ310との間に冷却液用の流路が形成される。
 あるいは、アノード側セパレータ310およびカソード側セパレータ320が共に波形断面形状の波形部WSPを有する形状であるとしてもよい。この場合には、発電体層200に多孔体流路層が含まれず、アノード側セパレータ310と発電体層200との間に燃料ガス用の流路が形成され、カソード側セパレータ320と発電体層200との間に酸化剤ガス用の流路が形成され、カソード側セパレータ320とアノード側セパレータ310との間に冷却液用の流路が形成される。また、この場合には、アノード側セパレータ310およびカソード側セパレータ320の波形部WSPにおける第2の溝部315同士が接触する。また、この場合において、波形部WSPの第2の溝部315における浅溝部314は、アノード側セパレータ310およびカソード側セパレータ320のいずれか一方のみに設けられてもよいし、双方に設けられてもよい。
T3.変形例3:
 上記各実施例では、各第2の溝部315に複数の浅溝部314が設けられているとしているが、各第2の溝部315に少なくとも1つの浅溝部314が設けられていれば、冷却液の流れ方向を燃料ガスの流れ方向に平行な方向に限定されず自由に設定することができる。また、上記各実施例における波形部WSP平面上の浅溝部314の配置パターンはあくまで一例であり、浅溝部314の配置パターンは任意に変更可能である。
 また、上記各実施例では、アノード側セパレータ310における第2の溝部315および第1の溝部316の平面形状が一定の方向(図2の例では単セル140の短辺に平行な方向)に伸びる形状となっているが、第2の溝部315および第1の溝部316の平面形状は、第2の溝部315および第1の溝部316が交互に繰り返し並んで波形断面を構成する限りにおいて、各マニホールドの配置に応じて任意の形状を採用することができる。例えば、第2の溝部315および第1の溝部316の平面形状を、蛇行形状とすることも可能である。
T4.変形例4:
 上記各実施例では、燃料電池100の燃料ガス供給マニホールド162および燃料ガス排出マニホールド164の付近には、複数のトンネル流路TRが並んで形成されるとしているが(図5等参照)、1つのみのトンネル流路TRが形成されるとしてもよい。
T5.変形例5:
 上記各実施例では、アノード側セパレータ310に第4の溝部312が設けられて燃料ガス用コモンレールACRが形成され、各燃料ガス用流路空間ASが燃料ガス用コモンレールACRに連通するとしているが、燃料ガス用コモンレールACRが形成されず、各燃料ガス用流路空間ASと燃料ガス供給マニホールド162および燃料ガス排出マニホールド164とが燃料ガス用コモンレールACRを介さずに連通するものとしてもよい。
T6.変形例6:
 上記第7実施例では、アノード側セパレータ310の波形部WSPの第1の表面側に、第1の溝部316における浅溝部314に隣接する領域S1の耐食性を高める被膜処理と、第1の溝部316における浅溝部314に隣接する領域S1の撥水性を高める撥水処理と、浅溝部314における親水性を高める親水処理と、が施されているとしているが、必ずしも3つの処理がすべて施されている必要はなく、これらの処理の内の少なくとも1つが施されていれば当該処理に対応する上述の効果が得られる。
  10…燃料電池システム
  50…水素タンク
  51…シャットバルブ
  52…レギュレータ
  53…配管
  54…排出配管
  60…エアポンプ
  61…配管
  63…配管
  70…ラジエータ
  71…ウォーターポンプ
  72…配管
  73…配管
  80…制御部
  100…燃料電池
  110…エンドプレート
  120…絶縁板
  130…集電板
  140…単セル
  152…酸化剤ガス供給マニホールド
  154…酸化剤ガス排出マニホールド
  162…燃料ガス供給マニホールド
  164…燃料ガス排出マニホールド
  172…冷却液供給マニホールド
  174…冷却液排出マニホールド
  200…発電体層
  210…膜電極接合体
  212…電解質膜
  214…アノード
  215…カソード
  216…アノード側拡散層
  217…カソード側拡散層
  230…カソード側多孔体流路層
  310…アノード側セパレータ
  312…第4の溝部
  313…深溝部
  314…浅溝部
  315…第2の溝部
  316…第1の溝部
  317…第3の溝部
  318…開口
  320…カソード側セパレータ
  322…開口
  352…壁体
  354…床体
  362…スペーサー
  420,430,440,450,460…シール部
  452…先端

Claims (30)

  1.  燃料電池用のセパレータであって、
     第1の表面側に凹な形状であり前記第1の表面側に第1の流体用の流路を形成する第1の溝部と、前記第1の表面側とは反対の第2の表面側に凹な形状であり前記第2の表面側に第2の流体用の流路を形成する第2の溝部と、が交互に繰り返し並んだ波形断面形状を有する波形部を備え、
     各前記第2の溝部は、前記第2の表面側から見た深さが他の部分より浅い浅溝部であって、前記浅溝部の位置の前記第1の表面側に、前記浅溝部を挟んで隣接する2つの前記第1の流体用の流路空間を連通する連通流路を形成する少なくとも1つの浅溝部を有する、セパレータ。
  2.  請求項1に記載のセパレータであって、
     前記第1の流体および前記第2の流体の組み合わせは、燃料ガスと酸化剤ガスと冷却液との内のいずれか2つの組み合わせである、セパレータ。
  3.  請求項1に記載のセパレータであって、
     前記第1の流体は、冷却液である、セパレータ。
  4.  請求項1に記載のセパレータであって、
     前記セパレータの平面形状は略矩形であり、
     前記セパレータの前記波形部を挟んで対向する2つの外縁辺付近に、前記第1の流体用のマニホールドを構成する第1の開口と前記第2の流体用のマニホールドを構成する第2の開口とが形成されている、セパレータ。
  5.  請求項1に記載のセパレータであって、
     各前記第2の溝部の有する前記浅溝部は、隣接する他の前記第2の溝部の有する前記浅溝部と並んだ位置に形成されており、
     前記浅溝部の断面形状は、前記連通流路における前記第1の流体の流れの下流側の曲率半径または抜き角度が上流側の曲率半径または抜き角度より大きい形状である、セパレータ。
  6.  請求項1に記載のセパレータであって、
     各前記第2の溝部の有する前記浅溝部は、隣接する他の前記第2の溝部の有する前記浅溝部と並んだ位置に形成されており、
     前記浅溝部の断面形状は、前記連通流路における前記第1の流体の流れの下流側の曲率半径または抜き角度が上流側の曲率半径または抜き角度より小さい形状である、セパレータ。
  7.  請求項3に記載のセパレータであって、
     前記波形部の前記第1の表面側には、前記第1の溝部において前記浅溝部に隣接する領域の耐食性を高める被膜処理と、前記第1の溝部において前記浅溝部に隣接する領域の撥水性を高める撥水処理と、前記浅溝部における親水性を高める親水処理と、の少なくとも1つが施されている、セパレータ。
  8.  請求項1に記載のセパレータであって、
     各前記第2の溝部は、複数の前記浅溝部を有し、
     各前記第2の溝部の有する前記浅溝部は、隣接する他の前記第2の溝部の有する前記浅溝部と並んだ位置に形成されており、
     前記波形部の前記第1の表面側において、前記深溝部の前記連通流路における前記第1の流体の流れ方向の下流側に、前記深溝部と前記浅溝部との境界壁の延長上に位置する壁体が形成されていると共に、前記浅溝部の前記下流側に、前記浅溝部の床面の延長上に位置する床体が形成されている、セパレータ。
  9.  請求項1に記載のセパレータであって、
     各前記第2の溝部は、複数の前記浅溝部を有し、
     各前記第2の溝部の有する前記浅溝部は、隣接する他の前記第2の溝部の有する前記浅溝部と並んだ位置に形成されており、
     前記波形部の前記第1の表面側において、前記第1の溝部において前記深溝部に隣接する位置に、空間を充填するスペーサーが配置されている、セパレータ。
  10.  請求項1に記載のセパレータであって、
     各前記第2の溝部は、通常の前記浅溝部と、通常の前記浅溝部よりも深さの深い中浅溝部と、を含む複数の前記浅溝部を有し、
     各前記第2の溝部の有する前記浅溝部は、隣接する他の前記第2の溝部の前記浅溝部と並んだ位置に形成されており、
     各前記第2の溝部の有する前記中浅溝部は、隣接する前記第2の溝部の有する通常の前記浅溝部に対向する位置に配置される、セパレータ。
  11.  請求項1に記載のセパレータであって、
     各前記第2の溝部は、複数の前記浅溝部を有し、
     各前記第2の溝部における前記深溝部と、前記第2の流体用流路における前記第2の流体の流れの下流側において前記深溝部と隣接する前記浅溝部と、の境界壁は、前記第2の表面側に近いほど前記下流側に位置するように傾いている、セパレータ。
  12.  請求項11に記載のセパレータであって、
     各前記第2の溝部の有する複数の前記浅溝部は、前記第2の流体用流路における前記第2の流体の流れの下流側に位置する前記浅溝部ほど深さが深く、かつ、前記下流側に位置する前記浅溝部ほど前記第2の流体の流れ方向に沿った幅が大きい、セパレータ。
  13.  請求項1に記載のセパレータであって、
     前記波形部は、深さの互いに異なる複数種類の前記浅溝部を含む、セパレータ。
  14.  請求項1に記載のセパレータであって、
     各前記第2の溝部は、複数の前記浅溝部を有し、
     各前記第2の溝部における前記深溝部と、前記第2の流体用流路における前記第2の流体の流れの下流側において前記深溝部と隣接する前記浅溝部と、の境界壁は、前記第2の表面側から遠いほど前記下流側に位置するように傾いている、セパレータ。
  15.  請求項14に記載のセパレータであって、
     前記第2の表面側において、各前記第2の溝部の前記浅溝部に親水性を高める親水処理が施されている、セパレータ。
  16.  請求項1に記載のセパレータであって、
     各前記第2の溝部は、複数の前記浅溝部を有し、
     各前記第2の溝部における前記深溝部と前記浅溝部との境界壁は、前記連通流路における前記第1の流体の流れ方向に対して所定の角度だけ傾いた部分を有する、セパレータ。
  17.  請求項16に記載のセパレータであって、
     各前記第2の溝部の有する前記浅溝部は、隣接する他の前記第2の溝部の有する前記浅溝部の位置に対して前記連通流路における前記第1の流体の流れ方向に直交する方向に所定の距離だけずれた位置に配置されている、セパレータ。
  18.  請求項1に記載のセパレータであって、
     各前記第2の溝部は、複数の前記浅溝部を有し、
     各前記第2の溝部の有する前記浅溝部は、隣接する他の前記第2の溝部の有する前記浅溝部の位置に対して前記連通流路における前記第1の流体の流れ方向に直交する方向に所定の距離だけずれた位置に形成されている、セパレータ。
  19.  請求項1に記載のセパレータであって、
     各前記第2の溝部は、複数の前記浅溝部を有し、
     前記第2の溝部の有する前記深溝部の径は、前記浅溝部の径より大きい、セパレータ。
  20.  燃料電池であって、
     電解質膜と前記電解質膜の一方の側に配置されたアノードと前記電解質膜の他方の側に配置されたカソードとを含む発電体層と、
     前記発電体層を間に挟んで配置された請求項1ないし請求項19に記載のセパレータと、を備える、燃料電池。
  21.  請求項20に記載の燃料電池であって、さらに、
     前記第1の流体用流路における圧力損失が所定の閾値より小さくなったことを検出することにより、前記第1の流体用流路における異常を検出する検出部を備える、燃料電池。
  22.  電解質膜と前記電解質膜の一方の側に配置されたアノードと前記電解質膜の他方の側に配置されたカソードとを含む発電体層と、前記発電体層を間に挟んで配置された請求項3に記載のセパレータと、を有する燃料電池の製造方法であって、
     前記セパレータの前記第1の溝部の前記第1の表面側に冷却液を接触させる工程と、
     前記接触させる工程の後に、前記セパレータと前記発電体層とを積層する工程と、を備える、方法。
  23.  燃料電池であって、
     電解質膜と前記電解質膜の一方の側に配置されたアノードと前記電解質膜の他方の側に配置されたカソードとを含む複数の発電体層と、
     各前記発電体層の前記アノード側に配置された請求項1に記載のセパレータと、
     各前記発電体層の前記カソード側に配置された平坦な板状の第2のセパレータと、を備える、燃料電池。
  24.  請求項23に記載の燃料電池であって、
     前記セパレータは、板状部材をプレス加工して製造され、
     前記第2のセパレータの厚さは、前記セパレータの製造に用いられる前記板状部材の厚さより薄い、燃料電池。
  25.  請求項23または請求項24に記載の燃料電池であって、さらに、
     少なくとも前記セパレータにおける凹凸のある位置において、前記セパレータと、前記発電体層を介さずに前記セパレータに対向する前記第2のセパレータと、の間をシールするシール部であって、前記セパレータに貼り付けられると共に前記第2のセパレータに押し付けられることによりシールを実現するシール部を備える、燃料電池。
  26.  請求項25に記載の燃料電池であって、
     前記燃料電池は、偶数個の前記発電体層を含む第1のセルと、奇数個の前記発電体層を含む第2のセルと、を交互に積層することにより製造され、
     前記シール部は、前記燃料電池の積層前において、前記第1のセルに設けられ、前記第2のセルには設けられない、燃料電池。
  27.  燃料電池であって、
     電解質膜と前記電解質膜の一方の側に配置されたアノードと前記電解質膜の他方の側に配置されたカソードとを含む複数の発電体層と、
     各前記発電体層の前記アノード側に配置された請求項1に記載のセパレータと、
     各前記発電体層の前記カソード側に配置された平坦な板状の第2のセパレータと、
     前記セパレータと、前記発電体層を介さずに前記セパレータに対向する前記第2のセパレータと、の間をシールする第1のシール部と、
     前記発電体層の端部において、前記アノード側と前記カソード側との間をシールする第2のシール部と、を備え、
     前記セパレータと前記発電体層との少なくとも一方は、前記第2の流体用流路空間と前記第1のシールを挟んで前記第2の流体用流路空間の反対側の流路空間とを前記第1のシールによるシールラインの下を通って連通するトンネル流路を形成するためのトンネル流路形成部を有し、
     前記トンネル流路形成部は、前記第2のシール部より前記発電体層の面方向に沿った内側に位置する、燃料電池。
  28.  請求項27に記載の燃料電池であって、
     前記トンネル流路形成部は、前記セパレータに形成された前記第2の表面側に凹な形状の第3の溝部を含み、
     前記第3の溝部は、前記第2の溝部の有する前記深溝部よりも深さが浅い、燃料電池。
  29.  請求項27または請求項28に記載の燃料電池であって、
     前記トンネル流路形成部は、前記発電体層の前記セパレータに対向する側の表面が前記発電体層の他の部分の表面より後退している部分である薄部を含む、燃料電池。
  30.  請求項27ないし請求項29のいずれかに記載の燃料電池であって、
     前記セパレータは、複数の前記トンネル流路形成部を有し、
     前記複数の前記トンネル流路形成部は、前記燃料電池の使用時において最も重力方向下側に位置する前記トンネル流路形成部が前記第2の流体用流路空間に最も近い位置まで伸びるように形成されている、燃料電池。
PCT/JP2010/005666 2010-09-16 2010-09-16 燃料電池用セパレータ、燃料電池、燃料電池の製造方法 WO2012035585A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2010/005666 WO2012035585A1 (ja) 2010-09-16 2010-09-16 燃料電池用セパレータ、燃料電池、燃料電池の製造方法
JP2012533751A JP5582193B2 (ja) 2010-09-16 2010-09-16 燃料電池用セパレータ、燃料電池、燃料電池の製造方法
EP10857221.5A EP2618413B1 (en) 2010-09-16 2010-09-16 Separator for fuel cell, fuel cell, and method for manufacturing fuel cell
CN201080069140.4A CN103119766B (zh) 2010-09-16 2010-09-16 燃料电池用隔板、燃料电池、燃料电池的制造方法
US13/822,995 US20130177827A1 (en) 2010-09-16 2010-09-16 Separator for fuel cell, fuel cell and method of manufacturing fuel cell
US15/263,528 US10340532B2 (en) 2010-09-16 2016-09-13 Separator for fuel cell, fuel cell and method of manufacturing fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/005666 WO2012035585A1 (ja) 2010-09-16 2010-09-16 燃料電池用セパレータ、燃料電池、燃料電池の製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/822,995 A-371-Of-International US20130177827A1 (en) 2010-09-16 2010-09-16 Separator for fuel cell, fuel cell and method of manufacturing fuel cell
US15/263,528 Continuation US10340532B2 (en) 2010-09-16 2016-09-13 Separator for fuel cell, fuel cell and method of manufacturing fuel cell

Publications (1)

Publication Number Publication Date
WO2012035585A1 true WO2012035585A1 (ja) 2012-03-22

Family

ID=45831090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005666 WO2012035585A1 (ja) 2010-09-16 2010-09-16 燃料電池用セパレータ、燃料電池、燃料電池の製造方法

Country Status (5)

Country Link
US (2) US20130177827A1 (ja)
EP (1) EP2618413B1 (ja)
JP (1) JP5582193B2 (ja)
CN (1) CN103119766B (ja)
WO (1) WO2012035585A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8642226B2 (en) 2011-05-26 2014-02-04 Toyota Jidosha Kabushiki Kaisha Separator for fuel cell and fuel cell
WO2015049859A1 (ja) * 2013-10-01 2015-04-09 トヨタ自動車株式会社 燃料電池用セパレーターおよび燃料電池
KR20160052872A (ko) * 2014-10-29 2016-05-13 현대제철 주식회사 연료전지용 유로형성부재
JP2016211491A (ja) * 2015-05-12 2016-12-15 株式会社豊田自動織機 電動圧縮機
JP2017510954A (ja) * 2014-03-31 2017-04-13 インテリジェント エナジー リミテッドIntelligent Energy Limited 燃料電池用の冷却プレート
CN107452968A (zh) * 2016-05-13 2017-12-08 丰田自动车株式会社 燃料电池模块
JP2017228482A (ja) * 2016-06-24 2017-12-28 トヨタ自動車株式会社 燃料電池単セル
WO2018021773A1 (ko) * 2016-07-25 2018-02-01 주식회사 엘지화학 분리판, 및 이를 포함하는 연료전지 스택
JP2018520456A (ja) * 2015-05-27 2018-07-26 エルジー・ケム・リミテッド 分離板およびこれを含む燃料電池スタック
US10193165B2 (en) 2013-10-02 2019-01-29 Toyota Jidosha Kabushiki Kaisha Separator and fuel cell
KR101983912B1 (ko) * 2017-12-15 2019-05-29 한양대학교 산학협력단 분리판 및 이를 포함하는 연료 전지
US10340532B2 (en) 2010-09-16 2019-07-02 Toyota Jidosha Kabushiki Kaisha Separator for fuel cell, fuel cell and method of manufacturing fuel cell
JP2019125530A (ja) * 2018-01-18 2019-07-25 株式会社Soken 燃料電池スタック
US10468690B2 (en) 2013-10-02 2019-11-05 Toyota Jidosha Kabushiki Kaisha Fuel cell separator and fuel cell
WO2021199500A1 (ja) * 2020-03-30 2021-10-07 トヨタ車体株式会社 燃料電池用セパレータ
WO2021199499A1 (ja) * 2020-03-30 2021-10-07 トヨタ車体株式会社 燃料電池用セパレータ
JP2022502822A (ja) * 2018-11-16 2022-01-11 上海恒勁動力科技有限公司 燃料電池案内バッフル
US11258077B2 (en) 2018-10-18 2022-02-22 Toyota Jidosha Kabushiki Kaisha Fuel cell separator, method for producing the same, and apparatus for producing the same

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105167A1 (ja) * 2003-05-23 2004-12-02 Honda Motor Co., Ltd. 燃料電池
WO2012097521A1 (zh) * 2011-01-21 2012-07-26 中国科学院宁波材料技术与工程研究所 一种固体氧化物燃料电池堆
EP2876715B1 (en) * 2012-07-17 2020-05-06 Toyota Shatai Kabushiki Kaisya Fuel cell
CN104885271B (zh) * 2012-09-07 2018-12-07 奥迪股份公司 便于除水的反应物流动通道构造
JP5915613B2 (ja) * 2013-10-02 2016-05-11 トヨタ自動車株式会社 セパレータおよび燃料電池
US9444108B2 (en) * 2014-04-15 2016-09-13 Hamilton Sundstrand Corporation Additive manufacturing for fuel cell flow fields
JP6102887B2 (ja) * 2014-11-05 2017-03-29 トヨタ自動車株式会社 インシュレータおよび燃料電池装置
DE102015203684A1 (de) * 2015-03-02 2016-09-08 Volkswagen Ag Bipolarplatte mit adhäsiv unterstützten Bipolarplattenregionen
KR101959469B1 (ko) 2015-07-31 2019-07-02 주식회사 엘지화학 분리판, 및 이를 포함하는 연료전지 스택
DE202015104973U1 (de) 2015-09-18 2016-12-20 Reinz-Dichtungs-Gmbh Separatorplatte für ein elektrochemisches System
DE202015104972U1 (de) * 2015-09-18 2016-12-20 Reinz-Dichtungs-Gmbh Separatorplatte für ein elektrochemisches System
DE202015106197U1 (de) 2015-11-16 2017-02-17 Reinz-Dichtungs-Gmbh Separatorplatte für ein elektrochemisches System und elektrochemisches System
JP2018055945A (ja) * 2016-09-28 2018-04-05 三菱自動車工業株式会社 燃料電池スタック
JP6658486B2 (ja) * 2016-12-09 2020-03-04 トヨタ自動車株式会社 燃料電池用セパレータ及び燃料電池
US11011758B2 (en) * 2017-02-02 2021-05-18 Hond Motor Co., Ltd. Fuel cell and metallic separator with varied bead seal width and angle
CN110352139B (zh) * 2017-02-17 2024-07-30 慕贝尔碳纤维技术有限公司 电池结构和保护器
JP7021551B2 (ja) * 2018-02-08 2022-02-17 トヨタ自動車株式会社 燃料電池スタック
JP7062993B2 (ja) * 2018-02-13 2022-05-09 トヨタ自動車株式会社 燃料電池の検査方法および検査システム
FR3079676B1 (fr) * 2018-03-27 2022-01-07 Symbiofcell Plaque bipolaire a canaux ondules
CN109921057A (zh) * 2019-04-04 2019-06-21 浙江大学 一种波纹交错排布的燃料电池双极板结构
JP7136030B2 (ja) * 2019-07-19 2022-09-13 トヨタ車体株式会社 燃料電池スタック
DE102020113353A1 (de) * 2020-05-18 2021-11-18 Audi Aktiengesellschaft Bipolarplatte
DE102020128279A1 (de) * 2020-10-28 2022-04-28 Audi Aktiengesellschaft Bipolarplatte und Brennstoffzellenstapel
DE102020128825A1 (de) 2020-11-03 2022-05-05 Audi Aktiengesellschaft Brennstoffzellenstapel mit einer Trennung der Einströmseiten der Reaktionsmedien und Kraftfahrzeug mit einem solchen
GB2601119B (en) * 2020-11-17 2023-05-17 Bramble Energy Ltd A fuel cell and methods of decoupling reactant and coolant fluid flow in a fuel cell
DE102021206090A1 (de) 2021-06-15 2022-12-15 Robert Bosch Gesellschaft mit beschränkter Haftung Wasserstoff- und Kühlmittel Flow-Field-Design ohne Kühlmittelverteilungsbereich einer Bipolarplatte für PEM-Brennstoffzellen und Elektrolyseure
CN113346099B (zh) * 2021-08-02 2021-10-26 爱德曼氢能源装备有限公司 质子交换膜燃料电池免粘焊密封结构的金属双极板
DE102022119221A1 (de) 2022-08-01 2024-02-01 Ekpo Fuel Cell Technologies Gmbh Bipolarplatte für eine elektrochemische Einheit einer elektrochemischen Vorrichtung und elektrochemische Vorrichtung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047495A (ja) * 2001-01-30 2004-02-12 Honda Motor Co Ltd 燃料電池
JP2005032547A (ja) * 2003-07-11 2005-02-03 Mitsubishi Materials Corp 固体高分子型燃料電池、固体高分子型燃料電池用のガス拡散層用部材およびその製造方法
JP2006054198A (ja) * 1998-08-03 2006-02-23 Toyota Motor Corp 多連凹凸板を利用した燃料電池用セパレータおよび多連凹凸板用曲げ加工型
JP2006107862A (ja) * 2004-10-04 2006-04-20 Toyota Motor Corp 燃料電池のシール構造
JP2007005235A (ja) * 2005-06-27 2007-01-11 Honda Motor Co Ltd 燃料電池
JP2007095459A (ja) * 2005-09-28 2007-04-12 Honda Motor Co Ltd 反応ガス用加湿装置
JP2007280748A (ja) * 2006-04-06 2007-10-25 Fuji Electric Holdings Co Ltd 燃料電池発電システムの起動方法
JP2008010311A (ja) * 2006-06-29 2008-01-17 Honda Motor Co Ltd 燃料電池の運転方法

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3589942A (en) * 1966-12-22 1971-06-29 Cons Natural Gas Svc Bipolar collector plates
US3372743A (en) * 1967-01-25 1968-03-12 Pall Corp Heat exchanger
JPH07161365A (ja) * 1993-12-06 1995-06-23 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池用セパレータ
US6410178B1 (en) 1998-05-08 2002-06-25 Aisin Takaoka Co., Ltd. Separator of fuel cell and method for producing same
JP4019554B2 (ja) 1998-08-03 2007-12-12 トヨタ自動車株式会社 燃料電池セパレータ用多連凹凸板の製造方法
JP4120072B2 (ja) 1998-11-27 2008-07-16 アイシン精機株式会社 固体高分子電解質型燃料電池用セパレータ及び固体高分子電解質型燃料電池
JP2002083610A (ja) 2000-06-22 2002-03-22 Mitsubishi Electric Corp 固体高分子型燃料電池およびそのセパレータ
JP4598287B2 (ja) * 2001-03-06 2010-12-15 本田技研工業株式会社 燃料電池スタックおよび燃料電池スタックの運転方法
JP3700642B2 (ja) * 2001-12-11 2005-09-28 日産自動車株式会社 燃料電池
DE10163631A1 (de) * 2001-12-21 2003-07-10 Forschungszentrum Juelich Gmbh Bipolare Platte für eine Brennstoffzelle
US6924052B2 (en) 2002-04-24 2005-08-02 General Motors Corporation Coolant flow field design for fuel cell stacks
JP3599280B2 (ja) 2002-05-17 2004-12-08 本田技研工業株式会社 燃料電池
JP2004079233A (ja) * 2002-08-12 2004-03-11 Nisshinbo Ind Inc 燃料電池セパレータの製造方法および燃料電池セパレータ
JP3972832B2 (ja) 2003-02-10 2007-09-05 トヨタ自動車株式会社 燃料電池
JP3956864B2 (ja) * 2003-02-13 2007-08-08 トヨタ自動車株式会社 流路構造を有する燃料電池のセパレータ
JP4473519B2 (ja) 2003-04-16 2010-06-02 本田技研工業株式会社 燃料電池
US7459227B2 (en) * 2003-04-18 2008-12-02 General Motors Corporation Stamped fuel cell bipolar plate
JP4266338B2 (ja) 2003-10-15 2009-05-20 本田技研工業株式会社 燃料電池
JP2005149880A (ja) 2003-11-14 2005-06-09 Nissan Motor Co Ltd 燃料電池システム
CN2676422Y (zh) * 2003-12-12 2005-02-02 上海河森电气有限公司 一种燃料电池双极板结构
JP4797325B2 (ja) * 2004-01-13 2011-10-19 トヨタ自動車株式会社 冷却液および冷却システム
JP4388390B2 (ja) * 2004-02-24 2009-12-24 本田技研工業株式会社 燃料電池用セパレータ
JP2006040618A (ja) * 2004-07-23 2006-02-09 Nissan Motor Co Ltd 燃料電池システム
JP2008511104A (ja) * 2004-08-19 2008-04-10 ジーエム・グローバル・テクノロジー・オペレーションズ・インコーポレーテッド 改善された水管理のための燃料電池要素の表面改質
US7842435B2 (en) * 2004-11-01 2010-11-30 Gm Global Technology Operations, Inc. Fuel cell water management enhancement method
US7998638B2 (en) * 2004-11-03 2011-08-16 Samsung Sdi Co., Ltd. Electrode for fuel cell, and membrane-electrode assembly and fuel cell system comprising the same
WO2006075786A1 (ja) * 2005-01-13 2006-07-20 Toyota Jidosha Kabushiki Kaisha 燃料電池及び燃料電池用セパレータ
DE102005002924A1 (de) * 2005-01-14 2006-07-20 Volkswagen Ag Gasverteilungsvorrichtung einer Brennstoffzelle und Brennstoffzelle
JP2006228501A (ja) * 2005-02-16 2006-08-31 Nec Tokin Corp 固体高分子型燃料電池
JP4899339B2 (ja) 2005-05-16 2012-03-21 トヨタ自動車株式会社 燃料電池のセパレータ
JP4947337B2 (ja) 2005-11-24 2012-06-06 トヨタ自動車株式会社 燃料電池用セパレータ
JP5077620B2 (ja) 2005-12-16 2012-11-21 トヨタ自動車株式会社 燃料電池のセパレータ
CN101379642B (zh) * 2006-02-02 2010-12-08 松下电器产业株式会社 隔离板和燃料电池
US8628819B2 (en) * 2006-02-24 2014-01-14 GM Global Technology Operations LLC Method of depositing a nanoparticle coating on a bipolar plate and removing the nanoparticle coating from the lands of the bipolar plate
JP4989185B2 (ja) 2006-10-26 2012-08-01 三洋電機株式会社 燃料電池用セパレータセット
JP2008257930A (ja) 2007-04-03 2008-10-23 Toyota Motor Corp 燃料電池
US20090136805A1 (en) 2007-11-23 2009-05-28 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2009170286A (ja) 2008-01-17 2009-07-30 Toyota Motor Corp 燃料電池
JP2010073626A (ja) 2008-09-22 2010-04-02 Nissan Motor Co Ltd 燃料電池用セパレータ及び燃料電池スタック
JP5235581B2 (ja) 2008-09-30 2013-07-10 株式会社日立製作所 燃料電池セパレータ
CN103119766B (zh) 2010-09-16 2016-04-20 丰田自动车株式会社 燃料电池用隔板、燃料电池、燃料电池的制造方法
JP5445592B2 (ja) * 2011-05-26 2014-03-19 トヨタ自動車株式会社 燃料電池用セパレータおよび燃料電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054198A (ja) * 1998-08-03 2006-02-23 Toyota Motor Corp 多連凹凸板を利用した燃料電池用セパレータおよび多連凹凸板用曲げ加工型
JP2004047495A (ja) * 2001-01-30 2004-02-12 Honda Motor Co Ltd 燃料電池
JP2005032547A (ja) * 2003-07-11 2005-02-03 Mitsubishi Materials Corp 固体高分子型燃料電池、固体高分子型燃料電池用のガス拡散層用部材およびその製造方法
JP2006107862A (ja) * 2004-10-04 2006-04-20 Toyota Motor Corp 燃料電池のシール構造
JP2007005235A (ja) * 2005-06-27 2007-01-11 Honda Motor Co Ltd 燃料電池
JP2007095459A (ja) * 2005-09-28 2007-04-12 Honda Motor Co Ltd 反応ガス用加湿装置
JP2007280748A (ja) * 2006-04-06 2007-10-25 Fuji Electric Holdings Co Ltd 燃料電池発電システムの起動方法
JP2008010311A (ja) * 2006-06-29 2008-01-17 Honda Motor Co Ltd 燃料電池の運転方法

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10340532B2 (en) 2010-09-16 2019-07-02 Toyota Jidosha Kabushiki Kaisha Separator for fuel cell, fuel cell and method of manufacturing fuel cell
US8642226B2 (en) 2011-05-26 2014-02-04 Toyota Jidosha Kabushiki Kaisha Separator for fuel cell and fuel cell
WO2015049859A1 (ja) * 2013-10-01 2015-04-09 トヨタ自動車株式会社 燃料電池用セパレーターおよび燃料電池
JP2015069968A (ja) * 2013-10-01 2015-04-13 トヨタ自動車株式会社 燃料電池用セパレーターと燃料電池
KR20160047547A (ko) * 2013-10-01 2016-05-02 도요타지도샤가부시키가이샤 연료 전지용 세퍼레이터 및 연료 전지
US10153498B2 (en) 2013-10-01 2018-12-11 Toyota Jidosha Kabushiki Kaisha Fuel cell separator and fuel cell
KR101889201B1 (ko) 2013-10-01 2018-08-16 도요타지도샤가부시키가이샤 연료 전지용 세퍼레이터 및 연료 전지
US10193165B2 (en) 2013-10-02 2019-01-29 Toyota Jidosha Kabushiki Kaisha Separator and fuel cell
US10468690B2 (en) 2013-10-02 2019-11-05 Toyota Jidosha Kabushiki Kaisha Fuel cell separator and fuel cell
JP2020092092A (ja) * 2014-03-31 2020-06-11 インテリジェント エナジー リミテッドIntelligent Energy Limited 燃料電池用の冷却プレート
JP2017510954A (ja) * 2014-03-31 2017-04-13 インテリジェント エナジー リミテッドIntelligent Energy Limited 燃料電池用の冷却プレート
KR101675638B1 (ko) * 2014-10-29 2016-11-14 현대제철 주식회사 연료전지용 유로형성부재
KR20160052872A (ko) * 2014-10-29 2016-05-13 현대제철 주식회사 연료전지용 유로형성부재
JP2016211491A (ja) * 2015-05-12 2016-12-15 株式会社豊田自動織機 電動圧縮機
JP2018520456A (ja) * 2015-05-27 2018-07-26 エルジー・ケム・リミテッド 分離板およびこれを含む燃料電池スタック
CN107452968A (zh) * 2016-05-13 2017-12-08 丰田自动车株式会社 燃料电池模块
CN107452968B (zh) * 2016-05-13 2020-08-18 丰田自动车株式会社 燃料电池模块
JP2017228482A (ja) * 2016-06-24 2017-12-28 トヨタ自動車株式会社 燃料電池単セル
US10930941B2 (en) 2016-07-25 2021-02-23 Lg Chem, Ltd. Separator, and fuel cell stack comprising the same
WO2018021773A1 (ko) * 2016-07-25 2018-02-01 주식회사 엘지화학 분리판, 및 이를 포함하는 연료전지 스택
KR101983912B1 (ko) * 2017-12-15 2019-05-29 한양대학교 산학협력단 분리판 및 이를 포함하는 연료 전지
JP7044564B2 (ja) 2018-01-18 2022-03-30 株式会社Soken 燃料電池スタック
JP2019125530A (ja) * 2018-01-18 2019-07-25 株式会社Soken 燃料電池スタック
US11258077B2 (en) 2018-10-18 2022-02-22 Toyota Jidosha Kabushiki Kaisha Fuel cell separator, method for producing the same, and apparatus for producing the same
JP2022502822A (ja) * 2018-11-16 2022-01-11 上海恒勁動力科技有限公司 燃料電池案内バッフル
JP7079996B2 (ja) 2018-11-16 2022-06-03 上海恒勁動力科技有限公司 燃料電池案内バッフル
WO2021199500A1 (ja) * 2020-03-30 2021-10-07 トヨタ車体株式会社 燃料電池用セパレータ
WO2021199499A1 (ja) * 2020-03-30 2021-10-07 トヨタ車体株式会社 燃料電池用セパレータ
JP2021163534A (ja) * 2020-03-30 2021-10-11 トヨタ車体株式会社 燃料電池用セパレータ
JP2021163535A (ja) * 2020-03-30 2021-10-11 トヨタ車体株式会社 燃料電池用セパレータ
JP7234986B2 (ja) 2020-03-30 2023-03-08 トヨタ車体株式会社 燃料電池用セパレータ
JP7310681B2 (ja) 2020-03-30 2023-07-19 トヨタ車体株式会社 燃料電池用セパレータ

Also Published As

Publication number Publication date
CN103119766B (zh) 2016-04-20
US20130177827A1 (en) 2013-07-11
US20160380277A1 (en) 2016-12-29
EP2618413B1 (en) 2017-06-14
EP2618413A4 (en) 2014-10-22
CN103119766A (zh) 2013-05-22
JPWO2012035585A1 (ja) 2014-01-20
EP2618413A1 (en) 2013-07-24
JP5582193B2 (ja) 2014-09-03
US10340532B2 (en) 2019-07-02

Similar Documents

Publication Publication Date Title
JP5582193B2 (ja) 燃料電池用セパレータ、燃料電池、燃料電池の製造方法
US9853300B2 (en) Bipolar plate structure for fuel cell
JP5445592B2 (ja) 燃料電池用セパレータおよび燃料電池
US20050255367A1 (en) Fuel cell, separator unit kit for fuel cell, and fuel cell generating unit kit
US20100098983A1 (en) Fuel cell performing anode dead-end operation with improved water management
US20170110739A1 (en) Bipolar plate and fuel cell comprising a bipolar plate of this type
WO2006121157A1 (ja) 燃料電池
CN101573817A (zh) 燃料电池中的气体扩散层
US20070254203A1 (en) Fuel cell stack
CA2831870C (en) Fuel cell with improved durability
JP4957091B2 (ja) 燃料電池
US20080261095A1 (en) Membrane-Electrode Assembly, Method for Manufacturing the Same, and Fuel Cell
CA2817819C (en) Fuel cell with water inflow preventing portion
US20110008703A1 (en) Fuel cell with dead-end anode
JP6050158B2 (ja) 燃料電池
CN115216796A (zh) 电化学式氢泵
US9923228B2 (en) Fuel cell
JP2011154799A (ja) 燃料電池
JP5422992B2 (ja) 燃料電池
JP7048254B2 (ja) 燃料電池
JP2011040213A (ja) 燃料電池用双極板
JP2007103248A (ja) 燃料電池
JP7496377B2 (ja) 発電セル
US20160233528A1 (en) Fuel cell
JP2008305686A (ja) 燃料電池システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080069140.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857221

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012533751

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010857221

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010857221

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13822995

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE