JP2010073626A - 燃料電池用セパレータ及び燃料電池スタック - Google Patents

燃料電池用セパレータ及び燃料電池スタック Download PDF

Info

Publication number
JP2010073626A
JP2010073626A JP2008242673A JP2008242673A JP2010073626A JP 2010073626 A JP2010073626 A JP 2010073626A JP 2008242673 A JP2008242673 A JP 2008242673A JP 2008242673 A JP2008242673 A JP 2008242673A JP 2010073626 A JP2010073626 A JP 2010073626A
Authority
JP
Japan
Prior art keywords
cooling water
flow path
reaction gas
separator
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008242673A
Other languages
English (en)
Inventor
Okinori Sakuma
宙之 佐久間
Masatoshi Iio
雅俊 飯尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008242673A priority Critical patent/JP2010073626A/ja
Publication of JP2010073626A publication Critical patent/JP2010073626A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】生成水による水詰まりを抑制することを目的とする。
【解決手段】本発明によるセパレータは、膜電極接合体との対向面に形成され、反応ガス導入孔42aから導入された反応ガスを、鉛直下側から上側に流したあとUターンさせて、鉛直上側から鉛直下側に流して反応ガス排出孔42bから排出する複数の溝状の反応ガス流路122と、膜電極接合体との対向面の背面に形成され、冷却水導入孔41aから導入された冷却水を、鉛直下側から上側に流して冷却水排出孔41bから排出する複数の溝状の冷却水流路123と、を備えるプレート121の前記冷却水流路123が形成された面同士を重ね合わせて構成されることを特徴とする。
【選択図】図3

Description

本発明は燃料電池用セパレータ及び燃料電池スタックに関する。
従来の燃料電池用セパレータは、水素導入マニホールドと水素排出マニホールドと空気導入マニホールドと空気排出マニホールドを隣接させ、膜電極接合体に対してサーペンタイン形状の水素流路と空気流路が鏡面対称となるように水素流路と空気流路を形成していた(例えば、特許文献1参照)。
特開2006−185615号公報
しかしながら、従来の燃料電池用セパレータは、ガス流路の折り返し部に、電極反応によって生じた生成水が溜まりやすく、反応ガスの供給を妨げるという問題点があった。
本発明はこのような従来の問題点に着目してなされたものであり、生成水による水詰まりを抑制する燃料電池用セパレータを提供することを目的とする。
本発明は以下のような解決手段によって前記課題を解決する。
本発明は、反応ガス導入孔からセパレータの反応ガス流路に導入された反応ガスを、鉛直下側から上側に流したあとUターンさせて、鉛直上側から鉛直下側に流して反応ガス排出孔から排出し、冷却水導入孔からセパレータの冷却水流路に導入された冷却水を、鉛直下側から上側に流して冷却水排出孔から排出することを特徴とする。
本発明によれば、鉛直下側から鉛直上側に冷却水を流すこととしたので、セパレータの鉛直上側が高温、鉛直下側が低温となる温度場を形成することができる。そして、このような温度場が形成された状態で、反応ガスを鉛直下側から上側に流したあと、鉛直上側から鉛直下側に流すことで、ガス流路の折り返し部をセパレータの鉛直上側に位置させることができる。これにより、折り返し部において、反応ガスが飽和しにくくなるので、水蒸気の凝縮を抑制でき、水詰まりを抑制できる。
以下、図面等を参照して本発明の実施形態について説明する。
(第1実施形態)
燃料電池システムは、燃料が有する化学エネルギを直接電気エネルギに変換するシステムである。燃料電池システムは、固体高分子電解質膜(以下「電解質膜」という)をアノード電極(陽極)とカソード電極(陰極)とで挟み、アノード電極に水素を含有する燃料ガスを供給し、カソード電極に酸素を含有する酸化剤ガスを供給する。これにより、アノード電極及びカソード電極の電解質膜側の表面で生じる以下の電気化学反応を利用して、電極から電気エネルギを取り出す。
アノード電極 : 2H2→4H++4e- ・・・(1)
カソード電極 : 4H++4e-+O2→2H2O ・・・(2)
図1は、このような燃料電池システムとして、自動車などの移動車両に用いられる燃料電池スタック10の斜視図である。
燃料電池スタック10は、積層された複数の単セル1と、一対の集電板2a,2bと、一対の絶縁板3a,3bと、一対のエンドプレート4a,4bと、図示しない4本のテンションロッドに螺合するナット5とを有する。
単セル1は、起電力を生じる固体高分子型燃料電池の単位セルである。単セル1は、1ボルト程度の起電圧を生じる。単セル1の構成の詳細については後述する。
一対の集電板2a,2bは、積層された複数の単セル1の外側にそれぞれ配置される。集電板2a,2bは、ガス不透過性の導電性部材で形成され、例えば、緻密質カーボンによって形成される。集電板2a,2bは、上辺の一部に出力端子6を備える。燃料電池スタック10は、出力端子6によって、各単セル1で生じた電子e-を取り出して出力する。
一対の絶縁板3a,3bは、集電板2a,2bの外側にそれぞれ配置される。絶縁板3a,3bは、絶縁性の部材で形成され、例えばゴムなどで形成される。
一対のエンドプレート4a,4bは、絶縁板3a,3bの外側にそれぞれ配置される。エンドプレート4a,4bは、剛性を備える金属性の材料で形成され、例えば鋼などで形成される。
一対のエンドプレート4a,4bのうち、一方のエンドプレート4aには、冷却水の導入孔41a及び排出孔41bと、アノードガスの導入孔42a及び排出孔42bと、カソードガスの導入孔43a及び排出孔43bとが形成される。なお、冷却水排出孔41bは、エンドプレート4aの鉛直上側に形成され、冷却水導入孔41a、アノードガス導入孔42a、アノードガス排出孔42b、カソードガス導入孔43a及びカソードガス排出孔43bは、鉛直下側に形成される。
ここで、アノードガス導入孔42aに燃料ガスとしての水素を供給する方法としては、例えば水素ガスを水素貯蔵装置から直接供給する方法又は水素を含有する燃料を改質して改質した水素含有ガスを供給する方法がある。なお、水素貯蔵装置としては、高圧ガスタンク、液化水素タンク、水素吸蔵合金タンク等がある。水素を含有する燃料としては、天然ガス、メタノール、ガソリン等が考えられる。また、カソードガス導入孔43aに供給する酸化剤ガスとしては、一般的に空気が利用される。
ナット5は、燃料電池スタック10の内部を貫通する図示しない4本のテンションロッドの両端部に形成された雄ねじ部に螺合する。テンションロッドにナット5を螺合締結することで、燃料電池スタック10を積層方向に締め付ける。テンションロッドは、剛性を備えた金属材料で形成され、例えば鋼などで形成される。テンションロッドの表面には絶縁処理が施され、単セル同士の電気短絡を防止している。
以下では、図2を参照して、単セル1の構成の詳細について説明する。
図2は、単セル1の分解斜視図である。
単セル1は、膜電極接合体(Membrane Electrode Assembly;以下「MEA」という)11と、MEA11の表裏両面に設けられるセパレータ12と、を備える。
MEA11は、電解質膜11aと、アノード電極11bと、カソード電極11cとを有する。MEA11は、電解質膜11aの一方の面にアノード電極11bを有し、他方の面にカソード電極11cを有する。
電解質膜11aは、フッ素系樹脂により形成されたプロトン伝導性のイオン交換膜である。電解質膜11aは、湿潤状態で良好な電気伝導性を示す。そのため、電解質膜11aの性能を引き出して発電効率を向上させるためには、電解質膜11aの水分状態を最適に保つ必要がある。そこで、本実施形態では、燃料電池スタック10に導入するアノードガスやカソードガスを加湿している。なお、電解質膜11aの水分状態を最適に保つための水には純水を用いる必要がある。これは不純物が混入した水を燃料電池スタック10に導入した場合には電解質膜11aに不純物が蓄積し、発電効率が低下するためである。
アノード電極11b及びカソード電極11cは、ガス拡散層、撥水層、及び触媒層から構成される。ガス拡散層は、充分なガス拡散性および導電性を有する部材によって形成され、例えば、炭素繊維からなる糸で織成したカーボンクロスで形成される。撥水層は、ポリエチレンフルオロエチレンと炭素材を含む層である。触媒層は、白金が担持されたカーボンブラック粒子から形成される。
セパレータ12は、2枚のプレート121が重ね合わせて構成される。以下では、図3を参照して、本実施形態によるセパレータ12を構成するプレート121について詳しく説明する。
図3(A)は、本実施形態によるプレート121をアノード電極側から見たときの表面図である。図3(B)は、プレート121の裏面図である。
図3(A)及び図3(B)に示すように、プレート121の鉛直上側には、冷却水排出孔41bが形成される。一方、鉛直下側には、冷却水導入孔41a、アノードガス導入孔42a、アノードガス排出孔42b、カソードガス導入孔43a及びカソードガス排出孔43bが形成される。
図3(A)に示すように、プレート121の表面には、アノードガス又はカソードガスが流れる複数の溝状のガス流路122が形成される。
ガス流路122は、第1直線部122aと、第2直線部122bと、折り返し部122cと、を備えたU字形の流路である。ガス流路122はガス流路底面からアノード電極側へ突出してアノード電極と接する複数のリブ126の間に形成される流路である。
第1直線部122aは、アノードガス導入孔42aから鉛直上向きに延びる直線状の流路である。第2直線部122bは、アノードガス排出孔42bから鉛直上向きに延びる直線状の流路である。折り返し部122cは、第1直線部122aと第2直線部122bとを接続する円弧上の流路である。
アノードガス導入孔42aから供給されたアノードガスは、第1直線部122aを鉛直上向きに流れ、折り返し部122cを通った後、第2直線部122bを鉛直下向きに流れてアノードガス排出孔42bから排出される。
図3(B)に示すように、プレート121の裏面には、発電により暖められた燃料電池スタック全体を冷却するための冷却水が流れる冷却水流路123が形成される。冷却水流路123は、冷却水流路底面から突出する複数のリブ127の間に形成される流路である。
冷却水流路123は、冷却水導入孔41aから冷却水排出孔41bへ向けて鉛直上側にまっすぐに延びる直線状の流路である。
次に、2枚のプレート121の裏面(冷却水流路123が形成される面)同士を重ね合わせて構成されるセパレータ12の作用効果について、図4及び図5を参照して説明する。
図4は、セパレータ12の表面を流れるアノードガスの流れと、その背面を流れる冷却水の流れを示す図である。
冷却水流路を流れる冷却水は、冷却水排出孔41bに近づくほど温度が高くなる。そのため、冷却排出孔41bの近傍は、冷却水導入孔41aの近傍よりも高温となる。これにより、流路が湾曲しているため、電極反応によって生じた生成水が詰まりやすい折り返し部122cにおいて、反応ガス中の水蒸気が凝縮するのを抑制できるので、水詰まりを抑制できる。
一方で、冷却水導入孔41aの近傍は、冷却排出孔41bの近傍よりも低温となる。これにより、折り返し部122cを高温としつつ、第1及び第2直線部122a,122bを低温にできるので、第1及び第2直線部122a,122bに接するMEAが過度に乾燥するのを抑制できる。したがって、発電性能の低下及びMEAの劣化を抑制できる。
また、折り返し部122cより下流の第2直線部122bを流れる反応ガスは、鉛直下向きに流れるので、折り返し部122cにおいて発生した液水を重力によってアノードガス排出孔42bへと導くことができる。したがって、より一層水詰まりを抑制できる。
図5は、セパレータ12の表面を流れるアノードガスの流れと、その裏面を流れるカソードガスの流れと、を示した図である。
図5に矢印で示すように、本実施形態によるセパレータ12によれば、アノードガスの流れ方向と、カソードガスの流れ方向とが、逆になる。
ここで、カソード電極では式(2)の反応が起こり、生成水が発生する。そのため、カソード電極と接するセパレータにおいては、ガス流路122の下流ほど、カソードガスの湿度が高くなる。
また、式(2)のカソード反応で発した生成水の一部は、アノード電極とカソード電極との水分濃度差によってMEAを通り、アノード電極と接するセパレータ12に形成されたガス流路121へと拡散移動していく。そのため、アノード電極と接するセパレータ12においても、ガス流路121の下流ほど、アノードガスの湿度が高くなる。
したがって、アノードガスの流れ方向と、カソードガスの流れ方向とを、逆向きにすることで、MEAを介して反応ガス中の湿度が高い部分と低い部分とを対峙させることができる。これにより、水分濃度差によって、湿度の高い反応ガス中の水分がMEAを介して湿度の低い反応ガスのガス流路側に移動させることができる。
その結果、反応ガス(アノードガス及びカソードガス)の導入孔42a,43aから供給される反応ガスを加湿することができる。また、反応ガスの排出孔42b、43bの近傍の反応ガスの水分濃度を下げることができる。そのため、反応ガスが飽和するのを抑制できるので、凝縮水の発生を抑制でき、水詰まりを抑制できる。
(第2実施形態)
次に、本発明の第2実施形態を、図6を参照して説明する。本実施形態は、ガス流路122の折り返し部122cに、ガス流路122cの溝深さが他より浅い浅底部124を設けた点で第1実施形態と相違する。以下、その相違点を中心に説明する。なお、以下に示す各実施形態では前述した第1実施形態と同様の機能を果たす部分には、同一の符号を用いて重複する説明を適宜省略する。
図6(B)は、図6(A)の折り返し部122cのガス流路122及び冷却水流路123の構成を示した図である。
上記した図3(A)及び図3(B)に示すように、ガス流路122の折り返し部122cと、冷却水流路123とは、互いに平行に形成されていない。そのため、板厚が薄いと、ガス流路122と冷却水流路123とが互いに干渉してしまうという問題がある。プレート121の板厚が厚ければ、冷却水流路溝をガス流路122の形状に関係なく独立して彫ることができる。しかし、プレート121の板厚を厚くすると、冷却性能が低下するとともに、燃料電位スタックが大型化するので、できるだけ薄くすることが望ましい。
そこで、本実施形態では、図6(B)に示すように、ガス流路122の折り返し部122cに、ガス流路122の溝深さが他より浅い浅底部124を設け、その浅底部124の背面を冷却水が通過する構成とした。浅底部124は、冷却水流路123とガス流路122が交差する部分に設けられる。
これにより、表面のガス流路122と、裏面の冷却水流路123と、が互いに平行に形成されていないプレート121の板厚を薄くすることができる。また、折り返し部122cに浅底部124を設けることで、浅底部124の流路断面積が小さくなる分、浅底部124を通過する反応ガスの流速が速くなる。したがって、折り返し部122cに溜まりやすい液水を第2直線部122bまで押し流すことができる。
(第3実施形態)
次に、本発明の第2実施形態を、図7〜図11を参照して説明する。本実施形態は、冷却水流路形状が異なる2つのプレート121a,121bを用いる点で第1実施形態と相違する。以下、その相違点を中心に説明する。
図7は、本実施形態による単セル1の分解斜視図である。以下では、アノード電極11bと接するプレート121を「アノードプレート121a」と、カソード電極11cと接するプレート121を「カソードプレート121b」という。また、発明の理解を容易にするため、図7においては、アノードガス及びカソードガスの導入孔及び排出孔の記載を省略した。
図7に示すように、本実施形態では、アノードプレート121a及びカソードプレート121bに形成される冷却水流路123がそれぞれ異なっている。以下、図8及び図9を参照して各プレート121a,121bの構成について詳しく説明する。
図8(A)は、アノードプレート121aをアノード電極側から見たときの表面図である。図8(B)は、アノードプレート121aの裏面図である。
図8(A)及び図8(B)に示すように、本実施形態では、冷却水排出孔41bは、アノードプレート121aの鉛直上側の角部に形成される。
図8(B)に示すように、アノードプレート121aの裏面には、凹部125が形成される。凹部125は、冷却水排出孔41bを含むように、冷却水排出孔41bの周りに形成される。凹部125は、図7に示すように、アノードプレート121aとカソードプレート121bとを重ね合わせたときに、カソードプレート121bの冷却水流路123と重なる位置に形成され、冷却水を冷却水排出孔41bに誘導する。
冷却水流路123の折り返し部123bは、凹部125を避けるように形成される。
図8(A)に示すように、アノードプレート121aの表面には、ガス流路122が形成される。本実施形態では、冷却水流路123のリブ下をガス流路122として、ガス流路122を冷却水流路123に対応させた形状としている。これにより、アノードプレート121aの板厚を薄くすることができる。
図9(A)は、カソードプレート121bをカソード電極側から見たときの表面図である。図9(B)は、カソードプレート121bの裏面図である。
図9(A)及び図9(B)に示すように、カソードプレート121bには、アノードプレート121aと同様に、冷却水排出孔41bが鉛直上側に形成される。
図9(B)に示すように、カソードプレート121bの裏面には、表面に形成されたU字状のガス流路122に対応したU字状の冷却水流路123が形成される。ガス流路122のリブ下が冷却水流路123となっている。これにより、カソードプレート121bの板厚を薄くすることができる。
図10は、アノードプレート121aとカソードプレート121bとを重ね合わせて構成されるセパレータ12の冷却水の流れを示した図である。
図10に示すように、アノードプレート121aとカソードプレート121bとを重ね合わせたときに、アノードプレート121aの凹部125と、カソードプレート121bの冷却水流路123と、が重なり合う。そのため、カソードプレート121bの冷却水流路123を介して、凹部125に冷却水を誘導し、冷却水を冷却水排出孔41bから排出することができる。
このように、本実施形態によれば、各プレート121a,121bの表裏に形成されるガス流路122及び冷却水流路123を同一の形状にしつつ、セパレータ12の板厚を薄くすることができる。したがって、第1実施形態の効果に加えて、セパレータ12の製造コストを抑えることができ、燃料電池スタック10の小型化を図ることができる。
なお、本発明は上記の実施形態に限定されずに、その技術的な思想の範囲内において種々の変更がなしうることは明白である。
例えば、第2実施形態において、図11に示すように、浅底部の位置は、一列に形成せず、段階的に設けても良い。
また、第3実施形態において、図12及び図13に示すように、冷却水流路の形状や凹部の位置は、事情に応じて種々の変更が可能である。なお。図12及び図13はそれぞれ、図10に対応する図であり、アノードプレート121aとカソードプレート121bとを重ね合わせて構成されるセパレータ12の冷却水の流れを示した図である。
さらに、第3実施形態において、アノードプレート121aをカソードプレート121bとして、カソードプレート121bをアノードプレート121aとして使用してもよい。
燃料電池スタックの斜視図である。 単セルの分解斜視図である。 プレートの詳細図である。 セパレータの表面を流れるアノードガスの流れと、その背面を流れる冷却水の流れを示す図である。 セパレータの表面を流れるアノードガスの流れと、その裏面を流れるカソードガスの流れと、を示した図である。 第2実施形態による折り返し部におけるガス流路及び冷却水流路の構成を示した図である。 第2実施形態による単セルの分解斜視図である。 アノードプレートの詳細図である。 カソードプレートの詳細図である。 アノードプレートとカソードプレートとを重ね合わせて構成されるセパレータの冷却水の流れを示した図である。 第2実施形態とは別形態の折り返し部におけるガス流路及び冷却水流路の構成を示した図である。 第3実施形態とは別形態のアノードプレートとカソードプレートとを重ね合わせて構成されるセパレータの冷却水の流れを示した図である。 第3実施形態とは別形態のアノードプレートとカソードプレートとを重ね合わせて構成されるセパレータの冷却水の流れを示した図である。
符号の説明
10 燃料電池スタック
11 膜電極接合体
12 セパレータ
41a 冷却水導入孔
41b 冷却水排出孔
42a アノードガス導入孔(反応ガス導入孔)
42b アノードガス排出孔(反応ガス排出孔)
43a カソードガス導入孔(反応ガス導入孔)
43b カソードガス排出孔(反応ガス排出孔)
121 プレート
121a アノードプレート(一方のプレート、他方のプレート)
121b カソードプレート(一方のプレート、他方のプレート)
122 ガス流路(反応ガス流路)
122a 第1直線部(第1流路部)
122b 第2直線部(第2流路部)
122c 折り返し部(折り返し流路部)
123 冷却水流路
124 浅底部
125 凹部

Claims (6)

  1. 膜電極接合体との対向面に形成され、反応ガス導入孔から導入された反応ガスを、鉛直下側から上側に流したあとUターンさせて、鉛直上側から鉛直下側に流して反応ガス排出孔から排出する複数の溝状の反応ガス流路と、
    前記膜電極接合体との対向面の背面に形成され、冷却水導入孔から導入された冷却水を、鉛直下側から上側に流して冷却水排出孔から排出する複数の溝状の冷却水流路と、
    を備えるプレートの前記冷却水流路が形成された面同士を重ね合わせて構成される燃料電池用のセパレータ。
  2. 請求項1に記載したセパレータであって、
    前記反応ガス流路は、
    鉛直下側から鉛直上側に反応ガスが流れる第1流路部と、
    鉛直上側から鉛直下側に反応ガスが流れる第2流路部と、
    前記第1流路部と前記第2流路部とを接続する折り返し流路部と、を含む流路であり、
    前記冷却水流路は、直線状の流路である
    ことを特徴とするセパレータ。
  3. 請求項2に記載したセパレータであって、
    前記第1流路部、第2流路部及び冷却水流路は、互いに平行に形成され、
    前記折り返し流路部は、流路の溝深さが浅い浅底部を有し、
    前記折り返し流路部の裏面に形成される前記冷却水流路は、前記浅底部の背面に形成される
    ことを特徴とするセパレータ。
  4. 請求項1に記載したセパレータであって、
    一方のプレートは、他方のプレートと重ね合わせたときに、その他方のプレートの前記冷却水流路上に位置するように、前記冷却水排出孔の周りに形成された凹部を有する
    ことを特徴とするセパレータ。
  5. 請求項4に記載したセパレータであって、
    前記一方のプレートは、前記凹部を避けるように形成された同一形状の前記反応ガス流路及び前記冷却水流路を備える
    ことを特徴とするセパレータ。
  6. 請求項1から5までのいずれか1つのセパレータを用いた燃料電池スタックであって、
    前記膜電極接合体を介して向き合う前記反応ガス流路を流れる反応ガスの流れを逆にした
    ことを特徴とする燃料電池スタック。
JP2008242673A 2008-09-22 2008-09-22 燃料電池用セパレータ及び燃料電池スタック Pending JP2010073626A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008242673A JP2010073626A (ja) 2008-09-22 2008-09-22 燃料電池用セパレータ及び燃料電池スタック

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008242673A JP2010073626A (ja) 2008-09-22 2008-09-22 燃料電池用セパレータ及び燃料電池スタック

Publications (1)

Publication Number Publication Date
JP2010073626A true JP2010073626A (ja) 2010-04-02

Family

ID=42205204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008242673A Pending JP2010073626A (ja) 2008-09-22 2008-09-22 燃料電池用セパレータ及び燃料電池スタック

Country Status (1)

Country Link
JP (1) JP2010073626A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160607A1 (ja) * 2011-05-26 2012-11-29 トヨタ自動車株式会社 燃料電池用セパレータおよび燃料電池
JP2013191433A (ja) * 2012-03-14 2013-09-26 Toshiba Corp 燃料電池スタックおよび燃料電池システム
JP2014194065A (ja) * 2013-02-26 2014-10-09 Kyocera Corp 電解セルユニット、電解セルスタック装置および電解装置
JP2015173108A (ja) * 2014-02-19 2015-10-01 トヨタ紡織株式会社 燃料電池用セパレータ
US10340532B2 (en) 2010-09-16 2019-07-02 Toyota Jidosha Kabushiki Kaisha Separator for fuel cell, fuel cell and method of manufacturing fuel cell
CN115458765A (zh) * 2022-11-09 2022-12-09 武汉氢能与燃料电池产业技术研究院有限公司 一种金属空心支撑型固体氧化物燃料电池电堆及发电模块

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10340532B2 (en) 2010-09-16 2019-07-02 Toyota Jidosha Kabushiki Kaisha Separator for fuel cell, fuel cell and method of manufacturing fuel cell
WO2012160607A1 (ja) * 2011-05-26 2012-11-29 トヨタ自動車株式会社 燃料電池用セパレータおよび燃料電池
CN102906917A (zh) * 2011-05-26 2013-01-30 丰田自动车株式会社 燃料电池用分隔件及燃料电池
US8642226B2 (en) 2011-05-26 2014-02-04 Toyota Jidosha Kabushiki Kaisha Separator for fuel cell and fuel cell
KR101367394B1 (ko) 2011-05-26 2014-02-24 도요타 지도샤(주) 연료전지용 세퍼레이터 및 연료전지
JP2013191433A (ja) * 2012-03-14 2013-09-26 Toshiba Corp 燃料電池スタックおよび燃料電池システム
JP2014194065A (ja) * 2013-02-26 2014-10-09 Kyocera Corp 電解セルユニット、電解セルスタック装置および電解装置
JP2015173108A (ja) * 2014-02-19 2015-10-01 トヨタ紡織株式会社 燃料電池用セパレータ
CN115458765A (zh) * 2022-11-09 2022-12-09 武汉氢能与燃料电池产业技术研究院有限公司 一种金属空心支撑型固体氧化物燃料电池电堆及发电模块
CN115458765B (zh) * 2022-11-09 2023-01-31 武汉氢能与燃料电池产业技术研究院有限公司 一种金属空心支撑型固体氧化物燃料电池电堆及发电模块

Similar Documents

Publication Publication Date Title
US8921000B2 (en) Fuel cell
JP5269372B2 (ja) 燃料電池
JP5320927B2 (ja) 燃料電池スタック及び燃料電池用セパレータ
JP2010073626A (ja) 燃料電池用セパレータ及び燃料電池スタック
JP2009076294A (ja) 燃料電池用セパレータ
US20110070516A1 (en) Solid polymer electrolyte fuel cell
JP5304131B2 (ja) 燃料電池及び燃料電池用セパレータ
JP2007059187A (ja) 燃料電池
JP5463661B2 (ja) 燃料電池スタック
JP2007128857A (ja) 燃料電池セパレータ
JP4875223B2 (ja) 燃料電池用セパレータ及びそれを備える燃料電池
JP2008004494A (ja) 燃料電池
JP5011749B2 (ja) 燃料電池装置
JP5653867B2 (ja) 燃料電池
JP4886128B2 (ja) 燃料電池スタック
JP5304130B2 (ja) 燃料電池及び燃料電池用セパレータ
JP2008059874A (ja) 燃料電池スタック
JP2009081116A (ja) 燃料電池の膜電極接合体
US8197986B2 (en) Fuel cell device
JP5233184B2 (ja) 燃料電池用セパレータ
US8785072B2 (en) Fuel cell stack
US8440361B2 (en) Monopolar separator with an insulation layer for a fuel cell system
JP2008146897A (ja) 燃料電池用セパレータおよび燃料電池
JP2006147217A (ja) 燃料電池システム
JP6780612B2 (ja) 燃料電池用セパレータ