WO2012018094A1 - 基質特異性が改変されたアマドリアーゼ - Google Patents

基質特異性が改変されたアマドリアーゼ Download PDF

Info

Publication number
WO2012018094A1
WO2012018094A1 PCT/JP2011/067898 JP2011067898W WO2012018094A1 WO 2012018094 A1 WO2012018094 A1 WO 2012018094A1 JP 2011067898 W JP2011067898 W JP 2011067898W WO 2012018094 A1 WO2012018094 A1 WO 2012018094A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
amadoriase
substitution
seq
lysine
Prior art date
Application number
PCT/JP2011/067898
Other languages
English (en)
French (fr)
Inventor
敦 一柳
浩三 廣川
康子 田鍋
陽介 鉞
Original Assignee
キッコーマン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キッコーマン株式会社 filed Critical キッコーマン株式会社
Priority to KR1020137005355A priority Critical patent/KR102070990B1/ko
Priority to JP2012527775A priority patent/JP6176922B2/ja
Priority to EP11814719.8A priority patent/EP2602318B1/en
Priority to US13/814,692 priority patent/US9062286B2/en
Priority to CN201180038922.6A priority patent/CN103080308B/zh
Publication of WO2012018094A1 publication Critical patent/WO2012018094A1/ja
Priority to US14/715,739 priority patent/US9708586B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0026Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5)
    • C12N9/0032Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5) with oxygen as acceptor (1.5.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
    • G01N33/721Haemoglobin
    • G01N33/723Glycosylated haemoglobin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)

Definitions

  • the present invention relates to amadoriase with modified substrate specificity, its gene and recombinant DNA, and a method for producing amadoriase with modified substrate specificity.
  • Glycated proteins are produced by non-enzymatic covalent bond formation between the aldehyde group of aldoses (monosaccharides and derivatives thereof that potentially have aldehyde groups) such as glucose, and Amadori transfer It is.
  • aldehyde group of aldoses monosaccharides and derivatives thereof that potentially have aldehyde groups
  • Amadori transfer It is.
  • the amino group of the protein ⁇ -amino group at the amino terminus, and a ⁇ -amino group of a lysine residue side chains in the protein.
  • Known glycated proteins generated in vivo include glycated hemoglobin in which hemoglobin in blood is glycated, glycated albumin in which albumin is glycated, and the like.
  • HbA1c glycated hemoglobin
  • ⁇ -fructosylvalylhistidine (hereinafter referred to as ⁇ FVH)
  • ⁇ FVH amadoriase
  • ⁇ FV ⁇ -fructosylvalylhistidine
  • ⁇ FV ⁇ -fructosyl valine
  • Amadoriase catalyzes a reaction that oxidizes iminodiacetic acid or its derivative (also called “Amadori compound”) in the presence of oxygen to produce glyoxylic acid or ⁇ -ketoaldehyde, an amino acid or peptide, and hydrogen peroxide. To do.
  • Amadoriase has been found from bacteria, yeasts and fungi, and is particularly useful for the measurement of HbA1c.
  • Examples of amadoriase having enzyme activity against ⁇ FVH and / or ⁇ FV include, for example, the genus Coniochaeta, Eupenicillium ( The genus Eupeniclium, the genus Arthrinium, the genus Curvularia, the genus Leptosphaeria, the genus Neocosmospora, the genus Ophiobolus, the genus Ophiobolus (Cryptococcus) genus, Phaeosphaeria Amadoriases derived from the genera, Aspergillus genus, Ulocladium genus, and Penicillium genus have been reported (see, for example, Patent Documents 1 and 7 to 11 and Non-Patent Documents 1 to 4).
  • amadoriase may be described by expressions such as ketoamine oxidase, fructosyl amino acid oxidase, fructosyl peptide oxidase, and fructosylamine oxidase depending on the literature.
  • HbA1c In the measurement of HbA1c by an enzymatic method, strict substrate specificity is required as a property of amadoriase.
  • the measurement of HbA1c is carried out by quantifying the released ⁇ FVH, it is present in a free state in the sample and / or released in the treatment step of HbA1c using a protease or the like. It is desirable to use an amadoriase that does not act on glycated amino acids or glycated peptides other than ⁇ FVH.
  • ⁇ -position amino group of the lysine residue side chain contained in the hemoglobin molecule undergoes glycation, and the ⁇ -position amino group derived from this glycated lysine residue is glycated.
  • ⁇ FK ⁇ -fructosyl lysine
  • protease treatment or the like see, for example, Non-Patent Document 5. Therefore, an amadoriase with high substrate specificity that is unlikely to act on ⁇ FK that can cause a measurement error is strongly desired.
  • most of the conventionally known amadoriases are not sufficiently low in reactivity to ⁇ FK.
  • ketoamine oxidase derived from Curvularia clavata YH923 and the ketoamine oxidase derived from Neocosmospora vasinfecta 474 have substrate specificity for ⁇ FVH by substituting several amino acids.
  • An improved modified ketoamine oxidase has been shown (see Patent Document 1).
  • ⁇ -fructosyl- ( ⁇ -benzyl) is obtained by substituting isoleucine at position 58 with valine, arginine at position 62 with histidine, and phenylalanine at position 330 with leucine.
  • ⁇ FZK / ⁇ FVH which is an activity ratio derived by dividing the enzyme activity for oxycarbonyllysine (hereinafter referred to as ⁇ FZK) by the enzyme activity for ⁇ FVH, decreases from 0.95 to 0.025.
  • ⁇ FZK which is used for the evaluation of the substrate specificity of the modified ketoamine oxidase in the above document, is a compound that is considerably different in terms of molecular weight and structure from ⁇ FK actually produced in the step of treating glycated hemoglobin with protease. It is. For this reason, it is difficult to say that the reactivity to ⁇ FK, which can be a causative substance of actual measurement errors, has decreased due to the decreased reactivity to ⁇ FZK. Moreover, there is no description that the reduction
  • a modified fructosyl amino acid oxidase newly imparted with reactivity to ⁇ FVH by introducing an amino acid substitution into a fructosyl amino acid oxidase derived from Aspergillus nidulans A89 and modifying the substrate specificity has been reported (for example, see Patent Document 10).
  • a fructosyl amino acid oxidase derived from Aspergillus nidulans A89 can be renewed by substituting serine at position 59 with glycine and lysine at position 65 with glycine, or substituting lysine at position 109 with glutamine. It is shown that the enzyme activity for ⁇ FVH is imparted.
  • the amino acid substitution contributes to a reduction in reactivity to ⁇ FK.
  • amadoriases including low or low ⁇ FK / ⁇ FV and / or low ⁇ FK / ⁇ FV, which are derived by dividing the enzyme activity against ⁇ FK by the enzyme activity against ⁇ FVH, including natural or mutant amadoriases,
  • amadoriases including low or low ⁇ FK / ⁇ FV and / or low ⁇ FK / ⁇ FV, which are derived by dividing the enzyme activity against ⁇ FK by the enzyme activity against ⁇ FVH, including natural or mutant amadoriases
  • the problem to be solved by the present invention is to provide an amadoriase having low reactivity to ⁇ FK, specifically, low ⁇ FK / ⁇ FVH and / or low ⁇ FK / ⁇ FV.
  • the present invention is as follows.
  • Glutamic acid at position 98 is an amino acid other than proline, that is, glutamine, histidine, lysine, arginine, glycine, alanine, valine, isoleucine, leucine, methionine, cysteine, serine, threonine, asparagine, aspartic acid, phenylalanine, tyrosine, tryptophan Is replaced by (U) valine at position 259 is substituted with alanine, cysteine, serine; (V) Serine at position 154 is replaced with glycine, tyrosine, asparagine, glutamine, aspartic acid, glutamic acid, histidine, cysteine; (W) Histidine at position 125
  • the amino acid sequence shown in SEQ ID NO: 241 has a substitution of an amino acid residue selected from the group consisting of the following (ca) to (cc), and compared with amadoriase before the substitution,
  • the ratio of reactivity to ⁇ -fructosyl lysine to reactivity to fructosyl valyl histidine is reduced and ⁇ to reactivity to ⁇ -fructosyl valine compared to amadoriase prior to the substitution.
  • -Amadoriase characterized by a reduced proportion of reactivity to fructosyl lysine: (Ca) substitution of amino acid at the position corresponding to serine at position 98 with alanine, substitution of amino acid at position corresponding to lysine at position 110 with arginine and substitution of amino acid at position corresponding to valine at position 259 with cysteine ; (Cb) substitution of the amino acid at the position corresponding to serine at position 98 with alanine and substitution of the amino acid at the position corresponding to position 259 with cysteine; (Cc) Substitution of amino acid at position corresponding to lysine at position 110 with arginine and substitution of amino acid at position corresponding to valine at position 259 with cysteine.
  • amadoriase gene encoding the amino acid sequence of any one of - (6).
  • a recombinant vector comprising the amadoriase gene according to (7) above.
  • a method for producing amadoriase which comprises the following steps: (Ak) culturing the host cell according to (6) above; (Al) expressing an amadoriase gene contained in a host cell; and (am) isolating amadoriase from the culture.
  • an amadoriase having excellent substrate specificity which can be advantageously used as a diagnostic enzyme for diabetes and in a measurement kit for diabetes marker, specifically, ⁇ FK / ⁇ FVH is low and / or ⁇ FK / Amadoriase with low ⁇ FV can be provided.
  • Amadoriase is also referred to as ketoamine oxidase, fructosyl amino acid oxidase, fructosyl peptide oxidase, or fructosylamine oxidase. It refers to an enzyme that catalyzes a reaction that produces ketoaldehyde, an amino acid or peptide, and hydrogen peroxide.
  • Amadoriase is widely distributed in nature and can be obtained by searching for microorganisms, enzymes of animal or plant origin. The microorganism can be obtained from, for example, filamentous fungi, yeast, or bacteria.
  • the amadoriase of the present invention is a modified version of amadoriase having a modified substrate specificity, which is produced based on the amadoriase derived from the genus Coniochaeta having the amino acid sequence shown in SEQ ID NO: 1.
  • mutants include high sequence identity with SEQ ID NO: 1 (eg, 75% or more, preferably 80% or more, more preferably 85% or more, more preferably 90% or more, more preferably 95). %, More preferably 97% or more, most preferably 99% or more), and in the amino acid sequence of SEQ ID NO: 1, one to several amino acids are altered or mutated or deleted And amadoriase having a substituted, added and / or inserted amino acid sequence.
  • Eupenicillium genus Arsulinium genus, Carbraria genus, Leptosperia genus, Neocosmospora genus, Ophiobora genus, Pleopsora genus It may be produced based on amadoriase derived from other species such as Pyrenoceta, Aspergillus, Cryptococcus, Feosferia, Urocradiium, or Penicillium.
  • a modified version of amadoriase with altered substrate specificity can be obtained by substituting at least one amino acid residue in the amino acid sequence of amadoriase.
  • the amino acid substitution that brings about the modification of substrate specificity includes substitution of amino acids at positions corresponding to the following amino acids in the amino acid sequence shown in SEQ ID NO: 1.
  • glutamic acid at position 98 for example, amino acids other than proline, ie, glutamine, histidine, lysine, arginine, glycine, alanine, valine, isoleucine, leucine, methionine, cysteine, serine, threonine, asparagine, aspartic acid, phenylalanine , Tyrosine, tryptophan substitution.
  • amino acids other than proline ie, glutamine, histidine, lysine, arginine, glycine, alanine, valine, isoleucine, leucine, methionine, cysteine, serine, threonine, asparagine, aspartic acid, phenylalanine , Tyrosine, tryptophan substitution.
  • histidine at position 125 for example, alanine, leucine, phenylalanine, tyrosine, asparagine, glutamine, glutamic acid, lysine, arginine.
  • Substitution of aspartic acid at position 106 for example, substitution with an amino acid having a molecular weight smaller than that of aspartic acid, that is, glycine, alanine, serine, valine, threonine, cysteine, leucine, isoleucine, asparagine.
  • a variant of amadoriase with altered substrate specificity may have at least one amino acid substitution, and may have a plurality of amino acid substitutions. For example, it has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 of the above amino acid substitution.
  • mutants having amino acid substitutions corresponding to the following amino acid positions are preferred.
  • a mutation in which glutamine (Q) at position 110 is substituted with arginine (R) is represented as Q110R.
  • a mutant having a substitution of glutamine at position 110 and serine at position 154 for example, Q110R and S154G or S154N.
  • a mutant having a substitution of glutamic acid at position 98 and serine at position 154 for example, E98A or E98R and S154N.
  • Mutations with glutamic acid at position 98 and valine at position 259 eg, E98Q and V259A, E98Q and V259C, E98H and V259A, E98H and V259C, E98R and V259C, E98A and V259C.
  • the amadoriase mutant with altered substrate specificity of the present invention has an amino acid substitution that results in the alteration of the substrate specificity in the amino acid sequence shown in SEQ ID NO: 1, and further at positions other than those substituted amino acids, From an amino acid sequence in which one or several (for example 1 to 10, preferably 1 to 5, more preferably 1 to 3, particularly preferably 1) amino acids have been deleted, inserted, added and / or substituted And amadoriase variants having amadoriase activity and modified substrate specificity.
  • amino acid substitution mutations that bring about the above substrate specificity modification, amino acid substitution mutations that improve heat resistance, and amino acids in the amino acid sequence shown in SEQ ID NO: 1 excluding amino acids other than the substituted amino acids It consists of an amino acid sequence having an amino acid sequence identity of 90% or more, more preferably 95% or more, more preferably 97% or more, particularly preferably 99% or more with respect to the sequence, has amadoriase activity, and has substrate specificity Include modified amadoriase variants.
  • the amino acid position represents the position in the amino acid sequence of the amadoriase derived from the genus Coniocaeta shown in SEQ ID NO: 1. In the amino acid sequence of the amadoriase derived from other species, it is shown in SEQ ID NO: 1. The amino acid at the position corresponding to the position in the amino acid sequence to be substituted is substituted. The meaning of “corresponding position” will be described later.
  • amadoriase gene (Acquisition of gene encoding amadoriase)
  • amadoriase gene In order to obtain the gene of the present invention encoding these amadoriases (hereinafter also simply referred to as “amadoriase gene”), generally used gene cloning methods are used.
  • chromosomal DNA or mRNA can be extracted from microbial cells having the ability to produce amadoriase and various cells by a conventional method, for example, a method described in Current Protocols in Molecular Biology (WILEY Interscience, 1989).
  • cDNA can be synthesized using mRNA as a template.
  • a chromosomal DNA or cDNA library can be prepared using the chromosomal DNA or cDNA thus obtained.
  • a suitable probe DNA is synthesized, and using this, a method for selecting the amadoriase gene from a chromosomal DNA or cDNA library, or a suitable primer DNA based on the amino acid sequence. And amplifying DNA containing the gene fragment of interest encoding amadoriase by an appropriate polymerase chain reaction (Polymerase Chain Reaction, PCR method) such as 5'RACE method or 3'RACE method. Can be ligated to obtain a DNA containing the full length of the target amadoriase gene.
  • PCR method Polymerase Chain Reaction
  • an amadoriase gene derived from the genus Coniocaeta (Patent Document 7) can be mentioned.
  • amadoriase genes are linked to various vectors as usual.
  • an amadoriase gene is encoded by using QIAGEN (manufactured by Qiagen) from a recombinant plasmid pKK223-3-CFP (patent document 7) containing DNA encoding an amadoriase gene derived from Coniochaeta sp. NISL 9330. DNA can be obtained by extraction and purification.
  • the vector that can be used in the present invention is not limited to the above plasmid, and any other vector known to those skilled in the art, such as bacteriophage and cosmid, can be used. Specifically, for example, pBluescript II SK + (manufactured by STRATAGENE) is preferable.
  • amadoriase gene mutation treatment The mutation process of the amadoriase gene can be performed by any known method depending on the intended mutant form. That is, a wide variety of methods such as a method of contacting and acting an amadoriase gene or a recombinant DNA incorporating the gene and a mutagen agent; an ultraviolet irradiation method; a genetic engineering method; or a method using a protein engineering method. Can be used.
  • Examples of the mutagen used in the mutation treatment include hydroxylamine, N-methyl-N′-nitro-N-nitrosoguanidine, nitrous acid, sulfite, hydrazine, formic acid, and 5-bromouracil. be able to.
  • the various conditions for the contact and action are not particularly limited as long as it is possible to adopt conditions according to the type of drug used and the like and a desired mutation can be actually induced in the amadoriase gene.
  • a desired mutation can be induced by contact and action at a reaction temperature of 20 to 80 ° C. for 10 minutes or more, preferably 10 to 180 minutes, preferably at a drug concentration of 0.5 to 12M.
  • a reaction temperature 20 to 80 ° C. for 10 minutes or more, preferably 10 to 180 minutes, preferably at a drug concentration of 0.5 to 12M.
  • Even in the case of performing ultraviolet irradiation it can be carried out according to a conventional method as described above (Hyundai Kagaku, 024-30, June 1989 issue).
  • a method generally known as Site-Specific Mutagenesis can be used.
  • Kramer method Nucleic Acids Res., 12, 9441 (1984): Methods Enzymol., 154, 350 (1987): Gene, 37, 73 (1985), Eckstein method (Nucleic Acid Res. 49 (Nucleic Acid Res. 49)). (1985): Nucleic Acids Res., 13, 8765 (1985): Nucleic Acids Res, 14, 9679 (1986), Kunkel method (Proc. Natl. Acid. Sci. US, 48, 1982). ): Methods Enzymol., 154, 367 (1987)).
  • a technique known as a general PCR method can also be used (see Technique, 1, 11 (1989)).
  • a desired modified amadoriase gene can also be directly synthesized by an organic synthesis method or an enzyme synthesis method.
  • the amadoriase gene obtained as described above is incorporated into a vector such as a bacteriophage, a cosmid, or a plasmid used for transformation of prokaryotic cells or eukaryotic cells by a conventional method, and a host corresponding to each vector is selected by a conventional method.
  • a microorganism belonging to the genus Escherichia as a host for example, using the obtained recombinant DNA, for example, Escherichia coli K-12 strain, preferably Escherichia coli JM109 strain, Escherichia coli DH5 ⁇ strain (both manufactured by Takara Bio Inc.), etc. Transform or transduce them to obtain the respective strain.
  • Amino acid sequence homology can be calculated using GENETYX-Mac (Software Development) 's maximum matching and search homology programs, or DNASIS Pro (Hitachi Software)' s maximum matching and multiple alignment programs. .
  • the “position corresponding to an amino acid” refers to the position in the amino acid sequence of an amadoriase derived from another species corresponding to the amino acid at a specific position in the amino acid sequence of the amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1.
  • amino acid sequences are compared using a known algorithm such as the Lippman-Person method, and the maximum homology to conserved amino acid residues present in the amino acid sequences of each amadoriase It can be done by giving sex.
  • a known algorithm such as the Lippman-Person method
  • the maximum homology to conserved amino acid residues present in the amino acid sequences of each amadoriase It can be done by giving sex.
  • By aligning the amino acid sequences of the amadoriases in this way it is possible to determine the positions of the homologous amino acid residues in the sequence of each amadoriase sequence regardless of insertions or deletions in the amino acid sequences.
  • the homologous position is considered to exist at the same position in the three-dimensional structure, and it can be estimated that the homologous position has a similar effect on the specific function of the target amadoriase.
  • FIG. 1 shows an alignment of sequences of amadoriases from various species.
  • the position in the amino acid sequence of an amadoriase derived from another species corresponding to the amino acid at a specific position in the amino acid sequence of an amadoriase derived from the genus Coniochaeta can be known from FIG. Fig.
  • the “position corresponding to lysine at position 66 of the amino acid sequence described in SEQ ID NO: 1” refers to the confirmed amino acid sequence of Amadoriase and the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. When compared, it means the amino acid corresponding to lysine at position 66 of the amadoriase of SEQ ID NO: 1. Thereby, the amino acid sequence can be aligned and specified by the above-mentioned method of specifying “the amino acid at the corresponding position”.
  • the position corresponding to valine at position 67 of the amino acid sequence described in SEQ ID NO: 1 refers to the confirmed amino acid sequence of Amadoriase and the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. When compared, it means the amino acid corresponding to valine at position 67 of the amadoriase of SEQ ID NO: 1. Thereby, the amino acid sequence can be aligned and specified by the above-mentioned method of specifying “the amino acid at the corresponding position”.
  • the “position corresponding to glutamine at position 70 of the amino acid sequence described in SEQ ID NO: 1” refers to the confirmed amino acid sequence of Amadoriase and the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. When compared, it means an amino acid corresponding to glutamine at position 70 of the amadoriase of SEQ ID NO: 1. Thereby, the amino acid sequence can be aligned and specified by the above-mentioned method of specifying “the amino acid at the corresponding position”.
  • the position corresponding to aspartic acid at position 96 of the amino acid sequence described in SEQ ID NO: 1 refers to the confirmed amino acid sequence of Amadoriase, the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1 Is the amino acid corresponding to aspartic acid at position 96 of the amadoriase of SEQ ID NO: 1.
  • the amino acid sequence can be aligned and specified by the above-mentioned method of specifying “the amino acid at the corresponding position”.
  • Aspartate at position 96 for oxidase aspartate at position 96 for ketoamine oxidase from Neocosmospora vasinfecta, aspartate at fructosyl amino acid oxidase from Cryptococcus ocneoformans, aspartate at position 96, aspartate at fructosyl peptide oxidase from Phaeosphaeria nodorum Acid, aspartic acid at position 95 for fructosyl amino acid oxidase from Aspergillus nidulans, and aspartic acid at position 96 for fructosyl amino acid oxidase from Ulocladium sp. In the fructosyl amino acid oxidase derived from Penicillium janthinellum, it is aspartic acid at position 96.
  • the position corresponding to glutamic acid at position 98 of the amino acid sequence described in SEQ ID NO: 1 refers to the confirmed amino acid sequence of Amadoriase and the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. When compared, it means an amino acid corresponding to glutamic acid at position 98 of the amadoriase of SEQ ID NO: 1. Thereby, the amino acid sequence can be aligned and specified by the above-mentioned method of specifying “the amino acid at the corresponding position”.
  • the position corresponding to threonine at position 100 of the amino acid sequence described in SEQ ID NO: 1 refers to the confirmed amino acid sequence of Amadoriase and the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. When compared, it means the amino acid corresponding to threonine at position 100 of the amadoriase of SEQ ID NO: 1. Thereby, the amino acid sequence can be aligned and specified by the above-mentioned method of specifying “the amino acid at the corresponding position”.
  • the “position corresponding to glycine at position 103 of the amino acid sequence described in SEQ ID NO: 1” refers to the confirmed amino acid sequence of Amadoriase and the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. When compared, it means the amino acid corresponding to glycine at position 103 of the amadoriase of SEQ ID NO: 1. Thereby, the amino acid sequence can be aligned and specified by the above-mentioned method of specifying “the amino acid at the corresponding position”.
  • the “position corresponding to aspartic acid at position 106 of the amino acid sequence described in SEQ ID NO: 1” refers to the confirmed amino acid sequence of Amadoriase, the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1 Is the amino acid corresponding to aspartic acid at position 106 of the amadoriase of SEQ ID NO: 1.
  • the amino acid sequence can be aligned and specified by the above-mentioned method of specifying “the amino acid at the corresponding position”.
  • asparagine at position 106 in amadoriase from Eupenicillium terrenum aspartic acid at position 106 in ketoamine oxidase from Pyrenochaeta sp., Alanine at position 106 in ketoamine oxidase from Arthrinium sp., Ketoamine oxidase from Curvularia clavata Aspartic acid at position 106, glycine at position 106 for ketoamine oxidase from Neocosmospora vasinfecta, serine at position 106 for fructosyl amino acid oxidase from Cryptococcus neoformans, aspartic acid at position 106, fructosyl peptide oxidase from Phaeosphaeria nodorum, Aspergillus nidulans
  • fructosyl amino acid oxidase derived from glycine at position 105 in the case of fructosyl amino acid oxidase
  • the position corresponding to glutamine at position 110 of the amino acid sequence described in SEQ ID NO: 1 means the confirmed amino acid sequence of Amadoriase and the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. When compared, it means the amino acid corresponding to glutamine at position 110 of the amadoriase of SEQ ID NO: 1. Thereby, the amino acid sequence can be aligned and specified by the above-mentioned method of specifying “the amino acid at the corresponding position”.
  • lysine at position 110 for amadoriase from Eupenicillium terrenum, alanine at position 110 for ketoamine oxidase from Pyrenochaeta sp., Glutamine at position 110 for ketoamine oxidase from Arthrinium sp., 110 for ketoamine oxidase from Curvularia clavata The alanine in position, the glutamic acid at position 110 for the ketoamine oxidase from Neocosmospora vasinfecta, the serine at position 110 for the fructosyl amino acid oxidase from Cryptococcus neoformans, the glycine at position 110 for the fructosyl peptide oxidase from Phaeosphaeria nodorum, the fruct from Aspergillus nidulans Lysine at position 109 for tosyl amino acid oxidase, alanine at position 110 for fructosyl amino acid oxidase,
  • the position corresponding to alanine at position 113 of the amino acid sequence described in SEQ ID NO: 1 refers to the confirmed amino acid sequence of Amadoriase and the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. When compared, it means the amino acid corresponding to alanine at position 113 of the amadoriase of SEQ ID NO: 1. Thereby, the amino acid sequence can be aligned and specified by the above-mentioned method of specifying “the amino acid at the corresponding position”.
  • the “position corresponding to leucine at position 114 of the amino acid sequence described in SEQ ID NO: 1” refers to the confirmed amino acid sequence of Amadoriase and the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. When compared, it means the amino acid corresponding to leucine at position 114 of the amadoriase of SEQ ID NO: 1. Thereby, the amino acid sequence can be aligned and specified by the above-mentioned method of specifying “the amino acid at the corresponding position”.
  • the “position corresponding to histidine at position 125 in the amino acid sequence described in SEQ ID NO: 1” means that the confirmed amino acid sequence of Amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means the amino acid corresponding to histidine at position 125 in the amino acid sequence described in SEQ ID NO: 1. This can also be specified by aligning amino acid sequences by the above method.
  • asparagine at position 125 in amadoriase from Eupenicillium terrenum asparagine at position 125 in ketoamine oxidase from Pyrenochaeta sp., Threonine at position 125 in ketoamine oxidase from Arthrinium sp., 125 in ketoamine oxidase from Curvularia clavata Threonine, Neocosmospora vasinfecta-derived ketoamine oxidase from position 125 histidine, Cryptococcus neoformans-derived fructosyl amino acid oxidase from position 125 histidine, Phaeosphaeria nodorum-derived fructosyl peptide oxidase from position 123 asparagine, Aspergillus nidulans Asparagine at position 124 for tosylamino acid oxidase, threonine at position 125 for fructosyl amino acid oxidase
  • the position corresponding to serine at position 154 in the amino acid sequence described in SEQ ID NO: 1 means that the confirmed amino acid sequence of Amadoriase is compared with the amino acid sequence of the Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means the amino acid corresponding to serine at position 154 of the amadoriase of SEQ ID NO: 1. This can also be specified by aligning amino acid sequences by the above method.
  • the “position corresponding to aspartic acid at position 156 of the amino acid sequence described in SEQ ID NO: 1” means the confirmed amino acid sequence of Amadoriase, the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1 Is the amino acid corresponding to aspartic acid at position 156 of the amadoriase of SEQ ID NO: 1.
  • the amino acid sequence can be aligned and specified by the above-mentioned method of specifying “the amino acid at the corresponding position”.
  • the position corresponding to valine at position 259 of the amino acid sequence described in SEQ ID NO: 1 means that the confirmed amino acid sequence of Amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means the amino acid corresponding to valine at position 259 of the amadoriase of SEQ ID NO: 1. This can also be specified by aligning amino acid sequences by the above method.
  • position corresponding to tyrosine at position 261 of the amino acid sequence described in SEQ ID NO: 1 means that the determined amino acid sequence of Amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means an amino acid corresponding to tyrosine at position 261 of the amadoriase of SEQ ID NO: 1. This can also be specified by aligning amino acid sequences by the above method.
  • tyrosine at position 261 is used for amadoriase from Eupenicillium terrenum
  • tyrosine at position 259 is used for ketoamine oxidase from Pyrenochaeta sp.
  • Tyrosine 261 is used for ketoamine oxidase from Arthrinium sp.
  • And 259 is used for ketoamine oxidase from Curvularia lavclavata.
  • Tyrosine Neocosmospora vasinfecta-derived ketoamine oxidase derived from tyrosine 261, fructosyl amino acid oxidase derived from Cryptococcus neoformans tyrosine 261, fructosyl peptide oxidase derived from Phaeosphaeria nodorum tyrosine 257, fructose derived from Aspergillus nidulans Tyrosine at position 261 for tosyl amino acid oxidase, tyrosine at position 259 for fructosyl amino acid oxidase from Ulocladium sp., Fructose from Penicillium janthinellum At the amino acid oxidase, an 261 of tyrosine.
  • the “position corresponding to glycine at position 263 of the amino acid sequence described in SEQ ID NO: 1” refers to the confirmed amino acid sequence of Amadoriase and the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. When compared, it means the amino acid corresponding to glycine at position 263 of the amadoriase of SEQ ID NO: 1. Thereby, the amino acid sequence can be aligned and specified by the above-mentioned method of specifying “the amino acid at the corresponding position”.
  • the “position corresponding to alanine at position 355 of the amino acid sequence described in SEQ ID NO: 1” means that the confirmed amino acid sequence of Amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means an amino acid corresponding to alanine at position 355 of the amadoriase of SEQ ID NO: 1. This can also be specified by aligning amino acid sequences by the above method.
  • amadoriase derived from Eupenicillium terrenum is alanine at position 355, the ketoamine oxidase from Pyrenochaeta sp. Is alanine at position 353, the ketoamine oxidase from Arthrinium sp.
  • this strain may be cultured by a normal solid culture method, It is preferable to employ the liquid culture method as much as possible.
  • Examples of the medium for culturing the above strain include, for example, yeast extract, tryptone, peptone, meat extract, corn steep liquor or one or more nitrogen sources such as soybean or wheat bran leachate, sodium chloride, dihydrogen phosphate. Add one or more inorganic salts such as potassium, dipotassium hydrogen phosphate, magnesium sulfate, magnesium chloride, ferric chloride, ferric sulfate or manganese sulfate, and add sugar raw materials, vitamins, etc. as necessary. Used.
  • Culturing is carried out at a culture temperature of 20 to 42 ° C., preferably at a culture temperature of around 37 ° C. for 4 to 24 hours, more preferably at a culture temperature of around 37 ° C. for 4 to 8 hours, aeration / agitation deep culture, shaking culture, and stationary It is preferably carried out by culturing or the like.
  • the cells are subjected to ultrasonic disruption treatment, grinding treatment, or the like, or the enzyme is extracted using a lytic enzyme such as lysozyme, or shaken or left in the presence of toluene or the like for lysis. This enzyme can be discharged out of the cells. Then, this solution is filtered, centrifuged, etc.
  • a normal enzyme collecting means For example, the cells are subjected to ultrasonic disruption treatment, grinding treatment, or the like, or the enzyme is extracted using a lytic enzyme such as lysozyme, or shaken or left in the presence of toluene or the like for lysis. This enzyme can be discharged out of the cells. Then, this solution is filtered, centrifuged, etc.
  • nucleic acid is removed with streptomycin sulfate, protamine sulfate, manganese sulfate or the like, and then ammonium sulfate, alcohol, acetone or the like is added thereto.
  • the fraction is collected and the precipitate is collected to obtain a crude enzyme of amadoriase.
  • an amadoriase purified enzyme preparation further from the above crude amadoriase enzyme, for example, gel filtration method using Sephadex, Superdex, Ultrogel, etc .; adsorption elution method using ion exchanger; electrophoresis using polyacrylamide gel, etc.
  • Method Adsorption elution method using hydroxyapatite; Precipitation method such as sucrose density gradient centrifugation; Affinity chromatography method; Fractionation method using molecular sieve membrane or hollow fiber membrane, etc.
  • the amadoriase of the present invention obtained by the means as described above is characterized in that the substrate specificity is improved compared to that before modification as a result of mutation in the amino acid sequence by genetic modification or the like. .
  • the ratio of “reactivity to ⁇ FK” to “reactivity to ⁇ FVH” or the ratio of “reactivity to ⁇ FK” to “reactivity to ⁇ FV” is reduced compared to that before modification. It is characterized by.
  • the ratio of “reactivity to ⁇ FK” with respect to “reactivity to ⁇ FVH” and the ratio of “reactivity to ⁇ FK” to “reactivity to ⁇ FV” are both reduced as compared with those before modification. It is characterized by being.
  • ⁇ FK / ⁇ FVH indicating the ratio of reactivity to ⁇ FK with respect to reactivity to ⁇ FVH is 10% or more, preferably 20% or more, more preferably 30% or more, before modification. More preferably, it is preferable to reduce by 40% or more.
  • ⁇ FK / ⁇ FV which indicates the ratio of reactivity to ⁇ FK with respect to the reactivity to ⁇ FV, is 10% or more, preferably 20% or more, more preferably 30% or more, more preferably, before modification. Is preferably reduced by 40% or less.
  • the ratio of reactivity to ⁇ FK to the reactivity to ⁇ FVH or the ratio of reactivity to ⁇ FK to the reactivity to ⁇ FV was measured under any conditions using a known amadoriase measurement method. Can be compared. For example, at pH 7.0, the ratio of reactivity to ⁇ FK to the reactivity to ⁇ FVH is determined by dividing the activity measured by adding 5 mM ⁇ FK by the activity measured by adding 5 mM ⁇ FVH. It is possible to calculate and compare this before and after modification.
  • the reactivity to ⁇ FK with respect to the reactivity to ⁇ FV is obtained.
  • the ratio can be calculated and compared with the one before modification and the one after modification.
  • amadoriase of the present invention having improved substrate specificity compared to that before modification is, for example, amadoriase produced by E. coli JM109 (pKK223-3-CFP-T7-Y261W) strain.
  • Such an amadoriase with improved substrate specificity is well reduced in the degree to which ⁇ FK is measured as noise, and is glycated from ⁇ FVH, which is a glycated amino acid derived from the ⁇ -chain amino terminus of HbA1c, or from the ⁇ -chain amino terminus of HbA1c. Since only ⁇ FV, which is an amino acid, can be measured, highly accurate measurement can be performed, which is very advantageous for industrial use.
  • Method for measuring amadoriase activity Various methods can be used as a method for measuring the activity of amadoriase. As an example, a method for measuring amadoriase activity used in the present invention will be described below.
  • Examples of the method for measuring the enzyme activity of amadoriase in the present invention include a method for measuring the amount of hydrogen peroxide produced by the reaction of the enzyme and a method for measuring the amount of oxygen consumed by the enzyme reaction.
  • a method for measuring the amount of hydrogen peroxide will be described.
  • ⁇ FVH, ⁇ FK, or ⁇ FV is used as a substrate unless otherwise specified.
  • the enzyme titer is defined as 1 U for the amount of enzyme that produces 1 ⁇ mol of hydrogen peroxide per minute when measured using ⁇ FVH, ⁇ FK, or ⁇ FV as a substrate.
  • glycated amino acid such as ⁇ FK
  • glycated peptide such as ⁇ FVH
  • those synthesized and purified based on the method of Sakagami et al. Can be used (see JP 2001-95598 A).
  • Reagent preparation (1) Reagent 1: Peroxidase, 4-aminoantipyrine solution 5.0 kU peroxidase (manufactured by Kikkoman), 100 mg of 4-aminoantipyrine (manufactured by Tokyo Chemical Industry), 0.1 M potassium phosphate Dissolve in buffer (pH 7.0 or pH 7.5 or pH 8.0) and make up to 1000 ml.
  • Reagent 1 Peroxidase, 4-aminoantipyrine solution 5.0 kU peroxidase (manufactured by Kikkoman), 100 mg of 4-aminoantipyrine (manufactured by Tokyo Chemical Industry), 0.1 M potassium phosphate Dissolve in buffer (pH 7.0 or pH 7.5 or pH 8.0) and make up to 1000 ml.
  • Reagent 2 TOOS solution 500 mg of TOOS (manufactured by Dojindo Laboratories) is dissolved in ion-exchanged water, and the volume is adjusted to 100 ml.
  • Reagent 3 Substrate solution (150 mM; final concentration 5 mM) 625 mg of ⁇ FVH or 462 mg of ⁇ FK or 419 mg of ⁇ FV is dissolved in ion-exchanged water, and the volume is adjusted to 10 ml.
  • a standard solution of hydrogen peroxide prepared in advance is used in place of the reagent 3 and ion-exchanged water in place of the enzyme solution, and a graph is prepared in which the relationship with the amount of dye produced is examined. Using this graph, the number of micromoles of hydrogen peroxide produced per minute at 37 ° C. is calculated, and this value is used as the activity unit in the enzyme solution.
  • the culture was collected by centrifugation at 10,000 ⁇ g for 1 minute to obtain bacterial cells. From this cell, the recombinant plasmid pKK223-3-CFP-T7 was extracted and purified using GenElute Plasmid Mini-Prep Kit (manufactured by Sigma Aldrich), and 2.5 ⁇ g of the recombinant plasmid pKK2233-3 was purified. CFP-T7 DNA was obtained.
  • the nucleotide sequence of DNA encoding amadoriase in the plasmid was determined using a multicapillary DNA analysis system CEQ2000 (manufactured by Beckman Coulter), and the lysine at position 66 of the amino acid sequence described in SEQ ID NO: 1 was substituted with glycine.
  • a recombinant plasmid (pKK223-3-CFP-T7-K66G) encoding the modified amadoriase was obtained.
  • the synthetic plasmids of SEQ ID NOS: 5 and 6, KOD using the recombinant plasmid pKK223-3-CFP-T7 DNA as a template -Plus- (manufactured by Toyobo Co., Ltd.) was used for PCR reaction, transformation of E. coli JM109, and determination of the DNA sequence encoding amadoriase in the plasmid DNA retained by the growing colonies under the same conditions as described above.
  • a recombinant plasmid (pKK223-3-CFP-T7-V67P) encoding a modified amadoriase in which valine at position 67 in the amino acid sequence shown in SEQ ID NO: 1 was replaced with proline was obtained.
  • a recombinant plasmid (pKK223-3-CFP-T7-K66GV67P) encoding a modified amadoriase in which the lysine at position 66 in the amino acid sequence shown in SEQ ID NO: 1 was replaced with glycine and the valine at position 67 was replaced with proline.
  • the synthetic plasmid pKK223-3-CFP-T7 DNA was used as a template, and the synthetic oligonucleotides KOD, -Plus- (manufactured by Toyobo Co., Ltd.) was used for PCR reaction, transformation of E. coli JM109, and determination of the DNA sequence encoding amadoriase in the plasmid DNA retained by the growing colonies under the same conditions as described above.
  • a recombinant plasmid (pKK223-3-CFP-T7-Q70P) encoding a modified amadoriase in which glutamine at position 70 in the amino acid sequence shown in SEQ ID NO: 1 was replaced with proline was obtained.
  • a recombinant plasmid (pKK223-3-CFP-T7-D96A) encoding a modified amadoriase in which the aspartic acid at position 96 in the amino acid sequence shown in SEQ ID NO: 1 was substituted with alanine was obtained.
  • the recombinant plasmid pKK223-3-CFP-T7 DNA was used as a template and the synthetic oligonucleotides SEQ ID NO: 13, 14 KOD -Plus- (manufactured by Toyobo Co., Ltd.) was used for PCR reaction, transformation of E. coli JM109, and determination of the DNA sequence encoding amadoriase in the plasmid DNA retained by the growing colonies under the same conditions as described above.
  • a recombinant plasmid (pKK223-3-CFP-T7-E98Q) encoding a modified amadoriase in which the glutamic acid at position 98 in the amino acid sequence shown in SEQ ID NO: 1 was replaced with glutamine was obtained.
  • the synthetic plasmids of SEQ ID NOS: 15 and 16, KOD using the recombinant plasmid pKK223-3-CFP-T7 DNA as a template -Plus- (manufactured by Toyobo Co., Ltd.) was used for PCR reaction, transformation of E. coli JM109, and determination of the DNA sequence encoding amadoriase in the plasmid DNA retained by the growing colonies under the same conditions as described above.
  • a recombinant plasmid (pKK223-3-CFP-T7-T100R) encoding a modified amadoriase in which threonine at position 100 of the amino acid sequence shown in SEQ ID NO: 1 was replaced with arginine was obtained.
  • the synthetic plasmids of SEQ ID NOS: 17 and 18, KOD using the recombinant plasmid pKK223-3-CFP-T7 DNA as a template -Plus- (manufactured by Toyobo Co., Ltd.) was used for PCR reaction, transformation of E. coli JM109, and determination of the DNA sequence encoding amadoriase in the plasmid DNA retained by the growing colonies under the same conditions as described above.
  • a recombinant plasmid (pKK223-3-CFP-T7-G103R) encoding a modified amadoriase in which the glycine at position 103 of the amino acid sequence shown in SEQ ID NO: 1 was replaced with arginine was obtained.
  • a recombinant plasmid (pKK223-3-CFP-T7-D106A) encoding a modified amadoriase in which the aspartic acid at position 106 in the amino acid sequence shown in SEQ ID NO: 1 was substituted with alanine was obtained.
  • the synthetic plasmids of SEQ ID NOS: 21 and 22, KOD using the recombinant plasmid pKK223-3-CFP-T7 DNA as a template -Plus- was used for PCR reaction, transformation of E. coli JM109, and determination of the DNA sequence encoding amadoriase in the plasmid DNA retained by the growing colonies under the same conditions as described above.
  • a recombinant plasmid (pKK223-3-CFP-T7-Q110A) encoding a modified amadoriase in which glutamine at position 110 of the amino acid sequence shown in SEQ ID NO: 1 was substituted with alanine was obtained.
  • a synthetic plasmid pKK223-3-CFP-T7 DNA was used as a template and the synthetic oligonucleotides of SEQ ID NOS: 23 and 24, KOD -Plus- (manufactured by Toyobo Co., Ltd.) was used for PCR reaction, transformation of E. coli JM109, and determination of the DNA sequence encoding amadoriase in the plasmid DNA retained by the growing colonies under the same conditions as described above.
  • a recombinant plasmid (pKK223-3-CFP-T7-A113E) encoding a modified amadoriase in which the alanine at position 113 in the amino acid sequence shown in SEQ ID NO: 1 was replaced with glutamic acid was obtained.
  • the synthetic plasmids of SEQ ID NOS: 25 and 26, KOD using the recombinant plasmid pKK223-3-CFP-T7 DNA as a template -Plus- (manufactured by Toyobo Co., Ltd.) was used for PCR reaction, transformation of E. coli JM109, and determination of the DNA sequence encoding amadoriase in the plasmid DNA retained by the growing colonies under the same conditions as described above.
  • a recombinant plasmid (pKK223-3-CFP-T7-L114K) encoding a modified amadoriase in which leucine at position 114 of the amino acid sequence shown in SEQ ID NO: 1 was replaced with lysine was obtained.
  • the recombinant plasmid pKK223-3-CFP-T7 DNA was used as a template, and the synthetic oligonucleotides SEQ ID NO: 27 and 28, KOD -Plus- (manufactured by Toyobo Co., Ltd.) was used for PCR reaction, transformation of E. coli JM109, and determination of the DNA sequence encoding amadoriase in the plasmid DNA retained by the growing colonies under the same conditions as described above.
  • a recombinant plasmid (pKK223-3-CFP-T7-H125E) encoding a modified amadoriase in which the histidine at position 125 of the amino acid sequence shown in SEQ ID NO: 1 was replaced with glutamic acid was obtained.
  • the synthetic plasmid pKK223-3-CFP-T7 DNA as a template, KOD, SEQ ID NO: 29, 30 -Plus- (manufactured by Toyobo Co., Ltd.) was used for PCR reaction, transformation of E. coli JM109, and determination of the DNA sequence encoding amadoriase in the plasmid DNA retained by the growing colonies under the same conditions as described above.
  • a recombinant plasmid (pKK223-3-CFP-T7-S154E) encoding a modified amadoriase in which the serine at position 154 of the amino acid sequence shown in SEQ ID NO: 1 was replaced with glutamic acid was obtained.
  • a recombinant plasmid (pKK223-3-CFP-T7-D156N) encoding a modified amadoriase in which aspartic acid at position 156 of the amino acid sequence shown in SEQ ID NO: 1 was substituted with asparagine was obtained.
  • the synthetic plasmids of SEQ ID NOS: 33 and 34, KOD, using the recombinant plasmid pKK223-3-CFP-T7 DNA as a template -Plus- was used for PCR reaction, transformation of E. coli JM109, and determination of the DNA sequence encoding amadoriase in the plasmid DNA retained by the growing colonies under the same conditions as described above.
  • a recombinant plasmid (pKK223-3-CFPT7-V259A) encoding a modified amadoriase in which the valine at position 259 in the amino acid sequence shown in SEQ ID NO: 1 was substituted with alanine was obtained.
  • the synthetic plasmids of SEQ ID NOS: 35 and 36, KOD using the recombinant plasmid pKK223-3-CFP-T7 DNA as a template -Plus- (manufactured by Toyobo Co., Ltd.) was used for PCR reaction, transformation of E. coli JM109, and determination of the DNA sequence encoding amadoriase in the plasmid DNA retained by the growing colonies under the same conditions as described above.
  • a recombinant plasmid (pKK223-3-CFP-T7-Y261A) encoding a modified amadoriase in which the tyrosine at position 261 in the amino acid sequence shown in SEQ ID NO: 1 was substituted with alanine was obtained.
  • the synthetic plasmids of SEQ ID NOS: 37 and 38, KOD using the recombinant plasmid pKK223-3-CFP-T7 DNA as a template -Plus- (manufactured by Toyobo Co., Ltd.) was used for PCR reaction, transformation of E. coli JM109, and determination of the DNA sequence encoding amadoriase in the plasmid DNA retained by the growing colonies under the same conditions as described above.
  • a recombinant plasmid (pKK223-3-CFP-T7-G263R) encoding a modified amadoriase in which the glycine at position 263 in the amino acid sequence shown in SEQ ID NO: 1 was substituted with arginine was obtained.
  • the recombinant plasmid pKK223-3-CFP-T7 DNA was used as a template, the synthetic oligonucleotides SEQ ID NO: 39 and 40, KOD -Plus- (manufactured by Toyobo Co., Ltd.) was used for PCR reaction, transformation of E. coli JM109, and determination of the DNA sequence encoding amadoriase in the plasmid DNA retained by the growing colonies under the same conditions as described above.
  • a recombinant plasmid (pKK223-3-CFP-T7-A355K) encoding a modified amadoriase in which the alanine at position 355 of the amino acid sequence shown in SEQ ID NO: 1 was replaced with lysine was obtained.
  • the ⁇ FK / ⁇ FVH of the amadoriase before modification produced by the Escherichia coli JM109 (pKK223-3-CFP-T7) strain obtained from the enzyme activity measurement results was 0.316, and ⁇ FK / ⁇ FV was 0. .093.
  • Escherichia coli JM109 strain having the ability to produce modified amadoriase obtained as described above was cultured by the method described in (3) above to prepare 0.6 ml of crude enzyme solutions of various modified amadoriases.
  • ⁇ FK / ⁇ FVH of the modified amadoriase in which aspartic acid at position 96 in the amino acid sequence described in SEQ ID NO: 1 is substituted with alanine, serine, asparagine, and histidine are the values before modification.
  • the value was lower than a certain 0.316, and both ⁇ FK / ⁇ FV were lower than 0.093, which was the value before modification.
  • the above amino acid substitution was an effective substitution for the production of amadoriase with improved substrate specificity.
  • Escherichia coli JM109 strain having the ability to produce modified amadoriase obtained as described above was cultured by the method described in (3) above to prepare 0.6 ml of crude enzyme solutions of various modified amadoriases.
  • the glutamic acid at position 98 of the amino acid sequence described in SEQ ID NO: 1 is replaced with amino acids other than proline, that is, glutamine, histidine, lysine, arginine, glycine, alanine, valine, isoleucine, leucine, methionine, cysteine.
  • Serine, threonine, asparagine, aspartic acid, phenylalanine, tyrosine, tryptophan substituted amadoriase, ⁇ FK / ⁇ FVH are all lower than 0.316 which is the value before modification, and ⁇ FK / ⁇ FV Both values were lower than 0.093, which was the value before modification.
  • the above amino acid substitution was an effective substitution for the production of amadoriase with improved substrate specificity.
  • Escherichia coli JM109 strain having the ability to produce modified amadoriase obtained as described above was cultured by the method described in (3) above to prepare 0.6 ml of crude enzyme solutions of various modified amadoriases.
  • ⁇ FK / ⁇ FVH of the modified amadoriase in which glycine at position 103 of the amino acid sequence shown in SEQ ID NO: 1 is substituted with arginine, lysine, or histidine is a value before modification.
  • the value was lower than 316, and both ⁇ FK / ⁇ FV were lower than 0.093, which was the value before modification.
  • the above amino acid substitution was an effective substitution for the production of amadoriase with improved substrate specificity.
  • Escherichia coli JM109 strain having the ability to produce modified amadoriase obtained as described above was cultured by the method described in (3) above to prepare 0.6 ml of crude enzyme solutions of various modified amadoriases.
  • aspartic acid at position 106 of the amino acid sequence shown in SEQ ID NO: 1 is converted into an amino acid having a molecular weight smaller than that of aspartic acid, that is, glycine, alanine, serine, valine, threonine, cysteine, leucine, isoleucine, asparagine.
  • ⁇ FK / ⁇ FVH of the substituted modified amadoriase is lower than 0.316 which is the value before modification
  • ⁇ FK / ⁇ FV is lower than 0.093 which is the value before modification. It became.
  • the above amino acid substitution was an effective substitution for the production of amadoriase with improved substrate specificity.
  • Escherichia coli JM109 strain having the ability to produce modified amadoriase obtained as described above was cultured by the method described in (3) above to prepare 0.6 ml of crude enzyme solutions of various modified amadoriases.
  • the ⁇ FK / ⁇ FV of the modified Amadoriase in which glutamine at position 110 is replaced with alanine, phenylalanine, tryptophan, asparagine, histidine, lysine, arginine, and the value before the modification is lower than 0.316.
  • the value was lower than 0.093, which was the value before modification.
  • Escherichia coli JM109 strain having the ability to produce modified amadoriase was cultured by the method described in (3) above to prepare 0.6 ml of crude enzyme solutions of various modified amadoriases.
  • the amino acid substitution was an effective substitution for the production of amadoriase with improved substrate specificity.
  • Escherichia coli JM109 strain having the ability to produce modified amadoriase was cultured by the method described in (3) above to prepare 0.6 ml of crude enzyme solutions of various modified amadoriases.
  • ⁇ FK / ⁇ FVH of the modified amadoriase in which the leucine at position 114 of the amino acid sequence shown in SEQ ID NO: 1 was substituted with lysine and arginine was from the value before modification of 0.316
  • the values were low, and both ⁇ FK / ⁇ FV were lower than 0.093, which was the value before modification.
  • the above amino acid substitution was an effective substitution for the production of amadoriase with improved substrate specificity.
  • ⁇ FK / ⁇ FVH of the modified amadoriase in which leucine at position 114 in the amino acid sequence shown in SEQ ID NO: 1 was substituted with glutamic acid was higher than 0.316, which was the value before modification.
  • Escherichia coli JM109 strain having the ability to produce modified amadoriase was cultured by the method described in (3) above to prepare 0.6 ml of crude enzyme solutions of various modified amadoriases.
  • glutamic acid asparagine, lysine, alanine, glutamine, arginine, leucine, phenylalanine, and tyrosine.
  • ⁇ FK / ⁇ FV of modified amadoriase in which histidine at position 125 is substituted with asparagine, lysine, glutamine, arginine, leucine, phenylalanine, tyrosine Both values were lower than 0.093, which was the value before modification.
  • the above amino acid substitution was an effective substitution for the production of amadoriase with improved substrate specificity.
  • Escherichia coli JM109 strain having the ability to produce modified amadoriase was cultured by the method described in (3) above to prepare 0.6 ml of crude enzyme solutions of various modified amadoriases.
  • ⁇ FK / ⁇ FVH is a modified type of amadoriase in which serine at position 154 of the amino acid sequence shown in SEQ ID NO: 1 is substituted with glutamic acid, glycine, tyrosine, asparagine, glutamine, aspartic acid, histidine, cysteine.
  • the value was lower than 0.316, which was the value before modification
  • ⁇ FK / ⁇ FV was all lower than 0.093, which was the value before modification.
  • the above amino acid substitution was an effective substitution for the production of amadoriase with improved substrate specificity.
  • the ⁇ FK / ⁇ FVH of the modified amadoriase in which the serine at position 154 in the amino acid sequence described in SEQ ID NO: 1 was substituted with alanine was almost the same as 0.316, which was the value before modification, and no decrease was observed.
  • Escherichia coli JM109 strain having the ability to produce modified amadoriase obtained as described above was cultured by the method described in (3) above to prepare 0.6 ml of crude enzyme solutions of various modified amadoriases.
  • ⁇ FK / ⁇ FVH of the modified amadoriase in which the valine at position 259 of the amino acid sequence described in SEQ ID NO: 1 is substituted with alanine, cysteine, or serine is the value before modification.
  • the value was lower than 316, and both ⁇ FK / ⁇ FV were lower than 0.093, which was the value before modification.
  • the above amino acid substitution was an effective substitution for the production of amadoriase with improved substrate specificity.
  • Escherichia coli JM109 strain having the ability to produce modified amadoriase was cultured by the method described in (3) above to prepare 0.6 ml of crude enzyme solutions of various modified amadoriases.
  • ⁇ FK / ⁇ FVH of the modified amadoriase in which tyrosine at position 261 in the amino acid sequence shown in SEQ ID NO: 1 is substituted with alanine, leucine, phenylalanine, tryptophan, or lysine is the value before modification.
  • the ⁇ FK / ⁇ FV of the modified amadoriase in which the tyrosine at position 261 was substituted with phenylalanine and tryptophan were both lower than 0.093, which was the value before modification. .
  • the above amino acid substitution was an effective substitution for the production of amadoriase with improved substrate specificity.
  • Escherichia coli JM109 strain having the ability to produce modified amadoriase obtained as described above was cultured by the method described in (3) above to prepare 0.6 ml of crude enzyme solutions of various modified amadoriases.
  • ⁇ FK / ⁇ FVH of the modified amadoriase in which glycine at position 263 of the amino acid sequence shown in SEQ ID NO: 1 was substituted with arginine, lysine, histidine, aspartic acid, and glutamic acid The value was lower than 0.316, which was a value, and both ⁇ FK / ⁇ FV were lower than 0.093, which was the value before modification.
  • the above amino acid substitution was an effective substitution for the production of amadoriase with improved substrate specificity.
  • Escherichia coli JM109 strain having the ability to produce modified amadoriase was cultured by the method described in (3) above to prepare 0.6 ml of crude enzyme solutions of various modified amadoriases.
  • ⁇ FK / ⁇ FVH of the modified amadoriase in which the alanine at position 355 of the amino acid sequence described in SEQ ID NO: 1 was substituted with lysine, arginine, histidine, aspartic acid, and glutamic acid The ⁇ FK / ⁇ FV of the modified amadoriase in which the alanine at position 355 is replaced with lysine, arginine, or glutamic acid is lower than 0.093, which is the value before modification. Value.
  • the above amino acid substitution was an effective substitution for the production of amadoriase with improved substrate specificity.
  • Synthetic oligonucleotides (SEQ ID NOs: 7, 8, 17, 18, 39, 40, 51, 52, 55, 56, 87, 88, 115, 116, 131) using various recombinant plasmid DNAs shown in Table 15 as templates. 132, 135, 136, 139, 140), KOD-Plus- (manufactured by Toyobo Co., Ltd.), PCR reaction, transformation of Escherichia coli JM109 strain, and plasmid maintained by growing colonies under the same conditions as in (2) above The nucleotide sequence of DNA encoding amadoriase in DNA was determined.
  • Escherichia coli JM109 strain was obtained that produced a modified amadoriase in which a plurality of amino acid substitutions described in the column “amino acid mutation” in Table 15 were introduced into the amino acid sequence described in SEQ ID NO: 1.
  • Escherichia coli JM109 strain having the ability to produce modified amadoriase obtained as described above was cultured by the method described in (3) above to prepare 0.6 ml of crude enzyme solutions of various modified amadoriases.
  • Use plasmids L and S shown in Table 16 were double-digested with restriction enzymes KpnI and HindIII, and a DNA fragment of about 5.3 kbp from the use plasmid L and a DNA fragment of about 0.8 kbp from the use plasmid S were each agarose gel. After separation by electrophoresis, each DNA fragment was extracted from the gel and purified by NucleoSpin Extract II (manufactured by Machelet-Nagel). Subsequently, both DNA fragments were ligated high Ver.
  • Escherichia coli JM109 strain was transformed with the ligated plasmid DNA, and the base sequence of the DNA encoding amadoriase in the plasmid DNA retained by the growing colonies was determined.
  • Escherichia coli JM109 strain was obtained that produced a modified amadoriase in which a plurality of amino acid substitutions described in the column “amino acid mutation” in Table 16 were introduced into the amino acid sequence described in SEQ ID NO: 1.
  • Escherichia coli JM109 strain having the ability to produce modified amadoriase obtained as described above was cultured by the method described in (3) above to prepare 0.6 ml of crude enzyme solutions of various modified amadoriases.
  • coli JM109 (pKK223-3-CFP-T7-E98A / S154N / V259C) was inoculated into 40 ml of LB-amp medium supplemented with 0.1 mM IPTG and cultured at 30 ° C. for 16 hours.
  • the obtained cultured cells were washed with 20 mM HEPES-NaOH buffer (pH 7.0), suspended in the same buffer, subjected to ultrasonic disruption, and treated at 20,000 ⁇ g for 10 minutes. Centrifugation was performed to prepare 8 ml of a crude enzyme solution.
  • the prepared crude enzyme solution is adsorbed to 4 ml of Q Sepharose Fast Flow resin (GE Healthcare) equilibrated with 20 mM HEPES-NaOH buffer (pH 7.0), and then the resin is washed with 80 ml of the same buffer. Subsequently, the protein adsorbed on the resin was eluted with 20 mM HEPES-NaOH buffer (pH 7.0) containing 100 mM NaCl, and a fraction showing amadoriase activity was collected.
  • Q Sepharose Fast Flow resin GE Healthcare
  • the obtained fraction showing amadoriase activity was concentrated using Amicon Ultra-15, 30K NMWL (Millipore). Thereafter, it is applied to HiLoad 26/60 Superdex 200 pg (manufactured by GE Healthcare) equilibrated with 20 mM HEPES-NaOH buffer (pH 7.0) containing 150 mM NaCl, eluted with the same buffer, and fractions showing amadoriase activity. Were collected, and purified samples of wild type and modified amadoriase were obtained. The obtained purified sample was confirmed to be purified to a single band by analysis by SDS-PAGE.
  • Enzyme activity was measured using ⁇ FVH, ⁇ FK, and ⁇ FV as substrates using the obtained purified samples of wild type and modified amadoriase.
  • Reagent 1 Peroxidase adjusted to pH 7.0, 4-aminoantipyrine solution was used. The results are shown in Tables 17 and 18.
  • the protein concentration used to calculate the specific activity was measured by a colorimetric method based on the Bradford method or an ultraviolet absorption method using absorbance at 280 nm. Specific activities calculated from the protein concentration measured by each quantification method were expressed as U / mg and U / A 280 , respectively.
  • ⁇ FK / ⁇ FVH of the modified amadoriase in which glutamine at position 110 of the amino acid sequence shown in SEQ ID NO: 1 is substituted with arginine and lysine is lower than 0.310 which is the value before modification.
  • ⁇ FK / ⁇ FV of the modified amadoriase in which glutamine at position 110 was substituted with arginine was lower than 0.092, which was the value before modification.
  • modified amadoriase in which tyrosine at position 261 of the amino acid sequence described in SEQ ID NO: 1 is substituted with phenylalanine or tryptophan, glutamic acid at position 98 of the amino acid sequence described in SEQ ID NO: 1 as alanine, and A modified amadoriase in which valine at position 259 is substituted with cysteine, and glutamic acid at position 98 in the amino acid sequence shown in SEQ ID NO: 1 are substituted with alanine, serine at position 154 with asparagine, and valine at position 259 with cysteine.
  • the values of ⁇ FK / ⁇ FVH and ⁇ FK / ⁇ FV calculated by measuring enzyme activity using purified samples of wild type and each modified amadoriase were determined using the crude enzyme solution of wild type and each modified amadoriase. No significant divergence was observed between the values of ⁇ FK / ⁇ FVH and ⁇ FK / ⁇ FV calculated by measuring the activity. Therefore, if an improvement in substrate specificity is observed in the enzyme activity measurement using the crude enzyme solution of the modified amadoriase, the substrate specificity can also be improved in the enzyme activity measurement using the purified enzyme preparation of the modified amadoriase. It can be considered acceptable.
  • Reagent 4 Peroxidase, 4-aminoantipyrine solution 7.5 kU peroxidase (Kikkoman), 150 mg of 4-aminoantipyrine (Tokyo Chemical Industry) 0.15 M potassium phosphate Dissolve in buffer (pH 6.5) and make up to 1000 ml.
  • Reagent 5 TOOS solution 500 mg of TOOS (manufactured by Dojindo Laboratories) is dissolved in ion-exchanged water, and the volume is adjusted to 100 ml.
  • Reagent 6 Amadoriase solution purified Amadoriase of SEQ ID NO: 1, and glutamic acid at position 98 of amadoriase of SEQ ID NO: 1 to alanine, serine at position 154 to asparagine, and valine at position 259 to cysteine
  • the substituted modified amadoriase (SEQ ID NO: 271) was diluted with 0.01 M potassium phosphate buffer (pH 6.5) to prepare 1.0 U / ml and 2.3 U / ml, respectively.
  • Reagent 7 ⁇ FVH solution 625 mg of ⁇ FVH solution was dissolved in ion-exchanged water, and the volume was adjusted to 10 ml to prepare a 150 mM ⁇ FVH solution. Subsequently, a 150 mM ⁇ FVH solution was diluted with ion-exchanged water to prepare 90 ⁇ M, 180 ⁇ M, 270 ⁇ M, 360 ⁇ M, and 450 ⁇ M ⁇ FVH solutions.
  • Reagent 8 150 mM ⁇ FK solution prepared by dissolving 462 mg of blood model sample ⁇ FK in ion-exchanged water and making a constant volume of 10 ml, and 150 mM ⁇ FVH solution prepared in (7) are diluted with ion-exchanged water. The following four blood model solutions were prepared.
  • the modified amadoriase described in SEQ ID NO: 271 when used, even if the same concentration of ⁇ FVH and 5 times concentration of ⁇ FK coexist, the deviation from the original measured value is less than 1%, and ⁇ FVH Even if 10 times the concentration of ⁇ FK coexists, the deviation from the original measured value is less than 2%. Therefore, if the modified amadoriase described in SEQ ID NO: 271 is used, only ⁇ FVH can be accurately quantified even in a sample in which ⁇ FK coexists.
  • RNA contamination was prevented by treating the prepared total RNA with DNase I (Invitrogen).
  • a recombinant plasmid (pET22b-AnFX) encoding an Aspergillus nidulans fructosyl amino acid oxidase gene in which serine at position 59 in the amino acid sequence shown in SEQ ID NO: 172 was substituted with glycine was obtained.
  • the resulting recombinant plasmid pET22b-AnFX was transformed into Escherichia coli BL21 (DE3) (manufactured by Nippon Gene) to obtain Escherichia coli producing Aspergillus nidulans-derived fructosyl amino acid oxidase.
  • Escherichia coli BL21 (DE3) that produces fructosyl amino acid oxidase derived from Aspergillus nidulans obtained above was shaken at 30 ° C. for 18 hours in LB-amp medium supplemented with the reagent of Overnight Express Autoinduction System 1 (manufactured by Novagen). Cultured at last. The obtained cultured cells were suspended in 10 mM potassium phosphate buffer (pH 7.5), subjected to ultrasonic disruption, and centrifuged at 20,000 ⁇ g for 10 minutes to obtain a crude enzyme solution. .
  • the enzyme activity against ⁇ FV was measured by the above-mentioned B: activity measurement method, and found to be 2.2 U / ml. However, the reagent 1 for measuring the activity at this time was adjusted to pH 7.5.
  • the recombinant plasmid pET22b-AnFX was used as a template, the synthetic oligonucleotides of SEQ ID NOS: 177, 178 and 179, 180, KOD-Plus -Using Toyobo Co., Ltd., PCR reaction, transformation of Escherichia coli BL21 (DE3) under the same conditions as above, and determination of DNA sequence encoding fructosyl amino acid oxidase in plasmid DNA held by growing colonies went.
  • recombinant plasmids (pET22b-AnFX-V259A, pET22b-) encoding the Aspergillus nidulans fructosyl amino acid oxidase gene in which the valine at position 259 of the amino acid sequence shown in SEQ ID NO: 172 was substituted with alanine and cysteine, respectively.
  • AnFX-V259C was obtained.
  • the recombinant plasmid pET22b-AnFX was used as a template, the synthetic oligonucleotides of SEQ ID NOS: 181, 182 and 183, 184, KOD-Plus -Using Toyobo Co., Ltd., PCR reaction, transformation of Escherichia coli BL21 (DE3) under the same conditions as above, and determination of DNA sequence encoding fructosyl amino acid oxidase in plasmid DNA held by growing colonies went.
  • a recombinant plasmid (pET22b-AnFX-G263K, pET22b-) encoding an Aspergillus nidulans fructosyl amino acid oxidase gene in which the glycine at position 263 of the amino acid sequence shown in SEQ ID NO: 172 was substituted with lysine and arginine, respectively.
  • AnFX-G263R was obtained.
  • amino acid sequence predicted from SEQ ID NO: 187 (SEQ ID NO: 188) is identical to that of the Penicillium yancineram sequence described in FIG. 1 in which the 69th leucine is replaced with tryptophan and the 142nd threonine is replaced with alanine. I did it.
  • the recombinant plasmid pET22b-PcFX ′ was used as a template, the synthetic oligonucleotides of SEQ ID NOs: 189 and 190, KOD-Plus- (Toyobo Co., Ltd.) was used under the same conditions as described above for PCR reaction, transformation of E. coli, and determination of the base sequence of DNA encoding fructosyl amino acid oxidase in plasmid DNA retained by the growing colonies.
  • a recombinant plasmid (pET22b-PcFX) encoding a Penicillium chrysogenum-derived fructosyl amino acid oxidase gene in which the serine at position 60 of the amino acid sequence shown in SEQ ID NO: 188 was substituted with glycine was obtained.
  • the resulting recombinant plasmid pET22b-PcFX was transformed into E. coli BL21 (DE3), thereby obtaining E. coli that produces penicillium chrysogenum-derived fructosyl amino acid oxidase.
  • E. coli BL21 (DE3) that produces fructosyl amino acid oxidase derived from Penicillium chrysogenum obtained above was shaken at 30 ° C. for 18 hours in LB-amp medium supplemented with the reagent of Overnight Express Automation System 1 (manufactured by Novagen). Cultured. The obtained cultured cells were lysed using BugBuster Protein Extraction Reagent (manufactured by Novagen), and then centrifuged at 20,000 ⁇ g for 10 minutes to obtain a crude enzyme solution. Using this crude enzyme solution, the enzyme activity against ⁇ FV was measured by the above-mentioned B: activity measurement method, and found to be 0.090 U / ml. However, the reagent 1 for measuring the activity at this time was adjusted to pH 7.5.
  • a recombinant plasmid (pET22b-PcFX-K110R) encoding a Penicillium chrysogenum-derived fructosyl amino acid oxidase gene in which the lysine at position 110 of the amino acid sequence shown in SEQ ID NO: 188 was substituted with arginine was obtained.
  • the synthetic plasmid pET22b-PcFX was used as a template, the synthetic oligonucleotides of SEQ ID NOs: 193 and 194, KOD-Plus- (Toyobo Co., Ltd.).
  • PCR was carried out under the same conditions as described above, transformation of Escherichia coli BL21 (DE3) and determination of the base sequence of DNA encoding fructosyl amino acid oxidase in plasmid DNA retained by the growing colonies.
  • a recombinant plasmid (pET22b-PcFX-C154D) encoding a Penicillium chrysogenum-derived fructosyl amino acid oxidase gene in which the cysteine at position 154 in the amino acid sequence shown in SEQ ID NO: 188 was substituted with aspartic acid was obtained.
  • the synthetic plasmid pET22b-PcFX was used as a template, the synthetic oligonucleotide of SEQ ID NO: 195, 196, KOD-Plus- (Toyobo Co., Ltd.).
  • PCR was carried out under the same conditions as described above, transformation of Escherichia coli BL21 (DE3) and determination of the base sequence of DNA encoding fructosyl amino acid oxidase in plasmid DNA retained by the growing colonies.
  • a recombinant plasmid (pET22b-PcFX-G263K) encoding a Penicillium chrysogenum-derived fructosyl amino acid oxidase gene in which glycine at position 263 of the amino acid sequence shown in SEQ ID NO: 188 was substituted with lysine was obtained.
  • the obtained cultured cells were lysed using BugBuster Protein Extraction Reagent (manufactured by Novagen), and then centrifuged at 20,000 ⁇ g for 10 minutes to obtain a crude enzyme solution.
  • enzyme activity against ⁇ FV, ⁇ FVH and ⁇ FK was measured by the above-mentioned B: activity measurement method, and ⁇ FK / ⁇ FVH and ⁇ FK / ⁇ FV were calculated.
  • the reagent 1 for measuring the activity at this time was adjusted to pH 7.5. The results are shown in Table 21.
  • the 1332 bp gene (including the stop codon TGA) shown in SEQ ID NO: 198, which encodes the amino acid sequence of SEQ ID NO: 197 and whose codons are optimized for E. coli expression, is a total synthesis by PCR of gene fragments that are conventional methods.
  • an NdeI site and a BamHI site were added to the 5 ′ end and 3 ′ end of SEQ ID NO: 1, respectively.
  • the amino acid sequence predicted from the cloned gene sequence was identical to the sequence obtained by removing 34 amino acids from the C-terminal of Cryptococcus neoformans-derived fructosyl amino acid oxidase in FIG.
  • the gene synthesized above is treated with two types of restriction enzymes NdeI and BamHI (Takara Bio) and inserted into the NdeI-BamHI site of pET-22b (+) Vector (Novagen).
  • Recombinant plasmid pET22b-CnFX was obtained and transformed into E. coli BL21 (DE3).
  • Escherichia coli BL21 (DE3) carrying the recombinant plasmid pET22b-CnFX was cultured with shaking at 30 ° C.
  • a recombinant plasmid (pET22b-CnFX-T100R) encoding a Cryptococcus neoformans-derived fructosyl amino acid oxidase gene in which threonine at position 100 of the amino acid sequence shown in SEQ ID NO: 197 was substituted with arginine was obtained.
  • a recombinant plasmid (pET22b-CnFX-S110R) encoding a Cryptococcus neoformans-derived fructosyl amino acid oxidase gene in which the serine at position 110 of the amino acid sequence shown in SEQ ID NO: 197 was substituted with arginine was obtained.
  • the synthetic plasmid pET22b-CnFX was used as a template, the synthetic oligonucleotides of SEQ ID NOS: 203 and 204, KOD-Plus- (Toyobo Co., Ltd.).
  • PCR was carried out under the same conditions as described above, transformation of Escherichia coli BL21 (DE3) and determination of the base sequence of DNA encoding fructosyl amino acid oxidase in plasmid DNA retained by the growing colonies.
  • a recombinant plasmid (pET22b-CnFX-S154N) encoding a Cryptococcus neoformans-derived fructosyl amino acid oxidase gene in which the serine at position 154 in the amino acid sequence shown in SEQ ID NO: 197 was substituted with asparagine was obtained.
  • the recombinant plasmid pET22b-CnFX was used as a template, the synthetic oligonucleotides of SEQ ID NOS: 205, 206 and 207, 208, KOD-Plus -Using Toyobo Co., Ltd., PCR reaction, transformation of Escherichia coli BL21 (DE3) under the same conditions as above, and determination of DNA sequence encoding fructosyl amino acid oxidase in plasmid DNA held by growing colonies went.
  • a recombinant plasmid (pET22b-CnFX-V259A, pET22b) encoding a Cryptococcus neoformans-derived fructosyl amino acid oxidase gene in which the valine at position 259 of the amino acid sequence shown in SEQ ID NO: 197 was substituted with alanine and cysteine, respectively.
  • -CnFX-V259C was obtained.
  • the recombinant plasmid pET22b-CnFX was used as a template, the synthetic oligonucleotides of SEQ ID NOS: 209, 210 and 211, 212, KOD-Plus -Using Toyobo Co., Ltd., PCR reaction, transformation of Escherichia coli BL21 (DE3) under the same conditions as above, and determination of DNA sequence encoding fructosyl amino acid oxidase in plasmid DNA held by growing colonies went.
  • a recombinant plasmid (pET22b-CnFX-S263K, pET22b) encoding a Cryptococcus neoformans-derived fructosyl amino acid oxidase gene in which the serine at position 263 of the amino acid sequence shown in SEQ ID NO: 197 was substituted with lysine and arginine, respectively.
  • -CnFX-S263R was obtained.
  • threonine at position 100 of the amino acid sequence shown in SEQ ID NO: 197 is arginine
  • serine at position 110 is arginine
  • serine at position 154 is asparagine
  • valine at position 259 is alanine or cysteine.
  • ketoamine oxidase derived from Neocosmos spora basinfecta in E. coli An attempt was made to express neocosmospora basinfecta-derived ketoamine oxidase in Escherichia coli.
  • the amino acid sequence of ketoamine oxidase derived from Neocosmospora vasinfecta that has already been clarified is shown in SEQ ID NO: 213 (see Patent Document 1).
  • the 1326 bp gene (including the stop codon TGA) shown in SEQ ID NO: 214, which encodes the 441 amino acids shown in SEQ ID NO: 213 and whose codons are optimized for E. coli expression, is obtained by PCR using all of the usual gene fragments by PCR.
  • the gene synthesized above is treated with two types of restriction enzymes NdeI and BamHI (Takara Bio) and inserted into the NdeI-BamHI site of pET-22b (+) Vector (Novagen).
  • Recombinant plasmid pET22b-NvFX was obtained and transformed into E. coli BL21 (DE3).
  • E. coli BL21 (DE3) carrying this recombinant plasmid pET22b-NvFX was shaken and cultured at 30 ° C.
  • the synthetic plasmid pET22b-NvFX was used as a template, the synthetic oligonucleotides of SEQ ID NOS: 223 and 224, KOD-Plus- (Toyobo Co., Ltd.).
  • PCR was carried out under the same conditions as described above, transformation of E. coli BL21 (DE3), and determination of the nucleotide sequence of the DNA encoding ketoamine oxidase in the plasmid DNA retained by the growing colonies.
  • a recombinant plasmid (pET22b-NvFX-G103R) encoding a neocosmospora basinfecta-derived ketoamine oxidase gene in which glycine at position 103 in the amino acid sequence shown in SEQ ID NO: 213 was substituted with arginine was obtained.
  • the synthetic plasmid pET22b-NvFX was used as a template, the synthetic oligonucleotides of SEQ ID NOS: 225 and 226, KOD-Plus- (Toyobo Co., Ltd.).
  • PCR was carried out under the same conditions as described above, transformation of E. coli BL21 (DE3), and determination of the nucleotide sequence of the DNA encoding ketoamine oxidase in the plasmid DNA retained by the growing colonies.
  • a recombinant plasmid (pET22b-NvFX-E110R) encoding a neocosmospora basinfecta-derived ketoamine oxidase gene in which the glutamic acid at position 110 of the amino acid sequence shown in SEQ ID NO: 213 was substituted with arginine was obtained.
  • the recombinant plasmid pET22b-NvFX was used as a template, the synthetic oligonucleotides of SEQ ID NOS: 227, 228 and 229, 230, KOD-Plus -Using Toyobo Co., Ltd., PCR reaction, transformation of Escherichia coli BL21 (DE3), and determination of DNA sequence encoding ketoamine oxidase in plasmid DNA held by growing colonies under the same conditions as above It was.
  • recombinant plasmids (pET22b-NvFX-S154N, pET22b) encoding a ketoamine oxidase gene derived from Neocosmospora basinfecta in which the serine at position 154 of the amino acid sequence shown in SEQ ID NO: 213 was replaced with asparagine and aspartic acid, respectively.
  • pET22b-NvFX-S154D recombinant plasmids
  • synthetic oligonucleotides of SEQ ID NOS: 231, 232 and 233, 234, KOD-Plus using the recombinant plasmid pET22b-NvFX as a template.
  • Toyobo Co., Ltd. PCR reaction, transformation of Escherichia coli BL21 (DE3), and determination of DNA sequence encoding ketoamine oxidase in plasmid DNA held by growing colonies under the same conditions as above It was.
  • recombinant plasmids (pET22b-NvFX-V259A, pET22b-) encoding a ketoamine oxidase gene derived from Neocosmospora basinfecta in which the valine at position 259 of the amino acid sequence shown in SEQ ID NO: 213 was substituted with alanine and cysteine, respectively. NvFX-V259C) was obtained.
  • synthetic oligonucleotides of SEQ ID NOS: 235, 236 and 237, 238, KOD-Plus using the recombinant plasmid pET22b-NvFX as a template.
  • Toyobo Co., Ltd. PCR reaction, transformation of Escherichia coli BL21 (DE3), and determination of DNA sequence encoding ketoamine oxidase in plasmid DNA held by growing colonies under the same conditions as above It was.
  • recombinant plasmids (pET22b-NvFX-G263K, pET22b-) encoding a ketoamine oxidase gene derived from Neocosmospora basinfecta in which the glycine at position 263 of the amino acid sequence shown in SEQ ID NO: 213 was replaced with lysine and arginine, respectively. NvFX-G263R) was obtained.
  • the synthetic plasmid pET22b-NvFX was used as a template, the synthetic oligonucleotides SEQ ID NOS: 239 and 240, KOD-Plus- (Toyobo Co., Ltd.).
  • PCR was carried out under the same conditions as described above, transformation of E. coli BL21 (DE3), and determination of the nucleotide sequence of the DNA encoding ketoamine oxidase in the plasmid DNA retained by the growing colonies.
  • a recombinant plasmid (pET22b-NvFX) encoding a ketoamine oxidase gene derived from Neocosmospora basinfecta in which the lysine at position 66 in the amino acid sequence shown in SEQ ID NO: 213 was replaced with glycine and valine at position 67 was replaced with proline.
  • pET22b-NvFX a recombinant plasmid
  • glutamic acid at position 98 of the amino acid sequence shown in SEQ ID NO: 213 is glutamine, histidine, lysine or arginine, glycine at position 103 is arginine, glutamic acid at position 110 is arginine, and serine at position 154 Is replaced by asparagine or aspartic acid, valine at position 259 is replaced by alanine or cysteine, and glycine at position 263 is replaced by lysine or arginine, so that ⁇ FK / ⁇ FVH and ⁇ FK / ⁇ FV of the fructosyl amino acid oxidase derived from Neocosmospora basinfecta are Both values were lower than before the replacement.
  • SEQ ID NO: 241 is an amino acid sequence of Amadoriase derived from Upenicilium terrenum into which a heat stability improving mutation (G184D, N272D, H388Y) has been introduced, and a gene encoding the amino acid sequence of SEQ ID NO: 241 (SEQ ID NO: 242) has been inserted.
  • the activity of Eupenicillium terrenum-derived Amadoriase has been confirmed by expressing the recombinant plasmid pUTE100K′-EFP-T5 in E. coli (see International Publication No. 2007/12579).
  • the recombinant plasmid pUTE100K′-EFP-T5 was used as a template, the synthetic oligonucleotides SEQ ID NOS: 243 and 244, KOD-Plus- (Toyo
  • the DNA sequence encoding the amadoriase in the plasmid DNA retained by the PCR reaction, transformation of E. coli DH5 ⁇ , and the growing colonies was performed under the same conditions as described above.
  • a recombinant plasmid (pUTE100K′-EFP-T5-S98A) encoding the Amadoriase gene derived from Eupenicillium terrenum in which the serine at position 98 in the amino acid sequence shown in SEQ ID NO: 241 was substituted with alanine was obtained.
  • the recombinant plasmid pUTE100K′-EFP-T5 was used as a template, and the synthetic oligonucleotides of SEQ ID NOs: 245 and 246, KOD-Plus- (Toyobo Co., Ltd.) was used under the same conditions as described above for PCR reaction, transformation of E. coli DH5 ⁇ , and determination of the base sequence of DNA encoding amadoriase in plasmid DNA retained by the growing colonies.
  • a recombinant plasmid (pUTE100K′-EFP-T5-K110R) was obtained that encodes the Amadoriase gene derived from Eupenicillium terrenum, in which the lysine at position 110 of the amino acid sequence shown in SEQ ID NO: 241 is substituted with arginine.
  • synthetic oligonucleotides of SEQ ID NOS: 249, 250 and 251, 252 using the recombinant plasmid pUTE100K′-EFP-T5 as a template, Using KOD-Plus- (manufactured by Toyobo Co., Ltd.), PCR reaction, transformation of E. coli DH5 ⁇ , and determination of the base sequence of DNA encoding amadoriase in plasmid DNA held by growing colonies were performed under the same conditions as described above.
  • recombinant plasmids (pUTE100K'-EFP-T5-V259A, pUTE100K'-) encoding the Amadoriase derived from Eupenicilliumnicum in which the valine at position 259 of the amino acid sequence described in SEQ ID NO: 241 was substituted with alanine and cysteine, respectively.
  • EFP-T5-V259C was obtained.
  • the recombinant plasmid pUTE100K′-EFP-T5 was used as a template, the synthetic oligonucleotides SEQ ID NOS: 253, 254, KOD-Plus- (Toyobo Co., Ltd.) was used under the same conditions as described above for PCR reaction, transformation of E. coli DH5 ⁇ , and determination of the base sequence of DNA encoding amadoriase in plasmid DNA retained by the growing colonies.
  • a recombinant plasmid (pUTE100K′-EFP-T5-G263K) was obtained that encodes the Amadoriase gene derived from Eupenicillium terrenum, in which the glycine at position 263 of the amino acid sequence shown in SEQ ID NO: 241 is substituted with lysine.
  • the obtained cultured cells were suspended in 10 mM potassium phosphate buffer (pH 7.5), subjected to ultrasonic disruption, and centrifuged at 20,000 ⁇ g for 10 minutes to obtain a crude enzyme solution. .
  • enzyme activity against ⁇ FV, ⁇ FVH and ⁇ FK was measured by the above-mentioned B: activity measurement method, and ⁇ FK / ⁇ FVH and ⁇ FK / ⁇ FV were calculated.
  • the reagent 1 for activity measurement at this time was adjusted to pH 8.0. The activity measurement results are shown in Table 24.
  • a recombinant plasmid (pUTE100K′-EFP-T5) encoding the Amadoriase gene derived from Upenicilium modality in which the serine at position 98 in the amino acid sequence shown in SEQ ID NO: 241 was replaced with alanine and the valine at position 259 was replaced with cysteine.
  • pUTE100K′-EFP-T5 a recombinant plasmid encoding the Amadoriase gene derived from Upenicilium modality
  • the recombinant plasmid pUTE100K′-EFP-T5-K110R was used as a template, the synthetic oligonucleotides of SEQ ID NOS: 247 and 248, KOD Using -Plus- (manufactured by Toyobo Co., Ltd.), the PCR reaction, transformation of E. coli DH5 ⁇ , and determination of the DNA sequence encoding amadoriase in the plasmid DNA retained by the growing colonies were performed under the same conditions as described above.
  • a recombinant plasmid (pUTE100K′-EFP-T5) encoding the Amadoriase gene derived from Upenicilium modality in which the lysine at position 110 of the amino acid sequence shown in SEQ ID NO: 241 was replaced with arginine and the cysteine at position 154 was replaced with asparagine. -K110R / C154N).
  • a recombinant plasmid (pUTE100K′-EFP-T5) encoding the Amadoriase gene derived from Upenicilium modality in which the lysine at position 110 of the amino acid sequence shown in SEQ ID NO: 241 was replaced with arginine and the valine at position 259 was replaced with cysteine. -K110R / V259C).
  • a plasmid (pUTE100K′-EFP-T5-S98A / K110R / V259C) was obtained.
  • Recombinant plasmids pUTE100K'-EFP-T5-S98A / V259C, pUTE100K'-EFP-T5-K110R / C154N, pUTE100K'-EFP-T5-K110R / V259C, pUTE100K'-EFP-T5-S98A Escherichia coli DH5 ⁇ strains each holding / K110R / V259C were cultured with shaking in LB-amp medium supplemented with 0.1 M IPTG at 30 ° C. for 18 hours.
  • the obtained cultured cells were suspended in 10 mM potassium phosphate buffer (pH 7.5), subjected to ultrasonic disruption, and centrifuged at 20,000 ⁇ g for 10 minutes to obtain a crude enzyme solution. .
  • enzyme activity against ⁇ FV, ⁇ FVH and ⁇ FK was measured by the above-mentioned B: activity measurement method, and ⁇ FK / ⁇ FVH and ⁇ FK / ⁇ FV were calculated.
  • the reagent 1 for activity measurement at this time was adjusted to pH 8.0. The activity measurement results are shown in Table 25.
  • SEQ ID NO: 272 is the amino acid sequence of the Amadoriase derived from the genus Coniochaeta into which a heat stability improving mutation (G184D, F265L, N272D, H302R, H388Y) has been introduced, and is encoded by the gene of SEQ ID NO: 273.
  • Escherichia coli JM109 (pKK223-3-CFP-T9) strain (see International Publication No. 2007/12579) having a recombinant plasmid of the Amadoriase gene (SEQ ID NO: 273) derived from the genus Coniochaeta was prepared according to the method described in [Example 1]. Culturing was conducted in the same manner, and the culture was collected by centrifugation at 10,000 ⁇ g for 1 minute to obtain bacterial cells.
  • the recombinant plasmid pKK223-3-CFP-T9 was extracted and purified using GenElute Plasmid Mini-Prep Kit (manufactured by Sigma Aldrich), and 2.5 ⁇ g of the recombinant plasmid pKK223-3- CFP-T9 DNA was obtained.
  • glutamic acid at position 98 is alanine and serine at position 154 is A recombinant plasmid (pKK223-3-CFP-T9-E98A / S154N / V259C) encoding a modified amadoriase in which valine at position 259 was replaced with cysteine was obtained in asparagine.
  • E. coli JM109 strain having the ability to produce modified amadoriase obtained as described above is cultured by the method described in [Example 1] (3) above to prepare 0.6 ml of crude enzyme solutions of various modified amadoriases. did.

Abstract

 本発明はフルクトシルバリルヒスチジンに対する基質特異性が高いアマドリアーゼの提供を目的とする。本発明はコニオカエタ(Coniochaeta)属由来のアマドリアーゼの98位、259位、154位、125位、261位、263位、106位、103位、355位、96位、66位、67位、70位、100位、110位、113位、114位、および156位よりなる群から選択されるアミノ酸に対応する位置で1つまたはそれ以上のアミノ酸残基の置換を有するアマドリアーゼであり、本発明により、ε-フルクトシルリジンの存在下においても、糖化ヘモグロビンのβ鎖アミノ末端に由来するα-フルクトシルバリルヒスチジンを正確に測定できる。

Description

基質特異性が改変されたアマドリアーゼ
 本発明は、基質特異性が改変されたアマドリアーゼ、その遺伝子および組換え体DNA、並びに基質特異性が改変されたアマドリアーゼの製造法に関する。
 糖化タンパク質は、グルコースなどのアルドース(アルデヒド基を潜在的に有する単糖およびその誘導体)のアルデヒド基と、タンパク質のアミノ基が非酵素的に共有結合を形成し、アマドリ転移することにより生成したものである。タンパク質のアミノ基としてはアミノ末端のαアミノ基、タンパク質中のリジン残基側鎖のεアミノ基が挙げられる。生体内で生じる糖化タンパク質としては血液中のヘモグロビンが糖化された糖化ヘモグロビン、アルブミンが糖化された糖化アルブミンなどが知られている。
 これら生体内で生じる糖化タンパク質の中でも、糖尿病の臨床診断分野において、糖尿病患者の診断や症状管理のための重要な血糖コントロールマーカーとして、糖化ヘモグロビン(HbA1c)が注目されている。血液中のHbA1c濃度は過去の一定期間の平均血糖値を反映しており、その測定値は糖尿病の症状の診断や管理において重要な指標となっている。
 このHbA1cを迅速かつ簡便に測定する方法として、アマドリアーゼを用いる酵素的方法、すなわち、HbA1cをプロテアーゼ等で分解し、そのβ鎖アミノ末端より遊離させたα-フルクトシルバリルヒスチジン(以降αFVHと表す)、若しくはα-フルクトシルバリン(以降αFVと表す)を定量する方法が提案されている(例えば、特許文献1~6参照。)。実際には、HbA1cからαFVを切り出す方法では、夾雑物等による影響が大きいと考えられ、特に現在ではαFVHを測る方法が主流となっている。
 アマドリアーゼは、酸素の存在下で、イミノ2酢酸若しくはその誘導体(「アマドリ化合物」とも言う)を酸化して、グリオキシル酸若しくはα-ケトアルデヒド、アミノ酸若しくはペプチド、および過酸化水素を生成する反応を触媒する。
 アマドリアーゼは、細菌、酵母、真菌から見出されているが、特にHbA1cの測定に有用である、αFVHおよび/またはαFVに対する酵素活性を有するアマドリアーゼとしては、例えば、コニオカエタ(Coniochaeta)属、ユーペニシリウム(Eupenicillium)属、アルスリニウム(Arthrinium)属、カーブラリア(Curvularia)属、レプトスフェリア(Leptosphaeria)属、ネオコスモスポラ(Neocosmospora)属、オフィオボラス(Ophiobolus)属、プレオスポラ(Pleospora)属、ピレノケータ(Pyrenochaeta)属、クリプトコッカス(Cryptococcus)属、フェオスフェリア(Phaeosphaeria)属、アスペルギルス(Aspergillus)属、ウロクラディウム(Ulocladium)属、ペニシリウム(Penicillium)属由来のアマドリアーゼが報告されている(例えば、特許文献1、7~11、非特許文献1~4参照。)。なお、上記報告例の中で、アマドリアーゼは、文献によってはケトアミンオキシダーゼやフルクトシルアミノ酸オキシダーゼ、フルクトシルペプチドオキシダーゼ、フルクトシルアミンオキシダーゼ等の表現で記載されている場合もある。
 酵素的方法によるHbA1cの測定においては、アマドリアーゼの性質として厳密な基質特異性が要求される。例えば、先述の様に、遊離されたαFVHを定量することによりHbA1cの測定を実施する場合には、検体中に遊離状態で存在する、および/または、プロテアーゼ等を用いたHbA1cの処理工程において遊離される、αFVH以外の糖化アミノ酸や糖化ペプチドには作用しにくいアマドリアーゼを用いることが望ましい。特に、ヘモグロビン分子中に含まれるリジン残基側鎖のε位のアミノ基は糖化を受けることが知られており、この糖化を受けたリジン残基に由来する、ε位のアミノ基が糖化されたε-フルクトシルリジン(以降εFKと表す)が、プロテアーゼ処理等によって遊離されることが示唆されている(例えば、非特許文献5参照。)。そのため、測定誤差の原因物質となり得るεFKに対し作用しにくい、基質特異性の高いアマドリアーゼが強く望まれている。一方で、従来知られたアマドリアーゼのほとんどは、εFKへの反応性が十分に低いものであるとはいえない。
 一般的な技術として、酵素の基質特異性を改変するためには、酵素をコードするDNAに変異を加え、酵素のアミノ酸に置換を導入し、目的とする基質特異性を備えた酵素を選抜する方法が知られている。また、相同性の高い酵素において、アミノ酸置換によって基質特異性を高めたという例が既に知られている場合には、その情報をもとに基質特異性の向上を予想することが可能である。
 実際、カーブラリア・クラベータ(Curvularia clavata)YH923由来のケトアミンオキシダーゼおよびネオコスモスポラ・ヴァシンフェクタ(Neocosmospora vasinfecta)474由来のケトアミンオキシダーゼについては、数個のアミノ酸を置換することによって、αFVHに対する基質特異性が向上した改変型ケトアミンオキシダーゼが示されている(特許文献1参照。)。例えば、カーブラリア・クラベータYH923由来のケトアミンオキシダーゼにおいては、58位のイソロイシンをバリンに、62位のアルギニンをヒスチジンに、330位のフェニルアラニンをロイシンに置換することにより、ε-フルクトシル-(α-ベンジルオキシカルボニルリジン)(以降εFZKと表す)に対する酵素活性をαFVHに対する酵素活性で割って導いた活性比であるεFZK/αFVHが0.95から0.025へと低減することが示されている。
 しかし、上記文献において改変型ケトアミンオキシダーゼの基質特異性の評価に用いられているεFZKは、糖化ヘモグロビンをプロテアーゼで処理する工程において実際に生じるεFKとは、分子量や構造の点でも相当に異なる化合物である。そのため、εFZKに対する反応性が低減していることをもって、実際の測定誤差の原因物質となり得るεFKに対する反応性が低減したとはいい難い。また、上記文献中の改変型ケトアミンオキシダーゼを用いてεFKに対する反応性の低減を確認している旨の記載もない。
 その他にも、アスペルギルス・ニードランス(Aspergillus nidulans)A89由来のフルクトシルアミノ酸オキシダーゼにアミノ酸置換を導入し、基質特異性を改変することにより、αFVHに対する反応性を新たに付与した改変型フルクトシルアミノ酸オキシダーゼが報告されている(例えば、特許文献10参照。)。例えば、アスペルギルス・ニードランスA89由来のフルクトシルアミノ酸オキシダーゼの、59位のセリンをグリシンに、かつ65位のリジンをグリシンに置換することにより、または109位のリジンをグルタミンに置換することにより、新たにαFVHに対する酵素活性が付与されることが示されている。しかしながら、当該アミノ酸置換がεFKに対する反応性の低減に寄与するとの記載は無い。
 また、他にも、アスペルギルス・ニードランスA89由来のフルクトシルアミノ酸オキシダーゼにアミノ酸置換を導入し、基質特異性を改変することにより、εFKに対する酵素活性をαFVに対する酵素活性で割って導いた活性比であるεFK/αFVを低減させた改変型フルクトシルアミノ酸オキシダーゼが報告されている(例えば、特許文献12参照。)。しかしながら、この改変酵素のαFVHに対する酵素活性については何ら言及されていない。
 すなわち、天然型もしくは変異型アマドリアーゼを含め、εFKに対する酵素活性をαFVHに対する酵素活性で割って導いた活性比であるεFK/αFVHが低い、および/またはεFK/αFVが低いアマドリアーゼの例は、これまでにごく僅か報告されているにすぎず、精度の高いHbA1cの測定を実現し得る、εFKに対する反応性が十分に低いアマドリアーゼが依然として求められている。
国際公開第2004/104203号 国際公開第2005/49857号 特開2001-95598号公報 特公平05-33997号公報 特開平11-127895号公報 国際公開第97/13872号 特開2003-235585号公報 特開2004-275013号公報 特開2004-275063号公報 特開2010-35469号公報 特開2010-57474号公報 特開2010-104278号公報
Biochem. Biophys. Res. Commun. 311, 104-11, 2003 Biotechnol. Bioeng. 106, 358-66, 2010 J. Biosci. Bioeng. 102, 241-3, 2006 Eur. J. Biochem. 242, 499-505, 1996 J. Biol. Chem. 279, 27613-20, 2004
 本発明が解決しようとする課題は、εFKに対する反応性、具体的には、εFK/αFVHが低い、および/またはεFK/αFVが低いアマドリアーゼを提供することにある。
 本発明者らは、前記課題解決のために鋭意研究を重ねた結果、コニオカエタ属由来のアマドリアーゼにおける特定のアミノ酸残基を特定のアミノ酸残基に置換することにより、上記課題を解決し得ることを見出し、本発明を完成した。
 すなわち、本発明は以下の通りである。
(1)以下の(a)および/または(b)の性質を有するアマドリアーゼ:
(a)配列番号1に示すアミノ酸配列に1または数個のアミノ酸の欠失、挿入、付加、および/または置換がなされたアミノ酸配列を有し、配列番号1に示すアミノ酸配列を有するアマドリアーゼと比較して、α-フルクトシルバリルヒスチジンに対する反応性に対するε-フルクトシルリジンに対する反応性の割合が低減している。
(b)配列番号1に示すアミノ酸配列に1または数個のアミノ酸の欠失、挿入、付加、および/または置換がなされたアミノ酸配列を有し、配列番号1に示すアミノ酸配列を有するアマドリアーゼと比較して、α-フルクトシルバリンに対する反応性に対するε-フルクトシルリジンに対する反応性の割合が低減している。
(2)配列番号1に示すアミノ酸配列の以下(c)から(s)よりなる群から選択されるアミノ酸に対応する位置で1つまたはそれ以上のアミノ酸残基の置換を有し、前記置換を行う前のアマドリアーゼと比較して、α-フルクトシルバリルヒスチジンに対する反応性に対するε-フルクトシルリジンに対する反応性の割合が低減しているか、および/または前記置換を行う前のアマドリアーゼと比較して、α-フルクトシルバリンに対する反応性に対するε-フルクトシルリジンに対する反応性の割合が低減していることを特徴とするアマドリアーゼ。
(c)98位のグルタミン酸
(d)259位のバリン
(e)154位のセリン
(f)125位のヒスチジン
(g)261位のチロシン
(h)263位のグリシン
(i)106位のアスパラギン酸
(j)103位のグリシン
(k)355位のアラニン
(l)96位のアスパラギン酸
(s)66位のリジンまたは/および67位のバリン
(m)70位のグルタミン
(o)100位のスレオニン
(p)110位のグルタミン
(q)113位のアラニン
(r)114位のロイシン
(s)156位のアスパラギン酸
(3)配列番号1に示すアミノ酸配列のアミノ酸の以下(t)から(aj)よりなる群から選択される1つまたはそれ以上のアミノ酸に対応する位置のアミノ酸が、以下(t)から(aj)の各々に記載される置換後のアミノ酸残基へと置換されており、前記置換を行う前のアマドリアーゼと比較して、α-フルクトシルバリルヒスチジンに対する反応性に対するε-フルクトシルリジンに対する反応性の割合が低減しているか、および/または前記置換を行う前のアマドリアーゼと比較して、α-フルクトシルバリンに対する反応性に対するε-フルクトシルリジンに対する反応性の割合が低減していることを特徴とするアマドリアーゼ:
(t)98位のグルタミン酸がプロリン以外のアミノ酸、すなわちグルタミン、ヒスチジン、リジン、アルギニン、グリシン、アラニン、バリン、イソロイシン、ロイシン、メチオニン、システイン、セリン、スレオニン、アスパラギン、アスパラギン酸、フェニルアラニン、チロシン、トリプトファンに置換されている;
(u)259位のバリンがアラニン、システイン、セリンに置換されている;
(v)154位のセリンがグリシン、チロシン、アスパラギン、グルタミン、アスパラギン酸、グルタミン酸、ヒスチジン、システインに置換されている;
(w)125位のヒスチジンがアラニン、ロイシン、フェニルアラニン、チロシン、アスパラギン、グルタミン、グルタミン酸、リジン、アルギニンに置換されている;
(x)261位のチロシンがアラニン、ロイシン、フェニルアラニン、トリプトファン、リジンに置換されている;
(y)263位のグリシンがリジン、アルギニン、ヒスチジン、アスパラギン酸、グルタミン酸に置換されている;
(z)106位のアスパラギン酸が、アスパラギン酸よりも分子量の小さいアミノ酸、すなわちグリシン、アラニン、セリン、バリン、スレオニン、システイン、ロイシン、イソロイシン、アスパラギンに置換されている;
(aa)103位のグリシンがリジン、アルギニン、ヒスチジンに置換されている;
(ab)355位のアラニンがリジン、アルギニン、ヒスチジン、アスパラギン酸、グルタミン酸に置換されている;
(ac)96位のアスパラギン酸がアラニン、アスパラギン、ヒスチジン、セリンに置換されている;
(ad)66位のリジンがグリシンまたは/および67位のバリンがプロリンに置換されている;
(ae)70位のグルタミンがプロリンに置換されている;
(af)100位のスレオニンがアルギニンに置換されている;
(ag)110位のグルタミンがアラニン、ロイシン、メチオニン、フェニルアラニン、トリプトファン、アスパラギン、ヒスチジン、リジン、アルギニンに置換されている;
(ah)113位のアラニンがグルタミン酸、リジンに置換されている;
(ai)114位のロイシンがリジン、アルギニンに置換されている;
(aj)156位のアスパラギン酸がアスパラギンに置換されている。
(4) 配列番号1に示すアミノ酸配列において、以下の(ba)から(be)よりなる群から選択されるアミノ酸残基の置換を有する、上記(3)記載のアマドリアーゼ:
(ba)98位のグルタミン酸に対応する位置のアミノ酸のアラニンへの置換、154位のセリンに対応する位置のアミノ酸のアスパラギンへの置換および259位のバリンに対応する位置のアミノ酸のシステインへの置換;
(bb)98位のグルタミン酸に対応する位置のアミノ酸のアルギニンへの置換および154位のセリンに対応する位置のアミノ酸のアスパラギンへの置換;
(bc)98位のグルタミン酸に対応する位置のアミノ酸のグルタミンへの置換および259位のバリンに対応する位置のアミノ酸のアラニンへの置換;
(bd)98位のグルタミン酸に対応する位置のアミノ酸のアルギニンへの置換および259位のバリンに対応する位置のアミノ酸のシステインへの置換;
(be)110位のグルタミンに対応する位置のアミノ酸のアルギニンへの置換、154位のセリンに対応する位置のアミノ酸のアスパラギンへの置換および259位のバリンに対応する位置のアミノ酸のアラニンへの置換。
(5) 配列番号272に示すアミノ酸配列において、98位のグルタミン酸に対応する位置のアミノ酸のアラニンへの置換、154位のセリンに対応する位置のアミノ酸のアスパラギンへの置換および259位のバリンに対応する位置のアミノ酸のシステインへの置換を有し、前記置換を行う前のアマドリアーゼと比較して、α-フルクトシルバリルヒスチジンに対する反応性に対するε-フルクトシルリジンに対する反応性の割合が低減しており、かつ前記置換を行う前のアマドリアーゼと比較して、α-フルクトシルバリンに対する反応性に対するε-フルクトシルリジンに対する反応性の割合が低減していることを特徴とするアマドリアーゼ。
(6) 配列番号241に示すアミノ酸配列において、以下の(ca)から(cc)よりなる群から選択されるアミノ酸残基の置換を有し、前記置換を行う前のアマドリアーゼと比較して、α-フルクトシルバリルヒスチジンに対する反応性に対するε-フルクトシルリジンに対する反応性の割合が低減しており、かつ前記置換を行う前のアマドリアーゼと比較して、α-フルクトシルバリンに対する反応性に対するε-フルクトシルリジンに対する反応性の割合が低減していることを特徴とするアマドリアーゼ:
(ca)98位のセリンに対応する位置のアミノ酸のアラニンへの置換、110位のリジンに対応する位置のアミノ酸のアルギニンへの置換および259位のバリンに対応する位置のアミノ酸のシステインへの置換;
(cb)98位のセリンに対応する位置のアミノ酸のアラニンへの置換および259位のバリンに対応する位置のアミノ酸のシステインへの置換;
(cc)110位のリジンに対応する位置のアミノ酸のアルギニンへの置換および259位のバリンに対応する位置のアミノ酸のシステインへの置換。
(7)上記(1)~(6)のいずれかに記載のアミノ酸配列をコードするアマドリアーゼ遺伝子。
(8)上記(7)記載のアマドリアーゼ遺伝子を含む組換えベクター。
(9)上記(8)記載の組換えベクターを含む宿主細胞。
(10)アマドリアーゼを製造する方法であり、以下の工程を含む方法:
(ak)上記(6)記載の宿主細胞を培養する工程;
(al)宿主細胞に含まれるアマドリアーゼ遺伝子を発現させる工程;および
(am)培養物からアマドリアーゼを単離する工程。
(11)上記(1)~(6)のいずれかに記載のアマドリアーゼを含む、糖化ヘモグロビンの測定に用いるためのキット。
 本明細書は本願の優先権の基礎である日本国特許出願2010-176967号および2010-213070号の明細書および/または図面に記載される内容を包含する。
 本発明によれば、糖尿病の診断用酵素として、また、糖尿病マーカーの測定キットに有利に利用され得る基質特異性の優れたアマドリアーゼ、具体的には、εFK/αFVHが低い、および/またはεFK/αFVが低いアマドリアーゼを提供することができる。
各種公知のアマドリアーゼのアミノ酸配列における相同性を例示する図である。 本発明のアマドリアーゼによるαFVHの定量性を示すグラフである。
 以下、本発明を詳細に説明する。
(アマドリアーゼ)
 アマドリアーゼは、ケトアミンオキシダーゼ、フルクトシルアミノ酸オキシダーゼ、フルクトシルペプチドオキシダーゼ、フルクトシルアミンオキシダーゼともいい、酸素の存在下で、イミノ2酢酸若しくはその誘導体(アマドリ化合物)を酸化して、グリオキシル酸若しくはα-ケトアルデヒド、アミノ酸若しくはペプチド、および過酸化水素を生成する反応を触媒する酵素のことをいう。アマドリアーゼは、自然界に広く分布しており、微生物や、動物若しくは植物起源の酵素を探索することにより、得ることができる。微生物においては、例えば、糸状菌、酵母、若しくは細菌等から得ることができる。
 本発明のアマドリアーゼは、配列番号1に示されるアミノ酸配列を有するコニオカエタ属由来のアマドリアーゼに基づき作製された、基質特異性が改変されたアマドリアーゼの改変体である。このような変異体の例としては、配列番号1と高い配列同一性(例えば、75%以上、好ましくは、80%以上、より好ましくは85%以上、さらに好ましくは90%以上、さらに好ましくは95%以上、さらに好ましくは97%以上、最も好ましくは99%以上)を有するアミノ酸配列を有するアマドリアーゼ、および、配列番号1のアミノ酸配列において、1から数個のアミノ酸が改変若しくは変異、または、欠失、置換、付加および/または挿入されたアミノ酸配列を有するアマドリアーゼを挙げることができる。なお、請求の範囲に記載された、基質特異性および/またはアミノ酸配列に関する条件を満たす限り、例えば、ユーペニシリウム属、アルスリニウム属、カーブラリア属、レプトスフェリア属、ネオコスモスポラ属、オフィオボラス属、プレオスポラ属、ピレノケータ属、アスペルギルス属、クリプトコッカス属、フェオスフェリア属、ウロクラディウム属、若しくはペニシリウム属のような、他の生物種に由来するアマドリアーゼに基づき作製されたものでも良い。
 基質特異性が改変されたアマドリアーゼの改変体はアマドリアーゼのアミノ酸配列において少なくとも1つのアミノ酸残基を置換することによって得ることができる。
 基質特異性の改変をもたらすアミノ酸の置換として、配列番号1に示すアミノ酸配列における以下の位置のアミノ酸に対応する位置のアミノ酸の置換が挙げられる。
(1) 98位のグルタミン酸の置換、例えば、プロリン以外のアミノ酸、すなわちグルタミン、ヒスチジン、リジン、アルギニン、グリシン、アラニン、バリン、イソロイシン、ロイシン、メチオニン、システイン、セリン、スレオニン、アスパラギン、アスパラギン酸、フェニルアラニン、チロシン、トリプトファンへの置換。
(2) 259位のバリンの置換、例えば、アラニン、システイン、セリンへの置換。
(3) 154位のセリンの置換、例えば、グリシン、チロシン、アスパラギン、グルタミン、アスパラギン酸、グルタミン酸、ヒスチジン、システインへの置換。
(4) 125位のヒスチジンの置換、例えば、アラニン、ロイシン、フェニルアラニン、チロシン、アスパラギン、グルタミン、グルタミン酸、リジン、アルギニンへの置換。
(5) 261位のチロシンの置換、例えば、アラニン、ロイシン、フェニルアラニン、トリプトファン、リジンへの置換。
(6) 263位のグリシンの置換、例えば、リジン、アルギニン、ヒスチジン、アスパラギン酸、グルタミン酸への置換。
(7) 106位のアスパラギン酸の置換、例えば、アスパラギン酸よりも分子量の小さいアミノ酸、すなわちグリシン、アラニン、セリン、バリン、スレオニン、システイン、ロイシン、イソロイシン、アスパラギンへの置換。
(8) 103位のグリシンの置換、例えば、リジン、アルギニン、ヒスチジンへの置換。
(9) 355位のアラニンの置換、例えばリジン、アルギニン、ヒスチジン、アスパラギン酸、グルタミン酸への置換。
(10) 96位のアスパラギン酸への置換、例えば、アラニン、アスパラギン、ヒスチジン、セリンへの置換。
(11) 66位のリジンの置換、例えば、グリシンへの置換。
(12) 67位のバリンの置換、例えば、プロリンへの置換。
(13) 70位のグルタミンの置換、例えば、プロリンへの置換。
(14) 100位のスレオニンの置換、例えば、アルギニンへの置換。
(15) 110位のグルタミンの置換、例えば、アラニン、ロイシン、メチオニン、フェニルアラニン、トリプトファン、アスパラギン、ヒスチジン、リジン、アルギニンへの置換。
(16) 113位のアラニンの置換、例えば、グルタミン酸、リジンへの置換。
(17) 114位のロイシンの置換、例えば、リジン、アルギニンへの置換。
(18) 156位のアスパラギン酸の置換、例えば、アスパラギンへの置換。
 基質特異性が改変したアマドリアーゼの変異体は、上記アミノ酸置換を少なくとも1つ有していればよく、複数のアミノ酸置換を有していてもよい。例えば、上記アミノ酸置換の1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17または18を有している。
 その中でも、以下のアミノ酸の位置に対応するアミノ酸の置換を有している変異体が好ましい。本発明において、例えば、第110位のグルタミン(Q)がアルギニン(R)へ置換された変異をQ110Rと表す。
 66位のリジンおよび67位のバリンの置換、例えば、K66GおよびV67Pを有する変異体。
 66位のリジン、67位のバリンおよび98位のグルタミン酸の置換、例えば、K66G、V67PおよびE98Aを有する変異体。
 66位のリジン、67位のバリンおよび110位のグルタミンの置換、例えば、K66G、V67PおよびQ110Rを有する変異体。
 98位のグルタミン酸および110位のグルタミンの置換、例えば、E98AおよびQ110Rを有する変異体。
 110位のグルタミンおよび125位のヒスチジンの置換、例えば、Q110RおよびH125Qを有する変異体。
 110位のグルタミンおよび154位のセリンの置換、例えば、Q110RおよびS154G若しくはS154Nを有する変異体。
 110位のグルタミンおよび355位のアラニンの置換、例えばQ110RおよびA355Kを有する変異体。
 98位のグルタミン酸および103位のグリシンの置換、例えば、E98AおよびG103Rを有する変異体。
 98位のグルタミン酸および154位のセリンの置換、例えば、E98A若しくはE98RおよびS154Nを有する変異体。
 110位のグルタミンおよび154位のセリンの置換、例えば、Q110RおよびS154Cを有する変異体。
 98位のグルタミン酸、106位のアスパラギン酸および154位のセリンの置換、例えば、E98A、D106SおよびS154Nを有する変異体。
 98位のグルタミン酸、110位のグルタミンおよび154位のセリンの置換、例えば、E98A、Q110RおよびS154Nを有する変異体。
 110位のグルタミン、125位のヒスチジンおよび154位のセリンの置換、例えば、Q110R、H125QおよびS154Nを有する変異体。
 98位のグルタミン酸および259位のバリンの置換、例えば、E98QおよびV259A、E98QおよびV259C、E98HおよびV259A、E98HおよびV259C、E98RおよびV259C、E98AおよびV259Cを有する変異体。
 98位のグルタミン酸および263位のグリシンの置換、例えば、E98AおよびG263Rを有する変異体。
 110位のグルタミンおよび259位のバリンの置換、例えば、Q110RおよびV259Aを有する変異体。
 154位のセリンおよび259位のバリンの置換、例えば、S154DおよびV259Aを有する変異体。
 98位のグルタミン酸、154位のセリンおよび259位のバリンの置換、例えば、E98A、S154NおよびV259Cを有する変異体。
 110位のグルタミン、154位のセリンおよび259位のバリンの置換、例えば、Q110R、S154NおよびV259Aを有する変異体。
 これらのアミノ酸置換の組合わせの中でも以下の(ba)~(be)のいずれかの組み合わせが好ましい。
(ba)98位のグルタミン酸に対応する位置のアミノ酸のアラニンへの置換、154位のセリンに対応する位置のアミノ酸のアスパラギンへの置換および259位のバリンに対応する位置のアミノ酸のシステインへの置換。
(bb)98位のグルタミン酸に対応する位置のアミノ酸のアルギニンへの置換および154位のセリンに対応する位置のアミノ酸のアスパラギンへの置換。
(bc)98位のグルタミン酸に対応する位置のアミノ酸のグルタミンへの置換および259位のバリンに対応する位置のアミノ酸のアラニンへの置換。
(bd)98位のグルタミン酸に対応する位置のアミノ酸のアルギニンへの置換および259位のバリンに対応する位置のアミノ酸のシステインへの置換。
(be)110位のグルタミンに対応する位置のアミノ酸のアルギニンへの置換、154位のセリンに対応する位置のアミノ酸のアスパラギンへの置換および259位のバリンに対応する位置のアミノ酸のアラニンへの置換。
 本発明の基質特異性が改変されたアマドリアーゼ変異体は、配列番号1に示すアミノ酸配列において、上記の基質特異性の改変をもたらすアミノ酸の置換を有し、それらの置換アミノ酸以外の位置で、さらに1または数個(例えば1~10個、好ましくは1~5個、さらに好ましくは1~3個、特に好ましくは1個)のアミノ酸が欠失、挿入、付加および/または置換されたアミノ酸配列からなり、アマドリアーゼ活性を有し、基質特異性が改変されたアマドリアーゼ変異体を包含する。さらに、上記の基質特異性の改変をもたらすアミノ酸の置換変異、耐熱性を向上させるアミノ酸の置換変異を有し、配列番号1に示すアミノ酸配列の該置換したアミノ酸以外のアミノ酸を除いた部分のアミノ酸配列に対して、90%以上、さらに好ましくは95%以上、さらに好ましくは97%以上、特に好ましくは99%以上のアミノ酸配列同一性を有するアミノ酸配列からなり、アマドリアーゼ活性を有し、基質特異性が改変されたアマドリアーゼ変異体を包含する。
 上記のアミノ酸置換において、アミノ酸の位置は配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列における位置を表しているが、他の生物種由来のアマドリアーゼのアミノ酸配列においては、配列番号1に示されるアミノ酸配列における位置に対応する位置のアミノ酸が置換されている。「対応する位置」の意味については後述する。
(アマドリアーゼをコードする遺伝子の取得)
 これらのアマドリアーゼをコードする本発明の遺伝子(以下、単に「アマドリアーゼ遺伝子」ともいう)を得るには、通常一般的に用いられている遺伝子のクローニング方法が用いられる。例えば、アマドリアーゼ生産能を有する微生物菌体や種々の細胞から常法、例えば、Current Protocols in Molecular Biology(WILEY Interscience,1989)記載の方法により、染色体DNAまたはmRNAを抽出することができる。さらにmRNAを鋳型としてcDNAを合成することができる。このようにして得られた染色体DNAまたはcDNAを用いて、染色体DNAまたはcDNAのライブラリーを作製することができる。
 次いで、上記アマドリアーゼのアミノ酸配列に基づき、適当なプローブDNAを合成して、これを用いて染色体DNAまたはcDNAのライブラリーからアマドリアーゼ遺伝子を選抜する方法、あるいは、上記アミノ酸配列に基づき、適当なプライマーDNAを作製して、5’RACE法や3’RACE法などの適当なポリメラーゼ連鎖反応(Polymerase Chain Reaction、PCR法)により、アマドリアーゼをコードする目的の遺伝子断片を含むDNAを増幅させ、これらのDNA断片を連結させて、目的のアマドリアーゼ遺伝子の全長を含むDNAを得ることができる。
 このようにして得られたアマドリアーゼをコードする遺伝子の好ましい一例として、コニオカエタ属由来のアマドリアーゼ遺伝子(特許文献7)が挙げられる。
 これらのアマドリアーゼ遺伝子は、常法通り各種ベクターに連結されていることが、取扱い上好ましい。例えば、Coniochaeta sp. NISL 9330株由来のアマドリアーゼ遺伝子をコードするDNAを含む組換え体プラスミドpKK223-3-CFP(特許文献7)から、QIAGEN(キアゲン社製)を用いることにより、アマドリアーゼ遺伝子をコードするDNAを、抽出、精製して得ることができる。
(ベクター)
 本発明において用いることのできるベクターとしては、上記プラスミドに限定されることなく、それ以外の、例えば、バクテリオファージ、コスミド等の当業者に公知の任意のベクターを用いることができる。具体的には、例えば、pBluescriptII SK+(STRATAGENE社製)等が好ましい。
(アマドリアーゼ遺伝子の変異処理)
 アマドリアーゼ遺伝子の変異処理は、企図する変異形態に応じた、公知の任意の方法で行うことができる。すなわち、アマドリアーゼ遺伝子あるいは当該遺伝子の組み込まれた組換え体DNAと変異原となる薬剤とを接触・作用させる方法;紫外線照射法;遺伝子工学的手法;または蛋白質工学的手法を駆使する方法等を広く用いることができる。
 上記変異処理に用いられる変異原となる薬剤としては、例えば、ヒドロキシルアミン、N-メチル-N’-ニトロ-N-ニトロソグアニジン、亜硝酸、亜硫酸、ヒドラジン、蟻酸、若しくは5-ブロモウラシル等を挙げることができる。
 この接触・作用の諸条件は、用いる薬剤の種類等に応じた条件を採ることが可能であり、現実に所望の変異をアマドリアーゼ遺伝子において惹起することができる限り特に限定されない。通常、好ましくは0.5~12Mの上記薬剤濃度において、20~80℃の反応温度下で10分間以上、好ましくは10~180分間接触・作用させることで、所望の変異を惹起可能である。紫外線照射を行う場合においても、上記の通り常法に従い行うことができる(現代化学、024~30、1989年6月号)。
 蛋白質工学的手法を駆使する方法としては、一般的に、Site-Specific Mutagenesisとして知られる手法を用いることができる。例えば、Kramer法(Nucleic Acids Res., 12, 9441 (1984): Methods Enzymol., 154, 350 (1987): Gene, 37, 73 (1985))、Eckstein法(Nucleic Acids Res., 13, 8749 (1985): Nucleic Acids Res., 13, 8765 (1985): Nucleic Acids Res, 14, 9679 (1986))、Kunkel法(Proc. Natl. Acid. Sci. U.S.A., 82, 488 (1985): Methods Enzymol., 154, 367 (1987))等が挙げられる。
 また、一般的なPCR法として知られる手法を用いることもできる(Technique, 1, 11(1989)参照)。なお、上記遺伝子改変法の他に、有機合成法または酵素合成法により、直接所望の改変アマドリアーゼ遺伝子を合成することもできる。
 上記方法により得られるアマドリアーゼ遺伝子のDNA塩基配列の決定若しくは確認を行う場合には、例えば、マルチキャピラリーDNA解析システムCEQ2000(ベックマン・コールター社製)等を用いることにより行うことができる。
(形質転換・形質導入)
 上述のように得られたアマドリアーゼ遺伝子を、常法により、バクテリオファージ、コスミド、または原核細胞若しくは真核細胞の形質転換に用いられるプラスミド等のベクターに組み込み、各々のベクターに対応する宿主を常法により、形質転換または形質導入をすることができる。例えば、宿主として、エッシェリシア属に属する微生物、例えば得られた組換え体DNAを用いて、例えば、大腸菌K-12株、好ましくは大腸菌JM109株、大腸菌DH5α株(ともにタカラバイオ社製)等を形質転換またはそれらに形質導入してそれぞれの菌株を得る。
(アミノ酸配列の相同性)
 アミノ酸配列の相同性は、GENETYX-Mac (Software Development社製)のマキシマムマッチングやサーチホモロジー等のプログラム、またはDNASIS Pro(日立ソフト社製)のマキシマムマッチングやマルチプルアライメント等のプログラムにより計算することができる。
(アミノ酸に対応する位置の特定)
 「アミノ酸に対応する位置」とは、配列番号1に示すコニオカエタ属由来のアマドリアーゼのアミノ酸配列の特定の位置のアミノ酸に対応する他の生物種由来のアマドリアーゼのアミノ酸配列における位置をいう。
 「アミノ酸に対応する位置」を特定する方法としては、例えばリップマン-パーソン法等の公知のアルゴリズムを用いてアミノ酸配列を比較し、各アマドリアーゼのアミノ酸配列中に存在する保存アミノ酸残基に最大の相同性を与えることにより行うことができる。アマドリアーゼのアミノ酸配列をこのような方法で整列させることにより、アミノ酸配列中にある挿入、欠失にかかわらず、相同アミノ酸残基の各アマドリアーゼ配列における配列中の位置を決めることが可能である。相同位置は、三次元構造中で同位置に存在すると考えられ、対象となるアマドリアーゼの特異的機能に関して類似した効果を有することが推定できる。図1に種々の生物種由来のアマドリアーゼの配列のアラインメントを示す。図1からコニオカエタ属由来のアマドリアーゼのアミノ酸配列の特定の位置のアミノ酸に対応する他の生物種由来のアマドリアーゼのアミノ酸配列における位置を知ることができる。図1には、コニオカエタ属由来のアマドリアーゼ、Eupenicillium terrenum由来のアマドリアーゼ、Pyrenochaeta sp.由来のケトアミンオキシダーゼ、Arthrinium sp.由来のケトアミンオキシダーゼ、Curvularia clavata由来のケトアミンオキシダーゼ、Neocosmospora vasinfecta由来のケトアミンオキシダーゼ、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼ、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼ、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼ、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼおよびPenicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼのアミノ酸配列を示してある。
 なお、本発明において、「配列番号1記載のアミノ酸配列の66位のリジンに対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの66位のリジンに対応するアミノ酸を意味するものである。これにより、上記の「対応する位置のアミノ酸」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは66位のグリシン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは66位のリジン、Arthrinium sp.由来のケトアミンオキシダーゼでは66位のプロリン、Curvularia clavata由来のケトアミンオキシダーゼでは66位のリジン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは66位のリジン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは66位のプロリン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは66位のプロリン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは65位のリジン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは66位のリジン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは66位のグリシンである。
 また、本発明において、「配列番号1記載のアミノ酸配列の67位のバリンに対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの67位のバリンに対応するアミノ酸を意味するものである。これにより、上記の「対応する位置のアミノ酸」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは67位のプロリン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは67位のバリン、Arthrinium sp.由来のケトアミンオキシダーゼでは67位のバリン、Curvularia clavata由来のケトアミンオキシダーゼでは67位のバリン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは67位のバリン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは67位のバリン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは67位のバリン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは66位のプロリン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは67位のバリン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは67位のプロリンである。
 また、本発明において、「配列番号1記載のアミノ酸配列の70位のグルタミンに対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの70位のグルタミンに対応するアミノ酸を意味するものである。これにより、上記の「対応する位置のアミノ酸」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは70位のグルタミン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは70位のグルタミン、Arthrinium sp.由来のケトアミンオキシダーゼでは70位のグルタミン、Curvularia clavata由来のケトアミンオキシダーゼでは70位のグルタミン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは70位のグルタミン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは70位のグルタミン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは70位のグルタミン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは69位のグルタミン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは70位のグルタミン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは70位のグルタミンである。
 また、本発明において、「配列番号1記載のアミノ酸配列の96位のアスパラギン酸に対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの96位のアスパラギン酸に対応するアミノ酸を意味するものである。これにより、上記の「対応する位置のアミノ酸」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは96位のアスパラギン酸、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは96位のアスパラギン酸、Arthrinium sp.由来のケトアミンオキシダーゼでは96位のアスパラギン酸、Curvularia clavata由来のケトアミンオキシダーゼでは96位のアスパラギン酸、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは96位のアスパラギン酸、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは96位のアスパラギン酸、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは96位のアスパラギン酸、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは95位のアスパラギン酸、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは96位のアスパラギン酸、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは96位のアスパラギン酸である。
 また、本発明において、「配列番号1記載のアミノ酸配列の98位のグルタミン酸に対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの98位のグルタミン酸に対応するアミノ酸を意味するものである。これにより、上記の「対応する位置のアミノ酸」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは98位のセリン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは98位のアラニン、Arthrinium sp.由来のケトアミンオキシダーゼでは98位のグルタミン酸、Curvularia clavata由来のケトアミンオキシダーゼでは98位のアラニン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは98位のグルタミン酸、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは98位のアラニン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは98位のアラニン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは97位のセリン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは98位のアラニン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは98位のセリンである。
 また、本発明において、「配列番号1記載のアミノ酸配列の100位のスレオニンに対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの100位のスレオニンに対応するアミノ酸を意味するものである。これにより、上記の「対応する位置のアミノ酸」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは100位のセリン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは100位のグリシン、Arthrinium sp.由来のケトアミンオキシダーゼでは100位のスレオニン、Curvularia clavata由来のケトアミンオキシダーゼでは100位のグリシン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは100位のセリン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは100位のスレオニン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは100位のグリシン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは99位のスレオニン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは100位のグリシン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは100位のセリンである。
 また、本発明において、「配列番号1記載のアミノ酸配列の103位のグリシンに対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの103位のグリシンに対応するアミノ酸を意味するものである。これにより、上記の「対応する位置のアミノ酸」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは103位のグリシン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは103位のグリシン、Arthrinium sp.由来のケトアミンオキシダーゼでは103位のグリシン、Curvularia clavata由来のケトアミンオキシダーゼでは103位のグリシン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは103位のグリシン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは103位のセリン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは103位のアスパラギン酸、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは102位のグリシン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは103位のグリシン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは103位のグリシンである。
 また、本発明において、「配列番号1記載のアミノ酸配列の106位のアスパラギン酸に対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの106位のアスパラギン酸に対応するアミノ酸を意味するものである。これにより、上記の「対応する位置のアミノ酸」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは106位のアスパラギン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは106位のアスパラギン酸、Arthrinium sp.由来のケトアミンオキシダーゼでは106位のアラニン、Curvularia clavata由来のケトアミンオキシダーゼでは106位のアスパラギン酸、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは106位のグリシン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは106位のセリン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは106位のアスパラギン酸、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは105位のグリシン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは106位のアスパラギン酸、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは106位のセリンである。
 また、本発明において、「配列番号1記載のアミノ酸配列の110位のグルタミンに対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの110位のグルタミンに対応するアミノ酸を意味するものである。これにより、上記の「対応する位置のアミノ酸」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは110位のリジン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは110位のアラニン、Arthrinium sp.由来のケトアミンオキシダーゼでは110位のグルタミン、Curvularia clavata由来のケトアミンオキシダーゼでは110位のアラニン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは110位のグルタミン酸、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは110位のセリン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは110位のグリシン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは109位のリジン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは110位のアラニン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは110位のリジンである。
 また、本発明において、「配列番号1記載のアミノ酸配列の113位のアラニンに対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの113位のアラニンに対応するアミノ酸を意味するものである。これにより、上記の「対応する位置のアミノ酸」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは113位のスレオニン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは113位のスレオニン、Arthrinium sp.由来のケトアミンオキシダーゼでは113位のスレオニン、Curvularia clavata由来のケトアミンオキシダーゼでは113位のアラニン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは113位のリジン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは113位のアラニン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは113位のアラニン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは112位のセリン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは113位のアラニン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは113位のアスパラギン酸である。
 また、本発明において、「配列番号1記載のアミノ酸配列の114位のロイシンに対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの114位のロイシンに対応するアミノ酸を意味するものである。これにより、上記の「対応する位置のアミノ酸」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは114位のロイシン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは114位のロイシン、Arthrinium sp.由来のケトアミンオキシダーゼでは114位のロイシン、Curvularia clavata由来のケトアミンオキシダーゼでは114位のロイシン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは114位のロイシン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは114位のイソロイシン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは114位のロイシン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは113位のロイシン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは114位のロイシン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは114位のロイシンである。
 また、「配列番号1記載のアミノ酸配列の125位のヒスチジンに対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1記載のアミノ酸配列の125位のヒスチジンに対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させることにより特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは125位のアスパラギン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは125位のアスパラギン、Arthrinium sp.由来のケトアミンオキシダーゼでは125位のスレオニン、Curvularia clavata由来のケトアミンオキシダーゼでは125位のスレオニン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは125位のヒスチジン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは125位のヒスチジン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは123位のアスパラギン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは124位のアスパラギン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは125位のスレオニン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは125位のアスパラギンである。
 さらに、「配列番号1記載のアミノ酸配列の154位のセリンに対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの154位のセリンに対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させることにより特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは154位のシステイン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは154位のセリン、Arthrinium sp.由来のケトアミンオキシダーゼでは154位のセリン、Curvularia clavata由来のケトアミンオキシダーゼでは154位のセリン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは154位のセリン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは154位のセリン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは152位のセリン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは153位のシステイン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは154位のセリン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは154位のシステインである。
 さらに、本発明において、「配列番号1記載のアミノ酸配列の156位のアスパラギン酸に対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの156位のアスパラギン酸に対応するアミノ酸を意味するものである。これにより、上記の「対応する位置のアミノ酸」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは156位のアスパラギン酸、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは156位のアスパラギン酸、Arthrinium sp.由来のケトアミンオキシダーゼでは156位のアスパラギン酸、Curvularia clavata由来のケトアミンオキシダーゼでは156位のアスパラギン酸、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは156位のグルタミン酸、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは156位のアスパラギン酸、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは154位のアスパラギン酸、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは155位のアスパラギン酸、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは156位のアスパラギン酸、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは156位のアスパラギン酸である。
 さらに、「配列番号1記載のアミノ酸配列の259位のバリンに対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの259位のバリンに対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させることにより特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは259位のバリン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは257位のバリン、Arthrinium sp.由来のケトアミンオキシダーゼでは259位のバリン、Curvularia clavata由来のケトアミンオキシダーゼでは257位のバリン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは259位のバリン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは259位のバリン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは255位のバリン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは259位のバリン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは257位のバリン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは259位のバリンである。
 さらに、「配列番号1記載のアミノ酸配列の261位のチロシンに対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの261位のチロシンに対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させることにより特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは261位のチロシン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは259位のチロシン、Arthrinium sp.由来のケトアミンオキシダーゼでは261位のチロシン、Curvularia clavata由来のケトアミンオキシダーゼでは259位のチロシン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは261位のチロシン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは261位のチロシン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは257位のチロシン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは261位のチロシン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは259位のチロシン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは261位のチロシンである。
 さらに、本発明において、「配列番号1記載のアミノ酸配列の263位のグリシンに対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの263位のグリシンに対応するアミノ酸を意味するものである。これにより、上記の「対応する位置のアミノ酸」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは263位のグリシン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは261位のグリシン、Arthrinium sp.由来のケトアミンオキシダーゼでは263位のグリシン、Curvularia clavata由来のケトアミンオキシダーゼでは261位のグリシン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは263位のグリシン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは263位のセリン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは259位のグリシン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは263位のグリシン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは261位のグリシン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは263位のグリシンである。
 さらに、「配列番号1記載のアミノ酸配列の355位のアラニンに対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの355位のアラニンに対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させることにより特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは355位のアラニン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは353位のアラニン、Arthrinium sp.由来のケトアミンオキシダーゼでは356位のアラニン、Curvularia clavata由来のケトアミンオキシダーゼでは353位のアラニン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは355位のセリン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは355位のアラニン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは351位のアラニン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは355位のアラニン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは353位のアラニン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは355位のアラニンである。
(本発明のアマドリアーゼの生産)
 上記のようにして得られた基質特異性が改善されたアマドリアーゼの生産能を有する菌株を用いて、当該アマドリアーゼを生産するには、この菌株を通常の固体培養法で培養してもよいが、可能な限り液体培養法を採用して培養するのが好ましい。
 また、上記菌株を培養する培地としては、例えば、酵母エキス、トリプトン、ペプトン、肉エキス、コーンスティープリカーあるいは大豆若しくは小麦ふすまの浸出液等の1種以上の窒素源に、塩化ナトリウム、リン酸2水素カリウム、リン酸水素2カリウム、硫酸マグネシウム、塩化マグネシウム、塩化第2鉄、硫酸第2鉄あるいは硫酸マンガン等の無機塩類の1種以上を添加し、さらに必要により糖質原料、ビタミン等を適宜添加したものが用いられる。
 なお、培地の初発pHは、pH7~9に調整するのが適当である。
 培養は、20~42℃の培養温度、好ましくは37℃前後の培養温度で4~24時間、さらに好ましくは37℃前後の培養温度で4~8時間、通気攪拌深部培養、振盪培養、静置培養等により実施するのが好ましい。
 培養終了後、該培養物よりアマドリアーゼを採取するには、通常の酵素採取手段を用いて得ることができる。例えば、常法により菌体を、超音波破壊処理、磨砕処理等するか、またはリゾチーム等の溶菌酵素を用いて本酵素を抽出するか、またはトルエン等の存在下で振盪若しくは放置して溶菌を行わせ、本酵素を菌体外に排出させることができる。そして、この溶液を濾過、遠心分離等して固形部分を除去し、必要によりストレプトマイシン硫酸塩、プロタミン硫酸塩、若しくは硫酸マンガン等により核酸を除去したのち、これに硫安、アルコール、アセトン等を添加して分画し、沈澱物を採取し、アマドリアーゼの粗酵素を得る。
 上記アマドリアーゼの粗酵素よりさらにアマドリアーゼ精製酵素標品を得るには、例えば、セファデックス、スーパーデックス若しくはウルトロゲル等を用いるゲル濾過法;イオン交換体を用いる吸着溶出法;ポリアクリルアミドゲル等を用いる電気泳動法;ヒドロキシアパタイトを用いる吸着溶出法;蔗糖密度勾配遠心法等の沈降法;アフィニティクロマトグラフィー法;分子ふるい膜若しくは中空糸膜等を用いる分画法等を適宜選択し、またはこれらを組み合わせて実施することにより、精製されたアマドリアーゼ酵素標品を得ることができる。このようにして、所望の基質特異性が改善されたアマドリアーゼを得ることができる。
(本発明のアマドリアーゼにおけるεFKに対する反応性の低下)
 上記のような手段で得られる本発明のアマドリアーゼは、遺伝子改変等により、そのアミノ酸配列に変異を生じた結果、改変前のものと比較して基質特異性が向上していることを特徴とする。具体的には、改変前のものと比較して、「αFVHに対する反応性」に対する「εFKに対する反応性」の割合、あるいは、「αFVに対する反応性」に対する「εFKに対する反応性」の割合が低減していることを特徴とする。または、改変前のものと比較して、「αFVHに対する反応性」に対する「εFKに対する反応性」の割合、および、「αFVに対する反応性」に対する「εFKに対する反応性」の割合がいずれも低減していることを特徴とする。
 糖化ヘモグロビンの測定において、εFKに対して反応性が高いことは測定誤差の原因となり得るため、εFKに対する反応性の割合は低ければ低いほど好ましい。具体的には、本発明のアマドリアーゼにおける、αFVHに対する反応性に対するεFKに対する反応性の割合を示すεFK/αFVHは、改変前に対して10%以上、好ましくは20%以上、より好ましくは30%以上、さらに好ましくは40%以上低減していることが好ましい。
 また、本発明のアマドリアーゼにおける、αFVに対する反応性に対するεFKに対する反応性の割合を示すεFK/αFVは、改変前に対して10%以上、好ましくは20%以上、より好ましくは30%以上、さらに好ましくは40%以下低減していることが好ましい。
 αFVHに対する反応性に対するεFKに対する反応性の割合、あるいは、αFVに対する反応性に対するεFKに対する反応性の割合は、公知のアマドリアーゼの測定法を用いて、任意の条件下で測定し、改変前のものと比較することができる。例えば、pH7.0において、5mMのεFKを添加して測定した活性を、5mMのαFVHを添加して測定した活性で割った比率として求めることにより、αFVHに対する反応性に対するεFKに対する反応性の割合を算出し、これを改変前のものと改変後のもので比較することができる。また、例えば、pH7.0において、5mMのεFKを添加して測定した活性を、5mMのαFVを添加して測定した活性で割った比率として求めることにより、αFVに対する反応性に対するεFKに対する反応性の割合を算出し、これを改変前のものと改変後のもので比較することができる。
 改変前のものと比較して基質特異性が向上している本発明のアマドリアーゼの一例としては、例えば、大腸菌JM109(pKK223-3-CFP-T7-Y261W)株により生産されるアマドリアーゼが挙げられる。このような基質特異性が改善されたアマドリアーゼは、εFKをノイズとして測り込む度合が良好に低減され、HbA1cのβ鎖アミノ末端由来の糖化アミノ酸であるαFVH、若しくはHbA1cのβ鎖アミノ末端由来の糖化アミノ酸であるαFVのみを測定することが可能となるため、精度の高い測定を行うことができ、産業利用上非常に有利である。
(アマドリアーゼ活性の測定方法)
 アマドリアーゼの活性の測定方法としては、種々の方法を用いることができるが、一例として、以下に、本発明で用いるアマドリアーゼ活性の測定方法について説明する。
 本発明におけるアマドリアーゼの酵素活性の測定方法としては、酵素の反応により生成する過酸化水素量を測定する方法や、酵素反応により消費する酸素量を測定する方法などが主な測定方法として挙げられる。以下に、一例として、過酸化水素量を測定する方法について示す。
 本発明におけるアマドリアーゼの活性測定には、断りの無い限り、αFVH、もしくはεFK、またはαFVを基質として用いる。なお、酵素力価は、αFVH、もしくはεFK、またはαFVを基質として測定した時、1分間に1μmolの過酸化水素を生成する酵素量を1Uと定義する。
 εFK等の糖化アミノ酸、およびαFVH等の糖化ペプチドは、例えば、阪上らの方法に基づき合成、精製したものを用いることができる(特開2001-95598号公報参照)。
A.:試薬の調製
(1)試薬1:パーオキシダーゼ、4-アミノアンチピリン溶液
5.0kUのパーオキシダーゼ(キッコーマン社製)、100mgの4-アミノアンチピリン(東京化成社製)を0.1Mのリン酸カリウム緩衝液(pH7.0またはpH7.5もしくはpH8.0)に溶解し、1000mlに定容する。
(2)試薬2:TOOS溶液
500mgのTOOS(同仁化学研究所製)をイオン交換水に溶解し、100mlに定容する。
(3)試薬3:基質溶液(150mM; 終濃度5mM)
αFVH 625mg、もしくはεFK 462mgまたはαFV 419mgをイオン交換水に溶解し、10mlに定容する。
B:活性測定法
 2.7mlの試薬1、100μlの試薬2、および100μlの酵素液を混和し、37℃で5分間予備加温する。その後、試薬3を100μl加えて良く混ぜた後、分光光度計(U-3010A、日立ハイテクノロジーズ社製)により、555nmにおける吸光度を測定する。測定値は、555nmにおける1分後から2分後の1分間あたりの吸光度変化とする。なお、対照液は、100μlの試薬3の代わりに100μlのイオン交換水を加える以外は前記と同様にしたものである。これを予め作製しておいた過酸化水素の標準溶液を試薬3の代わりに、また酵素液の代わりにイオン交換水を用い、その生成色素量との関係を調べたグラフを用意する。このグラフを用いて、37℃、1分当たりに生成される過酸化水素のマイクロモル数を計算し、この数値を酵素液中の活性単位とする。
 以下、実施例により、本発明をさらに具体的に説明する。ただし、本発明の技術的範囲は、それらの例により何ら限定されるものではない。
(1)組換え体プラスミドpKK223-3-CFP-T7 DNAの調製
 Coniochaeta属由来アマドリアーゼ遺伝子(配列番号2)の組換え体プラスミドを有する大腸菌JM109(pKK223-3-CFP-T7)株(国際公開第2007/125779号参照)を、3mlのLB-amp培地[1%(w/v)バクトトリプトン、0.5%(w/v)ペプトン、0.5%(w/v)NaCl、50μg/ml アンピシリン]に接種して、37℃で16時間振とう培養し、培養物を得た。
 この培養物を10,000×gで、1分間遠心分離することにより集菌して菌体を得た。この菌体より、GenElute Plasmid Mini-Prep Kit(シグマアルドリッチ社製)を用いて組換え体プラスミドpKK223-3-CFP-T7を抽出して精製し、2.5μgの組換え体プラスミドpKK223-3-CFP-T7 DNAを得た。
(2)組換え体プラスミドpKK223-3-CFP-T7 DNAの部位特異的改変操作
 得られた組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、配列番号3、4の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、以下の条件でPCR反応を行った。
 すなわち、10×KOD-Plus-緩衝液を5μl、dNTPが各2mMになるよう調製されたdNTPs混合溶液を5μl、25mMのMgSO溶液を2μl、鋳型となるpKK223-3-CFP-T7 DNAを50ng、上記合成オリゴヌクレオチドをそれぞれ15pmol、KOD-Plus-を1Unit加えて、滅菌水により全量を50μlとした。調製した反応液をサーマルサイクラー(エッペンドルフ社製)を用いて、94℃で2分間インキュベートし、続いて、「94℃、15秒」-「50℃、30秒」-「68℃、6分」のサイクルを30回繰り返した。
 反応液の一部を1.0%アガロースゲルで電気泳動し、約6,000bpのDNAが特異的に増幅されていることを確認した。こうして得られたDNAを制限酵素DpnI(New England Biolabs社製)で処理し、残存している鋳型DNAを切断した後、大腸菌JM109を形質転換し、LB-amp寒天培地に展開した。生育したコロニーをLB-amp培地に接種して振とう培養し、上記(1)と同様の方法でプラスミドDNAを単離した。該プラスミド中のアマドリアーゼをコードするDNAの塩基配列を、マルチキャピラリーDNA解析システムCEQ2000(ベックマン・コールター社製)を用いて決定し、配列番号1記載のアミノ酸配列の66位のリジンがグリシンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-K66G)を得た。
 続いて、配列番号1記載のアミノ酸配列の67位のバリンをプロリンに置換するために、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、配列番号5、6の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の67位のバリンがプロリンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-V67P)を得た。
 続いて、配列番号1記載のアミノ酸配列の66位のリジンをグリシンに、かつ67位のバリンをプロリンに置換するために、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、配列番号7、8の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の66位のリジンがグリシンに、かつ67位のバリンがプロリンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-K66GV67P)を得た。
 続いて、配列番号1記載のアミノ酸配列の70位のグルタミンをプロリンに置換するために、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、配列番号9、10の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の70位のグルタミンがプロリンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-Q70P)を得た。
 続いて、配列番号1記載のアミノ酸配列の96位のアスパラギン酸をアラニンに置換するために、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、配列番号11、12の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の96位のアスパラギン酸がアラニンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-D96A)を得た。
 続いて、配列番号1記載のアミノ酸配列の98位のグルタミン酸をグルタミンに置換するために、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、配列番号13、14の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の98位のグルタミン酸がグルタミンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-E98Q)を得た。
 続いて、配列番号1記載のアミノ酸配列の100位のスレオニンをアルギニンに置換するために、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、配列番号15、16の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の100位のスレオニンがアルギニンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-T100R)を得た。
 続いて、配列番号1記載のアミノ酸配列の103位のグリシンをアルギニンに置換するために、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、配列番号17、18の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の103位のグリシンがアルギニンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-G103R)を得た。
 続いて、配列番号1記載のアミノ酸配列の106位のアスパラギン酸をアラニンに置換するために、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、配列番号19、20の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の106位のアスパラギン酸がアラニンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-D106A)を得た。
 続いて、配列番号1記載のアミノ酸配列の110位のグルタミンをアラニンに置換するために、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、配列番号21、22の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の110位のグルタミンがアラニンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-Q110A)を得た。
 続いて、配列番号1記載のアミノ酸配列の113位のアラニンをグルタミン酸に置換するために、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、配列番号23、24の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の113位のアラニンがグルタミン酸に置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-A113E)を得た。
 続いて、配列番号1記載のアミノ酸配列の114位のロイシンをリジンに置換するために、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、配列番号25、26の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の114位のロイシンがリジンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-L114K)を得た。
 続いて、配列番号1記載のアミノ酸配列の125位のヒスチジンをグルタミン酸に置換するために、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、配列番号27、28の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の125位のヒスチジンがグルタミン酸に置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-H125E)を得た。
 続いて、配列番号1記載のアミノ酸配列の154位のセリンをグルタミン酸に置換するために、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、配列番号29、30の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の154位のセリンがグルタミン酸に置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-S154E)を得た。
 続いて、配列番号1記載のアミノ酸配列の156位のアスパラギン酸をアスパラギンに置換するために、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、配列番号31、32の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の156位のアスパラギン酸がアスパラギンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-D156N)を得た。
 続いて、配列番号1記載のアミノ酸配列の259位のバリンをアラニンに置換するために、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、配列番号33、34の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の259位のバリンがアラニンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFPT7-V259A)を得た。
 続いて、配列番号1記載のアミノ酸配列の261位のチロシンをアラニンに置換するために、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、配列番号35、36の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の261位のチロシンがアラニンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-Y261A)を得た。
 続いて、配列番号1記載のアミノ酸配列の263位のグリシンをアルギニンに置換するために、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、配列番号37、38の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の263位のグリシンがアルギニンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-G263R)を得た。
 続いて、配列番号1記載のアミノ酸配列の355位のアラニンをリジンに置換するために、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、配列番号39、40の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の355位のアラニンがリジンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-A355K)を得た。
(3)各種改変型アマドリアーゼの生産
 上記の手順により得られた上記組換え体プラスミドを保持するそれぞれの大腸菌JM109株を、0.1mMのIPTGを添加したLB-amp培地3mlにおいて、30℃で16時間培養した。得られた各培養菌体を20mMのHEPES-NaOH緩衝液(pH7.0)で洗浄した後、同緩衝液に懸濁して超音波破砕処理を行い、20,000×gで10分間遠心分離して、基質特異性確認のための酵素液0.6mlを調製した。
(4)εFK/αFVH、εFK/αFVの測定
 上述の酵素液を用いて、上記のB:活性測定法に示した方法により、αFVH、αFVおよびεFKに対する酵素活性を測定した。また、比較のために、大腸菌JM109(pKK223-3-CFP-T7)株から生産した改変前のアマドリアーゼについても、同様の測定を行った。なお、活性測定にはpH7.0に調整した試薬1:パーオキシダーゼ、4-アミノアンチピリン溶液を用いた。
 その結果、上述の酵素活性測定の結果から得られた大腸菌JM109(pKK223-3-CFP-T7)株によって生産される改変前のアマドリアーゼのεFK/αFVHは0.316であり、εFK/αFVは0.093であった。
 これに対し、部位特異的変異導入により作製した改変後の各種のアマドリアーゼのεFK/αFVH、εFK/αFV、および改変前のアマドリアーゼのεFK/αFVH、εFK/αFVの値を100%とした時の改変後のアマドリアーゼのεFK/αFVH、εFK/αFVの比率は、表1の通りとなった。
Figure JPOXMLDOC01-appb-T000001
 すなわち、表1に示す通り、これら全ての改変型アマドリアーゼにおいては、基質特異性が改善されていることがわかった。
(96位のアスパラギン酸の点変異試験)
 基質特異性の向上に効果の高い配列番号1記載のアミノ酸配列の96位のアスパラギン酸を他のアミノ酸に置換し、基質特異性に優れた改変型アマドリアーゼの探索を試みた。組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、表2に示した合成オリゴヌクレオチド(配列番号41~46)、KOD-Plus-(東洋紡績社製)を用い、上記(2)と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の96位のアスパラギン酸が各種アミノ酸に置換された改変型アマドリアーゼを生産する大腸菌JM109株を得た。
 上記のようにして得られた改変型アマドリアーゼ生産能を有する大腸菌JM109株を、上記(3)記載の方法で培養して、各種改変型アマドリアーゼの粗酵素液0.6mlを調製した。
 このようにして調製した酵素液について上記B:活性測定法に示した方法により、αFVH、αFVおよびεFKに対する酵素活性を測定し、εFK/αFVHおよびεFK/αFVを算出した。なお、活性測定にはpH7.0に調整した試薬1:パーオキシダーゼ、4-アミノアンチピリン溶液を用いた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示したように、配列番号1記載のアミノ酸配列の96位のアスパラギン酸をアラニン、セリン、アスパラギン、ヒスチジンに置換した改変型のアマドリアーゼの、εFK/αFVHはいずれも、改変前の値である0.316より低い値となり、また、εFK/αFVはいずれも、改変前の値である0.093より低い値となった。上記アミノ酸置換は基質特異性が改善されたアマドリアーゼの作製に有効な置換であった。
(98位のグルタミン酸の点変異試験)
 基質特異性の向上に効果の高い配列番号1記載のアミノ酸配列の98位のグルタミン酸を他のアミノ酸に置換し、基質特異性に優れた改変型アマドリアーゼの探索を試みた。組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、表3に示した合成オリゴヌクレオチド(配列番号47~82)、KOD-Plus-(東洋紡績社製)を用い、上記(2)と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の98位のグルタミン酸が各種アミノ酸に置換された改変型アマドリアーゼを生産する大腸菌JM109株を得た。
 上記のようにして得られた改変型アマドリアーゼ生産能を有する大腸菌JM109株を、上記(3)記載の方法で培養して、各種改変型アマドリアーゼの粗酵素液0.6mlを調製した。
 このようにして調製した酵素液について上記B:活性測定法に示した方法により、αFVH、αFVおよびεFKに対する酵素活性を測定し、εFK/αFVHおよびεFK/αFVを算出した。なお、活性測定にはpH7.0に調整した試薬1:パーオキシダーゼ、4-アミノアンチピリン溶液を用いた。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示したように、配列番号1記載のアミノ酸配列の98位のグルタミン酸をプロリン以外の他のアミノ酸、すなわちグルタミン、ヒスチジン、リジン、アルギニン、グリシン、アラニン、バリン、イソロイシン、ロイシン、メチオニン、システイン、セリン、スレオニン、アスパラギン、アスパラギン酸、フェニルアラニン、チロシン、トリプトファンに置換した改変型のアマドリアーゼの、εFK/αFVHはいずれも、改変前の値である0.316より低い値となり、また、εFK/αFVはいずれも、改変前の値である0.093より低い値となった。上記アミノ酸置換は基質特異性が改善されたアマドリアーゼの作製に有効な置換であった。なお、配列番号1記載のアミノ酸配列の98位のグルタミン酸をプロリンに置換した場合、酵素の発現が認められなくなった。
(103位のグリシンの点変異試験)
 基質特異性の向上に効果の高い配列番号1記載のアミノ酸配列の103位のグリシンを他のアミノ酸に置換し、基質特異性に優れた改変型アマドリアーゼの探索を試みた。組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、表4に示した合成オリゴヌクレオチド(配列番号83、84、255、256)、KOD-Plus-(東洋紡績社製)を用い、上記(2)と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の103位のグリシンが各種アミノ酸に置換された改変型アマドリアーゼを生産する大腸菌JM109株を得た。
 上記のようにして得られた改変型アマドリアーゼ生産能を有する大腸菌JM109株を、上記(3)記載の方法で培養して、各種改変型アマドリアーゼの粗酵素液0.6mlを調製した。
 このようにして調製した酵素液について上記B:活性測定法に示した方法により、αFVH、αFVおよびεFKに対する酵素活性を測定し、εFK/αFVHおよびεFK/αFVを算出した。なお、活性測定にはpH7.0に調整した試薬1:パーオキシダーゼ、4-アミノアンチピリン溶液を用いた。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示したように、配列番号1記載のアミノ酸配列の103位のグリシンをアルギニン、リジン、ヒスチジンに置換した改変型のアマドリアーゼの、εFK/αFVHはいずれも、改変前の値である0.316より低い値となり、また、εFK/αFVはいずれも、改変前の値である0.093より低い値となった。上記アミノ酸置換は基質特異性が改善されたアマドリアーゼの作製に有効な置換であった。
(106位のアスパラギン酸の点変異試験)
 基質特異性の向上に効果の高い配列番号1記載のアミノ酸配列の106位のアスパラギン酸を他のアミノ酸に置換し、基質特異性に優れた改変型アマドリアーゼの探索を試みた。組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、表5に示した合成オリゴヌクレオチド(配列番号85~100)、KOD-Plus-(東洋紡績社製)を用い、上記(2)と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の106位のアスパラギン酸が各種アミノ酸に置換された改変型アマドリアーゼを生産する大腸菌JM109株を得た。
 上記のようにして得られた改変型アマドリアーゼ生産能を有する大腸菌JM109株を、上記(3)記載の方法で培養して、各種改変型アマドリアーゼの粗酵素液0.6mlを調製した。
 このようにして調製した酵素液について上記B:活性測定法に示した方法により、αFVH、αFVおよびεFKに対する酵素活性を測定し、εFK/αFVHおよびεFK/αFVを算出した。なお、活性測定にはpH7.0に調整した試薬1:パーオキシダーゼ、4-アミノアンチピリン溶液を用いた。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示したように、配列番号1記載のアミノ酸配列の106位のアスパラギン酸をアスパラギン酸よりも分子量が小さいアミノ酸、すなわちグリシン、アラニン、セリン、バリン、スレオニン、システイン、ロイシン、イソロイシン、アスパラギンに置換した改変型のアマドリアーゼの、εFK/αFVHはいずれも、改変前の値である0.316より低い値となり、また、εFK/αFVはいずれも、改変前の値である0.093より低い値となった。上記アミノ酸置換は基質特異性が改善されたアマドリアーゼの作製に有効な置換であった。
(110位のグルタミンの点変異試験)
 基質特異性の向上に効果の高い配列番号1記載のアミノ酸配列の110位のグルタミンを他のアミノ酸に置換し、基質特異性に優れた改変型アマドリアーゼの探索を試みた。組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、表6に示した合成オリゴヌクレオチド(配列番号101~118)、KOD-Plus-(東洋紡績社製)を用い、上記(2)と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の110位のグルタミンが各種アミノ酸に置換された改変型アマドリアーゼを生産する大腸菌JM109株を得た。
 上記のようにして得られた改変型アマドリアーゼ生産能を有する大腸菌JM109株を、上記(3)記載の方法で培養して、各種改変型アマドリアーゼの粗酵素液0.6mlを調製した。
 このようにして調製した酵素液について上記B:活性測定法に示した方法により、αFVH、αFVおよびεFKに対する酵素活性を測定し、εFK/αFVHおよびεFK/αFVを算出した。なお、活性測定にはpH7.0に調整した試薬1:パーオキシダーゼ、4-アミノアンチピリン溶液を用いた。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示す通り、配列番号1記載のアミノ酸配列の110位のグルタミンをアラニン、ロイシン、メチオニン、フェニルアラニン、トリプトファン、アスパラギン、ヒスチジン、リジン、アルギニンに置換した改変型のアマドリアーゼのεFK/αFVHはいずれも、改変前の値である0.316より低い値となり、また、110位のグルタミンをアラニン、フェニルアラニン、トリプトファン、アスパラギン、ヒスチジン、リジン、アルギニンに置換した改変型のアマドリアーゼのεFK/αFVはいずれも、改変前の値である0.093より低い値となった。上記アミノ酸置換は基質特異性が改善されたアマドリアーゼの作製に有効な置換であることがわかった。一方、配列番号1記載のアミノ酸配列の110位のグルタミンをグルタミン酸に置換した改変型のアマドリアーゼのεFK/αFVH、εFK/αFVはいずれも、改変前の値である0.316、0.093より高くなった。
(113位のアラニンの点変異試験)
 基質特異性の向上に効果の高い配列番号1記載のアミノ酸配列の113位のアラニンを他のアミノ酸に置換し、基質特異性に優れた改変型アマドリアーゼの探索を試みた。組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、表7に示した合成オリゴヌクレオチド(配列番号119、120)、KOD-Plus-(東洋紡績社製)を用い、上記(2)と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の113位のアラニンがリジンに置換された改変型アマドリアーゼを生産する大腸菌JM109株を得た。
 こうして得られた改変型アマドリアーゼ生産能を有する大腸菌JM109株を、上記(3)記載の方法で培養して各種改変型アマドリアーゼの粗酵素液0.6mlを調製した。
 このようにして調製した酵素液について上記B.活性測定法に示した方法により、αFVHおよびεFKに対する酵素活性を測定し、εFK/αFVHを算出した。なお、活性測定にはpH7.0に調整した試薬1:パーオキシダーゼ、4-アミノアンチピリン溶液を用いた。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、配列番号1記載のアミノ酸配列の113位のアラニンをグルタミン酸、リジンに置換した改変型のアマドリアーゼの、εFK/αFVHはいずれも、改変前の値である0.316より低く、上記アミノ酸置換は基質特異性が改善されたアマドリアーゼの作製に有効な置換であった。
(114位のロイシンの点変異試験)
 基質特異性の向上に効果の高い配列番号1記載のアミノ酸配列の114位のロイシンを他のアミノ酸に置換し、基質特異性に優れた改変型アマドリアーゼの探索を試みた。組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、表8に示した合成オリゴヌクレオチド(配列番号121~124)、KOD-Plus-(東洋紡績社製)を用い、上記(2)と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の114位のロイシンが各種アミノ酸に置換された改変型アマドリアーゼを生産する大腸菌JM109株を得た。
 こうして得られた改変型アマドリアーゼ生産能を有する大腸菌JM109株を、上記(3)記載の方法で培養して各種改変型アマドリアーゼの粗酵素液0.6mlを調製した。
 このようにして調製した酵素液について上記B.活性測定法に示した方法により、αFVH、αFVおよびεFKに対する酵素活性を測定し、εFK/αFVHおよびεFK/αFVを算出した。なお、活性測定にはpH7.0に調整した試薬1:パーオキシダーゼ、4-アミノアンチピリン溶液を用いた。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 表8に示したように、配列番号1記載のアミノ酸配列の114位のロイシンをリジン、アルギニンに置換した改変型のアマドリアーゼの、εFK/αFVHはいずれも、改変前の値である0.316より低い値となり、また、εFK/αFVはいずれも、改変前の値である0.093より低い値となった。上記アミノ酸置換は基質特異性が改善されたアマドリアーゼの作製に有効な置換であった。一方、配列番号1記載のアミノ酸配列の114位のロイシンをグルタミン酸に置換した改変型のアマドリアーゼのεFK/αFVHは、改変前の値である0.316より高くなった。
(125位のヒスチジンの点変異試験)
 基質特異性の向上に効果の高い配列番号1記載のアミノ酸配列の125位のヒスチジンを他のアミノ酸に置換し、基質特異性に優れた改変型アマドリアーゼの探索を試みた。組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、表9に示した合成オリゴヌクレオチド(配列番号125~134、257~260)、KOD-Plus-(東洋紡績社製)を用い、上記(2)と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の125位のヒスチジンが各種アミノ酸に置換された改変型アマドリアーゼを生産する大腸菌JM109株を得た。
 こうして得られた改変型アマドリアーゼ生産能を有する大腸菌JM109株を、上記(3)記載の方法で培養して各種改変型アマドリアーゼの粗酵素液0.6mlを調製した。
 このようにして調製した酵素液について上記B.活性測定法に示した方法により、αFVH、αFVおよびεFKに対する酵素活性を測定し、εFK/αFVHおよびεFK/αFVを算出した。なお、活性測定にはpH7.0に調整した試薬1:パーオキシダーゼ、4-アミノアンチピリン溶液を用いた。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 表9に示したように、配列番号1記載のアミノ酸配列の125位のヒスチジンをグルタミン酸、アスパラギン、リジン、アラニン、グルタミン、アルギニン、ロイシン、フェニルアラニン、チロシンに置換した改変型のアマドリアーゼの、εFK/αFVHはいずれも、改変前の値である0.316より低い値となり、また、125位のヒスチジンをアスパラギン、リジン、グルタミン、アルギニン、ロイシン、フェニルアラニン、チロシンに置換した改変型のアマドリアーゼの、εFK/αFVはいずれも、改変前の値である0.093より低い値となった。上記アミノ酸置換は基質特異性が改善されたアマドリアーゼの作製に有効な置換であった。
(154位のセリンの点変異試験)
 基質特異性の向上に効果の高い配列番号1記載のアミノ酸配列の154位のセリンを他のアミノ酸に置換し、基質特異性に優れた改変型アマドリアーゼの探索を試みた。組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、表10に示した合成オリゴヌクレオチド(配列番号135~150)、KOD-Plus-(東洋紡績社製)を用い、上記(2)と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の154位のセリンが各種アミノ酸に置換された改変型アマドリアーゼを生産する大腸菌JM109株を得た。
 こうして得られた改変型アマドリアーゼ生産能を有する大腸菌JM109株を、上記(3)記載の方法で培養して各種改変型アマドリアーゼの粗酵素液0.6mlを調製した。
 このようにして調製した酵素液について上記B.活性測定法に示した方法により、αFVH、αFVおよびεFKに対する酵素活性を測定し、εFK/αFVHおよびεFK/αFVを算出した。なお、活性測定にはpH7.0に調整した試薬1:パーオキシダーゼ、4-アミノアンチピリン溶液を用いた。結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 表10に示したように、配列番号1記載のアミノ酸配列の154位のセリンをグルタミン酸、グリシン、チロシン、アスパラギン、グルタミン、アスパラギン酸、ヒスチジン、システインに置換した改変型のアマドリアーゼの、εFK/αFVHはいずれも、改変前の値である0.316より低い値となり、また、εFK/αFVはいずれも、改変前の値である0.093より低い値となった。上記アミノ酸置換は基質特異性が改善されたアマドリアーゼの作製に有効な置換であった。一方、配列番号1記載のアミノ酸配列の154位のセリンをアラニンに置換した改変型のアマドリアーゼのεFK/αFVHは、改変前の値である0.316とほぼ同様で、低下が認められなかった。
(259位のバリンの点変異試験)
 基質特異性の向上に効果の高い配列番号1記載のアミノ酸配列の259位のバリンを他のアミノ酸に置換し、基質特異性に優れた改変型アマドリアーゼの探索を試みた。組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、表11に示した合成オリゴヌクレオチド(配列番号151~154)、KOD-Plus-(東洋紡績社製)を用い、上記(2)と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の259位のバリンが各種アミノ酸に置換された改変型アマドリアーゼを生産する大腸菌JM109株を得た。
 上記のようにして得られた改変型アマドリアーゼ生産能を有する大腸菌JM109株を、上記(3)記載の方法で培養して、各種改変型アマドリアーゼの粗酵素液0.6mlを調製した。
 このようにして調製した酵素液について上記B:活性測定法に示した方法により、αFVH、αFVおよびεFKに対する酵素活性を測定し、εFK/αFVHおよびεFK/αFVを算出した。なお、活性測定にはpH7.0に調整した試薬1:パーオキシダーゼ、4-アミノアンチピリン溶液を用いた。結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 表11に示したように、配列番号1記載のアミノ酸配列の259位のバリンをアラニン、システイン、セリンに置換した改変型のアマドリアーゼの、εFK/αFVHはいずれも、改変前の値である0.316より低い値となり、また、εFK/αFVはいずれも、改変前の値である0.093より低い値となった。上記アミノ酸置換は基質特異性が改善されたアマドリアーゼの作製に有効な置換であった。
(261位のチロシンの点変異試験)
 基質特異性の向上に効果の高い配列番号1記載のアミノ酸配列の261位のチロシンを他のアミノ酸に置換し、基質特異性に優れた改変型アマドリアーゼの探索を試みた。組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、表12に示した合成オリゴヌクレオチド(配列番号155~162)、KOD -Plus-(東洋紡績社製)を用い、上記(2)と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の261位のチロシンが各種アミノ酸に置換された改変型アマドリアーゼを生産する大腸菌JM109株を得た。
 こうして得られた改変型アマドリアーゼ生産能を有する大腸菌JM109株を、上記(3)記載の方法で培養して各種改変型アマドリアーゼの粗酵素液0.6mlを調製した。
 このようにして調製した酵素液について上記B.活性測定法に示した方法により、αFVH、αFVおよびεFKに対する酵素活性を測定し、εFK/αFVHおよびεFK/αFVを算出した。なお、活性測定にはpH7.0に調整した試薬1:パーオキシダーゼ、4-アミノアンチピリン溶液を用いた。結果を表12に示す。
Figure JPOXMLDOC01-appb-T000012
 表12に示したように、配列番号1記載のアミノ酸配列の261位のチロシンをアラニン、ロイシン、フェニルアラニン、トリプトファン、リジンに置換した改変型のアマドリアーゼの、εFK/αFVHはいずれも、改変前の値である0.316より低い値となり、また、261位のチロシンをフェニルアラニン、トリプトファンに置換した改変型のアマドリアーゼのεFK/αFVはいずれも、改変前の値である0.093より低い値となった。上記アミノ酸置換は基質特異性が改善されたアマドリアーゼの作製に有効な置換であった。
(263位のグリシンの点変異試験)
 基質特異性の向上に効果の高い配列番号1記載のアミノ酸配列の263位のグリシンを他のアミノ酸に置換し、基質特異性に優れた改変型アマドリアーゼの探索を試みた。組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、表13に示した合成オリゴヌクレオチド(配列番号163、164、261~266)、KOD-Plus-(東洋紡績社製)を用い、上記(2)と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の263位のグリシンが各種アミノ酸に置換された改変型アマドリアーゼを生産する大腸菌JM109株を得た。
 上記のようにして得られた改変型アマドリアーゼ生産能を有する大腸菌JM109株を、上記(3)記載の方法で培養して、各種改変型アマドリアーゼの粗酵素液0.6mlを調製した。
 このようにして調製した酵素液について上記B:活性測定法に示した方法により、αFVH、αFVおよびεFKに対する酵素活性を測定し、εFK/αFVHおよびεFK/αFVを算出した。なお、活性測定にはpH7.0に調整した試薬1:パーオキシダーゼ、4-アミノアンチピリン溶液を用いた。結果を表13に示す。
Figure JPOXMLDOC01-appb-T000013
 表13に示したように、配列番号1記載のアミノ酸配列の263位のグリシンをアルギニン、リジン、ヒスチジン、アスパラギン酸、グルタミン酸に置換した改変型のアマドリアーゼの、εFK/αFVHはいずれも、改変前の値である0.316より低い値となり、また、εFK/αFVはいずれも、改変前の値である0.093より低い値となった。上記アミノ酸置換は基質特異性が改善されたアマドリアーゼの作製に有効な置換であった。
(355位のアラニンの点変異試験)
 基質特異性の向上に効果の高い配列番号1記載のアミノ酸配列の355位のアラニンを他のアミノ酸に置換し、基質特異性に優れた改変型アマドリアーゼの探索を試みた。組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、表14に示した合成オリゴヌクレオチド(配列番号165~168、267~270)、KOD -Plus-(東洋紡績社製)を用い、上記(2)と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の355位のアラニンが各種アミノ酸に置換された改変型アマドリアーゼを生産する大腸菌JM109株を得た。
 こうして得られた改変型アマドリアーゼ生産能を有する大腸菌JM109株を、上記(3)記載の方法で培養して各種改変型アマドリアーゼの粗酵素液0.6mlを調製した。
 このようにして調製した酵素液について上記B.活性測定法に示した方法により、αFVH、αFVおよびεFKに対する酵素活性を測定し、εFK/αFVHおよびεFK/αFVを算出した。なお、活性測定にはpH7.0に調整した試薬1:パーオキシダーゼ、4-アミノアンチピリン溶液を用いた。結果を表14に示した。
Figure JPOXMLDOC01-appb-T000014
 表14に示したように、配列番号1記載のアミノ酸配列の355位のアラニンをリジン、アルギニン、ヒスチジン、アスパラギン酸、グルタミン酸に置換した改変型のアマドリアーゼの、εFK/αFVHはいずれも、改変前の値である0.316より低い値となり、また、355位のアラニンをリジン、アルギニン、グルタミン酸に置換した改変型のアマドリアーゼの、εFK/αFVはいずれも、改変前の値である0.093より低い値となった。上記アミノ酸置換は基質特異性が改善されたアマドリアーゼの作製に有効な置換であった。
(基質特異性改善に有効な変異の蓄積)
 表15に示した各種組換え体プラスミドDNAを鋳型として、合成オリゴヌクレオチド(配列番号7、8、17、18、39、40、51、52、55、56、87、88、115、116、131、132、135、136、139、140)、KOD-Plus-(東洋紡績社製)を用い、上記(2)と同様の条件でPCR反応、大腸菌JM109株の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列に表15中の「アミノ酸変異」の欄に記載した複数のアミノ酸置換が導入された改変型アマドリアーゼを生産する大腸菌JM109株を得た。
 上記のようにして得られた改変型アマドリアーゼ生産能を有する大腸菌JM109株を、上記(3)記載の方法で培養して、各種改変型アマドリアーゼの粗酵素液0.6mlを調製した。
 このようにして調製した酵素液について上記B:活性測定法に示した方法により、αFVH、αFVおよびεFKに対する酵素活性を測定し、εFK/αFVHおよびεFK/αFVを算出した。なお、活性測定にはpH7.0に調整した試薬1:パーオキシダーゼ、4-アミノアンチピリン溶液を用いた。結果を表15に示す。
Figure JPOXMLDOC01-appb-T000015
 表15に示した多重アミノ酸置換が導入された改変型アマドリアーゼでは、εFK/αFVH、εFK/αFVはいずれも各アミノ酸置換を単独で導入した場合と比較して低い値となった。故に、配列番号1に示したアマドリアーゼの基質特異性改善に効果的な単一変異を組み合わせることにより、更なる基質特異性の改善が見込めることが明らかとなった。
(基質特異性改善に有効な変異の蓄積)
 表16に示した使用プラスミドLおよびSを制限酵素KpnI及びHindIIIで二重消化し、使用プラスミドLから約5.3kbpのDNA断片を、使用プラスミドSから約0.8kbpのDNA断片をそれぞれアガロースゲル電気泳動により分離した後、NucleoSpin Extract II(マシュレ‐ナゲル社製)によりゲルから各DNA断片を抽出、精製した。続いて、両DNA断片をLigation high Ver.2(東洋紡績社製)を用いて連結し、連結したプラスミドDNAを用いて大腸菌JM109株を形質転換し、生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列に表16中の「アミノ酸変異」の欄に記載した複数のアミノ酸置換が導入された改変型アマドリアーゼを生産する大腸菌JM109株を得た。
 上記のようにして得られた改変型アマドリアーゼ生産能を有する大腸菌JM109株を、上記(3)記載の方法で培養して、各種改変型アマドリアーゼの粗酵素液0.6mlを調製した。
 このようにして調製した酵素液について上記B:活性測定法に示した方法により、αFVH、αFVおよびεFKに対する酵素活性を測定し、εFK/αFVHおよびεFK/αFVを算出した。なお、活性測定にはpH7.0に調整した試薬1:パーオキシダーゼ、4-アミノアンチピリン溶液を用いた。結果を表16に示す。
Figure JPOXMLDOC01-appb-T000016
 表16中の多重アミノ酸置換が導入された改変型アマドリアーゼでは、εFK/αFVH、εFK/αFVはいずれも各アミノ酸置換を単独で導入した場合と比較して低い値となった。故に、配列番号1に示したアマドリアーゼの基質特異性改善に効果的な単一変異を組み合わせることにより、更なる基質特異性の改善が見込めることが明らかとなった。
(改変型アマドリアーゼの生産および精製)
 野生型アマドリアーゼ、および上記のようにして得られた改変型アマドリアーゼを生産する形質転換体、大腸菌JM109(pKK223-3-CFP-T7-Q110R)、および大腸菌JM109(pKK223-3-CFP-T7-Q110K)、および大腸菌JM109(pKK223-3-CFP-T7-Y261F)、および大腸菌JM109(pKK223-3-CFP-T7-Y261W)、および大腸菌JM109(pKK223-3-CFP-T7-E98A/V259C)、および大腸菌JM109(pKK223-3-CFP-T7-E98A/S154N/V259C)を、0.1mMのIPTGを添加したLB-amp培地40mlに植菌し、30℃で16時間培養した。得られた各培養菌体を20mMのHEPES-NaOH緩衝液(pH7.0)で洗浄した後、同緩衝液に菌体を懸濁して超音波破砕処理を行い、20,000×gで10分間遠心分離し、粗酵素液8mlを調製した。
 調製した粗酵素液を20mM HEPES-NaOH緩衝液(pH7.0)で平衡化した4mlのQ Sepharose Fast Flow樹脂(GEヘルスケア社製)に吸着させ、次に80mlの同緩衝液で樹脂を洗浄し、続いて100mM NaClを含む20mM HEPES-NaOH緩衝液(pH7.0)で樹脂に吸着していたタンパク質を溶出させ、アマドリアーゼ活性を示す画分を回収した。
 得られたアマドリアーゼ活性を示す画分を、Amicon Ultra-15, 30K NMWL(ミリポア社製)で濃縮した。その後、150mM NaClを含む20mM HEPES-NaOH緩衝(pH7.0)で平衡化したHiLoad 26/60 Superdex 200pg(GEヘルスケア社製)にアプライし、同緩衝液で溶出させ、アマドリアーゼ活性を示す画分を回収し、野生型および改変型アマドリアーゼの精製標品を得た。得られた精製標品はSDS-PAGEによる分析により、単一なバンドまで精製されていることを確認した。
 得られた野生型および改変型アマドリアーゼの精製標品を用いて、αFVH、εFK、αFVを基質とした時の酵素活性を測定した。なお、活性測定にはpH7.0に調整した試薬1:パーオキシダーゼ、4-アミノアンチピリン溶液を用いた。結果を表17、表18に示す。なお、比活性の算出に用いたタンパク質濃度はBradford法に基づく比色定量法、もしくは280nmにおける吸光度を利用した紫外吸収法により測定した。各定量法により測定したタンパク質濃度から算出した比活性はそれぞれU/mg、U/A280で表した。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 表17に示す通り、配列番号1記載のアミノ酸配列の110位のグルタミンをアルギニン、リジンに置換した改変型のアマドリアーゼの、εFK/αFVHはいずれも、改変前の値である0.310より低い値を示し、また、110位のグルタミンをアルギニンに置換した改変型のアマドリアーゼの、εFK/αFVは改変前の値である0.092より低い値を示した。また、表18に示す通り、配列番号1記載のアミノ酸配列の261位のチロシンをフェニルアラニン、またはトリプトファンに置換した改変型のアマドリアーゼ、配列番号1記載のアミノ酸配列の98位のグルタミン酸をアラニンに、かつ259位のバリンをシステインに置換した改変型のアマドリアーゼ、及び配列番号1記載のアミノ酸配列の98位のグルタミン酸をアラニンに、かつ154位のセリンをアスパラギンに、かつ259位のバリンをシステインに置換した改変型のアマドリアーゼのεFK/αFVHはいずれも、改変前の値である0.310より低い値を示し、また、εFK/αFVは改変前の値である0.092より低い値を示した。上記アミノ酸置換は基質特異性が改善されたアマドリアーゼの作製に有効な置換であった。
 また、野生型及び各改変型アマドリアーゼの精製標品を用いて酵素活性を測定して算出したεFK/αFVH、εFK/αFVの値は、野生型及び各改変型アマドリアーゼの粗酵素液を用いて酵素活性を測定して算出したεFK/αFVH、εFK/αFVの値との間に大きな乖離は認められなかった。従って、改変型アマドリアーゼの粗酵素液を用いて酵素活性の測定において基質特異性の改善が認められれば、改変型アマドリアーゼの精製酵素標品を用いた酵素活性の測定においても基質特異性の改善が認められると見なすことが可能である。
(改変型アマドリアーゼによるαFVHの定量)
 次に、改変型アマドリアーゼを用いてHbA1cのβ鎖アミノ末端よりプロテアーゼ等により遊離されるαFVHを定量する際に、共存するεFKが測定値に与える影響について評価した。
C.:試薬の調製
(4)試薬4:パーオキシダーゼ、4-アミノアンチピリン溶液
7.5kUのパーオキシダーゼ(キッコーマン社製)、150mgの4-アミノアンチピリン(東京化成社製)を0.15Mのリン酸カリウム緩衝液(pH6.5)に溶解し、1000mlに定容する。
(5)試薬5:TOOS溶液
500mgのTOOS(同仁化学研究所製)をイオン交換水に溶解し、100mlに定容する。
(6)試薬6:アマドリアーゼ溶液
精製した配列番号1記載のアマドリアーゼ、及び配列番号1記載のアマドリアーゼの98位のグルタミン酸をアラニンに、かつ154位のセリンをアスパラギンに、かつ259位のバリンをシステインに置換した改変型のアマドリアーゼ(配列番号271)を0.01Mのリン酸カリウム緩衝液(pH6.5)で希釈し、それぞれ1.0U/ml、2.3U/mlとなるように調製した。
(7)試薬7:αFVH溶液
αFVH 625mgをイオン交換水に溶解し、10mlに定容することにより、150mMのαFVH溶液を調製した。続いて、150mMのαFVH溶液をイオン交換水により希釈することで、90μM、180μM、270μM、360μM、450μMのαFVH溶液を調製した。
(8)試薬8:血液モデル試料
εFK 462mgをイオン交換水に溶解し、10mlに定容することで調製した150mMのεFK溶液と、(7)で調製した150mMのαFVH溶液をイオン交換水で希釈し、以下の4種類の血液モデル溶液を調製した。
8-1.215μM αFVH
8-2.215μM αFVH、215μM εFK
8-3.215μM αFVH、1075μM εFK
8-4.215μM αFVH、2150μM εFK
なお、ヘモグロビン濃度15g/dL、HbA1c6.1%(JDS値、NGSP値6.5%相当、IFCC値46.5mmol/mol相当)の血液では、ヘモグロビンの分子量を65kDaとすると、HbA1cのβ鎖アミノ末端から遊離されるαFVHの濃度は215μMとなる。
(改変型アマドリアーゼによるαFVHの定量性の確認)
 1.8mlの試薬4、100μlの試薬5、および100μlの試薬6を混和し、37℃で5分間予備加温する。その後、37℃で5分間予備加温しておいた試薬7を1000μl加えて良く混ぜた後、分光光度計(U-3010A、日立ハイテクノロジーズ社製)により、555nmにおける吸光度を測定し、その1分間あたりの吸光度変化量(ΔA555)を算出した。なお、対照液は、1000μlの試薬7の代わりに1000μlのイオン交換水を加える以外は前記と同様にしたものである。結果を図2に示した。図2から明らかなように、αFVH濃度と吸光度変化量(ΔA555)には相関関係が成立した。従って、配列番号1記載のアマドリアーゼ、及び配列番号271記載の改変型アマドリアーゼは共に、90μMから450μMの範囲でαFVHの定量に用いることができることを確認した。
(改変型アマドリアーゼによる血液モデル試料の定量)
 1.8mlの試薬4、100μlの試薬5、および100μlの試薬6を混和し、37℃で5分間予備加温する。その後、37℃で5分間予備加温しておいた試薬8-1から8-4のいずれかを1000μl加えて良く混ぜた後、分光光度計(U-3010A、日立ハイテクノロジーズ社製)により、555nmにおける吸光度を測定し、その1分間あたりの吸光度変化量(ΔA555)を算出した。なお、対照液は、1000μlの試薬8-1から8-4の代わりに1000μlのイオン交換水を加える以外は前記と同様にしたものである。結果を表19に示した。表19から明らかなように、配列番号1記載のアマドリアーゼを用いた場合、αFVHと同濃度のεFKが共存すると、その測定値は本来の測定値と比較して3%弱の乖離が認められ、αFVHの5倍、10倍濃度のεFKが共存すると、その測定値は本来の測定値と比較して8%、17%の乖離が認められた。それに対し、配列番号271記載の改変型アマドリアーゼを用いた場合にはαFVHの同濃度、5倍濃度のεFKが共存しても、本来の測定値との乖離は1%弱であり、また、αFVHの10倍濃度のεFKが共存しても、本来の測定値との乖離は2%弱である。従って、配列番号271記載の改変型アマドリアーゼを用いれば、εFKが共存している試料でも正確にαFVHのみを定量することが可能である。
Figure JPOXMLDOC01-appb-T000019
(アスペルギルス・ニードランス由来フルクトシルアミノ酸オキシダーゼ遺伝子のクローニングおよび大腸菌での発現)
(a)アスペルギルス・ニードランスFGSC A26株からの全RNAの抽出
 アスペルギルス・ニードランスFGSC A26株を、液体培地(0.4%イーストエキストラクト、1.0%マルツエキストラクト、0.1%トリプトン、0.1%リン酸2水素1カリウム、0.05%硫酸マグネシウム、2.0%グルコース、pH6.5)において、30℃で24時間培養した。培養後、回収した菌体を液体窒素で粉砕し、ISOGEN(ニッポンジーン社製)を用いて付属のプロトコールに従い全RNAを調製した。また、調製した全RNAをDNaseI(インビトロジェン社製)で処理することにより、DNAの混入を防いだ。
(b)アスペルギルス・ニードランス由来フルクトシルアミノ酸オキシダーゼcDNAのクローニング
 得られた全RNA1μgを用いて、PrimeScript RT-PCR Kit(タカラバイオ社製)により、付属のプロトコールに従ってRT-PCRを行った。このとき、逆転写反応ではKit付属のOligo dT Primerを用い、その後のPCR反応では配列番号169、170 に示した合成オリゴヌクレオチドを用いた。その結果、約1300bpのcDNA断片が特異的に増幅した。次に、この増幅したcDNA断片についてシーケンス解析を行った結果、配列番号171に示した1317bpからなる塩基配列であることがわかった。また、配列番号171より予想されるアミノ酸配列(配列番号172)は図1のアスペルキルス・ニードランス由来フルクトシルアミノ酸オキシダーゼの配列と一致していた。
(c)アスペルギルス・ニードランス由来フルクトシルアミノ酸オキシダーゼの大腸菌での発現
 続いて、アスペルギルス・ニードランス由来フルクトシルアミノ酸オキシダーゼを大腸菌で発現させるために、以下の手順を行った。まず、上記でクローニングしてきたcDNA断片は配列番号169、170に示した合成ヌクレオチド由来のNdeIサイトとBamHIサイトをそれぞれ5´末端と3´末端に有しているため、クローニングしてきたcDNA断片をNdeIとBamHI(タカラバイオ社製)の2種類の制限酵素で処理し、pET-22b(+)Vector(ノバジェン社製)のNdeI-BamHIサイトに挿入することで、組換え体プラスミドpET22b-AnFX´を取得した。
 次に、アスペルギルス・ニードランス由来フルクトシルアミノ酸オキシダーゼにフルクトシルペプチドオキシダーゼ活性を付与するために、組換え体プラスミドpET22b-AnFX´を鋳型にして、配列番号173、174の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌の形質転換および生育コロニーが保持するプラスミドDNA中のフルクトシルアミノ酸オキシダーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号172記載のアミノ酸配列の59位のセリンがグリシンに置換されたアスペルギルス・ニードランス由来フルクトシルアミノ酸オキシダーゼ遺伝子をコードする組換え体プラスミド(pET22b-AnFX)を取得した。そして、この得られた組換え体プラスミドpET22b-AnFXを大腸菌BL21(DE3)株(ニッポンジーン社製)に形質転換することで、アスペルギルス・ニードランス由来フルクトシルアミノ酸オキシダーゼを産生する大腸菌を取得した。
 上記で得られたアスペルギルス・ニードランス由来フルクトシルアミノ酸オキシダーゼを産生する大腸菌BL21(DE3)を、Overnight Express Autoinduction System 1(ノバジェン社製)の試薬を加えたLB-amp培地において30℃で18時間振とう培養した。得られた各培養菌体を10mMのリン酸カリウム緩衝液(pH7.5)に懸濁して超音波破砕処理を行い、20,000×gで10分間遠心分離することで粗酵素液を得た。この粗酵素液を用いて、上記のB:活性測定法により、αFVに対する酵素活性を測定したところ、2.2U/mlであった。ただし、このときの活性測定の試薬1はpH7.5に調整したものを使用した。
(アスペルギルス・ニードランス由来フルクトシルアミノ酸オキシダーゼ遺伝子への点変異導入)
 基質特異性を向上させるための点変異を導入することを目的として、組換え体プラスミドpET22b―AnFXを鋳型にして、配列番号175、176の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌BL21(DE3)の形質転換および生育コロニーが保持するプラスミドDNA中のフルクトシルアミノ酸オキシダーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号172記載のアミノ酸配列の153位のシステインがアスパラギン酸に置換されたアスペルギルス・ニードランス由来フルクトシルアミノ酸オキシダーゼ遺伝子をコードする組換え体プラスミド(pET22b-AnFX-C153D)を得た。
 続いて、基質特異性を向上させるための点変異を導入することを目的として、組換え体プラスミドpET22b―AnFXを鋳型にして、配列番号177、178及び179、180の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌BL21(DE3)の形質転換および生育コロニーが保持するプラスミドDNA中のフルクトシルアミノ酸オキシダーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号172記載のアミノ酸配列の259位のバリンがそれぞれアラニン、システインに置換されたアスペルギルス・ニードランス由来フルクトシルアミノ酸オキシダーゼ遺伝子をコードする組換え体プラスミド(pET22b-AnFX-V259A、pET22b-AnFX-V259C)を得た。
 続いて、基質特異性を向上させるための点変異を導入することを目的として、組換え体プラスミドpET22b-AnFXを鋳型にして、配列番号181、182及び183、184の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌BL21(DE3)の形質転換および生育コロニーが保持するプラスミドDNA中のフルクトシルアミノ酸オキシダーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号172記載のアミノ酸配列の263位のグリシンがそれぞれリジン、アルギニンに置換されたアスペルギルス・ニードランス由来フルクトシルアミノ酸オキシダーゼ遺伝子をコードする組換え体プラスミド(pET22b-AnFX-G263K、pET22b-AnFX-G263R)を得た。
(点変異を導入したアスペルギルス・ニードランス由来フルクトシルアミノ酸オキシダーゼの基質特異性改善効果の評価)
 上記で得られた組換え体プラスミドpET22b-AnFX、pET22b-AnFX-C153D、pET22b-AnFX-V259A、pET22b-AnFX-V259C、pET22b-AnFX-G263K、pET22b-AnFX-G263Rをそれぞれ保持する大腸菌BL21(DE3)を、Overnight Express Autoinduction System 1(ノバジェン社製)の試薬を加えたLB-amp培地において30℃で18時間振とう培養した。得られた各培養菌体を10mMのリン酸カリウム緩衝液(pH7.5)に懸濁して超音波破砕処理を行い、20,000×gで10分間遠心分離することで粗酵素液を得た。この粗酵素液を用いて、上記のB:活性測定法により、αFV、αFVH及びεFKに対する酵素活性を測定し、εFK/αFVHおよびεFK/αFVを算出した。ただし、このときの活性測定の試薬1はpH7.5に調整したものを使用した。結果を表20に示す。
Figure JPOXMLDOC01-appb-T000020
 表20に示したように、配列番号172記載のアミノ酸配列の153位のシステインをアスパラギン酸に、259位のバリンをアラニンまたはシステインに、263位のグリシンをリジンまたはアルギニンに置換することにより、アスペルギルス・ニードランス由来フルクトシルアミノ酸オキシダーゼのεFK/αFVH及びεFK/αFVはいずれも置換前より低い値となった。よって、これらアミノ酸置換は基質特異性が改善されたアマドリアーゼの作製に有効な置換であることがわかった。
(ペニシリウム・クリソゲナム由来フルクトシルアミノ酸オキシダーゼ遺伝子のクローニングおよび大腸菌での発現)
(a)ペニシリウム・クリソゲナムNBRC9251株からの全RNAの抽出
 ペニシリウム・クリソゲナムNBRC9251株を、液体培地(0.4%イーストエキストラクト、1.0%マルツエキストラクト、0.1%トリプトン、0.1%リン酸2水素1カリウム、0.05%硫酸マグネシウム、2.0%グルコース、pH6.5)において、30℃で24時間培養し、上記と同様の手順で全RNAを調製した。
(b)ペニシリウム・クリソゲナム由来フルクトシルアミノ酸オキシダーゼcDNAのクローニング
 得られた全RNA1μgを用いて、上記と同様にしてRT-PCRを行った。このとき、逆転写反応ではKit付属のOligo dT Primerを用い、その後のPCR反応では配列番号185、186 に示した合成オリゴヌクレオチドを用いた。その結果、約1300bpのcDNA断片が特異的に増幅した。次に、この増幅したcDNA断片についてシーケンス解析を行った結果、配列番号187に示した1317bpからなる塩基配列であることがわかった。また、配列番号187より予想されるアミノ酸配列(配列番号188)は、図1で記載したペニシリウム・ヤンシネラムの配列の69番目のロイシンがトリプトファンに、142番目のスレオニンがアラニンに置換されたものと一致していた。
(c)ペニシリウム・クリソゲナム由来フルクトシルアミノ酸オキシダーゼの大腸菌での発現
 続いて、ペニシリウム・クリソゲナム由来フルクトシルアミノ酸オキシダーゼを大腸菌で発現させるために、以下の手順を行った。まず、上記でクローニングしてきたcDNA断片は配列番号185、186に示した合成ヌクレオチド由来のNdeIサイトとBamHIサイトをそれぞれ5´末端と3´末端に有しているため、クローニングしてきたcDNA断片をNdeIとBamHI(タカラバイオ社製)の2種類の制限酵素で処理し、pET-22b(+)Vector(ノバジェン社製)のNdeI-BamHIサイトに挿入することで、組換え体プラスミドpET22b-PcFX´を取得した。
 次に、ペニシリウム・クリソゲナム由来フルクトシルアミノ酸オキシダーゼにフルクトシルペプチドオキシダーゼ活性を付与するために、組換え体プラスミドpET22b-PcFX´を鋳型にして、配列番号189、190の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌の形質転換および生育コロニーが保持するプラスミドDNA中のフルクトシルアミノ酸オキシダーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号188記載のアミノ酸配列の60位のセリンがグリシンに置換されたペニシリウム・クリソゲナム由来フルクトシルアミノ酸オキシダーゼ遺伝子をコードする組換え体プラスミド(pET22b-PcFX)を取得した。そして、この得られた組換え体プラスミドpET22b-PcFXを大腸菌BL21(DE3)に形質転換することで、ペニシリウム・クリソゲナム由来フルクトシルアミノ酸オキシダーゼを産生する大腸菌を取得した。
 上記で得られたペニシリウム・クリソゲナム由来フルクトシルアミノ酸オキシダーゼを産生する大腸菌BL21(DE3)を、Overnight Express Autoinduction System 1(ノバジェン社製)の試薬を加えたLB-amp培地において30℃で18時間振とう培養した。得られた各培養菌体をBugBuster Protein Extraction Reagent(ノバジェン社製)を用いて溶菌した後、20,000×gで10分間遠心分離することで粗酵素液を得た。この粗酵素液を用いて、上記のB:活性測定法により、αFVに対する酵素活性を測定したところ、0.090U/mlであった。ただし、このときの活性測定の試薬1はpH7.5に調整したものを使用した。
(ペニシリウム・クリソゲナム由来フルクトシルアミノ酸オキシダーゼ遺伝子への点変異導入)
 基質特異性を向上させるための点変異を導入することを目的として、組換え体プラスミドpET22b―PcFXを鋳型にして、配列番号191、192の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌BL21(DE3)の形質転換および生育コロニーが保持するプラスミドDNA中のフルクトシルアミノ酸オキシダーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号188記載のアミノ酸配列の110位のリジンがアルギニンに置換されたペニシリウム・クリソゲナム由来フルクトシルアミノ酸オキシダーゼ遺伝子をコードする組換え体プラスミド(pET22b-PcFX-K110R)を得た。
 続いて、基質特異性を向上させるための点変異を導入することを目的として、組換え体プラスミドpET22b―PcFXを鋳型にして、配列番号193、194の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌BL21(DE3)の形質転換および生育コロニーが保持するプラスミドDNA中のフルクトシルアミノ酸オキシダーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号188記載のアミノ酸配列の154位のシステインがアスパラギン酸に置換されたペニシリウム・クリソゲナム由来フルクトシルアミノ酸オキシダーゼ遺伝子をコードする組換え体プラスミド(pET22b-PcFX-C154D)を得た。
 続いて、基質特異性を向上させるための点変異を導入することを目的として、組換え体プラスミドpET22b-PcFXを鋳型にして、配列番号195、196の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌BL21(DE3)の形質転換および生育コロニーが保持するプラスミドDNA中のフルクトシルアミノ酸オキシダーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号188記載のアミノ酸配列の263位のグリシンがリジンに置換されたペニシリウム・クリソゲナム由来フルクトシルアミノ酸オキシダーゼ遺伝子をコードする組換え体プラスミド(pET22b-PcFX-G263K)を得た。
(点変異を導入したペニシリウム・クリソゲナム由来フルクトシルアミノ酸オキシダーゼの特性評価)
 上記で得られた組換え体プラスミドpET22b-PcFX、pET22b-PcFX-K110R、pET22b-PcFX-C154D、pET22b-PcFX-G263Kをそれぞれ保持する大腸菌BL21(DE3)を、Overnight Express Autoinduction System 1(ノバジェン社製)の試薬を加えたLB-amp培地において30℃で18時間振とう培養した。得られた各培養菌体をBugBuster Protein Extraction Reagent(ノバジェン社製)を用いて溶菌した後、20,000×gで10分間遠心分離することで粗酵素液を得た。この粗酵素液を用いて、上記のB:活性測定法により、αFV、αFVH及びεFKに対する酵素活性を測定し、εFK/αFVHおよびεFK/αFVを算出した。ただし、このときの活性測定の試薬1はpH7.5に調整したものを使用した。結果を表21に示す。
Figure JPOXMLDOC01-appb-T000021
 表21に示したように、配列番号188記載のアミノ酸配列の110位のリジンをアルギニンに、154位のシステインをアスパラギン酸に置換することにより、ペニシリウム・クリソゲナム由来フルクトシルアミノ酸オキシダーゼのεFK/αFVH及びεFK/αFVはいずれも置換前より低い値となった。また、配列番号188記載のアミノ酸配列の263位のグリシンをリジンに置換することにより、ペニシリウム・クリソゲナム由来フルクトシルアミノ酸オキシダーゼのεFK/αFVHは置換前より低い値となった。よって、これらアミノ酸置換は基質特異性が改善されたアマドリアーゼの作製に有効な置換であることがわかった。
(クリプトコッカス・ネオフォルマンス由来フルクトシルアミノ酸オキシダーゼの大腸菌での発現)
 既知のフルクトシルアミノ酸オキシダーゼのアミノ酸配列をもとに、ゲノムデータベース(http://www.genome.jp/tools/blast/)より検索したクリプトコッカス・ネオフォルマンス由来フルクトシルアミノ酸オキシダーゼ(Cryptococcus neoformans B-3501A: GENE ID: 4934641 CNBB5450 hypothetical protein)について、C末端から34アミノ酸を除いた、配列番号197で示す443アミノ酸を大腸菌で発現させることを試みた。そこで、配列番号197のアミノ酸配列をコードし、且つ大腸菌発現用にコドンを最適化した、配列番号198で示す1332bpの遺伝子(終止コドンTGAを含む)を、定法である遺伝子断片のPCRによる全合成によりcDNAを全合成することで取得した。このとき、配列番号1の5´末端、3´末端にはそれぞれNdeIサイトとBamHIサイトを付加した。また、クローニングした遺伝子配列から予想されるアミノ酸配列は図1のクリプトコッカス・ネオフォルマンス由来フルクトシルアミノ酸オキシダーゼのC末端から34アミノ酸を除いた配列と一致していることを確認した。
 続いて、取得した配列番号198の遺伝子を大腸菌で発現させるために、以下の手順を行った。まず、上記で全合成した遺伝子をNdeIとBamHI(タカラバイオ社製)の2種類の制限酵素で処理し、pET-22b(+)Vector(ノバジェン社製)のNdeI-BamHIサイトに挿入することで、組換え体プラスミドpET22b-CnFXを取得し、大腸菌BL21(DE3)に形質転換した。次に、組換え体プラスミドpET22b-CnFXを保持する大腸菌BL21(DE3)を、Overnight Express Autoinduction System 1(ノバジェン社製)の試薬を加えたLB-amp培地において30℃で18時間振とう培養した。得られた各培養菌体を10mMのリン酸カリウム緩衝液(pH7.5)に懸濁して超音波破砕処理を行い、20,000×gで10分間遠心分離することで粗酵素液を得た。この粗酵素液を用いて、上記のB:活性測定法により、αFVに対する酵素活性を測定したところ、それぞれ2.2U/mlであった。ただし、このときの活性測定の試薬1はpH7.5に調整したものを使用した。
(クリプトコッカス・ネオフォルマンス由来フルクトシルアミノ酸オキシダーゼ遺伝子への点変異導入)
 基質特異性を向上させるための点変異を導入することを目的として、組換え体プラスミドpET22b―CnFXを鋳型にして、配列番号199、200の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌BL21(DE3)の形質転換および生育コロニーが保持するプラスミドDNA中のフルクトシルアミノ酸オキシダーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号197記載のアミノ酸配列の100位のスレオニンがアルギニンに置換されたクリプトコッカス・ネオフォルマンス由来フルクトシルアミノ酸オキシダーゼ遺伝子をコードする組換え体プラスミド(pET22b-CnFX-T100R)を得た。
 続いて、基質特異性を向上させるための点変異を導入することを目的として、組換え体プラスミドpET22b―CnFXを鋳型にして、配列番号201、202の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌BL21(DE3)の形質転換および生育コロニーが保持するプラスミドDNA中のフルクトシルアミノ酸オキシダーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号197記載のアミノ酸配列の110位のセリンがアルギニンに置換されたクリプトコッカス・ネオフォルマンス由来フルクトシルアミノ酸オキシダーゼ遺伝子をコードする組換え体プラスミド(pET22b-CnFX-S110R)を得た。
 続いて、基質特異性を向上させるための点変異を導入することを目的として、組換え体プラスミドpET22b―CnFXを鋳型にして、配列番号203、204の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌BL21(DE3)の形質転換および生育コロニーが保持するプラスミドDNA中のフルクトシルアミノ酸オキシダーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号197記載のアミノ酸配列の154位のセリンがアスパラギンに置換されたクリプトコッカス・ネオフォルマンス由来フルクトシルアミノ酸オキシダーゼ遺伝子をコードする組換え体プラスミド(pET22b-CnFX-S154N)を得た。
 続いて、基質特異性を向上させるための点変異を導入することを目的として、組換え体プラスミドpET22b-CnFXを鋳型にして、配列番号205、206及び207、208の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌BL21(DE3)の形質転換および生育コロニーが保持するプラスミドDNA中のフルクトシルアミノ酸オキシダーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号197記載のアミノ酸配列の259位のバリンがそれぞれアラニン、システインに置換されたクリプトコッカス・ネオフォルマンス由来フルクトシルアミノ酸オキシダーゼ遺伝子をコードする組換え体プラスミド(pET22b-CnFX-V259A、pET22b-CnFX-V259C)を得た。
 続いて、基質特異性を向上させるための点変異を導入することを目的として、組換え体プラスミドpET22b-CnFXを鋳型にして、配列番号209、210及び211、212の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌BL21(DE3)の形質転換および生育コロニーが保持するプラスミドDNA中のフルクトシルアミノ酸オキシダーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号197記載のアミノ酸配列の263位のセリンがそれぞれリジン、アルギニンに置換されたクリプトコッカス・ネオフォルマンス由来フルクトシルアミノ酸オキシダーゼ遺伝子をコードする組換え体プラスミド(pET22b-CnFX-S263K、pET22b-CnFX-S263R)を得た。
(点変異を導入したクリプトコッカス・ネオフォルマンス由来フルクトシルアミノ酸オキシダーゼの特性評価)
 上記で得られた組換え体プラスミドpET22b-CnFX-T100R、pET22b-CnFX-S110R、pET22b-CnFX-S154N、pET22b-CnFX-V259A、pET22b-CnFX-V259C、pET22b-CnFX-S263K、pET22b-CnFX-S263Rをそれぞれ保持する大腸菌BL21(DE3)を、Overnight Express Autoinduction System 1(ノバジェン社製)の試薬を加えたLB-amp培地において30℃で18時間振とう培養した。得られた各培養菌体を10mMのリン酸カリウム緩衝液(pH7.5)に懸濁して超音波破砕処理を行い、20,000×gで10分間遠心分離することで粗酵素液を得た。この粗酵素液を用いて、上記のB:活性測定法により、αFV、αFVH及びεFKに対する酵素活性を測定し、εFK/αFVHおよびεFK/αFVを算出した。ただし、このときの活性測定の試薬1はpH7.5に調整したものを使用した。結果を表22に示す。
Figure JPOXMLDOC01-appb-T000022
 表22に示したように、配列番号197記載のアミノ酸配列の100位のスレオニンをアルギニンに、110位のセリンをアルギニンに、154位のセリンをアスパラギンに、259位のバリンをアラニンまたはシステインに、263位のセリンをリジンまたはアルギニンに置換することにより、クリプトコッカス・ネオフォルマンス由来フルクトシルアミノ酸オキシダーゼのεFK/αFVH及びεFK/αFVはいずれも置換前より低い値となった。よって、これらアミノ酸置換は基質特異性が改善されたアマドリアーゼの作製に有効な置換であることがわかった。
(ネオコスモスポラ・バシンフェクタ由来ケトアミンオキシダーゼの大腸菌での発現)
 ネオコスモスポラ・バシンフェクタ由来ケトアミンオキシダーゼを大腸菌で発現させることを試みた。すでに明らかになっているネオコスモスポラ・バシンフェクタ由来ケトアミンオキシダーゼのアミノ酸配列を配列番号213に示した(特許文献1参照)。この配列番号213で示した441アミノ酸をコードし、且つ大腸菌発現用にコドンを最適化した、配列番号214で示す1326bpの遺伝子(終止コドンTGAを含む)を、定法である遺伝子断片のPCRによる全合成によりcDNAを全合成することで取得した。このとき、配列番号1の5´末端、3´末端にはそれぞれNdeIサイトとBamHIサイトを付加した。また、クローニングした遺伝子配列から予想されるアミノ酸配列全長は図1のネオコスモスポラ・バシンフェクタ由来ケトアミンオキシダーゼの配列と一致していることを確認した。
 続いて、取得した配列番号214の遺伝子を大腸菌で発現させるために、以下の手順を行った。まず、上記で全合成した遺伝子をNdeIとBamHI(タカラバイオ社製)の2種類の制限酵素で処理し、pET-22b(+)Vector(ノバジェン社製)のNdeI-BamHIサイトに挿入することで、組換え体プラスミドpET22b-NvFXを取得し、大腸菌BL21(DE3)に形質転換した。次に、この組換え体プラスミドpET22b-NvFXを保持する大腸菌BL21(DE3)を、Overnight Express Autoinduction System 1(ノバジェン社製)の試薬を加えたLB-amp培地において30℃で18時間振とう培養した。得られた各培養菌体を10mMのリン酸カリウム緩衝液(pH7.5)に懸濁して超音波破砕処理を行い、20,000×gで10分間遠心分離することで粗酵素液を得た。この粗酵素液を用いて、上記のB:活性測定法により、αFVに対する酵素活性を測定したところ、19.3U/mlであった。ただし、このときの活性測定の試薬1はpH7.5に調整したものを使用した。
(ネオコスモスポラ・バシンフェクタ由来ケトアミンオキシダーゼ遺伝子への点変異導入)
 続いて、基質特異性を向上させるための点変異を導入することを目的として、組換え体プラスミドpET22b-NvFXを鋳型にして、配列番号215、216及び217、218及び219、220及び221、222の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌BL21(DE3)の形質転換および生育コロニーが保持するプラスミドDNA中のフルクトシルアミノ酸オキシダーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号213記載のアミノ酸配列の98位のグルタミン酸がそれぞれグルタミン、ヒスチジン、リジン、アルギニンに置換されたネオコスモスポラ・バシンフェクタ由来ケトアミンオキシダーゼ遺伝子をコードする組換え体プラスミド(pET22b-NvFX-E98Q、pET22b-NvFX-E98H、pET22b-NvFX-E98K、pET22b-NvFX-E98R)を得た。
 続いて、基質特異性を向上させるための点変異を導入することを目的として、組換え体プラスミドpET22b―NvFXを鋳型にして、配列番号223、224の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌BL21(DE3)の形質転換および生育コロニーが保持するプラスミドDNA中のケトアミンオキシダーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号213記載のアミノ酸配列の103位のグリシンがアルギニンに置換されたネオコスモスポラ・バシンフェクタ由来ケトアミンオキシダーゼ遺伝子をコードする組換え体プラスミド(pET22b-NvFX-G103R)を得た。
 続いて、基質特異性を向上させるための点変異を導入することを目的として、組換え体プラスミドpET22b―NvFXを鋳型にして、配列番号225、226の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌BL21(DE3)の形質転換および生育コロニーが保持するプラスミドDNA中のケトアミンオキシダーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号213記載のアミノ酸配列の110位のグルタミン酸がアルギニンに置換されたネオコスモスポラ・バシンフェクタ由来ケトアミンオキシダーゼ遺伝子をコードする組換え体プラスミド(pET22b-NvFX-E110R)を得た。
 続いて、基質特異性を向上させるための点変異を導入することを目的として、組換え体プラスミドpET22b―NvFXを鋳型にして、配列番号227、228及び229、230の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌BL21(DE3)の形質転換および生育コロニーが保持するプラスミドDNA中のケトアミンオキシダーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号213記載のアミノ酸配列の154位のセリンがそれぞれアスパラギン、アスパラギン酸に置換されたネオコスモスポラ・バシンフェクタ由来ケトアミンオキシダーゼ遺伝子をコードする組換え体プラスミド(pET22b-NvFX-S154N、pET22b-NvFX-S154D)を得た。
 続いて、基質特異性を向上させるための点変異を導入することを目的として、組換え体プラスミドpET22b-NvFXを鋳型にして、配列番号231、232及び233、234の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌BL21(DE3)の形質転換および生育コロニーが保持するプラスミドDNA中のケトアミンオキシダーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号213記載のアミノ酸配列の259位のバリンがそれぞれアラニン、システインに置換されたネオコスモスポラ・バシンフェクタ由来ケトアミンオキシダーゼ遺伝子をコードする組換え体プラスミド(pET22b-NvFX-V259A、pET22b-NvFX-V259C)を得た。
 続いて、基質特異性を向上させるための点変異を導入することを目的として、組換え体プラスミドpET22b-NvFXを鋳型にして、配列番号235、236及び237、238の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌BL21(DE3)の形質転換および生育コロニーが保持するプラスミドDNA中のケトアミンオキシダーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号213記載のアミノ酸配列の263位のグリシンがそれぞれリジン、アルギニンに置換されたネオコスモスポラ・バシンフェクタ由来ケトアミンオキシダーゼ遺伝子をコードする組換え体プラスミド(pET22b-NvFX-G263K、pET22b-NvFX-G263R)を得た。
 続いて、基質特異性を向上させるための点変異を導入することを目的として、組換え体プラスミドpET22b-NvFXを鋳型にして、配列番号239、240の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌BL21(DE3)の形質転換および生育コロニーが保持するプラスミドDNA中のケトアミンオキシダーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号213記載のアミノ酸配列の66位のリジンがグリシンに、67位のバリンがプロリンに置換されたネオコスモスポラ・バシンフェクタ由来ケトアミンオキシダーゼ遺伝子をコードする組換え体プラスミド(pET22b-NvFX-K66GV67P)を得た。
(点変異を導入したネオコスモスポラ・バシンフェクタ由来ケトアミンオキシダーゼの特性評価)
 上記で得られた組換え体プラスミドpET22b-NvFX-E98Q、pET22b-NvFX-E98H、pET22b-NvFX-E98K、pET22b-NvFX-E98R、pET22b-NvFX-E110R、pET22b-NvFX-S154N、pET22b-NvFX-S154D、pET22b-NvFX-V259A、pET22b-NvFX-V259C、pET22b-NvFX-G263K、pET22b-NvFX-G263R、pET22b-NvFX-K66GV67Pをそれぞれ保持する大腸菌BL21(DE3)を、Overnight Express Autoinduction System 1(ノバジェン社製)の試薬を加えたLB-amp培地において30℃で18時間振とう培養した。得られた各培養菌体を10mMのリン酸カリウム緩衝液(pH7.5)に懸濁して超音波破砕処理を行い、20,000×gで10分間遠心分離することで粗酵素液を得た。この粗酵素液を用いて、上記のB:活性測定法により、αFV、αFVH及びεFKに対する酵素活性を測定し、εFK/αFVHおよびεFK/αFVを算出した。ただし、このときの活性測定の試薬1はpH7.5に調整したものを使用した。結果を表23に示す。
Figure JPOXMLDOC01-appb-T000023
 表23に示したように、配列番号213記載のアミノ酸配列の98位のグルタミン酸をグルタミンまたはヒスチジンまたはリジンまたはアルギニンに、103位のグリシンをアルギニンに、110位のグルタミン酸をアルギニンに、154位のセリンをアスパラギンまたはアスパラギン酸に、259位のバリンをアラニンまたはシステインに、263位のグリシンをリジンまたはアルギニンに置換することにより、ネオコスモスポラ・バシンフェクタ由来フルクトシルアミノ酸オキシダーゼのεFK/αFVH及びεFK/αFVはいずれも置換前より低い値となった。また、66位のリジンをグリシンに、かつ67位のバリンをプロリンに置換することにより、ネオコスモスポラ・バシンフェクタ由来ケトアミンオキシダーゼのεFK/αFVHは置換前より低い値となった。よって、これらアミノ酸置換は基質特異性が改善されたアマドリアーゼの作製に有効な置換であることがわかった。
(ユウペニシリウム・テレナム由来アマドリアーゼ遺伝子への点変異導入)
 配列番号241は熱安定性向上型変異(G184D、N272D、H388Y)を導入したユウペニシリウム・テレナム由来アマドリアーゼのアミノ酸配列であり、配列番号241のアミノ酸配列をコードする遺伝子(配列番号242)を挿入した組換え体プラスミドpUTE100K´-EFP-T5を大腸菌で発現させることにより、ユウペニシリウム・テレナム由来アマドリアーゼの活性が確認されている(国際公開第2007/125779号参照)。
 ユウペニシリウム・テレナム由来アマドリアーゼに基質特異性向上型変異を導入するために、組換え体プラスミドpUTE100K´-EFP-T5を鋳型にして、配列番号243、244の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌DH5αの形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号241記載のアミノ酸配列の98位のセリンがアラニンに置換されたユウペニシリウム・テレナム由来アマドリアーゼ遺伝子をコードする組換え体プラスミド(pUTE100K´-EFP-T5-S98A)を得た。
 続いて、基質特異性を向上させるための点変異を導入することを目的として、組換え体プラスミドpUTE100K´-EFP-T5を鋳型にして、配列番号245、246の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌DH5αの形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号241記載のアミノ酸配列の110位のリジンがアルギニンに置換されたユウペニシリウム・テレナム由来アマドリアーゼ遺伝子をコードする組換え体プラスミド(pUTE100K´-EFP-T5-K110R)を得た。
 続いて、基質特異性を向上させるための点変異を導入することを目的として、組換え体プラスミドpUTE100K´-EFP-T5を鋳型にして、配列番号249、250及び251、252の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌DH5αの形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号241記載のアミノ酸配列の259位のバリンがそれぞれアラニン、システインに置換されたユウペニシリウム・テレナム由来アマドリアーゼをコードする組換え体プラスミド(pUTE100K´-EFP-T5-V259A、pUTE100K´-EFP-T5-V259C)を得た。
 続いて、基質特異性を向上させるための点変異を導入することを目的として、組換え体プラスミドpUTE100K´-EFP-T5を鋳型にして、配列番号253、254の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌DH5αの形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号241記載のアミノ酸配列の263位のグリシンがリジンに置換されたユウペニシリウム・テレナム由来アマドリアーゼ遺伝子をコードする組換え体プラスミド(pUTE100K´-EFP-T5-G263K)を得た。
(点変異を導入したユウペニシリウム・テレナム由来アマドリアーゼの基質特異性改善効果の評価)
 上記で得られた組換え体プラスミドpUTE100K´-EFP-T5-S98A、pUTE100K´-EFP-T5-K110R、pUTE100K´-EFP-T5-V259A、pUTE100K´-EFP-T5-V259C、pUTE100K´-EFP-T5-G263Kをそれぞれ保持する大腸菌DH5α株を、0.1MのIPTGを添加したLB-amp培地において30℃で18時間振とう培養した。得られた各培養菌体を10mMのリン酸カリウム緩衝液(pH7.5)に懸濁して超音波破砕処理を行い、20,000×gで10分間遠心分離することで粗酵素液を得た。この粗酵素液を用いて、上記のB:活性測定法により、αFV、αFVH及びεFKに対する酵素活性を測定し、εFK/αFVHおよびεFK/αFVを算出した。ただし、このときの活性測定の試薬1はpH8.0に調整したものを使用した。活性測定結果を表24に示す。
Figure JPOXMLDOC01-appb-T000024
 表24に示したように、配列番号241記載のアミノ酸配列の98位のセリンをアラニンに、110位のリジンをアルギニンに、259位のバリンをアラニンまたはシステインに、263位のグリシンをリジンに置換することにより、ユウペニシリウム・テレナム由来アマドリアーゼのεFK/αFVH及びεFK/αFVはいずれも置換前より低い値となった。よって、これらアミノ酸置換は基質特異性が改善されたアマドリアーゼの作製に有効な置換であることがわかった。
(ユウペニシリウム・テレナム由来アマドリアーゼ遺伝子の基質特性向上型多重変異体の作製)
 ユウペニシリウム・テレナム由来アマドリアーゼ遺伝子の基質特異性向上型多重変異体を作製することで、εFKへの反応性を著しく低下させたアマドリアーゼの開発に試みた。
 組換え体プラスミドpUTE100K´-EFP-T5-V259Cを鋳型にして、配列番号243、244の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌DH5αの形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号241記載のアミノ酸配列の98位のセリンがアラニンに、259位のバリンがシステインに置換されたユウペニシリウム・テレナム由来アマドリアーゼ遺伝子をコードする組換え体プラスミド(pUTE100K´-EFP-T5-S98A/V259C)を得た。
 同様にして、基質特異性を向上させるための点変異を導入することを目的として、組換え体プラスミドpUTE100K´-EFP-T5-K110Rを鋳型にして、配列番号247、248の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌DH5αの形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号241記載のアミノ酸配列の110位のリジンがアルギニンに、154位のシステインがアスパラギンに置換されたユウペニシリウム・テレナム由来アマドリアーゼ遺伝子をコードする組換え体プラスミド(pUTE100K´-EFP-T5-K110R/C154N)を得た。
 同様にして、組換え体プラスミドpUTE100K´-EFP-T5-V259Cを鋳型にして、配列番号245、246の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌DH5αの形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号241記載のアミノ酸配列の110位のリジンがアルギニンに、259位のバリンがシステインに置換されたユウペニシリウム・テレナム由来アマドリアーゼ遺伝子をコードする組換え体プラスミド(pUTE100K´-EFP-T5-K110R/V259C)を得た。
 同様にして、組換え体プラスミドpUTE100K´-EFP-T5-S98A-V259Cを鋳型にして、配列番号245、246の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、上記と同様の条件でPCR反応、大腸菌DH5αの形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号241記載のアミノ酸配列の98位のセリンがアラニンに、110位のリジンがアルギニンに、259位のバリンがシステインに置換されたユウペニシリウム・テレナム由来アマドリアーゼ遺伝子をコードする組換え体プラスミド(pUTE100K´-EFP-T5-S98A/K110R/V259C)を得た。
(ユウペニシリウム・テレナム由来アマドリアーゼ遺伝子への基質特性向上型多重変異の導入による基質特異性改善効果の評価)
 上記で得られた組換え体プラスミドpUTE100K´-EFP-T5-S98A/V259C、pUTE100K´-EFP-T5-K110R/C154N、pUTE100K´-EFP-T5-K110R/V259C、pUTE100K´-EFP-T5-S98A/K110R/V259Cをそれぞれ保持する大腸菌DH5α株を、0.1MのIPTGを添加したLB-amp培地において30℃で18時間振とう培養した。得られた各培養菌体を10mMのリン酸カリウム緩衝液(pH7.5)に懸濁して超音波破砕処理を行い、20,000×gで10分間遠心分離することで粗酵素液を得た。この粗酵素液を用いて、上記のB:活性測定法により、αFV、αFVH及びεFKに対する酵素活性を測定し、εFK/αFVHおよびεFK/αFVを算出した。ただし、このときの活性測定の試薬1はpH8.0に調整したものを使用した。活性測定結果を表25に示す。
Figure JPOXMLDOC01-appb-T000025
 表25に示したように、多重アミノ酸置換が導入されたユウペニシリウム・テレナム由来アマドリアーゼでは、εFK/αFVH、εFK/αFVはいずれも各アミノ酸置換を単独で導入した場合と比較してさらに低い値となり、εFKへの反応性が著しく低下することが明らかとなった。
(組換え体プラスミドpKK223-3-CFP-T9 DNAの調製)
 配列番号272は熱安定性向上型変異(G184D、F265L、N272D、H302R、H388Y)を導入したConiochaeta属由来アマドリアーゼのアミノ酸配列であり、配列番号273の遺伝子にコードされている。
 Coniochaeta属由来アマドリアーゼ遺伝子(配列番号273)の組換え体プラスミドを有する大腸菌JM109(pKK223-3-CFP-T9)株(国際公開第2007/125779号参照)を、[実施例1]記載の方法と同様にして培養し、培養物を10,000×gで、1分間遠心分離することにより集菌して菌体を得た。この菌体より、GenElute Plasmid Mini-Prep Kit(シグマアルドリッチ社製)を用いて組換え体プラスミドpKK223-3-CFP-T9を抽出して精製し、2.5μgの組換え体プラスミドpKK223-3-CFP-T9 DNAを得た。
(組換え体プラスミドpKK223-3-CFP-T9 DNAの部位特異的改変操作)
 配列番号272記載のアミノ酸配列の98位のグルタミン酸をアラニンに、154位のセリンをアスパラギンに、259位のバリンをシステインに置換するために、組換え体プラスミドpKK223-3-CFP-T9 DNAを鋳型として、配列番号55、56の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、[実施例1}に述べた条件と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、98位のグルタミン酸がアラニンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T9-E98A)を得た。
 上記と同様にして、pKK223-3-CFP-T9-E98A DNAを鋳型とし、配列番号139、140の合成オリゴヌクレオチドを使用して、98位のグルタミン酸がアラニンに、154位のセリンがアスパラギンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T9-E98A/S154N)を得た。
 さらに上記と同様にして、pKK223-3-CFP-T9-E98A/S154N DNAを鋳型とし、配列番号151、152の合成オリゴヌクレオチドを使用して、98位のグルタミン酸がアラニンに、154位のセリンがアスパラギンに、259位のバリンがシステインに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T9-E98A/S154N/V259C)を得た。
 上記のようにして得られた改変型アマドリアーゼ生産能を有する大腸菌JM109株を、上記[実施例1](3)記載の方法で培養して、各種改変型アマドリアーゼの粗酵素液0.6mlを調製した。
 このようにして調製した酵素液について上記B:活性測定法に示した方法により、αFVH、αFVおよびεFKに対する酵素活性を測定し、εFK/αFVHおよびεFK/αFVを算出した。なお、活性測定にはpH7.0に調整した試薬1:パーオキシダーゼ、4-アミノアンチピリン溶液を用いた。結果を表26に示す。
Figure JPOXMLDOC01-appb-T000026
 表26中の多重アミノ酸置換が導入された改変型アマドリアーゼでは、εFK/αFVH、εFK/αFVはいずれも変異導入以前と比較して極めて低い値となった。故に、配列番号1に示したアマドリアーゼの基質特異性改善に効果的な単一変異を、配列番号272に示したアマドリアーゼに蓄積させることによっても、極めて大きな基質特異性の改善が見込めることが明らかとなった。

Claims (11)

  1.  以下の(a)および/または(b)の性質を有するアマドリアーゼ:
    (a)配列番号1に示すアミノ酸配列に1または数個のアミノ酸の欠失、挿入、付加、および/または置換がなされたアミノ酸配列を有し、配列番号1に示すアミノ酸配列を有するアマドリアーゼと比較して、α-フルクトシルバリルヒスチジンに対する反応性に対するε-フルクトシルリジンに対する反応性の割合が低減している;
    (b)配列番号1に示すアミノ酸配列に1または数個のアミノ酸の欠失、挿入、付加、および/または置換がなされたアミノ酸配列を有し、配列番号1に示すアミノ酸配列を有するアマドリアーゼと比較して、α-フルクトシルバリンに対する反応性に対するε-フルクトシルリジンに対する反応性の割合が低減している。
  2.  配列番号1に示すアミノ酸配列の以下(c)から(s)よりなる群から選択されるアミノ酸に対応する位置で1つまたはそれ以上のアミノ酸残基の置換を有し、前記置換を行う前のアマドリアーゼと比較して、α-フルクトシルバリルヒスチジンに対する反応性に対するε-フルクトシルリジンに対する反応性の割合が低減しているか、および/または前記置換を行う前のアマドリアーゼと比較して、α-フルクトシルバリンに対する反応性に対するε-フルクトシルリジンに対する反応性の割合が低減していることを特徴とするアマドリアーゼ。
    (c)98位のグルタミン酸
    (d)259位のバリン
    (e)154位のセリン
    (f)125位のヒスチジン
    (g)261位のチロシン
    (h)263位のグリシン
    (i)106位のアスパラギン酸
    (j)103位のグリシン
    (k)355位のアラニン
    (l)96位のアスパラギン酸
    (s)66位のリジンまたは/および67位のバリン
    (m)70位のグルタミン
    (o)100位のスレオニン
    (p)110位のグルタミン
    (q)113位のアラニン
    (r)114位のロイシン
    (s)156位のアスパラギン酸
  3.  配列番号1に示すアミノ酸配列のアミノ酸の以下(t)から(aj)よりなる群から選択される1つまたはそれ以上のアミノ酸に対応する位置のアミノ酸が、以下(t)から(aj)の各々に記載される置換後のアミノ酸残基へと置換されており、前記置換を行う前のアマドリアーゼと比較して、α-フルクトシルバリルヒスチジンに対する反応性に対するε-フルクトシルリジンに対する反応性の割合が低減しているか、および/または前記置換を行う前のアマドリアーゼと比較して、α-フルクトシルバリンに対する反応性に対するε-フルクトシルリジンに対する反応性の割合が低減していることを特徴とするアマドリアーゼ:
    (t)98位のグルタミン酸がプロリン以外のアミノ酸、すなわちグルタミン、ヒスチジン、リジン、アルギニン、グリシン、アラニン、バリン、イソロイシン、ロイシン、メチオニン、システイン、セリン、スレオニン、アスパラギン、アスパラギン酸、フェニルアラニン、チロシン、トリプトファンに置換されている;
    (u)259位のバリンがアラニン、システイン、セリンに置換されている;
    (v)154位のセリンがグリシン、チロシン、アスパラギン、グルタミン、アスパラギン酸、グルタミン酸、ヒスチジン、システインに置換されている;
    (w)125位のヒスチジンがアラニン、ロイシン、フェニルアラニン、チロシン、アスパラギン、グルタミン、グルタミン酸、リジン、アルギニンに置換されている;
    (x)261位のチロシンがアラニン、ロイシン、フェニルアラニン、トリプトファン、リジンに置換されている;
    (y)263位のグリシンがリジン、アルギニン、ヒスチジン、アスパラギン酸、グルタミン酸に置換されている;
    (z)106位のアスパラギン酸が、アスパラギン酸よりも分子量の小さいアミノ酸、すなわちグリシン、アラニン、セリン、バリン、スレオニン、システイン、ロイシン、イソロイシン、アスパラギンに置換されている;
    (aa)103位のグリシンがリジン、アルギニン、ヒスチジンに置換されている;
    (ab)355位のアラニンがリジン、アルギニン、ヒスチジン、アスパラギン酸、グルタミン酸に置換されている;
    (ac)96位のアスパラギン酸がアラニン、アスパラギン、ヒスチジン、セリンに置換されている;
    (ad)66位のリジンがグリシンまたは/および67位のバリンがプロリンに置換されている;
    (ae)70位のグルタミンがプロリンに置換されている;
    (af)100位のスレオニンがアルギニンに置換されている;
    (ag)110位のグルタミンがアラニン、ロイシン、メチオニン、フェニルアラニン、トリプトファン、アスパラギン、ヒスチジン、リジン、アルギニンに置換されている;
    (ah)113位のアラニンがグルタミン酸、リジンに置換されている;
    (ai)114位のロイシンがリジン、アルギニンに置換されている;
    (aj)156位のアスパラギン酸がアスパラギンに置換されている。
  4.  配列番号1に示すアミノ酸配列において、以下の(ba)から(be)よりなる群から選択されるアミノ酸残基の置換を有する、請求項3記載のアマドリアーゼ:
    (ba)98位のグルタミン酸に対応する位置のアミノ酸のアラニンへの置換、154位のセリンに対応する位置のアミノ酸のアスパラギンへの置換および259位のバリンに対応する位置のアミノ酸のシステインへの置換;
    (bb)98位のグルタミン酸に対応する位置のアミノ酸のアルギニンへの置換および154位のセリンに対応する位置のアミノ酸のアスパラギンへの置換;
    (bc)98位のグルタミン酸に対応する位置のアミノ酸のグルタミンへの置換および259位のバリンに対応する位置のアミノ酸のアラニンへの置換;
    (bd)98位のグルタミン酸に対応する位置のアミノ酸のアルギニンへの置換および259位のバリンに対応する位置のアミノ酸のシステインへの置換;
    (be)110位のグルタミンに対応する位置のアミノ酸のアルギニンへの置換、154位のセリンに対応する位置のアミノ酸のアスパラギンへの置換および259位のバリンに対応する位置のアミノ酸のアラニンへの置換。
  5.  配列番号272に示すアミノ酸配列において、98位のグルタミン酸に対応する位置のアミノ酸のアラニンへの置換、154位のセリンに対応する位置のアミノ酸のアスパラギンへの置換および259位のバリンに対応する位置のアミノ酸のシステインへの置換を有し、前記置換を行う前のアマドリアーゼと比較して、α-フルクトシルバリルヒスチジンに対する反応性に対するε-フルクトシルリジンに対する反応性の割合が低減しており、かつ前記置換を行う前のアマドリアーゼと比較して、α-フルクトシルバリンに対する反応性に対するε-フルクトシルリジンに対する反応性の割合が低減していることを特徴とするアマドリアーゼ。
  6.  配列番号241に示すアミノ酸配列において、以下の(ca)から(cc)よりなる群から選択されるアミノ酸残基の置換を有し、前記置換を行う前のアマドリアーゼと比較して、α-フルクトシルバリルヒスチジンに対する反応性に対するε-フルクトシルリジンに対する反応性の割合が低減しており、かつ前記置換を行う前のアマドリアーゼと比較して、α-フルクトシルバリンに対する反応性に対するε-フルクトシルリジンに対する反応性の割合が低減していることを特徴とするアマドリアーゼ:
    (ca)98位のセリンに対応する位置のアミノ酸のアラニンへの置換、110位のリジンに対応する位置のアミノ酸のアルギニンへの置換および259位のバリンに対応する位置のアミノ酸のシステインへの置換;
    (cb)98位のセリンに対応する位置のアミノ酸のアラニンへの置換および259位のバリンに対応する位置のアミノ酸のシステインへの置換;
    (cc)110位のリジンに対応する位置のアミノ酸のアルギニンへの置換および259位のバリンに対応する位置のアミノ酸のシステインへの置換。
  7.  請求項1から請求項6のいずれかに記載のアミノ酸配列をコードするアマドリアーゼ遺伝子。
  8.  請求項7記載のアマドリアーゼ遺伝子を含む組換えベクター。
  9.  請求8記載の組換えベクターを含む宿主細胞。
  10.  アマドリアーゼを製造する方法であり、以下の工程を含む方法:
    (ak)請求項9記載の宿主細胞を培養する工程;
    (al)宿主細胞に含まれるアマドリアーゼ遺伝子を発現させる工程;および
    (am)培養物からアマドリアーゼを単離する工程。
  11.  請求項1から請求項6のいずれかに記載のアマドリアーゼを含む、糖化ヘモグロビンの測定に用いるためのキット。
PCT/JP2011/067898 2010-08-06 2011-08-04 基質特異性が改変されたアマドリアーゼ WO2012018094A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020137005355A KR102070990B1 (ko) 2010-08-06 2011-08-04 기질 특이성이 개변된 아마드리아제
JP2012527775A JP6176922B2 (ja) 2010-08-06 2011-08-04 基質特異性が改変されたアマドリアーゼ
EP11814719.8A EP2602318B1 (en) 2010-08-06 2011-08-04 Amadoriase having altered substrate specificity
US13/814,692 US9062286B2 (en) 2010-08-06 2011-08-04 Amadoriase having altered substrate specificity
CN201180038922.6A CN103080308B (zh) 2010-08-06 2011-08-04 底物特异性得到改变的阿马多里酶
US14/715,739 US9708586B2 (en) 2010-08-06 2015-05-19 Amadoriase having altered substrate specificity

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-176967 2010-08-06
JP2010176967 2010-08-06
JP2010-213070 2010-09-24
JP2010213070 2010-09-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/814,692 A-371-Of-International US9062286B2 (en) 2010-08-06 2011-08-04 Amadoriase having altered substrate specificity
US14/715,739 Continuation-In-Part US9708586B2 (en) 2010-08-06 2015-05-19 Amadoriase having altered substrate specificity

Publications (1)

Publication Number Publication Date
WO2012018094A1 true WO2012018094A1 (ja) 2012-02-09

Family

ID=45559590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067898 WO2012018094A1 (ja) 2010-08-06 2011-08-04 基質特異性が改変されたアマドリアーゼ

Country Status (6)

Country Link
US (1) US9062286B2 (ja)
EP (1) EP2602318B1 (ja)
JP (2) JP6176922B2 (ja)
KR (1) KR102070990B1 (ja)
CN (1) CN103080308B (ja)
WO (1) WO2012018094A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013176351A (ja) * 2012-02-02 2013-09-09 Kikkoman Corp 糖化ヘモグロビン測定用試薬組成物および糖化ヘモグロビン測定方法
WO2013162035A1 (ja) 2012-04-27 2013-10-31 キッコーマン株式会社 フルクトシルヘキサペプチドに作用する改変型アマドリアーゼ
CN103937763A (zh) * 2013-01-22 2014-07-23 清华大学 R112w型酮胺氧化酶及其编码基因和应用
JP2014183786A (ja) * 2013-03-25 2014-10-02 Kikkoman Corp 改変アマドリアーゼ
WO2015020200A1 (ja) 2013-08-09 2015-02-12 キッコーマン株式会社 改変型アマドリアーゼ及びその製造法、並びにアマドリアーゼの界面活性剤耐性向上剤及びこれを用いたHbA1c測定用組成物
WO2015060429A1 (ja) 2013-10-25 2015-04-30 キッコーマン株式会社 ヘモグロビンA1cの測定方法および測定キット
WO2015060431A1 (ja) 2013-10-25 2015-04-30 キッコーマン株式会社 糖化ペプチドに作用するアマドリアーゼを用いたHbA1c測定法
JP2015177790A (ja) * 2014-02-27 2015-10-08 キッコーマン株式会社 アマドリアーゼ含有組成物の安定化方法、熱安定性が向上したアマドリアーゼ含有組成物及びこれを用いた糖化ヘモグロビン測定用組成物
WO2016072520A1 (ja) * 2014-11-07 2016-05-12 キッコーマン株式会社 アニオン性界面活性剤耐性が向上したアマドリアーゼ
JP2018153202A (ja) * 2018-06-28 2018-10-04 キッコーマン株式会社 改変アマドリアーゼ
WO2019045052A1 (ja) 2017-08-31 2019-03-07 キッコーマン株式会社 糖化ヘモグロビンオキシダーゼ改変体及び測定方法
EP3786291A1 (en) 2014-10-24 2021-03-03 Kikkoman Corporation Amadoriase having enhanced dehydrogenase activity

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012018094A1 (ja) * 2010-08-06 2012-02-09 キッコーマン株式会社 基質特異性が改変されたアマドリアーゼ
US9701949B2 (en) 2011-12-28 2017-07-11 Kikkoman Corporation Amadoriase with improved thermostability, gene and recombinant DNA for the amadoriase, and method for production of amadoriase with improved thermostability
EP3683308A1 (en) 2015-06-10 2020-07-22 Toyama Prefectural University Active-form mutant enzyme production method, new active-form mutant enzyme, and solubilized mutant protein production method
TWI668229B (zh) 2016-12-13 2019-08-11 財團法人工業技術研究院 重組蛋白質及其製造方法與應用
WO2019022083A1 (ja) * 2017-07-24 2019-01-31 国立研究開発法人理化学研究所 デカルボキシラーゼ、及びそれを用いた不飽和炭化水素化合物の製造方法

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533997B2 (ja) 1985-06-04 1993-05-20 Noda Sangyo Kagaku Kenkyusho
WO1997013872A1 (fr) 1995-10-12 1997-04-17 Kyoto Daiichi Kagaku Co., Ltd. Procede pour doser les composes d'amadori
JPH11127895A (ja) 1991-07-29 1999-05-18 Genzyme Ltd 非酵素的グリコシル化タンパク質の測定方法
JP2001095598A (ja) 1999-10-01 2001-04-10 Kikkoman Corp 糖化蛋白質の測定方法
JP2003235585A (ja) 2001-09-04 2003-08-26 Kikkoman Corp 新規なフルクトシルペプチドオキシダーゼ
JP2004275063A (ja) 2003-03-14 2004-10-07 Ichibiki Kk 新規なフルクトシルアミンオキシダーゼをコードする遺伝子及びそれを用いての該フルクトシルアミンオキシダーゼの製造方法
JP2004275013A (ja) 2003-03-12 2004-10-07 Asahi Kasei Pharma Kk 新規な酵素
WO2004104203A1 (ja) 2003-05-21 2004-12-02 Asahi Kasei Pharma Corporation ヘモグロビンA1c測定法およびそれに用いる酵素とその製造法
WO2005049857A1 (ja) 2003-11-19 2005-06-02 Daiichi Pure Chemicals Co., Ltd. 糖化蛋白質の測定方法
WO2007125779A1 (ja) 2006-04-25 2007-11-08 Kikkoman Corporation 熱安定性に優れた真核型アマドリアーゼ、その遺伝子及び組換え体dna、並びに熱安定性に優れた真核型アマドリアーゼの製造法
JP2010035469A (ja) 2008-08-04 2010-02-18 Toyobo Co Ltd フルクトシルバリルヒスチジン測定用酵素、およびその利用法
JP2010057474A (ja) 2008-08-04 2010-03-18 Toyobo Co Ltd フルクトシルアミノ酸オキシダーゼ、およびその利用法
JP2010104278A (ja) 2008-10-29 2010-05-13 Toyobo Co Ltd フルクトシルアミノ酸測定用酵素、およびその利用法
JP2010115189A (ja) * 2008-10-17 2010-05-27 Toyobo Co Ltd フルクトシルアミノ酸オキシダーゼ改変体およびその利用
JP2010148358A (ja) * 2008-12-23 2010-07-08 Toyobo Co Ltd フルクトシル−l−バリルヒスチジン測定用酵素、およびその利用法
JP2010176967A (ja) 2009-01-28 2010-08-12 Fujitsu Component Ltd 電線接続端子並びに電線接続端子を用いた電線接続方法、電線接続構造および電磁継電器
JP2010213070A (ja) 2009-03-11 2010-09-24 Nomura Research Institute Ltd 環境情報変更システム、端末装置およびプログラム
JP2010233501A (ja) * 2009-03-31 2010-10-21 Toyobo Co Ltd フルクトシルバリンの影響が低減する糖化タンパク質測定用試薬組成物
JP2010233502A (ja) * 2009-03-31 2010-10-21 Toyobo Co Ltd フルクトシルリジンの影響が低減する糖化タンパク質測定用試薬組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533997A (ja) 1991-07-26 1993-02-09 Nippondenso Co Ltd フイルムドアユニツト
DE69629489T2 (de) 1995-11-30 2004-07-22 Kyoto Daichi Kagaku Co., Ltd. Fructosylaminosäuren oxidase, verfahren zu ihrer herstellung und zum testen von amadori-verbindungen unter zuhilfenahme des enzyms
CN1701118A (zh) * 2002-09-24 2005-11-23 爱科来株式会社 果糖基胺氧化酶
CN102232111B (zh) * 2008-10-09 2014-12-03 协和梅迪克斯株式会社 果糖基肽氧化酶
US8993255B2 (en) * 2008-10-10 2015-03-31 Toyo Boseki Kabushiki Kaisha Protein having fructosyl valyl histidine oxidase activity, modified protein, and use of the protein or the modified protein
EP2281900A1 (en) * 2009-08-03 2011-02-09 Roche Diagnostics GmbH Fructosyl peptidyl oxidase and sensor for assaying a glycated protein
EP2287295A1 (en) * 2009-08-03 2011-02-23 Roche Diagnostics GmbH Mutant Fructosyl amino acid oxidase
WO2012018094A1 (ja) * 2010-08-06 2012-02-09 キッコーマン株式会社 基質特異性が改変されたアマドリアーゼ

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533997B2 (ja) 1985-06-04 1993-05-20 Noda Sangyo Kagaku Kenkyusho
JPH11127895A (ja) 1991-07-29 1999-05-18 Genzyme Ltd 非酵素的グリコシル化タンパク質の測定方法
WO1997013872A1 (fr) 1995-10-12 1997-04-17 Kyoto Daiichi Kagaku Co., Ltd. Procede pour doser les composes d'amadori
JP2001095598A (ja) 1999-10-01 2001-04-10 Kikkoman Corp 糖化蛋白質の測定方法
JP2003235585A (ja) 2001-09-04 2003-08-26 Kikkoman Corp 新規なフルクトシルペプチドオキシダーゼ
JP2004275013A (ja) 2003-03-12 2004-10-07 Asahi Kasei Pharma Kk 新規な酵素
JP2004275063A (ja) 2003-03-14 2004-10-07 Ichibiki Kk 新規なフルクトシルアミンオキシダーゼをコードする遺伝子及びそれを用いての該フルクトシルアミンオキシダーゼの製造方法
WO2004104203A1 (ja) 2003-05-21 2004-12-02 Asahi Kasei Pharma Corporation ヘモグロビンA1c測定法およびそれに用いる酵素とその製造法
WO2005049857A1 (ja) 2003-11-19 2005-06-02 Daiichi Pure Chemicals Co., Ltd. 糖化蛋白質の測定方法
WO2007125779A1 (ja) 2006-04-25 2007-11-08 Kikkoman Corporation 熱安定性に優れた真核型アマドリアーゼ、その遺伝子及び組換え体dna、並びに熱安定性に優れた真核型アマドリアーゼの製造法
JP2010035469A (ja) 2008-08-04 2010-02-18 Toyobo Co Ltd フルクトシルバリルヒスチジン測定用酵素、およびその利用法
JP2010057474A (ja) 2008-08-04 2010-03-18 Toyobo Co Ltd フルクトシルアミノ酸オキシダーゼ、およびその利用法
JP2010115189A (ja) * 2008-10-17 2010-05-27 Toyobo Co Ltd フルクトシルアミノ酸オキシダーゼ改変体およびその利用
JP2010104278A (ja) 2008-10-29 2010-05-13 Toyobo Co Ltd フルクトシルアミノ酸測定用酵素、およびその利用法
JP2010148358A (ja) * 2008-12-23 2010-07-08 Toyobo Co Ltd フルクトシル−l−バリルヒスチジン測定用酵素、およびその利用法
JP2010176967A (ja) 2009-01-28 2010-08-12 Fujitsu Component Ltd 電線接続端子並びに電線接続端子を用いた電線接続方法、電線接続構造および電磁継電器
JP2010213070A (ja) 2009-03-11 2010-09-24 Nomura Research Institute Ltd 環境情報変更システム、端末装置およびプログラム
JP2010233501A (ja) * 2009-03-31 2010-10-21 Toyobo Co Ltd フルクトシルバリンの影響が低減する糖化タンパク質測定用試薬組成物
JP2010233502A (ja) * 2009-03-31 2010-10-21 Toyobo Co Ltd フルクトシルリジンの影響が低減する糖化タンパク質測定用試薬組成物

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
"Current Protocols in Molecular Biology", 1989, WILEY INTERSCIENCE
BIOCHEM. BIOPHYS. RES. COMMUN., vol. 311, 2003, pages 104 - 11
BIOTECHNOL. BIOENG., vol. 106, 2010, pages 358 - 66
EUR. J. BIOCHEM., vol. 242, 1996, pages 499 - 505
GENE, vol. 37, 1985, pages 73
HIROKAWA, K. ET AL.: "Molecular cloning and expression of novel fructosyl peptide oxidasesRT and their application for the measurement of glycated protein.", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 311, 2003, pages 104 - 111, XP004465110 *
J. BIOL. CHEM., vol. 279, 2004, pages 27613 - 20
J. BIOSCI. BIOENG., vol. 102, 2006, pages 241 - 3
METHODS ENZYMOL., vol. 154, 1987, pages 350
METHODS ENZYMOL., vol. 154, 1987, pages 367
NUCLEIC ACIDS RES, vol. 14, 1986, pages 9679
NUCLEIC ACIDS RES., vol. 12, 1984, pages 9441
NUCLEIC ACIDS RES., vol. 13, 1985, pages 8749
NUCLEIC ACIDS RES., vol. 13, 1985, pages 8765
PROC. NATL. ACID. SCI. U.S.A., vol. 82, 1985, pages 488
See also references of EP2602318A4 *
TECHNIQUE, vol. 1, 1989, pages 11

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013176351A (ja) * 2012-02-02 2013-09-09 Kikkoman Corp 糖化ヘモグロビン測定用試薬組成物および糖化ヘモグロビン測定方法
WO2013162035A1 (ja) 2012-04-27 2013-10-31 キッコーマン株式会社 フルクトシルヘキサペプチドに作用する改変型アマドリアーゼ
EP3508577A2 (en) 2012-04-27 2019-07-10 Kikkoman Corporation Modified amadoriase capable of acting on fructosyl hexapeptide
CN103937763A (zh) * 2013-01-22 2014-07-23 清华大学 R112w型酮胺氧化酶及其编码基因和应用
CN103937763B (zh) * 2013-01-22 2016-01-06 清华大学 R112w型酮胺氧化酶及其编码基因和应用
JP2014183786A (ja) * 2013-03-25 2014-10-02 Kikkoman Corp 改変アマドリアーゼ
JPWO2015020200A1 (ja) * 2013-08-09 2017-03-02 キッコーマン株式会社 改変型アマドリアーゼ及びその製造法、並びにアマドリアーゼの界面活性剤耐性向上剤及びこれを用いたHbA1c測定用組成物
WO2015020200A1 (ja) 2013-08-09 2015-02-12 キッコーマン株式会社 改変型アマドリアーゼ及びその製造法、並びにアマドリアーゼの界面活性剤耐性向上剤及びこれを用いたHbA1c測定用組成物
US11549134B2 (en) 2013-08-09 2023-01-10 Kikkoman Corporation Modified amadoriase and method for producing the same, agent for improving surfactant resistance of amadoriase and composition for measuring HbA1c using the same
EP3760717A1 (en) 2013-08-09 2021-01-06 Kikkoman Corporation Amadoriase and method for producing the same, agent for improving surfactant resistance of amadoriase and composition for measuring hba1c using the same
US10619183B2 (en) 2013-08-09 2020-04-14 Kikkoman Corporation Modified amadoriase and method for producing the same, agent for improving surfactant resistance of amadoriase and composition for measuring HbA1c using the same
WO2015060431A1 (ja) 2013-10-25 2015-04-30 キッコーマン株式会社 糖化ペプチドに作用するアマドリアーゼを用いたHbA1c測定法
EP3061819A4 (en) * 2013-10-25 2017-08-16 Kikkoman Corporation HEMOGLOBIN A1c MEASUREMENT METHOD AND MEASUREMENT KIT
WO2015060429A1 (ja) 2013-10-25 2015-04-30 キッコーマン株式会社 ヘモグロビンA1cの測定方法および測定キット
US11078517B2 (en) 2013-10-25 2021-08-03 Kikkoman Corporation Hemoglobin A1c measurement method and measurement kit
EP3061819A1 (en) * 2013-10-25 2016-08-31 Kikkoman Corporation HEMOGLOBIN A1c MEASUREMENT METHOD AND MEASUREMENT KIT
JPWO2015060431A1 (ja) * 2013-10-25 2017-03-09 キッコーマン株式会社 糖化ペプチドに作用するアマドリアーゼを用いたHbA1c測定法
US10697979B2 (en) 2013-10-25 2020-06-30 Kikkoman Corporation Method for measurement of HbA1c using amadoriase that reacts with glycated peptide
JP2015177790A (ja) * 2014-02-27 2015-10-08 キッコーマン株式会社 アマドリアーゼ含有組成物の安定化方法、熱安定性が向上したアマドリアーゼ含有組成物及びこれを用いた糖化ヘモグロビン測定用組成物
EP3786291A1 (en) 2014-10-24 2021-03-03 Kikkoman Corporation Amadoriase having enhanced dehydrogenase activity
US11499143B2 (en) * 2014-10-24 2022-11-15 Kikkoman Corporation Amadoriase having enhanced dehydrogenase activity
WO2016072520A1 (ja) * 2014-11-07 2016-05-12 キッコーマン株式会社 アニオン性界面活性剤耐性が向上したアマドリアーゼ
US11198852B2 (en) 2014-11-07 2021-12-14 Kikkoman Corporation Amadoriase having enhanced anionic surfactant tolerance
JP7094655B2 (ja) 2014-11-07 2022-07-04 キッコーマン株式会社 アニオン性界面活性剤耐性が向上したアマドリアーゼ
JPWO2016072520A1 (ja) * 2014-11-07 2017-08-17 キッコーマン株式会社 アニオン性界面活性剤耐性が向上したアマドリアーゼ
WO2019045052A1 (ja) 2017-08-31 2019-03-07 キッコーマン株式会社 糖化ヘモグロビンオキシダーゼ改変体及び測定方法
JP2018153202A (ja) * 2018-06-28 2018-10-04 キッコーマン株式会社 改変アマドリアーゼ

Also Published As

Publication number Publication date
EP2602318A4 (en) 2014-02-26
JP6176922B2 (ja) 2017-08-09
EP2602318A1 (en) 2013-06-12
JP2017121261A (ja) 2017-07-13
CN103080308B (zh) 2015-08-05
KR20130105614A (ko) 2013-09-25
JP6538101B2 (ja) 2019-07-03
US9062286B2 (en) 2015-06-23
US20130267007A1 (en) 2013-10-10
KR102070990B1 (ko) 2020-01-29
EP2602318B1 (en) 2015-09-30
CN103080308A (zh) 2013-05-01
JPWO2012018094A1 (ja) 2013-10-03

Similar Documents

Publication Publication Date Title
JP6538101B2 (ja) 基質特異性が改変されたアマドリアーゼ
JP6726243B2 (ja) フルクトシルヘキサペプチドに作用する改変型アマドリアーゼ
US8828699B2 (en) Eukaryotic amadoriase, gene and recombinant DNA for the eukaryotic amadoriase, and process for production of the eukaryotic amadoriase
JP6868662B2 (ja) ヘモグロビンA1cの測定方法および測定キット
JP2020141690A (ja) 糖化ペプチドに作用するアマドリアーゼを用いたHbA1c測定法
JP6282115B2 (ja) 熱安定性が向上したアマドリアーゼ、その遺伝子および組換えdnaならびに熱安定性が向上したアマドリアーゼの製造法
US11499143B2 (en) Amadoriase having enhanced dehydrogenase activity
JP6068916B2 (ja) 糖化ヘモグロビン測定用試薬組成物および糖化ヘモグロビン測定方法
JP6843740B2 (ja) 比活性が向上したアマドリアーゼ
WO2012043601A1 (ja) アマドリアーゼ改変体
US9708586B2 (en) Amadoriase having altered substrate specificity
JP7157063B2 (ja) 糖化ヘモグロビンオキシダーゼ改変体及び測定方法
JP6363327B2 (ja) 改変アマドリアーゼ
JP6764219B2 (ja) グッド緩衝液に対して安定なアマドリアーゼ
JP6818718B2 (ja) 改変アマドリアーゼ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180038922.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814719

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012527775

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13814692

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011814719

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137005355

Country of ref document: KR

Kind code of ref document: A