WO2012057183A1 - 立方晶窒化硼素焼結体及び立方晶窒化硼素焼結体工具 - Google Patents

立方晶窒化硼素焼結体及び立方晶窒化硼素焼結体工具 Download PDF

Info

Publication number
WO2012057183A1
WO2012057183A1 PCT/JP2011/074627 JP2011074627W WO2012057183A1 WO 2012057183 A1 WO2012057183 A1 WO 2012057183A1 JP 2011074627 W JP2011074627 W JP 2011074627W WO 2012057183 A1 WO2012057183 A1 WO 2012057183A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
volume
zro
cbn
less
Prior art date
Application number
PCT/JP2011/074627
Other languages
English (en)
French (fr)
Inventor
克己 岡村
真知子 阿部
久木野 暁
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Publication of WO2012057183A1 publication Critical patent/WO2012057183A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3856Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry

Definitions

  • the present invention relates to a cubic boron nitride sintered body (cBN sintered body) excellent in wear resistance and fracture resistance, and a sintered body tool using the same.
  • the present invention relates to a cubic boron nitride sintered body having excellent wear resistance and fracture resistance as a centrifugal cast iron cutting tool.
  • Centrifugal cast iron has a problem that the machinability is poor and the tool life for cutting centrifugal cast iron is remarkably short as compared with cast iron using a normal sand mold.
  • Centrifugal cast iron has a fine and dense A-type structure found in conventional sand cast iron, so that the wear of the cutting tool greatly proceeds due to thermal reaction with the work material. Machinability is significantly reduced.
  • a cBN sintered body added with Al 2 O 3 having excellent oxidation resistance and chemical stability is effective as a cutting tool.
  • the cBN sintered body to which Al 2 O 3 is added has low toughness and sinterability.
  • Patent Literature 1 and Patent Literature 2 disclose a cBN sintered body in which fracture resistance is improved by adding ZrO 2 to Al 2 O 3 .
  • Patent Document 1 in a cBN sintered body containing Al 2 O 3 , TiC or TiCN, and ZrO 2 , the cBN component is 50% by volume to 80% by volume, and TiC is 1% by volume to 20% by volume. and below or TiCN less than 15 vol% 0.5 vol%, Al 2 O 3 and ZrO 2 to which contained 50 vol% or less than 15 vol%, and the weight ratio of ZrO 2 / Al 2 O 3 is 0
  • a cBN sintered body formed using a raw material having a composition of 1 or more and 4 or less is disclosed.
  • the weight ratio defined by ZrO 2 / Al 2 O 3 is converted into a volume content ratio, 0.065 ⁇ ZrO 2 / Al 2 O 3 ⁇ 2.62 is established.
  • Patent Document 2 discloses that 40 to 70% by volume of cBN particles, 15 to 45% by volume of titanium nitride as a main component of the binder phase, Al 2 O 3 , ZrO 2 as subcomponents of the binder phase, It has a composition comprising 15 to 35 volume% of mixed powder of AlN and SiC needle crystals, and the composition of the secondary component of the binder phase is 50 to 65 volume% of Al 2 O 3 and 1 to 5 volume of ZrO 2.
  • a sintered body material having a ratio of AlN 20 to 40% by volume and SiC needle crystal 5 to 15% by volume is disclosed.
  • the present invention provides cBN sintering that is excellent in wear resistance and fracture resistance even in the processing of difficult-to-cut centrifugal cast iron having a rose-like structure and a dendrite structure. And a cBN sintered body tool.
  • the volume ratio of ZrO 2 and Al 2 O 3 of the cBN sintered body and the numerical value of I tetragonal ZrO 2 (101) / I ⁇ Al 2 O 3 (110) are within the specified values, and Xr is 0.1 vol% or more of ZrC. It has been found that by containing 3.0% by volume or less, both wear resistance and fracture resistance can be remarkably improved, and the present invention has been achieved. That is, the present invention is as follows.
  • nitrides, carbides, carbonitrides, borides, at least a kind (hereinafter referred to as X) is selected from the group consisting of boronitride compound and a solid solution thereof, and a ZrO 2, the sum of X and ZrO 2 in but not more than 6.0 vol% 1.0 vol% or more with respect to the entire sintered body, ZrO 2 and Al 2 O 3 volume ratio ZrO 2 / Al 2 O 3 is less than 0.010 or more 0.100 It is a certain cBN sintered body, and among the X-ray diffraction peaks of the cBN sintered body, the intensity of the (101) plane of tetragonal ZrO 2 is the same as that of I tetragonal ZrO 2 (101)
  • I tetragonal crystal ZrO2 (101) / I ⁇ Al2O3 (110) is 0.1 or more and 3 or less, and as X, at least ZrC is contained in an amount of 0.1 vol% or more and 3.0 vol% or less with respect to the entire sintered body.
  • a cBN sintered body tool having the cBN sintered body according to (1) or (2) at least in a portion serving as a cutting edge.
  • the wear resistance useful as a cutting tool used for processing difficult-to-cut materials such as centrifugal cast cast iron having a rose-like structure and a dendrite structure exists.
  • a cBN sintered body having excellent fracture resistance can be obtained.
  • cBN is 20 volume% or more and 65 volume% or less with respect to the entire sintered body
  • Al 2 O 3 is 34 volume% or more and 80 volume with respect to the entire sintered body as a binder.
  • % At least one selected from the group consisting of nitrides, carbides, carbonitrides, borides, boronitrides and their solid solutions of Zr (hereinafter referred to as X), and ZrO 2 , the total X and ZrO 2 is not more than 6.0 vol% 1.0 vol% or more with respect to the entire sintered body, ZrO 2 and Al 2 O 3 volume ratio ZrO 2 / Al 2 O 3 is 0.010
  • the cBN sintered body is less than 0.100, and the intensity of the (101) plane of tetragonal ZrO 2 is I tetragonal ZrO 2 (101), ⁇ Al 2 among the X-ray diffraction peaks of the cBN sintered body.
  • the strength of the (110) plane of O 3 is I ⁇ Al2O3 (110)
  • I tetragonal ZrO2 (101) / I ⁇ Al2O3 (110) is 0.1 or more and 3 or less, and at least ZrC as X is 1.0 volume% or more and 6.0 volume with respect to the entire sintered body.
  • % CBN sintered body characterized in that it is contained at most.
  • content in the sintered compact of cBN is 20 volume% or more and 65 volume% or less with respect to the whole sintered compact, Preferably it is 40 volume% or more and 50 volume% or less.
  • the cBN component is less than 20% by volume, in the cutting of difficult-to-cut centrifugal cast iron, the strength is insufficient, the fracture resistance is lowered, and the cutting edge is chipped.
  • it exceeds 65% by volume the content of Al 2 O 3 is relatively lowered, so that the heat resistance is lowered, and it becomes easy to react with the heat generated during the cutting process, and the wear tends to proceed.
  • the composition of each component with respect to the entire sintered body can be measured, for example, as follows, but is the same as the composition of the raw material used and does not change.
  • the composition of each component of the sintered body first, the cBN sintered body was mirror-polished, and a structure in an arbitrary region was photographed as a reflected electron image of a scanning electron microscope at a magnification of 10,000 times.
  • the contrast of the three gradations corresponding to the composition is observed, and at the same time, the portion observed the blackest in the analysis by EDX (energy dispersive X-ray analyzer) measuring the same field of view is the cBN particle
  • the portion observed in the middle color tone was found to be Al 2 O 3 particles, and the brightest portion observed was a Zr compound (oxide, carbide, nitride, boride, boronitride).
  • the volume content of each component was determined.
  • the composition of the Zr compound was quantified by chemical analysis such as plasma emission spectroscopy (ICP) or gas analysis.
  • the cBN sintered body of the present invention contains Al 2 O 3 in an amount of 34% by volume to less than 80% by volume, preferably 50% by volume to 60% by volume, based on the entire sintered body.
  • Al 2 O 3 content is less than 34% by volume, the wear resistance is lowered, and when it is 80% by volume or more, the fracture resistance is lowered.
  • Al 2 O 3 it is possible to prevent the progress of wear due to the reaction between the cast iron and the blade edge component by utilizing the properties of oxidation resistance and chemical stability of Al 2 O 3 .
  • voids are easily generated on the surface of cBN, sinterability is reduced, and fracture resistance is reduced.
  • Al 2 O 3 has high heat resistance, but lacks toughness, so that Al 2 O 3 alone tends to cause chipping at the cutting edge.
  • At least one selected from the group consisting of Zr nitrides, carbides, carbonitrides, borides, boronitrides and their solid solutions (hereinafter referred to as X) and ZrO 2 are combined in the cBN sintered body. in contained less 6.0 vol% 1.0 vol% or more with respect to the entire sintered body, ZrO 2 and Al 2 O 3 volume ratio ZrO 2 / Al 2 O 3 is less than 0.010 or more 0.100 is there.
  • the total content of X and ZrO 2 is 1.0% by volume or more and 6.0% by volume or less, the fracture resistance is improved.
  • the total of X and ZrO 2 is more preferably more than 2.5% by volume and not more than 4.0% by volume, and the wear resistance is further improved.
  • the wear resistance and fracture resistance can be improved. If the ZrO 2 / Al 2 O 3 is less than 0.010, the effect of improving the toughness of Al 2 O 3 by ZrO 2 cannot be obtained, and the fracture resistance is lowered, and if it is 0.100 or more, the wear resistance is lowered.
  • the volume ratio ZrO 2 / Al 2 O 3 between ZrO 2 and Al 2 O 3 is more preferably 0.02 or more and less than 0.06.
  • the intensity of the (101) plane of tetragonal ZrO 2 is expressed as I tetragonal ZrO 2 (101 ),
  • I tetragonal ZrO2 (101) / I ⁇ Al2O3 (110) is 0.1 or more and 3 or less. Since the caking property is increased and a dense sintered body is obtained, not only the chipping resistance and wear resistance are excellent, but also the yield rate of the sintered body is greatly improved, which helps to reduce the cost.
  • I tetragonal ZrO2 (101) / I ⁇ Al2O3 (110) is less than 0.1, the effect of improving the sinterability cannot be obtained, and when it exceeds 3, the wear resistance is lowered.
  • I tetragonal ZrO2 (101) / I ⁇ Al2O3 (110) is more preferably 0.2 or more and 0.5 or less.
  • the peak intensity of tetragonal ZrO 2 (101) can be selectively increased by containing ZrC as X in an amount of 0.1% by volume or more and 3.0% by volume or less with respect to the entire sintered body. Even if the content of Al 2 O 3 is relatively increased by ZrC, I tetragonal ZrO 2 (101) / I ⁇ Al 2 O 3 (110) can achieve 0.2 or more and 0.5 or less, and the sinterability is improved. Improve fracture resistance and productivity.
  • the sintered body of the present invention is obtained by sintering the above sintered body raw material.
  • Al 2 O 3 , ZrO 2 and X are pulverized and mixed in advance to produce a binder.
  • the cBN sintered body of the present invention can be produced by sintering the mixed powder obtained by uniformly mixing the cBN particles and the binder under ultra high pressure conditions (5.5 to 7 GPa, 1300 to 1800 ° C.).
  • the volume average particle diameter of Al 2 O 3 used as the binder is preferably 1 ⁇ m or less, and more preferably 50 to 500 nm.
  • the volume average particle size of X and ZrO 2 used as the binder is preferably 1 ⁇ m or less, and more preferably 10 to 100 nm.
  • the cBN sintered body tool of the present invention includes a cBN sintered body tool having a cBN sintered body at least at a portion to be a cutting edge of a cemented carbide base material, or a cBN sintered body constituted only by a cBN sintered body.
  • Examples include body tools. These can be produced according to a known method. Further, a hard ceramic coating layer may be provided on the surface of the cBN sintered body.
  • Example 1 Al 2 O 3 having a volume average particle diameter of 1 ⁇ m or less, ZrO 2 having a volume average particle diameter of 0.5 ⁇ m or less, and a Zr-based compound having a volume average particle diameter of 1 ⁇ m or less are used in the composition shown in Table 1, and ⁇ 0.6 mm in advance.
  • the above compound was mixed and pulverized for 150 minutes in a solvent of ethanol at a flow rate of 0.6 L / min with a ZrO 2 ball media, and the media was removed, so that the ultrafine Zr compound was dissolved in Al 2 O 3 .
  • a specially dispersed specially dispersed material was produced.
  • the volume average particle diameter of Al 2 O 3 after mixing and pulverization was 250 nm, and the volume average particle diameters of X and ZrO 2 were 50 nm.
  • a mixed powder obtained by uniformly mixing cBN particles (volume average particle diameter 2 ⁇ m) having the composition shown in Table 1 and the above-mentioned binder with a ZrO 2 ball media having a diameter of 3 mm by a ball mill mixing method is laminated on a cemented carbide support plate, and Mo After filling the capsules made, it was sintered for 30 minutes at a pressure of 6.5 GPa and a temperature of 1700 ° C. by an ultra-high pressure device to prepare a sintered body.
  • the compound was identified by X-ray diffraction measurement, and I tetragonal ZrO2 (101) / I ⁇ Al2O3 (110) was determined.
  • Examples 2 to 10 Comparative Examples 1 to 7
  • a cBN sintered body was produced in the same manner as in Example 1 except that the composition of the sintered body raw material and the compound were changed to those shown in Table 1.
  • Example 3 in which the cBN content is in the range of 40% by volume or more and 50% by volume or less has the smallest amount of wear and good results are obtained.
  • the same value is in the range of 2.5 to 4.0% by volume
  • ZrO 2 / Al 2 O 3 is in the range of 0.02 to 0.06
  • Example 3 in which / I ⁇ Al2O3 (110) is in the range of 0.2 to 0.5 has the smallest amount of wear, and the best result is obtained without occurrence of chipping or chipping.
  • the cBN sintered body of the present invention is excellent in wear resistance and fracture resistance, and is difficult to cut such as centrifugal cast cast iron having a rose-like structure and a dendrite structure in addition to a fine and dense A-type structure. It is useful as a cutting tool used for machining a cutting material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Ceramic Products (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

 本発明は、難削性の遠心鋳造鋳鉄の加工においても、耐摩耗性、及び耐欠損性に優れるcBN焼結体及びcBN焼結体工具を提供することを目的とする。 本発明のcBN焼結体は、cBNを20体積%以上65体積%以下と、結合材として、Alを34体積%以上80体積%未満と、Zrの窒化物、炭化物、炭窒化物、硼化物、硼窒化物及びこれらの固溶体から選択される少なくとも一種(以下X)と、ZrOとを含み、XとZrOの合計が1.0体積%以上6.0体積%以下、ZrOとAlの体積比率ZrO/Alが0.010以上0.100未満であり、該cBN焼結体のX線回折ピークの正方晶ZrOの(101)面の強度I正方晶ZrO2(101)と、αAlの(110)面の強度IαAl2O3(110)の比が0.1以上3以下で、前記Xとして少なくともZrCを0.1体積%以上3.0体積%以下含む。

Description

立方晶窒化硼素焼結体及び立方晶窒化硼素焼結体工具
 本発明は、耐摩耗性、及び耐欠損性に優れる立方晶窒化硼素焼結体(cBN焼結体)及びそれを用いた焼結体工具に関する。特に遠心鋳造鋳鉄切削工具として耐摩耗性、及び耐欠損性に優れた立方晶窒化硼素焼結体に関する。
 近年、エンジンの軽量化のために、シリンダブロックの材質が鋳鉄からアルミに代わる傾向にあり、ブロックのシリンダーライナーとして遠心鋳造法により製造された鋳鉄の採用が増加している。
 遠心鋳造鋳鉄は、通常の砂型を用いた鋳鉄に比べて、被削性が悪く、遠心鋳造鋳鉄を切削する工具寿命が著しく短い問題があった。
 遠心鋳造鋳鉄は、従来の砂型鋳造鋳鉄にも見られるA型組織が微細かつ密に存在することにより、被削材との熱的な反応により切削工具の摩耗が大きく進行し、遠心鋳造鋳鉄の被削性が著しく低下する。
 このような難削性の遠心鋳造鋳鉄加工に対応する為に、切削工具としては、耐酸化性、化学的安定性に優れるAlを添加したcBN焼結体が効果的であることが知られている。しかし、Alを添加したcBN焼結体は、靭性、及び焼結性が低くなる。その問題を解決するものとして、AlにZrOを添加することにより耐欠損性を向上させたcBN焼結体が特許文献1や特許文献2に開示されている。
 例えば、特許文献1ではAlと、TiC又はTiCNと、ZrOを含むcBN焼結体において、cBN成分が50体積%以上80体積%以下であり、TiCを1体積%以上20体積%以下又はTiCNを0.5体積%以上15体積%以下と、Al及びZrOを15体積%以上50体積%以下含有しており、かつZrO/Alの重量比が0.1以上4以下となる組成である原料を用いて形成されたcBN焼結体が開示されている。ZrO/Alで規定されている重量比を体積含有率比に変換すると、0.065≦ZrO/Al≦2.62となる。
 また、特許文献2には、cBNの粉粒40~70体積%と、結合相の主成分となる窒化チタン15~45体積%と、結合相の副成分となるAl、ZrO、AlN及びSiCの針状結晶の混合粉粒15~35体積%とからなる組成を有し、且つ上記結合相の副成分の組成がAl50~65体積%、ZrO1~5体積%、AlN20~40体積%、及びSiCの針状結晶5~15体積%の比率となっている焼結体材料が開示されている。
 遠心鋳造法では、回転させた円柱の型に溶融鋳鉄を流し込むことにより、薄いスリーブを製造できるメリットがあるが、型との接触部や最内径部は急冷されるため、鋳鉄組織が微細化し、デンドライト組織やバラ状組織といった異常組織が生成される。デンドライト組織やバラ状組織といった異常組織は非常に被削性が悪い。ごく最近の遠心鋳造鋳鉄製スリーブでは、シリンダボア間の距離を短くするために、より薄肉化が進み、従来の遠心鋳造鋳鉄の切削領域であった微細かつ密なA型組織に加えて、従来の遠心鋳造鋳鉄では切削する領域では無かったバラ状組織やデンドライト組織が存在する領域を切削する必要が生じている。バラ状組織やデンドライト組織が存在する領域を切削するのは、従来の遠心鋳造鋳鉄に比べてより熱的に過酷な状況下での加工となる為、被削性が著しく低下することが問題である。
 上記の特許文献に記載されている焼結体でこのような遠心鋳造鋳鉄を加工すると、熱伝導率がAlと比較して著しく低いZrOを多く含むことにより焼結体の熱伝導率が低下し、加工中の被削材との反応が大きく進行することにより、耐摩耗性が著しく低下する。
国際公開第2008/087940号 特許第2971203号公報
 本発明は、上記微細かつ密なA型組織に加えて、バラ状組織やデンドライト組織が存在する難削性の遠心鋳造鋳鉄の加工においても、耐摩耗性、及び耐欠損性に優れるcBN焼結体及びcBN焼結体工具を提供することを目的とする。
 本発明者ら鋭意検討を行った結果、cBN焼結体において、結合材として、Alと、ZrOとともに、Zrの窒化物、炭化物、炭窒化物、硼化物、硼窒化物及びこれらの固溶体からなる群の中から選択される少なくとも一種(以下Xとする)を添加することにより、ZrOのX線の回折強度が変化することを発見し、I正方晶ZrO2(101)/IαAl2O3(110)と切削性能及び焼結性に相関があることを見出した。また、cBN焼結体のZrOとAlの体積比率と、I正方晶ZrO2(101)/IαAl2O3(110)の数値を規定値内にし、XとしてZrCを0.1体積%以上3.0体積%以下含有することにより、耐摩耗性と耐欠損性の双方を格段に向上させることができることを見出し本発明に至った。
 即ち、本発明は以下のとおりである。
(1)cBNを焼結体全体に対して20体積%以上65体積%以下と、結合材として、Alを焼結体全体に対して34体積%以上80体積%未満と、Zrの窒化物、炭化物、炭窒化物、硼化物、硼窒化物及びこれらの固溶体からなる群の中から選択される少なくとも一種(以下Xとする)と、ZrOとを含み、XとZrOの合計が焼結体全体に対して1.0体積%以上6.0体積%以下であり、ZrOとAlの体積比率ZrO/Alが0.010以上0.100未満であるcBN焼結体であって、該cBN焼結体のX線回折ピークのうち、正方晶ZrOの(101)面の強度をI正方晶ZrO2(101)、αAlの(110)面の強度をIαAl2O3(110)としたときに、I正方晶ZrO2(101)/IαAl2O3(110)が0.1以上3以下であり、前記Xとして少なくともZrCを焼結体全体に対して0.1体積%以上3.0体積%以下含むことを特徴とするcBN焼結体。
(2)前記のI正方晶ZrO2(101)/IαAl2O3(110)が0.2以上0.5以下であることを特徴とする前記(1)に記載のcBN焼結体。
(3)少なくとも刃先となる部分に前記(1)又は(2)に記載のcBN焼結体を有することを特徴とするcBN焼結体工具。
 本発明によると、微細かつ密なA型組織に加えて、バラ状組織やデンドライト組織が存在する遠心鋳造鋳鉄等の難削な被削材の加工に用いる切削工具として有用な、耐摩耗性と耐欠損性に優れたcBN焼結体を得ることができる。
 本発明のcBN焼結体は、cBNを焼結体全体に対して20体積%以上65体積%以下と、結合材として、Alを焼結体全体に対して34体積%以上80体積%未満と、Zrの窒化物、炭化物、炭窒化物、硼化物、硼窒化物及びこれらの固溶体からなる群の中から選択される少なくとも一種(以下Xとする)と、ZrOとを含み、XとZrOの合計が焼結体全体に対して1.0体積%以上6.0体積%以下であり、ZrOとAlの体積比率ZrO/Alが0.010以上0.100未満であるcBN焼結体であって、該cBN焼結体のX線回折ピークのうち、正方晶ZrOの(101)面の強度をI正方晶ZrO2(101)、αAlの(110)面の強度をIαAl2O3(110)としたときに、I正方晶ZrO2(101)/IαAl2O3(110)が0.1以上3以下であり、前記Xとして少なくともZrCを焼結体全体に対して1.0体積%以上6.0体積%以下含むことを特徴とするcBN焼結体である。
 ここで、cBNの焼結体中における含有量は焼結体全体に対して20体積%以上65体積%以下であり、好ましくは40体積%以上50体積%以下である。cBN成分が20体積%未満では、難削な遠心鋳造鋳鉄の切削加工において、強度が足りず、耐欠損性が低下し、刃先に欠けが生じてしまう。また、65体積%を超えると、相対的にAlの含有量が低下するため耐熱性が低下し、切削加工の際に生じる熱によって反応しやすくなり、摩耗が進行しやすくなる。
 尚、本発明におけて焼結体全体に対する各成分の組成は、例えば以下のようにして測定することができるが、用いた原料の組成と同じであり、変化しない。
 焼結体の各成分の組成は、まず、cBN焼結体を鏡面研磨して、任意の領域の組織を走査型電子顕微鏡の反射電子像として倍率10000倍で写真撮影した。撮影した写真には、組成に対応した3階調の濃淡のコントラストが観察され、同時に同一視野を測定したEDX(エネルギー分散型X線分析装置)による解析で、最も黒く観察された部分はcBN粒子、中間の色調に観察された部分はAl粒子、最も明るく観察された部分はZr化合物(酸化物、炭化物、窒化物、硼化物、硼窒化物)であることが判明した。この反射電子像を画像解析することで、それぞれの成分の体積含有率を求めた。
 また、Zr化合物の組成は、プラズマ発光分光分析(ICP)やガス分析等の化学分析により定量を行った。
 次に結合材について説明する。
 本発明のcBN焼結体は、Alを焼結体全体に対して34体積%以上80体積%未満含有し、好ましくは、50体積%以上60体積%以下含有する。Al含有率が34体積%未満では耐摩耗性が低下し、80体積%以上では耐欠損性が低下する。
 Alを含有させることにより、Alの耐酸化性、化学的安定性の性質を利用して、鋳鉄と刃先成分の反応による摩耗の進行を防ぐことができる。しかし、Alを多く含む系ではcBNの表面に空孔が生じやすく、焼結性が低下し、耐欠損性が低下する。
 また、Alの耐熱性は高いが、靭性に欠ける為、Alだけでは刃先にチッピングが発生しやすくなる。cBNと反応しやすい上に結合材中の熱伝導率が著しく向上するZrの窒化物、炭化物、炭窒化物、硼化物、硼窒化物及びこれらの固溶体からなる群の中から選択される少なくとも一種(以下Xとする)と、Alの靭性を向上させる効果のあるZrOを配合することにより、耐欠損性と耐摩耗性の両特性を大幅に高めることができる。
 Zrの窒化物、炭化物、炭窒化物、硼化物、硼窒化物及びこれらの固溶体からなる群の中から選択される少なくとも一種(以下Xとする)とZrOは、cBN焼結体中に合計で焼結体全体に対して1.0体積%以上6.0体積%以下含有され、ZrOとAlの体積比率ZrO/Alは0.010以上0.100未満である。
 XとZrOを合計1.0体積%以上6.0体積%以下含有することにより耐欠損性が向上する。XとZrOの合計が2.5体積%を超え4.0体積%以下であることがより好ましく、更に耐摩耗性が向上する。
 また、ZrOとAlの体積比率ZrO/Alを0.010以上0.100未満とすることにより耐摩耗性と耐欠損性を向上させることができる。前記ZrO/Alが0.010未満ではZrOによるAlの靭性向上効果が得られなく耐欠損性が低下し、0.100以上では耐摩耗性が低下する。ZrOとAlの体積比率ZrO/Alは0.02以上0.06未満がより好ましい。
 また、前記cBN焼結体のX線回折装置(X線管球にCuを使用)で測定したX線回折ピークのうち、正方晶ZrOの(101)面の強度をI正方晶ZrO2(101)、αAlの(110)面の強度をIαAl2O3(110)としたときに、I正方晶ZrO2(101)/IαAl2O3(110)が0.1以上3以下であることによって、焼結性が高まり、緻密な焼結体が得られるため、耐欠損性と耐摩耗性に優れるばかりか、焼結体の良品率が大幅に向上し、コストの低減に役立つ。I正方晶ZrO2(101)/IαAl2O3(110)が0.1未満の場合、焼結性を高める効果が得られず、3を越える場合は耐摩耗性が低下する。I正方晶ZrO2(101)/IαAl2O3(110)は0.2以上0.5以下がより好ましい。
 特に、XとしてZrCを焼結体全体に対して0.1体積%以上3.0体積%以下含むことにより、正方晶ZrO(101)のピーク強度を選択的に高めることができ、微量のZrCにより、Alの含有率を相対的に高めても、I正方晶ZrO2(101)/IαAl2O3(110)は0.2以上0.5以下を達成でき、焼結性が向上し、耐欠損性と生産性が向上する。
 本発明の焼結体は、上記の焼結体原料を焼結することにより得られる。
 例えば、まずAlとZrOとXを事前に粉砕混合し、結合材を作製する。次に、cBN粒子と前記結合材を均一混合した混合粉末を超高圧条件(5.5~7GPa、1300~1800℃)で焼結することにより本発明のcBN焼結体を作製することができる。
 結合材として用いるAlの体積平均粒径は1μm以下であることが好ましく、50~500nmであることがより好ましい。また、結合材として用いるX及びZrOの体積平均粒径は1μm以下であることが好ましく、10~100nmであることがより好ましい。
 本発明のcBN焼結体工具としては、超硬合金製の基材の少なくとも刃先となる部分にcBN焼結体を有するcBN焼結体工具、又はcBN焼結体のみで構成されるcBN焼結体工具が挙げられる。これらは公知の方法に従って作製することができる。また、cBN焼結体表面に硬質セラミックス被覆層を有していても構わない。
 以下、実施例に基づいて本発明の実施の形態の一例を説明する。以下の実施例は例示であり、本発明を限定するものではない。
[実施例1]
 体積平均粒径1μm以下のAlと、体積平均粒径0.5μm以下のZrOと、体積平均粒径1μm以下のZr系化合物を表1に示す組成で用い、事前にφ0.6mmのZrO製ボールメディアで、流速0.6L/minのエタノールの溶媒中で150分間、上記化合物を混合微粉砕し、該メディアを取り除くことにより、超微粒のZr化合物がAl中に均一に分散した特殊結合材を作製した。上記、混合微粉砕後のAlの体積平均粒径は250nm、またX及びZrOの体積平均粒径は50nmであった。
 表1に示す組成のcBN粒子(体積平均粒径2μm)と上記結合材とをφ3mmのZrO製ボールメディアでボールミル混合法により均一混合した混合粉末を超硬合金製支持板に積層してMo製カプセルに充填後、超高圧装置によって、圧力6.5GPa、温度1700℃で30分間焼結し、焼結体を作製した。X線回折測定により、化合物を同定し、I正方晶ZrO2(101)/IαAl2O3(110)を求めた。
[実施例2~10、比較例1~7]
 焼結体原料の組成、化合物を表1に示すものに変えた以外は実施例1と同様にしてcBN焼結体を作製した。
[評価]
 得られた焼結体をISO規格SNGN090312の切削加工用チップに加工し、内径連続切削試験を行った。
 内径85mmの遠心鋳造鋳鉄スリーブを切削速度700m/min、切り込み0.3mm、送り量0.05mm/rev、湿式切削[クーラント:エマルジョン(製造元:日本フルードシステム、商品名:システムカット96)20倍希釈]で旋削し、1km加工後の逃げ面摩耗量と2km加工後の刃先状態(逃げ面摩耗、チッピングの有無)を調べた。
 結果を表1に示す。
 実施例のcBN焼結体は全て、正常な研磨面が得られたのに対して、ZrCが含まれない比較例1、2、5、6、7は、微小な焼結体の脱落が観察され、焼結が不十分である結果であった。
 実施例1~4を比較すると、cBN含有量が40体積%以上50体積%以下の範囲内である実施例3が最も摩耗量が小さく良好な結果が得られている。
 X+ZrOが1.0~6.0体積%の範囲内である実施例1~10は、同値が10.0体積%である比較例3と比較して大幅に摩耗量が小さく良好な結果が得られている。また、特に同値が2.5~4.0体積%の範囲内であって、ZrO/Alが0.02~0.06の範囲内であって、I正方晶ZrO2(101)/IαAl2O3(110)が0.2~0.5の範囲内である実施例3が最も摩耗量が小さく、欠損やチッピングも発生せずに最良の結果が得られている。
 ZrO/Alが0.125、I正方晶ZrO2(101)/IαAl2O3(110)が5.8である比較例4は、ZrO自体の耐摩耗性がAlより大幅に劣るため、実施例1~10に比べ大幅に摩耗量が大きく、2km時点では、恐らく大摩耗により切削抵抗が増大し欠損に至ったと推定される。
Figure JPOXMLDOC01-appb-T000001
 本発明のcBN焼結体は、耐摩耗性と耐欠損性に優れており、微細かつ密なA型組織に加えて、バラ状組織やデンドライト組織が存在する遠心鋳造鋳鉄等の難削な被削材の加工に用いる切削工具として有用である。

Claims (3)

  1.  cBNを焼結体全体に対して20体積%以上65体積%以下と、結合材として、Alを焼結体全体に対して34体積%以上80体積%未満と、Zrの窒化物、炭化物、炭窒化物、硼化物、硼窒化物及びこれらの固溶体からなる群の中から選択される少なくとも一種(以下Xとする)と、ZrOとを含み、XとZrOの合計が焼結体全体に対して1.0体積%以上6.0体積%以下であり、ZrOとAlの体積比率ZrO/Alが0.010以上0.100未満であるcBN焼結体であって、該cBN焼結体のX線回折ピークのうち、正方晶ZrOの(101)面の強度をI正方晶ZrO2(101)、αAlの(110)面の強度をIαAl2O3(110)としたときに、I正方晶ZrO2(101)/IαAl2O3(110)が0.1以上3以下であり、前記Xとして少なくともZrCを焼結体全体に対して0.1体積%以上3.0体積%以下含むことを特徴とするcBN焼結体。
  2.  前記のI正方晶ZrO2(101)/IαAl2O3(110)が0.2以上0.5以下であることを特徴とする請求項1に記載のcBN焼結体。
  3.  少なくとも刃先となる部分に請求項1又は2に記載のcBN焼結体を有することを特徴とするcBN焼結体工具。
PCT/JP2011/074627 2010-10-27 2011-10-26 立方晶窒化硼素焼結体及び立方晶窒化硼素焼結体工具 WO2012057183A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010240613 2010-10-27
JP2010-240613 2010-10-27

Publications (1)

Publication Number Publication Date
WO2012057183A1 true WO2012057183A1 (ja) 2012-05-03

Family

ID=45993889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074627 WO2012057183A1 (ja) 2010-10-27 2011-10-26 立方晶窒化硼素焼結体及び立方晶窒化硼素焼結体工具

Country Status (1)

Country Link
WO (1) WO2012057183A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012177467A1 (en) * 2011-06-21 2012-12-27 Diamond Innovations, Inc. Composite compacts formed of ceramics and low-volume cubic boron nitride and method of manufacture
WO2016068222A1 (ja) * 2014-10-29 2016-05-06 株式会社タンガロイ 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
WO2016171155A1 (ja) * 2015-04-20 2016-10-27 住友電気工業株式会社 焼結体およびそれを含む切削工具
FR3035346A1 (fr) * 2015-04-22 2016-10-28 Diamonde Outil de coupe pour l'usinage des materiaux abrasifs et notamment de materiaux a base de bois
WO2016194398A1 (ja) * 2015-05-29 2016-12-08 住友電工ハードメタル株式会社 焼結体および切削工具
WO2017098937A1 (ja) * 2015-12-07 2017-06-15 株式会社タンガロイ セラミックス焼結体
US9988314B2 (en) 2015-05-29 2018-06-05 Sumitomo Electric Hardmetal Corp. Sintered compact and cutting tool
US10532951B2 (en) 2016-05-27 2020-01-14 Sumitomo Electric Industries, Ltd. Sintered material and cutting tool including same
CN112313190A (zh) * 2018-06-18 2021-02-02 住友电气工业株式会社 烧结体以及包含该烧结体的切削工具
WO2023170787A1 (ja) * 2022-03-08 2023-09-14 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858247A (ja) * 1981-10-02 1983-04-06 Mitsubishi Metal Corp 切削および耐摩耗工具用高靭性窒化硼素基超高圧焼結材料
JPH0292868A (ja) * 1988-09-29 1990-04-03 Toshiba Tungaloy Co Ltd 高強度立方晶窒化ホウ素含有焼結体
WO2008087940A1 (ja) * 2007-01-15 2008-07-24 Sumitomo Electric Hardmetal Corp. cBN焼結体及びcBN焼結体工具
WO2011059020A1 (ja) * 2009-11-11 2011-05-19 株式会社タンガロイ 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体並びにそれらの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858247A (ja) * 1981-10-02 1983-04-06 Mitsubishi Metal Corp 切削および耐摩耗工具用高靭性窒化硼素基超高圧焼結材料
JPH0292868A (ja) * 1988-09-29 1990-04-03 Toshiba Tungaloy Co Ltd 高強度立方晶窒化ホウ素含有焼結体
WO2008087940A1 (ja) * 2007-01-15 2008-07-24 Sumitomo Electric Hardmetal Corp. cBN焼結体及びcBN焼結体工具
WO2011059020A1 (ja) * 2009-11-11 2011-05-19 株式会社タンガロイ 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体並びにそれらの製造方法

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012177467A1 (en) * 2011-06-21 2012-12-27 Diamond Innovations, Inc. Composite compacts formed of ceramics and low-volume cubic boron nitride and method of manufacture
US9181135B2 (en) 2011-06-21 2015-11-10 Diamond Innovations, Inc. Composite compacts formed of ceramics and low volume cubic boron nitride and method of manufacture
EP3597620A1 (en) * 2011-06-21 2020-01-22 Diamond Innovations, Inc. Method of making composite compacts formed of ceramics and low-volume cubic boron nitride
JP6048629B2 (ja) * 2014-10-29 2016-12-21 株式会社タンガロイ 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
WO2016068222A1 (ja) * 2014-10-29 2016-05-06 株式会社タンガロイ 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
US10532950B2 (en) 2014-10-29 2020-01-14 Tungaloy Corporation Cubic boron nitride sintered body and coated cubic boron nitride sintered body
EP3214059A4 (en) * 2014-10-29 2018-06-20 Tungaloy Corporation Cubic boron nitride sintered body, and coated cubic boron nitride sintered body
US9988315B2 (en) 2015-04-20 2018-06-05 Sumitomo Electric Industries, Ltd. Sintered body and cutting tool including the same
CN116375479A (zh) * 2015-04-20 2023-07-04 住友电气工业株式会社 烧结体和包含该烧结体的切削工具
WO2016171155A1 (ja) * 2015-04-20 2016-10-27 住友電気工業株式会社 焼結体およびそれを含む切削工具
JPWO2016171155A1 (ja) * 2015-04-20 2018-02-15 住友電気工業株式会社 焼結体およびそれを含む切削工具
WO2016177952A1 (fr) * 2015-04-22 2016-11-10 Diamonde Outil de coupe pour l'usinage des matériaux abrasifs et notamment de matériaux à base de bois
FR3035346A1 (fr) * 2015-04-22 2016-10-28 Diamonde Outil de coupe pour l'usinage des materiaux abrasifs et notamment de materiaux a base de bois
US10369633B2 (en) 2015-04-22 2019-08-06 Diamonde Cutting tool for machining abrasive materials, notably wood-based materials
CN106715360B (zh) * 2015-05-29 2020-02-11 住友电工硬质合金株式会社 烧结体和切削工具
US9988314B2 (en) 2015-05-29 2018-06-05 Sumitomo Electric Hardmetal Corp. Sintered compact and cutting tool
JPWO2016194398A1 (ja) * 2015-05-29 2018-03-22 住友電工ハードメタル株式会社 焼結体および切削工具
WO2016194398A1 (ja) * 2015-05-29 2016-12-08 住友電工ハードメタル株式会社 焼結体および切削工具
US9856175B2 (en) 2015-05-29 2018-01-02 Sumitomo Electric Hardmetal Corp. Sintered compact and cutting tool
CN106715360A (zh) * 2015-05-29 2017-05-24 住友电工硬质合金株式会社 烧结体和切削工具
WO2017098937A1 (ja) * 2015-12-07 2017-06-15 株式会社タンガロイ セラミックス焼結体
JP6160986B1 (ja) * 2015-12-07 2017-07-12 株式会社タンガロイ セラミックス焼結体
CN108430950B (zh) * 2015-12-07 2021-03-30 株式会社泰珂洛 陶瓷烧结体
CN108430950A (zh) * 2015-12-07 2018-08-21 株式会社泰珂洛 陶瓷烧结体
US10532951B2 (en) 2016-05-27 2020-01-14 Sumitomo Electric Industries, Ltd. Sintered material and cutting tool including same
CN112313190A (zh) * 2018-06-18 2021-02-02 住友电气工业株式会社 烧结体以及包含该烧结体的切削工具
WO2023170787A1 (ja) * 2022-03-08 2023-09-14 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体
JP7346751B1 (ja) 2022-03-08 2023-09-19 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体
US11958782B2 (en) 2022-03-08 2024-04-16 Sumitomo Electric Hardmetal Corp. Cubic boron nitride sintered material

Similar Documents

Publication Publication Date Title
JP5841050B2 (ja) 立方晶窒化硼素焼結体及び立方晶窒化硼素焼結体工具
WO2012057183A1 (ja) 立方晶窒化硼素焼結体及び立方晶窒化硼素焼結体工具
CN101583451B (zh) cBN烧结体和由cBN烧结体制成的工具
CA2778198C (en) Cubic boron nitride sintered body tool
WO2017191744A1 (ja) 超硬合金、及び切削工具
WO2015156004A1 (ja) サーメット、サーメットの製造方法、および切削工具
US10870154B2 (en) Sintered body and cutting tool
KR102587409B1 (ko) 소결체 및 절삭 공구
JP2004315904A (ja) 微粒超硬合金
EP3202750B1 (en) Sintered material, cutting tool using sintered material, and method of producing sintered material
JP2015044723A (ja) 焼結体
JP2016020538A (ja) 超硬合金及び切削工具
JP6365228B2 (ja) 焼結体
JP2014005485A (ja) 硬質材料、及び切削工具
JP2024055371A (ja) 立方晶窒化硼素焼結体
JP2023507830A (ja) 立方晶窒化ホウ素ベースの複合材及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP