CN108430950B - 陶瓷烧结体 - Google Patents

陶瓷烧结体 Download PDF

Info

Publication number
CN108430950B
CN108430950B CN201680071422.5A CN201680071422A CN108430950B CN 108430950 B CN108430950 B CN 108430950B CN 201680071422 A CN201680071422 A CN 201680071422A CN 108430950 B CN108430950 B CN 108430950B
Authority
CN
China
Prior art keywords
sintered body
zro
ceramic sintered
alumina
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680071422.5A
Other languages
English (en)
Other versions
CN108430950A (zh
Inventor
渡边杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59014031&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN108430950(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Publication of CN108430950A publication Critical patent/CN108430950A/zh
Application granted granted Critical
Publication of CN108430950B publication Critical patent/CN108430950B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/1115Minute sintered entities, e.g. sintered abrasive grains or shaped particles such as platelets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • C04B35/119Composites with zirconium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • C04B35/4885Composites with aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Abstract

本发明提供一种含有氧化铝、碳化钨和氧化锆的陶瓷烧结体,上述氧化锆含有ZrO和ZrO2,上述ZrO2具有选自由正方晶和立方晶组成的群组中的1种或2种的晶体结构,当将X射线衍射中的上述ZrO的(111)面的峰值强度设为I1,将具有正方晶的晶体结构的ZrO2的(101)面的峰值强度设为I2t,将具有立方晶的晶体结构的ZrO2的(111)面的峰值强度设为I2c时,I1相对I1、I2t和I2c的总和的比[I1/(I1+I2t+I2c)]为0.05以上0.90以下。

Description

陶瓷烧结体
技术领域
本发明涉及一种陶瓷烧结体。
背景技术
氧化铝/氧化锆系陶瓷一般为化学稳定性和耐磨性优异的材料,被用作各种结构部件或切削工具材料。氧化铝/氧化锆系陶瓷的性能大多依赖于氧化锆的结晶相、粒径、凝集和分散状态,从这种观点出发进行了各种各样的研究(例如,参照专利文献1)。
专利文献
专利文献1:日本专利第5174291号公报
发明内容
但是,以镍基为代表的耐热合金在高温下具有较高的拉伸强度和耐腐蚀性,因此被用作喷气发动机和燃气轮机用部件等的材料。已知在这种耐热合金的切削加工中,耐热合金除上述材料特性外,还具有较低的热传导率和对于切削工具的较高的化学反应性,因此工具寿命会显著缩短。
以往,在镍基耐热合金的高速切削中,大多将氧化铝/氧化锆系陶瓷用作切削工具材料。因而,要求在这种用途下也能够承受的程度的耐磨性和耐缺损性。例如,在专利文献1所记载的氧化铝/氧化锆系陶瓷烧结体中,想要通过对其组织的控制来使耐磨性或耐缺损性提高。但是,专利文献1所记载的陶瓷烧结体的耐磨性仍然不充分,并且,存在工具寿命较短,结果导致难以延长加工时间的问题。
本发明是解决这种问题的发明,其目的在于提供一种陶瓷烧结体,其在作为如切削工具或耐磨工具这样的工具的材料而使用的情况下,通过抑制耐缺损性降低并且提高耐磨性,从而延长这种工具的工具寿命。
本发明人们得出以下见解:在进行了与陶瓷烧结体相关的研究后,如果将陶瓷烧结体设置为以下的结构,则特别是在使用了以该陶瓷烧结体为材料的工具的镍基耐热合金的高速加工和高效率加工中,能够在抑制工具的耐缺损性的降低的同时提高耐磨性。结果发现了能够延长以该陶瓷烧结体为材料的工具的工具寿命,从而完成了本发明。
即,本发明的主旨如下。
(1)一种含有氧化铝、碳化钨和氧化锆的陶瓷烧结体,上述氧化锆含有ZrO和ZrO2,上述ZrO2具有选自由正方晶和立方晶组成的群组中的1种或2种的晶体结构,当将X射线衍射中的上述ZrO的(111)面的峰值强度设为I1,将具有正方晶的晶体结构的ZrO2的(101)面的峰值强度设为I2t,将具有立方晶的晶体结构的ZrO2的(111)面的峰值强度设为I2c时,I1相对I1、I2t和I2c的总和的比[I1/(I1+I2t+I2c)]为0.05以上0.90以下。
(2)如(1)所述的陶瓷烧结体,其中,I1相对I1、I2t和I2c的总和的比[I1/(I1+I2t+I2c)]为0.20以上0.80以下。
(3)如(1)或(2)所述的陶瓷烧结体,其中,上述氧化铝为α型氧化铝,当将X射线衍射中的上述α型氧化铝的(110)面的峰值强度设为I3时,I2t和I2c的总和相对I3的比[(I2t+I2c)/I3]为0.30以上4.00以下。
(4)如(1)~(3)中任一项所述的陶瓷烧结体,其中,相对上述陶瓷烧结体的总量,上述氧化铝的含量为30体积%以上74体积%以下,上述碳化钨的含量为25体积%以上69体积%以下,上述氧化锆的含量为1体积%以上20体积%以下。
(5)如(1)~(4)中任一项所述的陶瓷烧结体,其中,上述氧化铝的平均粒径为0.20μm以上2.00μm以下。
(6)如(1)~(5)中任一项所述的陶瓷烧结体,其中,上述碳化钨的平均粒径为0.10μm以上1.50μm以下。
根据本发明,能够提供一种陶瓷烧结体,其在作为如切削工具或耐磨工具这样的工具的材料而使用时,通过在抑制耐缺损性降低的同时提高耐磨性,从而延长这种工具的工具寿命。
附图说明
图1为表示本发明的实施例所涉及的陶瓷烧结体的X射线衍射图样的图。
具体实施方式
以下,根据需要一边参照附图,一边对用于实施本发明的方式(以下,简称为“本实施方式”)详细地进行说明,但本发明并不限定于下述本实施方式。本发明在不脱离其主旨的范围内可以进行各种各样的变形。应予说明,对附图中的同一元件标记同一符号,并省略重复说明。此外,只要未特别说明,上下左右等位置关系基于附图所示的位置关系。进而,附图的尺寸比例并不限定于图示的比例。
本实施方式的陶瓷烧结体含有氧化铝、碳化钨和氧化锆。更具体来说,本实施方式的陶瓷烧结体优选在氧化铝/氧化锆系陶瓷中进一步含有碳化钨。由此,能够进一步提高耐磨性。
如果本实施方式的陶瓷烧结体所含有的氧化铝的含量相对陶瓷烧结体的总量(100体积%)为30体积%以上,则有进一步提高抑制反应磨耗的效果的倾向,如果为74体积%以下,则有进一步提高耐磨性的倾向。此外,如果陶瓷烧结体所含有的碳化钨的含量相对陶瓷烧结体的总量(100体积%)为25体积%以上,更优选为30体积%以上,则有进一步提高耐磨性的倾向,如果为69体积%以下,则有进一步提高抑制反应磨耗的效果的倾向。进而,如果本实施方式的陶瓷烧结体所含有的氧化锆的含量相对陶瓷烧结体的总量(100体积%)为1体积%以上,则有进一步提高陶瓷烧结体的韧性的倾向,因此有时耐缺损性会进一步提高,如果为20体积%以下,则有进一步提高强度的倾向,因此有时耐缺损性进一步提高。
因此,在本实施方式的陶瓷烧结体中,相对其总量,优选地,氧化铝的含量为30体积%以上74体积%以下,碳化钨的含量为25体积%以上69体积%以下,氧化锆的含量为1体积%以上20体积%以下。应予说明,碳化钨的含量更优选为30体积%以上69体积%以下。
本实施方式所涉及的氧化锆含有ZrO和ZrO2。如果氧化锆含有ZrO,则陶瓷烧结体的耐磨性提高。如果氧化锆含有ZrO2,则由于陶瓷烧结体的应力诱导相变能够得到提高其韧性的效果。陶瓷烧结体的韧性提高会导致其耐缺损性提高。此外,本实施方式的陶瓷烧结体所含有的ZrO2的晶系优选具有正方晶和立方晶中的任意一种、或正方晶和立方晶两种。即,ZrO2优选具有选自由正方晶和立方晶组成的群组中的1种或2种的晶体结构。由此,陶瓷烧结体的韧性提高,因此能够使其耐缺损性提高。应予说明,从使其晶体结构稳定化的观点和提高应力诱导相变引起的效果的观点出发,本实施方式的陶瓷烧结体中的ZrO2优选为添加选自由CeO2、Y2O3、MgO和CaO组成的群组中的1种以上而得到的ZrO2。如果ZrO2的晶体结构具有正方晶或立方晶、或者正方晶和立方晶,则将最大限度地发挥提高陶瓷烧结体的韧性的效果。应予说明,在本说明书中,“ZrO2”是指具有正方晶的晶体结构的ZrO2(以下,称作“正方晶ZrO2”。)、具有单斜晶的晶体结构的ZrO2(以下,称作“单斜晶ZrO2”。)、和具有立方晶的晶体结构的ZrO2(以下,称作“立方晶ZrO2”。)的所有晶系的ZrO2。也就是说,在本说明书中,ZrO2是指选自由正方晶ZrO2、单斜晶ZrO2、和立方晶ZrO2组成的群组中的1种以上。因此,本实施方式的陶瓷烧结体在含有单斜晶ZrO2的情况下,也能够发挥基于含有ZrO2的效果。
当将本实施方式的陶瓷烧结体的X射线衍射中的ZrO的(111)面的峰值强度设为I1,将正方晶ZrO2的(101)面的峰值强度设为I2t,将立方晶ZrO2的(111)面的峰值强度设为I2c时,I1相对I1、I2t和I2c的总和的比[I1/(I1+I2t+I2c)]为0.05以上0.90以下。如果I1相对I1、I2t和I2c的总和的比[I1/(I1+I2t+I2c)]为0.05以上,则能够更可靠且有效地得到因具有ZrO而产生的效果,并提高陶瓷烧结体的耐磨性。另一方面,如果I1相对I1、I2t和I2c的总和的比[I1/(I1+I2t+I2c)]为0.90以下,则由于ZrO2的含量提高,能够得到提高陶瓷烧结体的韧性的效果,因此陶瓷烧结体的耐缺损性提高。其中,I1相对I1、I2t和I2c的总和的比[I1/(I1+I2t+I2c)]优选为0.20以上0.80以下。
在此,ZrO的(111)面的峰值强度I1、正方晶ZrO2的(101)面的峰值强度I2t、和立方晶ZrO2的(111)面的峰值强度I2c的总和相当于ZrO的(111)面的峰值强度I1、正方晶ZrO2的(101)面的峰值强度I2t、和立方晶ZrO2的(111)面的峰值强度I2c的合计值。例如,根据JCPDS卡51-1149号,ZrO的(111)面在2θ为33.5度附近存在衍射峰。此外,根据JCPDS卡72-2743号,正方晶ZrO2的(101)面在2θ为30.18度附近存在衍射峰,根据JCPDS卡49-1642号,立方晶ZrO2的(111)面在2θ为30.12度附近存在衍射峰。因此,在测定陶瓷烧结体的X射线衍射时,基于上述各2θ的衍射峰的峰值强度,能够算出I1相对I1、I2t和I2c的总和的比[I1/(I1+I2t+I2c)]。
如果本实施方式的氧化铝的晶系为α型,即为α型氧化铝,则特别是在镍基耐热合金的加工中,能够进一步抑制反应磨耗,因而优选。此外,当将X射线衍射中的α型氧化铝的(110)面的峰值强度设为I3时,I2t和I2c的总和相对I3的比[(I2t+I2c)/I3]优选为0.30以上4.00以下。在(I2t+I2c)/I3为0.30以上的情况下,正方晶ZrO2和立方晶ZrO2的含量增多,因此有韧性进一步提高且耐缺损性提高的倾向。在(I2t+I2c)/I3为4.00以下的情况下,α型氧化铝相对增多,因此有热传导率升高,不易发生反应磨耗导致的缺损的倾向。应予说明,正方晶ZrO2的(101)面的峰值强度I2t和立方晶ZrO2的(111)面的峰值强度I2c的总和相当于正方晶ZrO2的(101)面的峰值强度I2t和立方晶ZrO2的(111)面的峰值强度I2c的合计值。
根据JCPDS卡83-2080号,α型氧化铝的(110)面在2θ为37.76度附近存在衍射峰。
本实施方式的ZrO、正方晶ZrO2、立方晶ZrO2和α型氧化铝的X射线衍射的峰值强度能够使用市售的X射线衍射装置来测定。例如,如果使用株式会社リガク制造的X射线衍射装置(产品名“RINT TTRIII”),在下述条件下对使用Cu-Kα射线的2θ/θ聚焦光学系统的X射线衍射进行测定,则对于ZrO的(111)面、正方晶ZrO2的(101)面、立方晶ZrO2的(111)面和α型氧化铝的(110)面衍射线,能够测定其X射线衍射强度(峰值强度)。在此,测定条件为,输出功率:50kV、250mA,入射侧梭拉狭缝:5°,发散纵狭缝:2/3°,发散纵向限位狭缝:5mm,散射狭缝2/3°,受光侧梭拉狭缝:5°,受光狭缝:0.3mm,BENT单色仪,受光单色狭缝:0.8mm,取样宽度:0.01°,扫描速度:2°/min,2θ测定范围:20~80°。在由得到的X射线衍射图形求出上述各峰值强度时,也可以使用X射线衍射装置附带的解析软件。在解析软件中,使用三次样条逼近进行背景除去,并使用Pearson-VII函数进行轮廓拟合,由此可求出各峰值强度。
如果本实施方式所涉及的氧化铝的平均粒径为0.20μm以上2.00μm以下,则陶瓷烧结体的韧性提高且耐缺损性优异,因而优选。如果氧化铝的平均粒径为0.20μm以上,则能够进一步防止Al化合物的粒子脱落,因此能够进一步提高耐磨性。另一方面,如果氧化铝的平均粒径为2.00μm以下,则能够进一步提高陶瓷烧结体的韧性,因此能够进一步提高耐缺损性。
如果本实施方式所涉及的碳化钨的平均粒径为0.10μm以上1.50μm以下,则因耐缺损性和耐磨性提高而优选。如果该平均粒径为0.10μm以上,则能够进一步防止因碳化钨的凝集而导致的烧结体的组织不均匀,因此能够进一步提高耐缺损性。如果碳化钨的平均粒径为1.50μm以下,则能够进一步提高耐磨性。从同样的观点出发,碳化钨的平均粒径更优选为0.30μm以上1.50μm以下
本实施方式的陶瓷烧结体中的氧化铝、碳化钨和氧化锆的含量能够从利用扫描电子显微镜(SEM)拍摄的陶瓷烧结体的组织照片,用市售的图像解析软件解析而求得。更具体来说,首先,对陶瓷烧结体的表面或任意的剖面进行镜面研磨,并使用SEM对陶瓷烧结体的研磨面的反射电子图像进行观察。此时,使用SEM通过反射电子图像对放大至5000~10000倍的陶瓷烧结体的研磨面进行观察。如果使用SEM附带的能量分散型X射线分析装置(EDS),则能够确定黑色区域为氧化铝,灰色区域为氧化锆,白色区域为碳化钨。之后,使用SEM拍摄陶瓷烧结体的研磨面的组织照片。使用市售的图像解析软件,从得到的组织照片分别求得氧化铝、碳化钨和氧化锆的占有面积,并从它们的比例求得各自的体积含有率(体积%)。组成可通过X射线衍射装置确认。
本实施方式所涉及的碳化钨的平均粒径能够依照ASTM E 112-96,从使用SEM拍摄的陶瓷烧结体的组织照片,用市售的图像解析软件解析而求得。更具体来说,对陶瓷烧结体的表面或任意的剖面进行镜面研磨,并使用SEM对陶瓷烧结体的研磨面的反射电子图像进行观察。此时,使用SEM拍摄放大至5000~20000倍的陶瓷烧结体的研磨面的组织照片。使用市售的图像解析软件,将面积与得到的组织照片中的碳化钨的面积相等的圆的直径作为该碳化钨的粒径,并从存在于剖面组织内的碳化钨的粒径求出平均值。
本实施方式所涉及的氧化铝的平均粒径能够从使用SEM拍摄的陶瓷烧结体的组织照片,用市售的图像解析软件解析而求得。本实施方式所涉及的氧化铝的平均粒径将热蚀刻后的陶瓷烧结体的组织作为对象,对氧化铝进行测定而求得。如果在比烧结温度更低的温度下进行热蚀刻,则能够求得氧化铝的平均粒径。更具体来说,对陶瓷烧结体的表面或任意的剖面进行镜面研磨,并使用真空烧结炉,在压力3.0×10-3Pa~6.3×10-3Pa、温度1000℃~1250℃、保持时间30~60分钟的条件下,对镜面研磨后的陶瓷烧结体进行热蚀刻。使用SEM对热蚀刻后的陶瓷烧结体的研磨面的二次电子像进行观察。此时,使用SEM拍摄放大至5000~20000倍的陶瓷烧结体的研磨面的组织照片。使用市售的图像解析软件,将面积与得到的组织照片中的氧化铝的面积相等的圆的直径作为氧化铝的粒径,并从存在于剖面组织内的氧化铝的粒径求出平均值。此时,更详细来说,氧化铝的平均粒径可通过依照ASTM E112-96进行解析而求得。
在此,陶瓷烧结体的研磨面为,通过对陶瓷烧结体的表面或任意剖面进行镜面研磨而露出的陶瓷烧结体的面。作为得到陶瓷烧结体的研磨面的方法,例如可列举使用金刚石研磨膏进行研磨的方法。
本实施方式的陶瓷烧结体的制造方法例如包含以下的工序(A)~(E)。
工序(A):将29~73体积%的平均粒径0.2~2.0μm的氧化铝粉末、25~69体积%的平均粒径0.05~3.0μm的碳化钨粉末、1~20体积%的平均粒径0.2~2.0μm的ZrO2粉末、1~5体积%的平均粒径0.5~5.0μm的Al粉末进行配合(其中,它们的总和为100体积%)而得到原料粉的工序;
工序(B):使用利用硬质合金制球的湿式球磨机对在工序(A)中配合得到的原料粉进行5~24小时的混合而准备混合物的工序;
工序(C):将工序(B)中得到的混合物成形为指定形状从而得到成形体的成形工序;
工序(D):将工序(C)中得到的成形体收容于烧结炉,在1600~1800℃的范围的烧结温度下,在氩气中保持指定的时间并进行烧结从而得到HIP前烧结体的工序;和
工序(E):将工序(D)中得到的HIP前烧结体,在1500~1700℃的范围的温度下,在100~150MPa的压力的氩气中保持指定的时间并进行HIP处理从而得到烧结体的工序。
本实施方式的陶瓷烧结体的上述制造方法中的各工序具有以下的意义。
在工序(A)中,能够调整陶瓷烧结体的组成。此外,能够调整氧化铝和碳化钨的粒径。应予说明,如果使用添加CeO2、Y2O3、MgO和CaO等而得到的ZrO2粉末,则能够形成韧性更加优异的正方晶或立方晶的ZrO2。如果ZrO2粉末的一次粒子的平均粒径为30~50nm,则有微小的ZrO2容易分散于陶瓷烧结体的组织中的效果。然而,基于操作的容易性,优选使用平均粒径30~50nm的ZrO2的一次粒子凝集而成的平均粒径0.1~2μm的二次粒子的ZrO2粉末。
在工序(B)中,能够使指定配合组成的原料粉均匀地混合。
在工序(C)中,将工序(B)中得到的混合物成形为指定形状。在以下的工序(D)(烧结工序)中对得到的成形体进行烧结。
在工序(D)中,通过对成形体进行烧结,能够制作陶瓷烧结体。通过调整烧结温度,能够控制氧化铝和碳化钨的粒径。因此,如果组合工程(A)中配合的粉末的粒径和工程(D)中的烧结温度,则能够容易地控制氧化铝和碳化钨的粒径,因而优选。
此外,通过在高温下对ZrO2和Al粉末进行烧结,能够制作含有ZrO的复合体。认为这是由于进行了下述式(1)所表示的反应,从而形成ZrO。因此,在工序(A)中,通过调整ZrO2粉末和Al粉末的比例,能够控制形成ZrO的比例。
3ZrO2+2Al→3ZrO+Al2O3(1)
利用上述反应,能够将X射线衍射强度中的各强度的比控制为指定值。
在工序(E)中,通过对烧结体进行HIP处理,能够减少烧结体中的气孔,因此耐缺损性提高。在不对形成了ZrO的陶瓷烧结体进行HIP处理的情况下,气孔大多分散,因此与进行了HIP处理的情况相比耐缺损性降低。
对于经过从工序(A)至工序(E)的各工序而得到的陶瓷烧结体,也可根据需要进行磨削加工或刀尖的珩磨加工。
本实施方式的陶瓷烧结体的耐磨性和耐缺损性优异,因此优选应用于切削工具和耐磨工具,其中进一步优先应用于切削工具。
实施例
使用平均粒径为0.2μm、0.4μm、0.6μm、0.8μm、1.0μm或2.0μm的氧化铝(Al2O3)粉末、平均粒径为0.3μm、0.5μm、0.7μm、1.0μm、1.2μm或1.5μm的碳化钨(WC)粉末、相对ZrO2整体添加有3mol%的Y2O3的一次粒子的平均粒径为40nm的ZrO2粒子凝集而成的平均粒径为0.6μm的二次粒子的ZrO2(PSZ)粉末、和平均粒径为3.0μm的Al粉末,按照表1所示的配合组成进行配合。
[表1]
试样编号 配合组成(体积%)
发明品1 26%Al<sub>2</sub>O<sub>3</sub>,60%WC,10%PSZ,4%Al
发明品2 44%Al<sub>2</sub>O<sub>3</sub>,34%WC,20%PSZ,2%Al
发明品3 67%Al<sub>2</sub>O<sub>3</sub>,27%WC,1%PSZ,5%Al
发明品4 29%Al<sub>2</sub>O<sub>3</sub>,65%WC,3%PSZ,3%Al
发明品5 42.5%Al<sub>2</sub>O<sub>3</sub>,45%WC,12%PSZ,0.5%Al
发明品6 42%Al<sub>2</sub>O<sub>3</sub>,45%WC,9%PSZ,4%Al
发明品7 40%Al<sub>2</sub>O<sub>3</sub>,41%WC,11%PSZ,8%Al
发明品8 57%Al<sub>2</sub>O<sub>3</sub>,30%WC,9%PSZ,4%Al
发明品9 54%Al<sub>2</sub>O<sub>3</sub>,31%WC,14%PSZ,1%Al
发明品10 56%Al<sub>2</sub>O<sub>3</sub>,40%WC,3%PSZ,1%Al
发明品11 46%Al<sub>2</sub>O<sub>3</sub>,43%WC,7%PSZ,4%Al
发明品12 35%Al<sub>2</sub>O<sub>3</sub>,45%WC,17%PSZ,3%Al
比较品1 83%Al<sub>2</sub>O<sub>3</sub>,15%PSZ,2%Al
比较品2 60%Al<sub>2</sub>O<sub>3</sub>,40%WC
比较品3 46%Al<sub>2</sub>O<sub>3</sub>,45%WC,9%PSZ
比较品4 34%Al<sub>2</sub>O<sub>3</sub>,61%WC,5%PSZ
比较品5 45%Al<sub>2</sub>O<sub>3</sub>,43%WC,2%PSZ,10%Al
比较品6 95%WC,5%PSZ
将配合得到的原料粉与硬质合金制球和丙酮溶剂一起收容于球磨机用料筒,并通过球磨机进行混合。将通过球磨机进行混合而得到的混合物压粉成型从而得到了成形体。将得到的成形体放入烧结炉,在氩气中以表2所示的烧结温度保持2小时并进行烧结。之后,将烧结炉的温度设为1500℃,在氩气中以表2所示的HIP压力进行HIP处理,从而得到发明品和比较品的陶瓷烧结体。
[表2]
试样编号 烧结温度(℃) HIP压力(MPa)
发明品1 1600 120
发明品2 1600 120
发明品3 1600 120
发明品4 1600 120
发明品5 1500 140
发明品6 1600 140
发明品7 1600 140
发明品8 1600 150
发明品9 1600 150
发明品10 1500 150
发明品11 1800 100
发明品12 1800 100
比较品1 1800 120
比较品2 1600 120
比较品3 1800 120
比较品4 1600 100
比较品5 1400 120
比较品6 1600 150
切断得到的陶瓷烧结体,使用金刚石研磨膏对出现的剖面进行镜面研磨。使用SEM通过10000倍的反射电子像对得到的研磨面进行观察。使用附属于SEM的EDS,确认研磨面中的黑色区域为氧化铝,灰色区域为氧化锆,白色区域为碳化钨,并进行拍摄。以拍摄的研磨面的组织照片为对象,使用市售的图像解析软件,对相对于陶瓷烧结体的总量的氧化铝的含量(体积%)、碳化钨的含量(体积%)和氧化锆的含量(体积%)进行测定。将这些结果表示于表3。
[表3]
Figure GDA0001687095780000111
对于得到的陶瓷烧结体,为了测定X射线衍射的衍射线的峰值强度,使用株式会社リガク制造的X射线衍射装置(产品名“RINT TTRIII”),在输出功率:50kV、250mA,入射侧梭拉狭缝:5°,发散纵狭缝:2/3°,发散纵向限位狭缝:5mm,散射狭缝2/3°,受光侧梭拉狭缝:5°,受光狭缝:0.3mm,BENT单色仪,受光单色狭缝:0.8mm,取样宽度:0.01°,扫描速度:2°/min,2θ测定范围:20~80°的条件下进行利用Cu-Kα射线的2θ/θ聚焦光学系统的X射线衍射测定。从得到的X射线衍射图形对ZrO的(111)面的X射线衍射的峰值强度I1、正方晶ZrO2(101)面的X射线衍射的峰值强度I2t、立方晶ZrO2的(111)面的X射线衍射的峰值强度I2c和α型氧化铝的(110)面的X射线衍射的峰值强度I3进行测定。在图1中作为一个例子,表示了发明品7的X射线衍射测定的结果的衍射图样。应予说明,在图1中,将正方晶ZrO2(101)面设为t-ZrO2(101),将立方晶ZrO2的(111)面表示为c-ZrO2(111)。之后,分别求出I1相对I1、I2t和I2c的总和的比[I1/(I1+I2t+I2c)]、和I2t与I2c的总和相对I3的比[(I2t+I2c)/I3]。将这些值表示于表4。
[表4]
试样编号 I<sub>1</sub>/(I<sub>1</sub>+I<sub>2t</sub>+I<sub>2c</sub>) (I<sub>2t</sub>+I<sub>2c</sub>)/I<sub>3</sub>
发明品1 0.40 2.10
发明品2 0.18 3.55
发明品3 0.52 0.15
发明品4 0.36 0.32
发明品5 0.05 1.98
发明品6 0.42 1.32
发明品7 0.83 0.29
发明品8 0.48 1.30
发明品9 0.11 3.98
发明品10 0.08 0.45
发明品11 0.40 0.52
发明品12 0.34 3.34
比较品1 0.22 0.66
比较品2 - -
比较品3 0.00 2.14
比较品4 0.00 1.50
比较品5 1.00 0.23
比较品6 0.00 -
*表中的“-”表示不含有氧化铝、或正方晶ZrO2和立方晶ZrO2,因此无法算出。
从使用SEM拍摄的陶瓷烧结体的剖面的组织照片中,用市售的图像解析软件求得得到的陶瓷烧结体中的碳化钨的平均粒径。具体来说,首先,切断陶瓷烧结体,使用金刚石研磨膏对出现的剖面进行镜面研磨。以得到的研磨面为对象,使用SEM对10000倍的二次电子像进行观察,并使用附属于SEM的EDS,确认黑色区域为氧化铝,灰色区域为氧化锆,白色区域为碳化钨。拍摄至少10个视野以上的SEM图像。接着,对于得到的SEM图像(组织照片),使用市售的图像解析软件,将依照ASTM E 112-96得到的粒径的值作为存在于烧结体的组织内的碳化钨的粒径。对得到的多个粒径的值进行算术平均,作为碳化钨的平均粒径。将该结果表示于表5。
[表5]
试样编号 碳化钨的平均粒径(μm)
发明品1 0.68
发明品2 0.50
发明品3 0.52
发明品4 0.25
发明品5 1.52
发明品6 1.48
发明品7 1.36
发明品8 1.04
发明品9 0.98
发明品10 0.30
发明品11 0.34
发明品12 1.10
比较品1 1.24
比较品2 0.82
比较品3 0.75
比较品4 0.66
比较品5 0.50
比较品6 1.24
使用金刚石研磨膏对得到的陶瓷烧结体的表面或任意的剖面进行镜面研磨后,将其放入真空烧结炉进行热蚀刻。热蚀刻在于5.3×10-3Pa的压力、1200℃的温度下保持50分钟的条件下进行。使用SEM对热蚀刻后的陶瓷烧结体的研磨面的10000倍的二次电子像进行观察。拍摄至少10个视野以上的陶瓷烧结体的组织的SEM图像(组织照片)。之后,对于得到的SEM图像(组织照片),使用市售的图像解析软件,将依照ASTM E 112-96得到的值作为存在于烧结体的组织内的氧化铝的平均粒径。将该结果表示于表6。
[表6]
试样编号 氧化铝的平均粒径(μm)
发明品1 0.78
发明品2 0.80
发明品3 0.76
发明品4 0.84
发明品5 0.64
发明品6 0.65
发明品7 0.62
发明品8 0.48
发明品9 0.45
发明品10 0.23
发明品11 1.98
发明品12 1.08
比较品1 1.05
比较品2 0.74
比较品3 1.02
比较品4 0.82
比较品5 0.65
比较品6 不含有氧化铝
将发明品和比较品加工为ISO规格RPGX120700刀片形状的切削工具。对得到的切削工具进行下述切削试验。将其结果表示于表7。
[切削试验1:耐磨性试验]
切削方法:外周连续切削,
被削材料:因科镍合金718(注册商标),
被削材料形状:圆柱
Figure GDA0001687095780000141
切削速度:280m/min,
切削深度:1.2mm,
进给量:0.25mm/rev,
冷却剂:湿式,
评价项目:将试样发生缺损时、或试样的最大后刀面磨损宽度达到0.3mm时设定为工具寿命,测定到工具寿命为止的加工(切削)时间。
[切削试验2:耐缺损性试验]
切削方法:端面连续切削,
被削材料:因科镍合金718(注册商标),
被削材料形状:圆柱
Figure GDA0001687095780000151
切削速度:250m/min,
切削深度:2.0mm,
进给量:0.20mm/rev,
冷却剂:湿式,
评价项目:将试样达到缺损时作为工具寿命,测定到工具寿命为止的加工(切削)时间。
[表7]
Figure GDA0001687095780000152
发明品的陶瓷烧结体在耐磨性试验和耐缺损性试验两个试验中的加工寿命为5分钟以上。另一方面,比较品的陶瓷烧结体在耐磨性试验或耐缺损性试验中的至少任意一个试验中的加工寿命不足5分钟。发明品的陶瓷烧结体与比较品的陶瓷烧结体相比,不会降低耐缺损性而提高耐磨性,因而工具寿命延长。
本申请基于2015年12月7日提交的日本专利申请(特愿2015-238155),其内容作为参照并入本文中。
产业上的可利用性
本发明的陶瓷烧结体不会降低耐缺损性且耐磨性优异,特别在作为切削工具或耐磨工具而使用的情况下能够延长工具寿命,因此产业上的可利用性较高。

Claims (7)

1.一种陶瓷烧结体,其含有氧化铝、碳化钨和氧化锆,
所述氧化锆含有ZrO和ZrO2
所述ZrO2具有选自由正方晶和立方晶组成的群组中的1种或2种的晶体结构,
当将X射线衍射中的所述ZrO的(111)面的峰值强度设为I1,将具有正方晶的晶体结构的ZrO2的(101)面的峰值强度设为I2t,将具有立方晶的晶体结构的ZrO2的(111)面的峰值强度设为I2c时,I1相对I1、I2t和I2c的总和的比[I1/(I1+I2t+I2c)]为0.05以上0.90以下,
相对所述陶瓷烧结体的总量,
所述氧化铝的含量为30体积%以上74体积%以下,
所述碳化钨的含量为25体积%以上69体积%以下,
所述氧化锆的含量为1体积%以上20体积%以下。
2.如权利要求1所述的陶瓷烧结体,其中,
I1相对I1、I2t和I2c的总和的比[I1/(I1+I2t+I2c)]为0.20以上0.80以下。
3.如权利要求1所述的陶瓷烧结体,其中,
所述氧化铝为α型氧化铝,
当将X射线衍射中的所述α型氧化铝的(110)面的峰值强度设为I3时,I2t和I2c的总和相对I3的比[(I2t+I2c)/I3]为0.30以上4.00以下。
4.如权利要求2所述的陶瓷烧结体,其中,
所述氧化铝为α型氧化铝,
当将X射线衍射中的所述α型氧化铝的(110)面的峰值强度设为I3时,I2t和I2c的总和相对I3的比[(I2t+I2c)/I3]为0.30以上4.00以下。
5.如权利要求1~4中任一项所述的陶瓷烧结体,其中,
所述氧化铝的平均粒径为0.20μm以上2.00μm以下。
6.如权利要求1~4中任一项所述的陶瓷烧结体,其中,
所述碳化钨的平均粒径为0.10μm以上1.50μm以下。
7.如权利要求5所述的陶瓷烧结体,其中,
所述碳化钨的平均粒径为0.10μm以上1.50μm以下。
CN201680071422.5A 2015-12-07 2016-11-25 陶瓷烧结体 Active CN108430950B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015-238155 2015-12-07
JP2015238155 2015-12-07
PCT/JP2016/085055 WO2017098937A1 (ja) 2015-12-07 2016-11-25 セラミックス焼結体

Publications (2)

Publication Number Publication Date
CN108430950A CN108430950A (zh) 2018-08-21
CN108430950B true CN108430950B (zh) 2021-03-30

Family

ID=59014031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680071422.5A Active CN108430950B (zh) 2015-12-07 2016-11-25 陶瓷烧结体

Country Status (5)

Country Link
US (1) US11111182B2 (zh)
EP (1) EP3388406B1 (zh)
JP (1) JP6160986B1 (zh)
CN (1) CN108430950B (zh)
WO (1) WO2017098937A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6683887B2 (ja) * 2017-09-27 2020-04-22 日本特殊陶業株式会社 セラミックス焼結体、インサート、切削工具、及び摩擦攪拌接合用工具
JP7388961B2 (ja) * 2020-03-24 2023-11-29 Ntkカッティングツールズ株式会社 セラミックス切削工具、及び切削工具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10301174A1 (de) * 2003-01-09 2004-07-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Keramischer und/oder pulvermetallischer Hohlkörper und Verfahren zu seiner Herstellung
WO2011059020A1 (ja) * 2009-11-11 2011-05-19 株式会社タンガロイ 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体並びにそれらの製造方法
WO2012057183A1 (ja) * 2010-10-27 2012-05-03 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体及び立方晶窒化硼素焼結体工具
CN103974922A (zh) * 2012-06-28 2014-08-06 日本特殊陶业株式会社 陶瓷烧结体
CN104520252A (zh) * 2013-08-08 2015-04-15 日本特殊陶业株式会社 陶瓷组合物和切削工具

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017524A (en) 1989-02-13 1991-05-21 Iscar Ltd. Ceramic cutting tool
US5536485A (en) * 1993-08-12 1996-07-16 Agency Of Industrial Science & Technology Diamond sinter, high-pressure phase boron nitride sinter, and processes for producing those sinters
DE19503854C2 (de) 1995-02-06 1997-02-20 Starck H C Gmbh Co Kg Verfahren zur Herstellung gesinterter alpha-Al¶2¶O¶3¶-Körper sowie deren Verwendung
JP4177493B2 (ja) 1997-10-23 2008-11-05 日本タングステン株式会社 セラミックス焼結体
US20070132154A1 (en) * 2005-07-20 2007-06-14 The Regents Of The University Of California Low-temperature high-rate superplastic forming of ceramic composite
KR102020688B1 (ko) * 2011-06-21 2019-09-10 다이아몬드 이노베이션즈, 인크. 세라믹과 저체적의 입방정계 질화 붕소로 형성된 복합 콤팩트 및 제조 방법
KR101335866B1 (ko) 2011-07-19 2013-12-02 니뽄 도쿠슈 도교 가부시키가이샤 소결체 및 절삭 공구

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10301174A1 (de) * 2003-01-09 2004-07-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Keramischer und/oder pulvermetallischer Hohlkörper und Verfahren zu seiner Herstellung
WO2011059020A1 (ja) * 2009-11-11 2011-05-19 株式会社タンガロイ 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体並びにそれらの製造方法
WO2012057183A1 (ja) * 2010-10-27 2012-05-03 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体及び立方晶窒化硼素焼結体工具
CN103974922A (zh) * 2012-06-28 2014-08-06 日本特殊陶业株式会社 陶瓷烧结体
CN104520252A (zh) * 2013-08-08 2015-04-15 日本特殊陶业株式会社 陶瓷组合物和切削工具

Also Published As

Publication number Publication date
EP3388406B1 (en) 2020-03-11
WO2017098937A1 (ja) 2017-06-15
EP3388406A4 (en) 2019-05-08
US11111182B2 (en) 2021-09-07
US20180362409A1 (en) 2018-12-20
EP3388406A1 (en) 2018-10-17
CN108430950A (zh) 2018-08-21
JPWO2017098937A1 (ja) 2017-12-07
JP6160986B1 (ja) 2017-07-12

Similar Documents

Publication Publication Date Title
CN107207362B (zh) 立方晶氮化硼烧结体和被覆立方晶氮化硼烧结体
JP6652560B2 (ja) 焼結体および切削工具
KR101937061B1 (ko) 소결체 및 그것을 포함하는 절삭 공구
CN108430950B (zh) 陶瓷烧结体
CN109906212B (zh) 烧结体以及包含该烧结体的切削工具
JP6048629B2 (ja) 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
WO2018116688A1 (ja) 希土類オキシフッ化物焼結体及びその製造方法
EP2735556B1 (en) Sintered compact and cutting tool
WO2016052468A1 (ja) サイアロン焼結体及び切削インサート
JP2022174067A (ja) 焼結体
JP2018199597A (ja) 焼結体の製造方法および立方晶窒化ホウ素粒子
CN111132952A (zh) 陶瓷烧结体、嵌件、切削工具和摩擦搅拌接合用工具
WO2022202710A1 (ja) セラミック焼結体およびセラミック粉末
JP2003212642A (ja) アルミナ焼結体、刃先交換式チップ及び切削工具

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant