WO2016194416A1 - 焼結体および切削工具 - Google Patents

焼結体および切削工具 Download PDF

Info

Publication number
WO2016194416A1
WO2016194416A1 PCT/JP2016/055376 JP2016055376W WO2016194416A1 WO 2016194416 A1 WO2016194416 A1 WO 2016194416A1 JP 2016055376 W JP2016055376 W JP 2016055376W WO 2016194416 A1 WO2016194416 A1 WO 2016194416A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
aluminum oxide
volume
region
fine aluminum
Prior art date
Application number
PCT/JP2016/055376
Other languages
English (en)
French (fr)
Other versions
WO2016194416A9 (ja
Inventor
麻佑 段田
克己 岡村
久木野 暁
Original Assignee
住友電工ハードメタル株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社, 住友電気工業株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to JP2017521711A priority Critical patent/JP6652560B2/ja
Priority to EP16802855.3A priority patent/EP3156384B1/en
Priority to CN201680002181.9A priority patent/CN106795061B/zh
Priority to US15/327,214 priority patent/US9988314B2/en
Priority to CA2955292A priority patent/CA2955292A1/en
Priority to KR1020177002843A priority patent/KR20180015602A/ko
Priority to MX2017000970A priority patent/MX2017000970A/es
Publication of WO2016194416A1 publication Critical patent/WO2016194416A1/ja
Publication of WO2016194416A9 publication Critical patent/WO2016194416A9/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • B23C5/20Milling-cutters characterised by physical features other than shape with removable cutter bits or teeth or cutting inserts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts
    • C01F7/36Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts from organic aluminium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • C04B35/4885Composites with aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/04Aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/12Boron nitride
    • B23B2226/125Boron nitride cubic [CBN]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/44Materials having grain size less than 1 micrometre, e.g. nanocrystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23C2224/04Aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2226/00Materials of tools or workpieces not comprising a metal
    • B23C2226/12Boron nitride
    • B23C2226/125Boron nitride cubic [CBN]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23C2228/49Sintered
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Definitions

  • the present invention relates to a sintered body and a cutting tool including the sintered body.
  • cBN cubic boron nitride
  • a sintered body obtained by sintering it with a binder such as ZrO 2 or Al 2 O 3 is used for a tool such as a cutting tool.
  • Patent Document 1 International Publication No. 2008/087940
  • Patent Document 2 International Publication No. 2011/059020
  • Patent Document 3 International Publication No. 2012/029440
  • Patent Document 4 International Publication No. 2012/057184
  • a cutting tool or the like using a sintered body containing cBN and a binder such as Al 2 O 3 and ZrO 2 may be lost depending on use conditions (for example, cutting conditions).
  • ZrO 2 is known to impart high toughness to the sintered body. Therefore, by increasing the concentration of ZrO 2 in the sintered body, the sintered body is excellent in toughness, and it is considered that the fracture resistance of cutting tools and the like can be improved.
  • Patent Document 2 it has been reported that increasing the concentration of ZrO 2 in the sintered body causes a decrease in the wear resistance of the sintered body (for example, Patent Document 2). That is, it is considered that when the ZrO 2 concentration in the sintered body is increased in order to improve the fracture resistance of a cutting tool or the like, the wear resistance of the sintered body is reduced. Therefore, conventionally, it has been considered impractical to improve the fracture resistance of cutting tools and the like by setting the concentration of ZrO 2 in the sintered body to a certain level or more. In particular, when a high degree of wear resistance is required for a cutting tool or the like, it has been considered that a means of increasing the toughness of the sintered body by increasing the concentration of ZrO 2 in the sintered body cannot be adopted. .
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a sintered body having both good fracture resistance and good wear resistance.
  • the sintered body according to one embodiment of the present invention includes a first material, a second material, and a third material.
  • the first material is cubic boron nitride.
  • the second material is a compound containing zirconium.
  • the third material is aluminum oxide, and the aluminum oxide includes fine aluminum oxide.
  • the sintered body according to one embodiment of the present invention has a first region in which fine aluminum oxide is dispersed in a volume of 5% by volume to 50% by volume in the second material. On an arbitrary straight line in the first region, the average value of the continuous distance occupied by the fine aluminum oxide is 0.08 ⁇ m or less, and the standard deviation of the continuous distance occupied by the fine aluminum oxide is 0.1 ⁇ m. It is as follows.
  • a sintered body according to one embodiment of the present invention includes a first material, a second material, and a third material.
  • the first material is cubic boron nitride.
  • the second material is a compound containing zirconium.
  • the third material is aluminum oxide, and the aluminum oxide includes fine aluminum oxide.
  • the sintered body according to one embodiment of the present invention has a first region in which fine aluminum oxide is dispersed in a volume of 5% by volume to 50% by volume in the second material. On an arbitrary straight line in the first region, the average value of the continuous distance occupied by the fine aluminum oxide is 0.08 ⁇ m or less, and the standard deviation of the continuous distance occupied by the fine aluminum oxide is 0.1 ⁇ m. It is as follows. This sintered body can achieve both good fracture resistance and good wear resistance.
  • an average value of continuous distances occupied by the fine aluminum oxide is 0.01 ⁇ m or more and 0.05 ⁇ m or less
  • the standard deviation of the continuous distance occupied by the fine aluminum oxide is preferably 0.01 ⁇ m or more and 0.05 ⁇ m or less.
  • the first region is preferably formed by dispersing fine aluminum oxide in the second material at 15 volume% or more and 40 volume% or less. This sintered body can achieve both better fracture resistance and better wear resistance.
  • the first material is preferably contained in an amount of 20% by volume to 80% by volume. This sintered body can achieve both better fracture resistance and better wear resistance.
  • the first material is more preferably contained in an amount of 30% by volume to 60% by volume. This sintered body can achieve both better fracture resistance and better wear resistance.
  • the sintered body according to one aspect of the present invention preferably further includes a fourth material.
  • the fourth material is preferably at least one selected from the group consisting of magnesium oxide, cerium oxide, yttrium oxide, and hafnium oxide. In this sintered body, since the sinterability is improved, the strength is further improved.
  • the sintered body according to one aspect of the present invention preferably further includes a fifth material.
  • the fifth material is selected from the group consisting of at least one element selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements, Al, and Si in the periodic table, and carbon, nitrogen, and boron.
  • the compound is at least one compound comprising at least one element. Also in this sintered body, since the sinterability is improved, the strength is further improved.
  • a cutting tool according to an aspect of the present invention includes a sintered body according to an aspect of the present invention. Thereby, in the cutting tool which concerns on 1 aspect of this invention, the fracture resistance in high-speed long-distance cutting improves.
  • a cutting tool or the like using a sintered body containing cBN and a binder such as Al 2 O 3 and ZrO 2 may be deficient depending on use conditions (for example, cutting conditions).
  • ZrO 2 is known to impart high toughness to the sintered body. Therefore, by increasing the concentration of ZrO 2 in the sintered body, the sintered body is excellent in toughness, and it is considered that the fracture resistance of cutting tools and the like can be improved.
  • the present inventors have intensively studied the structure of the sintered body in order to satisfy the demand for improving both fracture resistance and wear resistance in cutting tools and the like. As a result, it was found that the above requirement was satisfied by dispersing fine aluminum oxide in a compound containing zirconium in at least a part of the sintered body. The fact is that it is not practical to improve the fracture resistance of a cutting tool or the like by setting the concentration of ZrO 2 (a kind of a compound containing zirconium) in the sintered body to a certain level or more.
  • a sintered body (corresponding to the “sintered body of the present embodiment”) obtained by the inventors' extensive studies has a first material, a second material, and a third material.
  • the first material is cubic boron nitride.
  • the second material is a compound containing zirconium.
  • the third material is aluminum oxide, and the aluminum oxide includes fine aluminum oxide.
  • the sintered body of the present embodiment has a first region in which fine aluminum oxide is dispersed in a volume of 5% by volume to 50% by volume in the second material. On an arbitrary straight line in the first region, the average value of the continuous distance occupied by the fine aluminum oxide is 0.08 ⁇ m or less, and the standard deviation of the continuous distance occupied by the fine aluminum oxide is 0.1 ⁇ m. It is as follows.
  • the sintered body of the present embodiment may have only the first material, the second material, and the third material, but as long as it has the first material, the second material, and the third material, any other arbitrary You may have the component of.
  • Examples of other optional components include a fourth material or a fifth material described later, but are not limited to the fourth material and the fifth material described later.
  • the sintered body of the present embodiment may further include inevitable impurities as long as the desired effect is exhibited.
  • the first material contained in the sintered body of the present embodiment is cubic boron nitride.
  • the cubic boron nitride of this embodiment preferably has a particle shape with an average particle size of 0.1 ⁇ m or more and 10 ⁇ m or less. If the average particle size of the cBN particles (particles made of cubic boron nitride) is less than 0.1 ⁇ m, agglomeration is likely to occur during mixing of the cubic boron nitride and other powders, which tends to cause poor sintering. . Moreover, when the average particle size of the cBN particles exceeds 10 ⁇ m, the strength of the sintered body tends to be reduced. More preferably, the cubic boron nitride of this embodiment has a particle shape with an average particle size of 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the cubic boron nitride of the present embodiment is preferably contained in the sintered body at 20 volume% or more and 80 volume% or less. If the volume fraction of cubic boron nitride in the sintered body is less than 20% by volume, the hardness of the sintered body tends to be lowered, so that the wear resistance of the sintered body tends to be lowered. Further, if the cubic volume content of cubic boron nitride in the sintered body exceeds 80% by volume, the sintered body tends to deteriorate in chipping resistance or wear resistance.
  • the cubic volume content of the cubic boron nitride in the sintered body is 20% by volume or more and 80% by volume or less, the wear resistance and fracture resistance can be further improved in the sintered body. More preferably, the volume fraction of cubic boron nitride in the sintered body is 30% by volume or more and 60% by volume or less. Thereby, wear resistance and chipping resistance can be further enhanced in the sintered body.
  • each component composition which comprises the sintered compact of this embodiment including cubic boron nitride can be confirmed as follows. That is, a smooth section (hereinafter also referred to as “CP processed surface”) of the sintered body is formed by performing CP (Cross Section Polisher) processing on the sintered body using an ion beam. Next, the sintered body structure on the CP processed surface is photographed using a scanning electron microscope (SEM (Scanning Electron Microscope)), and the obtained reflected electron image is observed. Thus, each component composition which comprises the sintered compact of this embodiment can be confirmed. Moreover, each component composition which comprises the sintered compact of this embodiment can also be confirmed by energy dispersive X-ray analysis (EDX (Energy dispersive X-ray spectrometry)) or an Auger electron spectroscopy analysis.
  • EDX Energy dispersive X-ray analysis
  • Auger electron spectroscopy analysis Auger electron spectroscopy analysis.
  • the average particle size of cBN particles can be determined as follows. That is, a photograph of the sintered body structure on the CP processed surface is taken using a scanning electron microscope (SEM). The obtained backscattered electron image is subjected to binarization processing using image analysis software (for example, trade name “WinROOF ver. 7.4.1” manufactured by Mitani Corporation) and is equivalent to a circle of cBN particles. Calculate the diameter. The calculated equivalent circle diameter of the cBN particles is defined as the average particle diameter of the cBN particles.
  • the volume fraction of cubic boron nitride in the sintered body can be determined as follows. That is, a photograph of the sintered body structure on the CP processed surface is taken using a scanning electron microscope (SEM). In the obtained reflected electron image, cubic boron nitride becomes a black region, a compound containing zirconium (described later) becomes a light gray region, and aluminum oxide (described later) becomes a dark gray region.
  • the area occupied by the cBN particles is obtained by performing binarization processing using image analysis software on the reflected electron image. By substituting the obtained occupied area of cBN particles into the following formula, the volume fraction of cubic boron nitride in the sintered body can be obtained.
  • (Volume volume ratio of cubic boron nitride in sintered body) (occupied area of cBN particles) ⁇ (area of photographed reflected electron image) ⁇ 100.
  • the second material contained in the sintered body of the present embodiment is a compound containing zirconium (hereinafter also referred to as “Zr compound”).
  • the Zr compound of this embodiment includes, for example, ZrO 2 , ZrO, ZrB 2 or the like.
  • ZrO 2 of the present embodiment contains cubic ZrO 2 and tetragonal ZrO 2, known partially stabilized ZrO 2 are also included.
  • the known partially stabilized ZrO 2 by solid solution of oxides other than zirconia, oxygen vacancies in the crystal structure of the zirconia is reduced, as a result, means ZrO 2 crystal structure is stabilized That is, it means ZrO 2 whose crystal structure (for example, cubic or tetragonal crystal) is stable or metastable even at room temperature.
  • the “oxide other than zirconia” include calcium oxide and magnesium oxide, and rare earth oxides such as yttrium oxide.
  • the conventionally known partially stabilized ZrO 2 can contain one or more oxides other than zirconia.
  • the solid solution amount of oxides other than zirconia is preferably about 1 to 4 mol% with respect to ZrO 2 .
  • the Zr compound of this embodiment preferably has a particle shape with an average particle diameter of 1 nm to 500 nm. If the average particle size of the particles made of the Zr compound is less than 1 nm, aggregation is likely to occur when the Zr compound and other powder are mixed, which tends to cause poor sintering. On the other hand, if the average particle size of the Zr compound particles exceeds 500 nm, the strength of the sintered body tends to be reduced.
  • the Zr compound of this embodiment preferably has a particle shape with an average particle size of 100 nm or less. Thereby, in the sintered compact of this embodiment, crack resistance can be improved more and therefore fracture resistance can be improved more. More preferably, the Zr compound of the present embodiment has a particle shape with an average particle diameter of 10 nm to 100 nm.
  • the average particle diameter of the particles made of Zr compound can be obtained by calculating the equivalent circle diameter of the particles made of Zr compound according to the method for obtaining the average particle diameter of cBN particles.
  • the content volume ratio of the Zr compound in the sintered body can be determined according to the method for determining the content volume ratio of cubic boron nitride in the sintered body.
  • the 3rd material contained in the sintered compact of this embodiment is aluminum oxide.
  • Aluminum oxide of this embodiment includes Al 2 O 3
  • the Al 2 O 3 of this embodiment include ⁇ -Al 2 O 3, and ⁇ -Al 2 O 3.
  • the aluminum oxide of the present embodiment includes fine aluminum oxide.
  • “Fine aluminum oxide” means particles having an average particle diameter of 80 nm or less and made of aluminum oxide (preferably Al 2 O 3 , more preferably ⁇ -Al 2 O 3 ), preferably average Particles having a particle size of 1 nm to 80 nm and made of aluminum oxide (more preferably Al 2 O 3 , more preferably ⁇ -Al 2 O 3 ).
  • the fine aluminum oxide will be further described in ⁇ First region> below.
  • the aluminum oxide of the present embodiment further includes particles having an average particle diameter of 100 nm or more and made of aluminum oxide (hereinafter also referred to as “coarse aluminum oxide”). Also good. Coarse aluminum oxide alone can function as a binder phase in the sintered body. Therefore, it is preferable that coarse aluminum oxide is contained in the sintered body in an amount of 5% by volume to 50% by volume. If the volume fraction of coarse aluminum oxide in the sintered body is less than 5% by volume, wear resistance tends to be reduced. Moreover, when the volume ratio of the coarse aluminum oxide in the sintered body exceeds 50% by volume, the chipping resistance tends to be lowered.
  • the content volume ratio of the coarse aluminum oxide in the sintered body is 7% by volume or more and 20% by volume or less.
  • the content volume ratio of the coarse aluminum oxide in a sintered compact can be calculated
  • the average particle size of the coarse aluminum oxide is more preferably 1 ⁇ m or less.
  • the average particle size of particles made of aluminum oxide (the particles made of aluminum oxide include fine aluminum oxide and coarse aluminum oxide) It can be obtained by calculating the equivalent-circle diameter of particles made of an object.
  • the sintered body of the present embodiment has a first region (considered to function as a binder phase in the sintered body) in which fine aluminum oxide is dispersed in a volume of 5% by volume to 50% by volume in the second material. .
  • the average value of the continuous distance occupied by the fine aluminum oxide is 0.08 ⁇ m or less, and the standard deviation of the continuous distance occupied by the fine aluminum oxide is 0.1 ⁇ m or less. is there. Since the sintered body of the present embodiment has such a first region, the sintered body of the present embodiment can achieve both good fracture resistance and good wear resistance. In particular, very good fracture resistance can be realized. The reason is considered to be that the toughness and strength of the sintered body are dramatically improved due to the strengthening and strengthening of the sintered body structure by the fine aluminum.
  • the average value of the continuous distance occupied by the fine aluminum oxide is 0.01 ⁇ m or more and 0.05 ⁇ m or less, and the standard of the continuous distance occupied by the fine aluminum oxide is The deviation is not less than 0.01 ⁇ m and not more than 0.05 ⁇ m. If the sintered body of the present embodiment has such a first region, it is possible to achieve both better fracture resistance and better wear resistance in the sintered body. In consideration of the resolution of an apparatus (for example, a scanning electron microscope (SEM) to be described later) used for measuring the above-mentioned “continuous distance occupied by fine aluminum oxide on an arbitrary straight line in the first region”.
  • SEM scanning electron microscope
  • the above “average value of continuous distances occupied by fine aluminum oxide on an arbitrary straight line in the first region” is 0.001 ⁇ m or more.
  • the first region of the present embodiment is preferably contained in the sintered body in an amount of 5% by volume to 80% by volume. If the volume fraction of the first region in the sintered body is less than 5% by volume, the toughness tends to be lowered in the sintered body. Moreover, when the content volume ratio of the 1st area
  • the average value of the continuous distance occupied by fine aluminum oxide on an arbitrary straight line in the first region, and the standard deviation of the distance can be obtained as follows. That is, first, the sintered body is mirror-polished, and a photograph of the sintered body structure in the first region is taken at 80000 times using a scanning electron microscope (SEM). In the obtained backscattered electron image, a contrast of light and shade corresponding to the composition is observed, and the compound is estimated from the overlapping state of various elements using energy dispersive X-ray analysis (EDX) attached to the scanning electron microscope (SEM). . In the obtained reflected electron image, cubic boron nitride becomes a black region, Zr compound becomes a light gray region, and aluminum oxide becomes a dark gray region.
  • EDX energy dispersive X-ray analysis
  • draw 10 or more arbitrary straight lines on the reflected electron image it is preferable to determine the number of straight lines so that the total number of contacts between the straight lines and the fine aluminum oxide or Zr compound is 50 or more. In addition, it is preferable to draw a straight line so that there are three or more contacts between each straight line and the fine aluminum oxide or Zr compound. Then, the continuous distance (length) occupied by fine aluminum oxide in the drawn straight line is measured, and the average value and standard deviation are obtained.
  • the fine aluminum oxide is dispersed in the second material means that the fine aluminum oxide is dispersed in the crystal grain boundaries or crystal grains of the Zr compound (for example, the above partially stabilized ZrO 2 ). Means it exists.
  • the location of the fine aluminum oxide can be confirmed as follows. That is, first, a CP processed surface is formed by performing CP processing on a sintered body using an ion beam. Next, the CP processed surface is observed using a scanning electron microscope (SEM). In this way, the location of the fine aluminum oxide can be confirmed.
  • the average particle diameter of the fine aluminum oxide is preferably 50 nm or less, more preferably 30 nm or less. Note that if the average particle size of the fine aluminum oxide becomes too small, the toughness of the aluminum oxide itself tends to decrease. Therefore, the average particle diameter of the fine aluminum oxide is preferably 5 nm or more.
  • the content volume ratio of fine aluminum oxide in the first region is 5% by volume or more and 50% by volume or less. If the content volume ratio of the fine aluminum oxide in the first region is less than 5% by volume, it becomes difficult to achieve both good fracture resistance and good wear resistance in the sintered body. Further, if the volume fraction of fine aluminum oxide in the first region exceeds 50% by volume, the toughness of the sintered body is significantly reduced, so that the fracture resistance of the sintered body is significantly reduced. Preferably, the content volume ratio of the fine aluminum oxide in the first region is 15% by volume or more and 40% by volume or less. In addition, the content volume ratio of the fine aluminum oxide in the first region can be obtained according to the method for obtaining the volume content ratio of cubic boron nitride in the sintered body.
  • the sintered body of the present embodiment can further include a fourth material in addition to the first to third materials.
  • the fourth material is preferably at least one selected from the group consisting of magnesium oxide, cerium oxide, yttrium oxide, and hafnium oxide. If such a 4th material is contained in a sintered compact, since sinterability will improve, the intensity
  • the fourth material preferably has a particle shape with an average particle diameter of 0.05 ⁇ m or more and 5 ⁇ m or less. If the average particle size of the particles made of the fourth material is less than 0.05 ⁇ m, aggregation is likely to occur when the fourth material and other powder are mixed, which tends to cause sintering failure. Moreover, when the average particle diameter of the particles made of the fourth material exceeds 5 ⁇ m, the strength of the sintered body tends to be reduced.
  • the fourth material of the present embodiment is preferably contained in the sintered body in an amount of 5% by volume to 50% by volume. If the content volume ratio of the fourth material in the sintered body is less than 5% by volume, the strength of the sintered body tends not to be sufficiently improved. Further, if the volume fraction of the fourth material in the sintered body exceeds 50% by volume, it becomes difficult to ensure the volume fraction of cubic boron nitride in the sintered body, so that the hardness of the sintered body tends to be reduced. There is. More preferably, the 4th material of this embodiment is contained in 10% by volume or more and 30% by volume or less in the sintered body.
  • the average particle diameter of the particles made of the fourth material can be obtained by calculating the equivalent circle diameter of the particles made of the fourth material according to the method for obtaining the average particle diameter of the cBN particles.
  • the content volume ratio of the fourth material in the sintered body can be obtained according to the method for obtaining the volume content of cubic boron nitride in the sintered body.
  • the sintered body of the present embodiment can further include a fifth material in addition to the first to third materials.
  • the fifth material may be included in the sintered body of the present embodiment together with the fourth material.
  • the fifth material of the present embodiment is a group consisting of at least one element selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements, Al, and Si in the periodic table, and carbon, nitrogen, and boron. It is preferably at least one compound composed of at least one element selected from the above. If such a 5th material is contained in the sintered compact, since sinterability will improve, the intensity
  • the compound include, for example, TiC, TiN, TiB 2 , TiCrN, ZrC, ZrN, ZrB 2 , AlCrN, AlN, AlB 2 , SiC, Si 3 N 4 , HfC, HfN, VC, VN, NbC, TaC, CrC, CrN, Cr 2 N, MoC, WC, or the like can be given.
  • These compounds may be contained alone in the sintered body of this embodiment, or two or more of these compounds may be combined and contained in the sintered body of this embodiment.
  • the fifth material preferably has a particle shape with an average particle diameter of 0.05 ⁇ m or more and 5 ⁇ m or less. If the average particle size of the particles made of the fifth material is less than 0.05 ⁇ m, aggregation tends to occur when the fifth material and other powder are mixed, which tends to cause sintering failure. Moreover, when the average particle diameter of the particles made of the fifth material exceeds 5 ⁇ m, the strength of the sintered body tends to be reduced.
  • the fifth material of the present embodiment is preferably contained in the sintered body in an amount of 5% by volume to 50% by volume. If the content volume ratio of the fifth material in the sintered body is less than 5% by volume, the strength of the sintered body tends not to be sufficiently improved. Further, if the volume fraction of the fifth material in the sintered body exceeds 50% by volume, it becomes difficult to ensure the volume fraction of cubic boron nitride in the sintered body, so that the hardness of the sintered body tends to decrease. There is. More preferably, the 5th material of this embodiment is contained in 10% by volume or more and 30% by volume or less in the sintered body.
  • the average particle diameter of the particles made of the fifth material can be obtained by calculating the equivalent circle diameter of the particles made of the fifth material according to the method for obtaining the average particle diameter of the cBN particles. Further, the content volume ratio of the fifth material in the sintered body can be determined according to the method for determining the volume content ratio of cubic boron nitride in the sintered body.
  • the sintered body of this embodiment can be manufactured as follows. That is, first, a raw material for the sintered body is prepared. Next, the raw materials of the prepared sintered body are mixed and then sintered. In this way, the sintered body of this embodiment can be manufactured. Hereinafter, it shows for every process.
  • first region material a material for forming the first region
  • cubic boron nitride a material for forming the first region
  • the first region material is preferably manufactured according to the following method.
  • a material different from the first region material and cubic boron nitride for example, coarse aluminum oxide, fourth material, or fifth material
  • the material for the first region can be obtained, for example, by the following neutralization coprecipitation method or sol-gel method.
  • the neutralization coprecipitation method is a method including the following step A and step B. Such a method is described, for example, in a paper published in 2013 (J. Jpn. Soc. Powder Power Metallurgy, Vol. 60, No. 10, P428-435).
  • step A a zirconium salt (a salt that becomes a second material), an yttrium salt (a salt that becomes a material that may be included in the second material), an aluminum salt (a salt that becomes a third material), and a predetermined solvent are used.
  • the above three kinds of metal salts are preferably mixed so that The oxide dissolved in ZrO 2 is not limited to Y 2 O 3, and may be calcium oxide, magnesium oxide, or a rare earth oxide other than Y 2 O 3 .
  • step B neutralization is performed by adding an alkali to the mixed solution obtained in step A, and zirconium, yttrium, and aluminum are coprecipitated to obtain a precipitate.
  • the obtained precipitate is dried and then heat-treated at 650 to 750 ° C. for 7 to 12 hours and further calcined at 850 to 950 ° C. for 0.5 to 3 hours. In this way, Y 2 O 3 stabilized ZrO 2 —Al 2 O 3 solid solution powder (first region material) is obtained.
  • examples of the zirconium salt in Step A include zirconium oxychloride (ZrOCl 2 ) and zirconium oxynitrate (ZrO (NO 3 ) 2 ).
  • examples of the yttrium salt include yttrium chloride (YCl 3 ) and yttrium nitrate (Y (NO 3 ) 3 ).
  • Examples of the aluminum salt include aluminum chloride (AlCl 3 ).
  • Examples of the predetermined solvent used as the mixed solution include water, nitric acid, hydrochloric acid, and the like.
  • the sol-gel method is a method including the following step X. Such a method is described, for example, in a paper published in 2011 (J. Jpn. Soc. Powder Power Metallurgy, Vol. 58, No. 12, P727-732).
  • step X ZrO added with 0.3 to 1.7 mol% Y 2 O 3 (an oxide that may be included in the second material) is added to ZrO 2 (second material) using a sol-gel method. 2 (99.7 to 98.3 mol% ZrO 2 -0.3 to 1.7 mol% Y 2 O 3 ) -10 to 50 mol% Al 2 O 3 (third material) amorphous solid solution powder is prepared . The obtained powder is calcined at a crystallization temperature or higher. In this way, crystalline ZrO 2 solid solution powder (first region material) is obtained.
  • the material for the first region of the present embodiment can also be obtained by the following method. That is, partially stabilized ZrO 2 and Al 2 O 3 are mixed in a solvent such as ethanol using a pulverizer such as a bead mill or a ball mill to obtain a slurry. Next, granulation is performed using this slurry. In this way, the first region material can be obtained.
  • the granulating means is not particularly limited and is preferably, for example, melt granulation or spray granulation.
  • the strength of the first region material obtained by the above method can be improved by the following (1) or (2).
  • the material for the first region is sintered in a heat treatment furnace (for example, 1000 ° C. in a vacuum for 3 hours).
  • a binder for example, PVB (poly (vinyl butyral)), which is a general binder
  • PVB poly (vinyl butyral)
  • ⁇ Sintering> Using a bead mill or a ball mill, the obtained first region material, cubic boron nitride, and other materials (for example, coarse aluminum oxide, fourth material or fifth material) are mixed as necessary. . Thereafter, the obtained mixture is sintered. For example, it is preferable to sinter at a temperature of 1300 ° C. to 1700 ° C. and a pressure of 10 MPa to 7 GPa for 10 minutes to 60 minutes. More preferably, sintering is performed at a pressure of 4 GPa or more and 7 GPa or less. Although it does not specifically limit as a sintering method, Spark plasma sintering (SPS (Spark Plasma Sintering)), a hot press, an ultra-high pressure press, etc. can be used.
  • SPS Spark Plasma Sintering
  • regions have the characteristics that the particle size changes with sintering conditions.
  • the above-described particles (aluminum) are used when only the first region material is sintered and when the first region material and cubic boron nitride are mixed and sintered.
  • the particle diameter of particles made of oxide and contained in the first region material is different. That is, comparing the particle size of the particles when only the first region material is sintered and the particle size of the particles when the first region material and cubic boron nitride are mixed and sintered.
  • the latter particle size ie, the particle size of the above-mentioned particles in the sintered body containing cubic boron nitride
  • the particle size is about one-tenth of the particle size of the material alone.
  • the particle size (crystal particle size) of the above particles is 0.1 ⁇ m or less because the first region material and the cubic crystal. This is a unique phenomenon that appears when boron nitride is mixed and sintered. That is, by mixing and sintering the first region material and cubic boron nitride, a fine aluminum oxide can be obtained, and thus a sintered body having the first region can be obtained.
  • the particles are made of aluminum oxide and are included in the first region material.
  • the particle size of the first region is further reduced, and when the first region material and cubic boron nitride are mixed and sintered at a high temperature and low pressure, the particles are made of aluminum oxide and become the first region material. It has been confirmed that the particle size of the contained particles is relatively large (see Examples described later). It is preferable to set the sintering conditions in consideration of these.
  • the present inventors have found from the X-ray diffraction spectrum of the obtained sintered body that the obtained sintered body is not only cubic ZrO 2 or tetragonal ZrO 2 but also ZrO, ZrB 2 or ZrO as a Zr compound. And ZrB 2 are both included.
  • the present inventors believe that some chemical reaction occurred by mixing and sintering the first region material and cubic boron nitride, and as a result, ZrO and ZrB 2 were produced. .
  • the sintered body of the present embodiment exhibits good fracture resistance and good wear resistance. Therefore, it is preferable to use the sintered body of the present embodiment for a cutting tool or the like. That is, the cutting tool of the present embodiment includes the sintered body of the present embodiment.
  • the cutting tool of the present embodiment for example, a drill, an end mill, a cutting edge replaceable cutting tip for a drill, a cutting edge replaceable cutting tip for an end mill, a cutting edge replaceable cutting tip for milling, a cutting edge replaceable cutting for turning A chip, a metal saw, a gear cutting tool, a reamer, a tap, or a cutting tool can be used.
  • the cutting tool of this embodiment may be entirely composed of the sintered body of this embodiment, or only a part (for example, a blade edge portion) is composed of the sintered body of this embodiment. May be.
  • the coating film may be formed in the surface.
  • the use of the sintered body of the present embodiment is not limited to a cutting tool, and examples thereof include a friction stir tool.
  • a raw material 55% by volume of a first material (cBN particles having an average particle diameter of 2 ⁇ m), 25% by volume of a first region material (particles having an average particle diameter of 0.1 ⁇ m), and 15% by volume of a third material.
  • Materials particles made of ⁇ -Al 2 O 3 having an average particle diameter of 0.5 ⁇ m
  • 5% by volume of metallic Al particles having an average particle diameter of 2.0 ⁇ m
  • a mixed solution (in this example a mixed aqueous solution) is prepared.
  • aqueous ammonia solution is added to the obtained mixed aqueous solution, and Zr, Y, and Al are coprecipitated by simultaneous neutralization.
  • the obtained precipitate is filtered and washed with water, followed by drying. In this way, amorphous hydrated zirconia (75 mol% (98.5 mol% ZrO 2 -1.5 mol% Y 2 O 3 ) -25 mol% Al 2 O 3 ) solid solution powder is obtained.
  • amorphous hydrated zirconia solid solution powder was calcined (heat treated) at 700 ° C. in air for 9 hours, and further calcined at 900 ° C. for 1 hour to obtain crystalline ZrO. 2 (Al 2 O 3 , Y 2 O 3 solid solution) powder (material for the first region) is obtained.
  • the obtained sintered body No. 1 was subjected to CP processing using an ion beam. Thereby, the sintered body No. In 1, a CP processed surface was formed. Then, the sintered compact structure of the CP processed surface was photographed using a scanning electron microscope (SEM). At this time, the acceleration voltage was 10 kV, and a field of view of 30000 times was photographed. The obtained photograph (reflected electron image) is shown in FIG.
  • the elements were identified in the reflected electron image obtained by energy dispersive X-ray analysis (EDX) attached to the scanning electron microscope (SEM), and the region where zirconium, aluminum, and oxygen were detected was identified (Fig. 2 (a) to (c)).
  • EDX energy dispersive X-ray analysis
  • SEM scanning electron microscope
  • the Zr compound becomes a light gray region
  • the aluminum oxide becomes a dark gray region. Therefore, zirconium is uniformly present in the region surrounded by the black region (specifically cubic boron nitride) (image shown in FIG. 2A), and aluminum is scattered in the region surrounded by the black region.
  • oxygen is uniformly present in the region surrounded by the black region (image shown in FIG. 2C).
  • the photographed area was photographed at a magnification of 80000 times with an acceleration voltage of 2 kV.
  • Al 2 O 3 particles fine aluminum oxide having a radius of 0.1 ⁇ m or more and an average particle size of 80 nm or less are 5% by volume or more and 50% by volume or less.
  • the following analysis was performed on the existing region (first region).
  • ZrO 2 and Al 2 O 3 were distinguished by binarization processing using image analysis software (trade name “WinROOF ver. 7.4.1” manufactured by Mitani Corporation) (FIG. 3). In FIG. 3, ZrO 2 becomes a light gray region and Al 2 O 3 becomes a dark gray region.
  • the obtained sintered body No. 1 was used to produce a cutting tool having a shape of TCGW110208, a negative land angle of 15 °, and a negative land width of 0.12 mm.
  • the obtained cutting tool was subjected to a high-speed cutting test using a machining center under the following cutting conditions.
  • Material Centrifugal cast iron (FC250 (dense cast iron) with dense pearlite, dendrite structure, etc.) Shape: cylindrical (outer diameter: 85 mm, inner diameter: 75 mm).
  • the sintered body No. 1 was prepared except that the first region material was produced as follows. In accordance with the production method of No. 1, the sintered body No. 5 was produced. Sintered body No. In accordance with the evaluation method of No. 1, the obtained sintered body No. 5 was evaluated, and the obtained sintered body No. 5 was evaluated. A high-speed cutting test was performed on No.5. The results are shown in Table 2.
  • the obtained amorphous solid solution powder is calcined (heat treated) in air at 700 ° C. for 9 hours, and further calcined in air at 900 ° C. for 1 hour. In this way, crystalline ZrO 2 (Al 2 O 3 , Y 2 O 3 solid solution) (first region material) is obtained.
  • the obtained sintered body No. A high speed cutting test was conducted on 14-25.
  • Material Centrifugal cast iron (FC250 (dense cast iron) with dense pearlite, dendrite structure, etc.) Shape: cylindrical (outer diameter: 80 mm, inner diameter: 70 mm).
  • the sintered body No. 1 the sintered body N
  • the defect life (km) was even longer. From this, on an arbitrary straight line in the first region, the average value of the continuous distance occupied by the fine aluminum oxide is 0.01 ⁇ m or more and 0.05 ⁇ m or less, and the continuous value occupied by the fine aluminum oxide is continuous. It was found that when the standard deviation of the distance is 0.01 ⁇ m or more and 0.05 ⁇ m or less, the chipping resistance of the cutting tool becomes better.
  • the sintered body No. 5 to 6 the sintered body N
  • the defect life (km) was even longer.
  • the average value of the continuous distance occupied by the fine aluminum oxide is 0.01 ⁇ m or more and 0.05 ⁇ m or less
  • the continuous value occupied by the fine aluminum oxide is It was found that when the standard deviation of the distance to be cut is 0.01 ⁇ m or more and 0.05 ⁇ m or less, the chipping resistance of the cutting tool becomes better.
  • the sintered body No. 11 to 12 the sintered body N
  • the defect life (km) was even longer. From this, it was found that when the volume fraction of cubic boron nitride in the sintered body is 30% by volume or more and 60% by volume or less, the fracture resistance of the cutting tool becomes better.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)
  • Drilling Tools (AREA)

Abstract

焼結体は、第1材料と第2材料と第3材料とを有する。第1材料は、立方晶窒化硼素である。第2材料は、ジルコニウムを含む化合物である。第3材料は、アルミニウム酸化物であり、アルミニウム酸化物は、微細なアルミニウム酸化物を含む。焼結体は、微細なアルミニウム酸化物が第2材料中に5体積%以上50体積%以下分散してなる第1領域を有する。第1領域における任意の直線上において、微細なアルミニウム酸化物が占める連続する距離の平均値が0.08μm以下であり、且つ、微細なアルミニウム酸化物が占める連続する距離の標準偏差が0.1μm以下である。

Description

焼結体および切削工具
 本発明は、焼結体と、焼結体を含む切削工具とに関する。
 立方晶窒化硼素(以下「cBN」とも記す)は高い硬度を有することから、これをZrO2またはAl23等の結合材と焼結させた焼結体が切削工具等の工具に用いられてきた(国際公開第2008/087940号(特許文献1)、国際公開第2011/059020号(特許文献2)、国際公開第2012/029440号(特許文献3)、国際公開第2012/057184号(特許文献4))。
国際公開第2008/087940号 国際公開第2011/059020号 国際公開第2012/029440号 国際公開第2012/057184号
 ところで、cBNとAl23およびZrO2等の結合材とを含む焼結体を用いた切削工具等は、使用条件(たとえば切削条件)によっては、欠損することがある。ここで、ZrO2は焼結体に高い靱性を付与することが知られている。そのため、焼結体におけるZrO2の濃度を高めることにより、焼結体が靱性に優れることとなるので、切削工具等の耐欠損性を改善できるのではないか、と考えられる。
 しかし、焼結体におけるZrO2の濃度を高めると、焼結体の耐摩耗性の低下を招くことが報告されている(たとえば特許文献2)。つまり、切削工具等の耐欠損性を改善させるために焼結体におけるZrO2の濃度を高めると、焼結体の耐摩耗性の低下を引き起こす、と考えられる。よって、従来では、焼結体におけるZrO2の濃度を一定以上とすることにより切削工具等の耐欠損性を改善させることは現実的ではないと考えられていた。特に、切削工具等に対して高度な耐摩耗性が要求される場合には、焼結体におけるZrO2の濃度を高めることにより焼結体の靱性を高めるという手段を採用できないと考えられていた。
 本発明は、このような状況に鑑みなされたものであって、その目的とするところは、良好な耐欠損性と良好な耐摩耗性とを両立させた焼結体を提供することにある。
 本発明の一態様に係る焼結体は、第1材料と第2材料と第3材料とを有する。第1材料は、立方晶窒化硼素である。第2材料は、ジルコニウムを含む化合物である。第3材料は、アルミニウム酸化物であり、アルミニウム酸化物は、微細なアルミニウム酸化物を含む。本発明の一態様に係る焼結体は、微細なアルミニウム酸化物が第2材料中に5体積%以上50体積%以下分散してなる第1領域を有する。第1領域における任意の直線上において、微細なアルミニウム酸化物が占める連続する距離の平均値が0.08μm以下であり、且つ、微細なアルミニウム酸化物が占める連続する距離の標準偏差が0.1μm以下である。
 上記によれば、良好な耐欠損性と良好な耐摩耗性とを両立させた焼結体を提供できることとなる。
実施例で得られた焼結体の反射電子像を示す画像である。 実施例で得られた焼結体の反射電子像において元素を同定した結果を示す画像である。 実施例で得られた焼結体の反射電子像においてZrO2とAl23とが区別された結果を示す画像である。
 [本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。
 [1]本発明の一態様に係る焼結体は、第1材料と第2材料と第3材料とを有する。第1材料は、立方晶窒化硼素である。第2材料は、ジルコニウムを含む化合物である。第3材料は、アルミニウム酸化物であり、アルミニウム酸化物は、微細なアルミニウム酸化物を含む。本発明の一態様に係る焼結体は、微細なアルミニウム酸化物が第2材料中に5体積%以上50体積%以下分散してなる第1領域を有する。第1領域における任意の直線上において、微細なアルミニウム酸化物が占める連続する距離の平均値が0.08μm以下であり、且つ、微細なアルミニウム酸化物が占める連続する距離の標準偏差が0.1μm以下である。この焼結体では、良好な耐欠損性と良好な耐摩耗性とを両立できる。
 [2]本発明の一態様に係る焼結体では、第1領域における任意の直線上において、微細なアルミニウム酸化物が占める連続する距離の平均値が0.01μm以上0.05μm以下であり、且つ、微細なアルミニウム酸化物が占める連続する距離の標準偏差が0.01μm以上0.05μm以下であることが好ましい。この焼結体では、より良好な耐欠損性とより良好な耐摩耗性とを両立できる。
 [3]第1領域は、微細なアルミニウム酸化物が第2材料中に15体積%以上40体積%以下分散してなることが好ましい。この焼結体では、さらに良好な耐欠損性とさらに良好な耐摩耗性とを両立できる。
 [4]第1材料は、20体積%以上80体積%以下含まれていることが好ましい。この焼結体では、より良好な耐欠損性とより良好な耐摩耗性とを両立できる。
 [5]第1材料は、30体積%以上60体積%以下含まれていることがより好ましい。この焼結体では、さらに良好な耐欠損性とさらに良好な耐摩耗性とを両立できる。
 [6]本発明の一態様に係る焼結体は、第4材料をさらに有することが好ましい。第4材料は、酸化マグネシウム、酸化セリウム、酸化イットリウム、および、酸化ハフニウムからなる群より選ばれる少なくとも1種であることが好ましい。この焼結体では、焼結性が向上するので、強度がさらに向上する。
 [7]本発明の一態様に係る焼結体は、第5材料をさらに有することが好ましい。第5材料は、周期表の4族元素、5族元素、6族元素、Al、および、Siからなる群より選ばれる少なくとも1種の元素と、炭素、窒素、および、硼素からなる群より選ばれる少なくとも1種の元素とからなる少なくとも1種の化合物であることが好ましい。この焼結体においても、焼結性が向上するので、強度がさらに向上する。
[規則91に基づく訂正 12.10.2016] 
 [8]本発明の一態様に係る切削工具は、本発明の一態様に係る焼結体を含む。これにより、本発明の一態様に係る切削工具では、高速の長距離切削における耐欠損性が向上する。
 [本発明の実施形態の詳細]
 以下、本発明の実施形態(以下「本実施形態」とも記す)についてさらに詳細に説明する。
 上述したように、cBNとAl23およびZrO2等の結合材とを含む焼結体を用いた切削工具等は、使用条件(たとえば切削条件)によっては、欠損することがある。ここで、ZrO2は焼結体に高い靱性を付与することが知られている。そのため、焼結体におけるZrO2の濃度を高めることにより、焼結体が靱性に優れることとなるので、切削工具等の耐欠損性を改善できるのではないか、と考えられる。
 しかし、焼結体におけるZrO2の濃度を高めると、焼結体の耐摩耗性の低下を招くことが報告されている(たとえば特許文献2)。つまり、切削工具等の耐欠損性を改善させるために焼結体におけるZrO2の濃度を高めると、焼結体の耐摩耗性の低下を引き起こす、と考えられる。よって、従来では、焼結体におけるZrO2の濃度を一定以上とすることにより切削工具等の耐欠損性を改善させることは現実的ではないと考えられていた。特に、切削工具等に対して高度な耐摩耗性が要求される場合には、焼結体におけるZrO2の濃度を高めることにより焼結体の靱性を高めるという手段を採用できないと考えられていた。なお、従来では、焼結体におけるZrO2の濃度を高める代わりに高硬度な材料(たとえばTiC等)を焼結体に添加することにより、焼結体において良好な耐欠損性と良好な耐摩耗性とを実現していた。
 今般、本発明者らは、切削工具等において耐欠損性および耐摩耗性を共に改善させるという要求を満足させるために焼結体の構成を鋭意検討した。その結果、焼結体の少なくとも一部において微細なアルミニウム酸化物がジルコニウムを含む化合物に分散されることにより上記要求が満たされることが分かった。かかる事実は、焼結体におけるZrO2(ジルコニウムを含む化合物の一種)の濃度を一定以上とすることにより切削工具等の耐欠損性を改善させることは現実的ではないという本技術分野における技術常識(特に、切削工具等に対して高度な耐摩耗性が要求される場合には、焼結体におけるZrO2の濃度を高めることにより焼結体の靱性を高めるという手段を採用できないという本技術分野における技術常識)を大きく覆すものである。
 [焼結体の構成]
 本発明者らの鋭意検討により得られた焼結体(「本実施形態の焼結体」に相当)は、第1材料と第2材料と第3材料とを有する。第1材料は、立方晶窒化硼素である。第2材料は、ジルコニウムを含む化合物である。第3材料は、アルミニウム酸化物であり、アルミニウム酸化物は、微細なアルミニウム酸化物を含む。本実施形態の焼結体は、微細なアルミニウム酸化物が第2材料中に5体積%以上50体積%以下分散してなる第1領域を有する。第1領域における任意の直線上において、微細なアルミニウム酸化物が占める連続する距離の平均値が0.08μm以下であり、且つ、微細なアルミニウム酸化物が占める連続する距離の標準偏差が0.1μm以下である。
 本実施形態の焼結体は、第1材料と第2材料と第3材料とのみを有していても良いが、第1材料と第2材料と第3材料とを有する限りにおいて他の任意の成分を有していても良い。他の任意の成分としては、たとえば後述の第4材料または第5材料等を挙げることができるが、後述の第4材料および第5材料に限られるものではない。また、本実施形態の焼結体は、所望される効果を示す限りにおいて、不可避不純物をさらに有していても良い。
 <第1材料>
 本実施形態の焼結体に含まれる第1材料は、立方晶窒化硼素である。本実施形態の立方晶窒化硼素は、平均粒径が0.1μm以上10μm以下の粒子形状を有することが好ましい。cBN粒子(立方晶窒化硼素からなる粒子)の平均粒径が0.1μm未満であれば、立方晶窒化硼素と他の粉末との混合時に凝集が起こり易いので、焼結不良を招く傾向がある。また、cBN粒子の平均粒径が10μmを超えると、焼結体の強度低下を招く傾向がある。より好ましくは、本実施形態の立方晶窒化硼素は平均粒径が0.1μm以上5μm以下の粒子形状を有する。
 本実施形態の立方晶窒化硼素は、焼結体中に20体積%以上80体積%以下含まれていることが好ましい。焼結体における立方晶窒化硼素の含有体積率が20体積%未満であれば、焼結体の硬度が低下し易くなるので、焼結体の耐摩耗性の低下を招く傾向がある。また、焼結体における立方晶窒化硼素の含有体積率が80体積%を超えると、焼結体において耐欠損性または耐摩耗性の低下を招く傾向がある。しかし、焼結体における立方晶窒化硼素の含有体積率が20体積%以上80体積%以下であれば、焼結体において耐摩耗性と耐欠損性とをより高めることができる。より好ましくは、焼結体における立方晶窒化硼素の含有体積率が30体積%以上60体積%以下である。これにより、焼結体において耐摩耗性と耐欠損性とをさらに高めることができる。
 なお、立方晶窒化硼素を含め、本実施形態の焼結体を構成する各成分組成は、以下のようにして確認することができる。すなわち、イオンビームを用いて焼結体に対してCP(Cross Section Polisher)加工を施すことにより、焼結体の平滑な断面(以下「CP加工面」とも記す)を形成する。次いで、走査型電子顕微鏡(SEM(Scanning Electron Microscope))を用いてCP加工面の焼結体組織を写真撮影し、得られた反射電子像を観察する。このようにして、本実施形態の焼結体を構成する各成分組成を確認することができる。また、エネルギー分散型X線分析(EDX(Energy dispersive X-ray spectrometry))またはオージエ電子分光法解析により、本実施形態の焼結体を構成する各成分組成を確認することもできる。
 また、cBN粒子の平均粒径は以下のようにして求めることができる。すなわち、走査型電子顕微鏡(SEM)を用いてCP加工面の焼結体組織を写真撮影する。得られた反射電子像に対して画像解析ソフト(たとえば、三谷商事株式会社製の商品名「WinROOF ver.7.4.1」)を用いた2値化処理を行って、cBN粒子の円相当径を算出する。算出されたcBN粒子の円相当径をcBN粒子の平均粒径とする。
 また、焼結体における立方晶窒化硼素の含有体積率は以下のようにして求めることができる。すなわち、走査型電子顕微鏡(SEM)を用いてCP加工面の焼結体組織を写真撮影する。得られた反射電子像では、立方晶窒化硼素が黒色領域となり、ジルコニウムを含む化合物(後述)が濃度の薄い灰色領域となり、アルミニウム酸化物(後述)が濃度の濃い灰色領域となる。この反射電子像に対して画像解析ソフトを用いた2値化処理を行うことにより、cBN粒子の占有面積を求める。求められたcBN粒子の占有面積を以下に示す式に代入すれば、焼結体における立方晶窒化硼素の含有体積率を求めることができる。(焼結体における立方晶窒化硼素の含有体積率)=(cBN粒子の占有面積)÷(撮影された反射電子像の面積)×100。
 <第2材料>
 本実施形態の焼結体に含まれる第2材料は、ジルコニウムを含む化合物(以下「Zr化合物」とも記す)である。本実施形態のZr化合物には、たとえばZrO2、ZrOまたはZrB2等が含まれる。本実施形態のZrO2には、立方晶ZrO2および正方晶ZrO2が含まれ、従来公知の部分安定化ZrO2もまた含まれる。従来公知の部分安定化ZrO2とは、ジルコニア以外の酸化物を固溶させることにより、ジルコニアの結晶構造中の酸素空孔が減少し、その結果、結晶構造が安定化されたZrO2を意味し、つまり、室温下においても結晶構造(たとえば立方晶または正方晶)が安定または準安定なZrO2を意味する。上記「ジルコニア以外の酸化物」としては、酸化カルシウムおよび酸化マグネシウムをはじめ、酸化イットリウム等の希土類酸化物を挙げることができる。従来公知の部分安定化ZrO2は、このようなジルコニア以外の酸化物を1種または2種以上含むことができる。なお、ジルコニア以外の酸化物の固溶量は、ZrO2に対し1~4mol%程度であることが好ましい。
 本実施形態のZr化合物は、平均粒径が1nm以上500nm以下の粒子形状を有することが好ましい。Zr化合物からなる粒子の平均粒径が1nm未満であれば、Zr化合物と他の粉末との混合時に凝集が起こり易いので、焼結不良を招く傾向がある。また、Zr化合物からなる粒子の平均粒径が500nmを超えると、焼結体の強度低下を招く傾向がある。
 また、本実施形態のZr化合物は、平均粒径が100nm以下の粒子形状を有することが好ましい。これにより、本実施形態の焼結体では、耐クラック性をより高めることができ、よって、耐欠損性をより高めることができる。より好ましくは、本実施形態のZr化合物は平均粒径が10nm以上100nm以下の粒子形状を有する。
 なお、Zr化合物からなる粒子の平均粒径はcBN粒子の平均粒径の求め方にしたがってZr化合物からなる粒子の円相当径を算出することにより求めることができる。また、焼結体におけるZr化合物の含有体積率は焼結体における立方晶窒化硼素の含有体積率の求め方にしたがって求めることができる。
 <第3材料>
 本実施形態の焼結体に含まれる第3材料は、アルミニウム酸化物である。本実施形態のアルミニウム酸化物には、Al23が含まれ、本実施形態のAl23には、α-Al23およびγ-Al23が含まれる。
 本実施形態のアルミニウム酸化物は、微細なアルミニウム酸化物を含む。「微細なアルミニウム酸化物」とは、平均粒径が80nm以下であってアルミニウム酸化物(好ましくはAl23、より好ましくはα-Al23)からなる粒子を意味し、好ましくは平均粒径が1nm以上80nm以下であってアルミニウム酸化物(より好ましくはAl23、さらに好ましくはα-Al23)からなる粒子である。微細なアルミニウム酸化物については下記<第1領域>でさらに示す。
 本実施形態のアルミニウム酸化物は、微細なアルミニウム酸化物とは別に、平均粒径が100nm以上であってアルミニウム酸化物からなる粒子(以下「粗大なアルミニウム酸化物」とも記す)をさらに含んでいても良い。粗大なアルミニウム酸化物は、それ単体で、焼結体における結合相として機能し得る。そのため、粗大なアルミニウム酸化物は、焼結体中に5体積%以上50体積%以下含まれていることが好ましい。焼結体における粗大なアルミニウム酸化物の含有体積率が5体積%未満であれば、耐摩耗性の低下を招く傾向がある。また、焼結体における粗大なアルミニウム酸化物の含有体積率が50体積%を超えると、耐欠損性の低下を招く傾向がある。より好ましくは、焼結体における粗大なアルミニウム酸化物の含有体積率は7体積%以上20体積%以下である。なお、焼結体における粗大なアルミニウム酸化物の含有体積率は焼結体における立方晶窒化硼素の含有体積率の求め方にしたがって求めることができる。また、粗大なアルミニウム酸化物の平均粒径は1μm以下であることがより好ましい。
 アルミニウム酸化物からなる粒子(アルミニウム酸化物からなる粒子には、微細なアルミニウム酸化物と粗大なアルミニウム酸化物とが含まれる)の平均粒径はcBN粒子の平均粒径の求め方にしたがってアルミニウム酸化物からなる粒子の円相当径を算出することにより求めることができる。
 <第1領域>
 本実施形態の焼結体は、微細なアルミニウム酸化物が第2材料中に5体積%以上50体積%以下分散してなる第1領域(焼結体における結合相として機能すると考えられる)を有する。第1領域における任意の直線上において、微細なアルミニウム酸化物が占める連続する距離の平均値は0.08μm以下であり、微細なアルミニウム酸化物が占める連続する距離の標準偏差は0.1μm以下である。本実施形態の焼結体がこのような第1領域を有しているので、本実施形態の焼結体では良好な耐欠損性と良好な耐摩耗性とを両立できる。特に、非常に良好な耐欠損性を実現することができる。その理由としては、微細なアルミニウムによる焼結体組織の強靭化および高強度化に起因して焼結体の靱性および強度が飛躍的に向上するからである、と考えられる。
 好ましくは、第1領域における任意の直線上において、微細なアルミニウム酸化物が占める連続する距離の平均値は0.01μm以上0.05μm以下であり、微細なアルミニウム酸化物が占める連続する距離の標準偏差は0.01μm以上0.05μm以下である。本実施形態の焼結体がこのような第1領域を有していれば、焼結体においてより良好な耐欠損性とより良好な耐摩耗性とを両立できる。なお、上記「第1領域における任意の直線上において、微細なアルミニウム酸化物が占める連続する距離」の測定に使用される装置(たとえば後述の走査型電子顕微鏡(SEM))の分解能を考慮すれば、上記「第1領域における任意の直線上において、微細なアルミニウム酸化物が占める連続する距離」が0.001μm未満となると、その距離を測定することが難しくなる。そのため、上記「第1領域における任意の直線上において、微細なアルミニウム酸化物が占める連続する距離の平均値」は0.001μm以上であることが好ましい。
 本実施形態の第1領域は、焼結体中に5体積%以上80体積%以下含まれていることが好ましい。焼結体における第1領域の含有体積率が5体積%未満であれば、焼結体において靱性の低下を招く傾向がある。また、焼結体における第1領域の含有体積率が80体積%を超えると、耐摩耗性の低下を招く傾向がある。より好ましくは、焼結体における第1領域の含有体積率は10体積%以上50体積%以下である。なお、焼結体における第1領域の含有体積率は焼結体における立方晶窒化硼素の含有体積率の求め方にしたがって求めることができる。
 第1領域における任意の直線上において微細なアルミニウム酸化物が占める連続する距離の平均値、および、その距離の標準偏差は、以下のようにして求めることができる。すなわち、まず、焼結体を鏡面研磨し、走査型電子顕微鏡(SEM)を用いて第1領域の焼結体組織を80000倍で写真撮影する。得られた反射電子像では組成に対応した濃淡のコントラストが観察され、走査型電子顕微鏡(SEM)に付属のエネルギー分散型X線分析(EDX)を用いて各種元素の重なり状態から化合物を推定する。得られた反射電子像では、立方晶窒化硼素が黒色領域となり、Zr化合物が濃度の薄い灰色領域となり、アルミニウム酸化物が濃度の濃い灰色領域となる。
 次いで、上記反射電子像に任意の直線を10本以上引く。このとき、直線と微細なアルミニウム酸化物またはZr化合物との接点の個数の合計が50以上となるように、直線の本数を決めることが好ましい。また、直線のそれぞれと微細なアルミニウム酸化物またはZr化合物との接点が3個以上となるように、直線を引くことが好ましい。その後、引いた直線において微細なアルミニウム酸化物が占める連続する距離(長さ)を測定し、その平均値および標準偏差を求める。
 「微細なアルミニウム酸化物が第2材料中に分散」しているとは、微細なアルミニウム酸化物がZr化合物(たとえば、上記部分安定化ZrO2等)の結晶粒界または結晶粒内に分散して存在していることを意味する。微細なアルミニウム酸化物の存在位置は次のようにして確認することができる。すなわち、まず、イオンビームを用いて焼結体に対してCP加工を施すことにより、CP加工面を形成する。次いで、走査型電子顕微鏡(SEM)を用いてCP加工面を観察する。このようにして、微細なアルミニウム酸化物の存在位置を確認することができる。
 微細なアルミニウム酸化物の平均粒径が小さい方が、焼結体の強度を高めることができる。たとえば、微細なアルミニウム酸化物の平均粒径は、好ましくは50nm以下であり、より好ましくは30nm以下である。なお、微細なアルミニウム酸化物の平均粒径が小さくなり過ぎると、アルミニウム酸化物自身の靱性が低下し易くなる。そのため、微細なアルミニウム酸化物の平均粒径は、5nm以上であることが好ましい。
 第1領域における微細なアルミニウム酸化物の含有体積率は5体積%以上50体積%以下である。第1領域における微細なアルミニウム酸化物の含有体積率が5体積%未満であれば、焼結体において良好な耐欠損性と良好な耐摩耗性とを両立することが難しくなる。また、第1領域における微細なアルミニウム酸化物の含有体積率が50体積%を超えると、焼結体の靱性の大幅な低下を招くので、焼結体の耐欠損性が大幅に低下する。好ましくは、第1領域における微細なアルミニウム酸化物の含有体積率は15体積%以上40体積%以下である。なお、第1領域における微細なアルミニウム酸化物の含有体積率は焼結体における立方晶窒化硼素の含有体積率の求め方にしたがって求めることができる。
 <第4材料>
 本実施形態の焼結体は、上記第1~第3材料以外に、第4材料をさらに有することができる。第4材料は、酸化マグネシウム、酸化セリウム、酸化イットリウム、および酸化ハフニウムからなる群より選ばれる少なくとも1種であることが好ましい。このような第4材料が焼結体に含まれていれば、焼結性が向上するので、焼結体の強度がさらに向上する。
 第4材料は、平均粒径が0.05μm以上5μm以下の粒子形状を有することが好ましい。第4材料からなる粒子の平均粒径が0.05μm未満であれば、第4材料と他の粉末との混合時に凝集が起こり易いので、焼結不良を招く傾向がある。また、第4材料からなる粒子の平均粒径が5μmを超えると、焼結体の強度低下を招く傾向がある。
 本実施形態の第4材料は、焼結体中に5体積%以上50体積%以下含まれていることが好ましい。焼結体における第4材料の含有体積率が5体積%未満であれば、焼結体の強度が十分に向上しない傾向がある。また、焼結体における第4材料の含有体積率が50体積%を超えると、焼結体における立方晶窒化硼素の含有体積率の確保が難しくなるので、焼結体の硬度の低下を招く傾向がある。より好ましくは、本実施形態の第4材料は焼結体中に10体積%以上30体積%以下含まれている。
 なお、第4材料からなる粒子の平均粒径はcBN粒子の平均粒径の求め方にしたがって第4材料からなる粒子の円相当径を算出することにより求めることができる。また、焼結体における第4材料の含有体積率は焼結体における立方晶窒化硼素の含有体積率の求め方にしたがって求めることができる。
 <第5材料>
 本実施形態の焼結体は、上記第1~第3材料以外に、第5材料をさらに有することができる。第5材料は、第4材料と共に、本実施形態の焼結体に含まれていても良い。
 本実施形態の第5材料は、周期表の4族元素、5族元素、6族元素、Al、およびSiからなる群より選ばれる少なくとも1種の元素と、炭素、窒素、および硼素からなる群より選ばれる少なくとも1種の元素とからなる少なくとも1種の化合物であることが好ましい。このような第5材料が焼結体に含まれていれば、焼結性が向上するので、焼結体の強度がさらに向上する。
 上記化合物の具体例としては、たとえば、TiC、TiN、TiB2、TiCrN、ZrC、ZrN、ZrB2、AlCrN、AlN、AlB2、SiC、Si34、HfC、HfN、VC、VN、NbC、TaC、CrC、CrN、Cr2N、MoC、または、WC等を挙げることができる。これらの化合物が単独で本実施形態の焼結体に含まれていても良いし、これらの化合物の2種以上が組み合わされて本実施形態の焼結体に含まれていても良い。
 第5材料は、平均粒径が0.05μm以上5μm以下の粒子形状を有することが好ましい。第5材料からなる粒子の平均粒径が0.05μm未満であれば、第5材料と他の粉末との混合時に凝集が起こり易いので、焼結不良を招く傾向がある。また、第5材料からなる粒子の平均粒径が5μmを超えると、焼結体の強度低下を招く傾向がある。
 本実施形態の第5材料は、焼結体中に5体積%以上50体積%以下含まれていることが好ましい。焼結体における第5材料の含有体積率が5体積%未満であれば、焼結体の強度が十分に向上しない傾向がある。また、焼結体における第5材料の含有体積率が50体積%を超えると、焼結体における立方晶窒化硼素の含有体積率の確保が難しくなるので、焼結体の硬度の低下を招く傾向がある。より好ましくは、本実施形態の第5材料は焼結体中に10体積%以上30体積%以下含まれている。
 なお、第5材料からなる粒子の平均粒径はcBN粒子の平均粒径の求め方にしたがって第5材料からなる粒子の円相当径を算出することにより求めることができる。また、焼結体における第5材料の含有体積率は焼結体における立方晶窒化硼素の含有体積率の求め方にしたがって求めることができる。
 [焼結体の製造]
 本実施形態の焼結体は、以下のようにして製造することができる。すなわち、まず、焼結体の原料を準備する。次いで、準備した焼結体の原料を混合した後、焼結させる。このようにして、本実施形態の焼結体を製造することができる。以下、工程ごとに示す。
 <焼結体の原料の準備>
 焼結体の原料として、第1領域を形成することとなる材料(以下「第1領域用材料」と記す)と立方晶窒化硼素とを準備する。第1領域用材料は次に示す方法にしたがって製造されたものであることが好ましい。また、焼結体の原料として、第1領域用材料および立方晶窒化硼素とは異なる材料(たとえば粗大なアルミニウム酸化物、第4材料または第5材料等)をさらに準備しても良い。
 <第1領域用材料の作製>
 第1領域用材料は、たとえば、以下のような中和共沈法またはゾル-ゲル法によって得ることができる。
 (中和共沈法)
 中和共沈法とは、以下の工程Aおよび工程Bを含む方法である。このような方法は、たとえば2013年に発表された論文(J. Jpn. Soc. Powder Power Metallurgy,Vol.60,No.10,P428-435)に記載されている。
 工程Aでは、ジルコニウム塩(第2材料となる塩)とイットリウム塩(第2材料に含まれても良い材料となる塩)とアルミニウム塩(第3材料となる塩)と所定の溶媒とを用いて、混合溶液を調製する。このとき、混合溶液において、ジルコニア(ZrO2)とイットリア(Y23)とのモル比率が「ZrO2:Y23=98.2:1.8~98.8:1.2」となるように、しかもイットリアを添加したZrO2とアルミナ(Al23)とのモル比率が「(Y23を添加したZrO2):Al23=50:50~90:10」となるように、上記3種類の金属塩を混合することが好ましい。なお、ZrO2に固溶される酸化物としては、Y23に限定されず、酸化カルシウム、酸化マグネシウム、または、Y23以外の希土類酸化物であっても良い。
 工程Bでは、上記工程Aで得られた混合溶液にアルカリを添加することにより中和を行ない、ジルコニウムとイットリウムとアルミニウムとを共沈させて沈殿物を得る。得られた沈殿物を乾燥させた後、650~750℃で7~12時間熱処理し、更に850~950℃で0.5~3時間仮焼成する。このようにして、Y23安定化ZrO2-Al23固溶体粉体(第1領域用材料)が得られる。
 ここで、上記工程Aのジルコニウム塩としては、オキシ塩化ジルコニウム(ZrOCl2)、オキシ硝酸ジルコニウム(ZrO(NO32)等を挙げることができる。イットリウム塩としては、塩化イットリウム(YCl3)、硝酸イットリウム(Y(NO33)等を挙げることができる。アルミニウム塩としては、塩化アルミニウム(AlCl3)等を挙げることができる。また、混合溶液とする上記所定の溶媒としては、たとえば、水、硝酸、塩酸等を挙げることができる。
 (ゾル-ゲル法)
 ゾル-ゲル法とは、以下の工程Xを含む方法である。このような方法は、たとえば2011年に発表された論文(J. Jpn. Soc. Powder Power Metallurgy,Vol.58,No.12,P727-732)に記載されている。
 工程Xでは、ゾル-ゲル法を用いて、ZrO2(第2材料)に対し0.3~1.7mol%Y23(第2材料に含まれても良い酸化物)を添加したZrO2(99.7~98.3mol%ZrO2-0.3~1.7mol%Y23)-10~50mol%Al23(第3材料)の非晶質固溶体粉体を調製する。得られた粉体を結晶化温度以上で仮焼する。このようにして、結晶質のZrO2固溶体粉体(第1領域用材料)が得られる。
 (その他の方法)
 本実施形態の第1領域用材料は、以下に示す方法によっても得ることができる。すなわち、ビーズミルまたはボールミルのような粉砕機を用いて部分安定化ZrO2とAl23とをエタノール等の溶媒中で混合しスラリーを得る。次いで、このスラリーを用いて造粒する。このようにして、第1領域用材料を得ることができる。造粒手段は特に限定されず、たとえば、溶融造粒、または、噴霧造粒等であることが好ましい。
 なお、上記方法により得られた第1領域用材料は、下記(1)または下記(2)により強度を向上させることができる。
(1) 第1領域用材料を熱処理炉(たとえば1000℃、真空中、3時間)で焼結する。
(2) 造粒物の前駆体である上記スラリーにバインダー(たとえば一般的バインダーであるPVB(ポリビニルブチラール(poly(vinyl butyral)))を10質量%添加する。
 <焼結>
 ビーズミルまたはボールミル等を用いて、得られた第1領域用材料と立方晶窒化硼素と必要に応じてその他の材料(たとえば粗大なアルミニウム酸化物、第4材料または第5材料等)とを混合する。その後、得られた混合物を焼結する。たとえば、1300℃以上1700℃以下の温度および10MPa以上7GPa以下の圧力で10分間以上60分間以下、焼結することが好ましい。より好ましくは、4GPa以上7GPa以下の圧力で焼結を行う。焼結方法としては、特に限定されないが、放電プラズマ焼結(SPS(Spark Plasma Sintering))、ホットプレスまたは超高圧プレス等を用いることができる。
 なお、アルミニウム酸化物からなる粒子であって第1領域用材料に含まれる粒子は、その粒径が焼結条件により変化するという特徴を有する。しかも、同じ焼結条件であっても、第1領域用材料のみを焼結する場合と、第1領域用材料と立方晶窒化硼素とを混合して焼結する場合とでは、上記粒子(アルミニウム酸化物からなる粒子であって第1領域用材料に含まれる粒子)の粒径は異なる。すなわち、第1領域用材料のみを焼結した場合の上記粒子の粒径と、第1領域用材料と立方晶窒化硼素とを混合して焼結した場合の上記粒子の粒径とを比較すると、同じ焼結条件(温度、圧力など)を採用しても後者の粒径(すなわち立方晶窒化硼素を含む焼結体中の上記粒子の粒径)が前者の粒径(すなわち第1領域用材料のみの場合の上記粒子の粒径)に比し約10分の1程度の微細な粒径(結晶粒径)となる。
 したがって、上記粒子(アルミニウム酸化物からなる粒子であって第1領域用材料に含まれる粒子)の粒径(結晶粒径)が0.1μm以下となるのは、第1領域用材料と立方晶窒化硼素とを混合して焼結した場合に現れる特異的な現象である。つまり、第1領域用材料と立方晶窒化硼素とを混合して焼結することにより、微細なアルミニウム酸化物が得られ、よって、第1領域を有する焼結体が得られることとなる。
 また、本発明者らは、第1領域用材料と立方晶窒化硼素とを混合して低温且つ高圧で焼結させると、アルミニウム酸化物からなる粒子であって第1領域用材料に含まれる粒子の粒径がさらに小さくなること、および、第1領域用材料と立方晶窒化硼素とを混合して高温且つ低圧で焼結させると、アルミニウム酸化物からなる粒子であって第1領域用材料に含まれる粒子の粒径が比較的大きくなることを確認している(後述の実施例参照)。これらを考慮して焼結条件を設定することが好ましい。
 また、本発明者らは、得られた焼結体のX線回析スペクトルから、得られた焼結体がZr化合物として立方晶ZrO2または正方晶ZrO2だけでなくZrO、ZrB2またはZrOとZrB2との両方を含んでいることを確認している。本発明者らは、第1領域用材料と立方晶窒化硼素とを混合して焼結することにより何らかの化学反応が起こり、その結果、ZrOおよびZrB2が生成されたのではないかと考えている。
 [切削工具]
 上述したように、本実施形態の焼結体は、良好な耐欠損性と良好な耐摩耗性とを示す。そのため、本実施形態の焼結体を切削工具等に使用することが好適である。すなわち、本実施形態の切削工具は、本実施形態の焼結体を含むものである。
 ここで、本実施形態の切削工具としては、たとえば、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ、または、切削バイト等を挙げることができる。
 なお、本実施形態の切削工具は、その全体が本実施形態の焼結体で構成されていても良いし、その一部(たとえば刃先部分)のみが本実施形態の焼結体で構成されていても良い。また、本実施形態の切削工具では、その表面にコーティング膜が形成されていても良い。
 また、本実施形態の焼結体の用途としては、切削工具に限定されず、たとえば摩擦攪拌工具などを挙げることができる。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
 [焼結体No.1]
 [焼結体の作製]
 以下のようにして、焼結体No.1を作製した。
 <原料の準備>
 焼結体No.1の原料として、55体積%の第1材料(平均粒径が2μmのcBN粒子)と25体積%の第1領域用材料(平均粒径が0.1μmの粒子)と15体積%の第3材料(平均粒径が0.5μmのα-Al23からなる粒子)と焼結助剤として5体積%の金属Al(平均粒径が2.0μmの粒子)とを準備した。なお、第1領域用材料は次に示すようにして作製されたものであった。
 <第1領域用材料の作製>
 中和共沈法とは、2013年に発表された論文(J. Jpn. Soc. Powder Power Metallurgy,Vol.60,No.10,P428-435)に記載されている。
 まず、オキシ塩化ジルコニウム(ZrOCl2・8H2O)と塩化アルミニウム(AlCl3)と塩化イットリウム(YCl3)とを水に加え、混合溶液(本実施例では混合水溶液)を調製する。このとき、ZrO2とY23とのモル比率が「ZrO2:Y23=98.5:1.5」となるように、しかもY23を添加したZrO2とAl23とのモル比率が「(Y23を添加したZrO2):Al23=75:25」となるように、上記3種類の金属塩を混合する。
 次いで、得られた混合水溶液にアンモニア水溶液を添加し、ZrとYとAlとを同時中和にて共沈させる。得られた沈殿物を濾過および水洗した後、乾燥を行う。このようにして、非晶質水和ジルコニア(75mol%(98.5mol%ZrO2-1.5mol%Y23)-25mol%Al23)固溶体粉体を得る。
 続いて、得られた非晶質水和ジルコニア固溶体粉体を、700℃で空気中で9時間の条件で仮焼し(熱処理し)、更に900℃で1時間仮焼して結晶質のZrO2(Al23、Y23固溶)粉体(第1領域用材料)を得る。
 <焼結>
 ボールミルを用いて、準備した焼結体No.1の原料を混合した。得られた混合物をNb製カプセルに充填し、そのカプセルを超高圧発生装置の容器内にセットした。焼結圧力7GPa、焼結温度1450℃で15分間焼結させた。このようにして、焼結体No.1を得た。
 [焼結体組織の評価]
 得られた焼結体No.1に対して、イオンビームを用いたCP加工を行った。これにより、焼結体No.1にはCP加工面が形成された。その後、走査型電子顕微鏡(SEM)を用いてCP加工面の焼結体組織を写真撮影した。このとき、加速電圧を10kVとし、30000倍の視野を写真撮影した。得られた写真(反射電子像)を図1に示す。
 また、走査型電子顕微鏡(SEM)に付属のエネルギー分散型X線分析(EDX)により得られた反射電子像において元素を同定し、ジルコニウムとアルミニウムと酸素とが検出された領域を特定した(図2(a)~(c))。反射電子像では、Zr化合物は濃度の薄い灰色領域となり、アルミニウム酸化物は濃度の濃い灰色領域となる。よって、ジルコニウムは黒色領域(立方晶窒化硼素と特定)で囲まれた領域内に均一に存在し(図2(a)に示す画像)、アルミニウムは上記黒色領域で囲まれた領域内に点在し(図2(b)に示す画像)、酸素は上記黒色領域で囲まれた領域内に均一に存在する(図2(c)に示す画像)ということが分かった。
 次いで、上記写真撮影された領域を、加速電圧を2kVとして、80000倍の倍率で写真撮影した。得られた写真(反射電子像)において、半径が0.1μm以上の領域であって平均粒径が80nm以下のAl23粒子(微細なアルミニウム酸化物)が5体積%以上50体積%以下存在する領域(第1領域)に対して、次の解析を実施した。まず、画像解析ソフト(三谷商事株式会社製の商品名「WinROOF ver.7.4.1」)を用いて、2値化処理によりZrO2とAl23とを区別した(図3)。図3では、ZrO2が濃度の薄い灰色領域となり、Al23が濃度の濃い灰色領域となる。上記第1領域に任意の直線(2本以上)を引き、その直線上において上記Al23粒子が占める連続する距離を求め、その平均値および標準偏差を算出した。また、上記直線上においてZrO2が占める連続する距離を求め、その平均値および標準偏差を算出した。算出結果を表1に示す。
 [高速切削試験]
 得られた焼結体No.1を用いて、TCGW110208、ネガランド角度15°、ネガランド幅0.12mmの形状を有する切削工具を作製した。得られた切削工具に対して、以下に示す切削条件でマシニングセンタによる高速切削試験を実施した。
 (切削条件)
切削速度:900m/min.
送り速度:0.4mm/rev.
切込み:0.3mm
クーラント:湿式(エマルジョン20倍希釈)。
 (マシニングセンタ)
NV5000 α1A/40(DMG森精機株式会社製の品番)。
 (被削材)
材料:遠心鋳造鋳鉄(緻密パーライト、デンドライト組織等を有するFC250(ネズミ鋳鉄))
形状:円筒状(外径:85mm、内径:75mm)。
 (切削試験)
4.0km切削後の最大逃げ面摩耗量(μm)を測定するとともに、0.2mm以上のチッピングが発生するまでの欠損寿命(km)を測定した。その結果を表1に示す。
 [焼結体No.2~4]
 表1に示すように焼結条件を変更したことを除いては焼結体No.1の作製方法にしたがって、焼結体No.2~4を作製した。焼結体No.1の評価方法にしたがって、得られた焼結体No.2~4の焼結体組織を評価し、また、得られた焼結体No.2~4に対して高速切削試験を行った。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 [焼結体No.5]
 [焼結体の作製]
 第1領域用材料を以下のようにして作製したことを除いては焼結体No.1の作製方法にしたがって、焼結体No.5を作製した。焼結体No.1の評価方法にしたがって、得られた焼結体No.5の焼結体組織を評価し、また、得られた焼結体No.5に対して高速切削試験を行った。その結果を表2に示す。
 <第1領域用材料の作製>
 ゾル-ゲル法とは、2011年に発表された論文(J. Jpn. Soc. Powder Power Metallurgy,Vol.58,No.12,P727-732)に記載されている。
 すなわち、まず、Zr-i-(OC374、Al(OC373、Y(OC373を2-プロパノール中で2時間処理した後、NH4OHを添加する。このとき、ZrO2に対して1.5モル%のY23および25モル%のAl23となるように、これら3種類の化合物を混合する。次いで、78℃にて24時間還流することによって、加水分解生成物を得る。続いて、この加水分解生成物を遠心分離した後、熱水で洗浄する。熱水で洗浄したものを、真空中、120℃で乾燥する。このようにして、非晶質固溶体粉体を得る。
 得られた非晶質固溶体粉体を、空気中で700℃で9時間の条件で仮焼し(熱処理し)、更に空気中で900℃で1時間仮焼する。このようにして、結晶質のZrO2(Al23、Y23固溶)(第1領域用材料)を得る。
[規則91に基づく訂正 12.10.2016] 
 [焼結体No.6~8]
 表2に示すように焼結条件を変更したことを除いては焼結体No.5の作製方法にしたがって、焼結体No.6~8を作製した。焼結体No.1の評価方法にしたがって、得られた焼結体No.6~8の焼結体組織を評価し、また、得られた焼結体No.6~8に対して高速切削試験を行った。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 [焼結体No.9~13]
 焼結体の原料の配合比率を表3に示す配合比率に変更したことを除いては焼結体No.1の作製方法にしたがって、焼結体No.9~13を作製した。焼結体No.1の評価方法にしたがって、得られた焼結体No.9~13の焼結体組織を評価し、また、得られた焼結体No.9~13に対して高速切削試験を行った。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 [焼結体No.14~25]
 第1領域用材料の配合比率を25体積%から15体積%に変更したこと、および、表4に示す第4材料または第5材料を焼結体の原料として用いたことを除いては焼結体No.1の作製方法にしたがって、焼結体No.14~25を作製した。焼結体No.1の評価方法にしたがって、得られた焼結体No.14~25の焼結体組織を評価した。その結果を表5に示す。
 また、以下に示す方法にしたがって、得られた焼結体No.14~25に対して高速切削試験を行った。
 [高速切削試験]
 得られた焼結体No.14~25を用いて、TCGW110208、ネガランド角度15°、ネガランド幅0.12mmの形状を有する切削工具を作製した。得られた切削工具に対して、以下に示す切削条件でマシニングセンタによる高速切削試験を実施した。
 (切削条件)
切削速度:600m/min.
送り速度:0.3mm/rev.
切込み:0.2mm
クーラント:湿式(エマルジョン20倍希釈)。
 (マシニングセンタ)
NV5000 α1A/40(DMG森精機株式会社製の品番)。
 (被削材)
材料:遠心鋳造鋳鉄(緻密パーライト、デンドライト組織等を有するFC250(ネズミ鋳鉄))
形状:円筒状(外径:80mm、内径:70mm)。
 (切削試験)
7.0km切削後の最大逃げ面摩耗量(μm)を測定するとともに、0.2mm以上のチッピングが発生するまでの欠損寿命(km)を測定した。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 [考察]
 <焼結体No.1~4>
 焼結体No.4では、焼結体No.1~3に比べて、4.0km切削後の最大逃げ面摩耗量(μm)が大きく、欠損寿命(km)が短かった。このことから、第1領域における任意の直線上において、微細なアルミニウム酸化物が占める連続する距離の平均値が0.08μm以下であり、且つ、微細なアルミニウム酸化物が占める連続する距離の標準偏差が0.1μm以下であれば、切削工具において良好な耐欠損性と良好な耐摩耗性とを両立できることが分かった。
 また、焼結体No.1では、焼結体Nо.2~3に比べて、欠損寿命(km)がさらに長かった。このことから、第1領域における任意の直線上において、微細なアルミニウム酸化物が占める連続する距離の平均値が0.01μm以上0.05μm以下であり、且つ、微細なアルミニウム酸化物が占める連続する距離の標準偏差が0.01μm以上0.05μm以下であれば、切削工具の耐欠損性がより良好となることが分かった。
 <焼結体No.5~8>
 焼結体No.5~8では、4.0km切削後の最大逃げ面摩耗量(μm)および欠損寿命(km)ともに、焼結体No.1~3と同様の傾向を示した。このことから、第1領域における任意の直線上において、微細なアルミニウム酸化物が占める連続する距離の平均値が0.08μm以下であり、且つ、微細なアルミニウム酸化物が占める連続する距離の標準偏差が0.1μm以下であれば、第1領域用材料の作製方法に関係なく、切削工具において良好な耐欠損性と良好な耐摩耗性とを両立できることが分かった。
 また、焼結体No.5~6では、焼結体Nо.7~8に比べて、欠損寿命(km)がさらに長かった。この結果によっても、第1領域における任意の直線上において、微細なアルミニウム酸化物が占める連続する距離の平均値が0.01μm以上0.05μm以下であり、且つ、微細なアルミニウム酸化物が占める連続する距離の標準偏差が0.01μm以上0.05μm以下であれば、切削工具の耐欠損性がより良好となることが分かった。
 <焼結体No.9~13>
 焼結体No.9~13では、4.0km切削後の最大逃げ面摩耗量(μm)および欠損寿命(km)ともに、焼結体No.1~3と同様の傾向を示した。このことから、第1領域における任意の直線上において、微細なアルミニウム酸化物が占める連続する距離の平均値が0.08μm以下であり、且つ、微細なアルミニウム酸化物が占める連続する距離の標準偏差が0.1μm以下であれば、立方晶窒化硼素の配合量または第1領域用材料の配合量にそれほど依存することなく、切削工具において良好な耐欠損性と良好な耐摩耗性とを両立できることが分かった。
 また、焼結体No.11~12では、焼結体Nо.9、10および13に比べて、欠損寿命(km)がさらに長かった。このことから、焼結体における立方晶窒化硼素の含有体積率が30体積%以上60体積%以下であれば、切削工具の耐欠損性がより良好となることが分かった。
 <焼結体No.14~25>
 焼結体No.14~25では、7.0km切削後の最大逃げ面摩耗量(μm)は焼結体No.1~3よりも若干大きな値を示したが、欠損寿命(km)は焼結体No.1~3よりも長かった。これらのことから、焼結体が第4材料または第5材料をさらに有していれば、切削工具の耐摩耗性を高めることができ、また、切削工具の耐欠損性を非常に高めることができることが分かった。
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。

Claims (8)

  1.  第1材料と第2材料と第3材料とを有する焼結体であって、
     前記第1材料は、立方晶窒化硼素であり、
     前記第2材料は、ジルコニウムを含む化合物であり、
     前記第3材料は、アルミニウム酸化物であり、
     前記アルミニウム酸化物は、微細なアルミニウム酸化物を含み、
     前記焼結体は、前記微細なアルミニウム酸化物が前記第2材料中に5体積%以上50体積%以下分散してなる第1領域を有し、
     前記第1領域における任意の直線上において、前記微細なアルミニウム酸化物が占める連続する距離の平均値が0.08μm以下であり、且つ、前記微細なアルミニウム酸化物が占める連続する距離の標準偏差が0.1μm以下である焼結体。
  2.  前記第1領域における任意の直線上において、前記微細なアルミニウム酸化物が占める連続する距離の平均値が0.01μm以上0.05μm以下であり、且つ、前記微細なアルミニウム酸化物が占める連続する距離の標準偏差が0.01μm以上0.05μm以下である請求項1に記載の焼結体。
  3.  前記第1領域は、前記微細なアルミニウム酸化物が前記第2材料中に15体積%以上40体積%以下分散してなる請求項1または請求項2に記載の焼結体。
  4.  前記第1材料は、20体積%以上80体積%以下含まれている請求項1~請求項3のいずれか1項に記載の焼結体。
  5.  前記第1材料は、30体積%以上60体積%以下含まれている請求項1~請求項4のいずれか1項に記載の焼結体。
  6.  第4材料をさらに有し、
     前記第4材料は、酸化マグネシウム、酸化セリウム、酸化イットリウム、および、酸化ハフニウムからなる群より選ばれる少なくとも1種である請求項1~請求項5のいずれか1項に記載の焼結体。
  7.  第5材料をさらに有し、
     前記第5材料は、周期表の4族元素、5族元素、6族元素、Al、および、Siからなる群より選ばれる少なくとも1種の元素と、炭素、窒素、および、硼素からなる群より選ばれる少なくとも1種の元素とからなる少なくとも1種の化合物である請求項1~請求項6のいずれか1項に記載の焼結体。
  8.  請求項1~請求項7のいずれか1項に記載の焼結体を含む切削工具。
PCT/JP2016/055376 2015-05-29 2016-02-24 焼結体および切削工具 WO2016194416A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2017521711A JP6652560B2 (ja) 2015-05-29 2016-02-24 焼結体および切削工具
EP16802855.3A EP3156384B1 (en) 2015-05-29 2016-02-24 Sintered body and cutting tool
CN201680002181.9A CN106795061B (zh) 2015-05-29 2016-02-24 烧结体及切削工具
US15/327,214 US9988314B2 (en) 2015-05-29 2016-02-24 Sintered compact and cutting tool
CA2955292A CA2955292A1 (en) 2015-05-29 2016-02-24 Sintered compact and cutting tool
KR1020177002843A KR20180015602A (ko) 2015-05-29 2016-02-24 소결체 및 절삭 공구
MX2017000970A MX2017000970A (es) 2015-05-29 2016-02-24 Cuerpo sinterizado y herramienta de corte.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-110671 2015-05-29
JP2015110671 2015-05-29

Publications (2)

Publication Number Publication Date
WO2016194416A1 true WO2016194416A1 (ja) 2016-12-08
WO2016194416A9 WO2016194416A9 (ja) 2017-02-02

Family

ID=57441144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055376 WO2016194416A1 (ja) 2015-05-29 2016-02-24 焼結体および切削工具

Country Status (8)

Country Link
US (1) US9988314B2 (ja)
EP (1) EP3156384B1 (ja)
JP (1) JP6652560B2 (ja)
KR (1) KR20180015602A (ja)
CN (1) CN106795061B (ja)
CA (1) CA2955292A1 (ja)
MX (1) MX2017000970A (ja)
WO (1) WO2016194416A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216270A1 (ja) * 2017-05-26 2018-11-29 住友電気工業株式会社 焼結体およびその製造方法
JP2020514235A (ja) * 2017-03-15 2020-05-21 エレメント シックス (ユーケイ) リミテッド 焼結多結晶立方晶窒化ホウ素材料
WO2023170787A1 (ja) * 2022-03-08 2023-09-14 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106687426A (zh) * 2015-04-20 2017-05-17 住友电气工业株式会社 烧结体和包含该烧结体的切削工具
CN106715360B (zh) * 2015-05-29 2020-02-11 住友电工硬质合金株式会社 烧结体和切削工具
CN106795061B (zh) 2015-05-29 2020-01-21 住友电工硬质合金株式会社 烧结体及切削工具
US10532951B2 (en) * 2016-05-27 2020-01-14 Sumitomo Electric Industries, Ltd. Sintered material and cutting tool including same
EP3527545A4 (en) * 2016-10-17 2020-06-10 Sumitomo Electric Industries, Ltd. SINTERED BODY AND CUTTING TOOL USING THE SAME
KR20210019443A (ko) * 2018-06-18 2021-02-22 스미토모덴키고교가부시키가이샤 소결체 및 알루미나 고용 부분 안정화 지르코니아
GB201913252D0 (en) * 2019-09-13 2019-10-30 Element Six Uk Ltd Sintered polycrystalline cubic boron nitride material
GB202001174D0 (en) * 2020-01-28 2020-03-11 Element Six Uk Ltd Polycrystalline cubic boron nitride material
CN113321504A (zh) * 2021-07-06 2021-08-31 中国有色桂林矿产地质研究院有限公司 一种氧化锆增韧氧化铝陶瓷材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465073A (en) * 1987-09-04 1989-03-10 Ishikawajima Harima Heavy Ind Ceramic material for constructing sliding part working at high temperature
WO2012029440A1 (ja) * 2010-09-01 2012-03-08 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体工具
WO2012057184A1 (ja) * 2010-10-27 2012-05-03 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体及び立方晶窒化硼素焼結体工具
JP2013039668A (ja) * 2007-01-15 2013-02-28 Sumitomo Electric Hardmetal Corp cBN焼結体及びcBN焼結体工具

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101600670A (zh) * 2007-02-02 2009-12-09 住友电工硬质合金株式会社 金刚石烧结体
EP2168702B1 (en) * 2008-03-26 2014-09-03 Kyocera Corporation Cutting tool
CN102143814B (zh) * 2008-09-26 2013-10-16 京瓷株式会社 金属陶瓷烧结体和切削工具
US20100210444A1 (en) * 2009-02-19 2010-08-19 Rhoads Randy L Large refractory article and method for making
IN2012DN03421A (ja) 2009-11-11 2015-10-23 Tungaloy Corp
KR20120110129A (ko) 2009-12-28 2012-10-09 파나소닉 주식회사 지르코니아-알루미나 복합 세라믹 재료의 제조 방법, 지르코니아-알루미나 복합 과립화 분말, 및 지르코니아 비즈
WO2012057183A1 (ja) 2010-10-27 2012-05-03 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体及び立方晶窒化硼素焼結体工具
TW201226209A (en) * 2010-12-28 2012-07-01 Ultrapack Energy Co Ltd Heat dissipation substrate and manufacturing method thereof
JP5930317B2 (ja) 2011-05-12 2016-06-08 学校法人同志社 高強度強靱性ZrO2‐Al2O3系固溶体セラミックスの作製法
KR102020688B1 (ko) 2011-06-21 2019-09-10 다이아몬드 이노베이션즈, 인크. 세라믹과 저체적의 입방정계 질화 붕소로 형성된 복합 콤팩트 및 제조 방법
JP6052735B2 (ja) 2013-03-28 2016-12-27 学校法人同志社 高強度強靱性ZrO2−Al2O3系固溶体セラミックスの作製法
CN106687426A (zh) 2015-04-20 2017-05-17 住友电气工业株式会社 烧结体和包含该烧结体的切削工具
CN106715360B (zh) * 2015-05-29 2020-02-11 住友电工硬质合金株式会社 烧结体和切削工具
CN106795061B (zh) 2015-05-29 2020-01-21 住友电工硬质合金株式会社 烧结体及切削工具

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465073A (en) * 1987-09-04 1989-03-10 Ishikawajima Harima Heavy Ind Ceramic material for constructing sliding part working at high temperature
JP2013039668A (ja) * 2007-01-15 2013-02-28 Sumitomo Electric Hardmetal Corp cBN焼結体及びcBN焼結体工具
WO2012029440A1 (ja) * 2010-09-01 2012-03-08 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体工具
WO2012057184A1 (ja) * 2010-10-27 2012-05-03 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体及び立方晶窒化硼素焼結体工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3156384A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020514235A (ja) * 2017-03-15 2020-05-21 エレメント シックス (ユーケイ) リミテッド 焼結多結晶立方晶窒化ホウ素材料
JP7053653B2 (ja) 2017-03-15 2022-04-12 エレメント シックス (ユーケイ) リミテッド 焼結多結晶立方晶窒化ホウ素材料
WO2018216270A1 (ja) * 2017-05-26 2018-11-29 住友電気工業株式会社 焼結体およびその製造方法
CN110662729A (zh) * 2017-05-26 2020-01-07 住友电气工业株式会社 烧结体及其制造方法
JPWO2018216270A1 (ja) * 2017-05-26 2020-05-21 住友電気工業株式会社 焼結体およびその製造方法
EP3632878A4 (en) * 2017-05-26 2021-02-24 Sumitomo Electric Industries, Ltd. Sintered body and its production process
US11192826B2 (en) 2017-05-26 2021-12-07 Sumitomo Electric Industries, Ltd. Sintered material and method of producing same
JP7167914B2 (ja) 2017-05-26 2022-11-09 住友電気工業株式会社 焼結体およびその製造方法
JP7452589B2 (ja) 2017-05-26 2024-03-19 住友電気工業株式会社 焼結体
WO2023170787A1 (ja) * 2022-03-08 2023-09-14 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体
JP7346751B1 (ja) 2022-03-08 2023-09-19 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体
US11958782B2 (en) 2022-03-08 2024-04-16 Sumitomo Electric Hardmetal Corp. Cubic boron nitride sintered material

Also Published As

Publication number Publication date
KR20180015602A (ko) 2018-02-13
CN106795061B (zh) 2020-01-21
JPWO2016194416A1 (ja) 2018-04-19
US9988314B2 (en) 2018-06-05
JP6652560B2 (ja) 2020-02-26
EP3156384A4 (en) 2017-08-09
US20170197886A1 (en) 2017-07-13
WO2016194416A9 (ja) 2017-02-02
EP3156384A1 (en) 2017-04-19
CA2955292A1 (en) 2016-12-08
CN106795061A (zh) 2017-05-31
MX2017000970A (es) 2017-05-01
EP3156384B1 (en) 2018-10-03

Similar Documents

Publication Publication Date Title
JP6652560B2 (ja) 焼結体および切削工具
JP6619794B2 (ja) 焼結体および切削工具
JP6755239B2 (ja) 焼結体およびそれを含む切削工具
CN109906212B (zh) 烧结体以及包含该烧结体的切削工具
JP7452589B2 (ja) 焼結体
WO2019244414A1 (ja) 焼結体およびそれを含む切削工具
JP2018199597A (ja) 焼結体の製造方法および立方晶窒化ホウ素粒子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017521711

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2955292

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2016802855

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016802855

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802855

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15327214

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/000970

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20177002843

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE