WO2012029440A1 - 立方晶窒化硼素焼結体工具 - Google Patents

立方晶窒化硼素焼結体工具 Download PDF

Info

Publication number
WO2012029440A1
WO2012029440A1 PCT/JP2011/066814 JP2011066814W WO2012029440A1 WO 2012029440 A1 WO2012029440 A1 WO 2012029440A1 JP 2011066814 W JP2011066814 W JP 2011066814W WO 2012029440 A1 WO2012029440 A1 WO 2012029440A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
sintered body
cubic boron
compound
cbn
Prior art date
Application number
PCT/JP2011/066814
Other languages
English (en)
French (fr)
Inventor
克己 岡村
真知子 阿部
久木野 暁
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to CA2778198A priority Critical patent/CA2778198C/en
Priority to CN201180004615.6A priority patent/CN102665976B/zh
Priority to EP11821458.4A priority patent/EP2612719B1/en
Priority to US13/503,327 priority patent/US8993132B2/en
Priority to IN3125DEN2012 priority patent/IN2012DN03125A/en
Priority to KR1020127011397A priority patent/KR20120062015A/ko
Priority to JP2012531748A priority patent/JP5732663B2/ja
Publication of WO2012029440A1 publication Critical patent/WO2012029440A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/16Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62842Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/04Aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/12Boron nitride
    • B23B2226/125Boron nitride cubic [CBN]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension

Definitions

  • the present invention relates to a cBN sintered body mainly composed of cubic boron nitride (hereinafter also referred to as cBN).
  • a high-hardness sintered body using cubic boron nitride is known.
  • the cBN particles have higher hardness, strength, and toughness than the ceramic binder, function as a skeleton in the sintered body, and maintain a material strength that can withstand cutting of high hardness hardened steel.
  • the ceramic binder serves to sinter cBN particles, which are hardly sinterable materials, at an industrial level pressure temperature, and at the same time has a lower reactivity with iron than chemical, thermal and chemical. Adds the ability to suppress wear.
  • the cBN sintered bodies are roughly classified into two types, one is a high cBN content rate, cBN is bonded to each other, and the balance is a cBN sintered body made of a binding material mainly composed of Co or Al (hereinafter, high cBN content rate sintered body) and another, Ti nitride (TiN) or carbide (TiC) having relatively low cBN content, low contact rate between cBNs, and low affinity with iron ) Through ceramics (hereinafter abbreviated as a low cBN content sintered body).
  • the former sintered body with high cBN content has excellent mechanical properties (high hardness, high strength, high toughness) and high thermal conductivity in applications where chips are cut and shear heat is not easily generated in the chips.
  • This achieves outstanding stability and long life, and iron-based sintered parts that are dominated by mechanical wear and damage due to rubbing with hard particles, and gray cast iron that is dominated by thermal shock during high-speed intermittent cutting Suitable for high-efficiency cutting.
  • the cBN component is thermally worn with iron, which makes it more difficult than conventional carbide tools and ceramic tools.
  • the wear develops rapidly, resulting in a short life.
  • the latter low cBN content sintered body exhibits excellent wear resistance due to the action of a binder composed of TiN or TiC ceramics having a lower affinity with iron at a higher temperature than cBN.
  • the hardened steel cutting market has been cultivated as a cutting tool that can achieve tool life 10 to several tens of times longer than conventional tools. .
  • Japanese Patent Application Laid-Open No. 2000-044347 Patent Document 1
  • Japanese Patent Application Laid-Open No. 2000-04350 Patent Document 2
  • Patent Document 2 include 45 to 70% by volume of cBN particles and carbides of Group 4a, 5a, and 6a elements, It consists of a binder phase containing at least one selected from the group consisting of nitride, carbonitride, boride, Al nitride, boride, oxide, carbonitride, boride, and their mutual solid solutions.
  • a cBN sintered body in which an average value and a standard deviation of the thickness of the binder phase are defined is described.
  • Patent Document 3 discloses ultra-fine cBN particles having a particle size of 0.01 ⁇ m or more and 0.70 ⁇ m or less, 4a, 5a, 6a group elements, Al, their carbides, and nitriding.
  • the cBN sintered body composed of at least one kind of binder phase, borides and their mutual solid solutions, and mixtures, there is described a cBN sintered body in which the average thickness of the binder phase is defined.
  • centrifugal casting is a technique for producing a hollow casting without using a core by rotating a mold and utilizing centrifugal force when casting a liner.
  • the contact portion and the innermost diameter portion of the mold are rapidly cooled, so that a dendrite structure and a rose-like structure having extremely poor machinability are generated in the same region.
  • the tool life is remarkably deteriorated when the cast iron structure of the cutting portion becomes the above-mentioned dendrite structure or loose structure when finishing to the above.
  • the cast iron structure varies greatly depending on the liner production lot, there is also a problem that the tool life is not stable, and the conventional high cBN content sintered body has insufficient wear resistance, and a satisfactory tool life can be obtained. There is no recent situation.
  • Patent Document 4 adopts Al 2 O 3 as the main component of the binder phase and adds appropriate amounts of ZrO 2 and TiC, thereby producing a centrifugal cast iron. Stabilization of tool life in machining has been attempted, but satisfactory tool life has not been obtained.
  • JP 2000-044347 A Japanese Patent Laid-Open No. 2000-04350 JP 2002-302732 A WO2008 / 087940
  • the present invention provides a cBN sintered body having high cutting performance and excellent tool life in the cutting of cast iron made by centrifugal casting mixed with the above-described dendritic structure and loose-shaped structure having poor machinability. It is an object to provide a tool.
  • the cBN sintered body composed of Al 2 O 3 , cBN, ZrO 2 , and TiC is inferior in fracture resistance because the average thickness of Al 2 O 3 is too thick.
  • the technique defines the thickness and the standard deviation of the binder phase to a proper value is known, Al 2 O 3 content is small, the wear resistance is insufficient in the process of centrifugal casting cast iron.
  • the inventors of the present invention have determined the optimal arrangement of the interface or grain boundary of the Al 2 O 3 particles that is the starting point of the crack and the optimum arrangement of the Zr compound that can be expected to strengthen Al 2 O 3 .
  • a cBN sintered body in which the particle size, the content rate, and the mixing method were changed was produced, and the correlation with the cutting performance was investigated.
  • the Zr compound and cBN particles in Al 2 O 3 is excellent in heat resistance and divide the Al 2 O 3 having poor toughness, optimize the average thickness and the standard deviation of the Al 2 O 3 By setting the range, we succeeded in achieving both heat resistance and toughness at a high level.
  • a cubic boron nitride sintered body tool having at least a cubic boron nitride sintered body composed of cubic boron nitride particles and a binder phase,
  • the cBN content is 20% by volume or more and 60% by volume or less, Containing at least Al 2 O 3 and a Zr compound in the binder phase;
  • the average value of the continuous distance occupied by Al 2 O 3 is 0.1 ⁇ m or more and 1.0 ⁇ m or less, and the standard deviation of the continuous distance occupied by the Al 2 O 3 is 0.8 or less
  • the number of contacts between Al 2 O 3 and Zr compound is X
  • Al 2 O 3 and Zr compound X / Y is 0.1 or more and 1 or less, where Y is the total number of contacts with A cubic boro
  • a cBN sintered body tool having high cutting performance and excellent tool life can be provided. That is, by optimally arranging the Zr compound and cBN particles in Al 2 O 3, is excellent in heat resistance and divide the Al 2 O 3 having poor toughness, the optimal range of the average thickness and the standard deviation of the Al 2 O 3 By setting to, we succeeded in achieving both heat resistance and toughness at a high level.
  • cBN particles and Al are bonded via a highly reactive compound (eg, TiAl, Ti, Al, TiZr, Zr, etc.) having an excellent bonding force other than Al 2 O 3.
  • a highly reactive compound eg, TiAl, Ti, Al, TiZr, Zr, etc.
  • the wear resistance and fracture resistance can be further improved.
  • the cBN sintered body tool according to the present invention is a cBN sintered body tool having at least a cBN sintered body composed of cBN particles and a binder phase at the cutting edge, and the cBN content is 20% by volume to 60% by volume.
  • the binder phase contains Al 2 O 3 and a Zr compound, and the average value and standard deviation of the distance occupied by Al 2 O 3 on an arbitrary straight line in the sintered body are 0.1 ⁇ m or more and 1.0 ⁇ m or less and 0, respectively.
  • the number of contacts between Al 2 O 3 and Zr compound is X
  • the number of contacts between Al 2 O 3 and cBN, Al 2 O 3 , Al 2 O 3 and Zr X / Y is 0.1 or more and 1 or less and the average particle size of the Zr compound is 0.01 ⁇ m or more and 0.1 ⁇ m or less
  • Y is the sum of the number of contacts with the binder phase component other than the compound. It is characterized by that.
  • the cBN sintered body tool may be a cBN sintered body tool having a cBN sintered body at least at a portion to be a cutting edge of a base material made of cemented carbide, or a cBN sintered body constituted only by a cBN sintered body.
  • a combined tool may be used.
  • you may have a hard ceramic coating layer in the cBN sintered compact surface used as a blade edge
  • the cBN sintered body has a cBN content of 20% by volume to 60% by volume.
  • the cBN content is more preferably 40% by volume to 50% by volume.
  • the binder phase is characterized by containing at least Al 2 O 3 and a Zr compound. Thereby, wear resistance and chipping resistance can be improved.
  • the cBN sintered body is characterized in that an average value of continuous distances occupied by Al 2 O 3 is 0.1 ⁇ m or more and 1.0 ⁇ m or less on an arbitrary straight line in the sintered body.
  • the average value is more preferably 0.3 ⁇ m or more and 0.6 ⁇ m or less.
  • the standard deviation of the continuous distance occupied by Al 2 O 3 on the arbitrary straight line is 0.8 or less. When the standard deviation exceeds 0.8, the variation in fracture resistance increases.
  • the standard deviation is more preferably 0.2 or more and 0.6 or less.
  • the number of contacts between Al 2 O 3 and Zr compound is X
  • Al 2 O 3 and Zr compounds X / Y is 0.1 or more and 1 or less, where Y is the sum of the number of contacts with the binder phase component. If the X / Y is less than 0.1, the effect of improving the toughness of Al 2 O 3 by the Zr compound cannot be obtained, and if it exceeds 1, the effect of improving the heat resistance by Al 2 O 3 decreases.
  • the average particle size of the Zr compound is 0.01 ⁇ m or more and 0.1 ⁇ m or less.
  • the average particle size of the Zr compound is more preferably 0.03 ⁇ m or more and 0.06 ⁇ m or less.
  • the present invention divides Al 2 O 3 which is excellent in heat resistance but inferior toughness by optimally arranging the Zr compound and cBN particles in Al 2 O 3 in the cBN sintered body, By setting the average thickness and standard deviation of Al 2 O 3 within the optimum range, it is possible to achieve both the heat resistance and toughness of the sintered body at a high level.
  • the cBN sintered body tool according to the present invention preferably contains ZrC and ZrO 2 in a total amount of 0.5 volume% or more and 5 volume% or less as the Zr compound contained in the sintered body. More preferably, it is 1.5 volume% or more and 4.5 volume% or less.
  • ZrC and ZrO 2 are particularly effective in improving the toughness of Al 2 O 3 , and if the total amount of both compounds is less than 0.5% by volume in the sintered body, the effect of improving toughness cannot be obtained, and 5% by volume. In the case of exceeding, the content of Al 2 O 3 is relatively lowered, and the heat resistance is lowered.
  • X / Y is 0.5 or more and 0.9 or less
  • the reliability with respect to defects increases. That is, in the cBN sintered body tool according to the present invention, X / Y is preferably 0.5 or more and 0.9 or less on an arbitrary straight line of the sintered body.
  • a mixed powder in which cBN particles and the above-mentioned binder were uniformly mixed by a ball mill mixing method using a ZrO 2 ball media having a diameter of 3 mm was laminated on a cemented carbide support plate and filled into a Mo capsule. Then, it was sintered for 30 minutes at a pressure of 7.0 GPa and a temperature of 1600 degrees by an ultrahigh pressure apparatus.
  • cBN particles were previously coated with TiZr and Zr with an average film thickness of 30 nm using an RF sputtering PVD apparatus, and filled and sintered in the same manner as described above.
  • the composition of the cBN sintered body in each example and comparative example is shown in Table 1.
  • the obtained sintered body was cut into a predetermined shape, joined to a cemented carbide tool base material using a commercially available brazing material, and ground into a predetermined tool shape.
  • [Evaluation] Measurement of cBN sintered body characteristics
  • the cBN sintered body was mirror-polished, and a reflected electron image of the structure of the cBN sintered body in an arbitrary region was photographed at a magnification of 10,000 with an electron microscope. A contrast of light and shade corresponding to the composition was observed, and the compound was estimated from the overlapping state of various elements by attached EDX (energy dispersive X-ray analysis). As a result, it was confirmed that the black region is a cBN particle, and the gray region and the white region are binder phases. Further, it was determined that the dark gray region was Al 2 O 3 and the light white region was a Zr compound (oxide, carbide, nitride, boride, borohydride).
  • the total number of contacts on the straight line was determined so that the uniformity of the structure was at least 50 points or more. Further, the distance (length) occupied by the Al 2 O 3 continuously on the straight line of the number of straight lines was measured, and the average value and standard deviation were obtained.
  • the cBN content was binarized by image processing of the cBN particle region and the binder phase region from the sintered body structure photograph, and the occupied area of the cBN particles was defined as the volume content.
  • the binder phase composition was identified by XRD (X-ray diffraction).
  • each occupied area was calculated by image processing from the contrast of the above-mentioned sintered body structure photograph, and was defined as the volume content.
  • the average particle size of the Zr compound the average particle size of the raw material powder charged is described, and it was confirmed from the above sintered body structure photograph that the particle size of the raw material powder was generally maintained. The results are shown in Table 1. (Cutting test) About each tool produced above, the cutting test was done on condition of the following. Work material: FC250 (inner diameter machining of centrifugal cast cast iron sleeve, hardness: HB230)
  • Tool shape CNGA120408
  • Cutting speed Vc 700 m / min.
  • Feed amount f 0.3 mm / rev.
  • Cutting depth ap 0.05mm
  • Tool life with cutting fluid The time when the flank wear amount or chipping reached 0.2 mm was judged as the tool life.
  • the tool of the example showed superior cutting performance compared to the tool of the comparative example.

Abstract

 立方晶窒化硼素粒子と結合相で構成される立方晶窒化硼素焼結体を少なくとも刃先に有する立方晶窒化硼素焼結体工具であって、cBN含有率が20体積%以上60体積%以下であり、結合相に少なくともAl23、及びZr化合物を含み、焼結体中の任意の直線上において、Al23が占める連続する距離の平均値が0.1μm以上1.0μm以下であり、かつ該Al23が占める連続する距離の標準偏差が0.8以下であり、当該直線上において、Al23とZr化合物との接点の数をX、Al23とcBNとの接点の数と、Al23とAl23及びZr化合物以外の結合相成分との接点の数との合計をYとした場合、X/Yが0.1以上1以下であり、Zr化合物の平均粒径が0.01μm以上0.1μm以下であることを特徴とする。

Description

立方晶窒化硼素焼結体工具
 本発明は立方晶窒化硼素(以下、cBNとも記載する)を主成分とするcBN焼結体に関する。
 従来、立方晶窒化硼素を用いた高硬度の焼結体が知られている。cBN粒子は硬度、強度、靭性がセラミックス結合材より高く、焼結体中の骨格として働き、高硬度焼入鋼の切削に耐えうる材料強度を保持する役割を果たす。一方、セラミックス結合材は、難焼結性材料であるcBN粒子を工業レベルの圧力温度で焼結可能とする役割を果たすと同時に、鉄との反応性がcBNより低いため、化学的・熱的摩耗を抑制する働きを付加する。
 cBN焼結体は、大きく2つに分類され、1つはcBN含有率が高く、cBN同士が結合し、残部がCoやAlを主成分とする結合材からなるcBN焼結体(以降、高cBN含有率焼結体と略す)と、もう1つは、cBN含有率が比較的低く、cBN同士の接触率が低く、鉄との親和性の低いTiの窒化物(TiN)や炭化物(TiC)からなるセラミックスを介して結合されているものである(以降、低cBN含有率焼結体と略す)。
 前者の高cBN含有率焼結体は、切り屑が分断され、切り屑でのせん断熱の発生し難い用途では、cBNの優れた機械特性(高硬度、高強度、高靭性)と高熱伝導率により、抜群の安定性と長寿命を達成し、硬質粒子との擦れによる機械的な摩耗や損傷が支配的な鉄系焼結部品や高速断続切削時の熱衝撃による損傷が支配的なねずみ鋳鉄の高能率切削に適している。しかしながら、連続した切り屑により発生する多量のせん断熱により刃先が高温に曝される焼入鋼などの加工では、cBN成分が鉄との熱的な摩耗により、従来の超硬工具やセラミックス工具よりも急速に摩耗が発達するため短寿命となる。
 一方、後者の低cBN含有率焼結体は、cBNよりも、高温下での鉄との親和性の低いTiNやTiCセラミックスからなる結合材の働きにより、優れた耐摩耗性を発揮し、特に、従来の超硬工具やセラミックス工具では実用加工ができなかった焼入鋼加工において、従来工具の10倍~数十倍の工具寿命を達成できる切削工具として、焼入鋼切削市場を開拓してきた。
 これらのcBN焼結体としては種々のものが開発されている。
 例えば、特開2000-044347号公報(特許文献1)および特開2000-044350号公報(特許文献2)には、45~70体積%のcBN粒子と、4a,5a,6a族元素の炭化物、窒化物、炭窒化物、硼化物、Alの窒化物、硼化物、酸化物、炭窒化物、硼化物、およびこれらの相互固溶体よりなる群から選択される1種以上を含む結合相とからなるcBN焼結体において、結合相の厚みの平均値と標準偏差を規定したcBN焼結体が記載されている。
 また、特開2002-302732号公報(特許文献3)には、粒径が0.01μm以上0.70μm以下の超微粒cBN粒子と、4a,5a,6a族元素、Al、それらの炭化物、窒化物、硼化物およびそれらの相互固溶体、混合体の少なくと1種からなる結合相とからなるcBN焼結体において、結合相の厚みの平均値を規定したcBN焼結体が記載されている。
 また前記のとおり、鋳鉄の高能率切削では、高cBN含有率焼結体が実用化されている。近年、自動車エンジンの高性能化に伴い、軽量化を狙いシリンダブロックのアルミ化が進んでいる。シリンダブロックのピストン摺動部分であるライナーについては強度と耐摩耗性に優れる鋳鉄が採用されるが、砂型鋳鉄より量産性に優れる遠心鋳造鋳鉄が採用されることが近年、増加している。遠心鋳造法とは、ライナーの鋳造の際に、鋳型を回転させ遠心力を利用して中子を用いずに中空の鋳物を作る手法である。
 前記遠心鋳造法では、原理上、鋳型の接触部や最内径部が急冷されるため、同領域では被削性が著しく悪いデンドライト組織やバラ状組織が生成されるが、切削加工により所望の内径に仕上げる際に、切削箇所の鋳鉄組織が前記のデンドライト組織やバラ状組織となる場合に工具寿命が著しく悪化する問題がある。さらに、ライナーの製造ロットによっても、鋳鉄組織が大きく変化するため、工具寿命が安定しない問題もあり、従来の高cBN含有率焼結体では耐摩耗性が不足し、満足する工具寿命が得られていないのが最近の実情である。
 そのような事情を鑑みて、WO2008/087940号公報(特許文献4)では、結合相の主成分にAl23を採用し、かつ、ZrO2とTiCを適量添加することにより、遠心鋳造鋳鉄加工における工具寿命の安定化が図られてきたが、満足のいく工具寿命が得られていなかった。
特開2000-044347号公報 特開2000-044350号公報 特開2002-302732号公報 WO2008/087940号公報
 本発明は、上記問題点に鑑みて、前記の被削性が悪いデンドライト組織やバラ状組織が混在した遠心鋳造製鋳鉄の切削において、切削性能が高く、かつ工具寿命に優れたcBN焼結体工具を提供することを課題とする。
 デンドライト組織やバラ状組織を有する鋳鉄をcBN焼結体工具で切削した際の摩耗形態を詳細に観察した結果、Ti化合物やAl化合物で構成される結合相の中でも、耐熱性に優れるAl23粒子の界面又は粒界で亀裂が発生し、同亀裂が伝播することにより摩耗が進行し、場合によっては欠損に至っていることを突き止めた。
 従来技術では、Al23、cBN、ZrO2、TiCで構成されるcBN焼結体は、Al23の平均厚みが厚すぎるため、耐欠損性に劣っていた。また、結合相の厚みと標準偏差を適正値に規定した技術は公知であるが、Al23含有量が小さく、遠心鋳造鋳鉄の加工では耐摩耗性が不足していた。
 そこで、発明者らは、亀裂の起点となるAl23粒子の界面又は粒界の最適配置及びAl23を強化する効果が期待できるZr化合物の最適配置を見極めるために、各成分の粒度と含有率及び混合方法を変化させたcBN焼結体を作製し、切削性能との相関を調査した。その結果、Zr化合物とcBN粒子をAl23中に最適配置させることにより、耐熱性に優れるが靭性に劣るAl23を分断し、Al23の平均厚みと標準偏差を最適な範囲に設定することによって、耐熱性と靭性を高次元で両立させることに成功した。
 すなわち、本発明は以下の構成を有する。
(1)立方晶窒化硼素粒子と結合相で構成される立方晶窒化硼素焼結体を少なくとも刃先に有する立方晶窒化硼素焼結体工具であって、
cBN含有率が20体積%以上60体積%以下であり、
結合相に少なくともAl23、及びZr化合物を含み、
焼結体中の任意の直線上において、Al23が占める連続する距離の平均値が0.1μm以上1.0μm以下であり、かつ該Al23が占める連続する距離の標準偏差が0.8以下であり、
当該直線上において、Al23とZr化合物との接点の数をX、Al23とcBNとの接点の数と、Al23とAl23及びZr化合物以外の結合相成分との接点の数との合計をYとした場合、X/Yが0.1以上1以下であり、
Zr化合物の平均粒径が0.01μm以上0.1μm以下である
ことを特徴とする立方晶窒化硼素焼結体工具。
(2)前記の焼結体中に含まれるZr化合物として、ZrC及びZrO2を合計で0.5体積%以上5体積%以下含むことを特徴とする上記(1)に記載の立方晶窒化硼素焼結体工具。
(3)前記の焼結体の任意の直線上において、X/Yが0.5以上0.9以下であることを特徴とする上記(1)又は(2)に記載の立方晶窒化硼素焼結体工具。
 本発明により、切削性能が高く、かつ工具寿命に優れたcBN焼結体工具を提供することができる。すなわち、Zr化合物とcBN粒子をAl23中に最適配置させることにより、耐熱性に優れるが靭性に劣るAl23を分断し、Al23の平均厚みと標準偏差を最適な範囲に設定することによって、耐熱性と靭性を高次元で両立させることに成功した。
 また、Al23とcBN粒子は結合力が弱いため、Al23以外の結合力に優れる高反応性化合物(例えばTiAl、Ti、Al、TiZr、Zr等)を介してcBN粒子とAl23粒子を結合させ、Al23中にZr化合物を分散させることによって、より耐摩耗性と耐欠損性を高めることができる。特に、ZrやTiZrをcBN粒子に事前に被覆しておくことが好ましい。
 本発明に係るcBN焼結体工具は、cBN粒子と結合相で構成されるcBN焼結体を少なくとも刃先に有するcBN焼結体工具であって、cBN含有率が20体積%以上60体積%以下、結合相にAl23、Zr化合物を含み、焼結体中の任意の直線上において、Al23が占める距離の平均値と標準偏差がそれぞれ0.1μm以上1.0μm以下及び0.8以下であり、当該直線上において、Al23とZr化合物との接点の数をX、Al23とcBNとの接点の数と、Al23とAl23及びZr化合物以外の結合相成分との接点の数との合計をYとした場合、X/Yが0.1以上1以下であり、Zr化合物の平均粒径が0.01μm以上0.1μm以下であることを特徴とする。
 上記cBN焼結体工具は、超硬合金製の基材の少なくとも刃先となる部分にcBN焼結体を有するcBN焼結体工具であっても、又はcBN焼結体のみで構成されるcBN焼結体工具であってもよい。また、刃先となるcBN焼結体表面に硬質セラミックス被覆層を有していても構わない。
 以下、cBN焼結体部分について詳述する。
 上記cBN焼結体は、cBN含有率が20体積%以上60体積%以下であることを特徴とする。cBN含有率が20体積%未満であると焼結体の耐欠損性が低下し、60体積%を超えると耐摩耗性が低下する。cBN含有率は、より好ましくは40体積%以上50体積%以下である。また、結合相には少なくとも、Al23、及びZr化合物を含むことを特徴とする。これにより耐摩耗性と耐欠損性を向上させることができる。
 上記cBN焼結体は、焼結体中の任意の直線上において、Al23が占める連続した距離の平均値が0.1μm以上1.0μm以下であることを特徴とする。当該平均値が0.1μm未満であると耐熱性が低下し、1.0μmを超えると耐欠損性が低下する。該平均値は、より好ましくは0.3μm以上0.6μm以下である。また、当該任意の直線上において、Al23が占める連続した距離の標準偏差は0.8以下であることを特徴とする。当該標準偏差が0.8を超えると、耐欠損性のバラツキが大きくなる。該標準偏差は、より好ましくは0.2以上0.6以下である。
 更に、上記直線上において、Al23とZr化合物との接点の数をXとし、Al23とcBNとの接点の数と、Al23とAl23及びZr化合物以外の結合相成分との接点の数との合計をYとした場合に、X/Yが0.1以上1以下であることを特徴とする。当該X/Yが0.1未満であるとZr化合物によるAl23の靭性向上効果が得られず、1を超えるとAl23による耐熱性向上効果が低下する。
 上記cBN焼結体において、Zr化合物の平均粒径が0.01μm以上0.1μm以下であることを特徴とする。Zr化合物の平均粒径が0.01μm未満の場合、Zr化合物によるAl23の靭性向上効果が得られず、0.1μmを超えるとZr化合物自体の破砕が発生しやすくなり、焼結体の耐欠損性が低下する。Zr化合物の平均粒径は、より好ましくは0.03μm以上0.06μm以下である。
 本発明は、上記の構成により、cBN焼結体においてZr化合物とcBN粒子をAl23中に最適配置させることによって耐熱性には優れるが靭性に劣るAl23を分断し、更に、Al23の平均厚みと標準偏差を最適な範囲に設定することによって、焼結体の耐熱性と靭性を高次元で両立させることを可能にした。
 また、前記の焼結体に含まれるZr化合物として、ZrC及びZrO2を合計で0.5体積%以上5体積%以下含むことにより、耐欠損性と耐摩耗性をさらに改善できる。すなわち、本発明に係るcBN焼結体工具は、前記の焼結体に含まれるZr化合物として、ZrC及びZrO2を合計で0.5体積%以上5体積%以下含むことが好ましい。より好ましくは、1.5体積%以上4.5体積%以下である。
 ZrCとZrO2は特に、Al23の靭性を改善する効果が高く、両化合物が焼結体中で合計0.5体積%未満の場合は、靭性向上効果が得られず、5体積%超の場合は、相対的にAl23の含有量が低下し、耐熱性が低下する。
 さらに、前記の焼結体の任意の直線上において、X/Yが0.5以上0.9以下であることで、欠損に対する信頼性が増す。すなわち、本発明に係るcBN焼結体工具は、前記の焼結体の任意の直線上において、X/Yが0.5以上0.9以下であることが好ましい。
[cBN焼結体工具の作製]
(cBN焼結体の作製)
 平均粒径が50nm以下(一部の実施例および比較例を除く)の表1に示すZr化合物と、平均粒径が300nm以下のTi化合物と、平均粒径が200nm以下のAl23とを、事前にφ0.2mmのZrO2製ボールメディアで、流速0.2~0.5L/minのエタノールの溶媒中で30~120分間、上記化合物を混合微粉砕し、同メディアを取り除くことにより、超微粒のZr化合物がAl23中に均一に分散した特殊結合材を作製した。X/Yの値を制御するためには、実験的に上記範囲内で粉砕混合条件を変更するか、Zr化合物の含有量を変更することにより達成できる。
 実施例1~11については、cBN粒子と上記結合材とをφ3mmのZrO2製ボールメディアでボールミル混合法により均一混合した混合粉末を超硬合金製支持板に積層してMo製カプセルに充填後、超高圧装置によって、圧力7.0GPa、温度1600度で30分間焼結した。
 実施例12、13については、RFスパッタリングPVD装置を用いて、予めcBN粒子にそれぞれTiZr及びZrを平均膜厚30nmで被覆し、上記と同様の方法で充填、焼結した。
 各実施例及び比較例におけるcBN焼結体の組成を表1に示す。
(工具の作製)
 得られた焼結体を所定の形状に切断し、超硬合金製工具母材に市販のロウ材を用いて接合し、所定の工具形状に研削加工を施した。
[評価]
(cBN焼結体特性の測定)
 上記により得た各実施例及び比較例におけるcBN焼結体について、焼結体中の任意の直線上のAl23の占める連続した距離の、平均値及び標準偏差を、次に説明する方法により測定した。
 まず、cBN焼結体を鏡面研磨して、任意の領域のcBN焼結体組織を電子顕微鏡にて反射電子像を10000倍で写真撮影した。組成に対応した濃淡のコントラストが観察され、付属のEDX(エネルギー分散型X線分析)により各種元素の重なり状態から化合物を推定した。その結果、黒色領域はcBN粒子、灰色領域と白色領域は結合相であることが確認された。さらに、濃い灰色領域はAl23であり、濃度の薄い白色領域はZr化合物(酸化物、炭化物、窒化物、硼化物、窒硼化物)であることが特定された。
 次に、同写真に任意の直線を引き、当該直線上における、Al23とZr化合物との接点の数をXとし、Al23とcBNとの接点の数と、Al23とAl23及びZr化合物以外の結合相成分との接点の数との合計をYとして、X/Yの値を求めた。
 ここで、当該直線上の接点の合計数は、組織の均一性を考慮し、少なくとも50点以上となるように直線数を決めた。また、その直線数の直線において、上記Al23が連続して占める距離(長さ)を測定し、その平均値および標準偏差を求めた。cBN含有率は、前記の焼結体組織写真から、cBN粒子領域と結合相領域を画像処理により2値化し、cBN粒子の占有面積を体積含有率とした。結合相組成に関しては、XRD(X線回折)により同定した。
 Zr化合物とTi化合物の含有率に関しても、前記の焼結体組織写真の濃淡コントラストから、それぞれの占有面積を画像処理により算出し、体積含有率とした。Zr化合物の平均粒径に関しては、仕込みの原料粉の平均粒度を記載しており、前記の焼結体組織写真から、概ね、原料粉の粒径を維持していることを確認した。結果を表1に示す。
(切削試験)
 上記で作製した各工具について、以下の条件で切削試験を行った。
被削材  : FC250(遠心鋳造鋳鉄スリーブの内径加工、硬度:HB230)
工具形状 : CNGA120408
切削条件 : 切削速度  Vc=700m/min.
       送り量    f=0.3mm/rev.
       切り込み量 ap=0.05mm
       切削液あり
工具寿命 : 逃げ面摩耗量又はチッピングが0.2mmに到達した時点を工具寿命と判断した。
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2より明らかなように、実施例の工具は、比較例の工具に比し、優れた切削性能を示した。
 以上のように本発明の実施の形態及び実施例について説明を行なったが、今回開示された実施の形態及び実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明だけではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。

Claims (3)

  1.  立方晶窒化硼素粒子と結合相で構成される立方晶窒化硼素焼結体を少なくとも刃先に有する立方晶窒化硼素焼結体工具であって、
     前記立方晶窒化硼素焼結体中の立方晶窒化硼素含有率が20体積%以上60体積%以下であり、
     前記結合相に少なくともAl23、及びZr化合物を含み、
     前記立方晶窒化硼素焼結体中の任意の直線上において、Al23が占める連続する距離の平均値が0.1μm以上1.0μm以下であり、かつ該Al23が占める連続する距離の標準偏差が0.8以下であり、
     当該直線上において、Al23とZr化合物との接点の数をX、Al23と立方晶窒化硼素との接点の数と、Al23とAl23及びZr化合物以外の結合相成分との接点の数との合計をYとした場合、X/Yが0.1以上1以下であり、
     Zr化合物の平均粒径が0.01μm以上0.1μm以下である
    ことを特徴とする立方晶窒化硼素焼結体工具。
  2.  前記立方晶窒化硼素焼結体中に含まれるZr化合物として、ZrC及びZrO2を合計で0.5体積%以上5体積%以下含むことを特徴とする請求項1に記載の立方晶窒化硼素焼結体工具。
  3.  前記立方晶窒化硼素焼結体の任意の直線上において、X/Yが0.5以上0.9以下であることを特徴とする請求項1に記載の立方晶窒化硼素焼結体工具。
PCT/JP2011/066814 2010-09-01 2011-07-25 立方晶窒化硼素焼結体工具 WO2012029440A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2778198A CA2778198C (en) 2010-09-01 2011-07-25 Cubic boron nitride sintered body tool
CN201180004615.6A CN102665976B (zh) 2010-09-01 2011-07-25 立方氮化硼烧结体工具
EP11821458.4A EP2612719B1 (en) 2010-09-01 2011-07-25 Cubic boron nitride sintered compact tool
US13/503,327 US8993132B2 (en) 2010-09-01 2011-07-25 Cubic boron nitride sintered body tool
IN3125DEN2012 IN2012DN03125A (ja) 2010-09-01 2011-07-25
KR1020127011397A KR20120062015A (ko) 2010-09-01 2011-07-25 입방정 질화붕소 소결체 공구
JP2012531748A JP5732663B2 (ja) 2010-09-01 2011-07-25 立方晶窒化硼素焼結体工具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010195462 2010-09-01
JP2010-195462 2010-09-01

Publications (1)

Publication Number Publication Date
WO2012029440A1 true WO2012029440A1 (ja) 2012-03-08

Family

ID=45772550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066814 WO2012029440A1 (ja) 2010-09-01 2011-07-25 立方晶窒化硼素焼結体工具

Country Status (8)

Country Link
US (1) US8993132B2 (ja)
EP (1) EP2612719B1 (ja)
JP (1) JP5732663B2 (ja)
KR (1) KR20120062015A (ja)
CN (1) CN102665976B (ja)
CA (1) CA2778198C (ja)
IN (1) IN2012DN03125A (ja)
WO (1) WO2012029440A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016068222A1 (ja) * 2014-10-29 2016-05-06 株式会社タンガロイ 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
WO2016104563A1 (ja) * 2014-12-24 2016-06-30 株式会社タンガロイ 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
WO2016171155A1 (ja) * 2015-04-20 2016-10-27 住友電気工業株式会社 焼結体およびそれを含む切削工具
WO2016194416A1 (ja) * 2015-05-29 2016-12-08 住友電工ハードメタル株式会社 焼結体および切削工具
WO2016194398A1 (ja) 2015-05-29 2016-12-08 住友電工ハードメタル株式会社 焼結体および切削工具
WO2019244414A1 (ja) 2018-06-18 2019-12-26 住友電気工業株式会社 焼結体およびそれを含む切削工具
US10532951B2 (en) 2016-05-27 2020-01-14 Sumitomo Electric Industries, Ltd. Sintered material and cutting tool including same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8673435B2 (en) * 2010-07-06 2014-03-18 Tungaloy Corporation Coated cBN sintered body tool
JP5732663B2 (ja) 2010-09-01 2015-06-10 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体工具
JP5841050B2 (ja) * 2010-10-27 2016-01-06 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体及び立方晶窒化硼素焼結体工具
FR3035346B1 (fr) * 2015-04-22 2017-04-14 Diamonde Outil de coupe pour l'usinage des materiaux abrasifs et notamment de materiaux a base de bois
GB201507110D0 (en) * 2015-04-27 2015-06-10 Element Six Ltd And Element Six Abrasives S A Sintered polycrystalline body
GB201609672D0 (en) 2016-06-02 2016-07-20 Element Six Uk Ltd Sintered polycrystalline cubic boron nitride material
GB201913252D0 (en) * 2019-09-13 2019-10-30 Element Six Uk Ltd Sintered polycrystalline cubic boron nitride material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282443A (ja) * 1989-04-21 1990-11-20 Mitsubishi Heavy Ind Ltd 工具用焼結材料
JP2000044350A (ja) 1998-07-22 2000-02-15 Sumitomo Electric Ind Ltd cBN焼結体
JP2000044347A (ja) 1998-07-22 2000-02-15 Sumitomo Electric Ind Ltd cBN焼結体
JP2002302732A (ja) 2001-04-09 2002-10-18 Toshiba Tungaloy Co Ltd 超微粒cBN基焼結体
WO2008087940A1 (ja) 2007-01-15 2008-07-24 Sumitomo Electric Hardmetal Corp. cBN焼結体及びcBN焼結体工具

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858247A (ja) 1981-10-02 1983-04-06 Mitsubishi Metal Corp 切削および耐摩耗工具用高靭性窒化硼素基超高圧焼結材料
JP2546709B2 (ja) 1988-09-29 1996-10-23 東芝タンガロイ株式会社 高強度立方晶窒化ホウ素含有焼結体
JP2686335B2 (ja) 1990-01-05 1997-12-08 三菱重工業株式会社 工具用焼結材料
JP2691048B2 (ja) 1990-05-23 1997-12-17 三菱重工業株式会社 工具用焼結材料
JP2971203B2 (ja) * 1991-08-21 1999-11-02 三菱重工業株式会社 工具用焼結材料
ZA9510267B (en) 1994-12-06 1996-06-12 De Beers Ind Diamond Abrasive body
US5639285A (en) 1995-05-15 1997-06-17 Smith International, Inc. Polycrystallline cubic boron nitride cutting tool
RU2220929C2 (ru) 1998-07-22 2004-01-10 Сумитомо Электрик Индастриз, Лтд. Спеченная заготовка из нитрида бора с кубической решеткой (варианты)
JP3607939B2 (ja) 2000-06-16 2005-01-05 独立行政法人産業技術総合研究所 炭化ケイ素−窒化ホウ素複合材料の反応合成
US6814775B2 (en) * 2002-06-26 2004-11-09 Diamond Innovations, Inc. Sintered compact for use in machining chemically reactive materials
JP4470378B2 (ja) 2003-02-28 2010-06-02 住友化学株式会社 ジルコニア焼結体およびその製造方法
CA2585439C (en) * 2004-10-29 2013-01-08 Element Six (Production) (Pty) Ltd Cubic boron nitride compact
DE06714890T1 (de) * 2005-04-14 2008-07-10 Sumitomo Electric Hardmetal Corp., Itami Sinterkörper aus kubischem bornitrid und schneidwerkzeug damit
JP2006315898A (ja) * 2005-05-12 2006-11-24 Tungaloy Corp 立方晶窒化硼素焼結体
SE529290C2 (sv) * 2005-10-28 2007-06-19 Sandvik Intellectual Property Skär av kubisk bornitrid beständigt mot urflisning och eggbrott
WO2007144733A2 (en) * 2006-06-09 2007-12-21 Element Six (Production) (Pty) Ltd Ultrahard composites
JP5078061B2 (ja) * 2006-10-13 2012-11-21 住友電気工業株式会社 立方晶窒化硼素焼結体
SE0701028L (sv) * 2007-04-27 2008-10-28 Sandvik Intellectual Property Skär
JP5152667B2 (ja) * 2008-10-09 2013-02-27 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体工具
WO2011059020A1 (ja) 2009-11-11 2011-05-19 株式会社タンガロイ 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体並びにそれらの製造方法
JP5732663B2 (ja) 2010-09-01 2015-06-10 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体工具
US9181135B2 (en) 2011-06-21 2015-11-10 Diamond Innovations, Inc. Composite compacts formed of ceramics and low volume cubic boron nitride and method of manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282443A (ja) * 1989-04-21 1990-11-20 Mitsubishi Heavy Ind Ltd 工具用焼結材料
JP2000044350A (ja) 1998-07-22 2000-02-15 Sumitomo Electric Ind Ltd cBN焼結体
JP2000044347A (ja) 1998-07-22 2000-02-15 Sumitomo Electric Ind Ltd cBN焼結体
JP2002302732A (ja) 2001-04-09 2002-10-18 Toshiba Tungaloy Co Ltd 超微粒cBN基焼結体
WO2008087940A1 (ja) 2007-01-15 2008-07-24 Sumitomo Electric Hardmetal Corp. cBN焼結体及びcBN焼結体工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. ANGSERYD ET AL.: "Detailed microstructure of a cBN based cutting tool material", INTERNATIONAL JOURNAL OF REFRACTORY METALS AND HARD MATERIALS, vol. 27, no. ISS.2, March 2009 (2009-03-01), pages 249 - 255, XP025937881 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016068222A1 (ja) * 2014-10-29 2016-05-06 株式会社タンガロイ 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
JP6048629B2 (ja) * 2014-10-29 2016-12-21 株式会社タンガロイ 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
WO2016104563A1 (ja) * 2014-12-24 2016-06-30 株式会社タンガロイ 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
JP6032387B1 (ja) * 2014-12-24 2016-11-30 株式会社タンガロイ 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
WO2016171155A1 (ja) * 2015-04-20 2016-10-27 住友電気工業株式会社 焼結体およびそれを含む切削工具
CN116375479A (zh) * 2015-04-20 2023-07-04 住友电气工业株式会社 烧结体和包含该烧结体的切削工具
US9988315B2 (en) 2015-04-20 2018-06-05 Sumitomo Electric Industries, Ltd. Sintered body and cutting tool including the same
JPWO2016171155A1 (ja) * 2015-04-20 2018-02-15 住友電気工業株式会社 焼結体およびそれを含む切削工具
KR20180015603A (ko) 2015-05-29 2018-02-13 스미또모 덴꼬오 하드메탈 가부시끼가이샤 소결체 및 절삭 공구
US9856175B2 (en) 2015-05-29 2018-01-02 Sumitomo Electric Hardmetal Corp. Sintered compact and cutting tool
WO2016194398A1 (ja) 2015-05-29 2016-12-08 住友電工ハードメタル株式会社 焼結体および切削工具
US9988314B2 (en) 2015-05-29 2018-06-05 Sumitomo Electric Hardmetal Corp. Sintered compact and cutting tool
WO2016194416A1 (ja) * 2015-05-29 2016-12-08 住友電工ハードメタル株式会社 焼結体および切削工具
US10532951B2 (en) 2016-05-27 2020-01-14 Sumitomo Electric Industries, Ltd. Sintered material and cutting tool including same
WO2019244414A1 (ja) 2018-06-18 2019-12-26 住友電気工業株式会社 焼結体およびそれを含む切削工具
JPWO2019244414A1 (ja) * 2018-06-18 2020-06-25 住友電気工業株式会社 焼結体およびそれを含む切削工具
US11192827B2 (en) 2018-06-18 2021-12-07 Sumitomo Electric Industries, Ltd. Sintered material and cutting tool including same
EP3812355A4 (en) * 2018-06-18 2022-02-16 Sumitomo Electric Industries, Ltd. SINTERED BODY AND CUTTING TOOL COMPRISING IT

Also Published As

Publication number Publication date
JPWO2012029440A1 (ja) 2013-10-28
US20120208006A1 (en) 2012-08-16
EP2612719B1 (en) 2018-07-04
CN102665976B (zh) 2015-02-25
CA2778198C (en) 2014-09-09
EP2612719A1 (en) 2013-07-10
CN102665976A (zh) 2012-09-12
KR20120062015A (ko) 2012-06-13
EP2612719A4 (en) 2017-01-25
IN2012DN03125A (ja) 2015-09-18
JP5732663B2 (ja) 2015-06-10
CA2778198A1 (en) 2012-03-08
US8993132B2 (en) 2015-03-31

Similar Documents

Publication Publication Date Title
JP5732663B2 (ja) 立方晶窒化硼素焼結体工具
AU2010279557B2 (en) Tough coated hard particles consolidated in a tough matrix material
JP6330387B2 (ja) 焼結体およびその製造方法
JP5568827B2 (ja) 立方晶窒化硼素焼結体、及び立方晶窒化硼素焼結体工具
JP5462622B2 (ja) 立方晶窒化ホウ素複合材料及び工具
JPWO2017191744A1 (ja) 超硬合金、及び切削工具
WO2012053375A1 (ja) 立方晶窒化硼素焼結体工具
WO2010104094A1 (ja) サーメットおよび被覆サーメット
KR102587409B1 (ko) 소결체 및 절삭 공구
KR20060105012A (ko) 입방정계 질화붕소 소결체 및 이의 제조방법
WO2018074275A1 (ja) 複合焼結体
WO2019039037A1 (ja) 複合焼結体
JP6775694B2 (ja) 複合焼結体
JP2004256863A (ja) 超硬合金およびその製造方法、並びにそれを用いた回転工具
JP2006144089A (ja) 超微粒子超硬合金
JP2004256862A (ja) 超硬合金とその製造方法、並びにそれを用いた切削工具
JP4313567B2 (ja) 切削工具およびその製造方法
WO2018088174A1 (ja) 複合焼結体
JP6365228B2 (ja) 焼結体
JP2004256861A (ja) 超硬合金とその製造方法、並びにそれを用いた切削工具
CN115449661B (zh) 一种梯度结构的金属陶瓷材料及其制备方法
JPH0551267A (ja) 工具用焼結材料
JP5058553B2 (ja) 高送り切削用表面被覆超硬合金製エンドミルの製造方法
JP2006137623A (ja) 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体並びにそれらの製造方法
JP2002205206A (ja) 高温硬さおよび耐熱塑性変形性のすぐれた超硬合金製スローアウエイ式切削チップ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 3125/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012531748

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011821458

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2778198

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13503327

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821458

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127011397

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE