WO2012026338A1 - 自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂、該樹脂を含む樹脂材料、該樹脂の製造方法、該樹脂を用いてなる擬革及び熱可塑性ポリオレフィン表皮材 - Google Patents

自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂、該樹脂を含む樹脂材料、該樹脂の製造方法、該樹脂を用いてなる擬革及び熱可塑性ポリオレフィン表皮材 Download PDF

Info

Publication number
WO2012026338A1
WO2012026338A1 PCT/JP2011/068342 JP2011068342W WO2012026338A1 WO 2012026338 A1 WO2012026338 A1 WO 2012026338A1 JP 2011068342 W JP2011068342 W JP 2011068342W WO 2012026338 A1 WO2012026338 A1 WO 2012026338A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
polysiloxane
self
modified
crosslinking
Prior art date
Application number
PCT/JP2011/068342
Other languages
English (en)
French (fr)
Inventor
花田 和行
千也 木村
高橋 賢一
修 川上
学 宇留野
Original Assignee
大日精化工業株式会社
浮間合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010189774A external-priority patent/JP5679739B2/ja
Priority claimed from JP2010286620A external-priority patent/JP5637559B2/ja
Priority claimed from JP2011004281A external-priority patent/JP5601687B2/ja
Application filed by 大日精化工業株式会社, 浮間合成株式会社 filed Critical 大日精化工業株式会社
Priority to EP11819802.7A priority Critical patent/EP2610276B1/en
Priority to KR1020137007409A priority patent/KR101483381B1/ko
Priority to CN201180051466.9A priority patent/CN103270071B/zh
Priority to US13/818,552 priority patent/US10000609B2/en
Publication of WO2012026338A1 publication Critical patent/WO2012026338A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G71/00Macromolecular compounds obtained by reactions forming a ureide or urethane link, otherwise, than from isocyanate radicals in the main chain of the macromolecule
    • C08G71/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/61Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8003Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
    • C08G18/8006Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
    • C08G18/8009Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203
    • C08G18/8022Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203 with polyols having at least three hydroxy groups
    • C08G18/8025Masked aliphatic or cycloaliphatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8003Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
    • C08G18/8006Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
    • C08G18/8009Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203
    • C08G18/8022Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203 with polyols having at least three hydroxy groups
    • C08G18/8029Masked aromatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • C08G18/807Masked polyisocyanates masked with compounds having only one group containing active hydrogen with nitrogen containing compounds
    • C08G18/8074Lactams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • C08G18/807Masked polyisocyanates masked with compounds having only one group containing active hydrogen with nitrogen containing compounds
    • C08G18/8077Oximes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/12Polyurethanes from compounds containing nitrogen and active hydrogen, the nitrogen atom not being part of an isocyanate group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/12Polyurethanes from compounds containing nitrogen and active hydrogen, the nitrogen atom not being part of an isocyanate group
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/128Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with silicon polymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • C08J2423/28Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment by reaction with halogens or halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/28Artificial leather
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31573Next to addition polymer of ethylenically unsaturated monomer
    • Y10T428/31587Hydrocarbon polymer [polyethylene, polybutadiene, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer

Definitions

  • the first embodiment of the present invention relates to a novel self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin, a resin material containing the resin, and a method for producing the same. More specifically, when used in forming materials such as films and molding materials, various coating materials, various binders, etc., it can be a product with excellent lubricity, wear resistance, chemical resistance, non-adhesiveness, and heat resistance, and Further, the present invention relates to a technology of a self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin that is useful from the viewpoint of preventing destruction of the global environment because oxygen dioxide is used as a raw material for production and carbon dioxide can be fixed in the resin.
  • the second embodiment of the present invention relates to a pseudo leather obtained using a resin composition containing the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin as a main component. More specifically, it is excellent in texture, lubricity, scratch resistance, abrasion resistance, chemical resistance, heat resistance, and the resin used as the main component can fix carbon dioxide in the structure. It relates to artificial leather that is also useful from the viewpoint of preventing destruction.
  • the third aspect of the present invention relates to a skin material made of a thermoplastic polyolefin resin used for automobile interior materials, home appliance parts and the like.
  • the topcoat layer is excellent in scratch resistance, abrasion resistance, chemical resistance, and heat resistance.
  • the present invention relates to a skin material made of a thermoplastic polyolefin resin capable of forming a uniform matte coating layer.
  • Non-Patent Documents 1 and 2 conversion to renewable resources such as biomass and methane has become a global trend of technology (for example, Non-Patent Documents 1 and 2).
  • the present inventors have recognized that it is very useful to review the polyhydroxypolyurethane resin described above and to provide a technology that enables application development of the resin. It was. That is, carbon dioxide, which is a raw material for polyhydroxypolyurethane resin, is a readily available and sustainable carbon resource, and providing a technology for effectively using plastics fixed with carbon dioxide as a raw material, This is because it can be an effective means to solve important issues such as global warming and resource depletion facing the earth in recent years. For products using artificial leather and skin materials listed below, if a polyhydroxy polyurethane resin with carbon dioxide fixed is available, it is extremely useful because the amount of these products used is large.
  • (imitation leather) Conventionally, artificial leather is used for bags, bags, shoes, furniture, clothing, vehicle interior materials, electrical appliances, etc., and polyurethane resin is widely used as the resin for artificial leather.
  • the “pseudo-leather” is a generic name for leather-like products manufactured to resemble natural leather, and is generally roughly classified into artificial leather, synthetic leather, and vinyl chloride leather.
  • Artificial leather has a structure that most closely resembles natural leather among artificial leather, and uses non-woven fabric for the base fabric.
  • a general method for producing artificial leather there are the following methods. First, a non-woven fabric is impregnated with a dimethylformamide (hereinafter abbreviated as DMF) solution of a polyurethane resin, and then solidified and dried in a porous state by wet film formation (solidification in water). After that, there are a method in which a surface is further provided with a polyurethane resin coating or laminate layer to make it smooth, and a method in which the surface is ground and brushed to make it suede.
  • DMF dimethylformamide
  • Synthetic leather uses woven fabric or brushed fabric as a base fabric, and is generally divided into dry synthetic leather and wet synthetic leather depending on the manufacturing method.
  • a method for producing dry synthetic leather a polyurethane resin is directly applied to a base cloth and dried, and after applying a polyurethane resin on a release paper, it is dried and filmed, and the base cloth is bonded with an adhesive. There is a method of pasting together.
  • the wet synthetic leather can be produced by using the above-mentioned polyurethane resin DMF solution impregnated or coated on a base fabric, and then solidifying and drying in water to form a porous layer.
  • the surface obtained by each of the dry and wet methods as described above is further provided with a layer formed by applying or laminating a polyurethane-based resin to make it smooth, or by grinding the surface. There is a method of making it suede by raising.
  • the molding material of the member includes thermoplastic polyolefin resin, for example, polypropylene resin (hereinafter abbreviated as PP resin), ABS resin, AS resin, polyolefin-based thermoplastic elastomer (hereinafter abbreviated as TPO resin), and the like. Is used.
  • thermoplastic polyolefin resin for example, polypropylene resin (hereinafter abbreviated as PP resin), ABS resin, AS resin, polyolefin-based thermoplastic elastomer (hereinafter abbreviated as TPO resin), and the like. Is used.
  • thermoplastic resin polyolefin resins are inferior to conventional vinyl chloride resins and the like in terms of adhesion, scratch resistance, abrasion resistance, and chemical resistance on the surface. It is necessary to paint.
  • various coatings are applied to the surface of the thermoplastic polyolefin base material to form a topcoat layer, thereby giving a function for making a better thermoplastic polyolefin resin skin material.
  • a method of using a chlorinated polypropylene resin having good adhesion to a polyolefin resin such as a PP resin or a TPO resin as a base material has been proposed.
  • a chlorinated polypropylene-modified acrylic resin is used as a binder resin, and a paint in which a matting agent such as an inorganic extender pigment (silica, talc) or acrylic resin particles is blended, or chlorinated polypropylene is used.
  • a method has been proposed in which a system primer is applied and a paint having a polyester resin or a polyurethane resin is applied thereon.
  • JP 2009-144313 A JP 2007-270373 A JP 2005-154580 A
  • the polyhydroxyurethane resin is clearly inferior in terms of characteristics as compared with the polyurethane resin compared with the same type of polymer material, and its application development is not progressing. .
  • the polyhydroxy polyurethane resin in order to make the polyhydroxy polyurethane resin using carbon dioxide as a raw material usable for industrial use, it is necessary to improve its performance and add new added value.
  • resins that have further improved performance essential for industrial materials, such as heat resistance, chemical resistance, and wear resistance.
  • the first object of the present invention is to use a polyhydroxy polyurethane resin, which is a useful material that is considered to contribute to solving problems such as global warming and resource depletion, but whose application development has not progressed, for industrial use. It is to provide a technology that can be used as a material. More specifically, the product formed by the resin is a self-crosslinking polysiloxane modified that is satisfactory in terms of performance such as heat resistance, chemical resistance, and wear resistance while being an environmentally friendly product. An object is to provide a polyhydroxy polyurethane resin.
  • the second object of the present invention is particularly inferior to conventional artificial leather, excellent in texture, surface scratch resistance, abrasion resistance, chemical resistance, heat resistance, and carbon dioxide in the resin.
  • Environmentally friendly products that can contribute to the reduction of carbon dioxide, which is considered a global problem as a global warming gas, by producing artificial leather using materials that have been captured and fixed. Is to provide useful artificial leather.
  • the third object of the present invention is excellent in the effects of scratch resistance, abrasion resistance, chemical resistance and heat resistance, and if necessary, is also excellent in uniform matting effect.
  • a greenhouse gas that can incorporate carbon dioxide as a component raw material from the viewpoint of global environmental protection That is.
  • the surface material made of thermoplastic polyolefin resin means that a top coat layer is formed directly or via a primer layer for the purpose of imparting surface functionality to the surface of a sheet substrate made of thermoplastic polyolefin resin. Means something.
  • the polysiloxane segment is masked in the structure derived from the reaction between a 5-membered cyclic carbonate polysiloxane compound represented by the following general formula (1) and an amine compound. And a self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin characterized by having an isocyanate group.
  • R 1 in the formula represents an alkylene group having 1 to 12 carbon atoms (which may be linked to each element of O, S, or N and / or — (C 2 H 4 O) b —).
  • R 2 is absent or represents an alkylene group having 2 to 20 carbon atoms, and R 2 may be linked to an alicyclic group or an aromatic group.
  • b represents a number from 1 to 300, and a represents a number from 1 to 300.
  • the 5-membered cyclic carbonate polysiloxane compound is a reaction product of an epoxy-modified polysiloxane compound and carbon dioxide, and the structure contains carbon dioxide in the range of 1 to 25% by mass; resin The content of the polysiloxane segment in the resin molecule is 1 to 75% by mass in terms of the siloxane content in the resin molecule; the masked isocyanate group is a reaction product of an organic polyisocyanate group and a masking agent. The portion masked by the heat treatment is dissociated to form an isocyanate group, which reacts with the hydroxyl group in the structure to self-crosslink.
  • the present invention provides a method for producing the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin, comprising a modifier having at least one free isocyanate group and a masked isocyanate group. Used, the free isocyanate group of the modifier is masked in its structure by reacting with the hydroxyl group in the polysiloxane modified polyhydroxy polyurethane resin derived from the reaction of the 5-membered cyclic carbonate polysiloxane compound with the amine compound.
  • a polysiloxane-modified polyhydroxypolyurethane resin is derived from the reaction between the compound and an amine compound by using a reaction product of an epoxy-modified polysiloxane compound and carbon dioxide as the 5-membered cyclic carbonate polysiloxane compound.
  • Carbon dioxide is contained in the polyhydroxy polyurethane resin in the range of 1 to 25% by mass;
  • the modifying agent is a reaction product of an organic polyisocyanate compound and a masking agent.
  • the present invention provides a resin material obtained by mixing the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin with another binder resin.
  • the present invention has a masked isocyanate group in its structure, which is derived from the reaction between a 5-membered cyclic carbonate polysiloxane compound represented by the general formula (1) and an amine compound.
  • a fake leather characterized in that a resin composition comprising a self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin of the first aspect of the invention as a main component is filled or laminated on a base fabric.
  • the 5-membered cyclic carbonate polysiloxane compound is a reaction product of an epoxy-modified polysiloxane compound and carbon dioxide, and 1 to 25 masses of carbon dioxide is contained in the structure of the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin.
  • % of the above-described artificial leather the masked isocyanate group is a reaction product of an organic polyisocyanate group and a masking agent, and the masked portion is dissociated by heat treatment to dissociate the isocyanate group.
  • the artificial leather as described above which produces a self-crosslink by reacting with a hydroxyl group in the structure of the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin.
  • the artificial leather described above, wherein the resin composition further includes another resin different from the self-crosslinking polysiloxane-modified polyurethane resin.
  • the topcoat layer is derived from the reaction of a 5-membered cyclic carbonate polysiloxane compound represented by the above general formula (1) with an amine compound and masked in its structure
  • a skin material made of a thermoplastic polyolefin resin comprising a self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin of the first embodiment of the present invention containing a group as a main component is provided.
  • the five-membered cyclic carbonate polysiloxane compound is obtained by reacting an epoxy-modified polysiloxane compound and carbon dioxide, and in the structure of the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin, Containing 1 to 25% by mass of carbon dioxide derived from raw materials.
  • a skin material made of a thermoplastic polyolefin resin wherein the content of the polysiloxane segment in the molecule of the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin is 1 to 75% by mass;
  • the masked isocyanate group is a reaction product of an organic polyisocyanate group and a masking agent, and the masked portion is dissociated by heat treatment to form an isocyanate group, and a self-crosslinking polysiloxane modified polyhydroxy
  • the heat obtained by modifying the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin by modifying a polysiloxane-modified polyhydroxypolyurethane resin derived from a reaction between a 5-membered cyclic carbonate polysiloxane
  • Skin material made of plastic polyolefin resin A substance comprising one or a combination of two or more selected from organic fine powder or inorganic fine powder as a matting agent with respect to 100 parts by mass of the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin.
  • a skin material made of a thermoplastic polyolefin resin formed of a composition containing 1 to 150 parts by mass of The top coat layer is a skin material made of a thermoplastic polyolefin resin formed of a composition containing, in addition to the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin, another resin different from the resin.
  • a polyhydroxy polyurethane resin which is a useful material that is considered to contribute to solving problems such as global warming and resource depletion, but whose application development has not progressed, is effective for industrial use. It is possible to provide a self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin that can be used as a material. More specifically, according to the present invention, the formed product incorporates carbon dioxide and is an environmentally friendly product that can contribute to the reduction of greenhouse gases, but also has heat resistance, chemical resistance, wear resistance, etc. A self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin that is sufficiently satisfactory in terms of performance is provided.
  • the texture and surface scratch resistance, abrasion resistance, chemical resistance, and heat resistance are excellent, and carbon dioxide is taken into the resin, inferior to conventional artificial leather.
  • the material fixed in the above as a forming material for artificial leather, it can contribute to the reduction of carbon dioxide, which is regarded as a global problem as a global warming gas.
  • Useful artificial leather that is a corresponding product is provided.
  • the self-crosslinking polysiloxane modified polyhydroxy containing at least an isocyanate group masked in the molecule on the topcoat layer constituting the skin material made of thermoplastic polyolefin resin By using polyurethane resin, its surface has excellent scratch resistance, abrasion resistance, chemical resistance and heat resistance, and if necessary, it can have a uniform matting effect, and these excellent performances In addition to this, it can also contribute to the reduction of carbon dioxide, which is regarded as a global problem as a greenhouse gas, because it can be made from a material in which carbon dioxide is incorporated and fixed in the resin.
  • a skin material made of thermoplastic polyolefin resin is provided.
  • the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin characterizing the present invention is a polysiloxane segment derived from a reaction between a 5-membered cyclic carbonate polysiloxane compound represented by the following general formula (1) and an amine compound: And a masked isocyanate group.
  • R 1 in the formula is an alkylene group having 1 to 12 carbon atoms (which may be connected to each element of O, S, or N and / or — (C 2 H 4 O) b —). Represents.
  • R 2 is absent or represents an alkylene group having 2 to 20 carbon atoms, and R 2 may be linked to an alicyclic group or an aromatic group.
  • b represents a number from 1 to 300, and a represents a number from 1 to 300.
  • the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin characterizing the present invention uses a modifier having at least one free isocyanate group and a masked isocyanate group, and the free isocyanate group of the modifier is used. Can be obtained by reacting with a hydroxyl group in a polysiloxane-modified polyhydroxypolyurethane resin derived from the reaction between a 5-membered cyclic carbonate polysiloxane compound and an amine compound.
  • the 5-membered cyclic carbonate polysiloxane compound is obtained by reacting an epoxy-modified polysiloxane compound and carbon dioxide
  • the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin is a material that also contributes to environmental conservation. It becomes. Below, each component is demonstrated.
  • the modifier used in the present invention has at least one free isocyanate group and a masked isocyanate group, and the reaction between the organic polyisocyanate compound as described above and the masking agent as described below. It can be obtained as a product.
  • the following can be used as a masking agent. Alcohol-based, phenol-based, active methylene-based, acid amide-based, imidazole-based, urea-based, oxime-based, and pyridine-based compounds may be used alone or in combination. As specific masking agents, the following can be used.
  • Alcohol-based masking agents include methanol, ethanol, propanol, butanol, 2-ethylhexanol, methyl cellosolve, cyclohexanol and the like.
  • phenolic masking agent include phenol, cresol, ethylphenol, nonylphenol and the like.
  • active methylene-based masking agent include dimethyl malonate, diethyl malonate, methyl acetoacetate, ethyl acetoacetate, and acetylacetone.
  • acid amide masking agents include acetanilide, acetic acid amide, ⁇ -caprolactam, ⁇ -butyrolactam, and the like.
  • Examples of the imidazole-based masking agent include imidazole and 2-methylimidazole.
  • Examples of urea-based masking agents include urea, thiourea, and ethylene urea.
  • Examples of oxime masking agents include formamide oxime, acetoxime, methyl ethyl ketoxime, cyclohexanone oxime, and the like.
  • Examples of pyridine-based masking agents include 2-hydroxypyridine and 2-hydroxyquinoline.
  • ⁇ Method of synthesizing denaturant> By reacting an organic polyisocyanate compound as listed above with a masking agent as listed above, the isocyanate having at least one free isocyanate group and the other masked is used in the present invention.
  • a modifying agent having a group is synthesized.
  • the synthesis method used in this case is not particularly limited.
  • the masking agent as described above and the organic polyisocyanate compound as described above are combined in a functional group ratio in which one or more isocyanate groups are excessive in one molecule. It can be obtained by reacting at a temperature of 0 to 150 ° C., preferably 20 to 80 ° C. for 30 minutes to 3 hours in the presence or absence of a solvent and a catalyst.
  • polysiloxane-modified polyhydroxypolyurethane resin (Polysiloxane-modified polyhydroxypolyurethane resin)
  • the polysiloxane-modified polyhydroxypolyurethane resin of the present invention which is modified by a specific modifier obtained by the method as described above, is obtained by reacting a specific 5-membered cyclic carbonate polysiloxane compound with an amine compound. Can do. Below, each component used in this case is demonstrated.
  • the 5-membered cyclic carbonate polysiloxane compound represented by the general formula (1) used in the present invention is produced by reacting an epoxy-modified polysiloxane compound and carbon dioxide as shown in the following [Formula-A]. be able to. More particularly, the epoxy-modified polysiloxane compound can be obtained at atmospheric pressure or slightly elevated pressure in the presence or absence of an organic solvent and in the presence of a catalyst at a temperature of 40 ° C. to 150 ° C. It can be obtained by reacting with carbon dioxide for a period of time.
  • the epoxy-modified polysiloxane compounds listed above are preferable compounds that can be used in the present invention, and the present invention is not limited to these exemplified compounds. Accordingly, not only the compounds exemplified above, but also any other compounds that are currently commercially available and can be easily obtained from the market can be used in the present invention.
  • Examples of the catalyst used in the reaction between the epoxy-modified polysiloxane compound as described above and carbon dioxide include a base catalyst and a Lewis acid catalyst.
  • Base catalysts include tertiary amines such as triethylamine and tributylamine, cyclic amines such as diazabicycloundecene, diazabicyclooctane and pyridine, alkalis such as lithium chloride, lithium bromide, lithium fluoride and sodium chloride.
  • Metal salts alkaline earth metal salts such as calcium chloride, quaternary ammonium salts such as tetrabutylammonium chloride, tetraethylammonium bromide, benzyltrimethylammonium chloride, carbonates such as potassium carbonate and sodium carbonate, zinc acetate, lead acetate, Examples thereof include metal acetates such as copper acetate and iron acetate, metal oxides such as calcium oxide, magnesium oxide and zinc oxide, and phosphonium salts such as tetrabutylphosphonium chloride.
  • Lewis acid catalyst examples include tin compounds such as tetrabutyltin, dibutyltin dilaurate, dibutyltin diacetate, and dibutyltin octoate.
  • the amount of the catalyst is preferably 0.1 to 100 parts by mass per 50 parts by mass of the epoxy-modified polysiloxane compound. Further, the amount is preferably 0.3 to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of addition as a catalyst is small, and if it exceeds 100 parts by mass, various performances of the final resin may be deteriorated. However, in the case where the residual catalyst causes a serious performance degradation, the residual catalyst may be removed by washing with pure water after completion of the reaction.
  • organic solvent examples include dimethylformamide, dimethyl sulfoxide, dimethylacetamide, N-methylpyrrolidone, N-ethylpyrrolidone, and tetrahydrofuran.
  • organic solvents and other poor solvents such as methyl ethyl ketone, xylene, toluene, tetrahydrofuran, diethyl ether, and cyclohexanone may be used in a mixed system.
  • the polysiloxane-modified polyhydroxypolyurethane resin used in the present invention comprises, as shown by the following [formula-B], a 5-membered cyclic carbonate polysiloxane compound obtained as described above, an amine compound, and an organic solvent. Can be obtained by reacting at a temperature of 20 ° C. to 150 ° C. in the presence of.
  • the amine compound that can be used in the above reaction is preferably a diamine, but any of those conventionally used in the production of polyurethane resins can be used and is not particularly limited.
  • aliphatic diamines such as methylenediamine, ethylenediamine, trimethylenediamine, 1,3-diaminopropane, hexamethylenediamine, octamethylenediamine; phenylenediamine, 3,3′-dichloro-4,4′-diaminodiphenylmethane, 4 , 4'-methylenebis (phenylamine), 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, metaxylylenediamine, paraxylylenediamine, and other aromatic diamines; 1,4-cyclohexanediamine, 4 , 4'-diaminocyclohexylmethane, 1,
  • the amine compounds listed above are preferred compounds used in the present invention, and the present invention is not limited to these exemplified compounds. Accordingly, not only the compounds exemplified above, but also any other compounds that are currently commercially available and can be easily obtained from the market can be used in the present invention.
  • the proportion of the polysiloxane segment in the resin is preferably 1 to 75% by mass with respect to the resin molecule content. If it is less than 1% by mass, the function associated with the surface energy based on the polysiloxane segment is insufficiently expressed. On the other hand, if it exceeds 75% by mass, the performance of the polyhydroxyurethane resin such as mechanical strength and abrasion resistance becomes insufficient, which is not preferable. More preferably, it is 2 to 70% by mass, and further preferably 5 to 60% by mass.
  • the polysiloxane-modified polyhydroxypolyurethane resin used in the present invention preferably has a number average molecular weight (standard polystyrene conversion value measured by GPC) of about 2,000 to 100,000, more preferably 5 , About 70,000.
  • the polysiloxane-modified polyhydroxypolyurethane resin used in the present invention preferably has a hydroxyl value of 20 to 300 mgKOH / g. If the hydroxyl value is less than the above range, it is difficult to obtain a carbon dioxide reduction effect. On the other hand, if the hydroxyl value exceeds the above range, various physical properties as a polymer compound may not be obtained.
  • the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin provided in the first embodiment of the present invention is obtained by reacting the modifier obtained as described above with the polysiloxane-modified polyhydroxypolyurethane resin. It is done. Specifically, it can be obtained by reacting the hydroxyl group in the polysiloxane-modified polyhydroxypolyurethane resin with at least one free isocyanate group in the modifier.
  • the modification rate by the modifier is preferably 2 to 60%. If the modification rate is less than 2%, sufficient cross-linking will not occur, so that the heat resistance and chemical resistance of the product may be insufficient, which is not preferable. On the other hand, if it exceeds 60%, there is a possibility that the dissociated isocyanate group may remain without reacting, which is not preferable.
  • the reaction between the modifier and the polysiloxane-modified polyhydroxypolyurethane resin is carried out in the presence or absence of an organic solvent and a catalyst at a temperature of 0 to 150 ° C., preferably 20 to 80 ° C., for 30 minutes to 3 hours.
  • the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin of the present invention can be easily obtained by the reaction.
  • the reaction is performed at a temperature lower than the dissociation temperature of the masking agent during the reaction so that the synthesized polysiloxane-modified polyhydroxypolyurethane resin has a masked isocyanate group in its structure. There is a need.
  • the self-crosslinking polysiloxane-modified polyhydroxy polyurethane resin of the present invention obtained as described above can be used as it is as a film / molding material, various coating materials, various paints, various binders, etc.
  • products having excellent performance such as wear resistance, chemical resistance, non-adhesiveness, and heat resistance can be obtained.
  • the binder resin used in this case a resin that can chemically react with an isocyanate group generated by dissociation of the masking portion in the structure of the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin is preferable.
  • the present invention is not limited to this, and even a resin having no reactivity as described above can be used in combination with the self-crosslinking polysiloxane-modified polyhydroxyurethane resin of the present invention as appropriate according to the purpose. .
  • various conventionally used resins can be used and are not particularly limited.
  • acrylic resin, polyurethane resin, polyester resin, polybutadiene resin, silicone resin, melamine resin, phenol resin, polyvinyl chloride resin, cellulose resin, alkyd resin, modified cellulose resin, fluorine resin, polyvinyl butyral resin, epoxy resin, polyamide resin Etc. can be used.
  • resins obtained by modifying various resins with silicone or fluorine can be used.
  • the amount used varies depending on the product to be prepared and the purpose of use, but is 5 to 90 parts by mass with respect to 100 parts by mass of the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin of the present invention, More preferably, 60 parts by mass or less is added.
  • the more the proportion of the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin of the present invention used the more preferable environmentally friendly product.
  • the masked portion is dissociated by heat treatment to generate an isocyanate group.
  • generated isocyanate group and the hydroxyl group in polysiloxane modified polyhydroxy polyurethane resin react, and it produces
  • the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin of the present invention is synthesized using a 5-membered cyclic carbonate polysiloxane compound.
  • the 5-membered cyclic carbonate polysiloxane compound is an epoxy. Since it is obtained by reacting the modified polysiloxane compound and carbon dioxide, carbon dioxide can be taken into the resin and fixed. This means that the present invention makes it possible to provide environmentally friendly materials and products that were useful from the viewpoint of reducing greenhouse gases and that could not be achieved with conventional products.
  • the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin of the present invention includes various molding materials, synthetic leather and artificial leather materials, fiber coating materials, surface treatment materials, heat-sensitive recording materials, releasable materials, paints, and printing inks. It is very useful as a binder.
  • the skin materials made of thermoplastic leather (synthetic leather or artificial leather material) and thermoplastic polyolefin resin, which are examples of their use, will be described.
  • the artificial leather of the present invention is a self-crosslinking type having an isocyanate group masked in its structure, derived from the reaction of a 5-membered cyclic carbonate polysiloxane compound represented by the following general formula (1) and an amine compound.
  • a resin composition comprising a polysiloxane-modified polyhydroxypolyurethane resin as a main component (hereinafter referred to as a resin composition for artificial leather) is filled or laminated on a base fabric.
  • R 1 in the formula is an alkylene group having 1 to 12 carbon atoms (which may be linked to each element of O, S, or N and / or — (C 2 H 4 O) b —).
  • R 2 is absent or represents an alkylene group having 2 to 20 carbon atoms, and R 2 may be linked to an alicyclic group or an aromatic group.
  • b represents a number from 1 to 300, and a represents a number from 1 to 300.
  • the masked isocyanate group of the resin is a reaction product of an organic polyisocyanate group and a masking agent, and the masked portion is dissociated by heat treatment to form an isocyanate group. It reacts with the hydroxyl group in the structure of the hydroxy polyurethane resin and self-crosslinks. For this reason, the use of the resin makes it possible to obtain artificial leather having excellent texture and surface scratch resistance, abrasion resistance, chemical resistance and heat resistance.
  • the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin particularly preferred from the viewpoint of global environmental protection used in the present invention is a 5-membered cyclic carbonate polysiloxane compound, which is a reaction product of an epoxy-modified polysiloxane compound and carbon dioxide.
  • carbon dioxide is contained in the structure in the range of 1 to 25% by mass.
  • the resin composition for artificial leather may further contain other resins than the above.
  • the modification rate of the resin with a modifier is preferably 2 to 60%.
  • performances such as wear resistance, chemical resistance, and heat resistance after heat treatment can be controlled to some extent.
  • the modification rate is less than 2%, sufficient crosslinking does not occur and the production of artificial leather When it is used, it is not preferable because heat resistance, chemical resistance and the like may be insufficient.
  • the modification rate exceeds 60%, the possibility that the dissociated isocyanate group remains without reacting is not preferable.
  • the resin composition for artificial leather is preferably used in the form of an organic solvent solution or an aqueous dispersion in the production of artificial leather.
  • the resin composition is used in the form of an organic solvent solution
  • the following organic solvent is preferably used. Examples thereof include dimethylformamide, dimethyl sulfoxide, dimethylacetamide, N-methylpyrrolidone, N-ethylpyrrolidone and the like.
  • the resin concentration in 100% by mass of the organic solvent solution is preferably 10 to 60% by mass. If the resin concentration is less than 10% by mass, the film formability in wet film formation is inferior, and the thickness of the film is insufficient.
  • the artificial leather resin composition When used in the form of an aqueous dispersion, it is preferably used as follows. First, a hydroxyl group or NH group in a self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin is half-esterified or half-amidated with an acid anhydride to introduce a carboxyl group into the resin. Thereafter, the carboxyl group is preferably neutralized with ammonia, an organic amine compound, an inorganic base or the like to form a carboxylate and used as a self-emulsifying aqueous dispersion.
  • the acid anhydride used here examples include phthalic anhydride, trimellitic anhydride, hexahydrophthalic anhydride, and the like.
  • the organic amine compound examples include monoethanolamine, diethanolamine, triethanolamine, diethylethanolamine, aminoethylethanolamine and the like.
  • the resin composition containing the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin as a main component may be an aqueous dispersion emulsified in water with a surfactant according to a conventional method.
  • the above-mentioned resin composition for artificial leather is used by mixing various conventionally known resins in order to adjust workability such as impregnation, coating and coating, and the texture and performance of the obtained artificial leather. be able to.
  • Other resins used for mixing are preferably those capable of chemically reacting with isocyanate groups generated by dissociation of the masking agent in the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin, but not reactive. However, it can be used in the present invention.
  • the resin used when the resin composition for artificial leather used in the present invention is a form in which a self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin and another resin different from this are used in combination
  • the artificial leather has been conventionally used.
  • the polyurethane resin used in the production of is preferably, but not particularly limited.
  • An epoxy resin, a polyamide resin, or the like can be used.
  • the amount used is 5 to 90% by mass with respect to the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin composition of the present invention.
  • the resin composition mainly composed of the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin used in the present invention includes an antioxidant, an ultraviolet absorber, an hydrolysis inhibitor, a pigment, a dye, You may mix
  • the artificial leather of the present invention is characterized in that a base fabric is filled or laminated with the resin composition mainly composed of the self-crosslinking polysiloxane-modified polyhydroxy polyurethane resin of the present invention described above.
  • the method for producing the artificial leather is not limited at all, and a known method for producing artificial leather or synthetic leather can be used.
  • the artificial leather of the present invention is provided with a vinyl chloride resin layer containing a plasticizer on a base fabric, which is used as a base sheet, and the self-crosslinking polysiloxane characterizing the present invention on the base sheet. What formed the layer which consists of a resin composition which has a modified polyhydroxy polyurethane resin as a main component is also contained.
  • any base fabric (base material sheet) conventionally used for manufacturing artificial leather can be used and is not particularly limited.
  • the artificial leather of the present invention has a texture, surface scratch resistance, abrasion resistance, chemical resistance, and heat resistance.
  • the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin used for the artificial leather of the present invention is synthesized using a 5-membered cyclic carbonate polysiloxane compound. Since the siloxane compound is obtained by reacting an epoxy compound and carbon dioxide, carbon dioxide can be taken into the resin and fixed. This means that the present invention makes it possible to provide artificial leather as an environmental protection product that could not be achieved with conventional products that are also useful from the viewpoint of reducing greenhouse gases.
  • the skin material made of the thermoplastic polyolefin resin of the present invention includes a thermoplastic polyolefin resin sheet and a top coat layer directly formed on the sheet, or a top formed via a primer layer formed on the sheet. It has any one of the coat layers, and the top coat layer is formed of the above-described resin composition mainly composed of the self-crosslinking polysiloxane-modified polyhydroxy polyurethane resin of the present invention.
  • the masked isocyanate group of the resin is a reaction product of an organic polyisocyanate group and a masking agent, and the masked portion is dissociated by heat treatment to form an isocyanate group. It reacts with the hydroxyl group in the structure of the hydroxy polyurethane resin and self-crosslinks. For this reason, by using the resin, the surface is not inferior to the one made of vinyl chloride resin, which has been widely used for skin materials, and its surface has scratch resistance, abrasion resistance, chemical resistance, heat resistance A skin material made of a thermoplastic polyolefin resin having excellent properties can be obtained.
  • the modification rate of the resin with a modifier is preferably 2 to 60%. If the modification rate in this case is less than 2%, sufficient cross-linking will not occur, and the surface heat resistance, chemical resistance, etc. may be insufficient when used in the production of the thermoplastic polyolefin resin skin material of the present invention. This is not preferable. On the other hand, if it exceeds 60%, the possibility that the dissociated isocyanate group remains without reacting is not preferable.
  • topcoat layer formed of the resin composition containing the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin of the present invention as a main component, which characterizes the surface material made of the thermoplastic polyolefin resin of the present invention, will be described.
  • a matting agent may be blended in consideration of antiglare properties depending on the application. Good.
  • organic fine powder or inorganic fine powder is mentioned, These can also be used 1 type or in combination of 2 or more types.
  • the organic fine powder used in this case is not particularly limited. For example, acrylic resin particles, styrene resin particles, styrene-acrylic resin particles, phenol resin particles, melamine resin particles, acrylic-polyurethane resin particles, polyurethane resin.
  • Examples thereof include particles, polyester resin particles, nylon resin particles, silicone resin particles, and polyethylene resin particles. These powders preferably have an average particle size in the range of 0.1 to 10 ⁇ m. Moreover, since the matte property of the coating film to be formed is particularly excellent, a spherical or substantially spherical shape is practically preferable.
  • the inorganic fine powder used in the above includes talc, mica, calcium carbonate, barium sulfate, magnesium carbonate, clay, alumina, silica, carbon fiber, glass fiber, metal fiber, carbon black, titanium oxide, molybdenum, hydroxylated Examples thereof include magnesium, bentonite, and graphite.
  • talc mica, calcium carbonate, barium sulfate, magnesium carbonate, clay, alumina, silica, carbon fiber, glass fiber, metal fiber, carbon black, titanium oxide, molybdenum, hydroxylated
  • magnesium bentonite, and graphite.
  • the average particle size of the particles is 10 ⁇ m or less, it is suitable for the purpose of the present invention, but it is preferable that the particles are as small as possible.
  • the amount of the matting agent as mentioned above is used in the range of 1 to 150 parts by mass, preferably 3 to 60 parts by mass with respect to 100 parts by mass of the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin. If it is less than 1 part by mass, the matting effect is not sufficient, and if it exceeds 150 parts by mass, the mechanical properties of the coating film are greatly reduced, which is not preferable.
  • the resin composition mainly composed of the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin described above is used depending on the application.
  • a resin composition containing a quencher hereinafter, abbreviated as “resin composition for skin material”.
  • the resin composition is preferably used in the form of an organic solvent solution or an aqueous dispersion.
  • the resin composition is used in the form of an organic solvent solution, the following organic solvent is preferably used.
  • the resin concentration in 100% by mass of these organic solvent solutions is preferably 3 to 60% by mass. If the resin concentration is less than 3% by mass, the film formability is inferior, and the thickness of the film is insufficient, which may lead to insufficient strength. On the other hand, if the resin concentration exceeds 60% by mass, the formation of the film after drying is incomplete, and problems such as residual organic solvent in the film may occur, which is not preferable.
  • the resin composition for a skin material mainly composed of a self-crosslinking type polysiloxane-modified polyhydroxypolyurethane resin is used in the form of an aqueous dispersion, it is preferably used as follows. First, a carboxyl group is introduced into a resin by semi-esterifying or semi-amidating a hydroxyl group or NH group in a self-crosslinking polysiloxane-modified polyhydroxy polyurethane resin with an acid anhydride. Thereafter, the carboxyl group is preferably neutralized with ammonia, an organic amine compound, an inorganic base or the like to form a carboxylate and used as a self-emulsifying aqueous dispersion.
  • the acid anhydride used here examples include phthalic anhydride, trimellitic anhydride, hexahydrophthalic anhydride, and the like.
  • the organic amine compound examples include monoethanolamine, diethanolamine, triethanolamine, diethylethanolamine, aminoethylethanolamine and the like.
  • the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin may be an aqueous dispersion emulsified in water with a surfactant according to a conventional method.
  • the resin composition for the skin material used in the present invention is added to the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin in order to improve the spraying and coating suitability for the thermoplastic polyolefin resin as a base material and the film forming property.
  • another resin different from the resin may be included.
  • various conventionally known binder resins can be mixed and used.
  • Other resins used for mixing are preferably those capable of chemically reacting with the polyisocyanate groups formed by dissociation of the masking agent in the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin. However, even those having no reactivity can be used in the present invention.
  • a binder resin conventionally used for the surface of thermoplastic polyolefin resin can be used, and is not particularly limited.
  • acrylic resin, polyurethane resin, polyester resin, polybutadiene resin, silicone resin, melamine resin, phenol resin, polyvinyl chloride resin, cellulose resin, alkyd resin, modified cellulose resin, fluorine resin, polyvinyl butyral resin, epoxy resin, polyamide resin Etc. can be used.
  • the amount used is 5 to 90 parts by mass, more preferably about 10 to 60 parts by mass with respect to the self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin composition of the present invention. Use within a range.
  • the resin composition for the skin material used in the present invention may contain various coating additives such as a coating surface adjusting agent, a fluidity adjusting agent, an ultraviolet absorber, a dispersant, and an anti-settling agent, as necessary. You may mix
  • thermoplastic polyolefin resin sheet The skin material made of the thermoplastic polyolefin resin of the present invention has a top coat layer in which the above-mentioned resin composition for skin material is applied directly or via a primer layer on a thermoplastic polyolefin resin sheet.
  • a thermoplastic polyolefin resin sheet it does not specifically limit as a kind of the said thermoplastic polyolefin resin sheet, For example, what is selected from the material listed below can be used.
  • low density to high density polyethylene LDPE, LLDPE, HDPE, etc.
  • polypropylene polypropylene
  • polypropylene such as propylene-ethylene copolymer
  • EPR ethylene-propylene rubber
  • EBR ethylene-butene rubber
  • EDPM enter polymer
  • thermoplastic polyolefin resin constituting the sheet is inactive, and therefore often has poor adhesion to a coated product on the surface. For this reason, it is preferable to form the topcoat layer by directly applying the above-described resin composition for skin material after physically or chemically activating the surface by corona discharge treatment or the like.
  • the above-described resin composition for skin material described above Is preferably applied to form a topcoat layer via a primer layer.
  • the skin material made of the thermoplastic polyolefin resin of the present invention comprises the above-described self-crosslinking polysiloxane-modified polyhydroxy polyurethane resin of the present invention as a main component, and a matting agent added as necessary. It can be obtained as follows using the resin composition for use. First, a primer layer is formed on a thermoplastic polyolefin resin sheet directly or on the sheet with the above-described compound or the like. Thereafter, the above-described resin composition for skin material is applied by a known application method such as brush coating, spraying, roll coating, gravure, or immersion.
  • a known application method such as brush coating, spraying, roll coating, gravure, or immersion.
  • the resin composition is applied so that the thickness after drying becomes about 3 to 20 ⁇ m, and after drying, heat treatment is performed at a temperature of 80 to 170 ° C., so that the topcoat layer can be easily formed on the base sheet. Can be formed.
  • the sheet-shaped thermoplastic polyolefin resin skin material of the present invention formed as described above is then processed into a predetermined shape by vacuum forming, for example, to become a vehicle interior material or a household appliance member.
  • the skin material made of the thermoplastic polyolefin resin of the present invention uses the unique self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin described above as the material for forming the topcoat layer, thereby providing scratch resistance and abrasion resistance. In addition, it has excellent chemical resistance and heat resistance, and further has a uniform matte effect if necessary.
  • the 5-membered cyclic carbonate polysiloxane compound used for the synthesis of the resin used in the present invention can use carbon dioxide as a raw material for production, carbon dioxide can be incorporated and fixed in the resin. It is possible to provide a skin material made of a thermoplastic polyolefin resin, which is useful from the viewpoint of reducing carbon dioxide, which is a cause of the above, and is an environmentally friendly material product that cannot be achieved by conventional products.
  • the main structure of the above modifier is assumed to be the following formula.
  • the resulting solution was diluted by adding 100 parts of n-hexane and then washed 3 times with 80 parts of pure water in a separatory funnel to remove N-methylpyrrolidone and sodium iodide.
  • the n-hexane solution was dehydrated with magnesium sulfate and concentrated to obtain 92 parts (yield 89.7%) of a colorless and transparent liquid 5-membered cyclic carbonate polysiloxane compound (1-A).
  • ⁇ Production Example 5> (Production of 5-membered cyclic carbonate polysiloxane compound) Instead of the divalent epoxy-modified polysiloxane A used in Production Example 4, a divalent epoxy-modified polysiloxane B represented by the following formula B (manufactured by Shin-Etsu Chemical Co., Ltd., KF-105 (trade name); epoxy equivalent of 485 g) / Mol) was used in the same manner as in Production Example 4 to obtain 99 parts (yield 91%) of a colorless and transparent liquid 5-membered cyclic carbonate polysiloxane compound (1-B).
  • formula B manufactured by Shin-Etsu Chemical Co., Ltd., KF-105 (trade name); epoxy equivalent of 485 g) / Mol
  • Example 1 (Production of self-crosslinking polysiloxane-modified polyhydroxy polyurethane resin) A reaction vessel equipped with a stirrer, a thermometer, a gas introduction tube and a reflux condenser was replaced with nitrogen, and 100 parts of the 5-membered cyclic carbonate polysiloxane compound (1-A) obtained in Production Example 4 was added thereto. N-methylpyrrolidone was added and dissolved uniformly so that the ratio was 35%.
  • Examples 2 to 4 (Production of self-crosslinking polysiloxane-modified polyhydroxy polyurethane resin) Thereafter, in the same manner as in Example 1, a combination of a 5-membered cyclic carbonate polysiloxane compound, an amine compound, and a modifier was reacted in the same manner as in Example 1, and the self-reactions of Examples 2 to 4 shown in Table 1 were made. A crosslinked polysiloxane-modified polyhydroxypolyurethane resin solution was obtained.
  • polyester polyurethane resin used in the comparative example was synthesized as follows. A reaction vessel equipped with a stirrer, a thermometer, a gas introduction tube and a reflux condenser was replaced with nitrogen, and 150 parts of polybutylene adipate having an average molecular weight of about 2,000 and 15 parts of 1,4-butanediol were mixed with 200 parts. In a mixed organic solvent consisting of 50 parts of dimethylformamide.
  • This solution had a solid content of 35% and a viscosity of 3.2 MPa ⁇ s (25 ° C.).
  • a film obtained from this solution by a casting method had a breaking strength of 45 MPa, a breaking elongation of 480%, and a thermal softening temperature of 110 ° C.
  • Comparative Example 2-2 (Production of polyurethane resin) As in Comparative Example 2-1, 150 parts of polybutylene adipate having an average molecular weight of about 2,000 and 15 parts of 1,4-butanediol were dissolved in a solvent comprising 250 parts of dimethylformamide. Thereafter, 62 parts of water-added MDI dissolved in 171 parts of dimethylformamide were gradually added dropwise with stirring well at 60 ° C., and reacted at 80 ° C. for 6 hours after the completion of the addition. This solution had a viscosity of 3.2 MPa ⁇ s (25 ° C.) at a solid content of 35%. The film obtained from this solution had a breaking strength of 45 MPa, a breaking elongation of 480%, and a thermal softening temperature of 110 ° C.
  • the polysiloxane modified polyurethane resin used in the comparative example was synthesized as follows. 150 parts of polydimethylsiloxanediol represented by the following formula (C) and having an average molecular weight of about 3,200 and 10 parts of 1,4-butanediol are composed of 200 parts of methyl ethyl ketone and 50 parts of dimethylformamide. Added in mixed organic solvent. Thereafter, 40 parts of water-added MDI dissolved in 120 parts of dimethylformamide was gradually added dropwise and reacted at 80 ° C. for 6 hours after completion of the addition.
  • C polydimethylsiloxanediol represented by the following formula (C) and having an average molecular weight of about 3,200 and 10 parts of 1,4-butanediol are composed of 200 parts of methyl ethyl ketone and 50 parts of dimethylformamide. Added in mixed organic solvent. Thereafter, 40 parts of water-added MDI dissolved in 120 parts of
  • This solution had a solid content of 35% and a viscosity of 1.6 MPa ⁇ s (25 ° C.).
  • a film obtained from this solution by a casting method had a breaking strength of 21 MPa, a breaking elongation of 250%, and a thermal softening temperature of 135 ° C.
  • This solution has a solid content of 35% and a viscosity of 1.6 MPa ⁇ s (25 ° C.).
  • a film obtained from this solution has a breaking strength of 21 MPa and a breaking elongation of 250%, and the thermal softening temperature is It was 135 ° C.
  • Films were prepared from the resin solutions of Examples 1 to 4 and Comparative Examples 1, 2-1 and 3-1 by the casting method, and the following characteristics were measured and evaluated for each of the obtained films. .
  • the casting conditions were drying at 100 ° C. for 3 minutes and then heat treatment at 160 ° C. for 30 minutes.
  • thermo softening point About each film, the thermal softening point was evaluated according to JISK7206 (Vicat softening point measuring method). The results are shown in Table 2.
  • Thermal softening point At the time of making the above synthetic leather, a film obtained by applying to a release paper and heating and drying (150 ° C./10 minutes) was measured according to JIS K7206 (Vicat softening point measurement method), and the thermal softening point was measured. evaluated.
  • topcoat layer 120-mesh chlorinated polypropylene (Super Clon (trade name); manufactured by Nippon Paper Industries Co., Ltd.) is used as a primer layer on a thermoplastic polyolefin substrate sheet that has been corona discharge treated and has a surface activated with a wetting index of 45 dyn / cm.
  • the primer layer was formed by coating with a gravure roll so that the thickness after drying was 3 ⁇ m and dried at 100 ° C. for 2 minutes.
  • each coating material for skin (resin composition) prepared by the formulation shown in Tables 5 and 6 was applied with a 120 mesh gravure roll so that the thickness after drying was 5 ⁇ m. did.
  • the molded products made of each skin material obtained above have moldability, gloss (glossiness), coefficient of friction, adhesion, scratch resistance, oil resistance, chemical resistance, surface wear resistance, and environmental compatibility. Evaluation was performed by the following methods and criteria. In particular, the surface (topcoat layer) of the molded product made of each sheet was evaluated. The results are shown in Tables 5 and 6.
  • ⁇ Adhesiveness ⁇ A peel test using a grid cellophane tape was performed on the surface (top coat layer surface) of each sheet after vacuum forming, and evaluation was performed according to the following criteria. ⁇ : Good (no peeling part on the coated surface) ⁇ : Defect (there is a peeled part on the coated surface)
  • a self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin that is a useful material that is considered to contribute to solving problems such as global warming and resource depletion and that can be effectively used for industrial use.
  • the product formed is an environmentally friendly product that contributes to the reduction of greenhouse gases, incorporating carbon dioxide, but has heat resistance, slipperiness, non-adhesiveness, and wear resistance.
  • a self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin that is sufficiently satisfactory in performance such as property and chemical resistance is provided. Therefore, its utilization is expected from the standpoint of global environmental conservation.
  • the artificial leather of the present invention uses a resin composition containing a self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin as a main component, thereby masking isocyanate groups that are dissociated by heat in the structure, Since the hydroxyl group of the polysiloxane-modified polyhydroxypolyurethane resin reacts to form a cross-linked resin, it is possible to obtain a fake leather excellent in scratch resistance, abrasion resistance, chemical resistance, and heat resistance. Due to the effect, it has excellent performance and flexibility. As a result, it is possible to provide environmentally friendly artificial leather products that could not be achieved with conventional products. As a result, it can contribute to solving problems such as global warming and resource depletion that have become global issues in recent years. it can.
  • a resin composition containing a specific self-crosslinking polysiloxane-modified polyhydroxypolyurethane resin for the topcoat layer on the surface of a thermoplastic polyolefin resin sheet as a base material molding obtained from the sheet
  • the product reacts with the heat-dissociated isocyanate group and the free hydroxyl group in the self-crosslinked polysiloxane-modified polyhydroxypolyurethane resin to form a self-crosslinked film as the topcoat layer (outermost layer).
  • It is excellent in scratch resistance, abrasion resistance, chemical resistance, and heat resistance, and has a performance that is excellent in uniform matting effect as required.
  • global warming and resource depletion have become a global issue in recent years. It can contribute to solving such problems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、一般式(1)で表せる5員環環状カーボネートポリシロキサン化合物と、アミン化合物との反応から誘導されてなる、その構造中に、ポリシロキサンセグメントと、マスキングされたイソシアネート基とを有する自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂、及びその製造方法である。 上記本発明によれば、従来技術で応用展開が進んでいないポリヒドロキシポリウレタン樹脂において、滑性、耐摩耗性、耐薬品性、非粘着性、耐熱性などに優れた製品等の提供を可能とし、しかも温暖化ガス削減の観点から有用な環境対応の新規な自己架橋型ポリヒドロキシポリウレタン樹脂を提供することができる。

Description

自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂、該樹脂を含む樹脂材料、該樹脂の製造方法、該樹脂を用いてなる擬革及び熱可塑性ポリオレフィン表皮材
 本発明の第1の形態は、新規な自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂、該樹脂を含む樹脂材料及びその製造方法に関する。さらに詳しくは、フィルム・成型材料、各種コーティング材、各種バインダーなどの形成材料に用いた場合に、滑性、耐摩耗性、耐薬品性、非粘着性、耐熱性に優れた製品とでき、しかも、製造原料に二酸化酸素を用い、樹脂中に二酸化炭素が固定できることから、地球環境破壊を阻止する観点からも有用な、自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂の技術に関するものである。
 本発明の第2の形態は、上記自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂を主成分とする樹脂組成物を用いて得られる擬革に関する。さらに詳しくは、風合い、滑性、耐擦傷性、耐摩耗性、耐薬品性、耐熱性に優れ、しかも、主成分として使用する樹脂が二酸化炭素を構造中に固定したものとできるため、地球環境破壊を阻止する観点からも有用な擬革に関する。
 本発明の第3の形態は、自動車の内装材や家電部品等に使用される熱可塑性ポリオレフィン樹脂製の表皮材に関する。特に、そのトップコート層の形成に上記の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂を用いることで、耐擦傷性、耐摩耗性、耐薬品性、耐熱性に優れ、好ましい実施形態では、そのトップコート層を均一な艶消し皮膜とできる熱可塑性ポリオレフィン樹脂製の表皮材に関する。
 二酸化炭素を製造原料としたポリヒドロキシポリウレタン樹脂は、以前から知られているが(例えば、特許文献1および2参照)、その応用展開は進んでいないのが実情である。その理由は、ポリヒドロキシポリウレタン樹脂は、同種系の高分子化合物として対比されるポリウレタン系樹脂に比べて、特性面で明らかに劣っていたからである。
 一方、近年、増加の一途をたどる二酸化炭素の排出に起因すると考えられている地球の温暖化現象は、世界的な問題となっており、二酸化炭素の排出量低減は、全世界的な重要課題である。さらに枯渇性石化資源(石油)問題の観点からも、バイオマス、メタンなどの再生可能資源への転換が、技術の世界的潮流となっている(例えば、非特許文献1および2)。
 上記したような背景下、本発明者らは、前記したポリヒドロキシポリウレタン樹脂を見直し、該樹脂の応用展開を可能とできる技術を提供することは、非常に有用であるとの認識をもつに至った。すなわち、ポリヒドロキシポリウレタン樹脂の原料である二酸化炭素は、容易に入手可能で、かつ、持続可能な炭素資源であり、この二酸化炭素を原料として固定したプラスチックを有効利用する技術を提供することは、近年、地球が直面している温暖化、資源枯渇などの重要課題を解決する有効な手段となり得ると考えられるからである。下記に挙げる擬革や表皮材が用いられている製品について、二酸化炭素を固定したポリヒドロキシポリウレタン樹脂が利用できれば、これら製品の使用量が多いこともあって極めて有用である。
(擬革)
 従来、袋物、鞄、靴、家具、衣料、車両内装材、電化製品などに擬革が使用されているが、この擬革用樹脂として、広くポリウレタン系樹脂が使用されている。上記「擬革」とは、天然皮革に似せて製造される皮革状製品の総称で、一般的には、人工皮革、合成皮革、塩化ビニルレザーに大別される。
 人工皮革は、擬革中で天然皮革に最も近似した構造を持ち、基布に不織布を使用する。一般的な人工皮革の製造方法としては、以下の方法がある。先ず、ポリウレタン系樹脂のジメチルホルムアミド(以下、DMFと略記)溶液を不織布に含浸後、湿式成膜(水中凝固)により多孔質状に凝固・乾燥する。その後、表面にさらにポリウレタン系樹脂をコーティングあるいはラミネートによる層を設けてスムース調とする場合と、表面を研削して起毛することによるスエード調とする方法がある。
 一方、合成皮革は、基布に織布や起毛布などの布地が使用され、一般的には、その製造方法の違いにより、乾式合成皮革と湿式合成皮革に大別される。ここで、乾式合成皮革を製造する方法としては、基布に直接ポリウレタン系樹脂を塗布し乾燥する方法と、離型紙上にポリウレタン系樹脂を塗布後、乾燥・フィルム化し、接着剤で基布と貼り合わせる方法がある。また、湿式合成皮革は、前述したポリウレタン系樹脂のDMF溶液を用いて、基布に含浸又は塗布後、水中凝固・乾燥させて多孔質層を形成させることで製造できる。さらに、上記のようにして乾式あるいは湿式の各方法で得られたそれぞれの表面に、さらにポリウレタン系樹脂を塗布あるいはラミネートして形成した層を設けてスムース調とする方法や、表面を研削して起毛することによるスエード調とする方法がある。
 先に述べたように、二酸化炭素の排出量低減は、全世界的に重要な課題となっているが、擬革の分野においても、環境対策に積極的に取り組むメーカーが多くなり、環境保全性に優れた材料を用いて擬革製品を構成する動きがある。例えば、有機溶剤を使用するポリウレタン系樹脂の代わりに、水系媒体に分散又は乳化可能なポリウレタン樹脂を使用し、VOC(揮発性有機化合物)排出量をできるだけ抑制することの検討や、カーボンニュートラルの観点から、植物由来原料を使用することの検討も盛んに行われている。しかしながら、従来製品と比べて性能に差があり実用化に問題があると言え、また、現在の地球規模での環境保全を実現するといった面からも、まだ不十分である(特許文献3~5)。
(熱可塑性ポリオレフィン樹脂製の表皮材)
 近年におけるゴミ問題および環境問題の深刻化に鑑み、車両内装材(インストルメントパネル、ドアトリムなど)や家電部品においては、使用後における廃材をできるだけ低減するため、その構成部材に対し、リサイクル化が強く要望されている。この観点から、上記部材の成形材料には、熱可塑性ポリオレフィン樹脂、例えば、ポリプロピレン樹脂(以下、PP樹脂と略記)、ABS樹脂、AS樹脂、ポリオレフィン系熱可塑性エラストマー(以下、TPO樹脂と略記)などが使用されている。しかしながら、これら熱可塑性樹脂ポリオレフィン樹脂は、表面における、接着性、耐擦傷性、耐摩耗性、耐薬品性が、従来使用されていた塩化ビニル樹脂などに比べ劣るため、これらの性能向上を目的として塗装を施す必要がある。また、高級感を与える意匠性の実現のために、或いは、特に自動車内装材の場合には、意匠性だけでなく運転者への防眩性の配慮などを考慮する必要がある。このため、熱可塑性ポリオレフィン基材の表面に種々の塗装を施して、トップコート層を形成することで、より良好な熱可塑性ポリオレフィン樹脂製の表皮材とするための機能付与が行われている。
 従来、この場合に使用される塗料には、基材にするPP樹脂やTPO樹脂などのポリオレフィン系樹脂に対して接着性が良好な塩素化ポリプロピレン樹脂を用いる方法が提案されてきた。具体的には、例えば、塩素化ポリプロピレン変性アクリル樹脂をバインダー樹脂とし、これに無機系体質顔料(シリカ、タルク)、アクリル樹脂粒子などの艶消剤を配合した塗料を用いることや、塩素化ポリプロピレン系プライマーを塗布し、その上にポリエステル樹脂やポリウレタン樹脂を有する塗料を塗布する方法が提案されてきた。
 さらに、最近では、環境問題の高まりから、環境対策に積極的に取り組むメーカーが多くなり、その機能性のみならず、環境保全性に優れた材料を用いて製品を構成する動きがある。例えば、前記塗料に使用する有機溶剤から特定の溶剤(トルエンなど)を選択しないことについての検討や、有機溶剤の代わりに水系樹脂を使用してVOC(揮発性有機化合物)排出量をできるだけ抑制する検討も盛んに行われている。しかし、現在の地球規模での環境保全性を実現するといった面からは、まだ不十分である(特許文献6~8参照)。また、先に述べたように、二酸化炭素の排出量低減は全世界的に重要な課題となっており、二酸化炭素を原料とする材料が開発され、これを利用できれば極めて有用である。
米国特許第3,072,613号公報 特開2000-319504号公報
特開2009-144313号公報 特開2007-270373号公報 特開2005-154580号公報
特開2006-307015号公報 特開2004-51901号公報 特開2006-176615号公報
N.Kihara,T.Endo,J.Org.Chem.,1993,58,6198 N.Kihara,T.Endo,J.Polymer Sci.,PartA Polmer Chem.,1993,31(11),2765
 しかしながら、先に述べたように、ポリヒドロキシウレタン樹脂は、同種系の高分子材料として対比されるポリウレタン系樹脂に比べて特性面で明らかに劣り、その応用展開は進んでいないのが実情である。このため、この二酸化炭素を原料としてなるポリヒドロキシポリウレタン樹脂を、産業用として利用可能なものにするには、その性能向上を図り、新たな付加価値を付ける必要性がある。つまり、地球環境保護の観点に加え、一層の、耐熱性、耐薬品性、耐摩耗性などといった、産業用材料として不可欠な性能を向上させた樹脂の開発が要望される。
 したがって、本発明の第1の目的は、地球温暖化、資源枯渇などの問題解決に資すると考えられる有用な材料でありながら、その応用展開が進んでいないポリヒドロキシポリウレタン樹脂を、産業用として有効利用できる材料とする技術を提供することにある。より具体的には、該樹脂によって形成される製品が、環境対応製品でありながら、耐熱性、耐薬品性、耐摩耗性などの性能においても十分に満足できるものとなる自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂を提供することを目的とする。
 また、本発明の第2の目的は、特に、従来の擬革と遜色なく、風合いや、表面の耐擦傷性、耐摩耗性、耐薬品性、耐熱性に優れると共に、二酸化炭素を樹脂中に取り込んで固定した材料を利用して擬革を製造することで、地球温暖化ガスとして世界的に問題視されている二酸化炭素削減に寄与し得る、地球環境保全の観点からも優れた環境対応製品として有用な擬革を提供することである。
 また、本発明の第3の目的は、耐擦傷性、耐摩耗性、耐薬品性および耐熱性の効果に優れ、必要によっては均一な艶消効果にも優れる、さらに、これらの効果に加えて、地球環境保全の観点から、製品の構成原料に二酸化炭素を取り入れることができる、温暖化ガスである二酸化炭素削減に寄与することによる環境対応製品としても有用な熱可塑性ポリオレフィン樹脂表皮材を提供することである。ここで、熱可塑性ポリオレフィン樹脂製の表皮材とは、熱可塑性ポリオレフィン樹脂製のシート基材の表面に、表面の機能性を付与する目的で、直接又はプライマー層を介してトップコート層が形成されてなるものを意味する。
 上記目的は以下の本発明によって達成される。すなわち、本発明の第1の形態では、下記一般式(1)で表せる5員環環状カーボネートポリシロキサン化合物とアミン化合物との反応から誘導された、その構造中に、ポリシロキサンセグメントと、マスキングされたイソシアネート基とを有することを特徴とする自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂を提供する。
Figure JPOXMLDOC01-appb-I000002
式中のR1は炭素数1~12のアルキレン基(該基中にO、S、又はNの各元素及び/又は-(C24O)b-で連結されていてもよい)を表す。式中のR2は、ないか、または、炭素数2~20のアルキレン基を表し、R2は、脂環族基又は芳香族基に連結していてもよい。bは1~300の数を表わし、aは1~300の数を表す。]
 該樹脂の好ましい形態としては、下記のものが挙げられる。
 前記5員環環状カーボネートポリシロキサン化合物が、エポキシ変性ポリシロキサン化合物と二酸化炭素との反応物であって、かつ、その構造中に二酸化炭素を1~25質量%の範囲で含んでいること;樹脂中におけるポリシロキサンセグメントの含有量が、樹脂分子中のシロキサン含有量で1~75質量%であること;前記マスキングされたイソシアネート基は、有機ポリイソシアネート基とマスキング剤との反応生成物であって、熱処理することによりマスキングされた部分が解離されてイソシアネート基を生成し、その構造中の水酸基と反応して自己架橋するものであることである。
 また、本発明は、別の実施形態として、上記自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂の製造方法であって、少なくとも一個の遊離のイソシアネート基と、マスキングされたイソシアネート基とを有する変性剤を用い、該変性剤の遊離のイソシアネート基を、5員環環状カーボネートポリシロキサン化合物とアミン化合物との反応から誘導したポリシロキサン変性ポリヒドロキシポリウレタン樹脂中の水酸基と反応させて、その構造中にマスキングされたイソシアネート基を有するポリシロキサン変性ポリヒドロキシポリウレタン樹脂を得ることを特徴とする自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂の製造方法を提供する。
 該製造方法の好ましい形態としては、下記のものが挙げられる。上記5員環環状カーボネートポリシロキサン化合物に、エポキシ変性ポリシロキサン化合物と二酸化炭素との反応物を用い、該化合物とアミン化合物との反応からポリシロキサン変性ポリヒドロキシポリウレタン樹脂を誘導して、ポリシロキサン変性ポリヒドロキシポリウレタン樹脂中に二酸化炭素を1~25質量%の範囲で含有させること;前記変性剤が、有機ポリイソシアネート化合物とマスキング剤との反応生成物であることである。
 また、本発明は、別の実施形態として、上記の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂に、他のバインダー樹脂を混合してなることを特徴とする樹脂材料を提供する。
 また、本発明の第2の形態では、上記一般式(1)で表せる5員環環状カーボネートポリシロキサン化合物とアミン化合物との反応から誘導された、その構造中にマスキングされたイソシアネート基を有する本発明の第1の形態の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂を主成分とする樹脂組成物を、基布に充填ないしは積層せしめたことを特徴とする擬革を提供する。
 該擬革の好ましい形態としては、下記のものが挙げられる。
 前記5員環環状カーボネートポリシロキサン化合物がエポキシ変性ポリシロキサン化合物と二酸化炭素との反応物であって、かつ、前記自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂の構造中に二酸化炭素を1~25質量%の範囲で含んでいる上記の擬革;前記マスキングされたイソシアネート基は、有機ポリイソシアネート基とマスキング剤との反応生成物であって、熱処理することによりマスキングされた部分が解離されてイソシアネート基を生成し、自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂の構造中の水酸基と反応して自己架橋するものである上記の擬革。前記樹脂組成物が、さらに前記自己架橋型ポリシロキサン変性ポリウレタン樹脂と異なる他の樹脂を含む上記の擬革である。
 また、本発明の第3の形態では、熱可塑性ポリオレフィン樹脂シートと、該シート上に直接形成されたトップコート層、或いは、上記シート上に形成されたプライマー層を介して形成されたトップコート層のいずれかを有し、かつ、該トップコート層が、上記一般式(1)で表せる5員環環状カーボネートポリシロキサン化合物とアミン化合物との反応から誘導された、その構造中にマスキングされたイソシアネート基を含有する本発明の第1の形態の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂を主成分としてなることを特徴とする熱可塑性ポリオレフィン樹脂製の表皮材を提供する。
 該表皮材の好ましい実施形態としては、下記のものが挙げられる。
 前記5員環環状カーボネートポリシロキサン化合物が、エポキシ変性ポリシロキサン化合物と二酸化炭素とを反応させて得られたものであって、かつ、前記自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂の構造中に、原料由来の二酸化炭素を1~25質量%含有してなること。前記自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂の分子中に占めるポリシロキサンセグメントの含有量が、1~75質量%である熱可塑性ポリオレフィン樹脂製の表皮材;
 前記マスキングされたイソシアネート基は、有機ポリイソシアネート基とマスキング剤との反応生成物であって、熱処理することによりマスキングされた部分が解離されてイソシアネート基を生成し、自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂の構造中の水酸基と反応して自己架橋するものである熱可塑性ポリオレフィン樹脂製の表皮材;
 前記自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂が、5員環環状カーボネートポリシロキサン化合物とアミン化合物との反応から誘導されたポリシロキサン変性ポリヒドロキシポリウレタン樹脂を変性剤によって変性してなるものである熱可塑性ポリオレフィン樹脂製の表皮材;
 前記トップコート層が、自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂100質量部に対して、艶消剤として、有機系微粉末或いは無機系微粉末から選ばれる一種または二種以上の組み合わせからなる物質を1~150質量部の割合で配合した組成物によって形成されている熱可塑性ポリオレフィン樹脂製の表皮材;
 前記トップコート層が、前記自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂に加えて、該樹脂と異なる他の樹脂を含む組成物によって形成されている熱可塑性ポリオレフィン樹脂製の表皮材である。
 本発明の第1の形態によれば、地球温暖化、資源枯渇などの問題解決に資すると考えられる有用な材料でありながら、その応用展開が進んでいないポリヒドロキシポリウレタン樹脂を、産業用として有効利用できる材料となり得る自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂の提供が可能になる。より具体的には、本発明によれば、形成される製品が、二酸化炭素を取り入れた、温暖化ガス削減に寄与できる環境対応製品でありながら、耐熱性、耐薬品性、耐磨耗性などの性能においても十分に満足できるものとなる自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂が提供される。
 また、本発明の第2の形態によれば、従来の擬革と遜色なく、風合いや表面の耐擦傷性、耐摩耗性、耐薬品性、耐熱性に優れると共に、二酸化炭素を樹脂中に取り込んで固定した材料を擬革の形成材料に利用して製造することで、地球温暖化ガスとして世界的に問題視されている二酸化炭素削減に寄与し得る、地球環境保全の観点からも優れた環境対応製品である有用な擬革を提供される。
 また、本発明の第3の形態によれば、熱可塑性ポリオレフィン樹脂製の表皮材を構成するトップコート層に、少なくとも、分子中にマスキングされたイソシアネート基を含有する自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂を用いることで、その表面が、耐擦傷性、耐摩耗性、耐薬品性及び耐熱性に優れ、必要であれば均一な艶消効果に優れるものとでき、さらに、これらの優れた性能に加え、その形成材料に、二酸化炭素を樹脂中に取り入れ固定した材料を利用できることから、温暖化ガスとして世界的に問題視されている二酸化炭素の削減にも寄与し得る、環境対応製品でもある熱可塑性ポリオレフィン樹脂製の表皮材が提供される。
 次に、好ましい実施の形態を挙げて本発明をさらに詳しく説明する。本発明を特徴づける自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂は、下記一般式(1)で表される5員環環状カーボネートポリシロキサン化合物と、アミン化合物との反応から誘導された、ポリシロキサンセグメントと、マスキングされたイソシアネート基とを有するものである。
Figure JPOXMLDOC01-appb-I000003
式中のR1は、炭素数1~12のアルキレン基(該基中にO、S、またはNの各元素及び/又は-(C24O)b-で連結されていてもよい)を表す。式中のR2は、ないか、または、炭素数2~20のアルキレン基を表し、R2は、脂環族基または芳香族基に連結していてもよい。bは1~300の数を表わし、aは1~300の数を表す。]
 本発明を特徴づける上記の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂は、少なくとも一個の遊離のイソシアネート基と、マスキングされたイソシアネート基とを有する変性剤とを用い、該変性剤の遊離のイソシアネート基を、5員環環状カーボネートポリシロキサン化合物とアミン化合物との反応から誘導したポリシロキサン変性ポリヒドロキシポリウレタン樹脂中の水酸基と反応させることで得ることができる。そして、該5員環環状カーボネートポリシロキサン化合物は、エポキシ変性ポリシロキサン化合物と二酸化炭素を反応させて得られるため、上記の己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂は、環境保全性にも資する材料となる。以下に、各成分について説明する。
[自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂]
(変性剤)
<有機ポリイソシアネート化合物>
 本発明の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂の製造方法で使用する変性剤の構成成分について説明する。該変性剤としては、有機ポリイソシアネート化合物とマスキング剤との反応生成物を用いることができる。本発明で使用できる有機ポリイソシアネート化合物としては、脂肪族或いは芳香族化合物中に少なくとも2個のイソシアネート基を有する有機化合物が挙げられ、これらは、従来からポリウレタン樹脂の合成原料として広く使用されている。これらの公知の有機ポリイソシアネート化合物は、いずれも本発明において有用である。本発明で使用できる特に好ましい有機ポリイソシアネート化合物としては、以下のものが挙げる。
 例えば、1,4-テトラメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート)、4,4’-ジシクロヘキシルメタンジイソシアネート、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート、トリジンジイソシアネートおよびキシリレンジイソシアネート等を例示することができる。さらに、これらの有機ポリイソシアネート化合物と他の化合物との付加体、例えば、下記構造式のものも好適に使用できる。しかし、本発明は、これらに限定されない。
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
<マスキング剤>
 本発明で使用する変性剤は、少なくとも一個の遊離のイソシアネート基と、マスキングされたイソシアネート基とを有するものであり、上記したような有機ポリイソシアネート化合物と、下記に挙げるようなマスキング剤との反応生成物として得ることができる。マスキング剤としては、下記のものが使用できる。アルコール系、フェノール系、活性メチレン系、酸アミド系、イミダゾール系、尿素系、オキシム系、ピリジン系の化合物などであり、これらを単独あるいは混合して使用してもよい。具体的なマスキング剤としては、下記に挙げるものが使用できる。
 アルコール系のマスキング剤としては、メタノール、エタノール、プロパノール、ブタノール、2-エチルヘキサノール、メチルセロソルブ、シクロヘキサノールなどが挙げられる。フェノール系のマスキング剤としては、フェノール、クレゾール、エチルフェノール、ノニルフェノールなどが挙げられる。活性メチレン系のマスキング剤としては、マロン酸ジメチル、マロン酸ジエチル、アセト酢酸メチル、アセト酢酸エチル、アセチルアセトンなどが挙げられる。酸アミド系のマスキング剤としては、アセトアニリド、酢酸アミド、ε-カプロラクタム、γ-ブチロラクタムなどが挙げられる。イミダゾール系のマスキング剤としては、イミダゾール、2-メチルイミダゾールなどが挙げられる。尿素系のマスキング剤としては、尿素、チオ尿素、エチレン尿素などが挙げられる。オキシム系のマスキング剤としては、ホルムアミドオキシム、アセトオキシム、メチルエチルケトオキシム、シクロヘキサノンオキシムなどが挙げられる。ピリジン系のマスキング剤としては、2-ヒドロキシピリジン、2-ヒドロキシキノリンなどが挙げられる。
<変性剤の合成方法>
 上記に列挙したような有機ポリイソシアネート化合物と、上記に列挙したようなマスキング剤とを反応させることで、本発明で用いる、少なくとも一個の遊離イソシアネート基を有し、かつ、他はマスキングされたイソシアネート基を有する変性剤が合成される。この場合に用いる合成方法は特に限定されないが、例えば、上記の如きマスキング剤と、上記の如き有機ポリイソシアネート化合物とを、1分子中でイソシアネート基が1個以上過剰になる官能基比で、有機溶媒および触媒の存在下または不存在下において、0~150℃、好ましくは20~80℃の温度で、30分~3時間反応させることによって得ることができる。
(ポリシロキサン変性ポリヒドロキシポリウレタン樹脂)
 上記したような方法で得られる特定の変性剤によって変性されてなる、本発明のポリシロキサン変性ポリヒドロキシポリウレタン樹脂は、特定の5員環環状カーボネートポリシロキサン化合物と、アミン化合物との反応により得ることができる。以下に、この際に用いる各成分について説明する。
<5員環環状カーボネートポリシロキサン化合物>
 本発明で使用する前記一般式(1)で表せる5員環環状カーボネートポリシロキサン化合物は、下記[式-A]で示されるように、エポキシ変性ポリシロキサン化合物と二酸化炭素とを反応させて製造することができる。さらに詳しくは、エポキシ変性ポリシロキサン化合物を、有機溶媒の存在下または不存在下、および触媒の存在下、40℃~150℃の温度で、常圧または僅かに高められた圧力下、10~20時間二酸化炭素と反応させることによって得ることができる。
Figure JPOXMLDOC01-appb-I000008
 上記の合成の際に好適に使用できるエポキシ変性ポリシロキサン化合物としては、例えば、次のような化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
 以上列記したエポキシ変性ポリシロキサン化合物は、本発明において使用することができる好ましい化合物であって、本発明はこれらの例示の化合物に限定されるものではない。従って、上述の例示の化合物のみならず、その他、現在市販されており、市場から容易に入手し得る化合物は、いずれも本発明において使用することができる。
<触媒及び反応>
 上記したようなエポキシ変性ポリシロキサン化合物と、二酸化炭素の反応において使用される触媒としては、塩基触媒およびルイス酸触媒が挙げられる。
 塩基触媒としては、トリエチルアミン、トリブチルアミンなどの第三級アミン類、ジアザビシクロウンデセン、ジアザビシクロオクタン、ピリジンなどの環状アミン類、リチウムクロライド、リチウムブロマイド、フッ化リチウム、塩化ナトリウムなどのアルカリ金属塩類、塩化カルシウムなどのアルカリ土類金属塩類、テトラブチルアンモニウムクロライド、テトラエチルアンモニウムブロマイド、ベンジルトリメチルアンモニウムクロライド、などの四級アンモニウム塩類、炭酸カリウム、炭酸ナトリウムなどの炭酸塩類、酢酸亜鉛、酢酸鉛、酢酸銅、酢酸鉄などの金属酢酸塩類、酸化カルシウム、酸化マグネシウム、酸化亜鉛などの金属酸化物、テトラブチルホスホニウムクロリドなどのホスホニウム塩類が挙げられる。
 ルイス酸触媒としては、テトラブチル錫、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫オクトエートなどの錫化合物が挙げられる。
 上記触媒の量は、エポキシ変性ポリシロキサン化合物50質量部当たり、0.1~100質量部とすることが好ましい。さらには0.3~20質量部とするとよい。上記使用量が0.1質量部未満では、触媒としての添加効果が小さく、100質量部を超えると、最終樹脂の諸性能を低下させる場合があるので好ましくない。しかし、残留触媒が重大な性能低下を引き起こすような場合は、反応終了後に純水で洗浄して、残留触媒を除去する構成としてもよい。
 エポキシ変性ポリシロキサン化合物と二酸化炭素の反応において、使用することができる有機溶媒としては、例えば、ジメチルホルムアミド、ジメチルスルホオキシド、ジメチルアセトアミド、N-メチルピロリドン、N-エチルピロリドン、テトラヒドロフランなどが挙げられる。また、これら有機溶剤と他の貧溶剤、例えば、メチルエチルケトン、キシレン、トルエン、テトラヒドロフラン、ジエチルエーテル、シクロヘキサノンなどの混合系で使用してもよい。
 本発明で用いるポリシロキサン変性ポリヒドロキシポリウレタン樹脂は、下記[式-B]で示されるように、上記のようにして得られた5員環環状カーボネートポリシロキサン化合物と、アミン化合物とを、有機溶媒の存在下、20℃~150℃の温度下で反応させることで得ることができる。
Figure JPOXMLDOC01-appb-I000014
<アミン化合物>
 上記反応で使用することのできるアミン化合物としては、ジアミンが好ましいが、従来、ポリウレタン樹脂の製造に使用されているものがいずれも使用でき、特に限定されない。例えば、メチレンジアミン、エチレンジアミン、トリメチレンジアミン、1,3-ジアミノプロパン、ヘキサメチレンジアミン、オクタメチレンジアミンなどの脂肪族ジアミン;フェニレンジアミン、3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン、4,4’-メチレンビス(フェニルアミン)、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、メタキシリレンジアミン、パラキシリレンジアミンなどの芳香族ジアミン;1,4-シクロヘキサンジアミン、4,4’-ジアミノシクロヘキシルメタン、1,4’-ジアミノメチルシクロヘキサン、イソホロンジアミンなどの脂環族ジアミン;モノエタノールジアミン、エチルアミノエタノールアミン、ヒドロキシエチルアミノプロピルアミンなどのアルカノールジアミンが挙げられる。
 以上列記したアミン化合物は、本発明において使用する好ましい化合物であって、本発明はこれらの例示の化合物に限定されるものではない。従って、上述の例示の化合物のみならず、その他、現在市販されており、市場から容易に入手し得る化合物は、いずれも本発明において使用することができる。
 上記のようにして得られたポリシロキサン変性ポリヒドロキシポリウレタン樹脂は、その樹脂中におけるポリシロキサンセグメントの占める割合が、樹脂分子に対する該セグメントの含有量で、1~75質量%であることが好ましい。1質量%未満ではポリシロキサンセグメントに基づく表面エネルギーに伴う機能の発現が不十分となる。また、75質量%を超えるとポリヒドロキシウレタン樹脂の機械強度、耐摩耗性などの性能が不十分となるので好ましくない。より好ましくは2~70質量%であり、さらに好ましくは5~60質量%である。
<物性>
 また、本発明で使用するポリシロキサン変性ポリヒドロキシポリウレタン樹脂は、その数平均分子量(GPCで測定した標準ポリスチレン換算値)が、2,000~100,000程度であることが好ましく、より好ましくは5,000~70,000程度である。
 本発明で用いるポリシロキサン変性ポリヒドロキシポリウレタン樹脂は、その水酸基価が20~300mgKOH/gであることが好ましい。水酸基価が上記範囲未満であると、二酸化炭素削減効果が十分に得られ難く、一方、上記範囲を超えると、高分子化合物としての諸物性が十分に得られないおそれがあるので好ましくない。
(自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂)
 本発明の第1の形態で提供する自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂は、それぞれ上述のようにして得られた、変性剤と、ポリシロキサン変性ポリヒドロキシポリウレタン樹脂とを反応させることによって得られる。詳しくは、上記ポリシロキサン変性ポリヒドロキシポリウレタン樹脂中の水酸基と、該変性剤中の少なくとも一個の遊離したイソシアネート基とが反応することによって得られる。
 本発明の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂における変性剤による変性率は、2~60%であることが好ましい。変性率が2%未満であると、十分な架橋が起こらないので、製品の耐熱性や、耐薬品性などが不足するおそれがあるので、好ましくない。一方で、60%を超えると、解離したイソシアネート基が反応をせずに残存する可能性が増すおそれがあるので、好ましくない。なお、変性率は下記のようにして算出する。
 変性率(%)={1-(変性後の樹脂の水酸基÷変性前の樹脂の水酸基)}×100
 変性剤と、ポリシロキサン変性ポリヒドロキシポリウレタン樹脂との反応は、有機溶媒および触媒の存在下または不存在下で、0~150℃、好ましくは20~80℃の温度で、30分~3時間反応させればよく、当該反応によって本発明の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂を容易に得ることができる。但し、反応時にはマスキング剤の解離温度よりも低い温度で反応させる点に注意し、合成されたポリシロキサン変性ポリヒドロキシポリウレタン樹脂が、その構造中にマスキングされたイソシアネート基を有するものとなるようにする必要がある。
[自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂の使用]
 上記のようにして得られる本発明の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂は、そのまま、フィルム・成型材料、各種コーティング材、各種塗料、各種バインダーなどとして用いることができ、これにより、滑性、耐摩耗性、耐薬品性、非粘着性、耐熱性、といった性能に優れた製品などを得ることができる。各種用途や皮膜の形成に際しては、樹脂特性の調整などを目的として、本発明の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂に、従来公知の各種樹脂をバインダー樹脂等として混合して使用することもできる。この際に使用するバインダー樹脂としては、自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂の構造中のマスキング部分が解離することによって生成するイソシアネート基と、化学的に反応し得るものが好ましい。しかし、これに限定されず、上記のような反応性を有していない樹脂であっても、目的に応じて適宜に本発明の自己架橋型ポリシロキサン変性ポリヒドロキシウレタン樹脂と併用することができる。
 本発明の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂と併用するバインダー樹脂としては、従来から用いられている各種樹脂が使用でき、特に限定されない。例えば、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリブタジエン樹脂、シリコーン樹脂、メラミン樹脂、フェノール樹脂、ポリ塩化ビニル樹脂、セルロース樹脂、アルキッド樹脂、変性セルロース樹脂、フッ素樹脂、ポリビニルブチラール樹脂、エポキシ樹脂、ポリアミド樹脂などを使用することができる。また、各種樹脂をシリコーンやフッ素で変性した樹脂なども使用することができる。これらのバインター樹脂を併用する場合、その使用量は、作成する製品や使用目的によっても異なるが、本発明の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂100質量部に対して5~90質量部、より好ましくは60質量部以下を添加するとよい。勿論、本発明の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂の使用割合が多いほど、より好ましい環境対応製品となる。
 本発明の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂では、熱処理することによりマスキングされた部分が解離してイソシアネート基を生成する。そして、その生成したイソシアネート基と、ポリシロキサン変性ポリヒドロキシポリウレタン樹脂中の水酸基とが反応し、自己架橋することで架橋樹脂を生成する。このため、本発明の樹脂を使用することで、耐熱性、耐摩耗性、耐薬品性等に優れた製品等とすることができる。これは、ポリシロキサンセグメントが、ポリウレタン樹脂の表面に配向することから、ポリシロキサンセグメントの持つ耐熱性、滑り性、非粘着性などの優れた性能を得ることができたためと考えられる。また、本発明の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂は、5員環環状カーボネートポリシロキサン化合物を用いて合成されるが、前記したように、該5員環環状カーボネートポリシロキサン化合物は、エポキシ変性ポリシロキサン化合物と二酸化炭素を反応させて得られるものであるため、樹脂中に二酸化炭素を取り入れ、固定することができる。このことは、本発明によって、温暖化ガス削減の観点からも有用な、従来品では到達できなかった環境保全対応材料及び製品の提供が可能となることを意味している。
 以上の如く本発明の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂は、各種成型材料、合成皮革や人工皮革材料、繊維コーティング材、表面処理材、感熱記録材料、剥離性材料、塗料、印刷インキのバインダーなどとして非常に有用である。以下、その使用例である、擬革(合成皮革や人工皮革材料)及び熱可塑性ポリオレフィン樹脂製の表皮材について、それぞれ説明する。
[擬革]
(擬革用樹脂組成物)
 本発明の擬革は、上述した下記一般式(1)で表せる5員環環状カーボネートポリシロキサン化合物とアミン化合物との反応から誘導された、その構造中にマスキングされたイソシアネート基を有する自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂を主成分とする樹脂組成物(以下、擬革用樹脂組成物と呼ぶ)を、基布に充填ないしは積層せしめたことを特徴とする。
Figure JPOXMLDOC01-appb-I000015
式中のR1は、炭素数1~12のアルキレン基(該基中にO、S、又はNの各元素および/又は-(C24O)b-で連結されていてもよい)を表す。式中のR2は、ないか、又は、炭素数2~20のアルキレン基を表し、R2は、脂環族基又は芳香族基に連結していてもよい。bは1~300の数を表わし、aは1~300の数を表す。]
 該樹脂のマスキングされたイソシアネート基は、有機ポリイソシアネート基とマスキング剤との反応生成物であり、熱処理することによりマスキングされた部分が解離されてイソシアネート基を生成し、自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂の構造中の水酸基と反応し自己架橋するものである。このため、該樹脂を用いることで、風合いや表面の耐擦傷性、耐摩耗性、耐薬品性、耐熱性に優れる擬革を得ることができる。
 本発明で使用する地球環境保全の観点から特に好適な自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂は、5員環環状カーボネートポリシロキサン化合物が、エポキシ変性ポリシロキサン化合物と二酸化炭素との反応物であり、かつ、その構造中に二酸化炭素を1~25質量%の範囲で含むものである。また、擬革用樹脂組成物は、さらに上記以外の他の樹脂を含むものであってもよい。
 本発明の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂を擬革に用いる場合、該樹脂の変性剤による変性率は、2~60%の変性率が好ましい。この変性率の割合により、熱処理後の耐摩耗性、耐薬品性、耐熱性などの性能をある程度制御できるが、変性率が2%未満であると、十分な架橋が起こらず、擬革の製造に用いた場合に、耐熱性、耐薬品性などが不足するおそれがあるので好ましくない。一方で、変性率が60%を超えると、解離したイソシアネート基が反応せずに残存する可能性が増すので好ましくない。
 また、擬革用樹脂組成物は、擬革の製造に際し、有機溶剤溶液又は水分散体の形態で使用することが好ましい。該樹脂組成物を有機溶剤溶液の形態で使用する場合、以下の有機溶剤を使用することが好ましい。例えば、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルアセトアミド、N-メチルピロリドン、N-エチルピロリドンなどが挙げられる。また、該有機溶剤溶液100質量%中における樹脂濃度は10~60質量%であることが好ましい。樹脂濃度が10質量%未満では、湿式成膜での成膜性に劣るとともに、皮膜の厚みが不足し、そのため、得られる擬革の強度不足が生じるおそれがあるので好ましくない。一方、樹脂濃度が60質量%を超えると、湿式成膜での多孔質層の形成が不完全であるとともに、膜中への有機溶剤が残留するなどの問題が生じるおそれがあるので好ましくない。VOC対策の観点からも、過剰な有機溶剤の使用は好ましくない。
 擬革用樹脂組成物を水分散体の形態で用いる場合には、以下のようにして使用することが好ましい。まず、自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂中の、水酸基又はNH基を酸無水物で半エステル化又は半アミド化することにより、該樹脂中にカルボキシル基を導入する。その後、該カルボキシル基を、アンモニア、有機アミン化合物、無機塩基などで中和し、カルボン酸塩を形成して自己乳化型の水分散体として使用することが好ましい。ここで使用する酸無水物としては、例えば、無水フタル酸、無水トリメリット酸、ヘキサヒドロ無水フタル酸などが挙げられる。また、有機アミン化合物としては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジエチルエタノールアミン、アミノエチルエタノールアミンなどが挙げられる。また、自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂を主成分とする樹脂組成物は、常法に従って界面活性剤により水中に乳化させた水分散体であってもよい。
 また、上記擬革用樹脂組成物は、含浸や塗布や被覆などの作業適正や、得られる擬革の風合いや諸性能の調整のために、従来公知の各種他の樹脂を混合して使用することができる。混合使用する他の樹脂は、自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂中のマスキング剤が解離して生成するイソシアネート基と化学的に反応し得るものが好ましいが、反応性を有していないものでも本発明では使用することができる。
 本発明で用いる擬革用樹脂組成物が、自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂と、これとは別の他の樹脂とを併用した形態である場合に用いる樹脂としては、従来から擬革の製造に用いられているポリウレタン系樹脂が好ましいが、特に限定されない。例えば、アクリル樹脂、ポリエステル樹脂、ポリブタジエン樹脂、シリコーン樹脂、メラミン樹脂、フェノール樹脂、フェノキシ樹脂、塩化ビニル樹脂、塩化ビニル-酢酸ビニル樹脂、セルロース樹脂、アルキッド樹脂、変性セルロース樹脂、フッ素樹脂、ポリビニルブチラール樹脂、エポキシ樹脂、ポリアミド樹脂などを使用することができる。また、これらの樹脂を併用する場合、その使用量は本発明の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂組成物に対して5~90質量%である。本発明の自己架橋型ポリヒドロキシポリウレタン樹脂の使用割合が多いほど、得られる擬革は、より好ましい環境対応製品となる。
 また、本発明で用いる自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂を主成分とする樹脂組成物には、上記各種樹脂以外に、酸化防止剤、紫外線吸収剤、加水分解防止剤、顔料、染料、難燃剤、充填材などの各種添加剤を配合してもよい。
(擬革の製造方法)
 本発明の擬革は、先に説明した本発明の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂を主成分とする樹脂組成物を、基布に充填或いは積層せしめたことを特徴とする。当該擬革の製造方法については、何ら限定されるものではなく、公知の人工皮革、合成皮革の製法を利用できる。また、本発明の擬革には、基布の上に可塑剤入りの塩化ビニル樹脂層を設け、これを基材シートとし、該基材シートの上に本発明を特徴づける自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂を主成分とする樹脂組成物からなる層を形成したものも含まれる。
 本発明の擬革を構成する基布(基材シート)としては、擬革製造に従来から使用されている基布(基材シート)がいずれも使用でき、特に制限されない。
 本発明の擬革は、風合いや表面の耐擦傷性、耐摩耗性、耐薬品性、耐熱性を有するものとなる。また、本発明の擬革に使用する自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂は、5員環環状カーボネートポリシロキサン化合物を用いて合成されるが、前記したように、該5員環環状カーボネートポリシロキサン化合物は、エポキシ化合物と二酸化炭素を反応させて得られるものであるため、樹脂中に二酸化炭素を取り入れ、固定することができる。このことは、本発明によって、温暖化ガス削減の観点からも有用な従来品では到達できなかった環境保全対応製品としての擬革が提供可能となることを意味している。
[熱可塑性ポリオレフィン樹脂製の表皮材]
(表皮材用樹脂組成物)
 本発明の熱可塑性ポリオレフィン樹脂製の表皮材は、熱可塑性ポリオレフィン樹脂シートと、該シート上に直接形成されたトップコート層、或いは、上記シート上に形成されたプライマー層を介して形成されたトップコート層のいずれかを有し、かつ、該トップコート層が、上述した、本発明の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂を主成分としてなる樹脂組成物によって形成されたものであることを特徴とする。該樹脂のマスキングされたイソシアネート基は、有機ポリイソシアネート基とマスキング剤との反応生成物であり、熱処理することによりマスキングされた部分が解離されてイソシアネート基を生成し、自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂の構造中の水酸基と反応し自己架橋するものである。このため、該樹脂を用いることで、従来、表皮材に広く使用されていた塩化ビニル樹脂製などのものと風合いにおいて遜色なく、その表面の、耐擦傷性、耐摩耗性、耐薬品性、耐熱性に優れる熱可塑性ポリオレフィン樹脂製の表皮材を得ることができる。
 本発明の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂を表皮材に用いる場合、該樹脂の変性剤による変性率は、2~60%であることが好ましい。この場合の変成率が2%未満であると、十分な架橋が起こらず、本発明の熱可塑性ポリオレフィン樹脂表皮材の製造に用いた場合に、表面の耐熱性、耐薬品性などが不足するおそれがあるので好ましくない。一方で、60%を超えると、解離したイソシアネート基が反応せずに残存する可能性が増すので好ましくない。
 以下、本発明の熱可塑性ポリオレフィン樹脂製の表皮材を特徴づける、本発明の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂を主成分とする樹脂組成物によって形成されるトップコート層について説明する。
(トップコート層)
 本発明では、上述した自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂を用いてトップコート層を形成する際に、用途に応じては、防眩性などを配慮して艶消剤を配合してもよい。また、この際に用いる艶消剤としては、有機系微粉末または無機系微粉末が挙げられ、これらを一種または二種以上を組み合わせて使用することもできる。この際用いる有機系微粉末としては、特に制限されるものではなく、例えば、アクリル樹脂粒子、スチレン樹脂粒子、スチレン-アクリル樹脂粒子、フェノール樹脂粒子、メラミン樹脂粒子、アクリル-ポリウレタン樹脂粒子、ポリウレタン樹脂粒子、ポリエステル樹脂粒子、ナイロン樹脂粒子、シリコーン樹脂粒子、ポリエチレン樹脂粒子などが挙げられる。これら粉末としては、平均粒径が0.1~10μmの範囲のものが好ましい。また、その形状は、形成される塗膜の艶消性が特に優れることから、球状または略球状のものが実用上好ましい。
 また、上記において用いる無機系微粉末としては、タルク、マイカ、炭酸カルシウム、硫酸バリウム、炭酸マグネシウム、クレー、アルミナ、シリカ、炭素繊維、ガラス繊維、金属繊維、カーボンブラック、酸化チタン、モリブデン、水酸化マグネシウム、ベントナイト、黒鉛などが挙げられる。これらの粉末としては、粒子の平均粒径が10μm以下であれば本発明の目的に則し好適であるが、できるだけ小さいほうが好ましい。
 上記に挙げたような艶消剤の使用量は、自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂100質量部に対し1~150質量部、好ましくは3~60質量部の範囲で用いるとよい。1質量部未満では艶消効果が充分でなく、また、150質量部を超えると塗膜の機械物性が大きく低下するため好ましくない。
 本発明で、熱可塑性ポリオレフィン樹脂シートにトップコート層を形成する際には、上記で説明した自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂を主成分とする樹脂組成物、用途によっては、これに艶消剤を含有してなる樹脂組成物(以下、これらを「表皮材用樹脂組成物」と略記する)を使用する。トップコート層を形成するに際し、該樹脂組成物は、有機溶剤溶液または水分散体の形態で使用することが好ましい。該樹脂組成物を有機溶剤溶液の形態で使用する場合、以下の有機溶剤を使用することが好ましい。例えば、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルアセトアミド、N-メチルピロリドン、N-エチルピロリドンなどが挙げられる。また、これらの有機溶剤溶液100質量%中における樹脂濃度は3~60質量%であることが好ましい。樹脂濃度が3質量%未満では、成膜性に劣るとともに、皮膜の厚みが不足し、そのため強度不足が生じるおそれがあるので好ましくない。一方、樹脂濃度が60質量%を超えると、乾燥後の皮膜の形成が不完全であるとともに、皮膜中への有機溶剤の残留などの問題が生じるおそれがあるので好ましくない。
 また、自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂を主成分とする表皮材用樹脂組成物を水分散体の形態で使用する場合には、以下のようにして使用することが好ましい。まず、自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂中の、水酸基又はNH基を酸無水物で半エステル化又は半アミド化することにより、樹脂中にカルボキシル基を導入する。その後、該カルボキシル基を、アンモニア、有機アミン化合物、無機塩基などで中和し、カルボン酸塩を形成して自己乳化型の水分散体として使用することが好ましい。ここで使用する酸無水物としては、例えば、無水フタル酸、無水トリメリット酸、ヘキサヒドロ無水フタル酸などが挙げられる。また、有機アミン化合物としては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジエチルエタノールアミン、アミノエチルエタノールアミンなどが挙げられる。また、自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂は、常法に従って界面活性剤により水中に乳化させた水分散体であってもよい。
 また、本発明で用いる表皮材用樹脂組成物は、基材である熱可塑性ポリオレフィン樹脂に対するスプレー適正およびコーティング適正、成膜性の向上のために、自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂に加えて、該樹脂と異なる他の樹脂を含むものであってもよい。他の樹脂としては、従来公知の各種のバインダー樹脂を混合して使用することができる。混合使用する他の樹脂は自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂中のマスキング剤が解離して生成するポリイソシアネート基と化学的に反応し得るものが好ましい。しかし、反応性を有していないものでも本発明では使用することができる。
 バインダー樹脂としては、熱可塑性ポリオレフィン樹脂の表皮用に従来から用いられているバインダー樹脂が使用でき、特に限定されない。例えば、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリブタジエン樹脂、シリコーン樹脂、メラミン樹脂、フェノール樹脂、ポリ塩化ビニル樹脂、セルロース樹脂、アルキッド樹脂、変性セルロース樹脂、フッ素樹脂、ポリビニルブチラール樹脂、エポキシ樹脂、ポリアミド樹脂などを使用することができる。また、これらのバインダー樹脂を併用する場合、その使用量は本発明の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂組成物に対して5~90質量部、より好ましくは、10~60質量部程度の範囲で用いるとよい。
 また、本発明で用いる表皮材用樹脂組成物には、その他、必要に応じて、塗面調整剤、流動性調整剤、紫外線吸収剤、分散剤、沈降防止剤などの各種塗料用添加剤を配合してもよい。
(熱可塑性ポリオレフィン樹脂シート)
 本発明の熱可塑性ポリオレフィン樹脂製の表皮材は、熱可塑性ポリオレフィン樹脂シート上に、上記した表皮材用樹脂組成物を直接又はプライマー層を介して塗布したトップコート層を有してなる。上記熱可塑性ポリオレフィン樹脂シートの種類としては、特に限定されないが、例えば、下記に挙げる材料から選択されるようなものが使用できる。例えば、低密度~高密度ポリエチレン(LDPE、LLDPE、HDPEなど)、ポリプロピレン、プロピレン-エチレン共重合体などのポリプロピレン、およびエチレン-プロピレンゴム(EPR)、エチレン-ブテンゴム(EBR)、エチレン-プロピレン-ジエンターポリマー(EDPM)などの熱可塑性ポリオレフィン樹脂からなる群から選ばれた少なくとも1種の樹脂からなるものが使用できる。中でも、優れた機械的強度とともに良好な柔軟性および弾性を有するために、ポリプロピレン樹脂、ポリオレフィン系熱可塑性エラストマーからなるものが好ましい。
 上記シートを構成する熱可塑性ポリオレフィン樹脂は表面が不活性なため、その表面への塗装物との接着性に劣ることが多い。このため、コロナ放電処理などにより表面を物理的に、或いは化学的に活性化した後、上述した表皮材用樹脂組成物を直接塗布してトップコート層を形成することが好ましい。また、塩素化ポリオレフィン系樹脂や、ポリエステル系樹脂とポリイソシアネート化合物、或いは、ポリウレタン樹脂とポリイソシアネート化合物を、基材シート上に塗布してプライマー層を形成した後、上述した表皮材用樹脂組成物を塗布して、プライマー層を介してトップコート層を形成することが好ましい。
(表皮材の製造方法)
 本発明の熱可塑性ポリオレフィン樹脂製の表皮材は、先に説明した本発明の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂を主成分として含み、必要に応じて艶消剤を添加してなる表皮材用樹脂組成物を用い、下記のようにして得ることができる。まず、熱可塑性ポリオレフィン樹脂シート上に、直接、又は該シート上に上記した化合物等によってプライマー層を形成する。その後、上述した表皮材用樹脂組成物を、刷毛塗り、スプレー、ロールコート、グラビア、浸漬などの公知の塗布方法で塗布する。その際に、乾燥後の厚みが3~20μm程度になるように樹脂組成物を塗布し、乾燥後80~170℃の温度で加熱処理することで、容易に基材シート上にトップコート層となる皮膜を形成できる。以上のようにして形成される、本発明のシート状の熱可塑性ポリオレフィン樹脂製の表皮材は、その後、真空成形によって所定の形状に加工されて、例えば、車両内装材や家電部材とされる。
 本発明の熱可塑性ポリオレフィン樹脂製の表皮材は、そのトップコート層の形成材料に、先に説明した特有の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂を用いることで、耐擦傷性、耐摩耗性、耐薬品性、耐熱性に優れたものとなり、更には、必要に応じて均一な艶消効果に優れるものとなる。
 また、本発明で使用する樹脂の合成に用いられる5員環環状カーボネートポリシロキサン化合物は、二酸化炭素を製造原料とすることで、樹脂中に二酸化炭素を取り入れ固定することができるため、地球温暖化の原因とされている二酸化炭素の削減の観点からも有用な、従来品では到達できなかった環境対応材料製品としての熱可塑性ポリオレフィン樹脂製の表皮材の提供が可能になる。
 次に、具体的な製造例、実施例および比較例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。また、以下の各例における「部」および「%」は特に断りのない限り質量基準である。
<製造例1>(変性剤の製造)
 トリメチロールプロパンとヘキサメチレンジイソシアネート3量体付加物(コロネートHL(商品名)、日本ポリウレタン社製、NCO=12.9%、固形分75%)を100部、酢酸エチルを24.5部、100℃でよく撹拌しながら、ε-カプロラクタムを25.5部添加し、5時間反応させた。得られた変性剤の赤外吸収スペクトル(堀場製作所 FT-720で測定、以下同様)によれば、2,270cm-1に遊離イソシアネート基による吸収は残っており、この遊離イソシアネート基を定量すると、固形分50%で理論値が2.1%であるのに対し実測値は1.8%であった。上記の変性剤の主たる構造は、下記式と推定される。
Figure JPOXMLDOC01-appb-I000016
<製造例2>(変性剤の製造)
 ヘキサメチレンジイソシアネートと水の付加体(ジュラネート24A-100(商品名)、旭化成社製、NCO=23.0%)を100部、酢酸エチルを132部、80℃でよく撹拌しながら、メチルエチルケトオキシムを32部添加し、5時間反応させた。得られた変性剤の赤外吸収スペクトルによれば、2,270cm-1に遊離イソシアネート基による吸収は残っており、この遊離イソシアネート基を定量すると、固形分50%で理論値が2.9%であるのに対し、実測値は2.6%であった。上記の変性剤の主たる構造は下記式と推定される。
Figure JPOXMLDOC01-appb-I000017
<製造例3>(変性剤の製造)
 トリメチロールプロパンとトリレンジイソシアネート3量体付加物(コロネートL(商品名)、日本ポリウレタン社製、NCO=12.5%、固形分75%)を100部、酢酸エチルを67.3部、80℃でよく撹拌しながらメチルエチルケトオキシム17.3部を添加し5時間反応させた。得られた変性剤の赤外吸収スペクトルによれば、2,270cm-1に遊離イソシアネート基による吸収は残っており、この遊離イソシアネート基を定量すると、固形分50%で理論値が2.3%であるのに対し実測値は2.0%であった。上記の変性剤の主たる構造は下記式と推定される。
Figure JPOXMLDOC01-appb-I000018
<製造例4>(5員環環状カーボネートポリシロキサン化合物の製造)
 撹拌機、温度計、ガス導入管および還流冷却器を備えた反応容器中に、下記式Aで表される2価エポキシ変性ポリシロキサン(信越化学工業(株)製、X-22-163(商品名);エポキシ当量198g/mol)を100部、N-メチルピロリドンを100部、ヨウ化ナトリウムを1.2部加え、均一に溶解させた。その後、炭酸ガスを0.5リッター/分の速度でバブリングしながら80℃で30時間加熱撹拌させた。
Figure JPOXMLDOC01-appb-I000019
 反応終了後、得られた溶液に100部のn-ヘキサンを加えて希釈した後、分液ロートにて80部の純水で3回洗浄し、N-メチルピロリドンおよびヨウ化ナトリウムを除去した。n-ヘキサン液を硫酸マグネシウムで脱水後、濃縮し、無色透明の液状5員環環状カーボネートポリシロキサン化合物(1-A)92部(収率89.7%)を得た。
 得られた生成物(1-A)の赤外吸収スペクトルは、1,800cm-1付近に原料には存在しない環状カーボネート基のカルボニル基の吸収が確認された。また、生成物の数平均分子量は2,450(ポリスチレン換算、東ソー;GPC-8220)であった。得られた5員環環状カーボネートポリシロキサン化合物(1-A)中には、18.1%の二酸化炭素が固定化されていた。
<製造例5>(5員環環状カーボネートポリシロキサン化合物の製造)
 製造例4で用いた2価エポキシ変性ポリシロキサンAの代わりに、下記式Bで表わされる2価エポキシ変性ポリシロキサンB(信越化学工業(株)製、KF-105(商品名);エポキシ当量485g/mol)を使用した以外は、製造例4と同様に反応させて、無色透明の液状5員環環状カーボネートポリシロキサン化合物(1-B)99部(収率91%)を得た。
Figure JPOXMLDOC01-appb-I000020
 生成物は、赤外吸収スペクトル、GPC、NMRで確認した。得られた5員環環状カーボネートポリシロキサン化合物(1-B)中には、8.3%の二酸化炭素が固定化されていた。
<実施例1>(自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂の製造)
 撹拌機、温度計、ガス導入管および還流冷却器を備えた反応容器を窒素置換し、これに製造例4で得た5員環環状カーボネートポリシロキサン化合物(1-A)を100部、固形分が35%になるようにN-メチルピロリドンを加えて均一に溶解した。
 次に、ヘキサメチレンジアミンを23.9部加え、90℃の温度で10時間撹拌し、ヘキサメチレンジアミンが確認できなくなるまで反応させた。次に、製造例1の変性剤を20部(固形分50%)添加し、90℃で3時間反応させた。赤外吸収スペクトルによるイソシアネート基の吸収が消失したことを確認し、本実施例の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂溶液を得た。
<実施例2~4>(自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂の製造)
 以下、実施例1と同様に、5員環環状カーボネートポリシロキサン化合物、アミン化合物、変性剤を組み合わせて実施例1と同様の方法で反応させて、表1に記載の実施例2~4の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂溶液を得た。
<比較例1>(ポリシロキサン変性ポリヒドロキシポリウレタン樹脂の製造)
 実施例1で用いた製造例1の変性剤を使用しない以外は、実施例1と同様にして、ポリシロキサン変性ポリヒドロキシポリウレタン樹脂溶液を使用した。
Figure JPOXMLDOC01-appb-I000021
<比較例2-1>(ポリエステルポリウレタン樹脂の製造)
 下記のようにして、比較例で用いるポリエステルポリウレタン樹脂を合成した。撹拌機、温度計、ガス導入管および還流冷却器を備えた反応容器を窒素置換し、平均分子量約2,000のポリブチレンアジペート150部と、1,4-ブタンジオール15部とを、200部のメチルエチルケトンと、50部のジメチルホルムアミドからなる混合有機溶剤中に溶解した。その後、60℃でよく撹拌しながら、62部の水添加MDI(メチレンビス(1,4-シクロヘキサン)-ジイソシアネート)を、171部のジメチルホルムアミドに溶解したものを徐々に滴下し、滴下終了後80℃で6時間反応させた。
 この溶液は固形分35%で3.2MPa・s(25℃)の粘度を有していた。この溶液からキャスティング法により得られたフィルムは破断強度45MPaで破断伸度480%を有し、熱軟化温度は110℃であった。
<比較例2-2>(ポリウレタン樹脂の製造)
 比較例2-1と同様に、平均分子量約2,000のポリブチレンアジペート150部と、1,4-ブタンジオール15部とを、250部のジメチルホルムアミドからなる溶剤中に溶解した。その後、60℃でよく撹拌しながら62部の水添加MDIを、171部のジメチルホルムアミドに溶解したものを徐々に滴下し、滴下終了後80℃で6時間反応させた。この溶液は固形分35%で3.2MPa・s(25℃)の粘度を有していた。この溶液から得られたフィルムは破断強度45MPaで破断伸度480%を有し、熱軟化温度は110℃であった。
<比較例3-1>(ポリシロキサン変性ポリウレタン樹脂の製造)
 下記のようにして、比較例で用いるポリシロキサン変性ポリウレタン樹脂を合成した。下記式(C)で表され、且つ平均分子量が約3,200であるポリジメチルシロキサンジオール150部と、1,4-ブタンジオール10部とを、200部のメチルエチルケトンと50部のジメチルホルムアミドからなる混合有機溶媒中に加えた。その後、40部の水添加MDIを、120部のジメチルホルムアミドに溶解したものを徐々に滴下し、滴下終了後80℃で6時間反応させた。この溶液は固形分35%で1.6MPa・s(25℃)の粘度を有していた。この溶液からキャスティング法により得られたフィルムは、破断強度21MPaで破断伸度250%を有し、熱軟化温度は135℃であった。
Figure JPOXMLDOC01-appb-I000022
<比較重合例3-2>(ポリシロキサン変性ポリウレタン樹脂の製造)
 比較例3-1と同様に、比較例で用いるポリシロキサン変性ポリウレタン樹脂を、ジオールとアミンから合成した。下記式(C)で表され、且つ平均分子量が約3,200であるポリジメチルシロキサンジオール150部及び1,4-ブタンジオール10部を、250部のジメチルホルムアミド溶媒に加え、また、40部の水添加MDIを120部のジメチルホルムアミドに溶解したものを徐々に滴下し、滴下終了後80℃で6時間反応させた。この溶液は、固形分35%で1.6MPa・s(25℃)の粘度を有し、この溶液から得られたフィルムは、破断強度21MPaで破断伸度250%を有し、熱軟化温度は135℃であった。
Figure JPOXMLDOC01-appb-I000023
<評価>
 上記実施例1~4および比較例1、比較例2-1、比較例3-1の樹脂溶液からキャスティング法によりフィルムを作成し、得られた各フィルムについて下記の特性をそれぞれ測定し、評価した。キャスティング条件は100℃で3分間乾燥後、160℃で30分間加熱処理をした。
[機械物性(引張強さ、伸び)]
 各フィルムについて、JIS K7311に準じて、機械物性(引張強さ、伸び)を評価した。その結果を表2に示した。
[熱軟化点]
 各フィルムについて、JIS K7206(ビカット軟化点測定法)準じて、熱軟化点を評価した。その結果を表2に示した。
[摩耗性]
 各フィルムについて、JIS K7311に準じて、摩耗性を評価した。その結果を表2に示した。
[摩擦係数]
 各フィルムについて、フィルム表面の摩擦係数を表面試験機(新東科学製)で評価した。その結果を表2に示した。
[耐溶剤性]
 JIS K5600-6-1に準じ、50℃のトルエンに10分間浸漬した前後での各フィルムの外観変化について観察し、耐溶剤性を評価した。その結果を表2に示した。
[環境対応性]
 各フィルム中における二酸化炭素の固定化の有無によって、○×で評価した。その結果を表2に示した。
Figure JPOXMLDOC01-appb-I000024
 上記結果より、実施例1~4の樹脂を用いて得た各フィルムにおいて、十分な自己架橋が進んでいることが確認された。また、実施例1~4の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂は、従来のポリエステルポリウレタン樹脂やポリシロキサン変性ポリウレタン樹脂に比べても同等、或いはそれ以上の性能を示した。
<実施例5~12、比較例4~9>
 実施例1~4、比較例1、2-2、3-2の樹脂溶液をそのまま、それぞれの擬革用塗料に使用して、下記の方法で実施例及び比較例の擬革を得た。得られた擬革について、後述するようにしてそれぞれ評価し、結果を表3、4に示した。
(人工皮革)
 重合例および比較例の樹脂溶液を、厚さ1mmとなるように、ポリスチレン-ポリエステル繊維からなる不織布上に塗布し、25℃のDMF10%の水溶液中に浸漬し凝固させた。洗浄後、加熱乾燥(150℃/10分)し多孔層シートを有する人工皮革を得た。
(合成皮革)
 織布上に接着剤層としてポリウレタン系樹脂溶液(レザミンUD-602S(商品名)、大日精化工業(株)製)を乾燥時の厚さが10μmとなるように塗布および乾燥して、擬革用基布シートを作成した。一方、実施例1~4および比較例1、2-2、3-2で得た樹脂溶液をそれぞれ離型紙上に塗布および加熱乾燥(150℃/10分)させ、約15μmの厚さのフィルムを形成し、これを上記基布シートに貼り合せて合成皮革を得た。
[評価]
 上記で得た各人工皮革及び合成皮革の各擬革を用いて、下記の方法及び基準で評価した。結果を表3、4にまとめて示した。
(風合い)
 各擬革について、手の感触により判定し、下記の基準で評価した。○を実施可能なレベルとした。
  ○;軟らかい
  △;やや硬い
  ×;硬い
(摩擦係数)
 上記で得た各人工皮革表面の摩擦係数を、表面性試験機(新東科学製)を用いて測定し、評価した。
(耐薬品性)
 上記で得た各合成皮革表面に、トルエンをそれぞれ滴下し、常に濡れている状態を保つため溶剤を追加滴下し、1時間後に拭き取った。拭き取った滴下部分を目視で観察して、下記の基準で評価した。
  ○;塗布面に滴下痕が全く見られない
  △;僅かに滴下痕が認められるが目立たない
  ×;滴下痕が明らかに認められる
(耐表面摩耗性)
 上記で得た各合成皮革について、平面摩耗試験機を用い、6号帆布を荷重1Kgfで、擦り傷が発生するまでの回数を測定した。
  ○;5,000回以上
  △;2000以上~5000回未満
  ×;2000回未満
(熱軟化点)
 上記した合成皮革の作成時、離型紙状に塗付及び加熱乾燥(150℃/10分)させて得られたフィルムを、JIS K7206(ビカット軟化点測定法)準じて測定し、熱軟化点を評価した。
(環境対応性)
 各擬革について、使用した樹脂中における二酸化炭素の固定化の有無によって、○×判断した。
Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-I000026
<実施例13~20、比較例10~15>
 実施例1~4、比較例1、2-1、3-1の樹脂溶液を使用し、表5、6に記載した配合の表皮用塗料(樹脂組成物)をそれぞれに作製し、得られた塗料を用いて下記のようにして実施例及び比較例の熱可塑性ポリオレフィン樹脂製の表皮材を作製した。また、得られた各表皮材について、それぞれ下記の方法で評価した。
(トップコート層の形成方法)
 コロナ放電処理をし、濡れ指数45dyn/cmに表面を活性化した熱可塑性ポリオレフィンの基材シートに、プライマー層として塩素化ポリプロピレン(スーパークロン(商品名);日本製紙(株)製)を120メッシュのグラビアロールにて乾燥後の厚みが3μmになるように塗布し、100℃で2分間乾燥してプライマー層を形成した。この塗膜の上に、表5、表6に記載の配合で作製したそれぞれの表皮用塗料(樹脂組成物)を、120メッシュのグラビアロールにて、乾燥後の厚みが5μmになるように塗布した。そして、150℃で3分間乾燥し、80℃で24時間熟成後、表面温度160℃の凸引型真空成形機で成型して、各表皮材からなる成型品を得た。
[評価]
 上記で得た各表皮材からなる成型品について、成形性、グロス性(光沢性)、摩擦係数、接着性、耐擦傷性、耐油性、耐薬品性、耐表面摩耗性、環境対応性をそれぞれ下記の方法及び基準で評価した。特に、各シートからなる成型品の表面(トップコート層)について評価した。結果を表5、表6に示した。
〔成形性〕
 真空成形後の各シート表面を目視で観察し、下記の基準で評価した。
  ○;良好(成型割れや白化現象なし)
  ×;不良(成型割れまたは白化現象のどちらかが認められる)
〔グロス値(光沢性)〕
 真空成形後の各シート表面の光沢を、JIS K5600に準じたグロスメーターにて測定した。そして、このグロス値が1.2以下(業界の求める基準値)を合格として評価した。
〔摩擦係数〕
 真空成形後の各シート表面の摩擦係数を、表面性試験機(新東科学製)で測定した。そして、この摩擦係数が低い程、車内装材の表面同士の擦れによる異音(きしみ音)が少なくなるので、摩擦係数が0.2以下であると望ましいと評価した。
〔接着性〕
 真空成形後の各シートの表面(トップコート層面)に対して、碁盤目セロハンテープによる剥離試験を行って、下記の基準で評価した。
  ○;良好(塗布面に剥離部分がない)
  ×;不良(塗布面に剥離部位がある)
〔耐擦傷性〕
 真空成形後の各シートの表面を爪でこすり、傷跡や白化が生じないかを目視判定で、下記の基準で評価した。
  ○;良好(塗布面の爪傷・白化を判別し難い)
  ×;不良(塗布面の爪傷・白化跡が明瞭に判別できる)
〔耐油性〕
 真空成形後の各シートの表面に牛油(ナカライテク(株))を2cm半径に塗布し、80℃雰囲気で5日間放置した後に牛油を除去した。そして、牛油の塗布面に対して、碁盤目セロハンテープによる剥離試験を行って、耐擦傷性の場合と同様の基準で評価した。
〔耐薬品性〕
 真空成形後の各シートの表面にエタノールをそれぞれ滴下し、常に濡れている状態を保つため溶剤を追加滴下し、1時間後に拭き取った。拭き取った部分を目視で観察して、下記の基準で、耐薬品性を評価した。
  ○;塗布面に滴下痕が全く見られない
  △;僅かに滴下痕が認められるが目立たない
  ×;滴下痕が明らかに認められる
〔耐表面摩耗性〕
 真空成形後の各シートの表面を、平面摩耗試験機を用い、6号帆布を荷重1kgfで擦り、傷が発生するまでの回数を測定した。そして、下記の基準で評価した。
  ○;5000回以上
  △;2000回以上~5000回未満
  ×;2000回未満
〔環境対応性〕
 トップコート層の形成に使用した樹脂中における二酸化炭素の固定化の有無によって、○×判断した。
Figure JPOXMLDOC01-appb-I000027
Figure JPOXMLDOC01-appb-I000028
 以上の本発明によれば、地球温暖化、資源枯渇などの問題解決に資すると考えられる有用な材料であり、かつ産業用として有効利用できる自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂が提供される。より具体的には、本発明によれば、形成される製品が、二酸化炭素を取り入れた、温暖化ガス削減に寄与できる環境対応製品でありながら、耐熱性、滑り性、非粘着性、耐摩耗性、耐薬品性などの性能においても十分に満足できるものとなる自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂が提供される。したがって、地球環境保全の立場からも、その活用が期待される。
 本発明の擬革は、自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂を主成分とする樹脂組成物を用いることにより、その構造中にある熱によって解離するマスキングされたイソシアネート基と、当該樹脂内のポリシロキサン変性ポリヒドロキシポリウレタン樹脂の水酸基とが反応して架橋樹脂となるので、耐擦傷性、耐摩耗性、耐薬品性、耐熱性に優れた擬革を得ることができると共に、ポリシロキサンセグメントの効果よる、柔軟性、滑性を併せ持つ優れた性能のものとなる。この結果、従来品では到達できなかった環境保全対応の擬革製品の提供が可能となり、この結果、近年、世界的な課題となっている地球温暖化、資源枯渇などの問題の解決に資することができる。
 本発明によれば、基材である熱可塑性ポリオレフィン樹脂シート表面のトップコート層に、特定の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂を含む樹脂組成物を用いることで、該シートから得られる成型品は、熱により解離したイソシアネート基と、自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂中の遊離水酸基とが反応して、トップコート層(最表層)として自己架橋皮膜を形成するため、その表面は、耐擦傷性、耐摩耗性、耐薬品性および耐熱性に優れ、必要に応じて均一な艶消効果にも優れるという性能を有するものになる。この結果、従来品では到達できなかった環境保全対応の表皮材の提供が可能となるので、表皮材の利用を拡大することで、近年、世界的な課題となっている地球温暖化、資源枯渇などの問題の解決に寄与できる。

Claims (14)

  1.  下記一般式(1)で表せる5員環環状カーボネートポリシロキサン化合物と、アミン化合物との反応から誘導されてなる、その構造中に、ポリシロキサンセグメントと、マスキングされたイソシアネート基とを有することを特徴とする自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂。
    Figure JPOXMLDOC01-appb-I000001
    式中のR1は、炭素数1~12のアルキレン基(該基中にO、S、又はNの各元素及び/又は-(C24O)b-で連結されていてもよい)を表す。式中のR2は、ないか、または、炭素数2~20のアルキレン基を表し、R2は、脂環族基又は芳香族基に連結していてもよい。bは1~300の数を表わし、aは1~300の数を表す。]
  2.  前記5員環環状カーボネートポリシロキサン化合物が、エポキシ変性ポリシロキサン化合物と二酸化炭素との反応物であって、かつ、その構造中に二酸化炭素を1~25質量%の範囲で含んでいる請求項1に記載の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂。
  3.  樹脂中におけるポリシロキサンセグメントの含有量が、樹脂分子中のシロキサン含有量で1~75質量%である請求項1又は2に記載の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂。
  4.  前記マスキングされたイソシアネート基は、有機ポリイソシアネート基とマスキング剤との反応生成物であり、熱処理することによりマスキングされた部分が解離されてイソシアネート基を生成し、その構造中の水酸基と反応して自己架橋するものである請求項1~3のいずれか1項に記載の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂。
  5.  請求項1~4のいずれか1項に記載の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂の製造方法であって、
     少なくとも一個の遊離のイソシアネート基と、マスキングされたイソシアネート基とを有する変性剤を用い、該変性剤を構成している遊離のイソシアネート基を、5員環環状カーボネートポリシロキサン化合物とアミン化合物との反応から誘導したポリシロキサン変性ポリヒドロキシポリウレタン樹脂中の水酸基と反応させて、その構造中にマスキングされたイソシアネート基を有してなるポリシロキサン変性ポリヒドロキシポリウレタン樹脂を得ることを特徴とする自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂の製造方法。
  6.  前記5員環環状カーボネートポリシロキサン化合物に、エポキシ変性ポリシロキサン化合物と二酸化炭素との反応物を用い、該化合物とアミン化合物との反応からポリシロキサン変性ポリヒドロキシポリウレタン樹脂を誘導して、ポリシロキサン変性ポリヒドロキシポリウレタン樹脂中に二酸化炭素を1~25質量%の範囲で含むものにする請求項5に記載の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂の製造方法。
  7.  前記変性剤が、有機ポリイソシアネート化合物とマスキング剤との反応生成物である請求項5又は6に記載の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂の製造方法。
  8.  請求項1~4のいずれか1項に記載の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂に、他のバインダー樹脂を混合してなることを特徴とする樹脂材料。
  9.  請求項1~4のいずれか1項に記載の自己架橋型ポリシロキサン変性ポリウレタン樹脂を主成分とする樹脂組成物を、基布に充填ないしは積層せしめたことを特徴とする擬革。
  10.  前記樹脂組成物が、さらに前記自己架橋型ポリシロキサン変性ポリウレタン樹脂と異なる他の樹脂を含む請求項9に記載の擬革。
  11.  熱可塑性ポリオレフィン樹脂シートと、該シート上に直接形成されたトップコート層、或いは、上記シート上に形成されたプライマー層を介して形成されたトップコート層のいずれかを有し、かつ、該トップコート層が、請求項1~4のいずれか1項に記載の自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂を主成分としてなるものであることを特徴とする熱可塑性ポリオレフィン樹脂製の表皮材。
  12.  前記自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂が、5員環環状カーボネートポリシロキサン化合物とアミン化合物との反応から誘導されたポリシロキサン変性ポリヒドロキシポリウレタン樹脂を変性剤によって変性してなるものである請求項11に記載の熱可塑性ポリオレフィン樹脂製の表皮材。
  13.  前記トップコート層が、自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂100質量部に対して、艶消剤として、有機系微粉末或いは無機系微粉末から選ばれる一種または二種以上の組み合わせからなる物質を1~150質量部の割合で配合した組成物によって形成されている請求項11又は12に記載の熱可塑性ポリオレフィン樹脂製の表皮材。
  14.  前記トップコート層が、前記自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂に加えて、該樹脂と異なる他の樹脂を含む樹脂組成物によって形成されている請求項11~13のいずれか1項に記載の熱可塑性ポリオレフィン樹脂製の表皮材。
PCT/JP2011/068342 2010-08-26 2011-08-11 自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂、該樹脂を含む樹脂材料、該樹脂の製造方法、該樹脂を用いてなる擬革及び熱可塑性ポリオレフィン表皮材 WO2012026338A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11819802.7A EP2610276B1 (en) 2010-08-26 2011-08-11 Self-crosslinking polysiloxane-modified polyhydroxy polyurethane resin, resin material containing same, method for producing same, artificial leather comprising same, and thermoplastic polyolefin skin material comprising same
KR1020137007409A KR101483381B1 (ko) 2010-08-26 2011-08-11 자기 가교형 폴리실록산 변성 폴리히드록시 폴리우레탄 수지, 그 수지를 포함한 수지 재료, 그 수지의 제조방법, 그 수지를 사용하여 이루어진 인조 피혁 및 열가소성 폴리올레핀 표피재
CN201180051466.9A CN103270071B (zh) 2010-08-26 2011-08-11 自交联型聚硅氧烷改性多羟基聚氨酯树脂、含有该树脂的树脂材料、该树脂的制造方法、使用该树脂形成的人造革及热塑性聚烯烃表皮材料
US13/818,552 US10000609B2 (en) 2010-08-26 2011-08-11 Self-crosslinking polysiloxane-modified polyhydroxy polyurethane resin, resin material containing same, method for producing same, artificial leather comprising same, and thermoplastic polyolefin skin material comprising same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010189774A JP5679739B2 (ja) 2010-08-26 2010-08-26 自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂およびその製造方法
JP2010-189774 2010-08-26
JP2010-286620 2010-12-22
JP2010286620A JP5637559B2 (ja) 2010-12-22 2010-12-22 擬革
JP2011004281A JP5601687B2 (ja) 2011-01-12 2011-01-12 熱可塑性ポリオレフィン樹脂製の表皮材
JP2011-004281 2011-01-12

Publications (1)

Publication Number Publication Date
WO2012026338A1 true WO2012026338A1 (ja) 2012-03-01

Family

ID=45723342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068342 WO2012026338A1 (ja) 2010-08-26 2011-08-11 自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂、該樹脂を含む樹脂材料、該樹脂の製造方法、該樹脂を用いてなる擬革及び熱可塑性ポリオレフィン表皮材

Country Status (5)

Country Link
US (1) US10000609B2 (ja)
EP (1) EP2610276B1 (ja)
KR (1) KR101483381B1 (ja)
CN (1) CN103270071B (ja)
WO (1) WO2012026338A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041452A (ja) * 2010-08-19 2012-03-01 Hitachi Chem Co Ltd ポリヒドロキシウレタン化合物及びその製造方法、並びに、硬化性樹脂組成物、感光性エレメント、レジストパターンの形成方法及びプリント配線板の製造方法
WO2012115146A1 (ja) * 2011-02-24 2012-08-30 大日精化工業株式会社 ガスバリア層を形成するための塗料組成物、ガスバリア性フィルム、およびガスバリア性フィルムの製造方法
WO2012137726A1 (ja) * 2011-04-04 2012-10-11 大日精化工業株式会社 自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂、該樹脂の製造方法、該樹脂を含む樹脂材料および該樹脂を利用した擬革
JP2013170320A (ja) * 2012-02-20 2013-09-02 Dainichiseika Color & Chem Mfg Co Ltd 擬革
US8951933B2 (en) 2009-11-25 2015-02-10 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Polysiloxane-modified polyhydroxy polyurethane resin, method for producing same, heat-sensitive recording material using the resin, imitation leather, thermoplastic polyolefin resin skin material, material for weather strip, and weather strip
US8975420B2 (en) 2009-11-25 2015-03-10 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Five-membered cyclocarbonate polysiloxane compound and process for preparation of same
US9416227B2 (en) 2011-05-02 2016-08-16 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Polyhydroxyurethane microparticles, and process for producing same
US10000609B2 (en) 2010-08-26 2018-06-19 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Self-crosslinking polysiloxane-modified polyhydroxy polyurethane resin, resin material containing same, method for producing same, artificial leather comprising same, and thermoplastic polyolefin skin material comprising same
US10066048B2 (en) 2010-06-24 2018-09-04 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Self-crosslinkable polyhydroxy polyurethane resin, resinaceous material that contains the resin, process for production of the resin, and imitation leather, surfacing material and weatherstrip material, using the resin

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065433A1 (ja) 2009-11-26 2011-06-03 大日精化工業株式会社 ポリシロキサン変性ポリヒドロキシポリウレタン樹脂及びその製造方法、該樹脂を用いた感熱記録材料、擬革、熱可塑性ポリオレフィン樹脂表皮材、ウェザーストリップ用材料及びウェザーストリップ
US8987378B2 (en) * 2013-03-15 2015-03-24 Ppg Industries Ohio, Inc. Coating compositions comprising cyclic carbonate amine resins
CN104228246A (zh) 2013-06-13 2014-12-24 美国圣戈班性能塑料公司 基于聚氨酯分散液的泡棉密封垫片和粘合胶带
CN104512076B (zh) * 2013-09-26 2018-05-22 美国圣戈班性能塑料公司 超薄泡棉垫片和粘合胶带
KR101886482B1 (ko) * 2014-11-21 2018-09-07 롯데첨단소재(주) 열가소성 수지 조성물 및 이를 포함하는 성형품
CA3079962C (en) 2017-10-27 2021-04-06 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Lusterless paint and skin material
CN112334541A (zh) * 2018-06-27 2021-02-05 Dic株式会社 氨基甲酸酯树脂组合物、表面处理剂及物品
KR102547537B1 (ko) * 2019-09-05 2023-06-27 한화첨단소재 주식회사 인조가죽 제조방법
CN113717470B (zh) * 2021-11-01 2022-02-08 苏州度辰新材料有限公司 一种聚丙烯薄膜用永久抗静电母料及其制备方法和薄膜
WO2023183081A1 (en) * 2022-03-23 2023-09-28 Rockytech, Ltd. Polyhydroxyurethanes and methods of their making and use
CN114773828A (zh) * 2022-05-06 2022-07-22 盛鼎高新材料有限公司 一种耐腐蚀聚氨酯弹性体及其制备方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3072613A (en) 1957-08-20 1963-01-08 Union Carbide Corp Multiple cyclic carbonate polymers
JPH03501121A (ja) * 1987-07-16 1991-03-14 大日本インキ化学工業株式会社 シクロカーボネート化合物の製造方法
JPH08245791A (ja) * 1995-02-21 1996-09-24 Th Goldschmidt Ag カルボネート基含有オルガノポリシロキサンの製造方法
JP2000319504A (ja) 1999-05-11 2000-11-21 Japan Chemical Innovation Institute 新規なポリヒドロキシウレタン及びその製造方法
JP2002518532A (ja) * 1998-06-15 2002-06-25 ユーロテック リミテッド 混成非イソシアネートポリウレタン網状ポリマー及びそれから製造される組成物
JP2004051901A (ja) 2002-07-23 2004-02-19 Fujikura Kasei Co Ltd 艶消し塗料組成物、これを用いた塗膜および塗装物
JP2005154580A (ja) 2003-11-26 2005-06-16 Mitsui Chemicals Inc 自己乳化型水性ポリウレタン樹脂及びその用途
JP2006176615A (ja) 2004-12-22 2006-07-06 Seikoh Chem Co Ltd ポリオレフィン系樹脂成形品用コーティング剤およびそれを被覆した成形品
JP2006307015A (ja) 2005-04-28 2006-11-09 Toyota Motor Corp 耐傷付性樹脂組成物、耐傷付性樹脂組成物の製造方法、及び成形品
JP2007270373A (ja) 2006-03-31 2007-10-18 Nisshinbo Ind Inc 人工皮革状シートおよびその製造方法
JP2009144313A (ja) 2007-11-22 2009-07-02 Toray Coatex Co Ltd 植物由来成分からなる合成皮革
JP2009155407A (ja) * 2007-12-26 2009-07-16 Konishi Co Ltd 硬化性樹脂組成物及び接着剤組成物
WO2011065433A1 (ja) * 2009-11-26 2011-06-03 大日精化工業株式会社 ポリシロキサン変性ポリヒドロキシポリウレタン樹脂及びその製造方法、該樹脂を用いた感熱記録材料、擬革、熱可塑性ポリオレフィン樹脂表皮材、ウェザーストリップ用材料及びウェザーストリップ
WO2011065432A1 (ja) * 2009-11-25 2011-06-03 大日精化工業株式会社 ポリシロキサン変性ポリヒドロキシポリウレタン樹脂およびその製造方法、該樹脂を用いた感熱記録材料、擬革、熱可塑性ポリオレフィン樹脂表皮材、ウェザーストリップ用材料およびウェザーストリップ
WO2011065129A1 (ja) * 2009-11-25 2011-06-03 大日精化工業株式会社 5員環環状カーボネートポリシロキサン化合物およびその製造方法

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2814079A1 (de) 1978-04-01 1979-10-11 Bayer Ag Beschichtungsmassen
US4395527A (en) 1978-05-17 1983-07-26 M & T Chemicals Inc. Siloxane-containing polymers
JPS5813359B2 (ja) 1978-07-03 1983-03-12 富士化学紙工業株式会社 感熱転写材
JPS564408A (en) 1979-06-26 1981-01-17 Meitoo Kk Waterproof* antiseptic and vermicidal method of wood
US4480009A (en) 1980-12-15 1984-10-30 M&T Chemicals Inc. Siloxane-containing polymers
US4499149A (en) 1980-12-15 1985-02-12 M&T Chemicals Inc. Siloxane-containing polymers
US4758632A (en) 1984-02-17 1988-07-19 American Cyanamid Company Self-cross-linkable acrylic polymer containing hydroxyalkyl carbamate groups and coating compositions containing the same
ATE136882T1 (de) 1984-02-17 1996-05-15 Cytec Tech Corp Carbamidsäureester-derivate, mittel und herstellungsverfahren
US4520167A (en) 1984-02-17 1985-05-28 American Cyanamid Co. Hydroxyalkyl carbamate diluent for coating compositions and compositions containing the same
US4484994A (en) 1984-02-17 1984-11-27 American Cyanamid Company Hydroxyalkyl carbamate-containing resins for cathodic electrodeposition and method of making the same
US4897435A (en) 1984-02-17 1990-01-30 American Cyanamid Company Water based hydroxyalkyl carbamate-containing resins and method of making the same
US4631320A (en) 1984-02-17 1986-12-23 American Cyanamid Company Coating compositions containing polyurethane or polyurea polymers and amino resins
JPS61227087A (ja) 1985-04-01 1986-10-09 Dainichi Seika Kogyo Kk 感熱記録材料
JPS62202786A (ja) 1986-03-04 1987-09-07 Dainichi Color & Chem Mfg Co Ltd 感熱記録材料
DE3644370A1 (de) 1986-12-24 1988-07-07 Hoechst Ag Aminourethane, verfahren zu ihrer herstellung aus polyaminen und ihre verwendung
US4883854A (en) 1988-09-30 1989-11-28 Medtronic, Inc. Hydroxyl functional monomers
JPH02102096A (ja) 1988-10-12 1990-04-13 Dainichiseika Color & Chem Mfg Co Ltd 感熱記録材料
DE69210919T2 (de) 1991-09-05 1997-01-23 Nippon Paint Co Ltd Hitzehärtbare Harzmischung, enthaltend eine polyfunktionelle Oxazolidon-Komponente und eine Polyamin-Komponente
JPH0565341A (ja) 1991-09-05 1993-03-19 Nippon Paint Co Ltd 熱硬化性樹脂組成物
JP2630894B2 (ja) 1992-07-03 1997-07-16 信越化学工業株式会社 ウェザーストリップ用のコーティング組成物
JP3013014B2 (ja) 1993-02-24 2000-02-28 西川ゴム工業株式会社 ウエザーストリップ
JPH08109349A (ja) 1994-10-12 1996-04-30 Yokohama Rubber Co Ltd:The 自動車用グラスランのコーティング剤
JP3461605B2 (ja) 1994-12-19 2003-10-27 鬼怒川ゴム工業株式会社 高分子弾性体の表面処理用塗料組成物
JPH08245787A (ja) 1995-03-10 1996-09-24 Nippon Shokubai Co Ltd 高分子量化されたポリマーの製造方法
US5686547A (en) 1996-03-14 1997-11-11 General Electric Company Carbonate and hydroxy carbamate functionalized silicones
JPH09278982A (ja) 1996-04-15 1997-10-28 Dainippon Ink & Chem Inc 硬化性樹脂組成物ならびにそれらを用いた塗膜形成方法
JPH11140182A (ja) 1997-11-05 1999-05-25 Nof Corp 反応性樹脂
DE19959949A1 (de) 1999-12-13 2001-06-21 Bayer Ag Hydrophobierung mit carboxylgruppenhaltigen Polysiloxanen
US6555230B2 (en) 2000-03-31 2003-04-29 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Artificial leather
AU2001286860A1 (en) 2000-08-28 2002-03-13 Aprilis, Inc. Holographic storage medium comprising polyfunctional epoxy monomers capable of undergoing cationic polymerization
JP2002114936A (ja) 2000-10-05 2002-04-16 Kinugawa Rubber Ind Co Ltd プライマー組成物及びそれが塗布されたウェザーストリップ
DE10216896A1 (de) * 2002-04-17 2003-11-13 Goldschmidt Ag Th Wässrige Polysiloxan-Polyurethan-Dispersion, ihre Herstellung und Verwendung in Beschichtungsmitteln
EP1506975A1 (en) 2003-08-13 2005-02-16 Vantico GmbH Nanocomposites based on polyurethane or polyurethane-epoxy hybrid resins prepared avoiding isocyanates
JP4293441B2 (ja) * 2004-05-14 2009-07-08 第一工業製薬株式会社 耐熱性人工・合成皮革用水系ポリウレタン樹脂組成物及びその製造方法並びに皮革様シート。
CA2566884C (en) * 2004-05-18 2010-09-07 Asahi Kasei Fibers Corporation Flameproof artificial leather
JP4417777B2 (ja) 2004-05-25 2010-02-17 大日精化工業株式会社 擬革様シート状物
GB2415197A (en) 2004-06-18 2005-12-21 Baxenden Chem Urethane-group containing diol or polyol polymer products and their use as coatings
US20060276599A1 (en) 2005-06-05 2006-12-07 Dewitt Julie A Weatherstrip coating
JP4650627B2 (ja) 2005-09-14 2011-03-16 信越化学工業株式会社 環状カーボネート変性シロキサン及びその製造方法並びに非水電解液、二次電池及びキャパシタ
US7368174B2 (en) 2005-12-14 2008-05-06 Lord Corporation Aqueous dispersion coating composition having noise and/or friction abatement properties
JP2007297544A (ja) 2006-05-01 2007-11-15 Dai Ichi Kogyo Seiyaku Co Ltd ポリヒドロキシウレタンの製造方法及びポリヒドロキシウレタン水分散体
JP2008056772A (ja) 2006-08-30 2008-03-13 Seikoh Chem Co Ltd エチレン−プロピレンゴム用水系コーティング剤
WO2008088492A1 (en) 2006-12-20 2008-07-24 Dow Corning Corporatrion Blocked isocyanate silicone resins
DE102007023869A1 (de) 2007-05-21 2008-12-18 Momentive Performance Materials Gmbh & Co. Kg Neue Polycarbonat- und/oder Polyurethan-Polyorganosiloxan-Verbindungen
DE102007032666A1 (de) 2007-07-13 2009-01-22 Bayer Materialscience Ag Allophanat- und Silangruppen enthaltende Polyisocyanate
DE102008013584A1 (de) * 2008-03-11 2009-09-17 Momentive Performance Materials Gmbh Neue Polycarbonat-Polyorganosiloxan- und/oder Polyurethan-Polyorganosiloxan-Verbindungen
JP5249657B2 (ja) 2008-07-10 2013-07-31 大日精化工業株式会社 感熱記録材料、ポリウレタン及びその製造方法
JP5662645B2 (ja) 2009-02-06 2015-02-04 大日精化工業株式会社 ウレタン樹脂および塗料
JP5705511B2 (ja) 2009-11-26 2015-04-22 大日精化工業株式会社 ポリシロキサン変性ポリヒドロキシポリウレタン樹脂、該樹脂含有組成物及び樹脂の製造方法
KR101476559B1 (ko) 2010-06-24 2014-12-24 다이니치 세이카 고교 가부시키가이샤 자기 가교형 폴리히드록시 폴리우레탄 수지, 그 수지를 포함하는 수지 재료, 그 수지의 제조방법, 그 수지를 이용하여 이루어진 인조 가죽, 표피재 및 웨더 스트립용 재료
WO2012026338A1 (ja) 2010-08-26 2012-03-01 大日精化工業株式会社 自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂、該樹脂を含む樹脂材料、該樹脂の製造方法、該樹脂を用いてなる擬革及び熱可塑性ポリオレフィン表皮材
KR101536848B1 (ko) 2011-04-04 2015-07-14 다이니치 세이카 고교 가부시키가이샤 자기가교형 폴리실록산 변성 폴리하이드록시 폴리우레탄 수지, 상기 수지의 제조방법, 상기 수지를 포함하는 수지 재료 및 상기 수지를 이용한 인조 피혁
EP2610776B1 (en) 2011-09-16 2019-08-21 Veracode, Inc. Automated behavioural and static analysis using an instrumented sandbox and machine learning classification for mobile security

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3072613A (en) 1957-08-20 1963-01-08 Union Carbide Corp Multiple cyclic carbonate polymers
JPH03501121A (ja) * 1987-07-16 1991-03-14 大日本インキ化学工業株式会社 シクロカーボネート化合物の製造方法
JPH08245791A (ja) * 1995-02-21 1996-09-24 Th Goldschmidt Ag カルボネート基含有オルガノポリシロキサンの製造方法
JP2002518532A (ja) * 1998-06-15 2002-06-25 ユーロテック リミテッド 混成非イソシアネートポリウレタン網状ポリマー及びそれから製造される組成物
JP2000319504A (ja) 1999-05-11 2000-11-21 Japan Chemical Innovation Institute 新規なポリヒドロキシウレタン及びその製造方法
JP2004051901A (ja) 2002-07-23 2004-02-19 Fujikura Kasei Co Ltd 艶消し塗料組成物、これを用いた塗膜および塗装物
JP2005154580A (ja) 2003-11-26 2005-06-16 Mitsui Chemicals Inc 自己乳化型水性ポリウレタン樹脂及びその用途
JP2006176615A (ja) 2004-12-22 2006-07-06 Seikoh Chem Co Ltd ポリオレフィン系樹脂成形品用コーティング剤およびそれを被覆した成形品
JP2006307015A (ja) 2005-04-28 2006-11-09 Toyota Motor Corp 耐傷付性樹脂組成物、耐傷付性樹脂組成物の製造方法、及び成形品
JP2007270373A (ja) 2006-03-31 2007-10-18 Nisshinbo Ind Inc 人工皮革状シートおよびその製造方法
JP2009144313A (ja) 2007-11-22 2009-07-02 Toray Coatex Co Ltd 植物由来成分からなる合成皮革
JP2009155407A (ja) * 2007-12-26 2009-07-16 Konishi Co Ltd 硬化性樹脂組成物及び接着剤組成物
WO2011065432A1 (ja) * 2009-11-25 2011-06-03 大日精化工業株式会社 ポリシロキサン変性ポリヒドロキシポリウレタン樹脂およびその製造方法、該樹脂を用いた感熱記録材料、擬革、熱可塑性ポリオレフィン樹脂表皮材、ウェザーストリップ用材料およびウェザーストリップ
WO2011065129A1 (ja) * 2009-11-25 2011-06-03 大日精化工業株式会社 5員環環状カーボネートポリシロキサン化合物およびその製造方法
WO2011065433A1 (ja) * 2009-11-26 2011-06-03 大日精化工業株式会社 ポリシロキサン変性ポリヒドロキシポリウレタン樹脂及びその製造方法、該樹脂を用いた感熱記録材料、擬革、熱可塑性ポリオレフィン樹脂表皮材、ウェザーストリップ用材料及びウェザーストリップ

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
N. KIHARA; T. ENDO, J. ORG. CHEM., vol. 58, 1993, pages 6198
N. KIHARA; T. ENDO, J. POLYMER SCI., PART A POLYMER CHEM., vol. 31, no. 11, 1993, pages 2765
See also references of EP2610276A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8951933B2 (en) 2009-11-25 2015-02-10 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Polysiloxane-modified polyhydroxy polyurethane resin, method for producing same, heat-sensitive recording material using the resin, imitation leather, thermoplastic polyolefin resin skin material, material for weather strip, and weather strip
US8975420B2 (en) 2009-11-25 2015-03-10 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Five-membered cyclocarbonate polysiloxane compound and process for preparation of same
US9394462B2 (en) 2009-11-25 2016-07-19 Dainichiseika Color & Chemicals Mfg. Co., Ltd Polysiloxane-modified polyhydroxy polyurethane resin, method for producing same, heat-sensitive recording material using the resin, imitation leather, thermoplastic polyolefin resin skin material, material for weather strip, and weather strip
US10066048B2 (en) 2010-06-24 2018-09-04 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Self-crosslinkable polyhydroxy polyurethane resin, resinaceous material that contains the resin, process for production of the resin, and imitation leather, surfacing material and weatherstrip material, using the resin
JP2012041452A (ja) * 2010-08-19 2012-03-01 Hitachi Chem Co Ltd ポリヒドロキシウレタン化合物及びその製造方法、並びに、硬化性樹脂組成物、感光性エレメント、レジストパターンの形成方法及びプリント配線板の製造方法
US10000609B2 (en) 2010-08-26 2018-06-19 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Self-crosslinking polysiloxane-modified polyhydroxy polyurethane resin, resin material containing same, method for producing same, artificial leather comprising same, and thermoplastic polyolefin skin material comprising same
WO2012115146A1 (ja) * 2011-02-24 2012-08-30 大日精化工業株式会社 ガスバリア層を形成するための塗料組成物、ガスバリア性フィルム、およびガスバリア性フィルムの製造方法
US9540537B2 (en) 2011-02-24 2017-01-10 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Coating composition for forming gas barrier layer, gas barrier film, and method for producing gas barrier film
WO2012137726A1 (ja) * 2011-04-04 2012-10-11 大日精化工業株式会社 自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂、該樹脂の製造方法、該樹脂を含む樹脂材料および該樹脂を利用した擬革
US9359719B2 (en) 2011-04-04 2016-06-07 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Self-crosslinkable polysiloxane-modified polyhydroxy polyurethane resin, process for producing said resin, resin material comprising said resin, and artificial leather produced utilizing said resin
US9416227B2 (en) 2011-05-02 2016-08-16 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Polyhydroxyurethane microparticles, and process for producing same
JP2013170320A (ja) * 2012-02-20 2013-09-02 Dainichiseika Color & Chem Mfg Co Ltd 擬革

Also Published As

Publication number Publication date
EP2610276A1 (en) 2013-07-03
CN103270071A (zh) 2013-08-28
KR20130045933A (ko) 2013-05-06
EP2610276B1 (en) 2017-11-01
US10000609B2 (en) 2018-06-19
US20130171896A1 (en) 2013-07-04
CN103270071B (zh) 2014-11-26
EP2610276A4 (en) 2016-11-23
KR101483381B1 (ko) 2015-01-14

Similar Documents

Publication Publication Date Title
WO2012026338A1 (ja) 自己架橋型ポリシロキサン変性ポリヒドロキシポリウレタン樹脂、該樹脂を含む樹脂材料、該樹脂の製造方法、該樹脂を用いてなる擬革及び熱可塑性ポリオレフィン表皮材
KR101476559B1 (ko) 자기 가교형 폴리히드록시 폴리우레탄 수지, 그 수지를 포함하는 수지 재료, 그 수지의 제조방법, 그 수지를 이용하여 이루어진 인조 가죽, 표피재 및 웨더 스트립용 재료
WO2011065433A1 (ja) ポリシロキサン変性ポリヒドロキシポリウレタン樹脂及びその製造方法、該樹脂を用いた感熱記録材料、擬革、熱可塑性ポリオレフィン樹脂表皮材、ウェザーストリップ用材料及びウェザーストリップ
EP2505599B1 (en) Polysiloxane-modified polyhydroxy polyurethane resin, method for producing same, heat-sensitive recording material using the resin, imitation leather, thermoplastic polyolefin resin skin material, material for weather strip, and weather strip
KR101536848B1 (ko) 자기가교형 폴리실록산 변성 폴리하이드록시 폴리우레탄 수지, 상기 수지의 제조방법, 상기 수지를 포함하는 수지 재료 및 상기 수지를 이용한 인조 피혁
JP5601687B2 (ja) 熱可塑性ポリオレフィン樹脂製の表皮材
JP5386468B2 (ja) 熱可塑性ポリオレフィン樹脂製表皮材
JP5688038B2 (ja) 擬革
JP5069736B2 (ja) 熱可塑性ポリオレフィン樹脂表皮材
JP5367680B2 (ja) 熱可塑性ポリオレフィン樹脂表皮材
JP5637559B2 (ja) 擬革
JP5554156B2 (ja) 擬革
JP5554173B2 (ja) 熱可塑性ポリオレフィン樹脂製の表皮材
JP5554174B2 (ja) ウェザーストリップ用材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011819802

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011819802

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13818552

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137007409

Country of ref document: KR

Kind code of ref document: A