WO2012017487A1 - 発光素子、表示装置、および発光素子の製造方法 - Google Patents

発光素子、表示装置、および発光素子の製造方法 Download PDF

Info

Publication number
WO2012017487A1
WO2012017487A1 PCT/JP2010/004956 JP2010004956W WO2012017487A1 WO 2012017487 A1 WO2012017487 A1 WO 2012017487A1 JP 2010004956 W JP2010004956 W JP 2010004956W WO 2012017487 A1 WO2012017487 A1 WO 2012017487A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
layer
electrode
bank
emitting device
Prior art date
Application number
PCT/JP2010/004956
Other languages
English (en)
French (fr)
Inventor
原田 健史
西山 誠司
小松 隆宏
竹内 孝之
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to PCT/JP2010/004956 priority Critical patent/WO2012017487A1/ja
Priority to JP2012527465A priority patent/JP5620494B2/ja
Publication of WO2012017487A1 publication Critical patent/WO2012017487A1/ja
Priority to US13/721,202 priority patent/US8563994B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3031Two-side emission, e.g. transparent OLEDs [TOLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks

Definitions

  • the present invention relates to a light emitting element, a display device, and a method for manufacturing the light emitting element, and more particularly to an organic EL element used for a flat display or the like.
  • a light emitting layer is formed by patterning using an ink jet method.
  • the ink jet method is a method suitable for forming a uniform thin film pattern in a minute region, and is a composition ink (hereinafter simply referred to as “ink”) containing an organic EL material in each pixel region defined by a bank. ) Is dropped and dried to form a uniform thin film pattern in these pixel regions.
  • the bank surface is subjected to a liquid repellent treatment by fluorine plasma.
  • the wettability of the bank surface with respect to the ink deteriorates, and the dropped ink does not easily flow out to the adjacent pixel region beyond the bank, so that high-definition patterning is possible.
  • Patent Document 1 discloses that the bank has a two-layer structure of an upper layer portion made of a water-repellent material and a lower layer portion made of a lyophilic material, so that the upper layer portion of the bank has poor ink wettability.
  • a technique for patterning a light emitting layer with higher definition so as to make it difficult for the ink to flow out, improve the wettability with respect to the ink in the lower layer portion of the bank, and make it easier for the ink to stay in the pixel region.
  • JP 2003-249375 A Japanese Patent Laid-Open No. 10-162959
  • the manufacturing cost of the organic EL element increases as the number of processes increases as compared with the case of a single-layer structure.
  • an object of the present invention is to provide a light emitting element in which a light emitting layer is patterned with high definition and can be manufactured at low cost.
  • a first electrode, a functional layer including a light-emitting layer, and a second electrode are stacked in this order, at least the light-emitting layer is defined by a bank, and the first electrode side and the second electrode
  • a double-sided light emitting device for extracting light from both sides of the electrode wherein the first electrode and the second electrode are made of transparent electrodes, and the bank has at least a liquid repellent surface
  • the charge injecting and transporting layer is made of a metal compound having a lyophilic property compared with the surface of the bank, and the charge injecting and transporting layer sank below the level of the bank bottom in the region defined by the bank. It is formed in a concave structure.
  • the charge injecting and transporting layer has a recessed portion having an inner bottom surface that contacts the bottom surface of the functional layer and an inner side surface continuous to the inner bottom surface.
  • the lower part of the ink dripped in the region defined in (1) can be stored in the recessed portion.
  • the inner surface of the recessed portion is made of a metal compound having a lyophilic property compared to the surface of the bank and has good wettability with respect to the ink, so that the ink in the recessed portion can be kept stable. Can do. Therefore, it is difficult for ink to flow out to the adjacent pixel region beyond the bank, and high-definition patterning of the functional layer is possible.
  • the recessed portion can be easily formed by, for example, dissolving a part of the charge injecting and transporting layer with pure water, and the complicated structure for making the bank into a two-layer structure like the light emitting element of Patent Document 1. Since a process is unnecessary, it can be implemented at low cost.
  • FIG. 1 It is a schematic diagram which shows the lamination
  • FIG. 9 is a process diagram for explaining the manufacturing method for the light emitting element according to the first embodiment, following FIG. 8; It is a schematic diagram which shows the lamination
  • a first electrode, a charge injecting and transporting layer, a functional layer including a light-emitting layer, and a second electrode are stacked in this order, and at least the light-emitting layer is defined by a bank.
  • the charge injecting and transporting layer is made of a metal compound having a lyophilic property compared with the surface of the bank, and the charge injecting and transporting layer is formed on the bottom surface of the bank in a region defined by the bank. It is assumed that it is formed in a recessed structure that sinks below the level.
  • charge injection / transport layer is a generic term for a hole injection layer, a hole transport layer, a hole injection / transport layer, an electron injection layer, an electron transport layer, an electron injection / transport layer, and the like.
  • the charge injection transport layer may be composed of a hole injection layer, may be composed of a hole transport layer, or may be composed of two layers, a hole injection layer and a hole transport layer.
  • the hole injection / transport layer may be composed of an electron injection layer, an electron transport layer, or an electron injection layer and an electron transport layer. It may be comprised, and may be comprised by the electron injection transport layer.
  • the terms “lyophilic” and “liquid repellency” are used in relative meaning. As described above, at least the surface of the bank is lyophobic. On the other hand, when the charge injecting and transporting layer is made of a lyophilic metal compound, the surface of the charge injecting and transporting layer is closer to the parent than the surface of the bank. It is liquid and the surface of the bank is more liquid repellent than the surface of the charge injecting and transporting layer. The surface of the charge injection / transport layer that is lyophilic is relatively wettable with respect to the ink, and the surface of the bank that is liquid repellent is relatively poorly wettable with respect to the ink.
  • the lyophilicity and liquid repellency can be defined by, for example, the contact angle of the ink with respect to the surface of the bank or the charge injecting and transporting layer. For example, when the contact angle is 10 ° or less, The case where the contact angle is 35 ° or more can be defined as liquid repellency.
  • the charge injection transport layer may be a hole injection layer made of a metal oxide, nitride, or oxynitride.
  • the functional layer includes a hole transport layer that transports holes from the hole injection layer to the light emitting layer, and the hole transport layer includes the hole injection layer and It can also be set as the structure interposed between the said light emitting layers.
  • the transparent electrode may be ITO or IZO.
  • a translucent or transparent metal thin film can be laminated on at least one of the first electrode and the second electrode.
  • the translucent or transparent metal thin film is a metal film containing any one selected from Ag, Mg, Al, Pt, Pd, Au, Ni, Ir, and Cr.
  • the film thickness can be 3 nm to 30 nm.
  • the recessed structure can be cup-shaped.
  • the recessed structure may be a structure that sinks from a portion corresponding to the lower edge of the bank.
  • the light emitting layer may include a layer made of a polymer material.
  • the charge injection / transport layer may extend in the direction of the adjacent pixel along the bank bottom surface.
  • a first electrode, a charge injection / transport layer, a functional layer including a light emitting layer, and a second electrode are laminated in this order, at least the light emitting layer is defined by a bank, and the first electrode side And a light emitting element of a double-sided light emission type that takes out light from both the second electrode side, the first electrode and the second electrode are transparent electrodes, and the charge injecting and transporting layer is formed with respect to a predetermined solvent.
  • the inner surface of the charge injection transport layer is in contact with the bottom surface of the functional layer, and has a recessed portion formed by being dissolved by the predetermined solvent.
  • a light emitting device having an inner side surface that is continuous with the inner bottom surface and contacts at least a part of the side surface of the functional layer.
  • the charge injection transport layer can be a hole injection layer made of a metal oxide, nitride, or oxynitride.
  • the metal oxide may be tungsten or molybdenum oxide.
  • the functional layer includes a hole transport layer that transports holes from the hole injection layer to the light emitting layer, and the hole transport layer includes the hole injection layer and It can also be set as the structure interposed between the said light emitting layers.
  • the transparent electrode can be ITO or IZO.
  • a translucent or transparent metal thin film can be laminated on at least one of the first electrode and the second electrode.
  • the translucent or transparent metal thin film is a metal film containing any one selected from Ag, Mg, Al, Pt, Pd, Au, Ni, Ir, and Cr.
  • the film thickness can be 3 nm to 30 nm.
  • the charge injecting and transporting layer may be lyophilic and the bank may be lyophilic.
  • the predetermined solvent is a developer used when forming the bank, and / or a cleaning solution for cleaning a residue remaining after the bank is formed.
  • a display device including any one of the above-described light-emitting elements according to the present invention can be provided.
  • a first step of forming a first electrode made of a transparent electrode on a substrate, and a metal compound that is soluble in a predetermined solvent are provided above the first electrode.
  • the adhering resist residue is cleaned using a cleaning liquid, and a part of the thin film is dissolved by the cleaning liquid to form a charge injection transport layer having a recessed portion having an inner bottom surface and an inner side surface continuous to the inner bottom surface.
  • a method of manufacturing a light emitting element and a sixth step of forming a second electrode made of a transparent electrode Above the serial functional layer, a method of manufacturing a light emitting element and a sixth step of forming a second electrode made of a transparent electrode.
  • the charge injection transport layer can be manufactured as a hole injection layer made of a metal oxide, nitride, or oxynitride.
  • the functional layer includes a hole transport layer that transports holes from the hole injection layer to the light-emitting layer, and the hole transport layer includes the hole injection layer. It can also be interposed between the light emitting layer.
  • the transparent electrode can be manufactured from ITO or IZO.
  • a step of laminating a translucent or transparent metal thin film on at least one of the first electrode and the second electrode can be included.
  • the translucent or transparent metal thin film is composed of a metal film containing any one selected from Ag, Mg, Al, Pt, Pd, Au, Ni, Ir, and Cr.
  • the film thickness can be 3 nm to 30 nm.
  • a first step of forming a first electrode made of a transparent electrode on a substrate, and a metal compound that is soluble in a predetermined solvent are provided above the first electrode.
  • a second step of forming a thin film, and forming a resist film containing a resist material on the thin film, etching with a developing solution to form a bank, and cleaning the resist residue adhering to the thin film surface with the developing solution And a third step of forming a charge injecting and transporting layer having a recessed portion having an inner bottom surface and an inner side surface continuous with the inner bottom surface by dissolving a part of the thin film, and a region defined by the bank
  • the charge injection / transport layer may be a hole injection layer made of a metal oxide, nitride, or oxynitride.
  • the functional layer includes a hole transport layer that transports holes from the hole injection layer to the light-emitting layer, and the hole transport layer includes the hole injection layer. It can also be interposed between the light emitting layer.
  • the transparent electrode may be ITO or IZO.
  • a step of laminating a translucent or transparent metal thin film on at least one of the first electrode and the second electrode can be included.
  • the semitransparent or transparent metal thin film is a metal film containing any one selected from Ag, Mg, Al, Pt, Pd, Au, Ni, Ir, and Cr.
  • the film thickness may be 3 nm to 30 nm.
  • FIG. 1 is a schematic diagram illustrating a stacked state of each layer of the light emitting device according to the first embodiment
  • FIG. 2 is an enlarged view of a portion surrounded by a one-dot chain line in FIG.
  • the light emitting device is a double-sided light emitting organic EL device in which RGB pixels are arranged in a matrix or a line, and each pixel is formed on a substrate 1. It has a laminated structure in which each layer is laminated.
  • a first electrode 2 as an anode is formed in a matrix shape or a line shape, and an ITO (indium tin oxide) layer 3 is formed on the first electrode 2.
  • the hole injection layer 4 as a charge injection transport layer is laminated
  • the ITO layer 3 is laminated only on the first electrode 2, whereas the hole injection layer 4 is formed not only above the first electrode 2 but also over the entire upper surface side of the substrate 1.
  • a bank 5 that defines pixels is formed, and a light emitting layer 6 is laminated in a region defined by the bank 5. Further, on the light emitting layer 6, the electron injection layer 7, the second electrode 8 serving as a cathode, and the sealing layer 9 are respectively connected to the adjacent pixels beyond the region defined by the bank 5. Is formed. Light emission during driving can be taken out from both the first electrode 2 side and the second electrode 8 side.
  • the region defined by the bank 5 has a multilayer laminated structure in which the ITO layer 3, the hole injection layer 4, the functional layer including the light emitting layer 6, and the electron injection layer 7 are laminated in that order.
  • the functional layer includes the light emitting layer 6 and may include other layers such as a hole transport layer and an electron transport layer.
  • each component of the light emitting element will be specifically described. It should be noted that any of the constituent elements should be configured to have transparency in order to make the light emitting element a double-sided light emitting type.
  • the substrate 1 is, for example, soda glass, non-fluorescent glass, phosphate glass, borate glass, quartz, acrylic resin, styrene resin, polycarbonate resin, epoxy resin, polyethylene, polyester, silicone resin, or alumina. It is made of an insulating material.
  • the first electrode 2 is configured as a transparent electrode, and here includes an anode base layer 1021.
  • the anode base layer 1021 is made of metal oxide such as ITO or IZO, APC (silver, palladium, copper alloy), ARA (silver, rubidium, gold alloy), MoCr (molybdenum and chromium alloy), NiCr ( Nickel and chromium alloy).
  • it may be a metal film containing any one selected from Ag, Mg, Al, Pt, Pd, Au, Ni, Ir, and Cr.
  • the film is formed with an appropriate thickness (for example, a film thickness of 3 nm to 30 nm, more preferably 12 to 15 nm).
  • the first electrode 2 and the second electrode 8 to be described later are both transparent electrodes, but have a certain light transmittance.
  • the first electrode 2 and the second electrode 8 are called “translucent or transparent” thin films. be able to. Even a metal material generally known as opaque can be a translucent or transparent film that can exhibit light transmittance if the film thickness is sufficiently reduced as described above.
  • FIG. 15 is a graph showing the relationship between transmittance (T%) and wavelength for tungsten oxide (Wox) having a thickness of 12 nm and 15 nm.
  • T% transmittance
  • Wox tungsten oxide
  • Patent Document 2 shows that good transparency can be obtained by setting the cathode to a thickness of 10 to 800 nm. Considering these findings, it is considered that sufficient transparency can be obtained if the thickness of each metal material of the first electrode 2 and the second electrode 8 is set to about 3 nm to 30 nm.
  • the ITO layer 3 is interposed between the first electrode 2 and the hole injection layer 4 and has a function of improving the bonding property between the layers.
  • the hole injection layer 4 contains a metal compound that can be dissolved in a predetermined solvent, and is specifically formed of WOx (tungsten oxide) or MoWOx (molybdenum-tungsten oxide).
  • the hole injection layer 4 may be formed of a metal compound having a lyophilic property compared to the surface of the bank 5, and examples of the metal compound having a lyophilic property include metal oxides and metal nitrides. Or metal oxynitride is mentioned.
  • the hole injection layer 4 When the hole injection layer 4 is formed of a metal oxide, holes can be easily injected, and electrons can effectively contribute to light emission in the light emitting layer 6, so that good light emission characteristics can be obtained.
  • the metal oxide include Cr (chromium), Mo (molybdenum), W (tungsten), V (vanadium), Nb (niobium), Ta (tantalum), Ti (titanium), Zr (zirconium), and Hf ( Hafnium), Sc (scandium), Y (yttrium), Th (thorium), Mn (manganese), Fe (iron), Ru (ruthenium), Os (osmium), Co (cobalt), Ni (nickel), Cu ( Copper), Zn (zinc), Cd (cadmium), Al (aluminum), Ga (gallium), In (indium), Si (silicon), Ge (germanium), Sn (tin), Pb (lead), Sb ( Antimony), Bi (bismuth), and oxides such
  • the metal constituting the metal compound is preferably a transition metal. Since the transition metal takes a plurality of oxidation numbers, it can take a plurality of potential levels. As a result, hole injection is facilitated and the driving voltage can be reduced.
  • the hole injection layer 4 extends in the direction of the adjacent pixel along the bottom surface of the bank 5, and in a region defined by the bank 5, a depression recessed below the level of the bottom surface of the bank 5. It is formed in a structure and includes a recessed portion 4a (a portion indicated by mesh hatching in FIG. 2) formed by being dissolved by a predetermined solvent. In the hole injection layer 4, only the region defined by the bank 5 is thinner than the other regions, and the film thickness of the other regions is substantially uniform throughout. Since the hole injection layer 4 is made of a lyophilic metal compound, the inner surface 4b of the recessed portion 4a has good wettability with respect to ink. Therefore, the ink dropped on the area defined by the bank 5 tends to adhere to the inner surface 4b of the recessed portion 4a, and the ink tends to stay in the area defined by the bank 5.
  • the hole injection layer 4 only needs to have a recessed structure that sinks below the level of the edge 5a at least on the bottom surface of the bank 5, and does not need to have a recessed structure that sinks below the level of the entire bottom surface.
  • the structure is depressed from the level of the edge 5a on the bottom surface, but is not depressed from the level of the central portion 5b on the bottom surface.
  • FIG. As shown by 5c, the level of the central portion 5b is aligned with the end edge portion 5a, and the bottom surface of the bank 5 may be flattened, for example, so that a recessed structure that sinks below the level of the entire bottom surface of the bank 5 may be used.
  • the hole injection layer 4 has a recessed structure that sinks from a portion corresponding to the lower end edge 5d of the bank. Specifically, the region defined by the bank 5 on the upper surface of the hole injection layer 4 is formed from the portion corresponding to the lower end edge 5d. It sinks substantially vertically downward with respect to the upper surface of 1. As described above, in the case of the recessed structure that sinks from the portion corresponding to the lower end edge 5d of the bank 5, the film thickness of the light emitting layer 6 can be made uniform over a wide range, and luminance unevenness hardly occurs in the light emitting layer 6. .
  • the recessed structure of the hole injection layer 4 is cup-shaped. More specifically, the inner surface 4b of the recessed portion 4a is substantially parallel and flat with the upper surface of the substrate 1 and contacts the bottom surface 6a of the light emitting layer 6.
  • the inner bottom surface 4c and the inner side surface 4d extending from the edge of the inner bottom surface 4c in a direction substantially perpendicular to the upper surface of the substrate 1 and in contact with the side surface 6b of the light emitting layer 6 are configured.
  • the presence of the inner side surface 4d makes it difficult for the ink in the recessed portion 4a to move in a direction parallel to the upper surface of the substrate 1, and thus the region defined by the bank 5 Ink can be kept more stable.
  • the recessed structure is cup-shaped, the area of the inner surface 4b of the recessed portion 4a is increased, and the area where the ink and the hole injection layer 4 are in close contact with each other is increased. You can stay stable. Therefore, high-definition patterning of the light emitting layer 6 is possible.
  • the bank 5 and the hole injection layer 4 are connected in a substantially vertical direction, so that the ink is easily wetted on the bottom side of the light emitting layer 6 and good light emission is achieved.
  • Layer 6 can be formed.
  • the bank 5 and the hole injection layer 4 are connected in the horizontal direction, it is considered that the ink becomes difficult to wet near the connection portion between the bank 5 and the hole injection layer 4. For this reason, there is a possibility that the light emitting layer 6 is not sufficiently formed on the bottom side of the light emitting layer 6, and as a result, an electric leak may occur. That is, regarding the favorable formation of the light emitting layer 6, there is a technical significance in that the bank 5 and the hole injection layer 4 are connected in a substantially vertical direction, not in a horizontal direction.
  • the form in which the bank 5 and the hole injection layer 4 are connected substantially vertically is not limited to the vertical direction, and may be an oblique direction or a vertical direction with respect to the horizontal direction.
  • the inner side surface 4d of the recessed portion 4a has a lower edge that is continuous with the inner bottom surface 4c, An upper edge 4e (hereinafter referred to as "upper edge 4e") that is continuous with the edge, and the inner side surface 4d of the recessed portion 4a is on the light emitting layer 6 side of the bank 5 at the upper edge 4e. And a portion where the inner side surface 4d and the inner bottom surface 4c are continuous has an R shape.
  • the recessed portion 4a has the inner side surface 4d as shown in FIG. As shown in FIG.
  • the inner side surface 4d may have substantially the same inclination as the side surface 5e of the bank 5 as shown in FIG. 3B, and they may be flush with each other, as shown in FIG.
  • a portion where the inner side surface 4d and the inner bottom surface 4c are continuous may have a non-R shape, and the inner side surface 4d of the bank 5 enters the lower side of the bank 5 as shown in FIG.
  • the shape may be inclined to the opposite side to the side surface 5e.
  • the hole injection layer 4 is not limited to the recessed structure that sinks from the portion corresponding to the lower end edge 5d of the bank 5, but, for example, as shown in FIG. It is good also as a structure which sank from the approached part.
  • the inner side surface 4 d of the recessed portion 4 a has a shape in which the upper end edge 4 e is in contact with the bottom surface 5 a of the bank 5.
  • the recessed portion 4a has the inner side surface 4d as shown in FIG. 5A substantially perpendicular to the inner bottom surface 4c.
  • the inner side surface 4d may have a shape with substantially the same inclination as the side surface 5e of the bank 5, and as shown in FIG.
  • the portion where the inner bottom surface 4c is continuous may be a non-R shape, and the side surface 5e of the bank 5 is opposite to the side surface 5e so that the inner side surface 4d enters the lower side of the bank 5 as shown in FIG.
  • the shape may be inclined.
  • the inner side surface 4d has a shape in which the upper edge 4e coincides with the lower edge 5d of the bank 5, or the upper edge 4e is in contact with the bottom surface 5a of the bank 5, so that a short circuit occurs between the electrodes 2 and 8. Hard to do.
  • a two-dot chain line 10 in FIG. 4 in the case of a recessed structure that sinks from a portion closer to the pixel center side than a portion corresponding to the lower end edge 5 d of the bank 5, the bank on the upper surface of the hole injection layer 4 is There is a possibility that a short circuit may occur between the electrodes 2 and 8 through the portion 4 f exposed from 5.
  • the average film thickness h of the light emitting layer 6 is smaller than or equal to the average depth t of the recessed portion 4a, the portion 4f not covered with the bank 5 on the upper surface of the hole injection layer 4 Is likely to come into contact with the electron injection layer 7 and the second electrode 8, there is a high possibility that a short circuit will occur between the electrodes 2 and 8.
  • the average depth t of the recessed portion 4a is not particularly specified in the present invention, but can be set to 5 to 100 nm, for example. If the average depth t of the recessed portion 4a is 5 nm or more, a sufficient amount of ink can be stored in the recessed portion 4a, and the ink can be stably retained in the region defined by the bank 5. Furthermore, since the light emitting layer 6 is formed without being repelled to the end of the bank 5, a short circuit between the electrodes 2 and 8 can be prevented.
  • the average depth t of the recessed portion 4a is determined by measuring the surface contour of the hole injection layer 4 with a stylus profilometer or AFM (atomic force microscope), and calculating the average height of the portion that becomes a peak from the surface contour. The difference from the average height of the valley portion can be obtained and obtained.
  • the film thickness of the light emitting layer 6 is not particularly specified.
  • the average film thickness h after drying of the light emitting layer 6 is 100 nm or more
  • the average depth t of the recessed portions 4a is 100 nm or less.
  • the film thickness of the light emitting layer 6 in the region defined by the bank 5 can be made uniform.
  • the difference between the average film thickness h of the light emitting layer 6 and the average depth t of the recessed portions 4a is preferably 20 nm or less.
  • the average film thickness h of the light emitting layer 6 is too smaller than the average depth t of the recessed portion 4a (for example, when th> 20 nm), as shown in FIG. A portion not in contact with the light emitting layer 6 (a portion where the light emitting layer 6 is not applied) is generated on the inner side surface 4d, and there is a possibility that a short circuit between the electrodes 2 and 8 may occur in that portion.
  • the average film thickness h of the light emitting layer 6 is too larger than the average depth t of the recessed portion 4a (for example, when ht> 20 nm), as shown in FIG. Due to the liquid repellency, the film thickness of the bank vicinity portion 6c of the light emitting layer 6 becomes thinner than other portions, the cross-sectional shape of the light emitting layer 6 becomes substantially convex, and uneven light emission due to the difference in film thickness occurs. May occur.
  • the inner side surface 4d of the recessed portion 4a only needs to be in contact with at least a part of the side surface 6b of the light emitting layer 6.
  • the light emitting layer The inner side surface 4d of the recessed portion 4a comes into contact only with the lower side, which is at least part of the side surface 6b.
  • the average film thickness h of the light emitting layer 6 is smaller than the average depth t of the recessed portion 4a as shown in FIG. 6 (a)
  • the entire side surface 6b of the light emitting layer 6 includes the inside of the recessed portion 4a. The side surface 4d contacts.
  • a lyophilic layer 12 such as an IL layer (intermediate layer) which is a hole transport layer constituting the functional layer is formed in the recessed portion 4 a of the hole injection layer 4. It may be formed on the lower side.
  • ink is dropped on the upper surface 12a of the lyophilic layer 12 instead of the inner bottom surface 4c of the recessed portion 4a.
  • the upper surface 12a is still lyophilic, it is defined by the bank 5. Ink can be kept stable in the area.
  • the recessed portion 4a is completely filled with the lyophilic layer 12, the inner surface 4d of the recessed portion 4a will not come into contact with the ink, so the average film thickness g of the lyophilic layer 12 is the recessed portion. It is preferably thinner than the average depth t of 4a.
  • the hole injection layer 4 is formed of a metal oxide thin film having a sufficient thickness like the first electrode 2, it has good transparency as described above with reference to FIG. Yes.
  • the bank 5 is formed of an organic material such as a resin or an inorganic material such as glass, and has an insulating property.
  • organic materials include acrylic resins, polyimide resins, novolac type phenol resins, and examples of inorganic materials include SiO 2 (silicon oxide), Si 3 N 4 (silicon nitride), and the like. It is done.
  • the bank 5 preferably has organic solvent resistance, and preferably transmits visible light to a certain degree. Furthermore, since the bank 5 may be subjected to an etching process, a baking process, or the like, it is preferable that the bank 5 be formed of a material having high resistance to these processes.
  • Bank 5 has at least a surface having liquid repellency. Therefore, when the bank 5 is formed of a lyophilic material, it is necessary to make the surface lyophobic by performing a water repellency treatment or the like.
  • the bank 5 may be a pixel bank or a line bank.
  • the bank 5 is formed so as to surround the entire circumference of the light emitting layer 6 for each pixel.
  • a bank 5 is formed so as to divide a plurality of pixels into columns or rows, and the bank 5 exists only on both sides in the row direction or both sides in the column direction of the light emitting layer 6. Or the thing of the bank becomes a continuous structure.
  • the light emitting layer 6 includes, for example, an oxinoid compound, a perylene compound, a coumarin compound, an azacoumarin compound, an oxazole compound, an oxadiazole compound, a perinone compound, a pyrrolopyrrole compound, a naphthalene compound, an anthracene compound described in JP-A-5-163488.
  • the light emitting layer 6 includes a layer made of a polymer material
  • the light emitting layer 6 can be formed by a printing technique such as an ink jet method or a nozzle coating method. Compared to the above, there is an effect that it is possible to easily cope with cost reduction for large format.
  • the electron injection layer 7 has a function of transporting electrons injected from the second electrode 8 to the light emitting layer 6, and is preferably formed of, for example, barium, phthalocyanine, lithium fluoride, or a combination thereof.
  • the second electrode 8 is made of a transparent electrode material similar to that of the anode 102, and is made of an appropriate film thickness (3 nm to 30 nm) so as to exhibit good light transmittance in the same manner as the anode 102.
  • the sealing layer 9 has a function of preventing the light emitting layer 6 and the like from being exposed to moisture or air, and is made of, for example, a material such as SiN (silicon nitride) or SiON (silicon oxynitride). It is formed. In the case of a top emission type light emitting element, it is preferably formed of a light transmissive material.
  • metal compounds generally have a property of absorbing visible light at a certain ratio, when light emitted from the light emitting layer is extracted outside through the charge injecting and transporting layer, light is absorbed, resulting in a loss of light emission efficiency. There is.
  • the non-light emitting region is a region that does not contribute to light emission, and becomes a simple transparent substrate. Therefore, the background of the light emitting element is seen through, and there is a problem that the display performance of the light emitting element or the display panel using the light emitting element is deteriorated.
  • the thickness of the organic light emitting layer is biased to one side of the adjacent bank due to the influence of electrostatic or the like depending on whether or not the ink exists in the adjacent pixel.
  • the organic light emitting layer is dried in such a biased state, the film thickness becomes non-uniform, causing light emission unevenness in the light emitting element, leading to a shortened life.
  • a display device when a display device is manufactured by arranging a plurality of light-emitting elements in parallel, if the lifetime of one light-emitting element is exhausted in a short period, the light-emitting characteristics of the entire device are significantly impaired, and non-light-emitting pixels and weak light-emitting pixels There is a problem in that the lifetime of the entire apparatus is shortened.
  • the organic light emitting layer 6 is formed in the concave portion 4a of the charge injection transport layer (hole injection layer 4) whose upper surface is sunk.
  • the recess 4a having a relatively small thickness in the hole injection layer 4 it is possible to reduce the absorption ratio of light emission from the light emitting layer 6 generated during driving.
  • the light transmittance at a wavelength of 400 nm is 95% when the tungsten oxide film thickness is 12 nm, and 93% when 15 nm.
  • the light transmittance at a wavelength of 450 nm is 97% when the tungsten oxide film thickness is 12 nm and 95% when the film thickness is 15 nm.
  • the light transmittance at a wavelength of 530 nm is 98% when the tungsten oxide film thickness is 12 nm, and 97% when the film thickness is 15 nm.
  • the light transmittance of a device such as a light emitting element having a configuration in which a plurality of films are laminated is represented by the product of the light transmittance of each layer. Therefore, it is important to improve the light transmittance of each layer so that the light transmittance approaches 100%. In particular, when blue light emission is difficult to develop, it is possible to expect an effective improvement in light transmittance by applying this embodiment in order to improve the light emission efficiency. It is effective as an improvement measure. As described above, if the inside of the region of the charge injection / transport layer defined by the bank has a recessed structure, the light transmittance of the light emitting region can be improved, and a double-sided light emitting element can be realized well.
  • the depth of the recess 4a (recessed structure) is preferably about 5 nm to 30 nm.
  • the surface of the bank 5 is liquid repellent.
  • the surface of the charge injection / transport layer (hole injection layer 4) is made of a lyophilic metal compound as compared with the surface of the bank 5, and the hole injection layer 4 is a region defined by the bank 5.
  • the concave portion 4a (recessed structure) is formed so as to sink below the level of the bottom surface of the bank 5.
  • the ink droplets can be stably stored in the area defined by the bank 5 at the time of manufacture.
  • the ink is prevented from being biased toward one of the banks 5 and the organic light emitting layer 6 having a uniform film thickness can be formed. Can shorten the service life.
  • the edge of the recess 4a of the hole injection layer 4 is covered with a part of the bank 5 to prevent local light emission in the light emitting surface and cover the entire desired light emitting region. Uniform light emission can be expected. Thus, since a region that does not contribute to light emission is not formed in the light emitting surface, the light generated in the light emitting layer is extracted to the outside with excellent luminous efficiency over both the upper surface and the lower surface (see arrows in FIG. 1). . As a result, desired light emission or display can be realized without transmitting the background of the double-sided light emitting element.
  • FIG. 8 is a process diagram illustrating a method for manufacturing a light emitting device according to the first embodiment
  • FIG. 9 is a process diagram illustrating a method for manufacturing the light emitting device according to the first embodiment following FIG. is there.
  • first electrodes 2 are formed on a glass substrate 1 using a vacuum process.
  • a vacuum process a known process such as a vacuum deposition method, sputtering, an electron beam method, a CVD method, or ion plating can be used.
  • a sputtering apparatus using a known DC magnetron sputtering method is used.
  • the chamber is filled with an inert gas such as argon gas at a predetermined pressure (for example, 3 ⁇ 10 ⁇ 1 Pa), and a film is uniformly formed on the surface of the substrate 1.
  • the first electrode 2 is formed in a matrix by patterning the Ag thin film by photolithography.
  • a resistance heating method is preferable. Specifically, vapor deposition pellets or particles containing a predetermined transparent electrode material are placed in a resistance heating boat or resistance heating filament of a vacuum evaporation apparatus. Then, the substrate 1 is attached to a predetermined substrate holder, the inside of the chamber is decompressed to 5 ⁇ 10 ⁇ 4 Pa, the substrate temperature is heated to about 10 to 100 ° C., and the deposition rate is set to 20 nm / sec or less to form a film. carry out. Thereafter, as described above, the deposited film is patterned.
  • the first electrode 2 is formed on the substrate 1 using a vacuum process.
  • a vacuum process a known process such as a vacuum deposition method, sputtering, an electron beam method, a CVD method, or ion plating can be used.
  • a sputtering apparatus using a known DC magnetron sputtering method is used.
  • the chamber is filled with an inert gas such as argon gas at a predetermined pressure (for example, 3 ⁇ 10 ⁇ 1 Pa), and a film is uniformly formed on the surface of the substrate 1.
  • an ITO thin film is formed by the same vacuum process (for example, sputtering) as described above, and the ITO thin film is patterned by, for example, photolithography to form the ITO layer 3.
  • a thin film 11 containing a metal compound that can be dissolved in a predetermined solvent is formed.
  • the thin film 11 of WOx or MoWOx is formed by a vacuum deposition method, a sputtering method, or the like so as to have a uniform film thickness over the entire upper surface side of the substrate 1.
  • the bank 5 is formed so as to surround each pixel region (region where the first electrode 2 is disposed), for example, by photolithography.
  • a resist film for example, a photosensitive organic resin film
  • a bank film including a resist material as a bank material is formed on the thin film 11 by coating or the like, and the resist film is exposed to form an exposure pattern.
  • a resist pattern is formed, and then etching processing is performed as a development process by a development method using a predetermined developer (tetramethylammonium hydroxide (TMAH) solution, etc.), and a desired portion of the resist film is removed to form a pattern of bank 5 Form.
  • TMAH tetramethylammonium hydroxide
  • the resist residue may be removed by washing with a neutral detergent (or an aqueous or non-aqueous release agent) and pure water.
  • a neutral detergent or an aqueous or non-aqueous release agent
  • pure water for example, when the bank 5 is formed of an inorganic material, a CVD method or the like is used. Resist residue adhering to the surface of the thin film 11 remaining after the etching is removed with, for example, hydrofluoric acid. Furthermore, a liquid repellent treatment is performed on the surface of the bank 5 as necessary.
  • the hole injection layer 4 has a structure in which only the region defined by the bank 5 is thinner than the other regions.
  • the thin film 11 has a property of being easily dissolved in pure water or a TMAH solution. Therefore, the concave portion 4a is formed in the bank 5 on the upper surface of the thin film 11 with pure water when, for example, pure water cleaning for cleaning impurities such as hydrofluoric acid remaining on the surface of the bank 5 after removing the resist residue with pure water. This is done by melting the specified area.
  • the predetermined solvent is pure water, and the depth and shape of the recessed portion 4a can be adjusted as appropriate by changing the condition of pure water cleaning.
  • the substrate 1 is rotated by a spin coater, and pure water (for example, room temperature) is dropped on the rotating substrate 1 for cleaning. Thereafter, the pure water is stopped from dripping while the substrate 1 is kept rotating, and the water is drained.
  • the depth and shape of the recessed portion 4a can be adjusted according to the time for which pure water is dropped. Further, since the dissolution rate of the thin film 11 also changes depending on the temperature of pure water, the depth and shape of the recessed portion 4a can be adjusted by the temperature of pure water.
  • the formation method of the recessed part 4a is not limited to the above.
  • the resist residue adhering to the surface of the thin film 11 is washed with a cleaning liquid such as pure water, and a part of the thin film 11 is dissolved with the cleaning liquid to form the recessed portion 4a.
  • the predetermined solvent is a cleaning liquid.
  • the resist film is etched with a developer to form the bank 5, the resist residue adhering to the surface of the thin film 11 is washed with the developer, and a part of the thin film 11 is dissolved to form a recess.
  • the entrance 4a may be formed.
  • the developer is a predetermined solvent.
  • the hole injection layer 4 is formed by dissolving the thin film 11 using a solvent such as a cleaning solution or a developing solution used in the bank formation process, it is necessary to use a predetermined solvent separately to form the recessed portion 4a. In addition, since it is not necessary to carry out an additional step for forming the recessed portion 4a, the production efficiency is good.
  • a solvent such as a cleaning solution or a developing solution used in the bank formation process
  • the formation of the recessed portion 4a is not limited to the case where the above-described predetermined solvent is used.
  • all the regions except for the region where the first electrode 2 is disposed by using sputtering and photolithography are made of WOx or MoWOx.
  • a thin film is formed, and a WOx or MoWOx thin film is formed in all regions from above to form a concave hole injection layer 4 in the region where the first electrode 2 is disposed. good.
  • ink is dropped into the region defined by the bank 5 by, for example, an ink jet method, and the ink is applied along the inner bottom surface 4 c and the inner side surface 4 d of the hole injection layer 4. Then, the luminescent layer 6 is formed by drying.
  • the ink may be dropped by a dispenser method, a nozzle coating method, a spin coating method, intaglio printing, letterpress printing, or the like.
  • a barium thin film to be the electron injection layer 7 is formed by, for example, vacuum deposition.
  • an ITO thin film to be the second electrode 8 is formed by a vacuum process (for example, sputtering) similar to that of the first electrode 2, for example.
  • the second electrode 8 can be formed by sputtering or vacuum deposition method in which the heating temperature of the substrate 1 is relatively low in consideration of thermal influence and simplicity. Is preferred. However, attention should be paid to the deposition strength so that the light emitting layer 6 is not damaged by the plasma generated by the sputtering.
  • a sealing layer 9 is further formed.
  • the manufacturing method after the thin film 11 having a uniform thickness is once formed, a part of the surface portion is dissolved at the time of cleaning the resist residue using a developer or pure water, thereby having a concave structure.
  • the thickness portion in the light emitting region is reduced and the hole injection 4 is formed.
  • the surface is partially dissolved to form a concave structure, so that the charge injection and transport performance is excellent, and the light emitting region Then, since the thin hole injection layer 4 can be produced efficiently, it is advantageous.
  • the light emitting device is related to the first embodiment in that the ITO layer is not formed below the hole injection layer and the protective film is formed on the hole injection layer. It is very different from the light emitting element.
  • points different from the first embodiment will be mainly described, and the same points as in the first embodiment will be simplified or omitted to avoid duplication.
  • FIG. 10 is a schematic diagram illustrating a stacked state of each layer of the light emitting device according to the second embodiment.
  • a first electrode 102 which is an anode is formed on a substrate 101
  • a hole injection layer 104 as a charge injection transport layer and a protective layer are formed thereon.
  • Layers 110 are stacked in that order.
  • the hole injection layer 104 is formed over the entire upper surface side of the substrate 101, whereas the protective layer 110 is not formed above the first electrode 102. Further, no ITO layer is interposed between the first electrode 102 and the hole injection layer 104.
  • a bank 105 for partitioning pixels is formed on the hole injection layer 104, and a light emitting layer 106 is stacked in a region partitioned by the bank 105.
  • An electron injection layer 107 and a cathode are formed on the light emitting layer 106.
  • a certain second electrode 108 and sealing layer 109 are formed so as to be continuous with those of the adjacent pixels beyond the area partitioned by the bank 105.
  • FIG. 11 is a process diagram illustrating the method for manufacturing the light emitting device according to the second embodiment.
  • a first electrode 102 is formed of an Al (aluminum) material on a glass substrate 101
  • a thin film 111 of WOx or MoWOx that will later become the hole injection layer 104 is formed thereon, and a thin film 112 of WOx or MoWOx that will later become the protective layer 110 is formed thereon.
  • the thin film 112 has a function of protecting the hole injection layer 104 during etching when the bank 105 is formed.
  • the bank 105 is formed on the thin film 112. Specifically, a resist film containing a resist material is formed on the thin film 112, a resist pattern is further formed on the resin film, and then a desired portion of the resist film is removed by etching with a developing solution. 105 patterns are formed. Note that impurities such as hydrofluoric acid remaining on the surface of the bank 105 after formation are cleaned and removed with a cleaning solution such as pure water, but the region defined by the bank 105 on the upper surface of the thin film 112 is melted and settled by the cleaning solution.
  • a cleaning solution such as pure water
  • the entire region defined by the bank 105 of the thin film 112 is melted to be in the state of the protective layer 110. Then, since the thin film 111 is exposed when the thin film 112 is melted, the region defined by the bank 105 on the upper surface of the thin film 111 is melted and sinks, and the recessed portion 104a is formed. In this way, the hole injection layer 104 is formed.
  • a light emitting layer 106 is formed in the region defined by the bank 105. Subsequent steps are the same as those according to the first embodiment, and thus are omitted.
  • the light emitting device according to the third embodiment is greatly different from the light emitting device according to the second embodiment in the region where the hole injection layer is formed.
  • points different from the second embodiment will be mainly described, and the same points as in the second embodiment will be simplified or omitted to avoid duplication.
  • FIG. 12 is a schematic diagram illustrating a stacked state of each layer of the light emitting device according to the third embodiment.
  • a first electrode 202 as an anode is formed on a substrate 201, and a hole injection layer 204 as a charge injection transport layer and a protection are formed thereon.
  • Layers 210 are stacked in that order.
  • the hole injection layer 204 is not formed over the entire upper surface of the substrate 1, but is formed only on the first electrode 202 and the peripheral portion of the first electrode 202.
  • the protective layer 210 is not formed above the first electrode 202.
  • a bank 205 for dividing pixels is formed on the hole injection layer 204, and a light emitting layer 206 is stacked in a region partitioned by the bank 205.
  • An electron injection layer 207 and a cathode are formed on the light emitting layer 206.
  • a certain second electrode 208 and sealing layer 209 are formed so as to be continuous with those of the adjacent pixels beyond the area partitioned by the bank 205.
  • FIG. 13 is a process diagram illustrating the method for manufacturing the light emitting device according to the third embodiment.
  • a first electrode 102 is formed of an Al-based material on a glass substrate 101, and then, The exposed surface (upper surface and side surface) of one electrode 102 is oxidized to form an oxide film 211 that becomes the hole injection layer 204, and a WOx or MoWOx thin film 212 that later becomes the protective layer 210 is formed thereon.
  • a bank 205 is formed on the thin film 212. Impurities such as hydrofluoric acid remaining on the surface of the bank 205 are cleaned and removed with a cleaning liquid such as pure water. The cleaning liquid dissolves and sinks a region defined by the bank 205 on the upper surface of the thin film 212.
  • the thin film 212 is in a state of the protective layer 210 which is the final form by melting all the regions defined by the bank 205. Moreover, since the region defined by the bank 205 of the oxide film 211 is exposed when the thin film 212 is melted, the upper surface of the region is melted and sinks, and the recessed portion 204a is formed. In this way, the hole injection layer 204 is formed.
  • a light emitting layer 206 is formed in the region defined by the bank 205. Subsequent steps are the same as those according to the first embodiment, and thus are omitted.
  • FIG. 14 is a perspective view showing a display device and the like according to the fourth embodiment.
  • the display device 300 according to one embodiment of the present invention includes an organic pixel in which pixels that emit R, G, or B light are regularly arranged in a matrix in the row direction and the column direction.
  • each pixel includes the light-emitting element according to one embodiment of the present invention.
  • the display device 300 can see the image display from both sides.
  • the charge injection / transport layer is not limited to the hole injection layer, and may be a hole transport layer or a hole injection / transport layer.
  • the first electrode may be a cathode and the second electrode may be an anode.
  • the charge injection / transport layer may be an electron injection layer, an electron transport layer, or an electron injection / transport layer.
  • the present invention is applicable to organic EL display devices used for flat light sources, flat displays, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明は、発光層が高精細にパターニングされており、かつ安価に製造可能な発光素子を提供することを目的とする。 具体的には透明な第1電極2、電荷注入輸送層4、発光層6、透明な第2電極8がこの順に積層され、少なくとも前記発光層6がバンク5により規定されてなる発光素子を構成する。前記電荷注入輸送層4は、前記発光層6の底面6aに接触する内底面4cと、前記内底面4cに連続する内側面4dとを備えた凹入部4aを有するように構成する。前記凹入部4aの内側面4dは、前記内底面4cと連続する下部側の端縁と、前記下部側の端縁と連続する上部側の端縁4eとを備え、前記凹入部4aの内側面4dは、前記上部側の端縁4eにおいて前記バンク5の前記発光層6側の下端縁5dと一致した形状または前記バンク5の底面5aに接触した形状とする。電荷注入輸送層4を前記発光層6の側面6bの少なくとも一部に接触させる。

Description

発光素子、表示装置、および発光素子の製造方法
 本発明は、発光素子、表示装置、および発光素子の製造方法に関し、特にフラットディスプレイ等に用いられる有機EL素子に関する。
 従来から、有機EL素子の製造プロセスにおいて、インクジェット法によるパターニングで発光層を形成することが行われている。インクジェット法は、微小領域に均一な薄膜パターンを形成するのに適した方法であって、バンクで規定された各ピクセル領域に有機EL材料を含む組成物インク(以下、単に「インク」と称する。)を滴下し乾燥させることで、それらピクセル領域に均一な薄膜パターンを形成する。
 上記方法を採用する場合、例えば、バンク表面にはフッ素プラズマによる撥液処理が施される。これにより、バンク表面はインクに対する濡れ性が悪くなり、滴下されたインクがバンクを超えて隣のピクセル領域に流れ出にくくなるため、高精細なパターニングが可能になる。
 さらに、特許文献1には、バンクを、撥水性の材料からなる上層部と親液性の材料からなる下層部との二層構造にすることで、バンク上層部ではインクに対する濡れ性を悪くしインクが流れ出にくいようにし、バンク下層部ではインクに対する濡れ性を良くしピクセル領域にインクが留まりやすくして、より高精細に発光層をパターニングする技術が開示されている。
特開2003-249375号公報 特開平10-162959号公報
 しかしながら、バンクを二層構造にすると、一層構造の場合と比べて工程数が増える分だけ有機EL素子の製造コストが高くなる。
 本発明は、上記の課題に鑑み、発光層が高精細にパターニングされており、かつ安価に製造可能な発光素子を提供することを目的とする。
 本発明の一態様に係る発光素子は、第1電極、発光層を含む機能層、第2電極がこの順に積層され、少なくとも前記発光層がバンクにより規定され、前記第1電極側と前記第2電極側の双方から光を取り出す両面発光型の発光素子であって、前記第1電極と前記第2電極とは透明電極からなり、前記バンクは少なくともその表面が撥液性となっており、一方、前記電荷注入輸送層は前記バンクの表面と比較して親液性のある金属化合物からなり、且つ、前記電荷注入輸送層は、バンクで規定された領域においてはバンク底面のレベルよりも沈下した凹入構造に形成されていることを特徴とする。
 本発明の一態様に係る発光素子は、電荷注入輸送層が、機能層の底面に接触する内底面と、前記内底面に連続する内側面とを備えた凹入部を有するため、製造プロセスにおいてバンクで規定された領域に滴下されたインクの下部をその凹入部内に溜めることができる。しかも、凹入部の内面は、電荷注入輸送層がバンクの表面と比較して親液性のある金属化合物からなり、インクに対する濡れ性が良いため、凹入部内のインクを安定に留めておくことができる。したがって、インクがバンクを超えて隣のピクセル領域に流れ出にくく、機能層の高精細なパターニングが可能である。しかも、凹入部は、例えば純水で電荷注入輸送層の一部を溶かす等して簡単に形成することができ、特許文献1の発光素子のようにバンクを二層構造にするための煩雑な工程が不要であるため、安価に実施可能である。
第1の実施形態に係る発光素子の各層の積層状態を示す模式図である。 図1における一点鎖線で囲まれた部分の拡大図である。 凹入部の形状を説明するための模式図である。 変形例に係る発光素子の図1における一点鎖線で囲まれた部分の拡大図である。 凹入部の形状を説明するための模式図である。 発光層の最適膜厚を説明するための模式図である。 変形例に係る発光素子の図1における一点鎖線で囲まれた部分の拡大図である。 第1の実施形態に係る発光素子の製造方法を説明する工程図である。 図8に続く第1の実施形態に係る発光素子の製造方法を説明する工程図である。 第2の実施形態に係る発光素子の各層の積層状態を示す模式図である。 第2の実施形態に係る発光素子の製造方法を説明する工程図である。 第3の実施形態に係る発光素子の各層の積層状態を示す模式図である。 第3の実施形態に係る発光素子の製造方法を説明する工程図である。 第4の実施形態に係る表示装置等を示す斜視図である。 透明電極の発光波長と透過率の関係を示すグラフである。
 [本発明の一態様の概要]
 本発明の一態様に係る発光素子は、第1電極、電荷注入輸送層、発光層を含む機能層、第2電極がこの順に積層され、少なくとも前記発光層がバンクにより規定され、前記第1電極側と前記第2電極側の双方から光を取り出す両面発光型の発光素子であって、前記第1電極と前記第2電極とは透明電極からなり、前記バンクは少なくともその表面が撥液性となっており、一方、前記電荷注入輸送層は前記バンクの表面と比較して親液性のある金属化合物からなり、且つ、前記電荷注入輸送層は、バンクで規定された領域においてはバンク底面のレベルよりも沈下した凹入構造に形成されているものとする。
 ここで、「電荷注入輸送層」の語は、ホール注入層、ホール輸送層、ホール注入兼輸送層、電子注入層、電子輸送層、及び電子注入兼輸送層等の総称である。例えば、電荷注入輸送層は、ホール注入層で構成されていても良いし、ホール輸送層で構成されていても良いし、ホール注入層とホール輸送層の2層で構成されていても良いし、ホール注入兼輸送層で構成されていても良いし、電子注入層で構成されていても良いし、電子輸送層で構成されていても良いし、電子注入層と電子輸送層の2層で構成されていても良いし、電子注入輸送層で構成されていても良い。
 また、「親液性」及び「撥液性」の語は、相対的な意味で用いている。上記のように、バンクは少なくともその表面が撥液性となっており、一方、電荷注入輸送層は親液性のある金属化合物からなる場合、電荷注入輸送層の表面はバンクの表面よりも親液性であり、バンクの表面は電荷注入輸送層の表面よりも撥液性である。そして、親液性である電荷注入輸送層の表面はインクに対して相対的に濡れ性が良く、撥液性であるバンクの表面はインクに対して相対的に濡れ性が悪い。なお、親液性及び撥液性は、例えば、バンク又は電荷注入輸送層の表面に対するインクの接触角で定義することが可能であり、例えば、接触角が10°以下の場合を親液性、接触角が35°以上の場合を撥液性と定義することができる。
 また、本発明の別の態様として、前記電荷注入輸送層は、金属の酸化物、窒化物、または酸窒化物からなる正孔注入層であるものとすることもできる。
 また、本発明の別の態様として、前記機能層は、前記正孔注入層から前記発光層に正孔を輸送する正孔輸送層を含み、前記正孔輸送層は、前記正孔注入層と前記発光層との間に介在する構成とすることもできる。
 また、本発明の別の態様として、前記透明電極を、ITOまたはIZOとすることもできる。
 また、本発明の別の態様として、前記第1電極または前記第2電極の少なくともいずれか一方に、半透明もしくは透明な金属薄膜を積層することもできる。
 また、本発明の別の態様として、前記半透明もしくは透明な金属薄膜は、Ag、Mg、Al、Pt、Pd、Au、Ni、Ir、及びCrより選択されるいずれかを含む金属膜であって、その膜厚を3nmから30nmとすることもできる。
 また、本発明の別の態様として、前記凹入構造をカップ状とすることもできる。
 また、本発明の別の態様として、前記凹入構造をバンクの下端縁相当部位から沈下した構造とすることもできる。
 また、本発明の別の態様として、前記発光層を、高分子材料からなる層を含む構成とすることもできる。
 また、本発明の別の態様として、前記電荷注入輸送層は、バンク底面に沿って隣のピクセル方向に拡がっている構成とすることもできる。
 また、本発明の別の態様として、第1電極、電荷注入輸送層、発光層を含む機能層、第2電極がこの順に積層され、少なくとも前記発光層がバンクにより規定され、前記第1電極側と前記第2電極側の双方から光を取り出す両面発光型の発光素子であって、前記第1電極と前記第2電極とは透明電極からなり、前記電荷注入輸送層は、所定の溶剤に対して溶解可能である金属化合物を含み、前記所定の溶剤により溶解されて形成されている凹入部を有し、前記電荷注入輸送層の前記凹入部は、前記機能層の底面に接触する内底面と、前記内底面に連続し、前記機能層の側面の少なくとも一部に接触する内側面と、を有する発光素子とする。
 また、本発明の別の態様として、前記電荷注入輸送層は、金属の酸化物、窒化物、または酸窒化物からなる正孔注入層とすることもできる。
 この場合、本発明の別の態様として、前記金属酸化物は、タングステンまたはモリブテンの酸化物とすることもできる。
 また、本発明の別の態様として、前記機能層は、前記正孔注入層から前記発光層に正孔を輸送する正孔輸送層を含み、前記正孔輸送層は、前記正孔注入層と前記発光層との間に介在する構成とすることもできる。
 また、前記透明電極を、ITOまたはIZOとすることもできる。
 また、本発明の別の態様として、前記第1電極または前記第2電極の少なくともいずれか一方に、半透明もしくは透明な金属薄膜を積層することもできる。
 また、本発明の別の態様として、前記半透明もしくは透明な金属薄膜は、Ag、Mg、Al、Pt、Pd、Au、Ni、Ir、及びCrより選択されるいずれかを含む金属膜であって、その膜厚を3nmから30nmとすることもできる。
 また、本発明の別の態様として、前記電荷注入輸送層は親液性を有し、前記バンクは溌液性を有する構成とすることもできる。
 また、本発明の別の態様として、前記所定の溶剤は、前記バンクを形成する際に使用する現像液、または/および、前記バンク形成後に残留する残渣を洗浄するための洗浄液である
 また、本発明の別の態様として、上記したいずれかの本発明の態様の発光素子を含む表示装置とすることもできる。
 また、本発明の別の態様として、基板上に透明電極からなる第1電極を形成する第1工程と、前記第1電極の上方に、所定の溶剤に対して溶解可能である金属化合物を含む薄膜を形成する第2工程と、前記薄膜上に、レジスト材料を含むレジスト膜を形成し、現像液によりエッチング処理し、バンクを形成する第3工程と、前記バンクを形成後、前記薄膜表面に付着するレジスト残渣を洗浄液を用いて洗浄すると共に、前記洗浄液により前記薄膜の一部を溶解させ、内底面と前記内底面に連続する内側面とを備える凹入部を有する電荷注入輸送層を形成する第4工程と、前記バンクにより規定された領域内にインクを滴下し、前記電荷注入輸送層の前記内底面および前記内側面に沿って塗布させて乾燥させ、機能層を形成する第5工程と、前記機能層の上方に、透明電極からなる第2電極を形成する第6工程とを有する発光素子の製造方法とする。
 また、本発明の別の態様として、前記電荷注入輸送層は、金属の酸化物、窒化物、または酸窒化物からなる正孔注入層として製造することもできる。
 また、本発明の別の態様として、前記機能層は、前記正孔注入層から前記発光層に正孔を輸送する正孔輸送層を含み、前記正孔輸送層を、前記正孔注入層と前記発光層との間に介在させることもできる。
 また、本発明の別の態様として、前記透明電極を、ITOまたはIZOで製造することもできる。
 また、本発明の別の態様として、前記第1電極または前記第2電極の少なくともいずれか一方に、半透明もしくは透明な金属薄膜を積層する工程を含むこともできる。
 また、本発明の別の態様として、前記半透明もしくは透明な金属薄膜を、Ag、Mg、Al、Pt、Pd、Au、Ni、Ir、及びCrより選択されるいずれかを含む金属膜で構成し、その膜厚を3nmから30nmとすることもできる。
 また、本発明の別の態様として、基板上に透明電極からなる第1電極を形成する第1工程と、前記第1電極の上方に、所定の溶剤に対して溶解可能である金属化合物を含む薄膜を形成する第2工程と、前記薄膜上に、レジスト材料を含むレジスト膜を形成し、現像液によりエッチング処理し、バンクを形成すると共に、前記現像液により薄膜表面に付着するレジスト残渣を洗浄し、かつ、前記薄膜の一部を溶解させ、内底面と前記内底面に連続する内側面とを備える凹入部を有する電荷注入輸送層を形成する第3工程と、前記バンクにより規定された領域内にインクを滴下し、前記電荷注入輸送層の前記内底面および前記内側面に沿って塗布させて乾燥させ、機能層を形成する第4工程と、前記機能層の上方に、透明電極からなる第2電極を形成する第5工程と、を有する発光素子の製造方法とする。
 ここで、本発明の別の態様として、前記電荷注入輸送層は、金属の酸化物、窒化物、または酸窒化物からなる正孔注入層とすることもできる。
 また、本発明の別の態様として、前記機能層は、前記正孔注入層から前記発光層に正孔を輸送する正孔輸送層を含み、前記正孔輸送層を、前記正孔注入層と前記発光層との間に介在させることもできる。
 また、本発明の別の態様として、前記透明電極を、ITOまたはIZOとすることもできる。
 また、本発明の別の態様として、前記第1電極または前記第2電極の少なくともいずれか一方に、半透明もしくは透明な金属薄膜を積層する工程を含むこともできる。
 この場合、本発明の別の態様として、前記半透明もしくは透明な金属薄膜を、Ag、Mg、Al、Pt、Pd、Au、Ni、Ir、及びCrより選択されるいずれかを含む金属膜で構成し、その膜厚を3nmから30nmとすることもできる。
 以下、本実施の形態に係る発光素子、表示装置、および発光素子の製造方法について、図面を参照しながら説明する。なお、各図面における部材の縮尺は実際のものとは異なる。
 [第1の実施形態]
 <発光素子の概略構成>
 図1は、第1の実施形態に係る発光素子の各層の積層状態を示す模式図であり、図2は、図1における一点鎖線で囲まれた部分の拡大図である。
 図1に示すように、第1の実施形態に係る発光素子は、RGBの各ピクセルがマトリックス状又はライン状に配置されてなる両面発光型の有機EL素子であり、各ピクセルは基板1上に各層を積層した積層構造となっている。
 TFT基板1(以下、単に「基板1」)上には、陽極である第1電極2がマトリックス状又はライン状に形成されており、第1電極2上に、ITO(酸化インジウムスズ)層3及び、電荷注入輸送層としてのホール注入層4がその順で積層されている。なお、ITO層3が第1電極2上にのみ積層されているのに対し、ホール注入層4は第1電極2の上方だけでなく基板1の上面側全体に亘って形成されている。
 ホール注入層4上には、ピクセルを規定するバンク5が形成されており、バンク5で規定された領域内に発光層6が積層されている。さらに、発光層6の上には、電子注入層7、陰極である第2電極8、及び封止層9が、それぞれバンク5で規定された領域を超えて隣のピクセルのものと連続するように形成されている。駆動時における発光は、第1電極2側及び第2電極8側の双方より取り出すことができる。
 バンク5で規定された領域は、ITO層3、ホール注入層4、発光層6を含む機能層、及び電子注入層7がその順で積層された多層積層構造となっている。なお、機能層には発光層6が含まれるほか、ホール輸送層や電子輸送層等の他の層が含まれていても良い。
 <発光素子の各部構成>
 次に、発光素子の各構成要素について具体的に説明する。なお、いずれの構成要素も発光素子を両面発光型にするため、透明性を有するように構成すべき点に留意する。
 基板1は、例えば、ソーダガラス、無蛍光ガラス、燐酸系ガラス、硼酸系ガラス、石英、アクリル系樹脂、スチレン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ポリエチレン、ポリエステル、シリコーン系樹脂、又はアルミナ等の絶縁性材料で形成されている。
 第1電極2は、透明電極として構成され、ここでは陽極ベース層1021からなる。陽極ベース層1021は、ITOやIZO等の金属酸化物の他、APC(銀、パラジウム、銅の合金)、ARA(銀、ルビジウム、金の合金)、MoCr(モリブデンとクロムの合金)、NiCr(ニッケルとクロムの合金)等で形成される。或いは、Ag、Mg、Al、Pt、Pd、Au、Ni、Ir、及びCrより選択されるいずれかを含む金属膜であってもよい。いずれの場合も、十分な透明性を持たせるため、適度な厚み(例えば3nm~30nm、より好ましくは12~15nmの膜厚)で構成する。なお第1電極2と、後述する第2電極8は、いずれも透明電極ではあるが、一定の光透過率を有する構成であるため、これを言い換えると、「半透明もしくは透明」な薄膜と言うことができる。一般的に不透明として知られる金属材料であっても、上記のように膜厚を十分に薄くすれば、光透過性を発揮できる半透明もしくは透明な膜となる。
 ここで図15は、厚み12nm及び15nmの酸化タングステン(Wox)について、透過率(T%)及び波長の関係を示すグラフである。当図に示すように、酸化タングステンを用いる場合、少なくとも厚みを12nm~15nmの範囲に設定すれば、350nm~650nmにわたる広い波長範囲の光について、85%以上の透過率が得られることが分かる。一方、学術論文(V.Bulovic、G.Gu、P.E.Burrows、S.R.Forrest、Nature vol380、29(1996))には、膜厚を5~40nmに設定したMg-Ag合金電極を利用した、両面発光型OELDが記載されている。また特許文献2には、陰極を厚み10~800nmに設定することで、良好な透明性が得られることが示されている。これらの知見を参酌すると、上記した第1電極2と第2電極8の各金属材料についても、厚みを3nm~30nm程度に設定すれば、十分な透明性が得られるものと考えられる。
 ITO層3は、第1電極2及びホール注入層4の間に介在し、各層間の接合性を良好にする機能を有する。
 ホール注入層4は、所定の溶剤に対して溶解可能である金属化合物を含み、具体的には、WOx(酸化タングステン)又はMoWOx(モリブデン-タングステン酸化物)で形成されている。なお、ホール注入層4は、バンク5の表面と比較して親液性を有する金属化合物で形成されていれば良く、親液性を有する金属化合物としては、例えば、金属酸化物、金属窒化物又は金属酸窒化物が挙げられる。
 ホール注入層4が金属酸化物で形成されている場合は、ホールを容易に注入することができ、発光層6内で電子が有効に発光に寄与するため、良好な発光特性を得ることができる。金属酸化物としては、例えば、Cr(クロム)、Mo(モリブデン)、W(タングステン)、V(バナジウム)、Nb(ニオブ)、Ta(タンタル)、Ti(チタン)、Zr(ジルコニウム)、Hf(ハフニウム)、Sc(スカンジウム)、Y(イットリウム)、Th(トリウム)、Mn(マンガン)、Fe(鉄)、Ru(ルテニウム)、Os(オスミウム)、Co(コバルト)、Ni(ニッケル)、Cu(銅)、Zn(亜鉛)、Cd(カドミウム)、Al(アルミニウム)、Ga(ガリウム)、In(インジウム)、Si(シリコン)、Ge(ゲルマニウム)、Sn(錫)、Pb(鉛)、Sb(アンチモン)、Bi(ビスマス)、及び、La(ランタン)からLu(ルテチウム)までのいわゆる希土類元素等の酸化物が挙げられる。なかでも、Al23(酸化アルミニウム)、CuO(酸化銅)、及び、SiO(酸化シリコン)は、特に長寿命化に有効である。
 金属化合物を構成する金属は、遷移金属が好ましい。遷移金属は、複数の酸化数をとるためこれにより複数の電位レベルをとることができ、その結果ホール注入が容易になり駆動電圧を低減することができる。
 図2に示すように、ホール注入層4は、バンク5の底面に沿って隣のピクセル方向に拡がっていると共に、バンク5で規定された領域においてはバンク5底面のレベルよりも沈下した凹入構造に形成されており、所定の溶剤により溶解されて形成された凹入部4a(図2において網目のハッチングで示す部分)を備える。そして、ホール注入層4は、バンク5で規定された領域だけが他の領域と比べて膜厚が薄くなっており、前記他の領域の膜厚は全体に亘って略均一である。ホール注入層4が親液性を有する金属化合物からなるため、凹入部4aの内面4bはインクに対して濡れ性が良い。したがって、バンク5で規定された領域に滴下されたインクが凹入部4aの内面4bに密着しやすく、インクがバンク5で規定された領域に留まりやすい。
 なお、ホール注入層4は、少なくともバンク5の底面における端縁部5aのレベルよりも沈下した凹入構造であれば良く、底面全体のレベルよりも沈下した凹入構造である必要はない。本実施の形態では、底面における端縁部5aのレベルより沈下しているが、底面における中央部5bのレベルより沈下していない凹入構造となっているが、例えば、図2に二点鎖線5cで示すように中央部5bのレベルを端縁部5aに揃えバンク5の底面を平坦にする等して、バンク5の底面全体のレベルより沈下した凹入構造としても良い。
 ホール注入層4は、バンクの下端縁5d相当部位から沈下した凹入構造であって、具体的には、ホール注入層4の上面におけるバンク5に規定された領域が下端縁5d相当部位から基板1の上面に対して略垂直下方に沈下している。このように、バンク5の下端縁5d相当部位から沈下した凹入構造である場合は、発光層6の膜厚を広範囲に亘って均一にすることができ、発光層6に輝度むらが生じにくい。
 ホール注入層4の凹入構造はカップ状であって、より具体的には、凹入部4aの内面4bが、基板1の上面と略平行且つ平坦であって発光層6の底面6aに接触する内底面4cと、当該内底面4cの端縁から基板1の上面と略垂直な方向に向けて延びており前記発光層6の側面6bに接触する内側面4dとで構成されている。このように、凹入構造がカップ状である場合は、内側面4dの存在によって凹入部4a内のインクが基板1の上面と平行な方向へ移動しにくくなるため、バンク5で規定された領域にインクをより安定にとどめておくことができる。しかも、凹入構造をカップ状にすると、凹入部4aの内面4bの面積が大きくなり、インクとホール注入層4との密着する面積が大きくなるため、バンク5で規定された領域にインクをより安定にとどめておくことができる。したがって、発光層6の高精細なパターニングが可能である。
 上記のように、本実施形態においては、バンク5とホール注入層4とは、略垂直方向に接続されていることにより、発光層6の底部側においてインクが濡れやすくなっており、良好な発光層6が形成できる。ここで、バンク5とホール注入層4が、水平方向に接続される場合には、バンク5とホール注入層4との接続部分付近において、インクが濡れづらくなると考えられる。このため、発光層6の底部側において、発光層6が十分には形成されない可能性があり、この結果、電気的リークが発生するおそれがある。すなわち、発光層6の良好な形成に関し、バンク5とホール注入層4とが、水平方向ではなく、略垂直方向に接続されている点に、技術的な意義が存在する。
 なお、バンク5とホール注入層4とが略垂直に接続される形態としては、垂直方向に限らず、斜め方向であればよく、水平方向に対する縦方向であればよい。
 ホール注入層4の凹入構造をさらに詳しく説明すると、図3(a)に示すように、凹入部4aの内側面4dは、内底面4cと連続する下部側の端縁と、当該下部側の端縁と連続する上部側の端縁4e(以下、「上端縁4e」と称する。)とを備え、前記凹入部4aの内側面4dは、前記上端縁4eにおいて前記バンク5の発光層6側の下端縁5dと一致した形状であり、かつ、前記内側面4dと前記内底面4cとが連続する部分がR形状になっている。なお、内側面4dの上端縁4eがバンク5の下端縁5dと一致している場合において、凹入部4aは、図3(a)に示すような前記内側面4dが内底面4cに対して略垂直な形状に限定されず、図3(b)に示すように前記内側面4dがバンク5の側面5eと略同じ傾きでそれらが面一の形状でも良く、図3(c)に示すように前記内側面4dと前記内底面4cとが連続する部分がR形状でない形状でも良く、図3(d)に示すように前記内側面4dが前記バンク5の下側に入り込むように前記バンク5の側面5eとは反対側に傾いた形状でも良い。
 また、ホール注入層4は、バンク5の下端縁5d相当部位から沈下した凹入構造に限らず、例えば、図4に示すように、バンク5の下端縁5d相当部位よりも隣のピクセル側に寄った部位から沈下した構造としても良い。その場合、図5(a)に示すように、凹入部4aの内側面4dは、上端縁4eがバンク5の底面5aに接触した形状となる。なお、内側面4dの上端縁4eがバンク5の底面5aに接触した形状の場合において、凹入部4aは、図5(a)に示すような前記内側面4dが内底面4cに対して略垂直な形状に限定されず、図5(b)に示すように前記内側面4dがバンク5の側面5eと略同じ傾きの形状でも良く、図5(c)に示すように前記内側面4dと前記内底面4cとが連続する部分がR形状でない形状でも良く、図5(d)に示すように前記内側面4dが前記バンク5の下側に入り込むように前記バンク5の側面5eとは反対側に傾いた形状でも良い。
 内側面4dは、上端縁4eがバンク5の下端縁5dと一致した形状、または、前記上端縁4eが前記バンク5の底面5aに接触した形状であるため、電極2、8間においてショートが発生しにくい。仮に、図4において二点鎖線10で示すように、バンク5の下端縁5d相当部位よりもピクセル中央側に寄った部位から沈下した凹入構造とした場合は、ホール注入層4の上面におけるバンク5から露出した部分4fを介して電極2、8間でショートが発生するおそれがある。特に、後述するように、発光層6の平均膜厚hが凹入部4aの平均深さtよりも小さいか同じである場合は、ホール注入層4の上面におけるバンク5で覆われていない部分4fが電子注入層7や第2の電極8と接触する可能性があるため、電極2、8間でショートが発生するおそれが高い。
 図2に戻って、凹入部4aの平均深さtは本願発明では特に特定されるものではないが、例えば5~100nmとすることができる。凹入部4aの平均深さtが5nm以上であれば、凹入部4a内に十分な量のインクを溜めることができ、バンク5で規定された領域にインクを安定に留めることができる。さらに、バンク5端部まで発光層6がはじかれることなく形成されるため、電極2、8間のショートを防ぐことができる。
 なお、凹入部4aの平均深さtは、触針式段差計もしくはAFM(原子間力顕微鏡)にてホール注入層4の表面輪郭を測定し、当該表面輪郭から山となる部分の平均高さと谷となる部分の平均高さとの差を求めて、得ることができる。
 一方、発光層6の膜厚は特に特定されるものではないが、例えば発光層6の乾燥後の平均膜厚hが100nm以上の場合において凹入部4aの平均深さtが100nm以下であれば、バンク5で規定された領域における発光層6の膜厚を均一にすることができる。
 さらに、発光層6の平均膜厚hと凹入部4aの平均深さtとの差は20nm以下であることが好ましい。発光層6の平均膜厚hが凹入部4aの平均深さtよりも小さ過ぎる場合は(例えば、t-h>20nmの場合は)、図6(a)に示すように、凹入部4aの内側面4dに発光層6と接触していない部分(発光層6が未塗布の部分)が生じ、その部分において電極2、8間のショートが発生するおそれがある。また、発光層6の平均膜厚hが凹入部4aの平均深さtよりも大き過ぎる場合は(例えば、h-t>20nmの場合は)、図6(b)に示すように、バンク5の撥液性により発光層6のバンク近傍部分6cの膜厚が他の部分よりも薄くなり、当該発光層6の断面形状が略凸形となって、膜厚の違いに起因する発光むらが生じるおそれがある。
 なお、凹入部4aの内側面4dは発光層6の側面6bの少なくとも一部に接触していれば良い。例えば、図2や図6(b)に示すように発光層6の平均膜厚hが凹入部4aの平均深さtよりも大きい、若しくは、それらが同じ大きさである場合は、前記発光層6の側面6bの少なくとも一部である下方側にだけ前記凹入部4aの内側面4dが接触する。一方、図6(a)に示すように発光層6の平均膜厚hが凹入部4aの平均深さtよりも小さい場合は、前記発光層6の側面6bの全体に前記凹入部4aの内側面4dが接触する。
 図7に示すように、ホール注入層4の凹入部4a内には、例えば、機能層を構成するホール輸送層であるIL層(中間層)などの親液性層12が、発光層6の下側に形成されていても良い。この場合は、凹入部4aの内底面4cではなく親液性層12の上面12aにインクが滴下されることになるが、それでも前記上面12aが親液性であるため、バンク5で規定された領域にインクを安定にとどめることができる。但し、親液性層12によって凹入部4aが完全に埋まってしまうと前記凹入部4aの内側面4dがインクと接触しなくなってしまうため、前記親液性層12の平均膜厚gは凹入部4aの平均深さtよりも薄いことが好ましい。ここで、ホール注入層4は第1電極2と同様に十分な薄さを持つ金属酸化物薄膜で構成されているため、図15を用いて上記したように、良好な透明性を有している。
 バンク5は、樹脂等の有機材料又はガラス等の無機材料で形成されており絶縁性を有する。有機材料の例には、アクリル系樹脂、ポリイミド系樹脂、ノボラック型フェノール樹脂等が挙げられ、無機材料の例には、SiO2(シリコンオキサイド)、Si34(シリコンナイトライド)等が挙げられる。バンク5は、有機溶剤耐性を有することが好ましく、また可視光をある適度透過させることが好ましい。さらに、バンク5はエッチング処理、ベーク処理等がされることがあるので、それらの処理に対する耐性の高い材料で形成されることが好ましい。
 バンク5は、少なくとも表面が撥液性である。したがって、バンク5を親液性の材料で形成する場合は、撥水処理を施す等して表面を撥液性にする必要がある。
 また、バンク5は、ピクセルバンクであっても、ラインバンクであっても良い。ピクセルバンクの場合、ピクセルごと発光層6の全周を囲繞するようにバンク5が形成される。一方、ラインバンクの場合、複数のピクセルを列ごと又は行ごとに区切るようにバンク5が形成され、バンク5は発光層6の行方向両側又は列方向両側だけに存在し、発光層6は同列又は同行のものが連続した構成となる。
 発光層6は、例えば、特開平5-163488号公報に記載のオキシノイド化合物、ペリレン化合物、クマリン化合物、アザクマリン化合物、オキサゾール化合物、オキサジアゾール化合物、ペリノン化合物、ピロロピロール化合物、ナフタレン化合物、アントラセン化合物、フルオレン化合物、フルオランテン化合物、テトラセン化合物、ピレン化合物、コロネン化合物、キノロン化合物及びアザキノロン化合物、ピラゾリン誘導体及びピラゾロン誘導体、ローダミン化合物、クリセン化合物、フェナントレン化合物、シクロペンタジエン化合物、スチルベン化合物、ジフェニルキノン化合物、スチリル化合物、ブタジエン化合物、ジシアノメチレンピラン化合物、ジシアノメチレンチオピラン化合物、フルオレセイン化合物、ピリリウム化合物、チアピリリウム化合物、セレナピリリウム化合物、テルロピリリウム化合物、芳香族アルダジエン化合物、オリゴフェニレン化合物、チオキサンテン化合物、アンスラセン化合物、シアニン化合物、アクリジン化合物、8-ヒドロキシキノリン化合物の金属錯体、2、2‘-ビピリジン化合物の金属錯体、シッフ塩とIII族金属との錯体、オキシン金属錯体、希土類錯体等の蛍光物質で形成されることが好ましい。発光層6が高分子材料からなる層を含む場合は、その層を、例えばインクジェット法、ノズルコート法などの印刷技術によって発光層6を形成することができるため、低分子材料を用いた蒸着法に比べ大判化に対して容易に低コスト化に対応できる効果がある。
 電子注入層7は、第2電極8から注入された電子を発光層6へ輸送する機能を有し、例えば、バリウム、フタロシアニン、フッ化リチウム、これらの組み合わせ等で形成されることが好ましい。
 第2電極8は、陽極102と同様の透明電極材料で構成され、陽極102と同様の方法で、良好な光透過性を発揮できるように適切な膜厚(3nm~30nm)で構成される。
 封止層9は、発光層6等が水分に晒されたり、空気に晒されたりすることを抑制する機能を有し、例えば、SiN(窒化シリコン)、SiON(酸窒化シリコン)等の材料で形成される。トップエミッション型の発光素子の場合は、光透過性の材料で形成されることが好ましい。
 (両面発光型素子の課題について)
 両面発光型の発光素子を構成する場合、基板の上面方向及び下面方向のいずれに対しても、発光を有効に取り出すことが、素子の発光特性の面において重要である。一方、本願発明者らは、有機EL素子の電荷注入輸送層として金属化合物を適用し、発光特性の向上を図るべく検討を進めている。
 しかしながら、金属化合物は一般に、ある一定の割合で可視光を吸収する性質があるため、発光層からの発光を電荷注入輸送層を通じて外部に取り出す際に光が吸収され、発光効率の損失を招く課題がある。
 また別の課題として、電荷注入輸送層の表面に形成された凹部の縁が絶縁性の被覆部で覆われていなければ、凹部の縁に電界集中が生じて発光層に局部的に電流が流れうる。その結果、発光面内での輝度ムラや発光層の局部的劣化を招き、製品の短寿命化に至るという課題がある。
 特に、発光面内において局所的な発光を生じる場合、発光面内には発光領域と非発光領域が併存する。ここで、素子が両面発光型の発光素子であれば、非発光領域は発光に寄与しない領域となり、単なる透明基板となってしまう。このため発光素子の背景が透過して見えてしまい、発光素子あるいは発光素子を用いた表示パネルの表示性能を低下させるという課題がある。
 また、インクジェット法によりインク塗布した後に、インクを乾燥する工程において、隣接画素にインクが存在するか否かによって静電的等の影響を受け、有機発光層の厚みが隣接バンクの片方に偏った状態になりうる(この問題について、例えば特開2010-73700号公報の段落0018、図1B、図1C等を参照)。このような偏りの状態で有機発光層が乾燥すると、その膜厚が不均一になり、発光素子に発光ムラが生じ、短寿命化を招く。例えば、複数の発光素子を並設して表示装置を作製した場合、一の発光素子の寿命が短期間で尽きると、装置全体での発光特性が著しく損なわれ、非発光画素や微弱発光画素が発生し、装置全体の寿命までもが短くなる課題がある。
 このような課題に対し、本実施の形態では、バンク5で規定された領域において、上面が沈下してなる電荷注入輸送層(ホール注入層4)の凹部4aに有機発光層6を形成する。このようにホール注入層4のうち、膜厚の比較的薄い凹部4aを利用することで、駆動時において発生した発光層6からの発光の吸収割合を低減できる。
 この効果を具体的に説明する。例えば、電荷注入輸送層として酸化タングステン層を用いた場合、波長400nmの光透過率は、酸化タングステン膜厚が12nmでは95%、15nmでは93%である。また、波長450nmの光透過率は、酸化タングステン膜厚が12nmでは97%、15nmでは95%である。また、波長530nmの光透過率は、酸化タングステン膜厚が12nmでは98%、15nmでは97%である。このようにいずれの波長の光に対し、酸化タングステンの膜厚差がわずか3nm程度であっても光透過率に相当の差異が生じる。膜厚差が大きくなれば、光透過率の差も比例して大きくなる。
 複数の膜が積層された構成を持つ発光素子等のデバイスの光透過率は、各層の光透過率の積で表される。従って、光透過率を100%に近づけるように、各層の光透過率を改善することが重要である。特に、材料開発が困難な青色発光を行う場合には、発光効率の向上を図る上で、本実施の形態を適用すると、光透過率の効果的な改善を期待でき、デバイスとしてのトータルの特性改善対策として有効である。このように、バンクで規定された電荷注入輸送層の領域内を凹入構造にすれば、発光領域の光透過率を向上させ、両面発光型の発光素子を良好に実現できる。なお、凹部4a(凹入構造)の深さとしては、概ね5nm~30nm程度が好ましい。
 また、本実施の形態では、バンク5は少なくとも表面が撥液性になっている。一方、電荷注入輸送層(ホール注入層4)の表面は、バンク5の表面と比較して、親液性のある金属化合物からなり、且つ、ホール注入層4は、バンク5で規定された領域においては、バンク5の底面のレベルよりも沈下した凹部4a(凹入構造)をなすように構成されている。これにより、バンク5に規定される領域内では、製造時に安定してインクの液滴を収めることができる。また、インクの乾燥工程においても、いずれかのバンク5側に偏ってインクが乾燥することが防止され、均一な膜厚の有機発光層6を形成でき、発光ムラに起因する発光素子及び発光装置の短寿命化を防止できる。
 さらに、本実施の形態では、ホール注入層4の凹部4aの縁がバンク5の一部で被覆されていることによっても、発光面内における局所的な発光を防止し、所望する発光領域全体にわたる均一な発光を期待できる。このように発光面内に発光に寄与しない領域が形成されることがないため、発光層で生じた光は上面及び下面の双方にわたって優れた発光効率で外部に取り出される(図1の矢印参照)。その結果、両面発光素子の背景を透過させることなく、所望する発光あるいは表示を実現できるようになっている。
 <発光素子の製造方法>
 図8は、第1の実施形態に係る発光素子の製造方法を説明する工程図であり、図9は、図8に続く第1の実施形態に係る発光素子の製造方法を説明する工程図である。
 第1の実施形態に係る発光素子の製造工程では、まず、図8(a)に示すように、ガラス製の基板1上に真空プロセスを用いて第1電極2を形成する。真空プロセスとしては、真空蒸着法、スパッタリング、電子ビーム法、CVD法、イオンプレーティング等、公知のプロセスを利用できる。このうちスパッタリングによりAg薄膜を形成する場合は、例えば公知のDCマグネトロンスパッタリング方式を利用したスパッタリング装置を用いる。チャンバーにアルゴンガス等の不活性ガスを所定圧力(例えば3×10-1Pa)で満たし、基板1の表面に一様に成膜する。その後、Ag薄膜をフォトリソグラフィでパターニングすることによりマトリックス状に第1電極2を形成する。
 或いは、真空蒸着法による場合は、抵抗加熱式が好適である。具体的には所定の透明電極材料を入れた蒸着ペレット、または粒子を真空蒸着装置の抵抗加熱ボートまたは抵抗加熱フィラメントに入れる。そして、所定の基板ホルダーに基板1を取り付け、チャンバー内を5×10-4Paまで減圧し、基板温度を10~100℃程度に加熱し、蒸着速度を20nm/sec以下に設定して成膜実施する。その後は上記のように、成膜された蒸着膜についてパターニングを行う。
 次に、図8(b)に示すように、基板1上に、真空プロセスを用いて第1電極2を形成する。真空プロセスとしては、真空蒸着法、スパッタリング、電子ビーム法、CVD法、イオンプレーティング等、公知のプロセスを利用できる。このうちスパッタリングによりAg薄膜を形成する場合は、例えば公知のDCマグネトロンスパッタリング方式を利用したスパッタリング装置を用いる。チャンバーにアルゴンガス等の不活性ガスを所定圧力(例えば3×10-1Pa)で満たし、基板1の表面に一様に成膜する。例えばと同様の真空プロセス(例えばスパッタリング)によりITO薄膜を形成し、当該ITO薄膜を例えばフォトリソグラフィによりパターニングすることによりITO層3を形成する。
 続いて、所定の溶剤に対して溶解可能である金属化合物を含む薄膜11を形成する。例えば、WOx又はMoWOxを含む組成物を用いて、真空蒸着法、スパッタ法などによって、基板1の上面側全体に亘って均一な膜厚となるように、WOx又はMoWOxの薄膜11を形成する。
 次に、図8(c)に示すように、例えばフォトリソグラフィ法によって各ピクセル領域(第1電極2が配置された領域)を取り囲むようにバンク5を形成する。
その場合、例えば、薄膜11上に塗布等によりバンク材料としてのレジスト材料を含むバンク膜としてのレジスト膜(例えば感光性有機樹脂膜)を形成し、さらに当該レジスト膜を露光して露光パターンとしてのレジストパターンを形成し、その後、所定の現像液(テトラメチルアンモニウムハイドロキシオキサイド(TMAH)溶液等)を用いた現像法により現像処理としてエッチング処理し、レジスト膜の所望の部位を除去しバンク5のパターンを形成する。この後、必要に応じ、中性洗剤(或いは水系もしくは非水系の剥離剤)と純水を用いて洗浄処理し、レジスト残渣を除去しても良い。なお、バンク5を無機物材料で形成する場合は、例えばCVD法等を用いる。エッチング後に残った薄膜11の表面に付着するレジスト残渣は、例えばフッ酸等で除去する。さらに、必要に応じてバンク5の表面に撥液処理を施す。
 次に、図8(d)に示すように、薄膜11の一部を溶かして凹入部4aを形成しホール注入層4とする。これにより、ホール注入層4は、バンク5で規定された領域だけが他の領域よりも膜厚が薄い構成となる。ここで薄膜11は、純水やTMAH溶液に溶けやすい性質を持つ。従って凹入部4aの形成は、例えば、レジスト残渣除去後のバンク5表面に残留するフッ酸等の不純物を純水で洗浄する純水洗浄の際に、その純水で薄膜11上面におけるバンク5で規定された領域を溶かすことによって行う。その場合、所定の溶剤とは純水であり、凹入部4aの深さ及び形状は純水洗浄の条件を変えることにより適宜調整可能である。
 具体的な方法としては、例えば、スピンコーターで基板1を回転させておき、回転中の基板1上に純水(例えば室温)を垂らして洗浄する。その後、基板1を回転させ続けながら純水を垂らすのを止めて水を切る。この場合、純水を垂らす時間により凹入部4aの深さ及び形状を調節可能である。また、薄膜11の溶解速度は純水の温度によっても変わるため、純水の温度によって凹入部4aの深さ及び形状を調節することも可能である。
 凹入部4aの形成方法は上記に限定されない。例えば、バンク5を形成後、薄膜11の表面に付着するレジスト残渣を純水等の洗浄液を用いて洗浄すると共に、前記洗浄液により前記薄膜11の一部を溶解させて凹入部4aを形成しても良い。その場合、所定の溶剤とは洗浄液である。また、現像液により、レジスト膜をエッチング処理してバンク5を形成すると共に、前記現像液により薄膜11の表面に付着するレジスト残渣を洗浄し、かつ、前記薄膜11の一部を溶解させて凹入部4aを形成しても良い。その場合、現像液が所定の溶剤である。
 バンク形成処理の際に用いられる洗浄液や現像液などの溶剤を用いて薄膜11を溶解させホール注入層4を形成する場合は、凹入部4aを形成するために別途に所定の溶剤を用いる必要がなく、また、前記凹入部4aを形成するための追加の工程を実施する必要もないため、生産効率が良い。
 なお、凹入部4aの形成は上記所定の溶剤を用いる場合に限定されず、例えば、まず、スパッタとフォトリソを用いて第1電極2が配置された領域を除いた全ての領域にWOx又はMoWOxの薄膜を形成し、その上から全ての領域にWOx又はMoWOxの薄膜を形成することによって、第1電極2が配置された領域に凹型のホール注入層4を形成する等他の方法で行っても良い。
 次に、図9(e)に示すように、バンク5で規定された領域内に例えばインクジェット法によりインクを滴下し、そのインクをホール注入層4の内底面4cおよび内側面4dに沿って塗布して乾燥させて発光層6を形成する。なお、ディスペンサー法、ノズルコート法、スピンコート法、凹版印刷、凸版印刷等によりインクを滴下しても良い。
 次に、図9(f)に示すように、例えば真空蒸着により電子注入層7となるバリウム薄膜を形成する。その後図9(g)に示すように、例えば第1電極2と同様の真空プロセス(例えばスパッタリング)により第2電極8となるITO薄膜を形成する。なお、この時点では発光層6が形成されているため、熱的影響や簡便性を考慮すると、基板1の加熱温度が比較的低いスパッタリングや真空蒸着法で第2電極8を成膜することが好適である。但し、スパッタリングに伴って発生するプラズマによって、発光層6が損傷しないように成膜強度に留意する。
 次に、図9(h)に示すように、さらに封止層9を形成する。
 上記製造方法によれば、一旦、一様な厚みの薄膜11を形成した後、現像液または純水を用いたレジスト残渣の洗浄時において、その表面部分を一部溶解させ、凹入構造を持つように形成することで、発光領域における厚み部分を薄くし、ホール注入4を形成する。このように、実際の成膜プロセスにおいては、最初から薄い膜を形成するよりも、一旦厚い膜を形成し、その後、厚みを調節する方が、安定した生産性を発揮できる。
 すなわち一般に、成膜プロセスにおいて非常に薄い膜を成膜する場合には、成膜開始から終了までを比較的短い時間で実施する必要があるが、このような薄い膜は、膜厚、膜質等が安定せず、バラツキが生じやすい。これは、成膜条件が安定するまでの時間(例えばスパッタ法では、放電によってチャンバー内にプラズマを生成し、プラズマ状態が安定するまでの時間)においても成膜がなされるため、この時間内に成膜された不安定な特性を持つ膜の厚みの全膜厚に占める割合が大きくなるからである。これに対し上記製造方法によれば、最初に一定の厚みの薄膜11を形成した後、部分的に表面を溶解させて凹入構造を形成することにより、電荷注入輸送性能に優れ、かつ発光領域では膜厚の薄いホール注入層4を効率よく作製できるので有利である。
 [第2の実施形態]
 第2の実施形態に係る発光素子は、ホール注入層の下にITO層が形成されていない点、及び、ホール注入層の上に保護膜が形成される点が、第1の実施形態に係る発光素子とは大きく異なる。以下では、第1の実施形態と異なる点について重点的に説明し、第1の実施形態と同様の点ついては重複を避けるため説明を簡略若しくは省略する。
 <発光素子の構成>
 図10は、第2の実施形態に係る発光素子の各層の積層状態を示す模式図である。図10に示すように、第2の実施形態に係る発光素子は、基板101上に陽極である第1電極102が形成されており、その上に電荷注入輸送層としてのホール注入層104及び保護層110がその順で積層されている。なお、ホール注入層104が基板101の上面側全体に亘って形成されているのに対し、保護層110は第1電極102の上方には形成されていない。また、第1電極102とホール注入層104との間にITO層は介在していない。
 ホール注入層104上にはピクセルを区画するバンク105が形成されており、バンク105で区画された領域内に発光層106が積層され、発光層106の上には、電子注入層107、陰極である第2電極108及び封止層109が、それぞれバンク105で区画された領域を超えて隣のピクセルのものと連続するように形成されている。
 <発光素子の製造方法>
 図11は、第2の実施形態に係る発光素子の製造方法を説明する工程図である。第2の実施形態に係る発光素子の製造工程では、まず、図11(a)に示すように、ガラス製の基板101上にAl(アルミニウム)系の材料で第1電極102を形成し、その上に、後にホール注入層104となるWOx又はMoWOxの薄膜111を形成し、さらにその上に、後に保護層110となるWOx又はMoWOxの薄膜112を形成する。当該薄膜112はバンク105形成時のエッチングの際にホール注入層104を保護する機能を有する。
 次に、図11(b)に示すように、薄膜112上にバンク105を形成する。具体的には、薄膜112上にレジスト材料を含むレジスト膜を形成し、さらに当該樹脂膜上にレジストパターンを形成し、その後現像液によりエッチング処理してレジスト膜の所望の部位を除去し、バンク105のパターンを形成する。なお、形成後のバンク105表面に残ったフッ酸等の不純物は純水等の洗浄液で洗浄し除去するが、その洗浄液によって薄膜112の上面におけるバンク105で規定された領域が溶けて沈下する。
 さらに、図11(c)に示すように、洗浄液による処理を続けると、薄膜112のバンク105で規定された領域の全てが溶けて保護層110の状態になる。そして、薄膜112が溶けたことによって薄膜111が露出するため、当該薄膜111の上面におけるバンク105で規定された領域が溶けて沈下し、凹入部104aが形成される。このようにしてホール注入層104が形成される。
 次に、図11(d)に示すように、バンク105で規定された領域内に発光層106を形成する。その後の工程は第1の実施形態に係る工程と同じであるため省略する。
 [第3の実施形態]
 第3の実施形態に係る発光素子は、ホール注入層が形成されている領域が、第2の実施形態に係る発光素子とは大きく異なる。以下では、第2の実施形態と異なる点について重点的に説明し、第2の実施形態と同様の点ついては重複を避けるため説明を簡略若しくは省略する。
 <発光素子の構成>
 図12は、第3の実施形態に係る発光素子の各層の積層状態を示す模式図である。図12に示すように、第3の実施形態に係る発光素子は、基板201上に陽極である第1電極202が形成されており、その上に電荷注入輸送層としてのホール注入層204及び保護層210がその順で積層されている。ホール注入層204は、基板1の上面全体に亘って形成されておらず、第1電極202上及び当該第1電極202の周辺部のみに形成されている。一方、保護層210は第1電極202の上方には形成されていない。
 ホール注入層204上にはピクセルを区画するバンク205が形成されており、バンク205で区画された領域内に発光層206が積層され、発光層206の上には、電子注入層207、陰極である第2電極208及び封止層209が、それぞれバンク205で区画された領域を超えて隣のピクセルのものと連続するように形成されている。
 <発光素子の製造方法>
 図13は、第3の実施形態に係る発光素子の製造方法を説明する工程図である。第3の実施形態に係る発光素子の製造工程では、まず、図13(a)に示すように、ガラス製の基板101上にAl系の材料で第1電極102を形成し、次に、第1電極102の露出面(上面及び側面)を酸化させることによってホール注入層204となる酸化膜211を形成し、さらにその上に、後に保護層210となるWOx又はMoWOxの薄膜212を形成する。
 次に、図13(b)に示すように、薄膜212上にバンク205を形成する。バンク205表面に残ったフッ酸等の不純物は純水等の洗浄液で洗浄し除去するが、その洗浄液によって薄膜212上面のバンク205で規定された領域が溶けて沈下する。
 さらに、図13(c)に示すように、洗浄液による処理を続けると、薄膜212はバンク205で規定された領域が全て溶けて最終形態である保護層210の状態になる。また、薄膜212が溶けたことによって酸化膜211のバンク205で規定された領域が露出するため、その領域の上面も溶けて沈下し、凹入部204aが形成される。このようにしてホール注入層204が形成される。
 次に、図13(d)に示すように、バンク205で規定された領域内に発光層206を形成する。その後の工程は第1の実施形態に係る工程と同じであるため省略する。
 [第4の実施形態]
 図14は、第4の実施形態に係る表示装置等を示す斜視図である。図14に示すように、本発明の一態様に係る表示装置300は、R、G、又はBの光を出射する各ピクセルが行方向及び列方向にマトリックス状に規則的に配置されてなる有機ELディスプレイであって、各ピクセルが本発明の一態様に係る発光素子で構成されている。ここで、当該表示装置300は両面からの画像表示を見ることが可能である。
 [変形例]
 以上、本実施の形態に係る発光素子、表示装置、および発光素子の製造方法を実施の形態に基づいて具体的に説明してきたが、本発明の一態様に係る発光素子、表示装置、および発光素子の製造方法は、上記の実施の形態に限定されない。
 例えば、電荷注入輸送層は、ホール注入層に限定されず、ホール輸送層、ホール注入兼輸送層であっても良い。また、第1電極が陰極、第2電極が陽極であっても良く、その場合は、電荷注入輸送層が電子注入層、電子輸送層、又は電子注入兼輸送層であっても良い。
 本発明は、平面光源及びフラットディスプレイ等に用いられる有機EL表示装置に利用可能である。
 2、102、102 第1電極
 4、104、204 電荷注入輸送層
 4a 凹入部
 4c 凹入部の内底面
 4d 凹入部の内側面
 4e 上部側の端縁
 5、105、205 バンク
 5a バンクの底面
 5d バンクの下端縁
 6、106、206 発光層
 6a 発光層の底面
 6b 発光層の側面
 8、108、208 第2電極
 300 表示装置

Claims (32)

  1.  第1電極、電荷注入輸送層、発光層を含む機能層、第2電極がこの順に積層され、少なくとも前記発光層がバンクにより規定され、前記第1電極側と前記第2電極側の双方から光を取り出す両面発光型の発光素子であって、
     前記第1電極と前記第2電極とは透明電極からなり、
     前記バンクは少なくともその表面が撥液性となっており、一方、前記電荷注入輸送層は前記バンクの表面と比較して親液性のある金属化合物からなり、
     且つ、前記電荷注入輸送層は、バンクで規定された領域においてはバンク底面のレベルよりも沈下した凹入構造に形成されている
     発光素子。
  2.  前記電荷注入輸送層は、金属の酸化物、窒化物、または酸窒化物からなる正孔注入層である
     請求項1に記載の発光素子。
  3.  前記機能層は、前記正孔注入層から前記発光層に正孔を輸送する正孔輸送層を含み、
     前記正孔輸送層は、前記正孔注入層と前記発光層との間に介在する、
     請求項2に記載の発光素子。
  4.  前記透明電極は、ITOまたはIZOである、
     請求項1~3のいずれかに記載の発光素子。
  5.  前記第1電極または前記第2電極の少なくともいずれか一方に、半透明もしくは透明な金属薄膜を積層する、
     請求項1~4のいずれかに記載の発光素子。
  6.  前記半透明もしくは透明な金属薄膜は、Ag、Mg、Al、Pt、Pd、Au、Ni、Ir、及びCrより選択されるいずれかを含む金属膜であって、その膜厚は3nmから30nmである、
     請求項5に記載の発光素子。
  7.  前記凹入構造はカップ状である
    請求項1に記載の発光素子。
  8.  前記凹入構造はバンクの下端縁相当部位から沈下した構造である
     請求項1に記載の発光素子。
  9.  前記発光層は、高分子材料からなる層を含む
    請求項1に記載の発光素子。
  10.  前記電荷注入輸送層は、バンク底面に沿って隣のピクセル方向に拡がっている
    請求項1に記載の発光素子。
  11.  第1電極、電荷注入輸送層、発光層を含む機能層、第2電極がこの順に積層され、少なくとも前記発光層がバンクにより規定され、前記第1電極側と前記第2電極側の双方から光を取り出す両面発光型の発光素子であって、
     前記第1電極と前記第2電極とは透明電極からなり、
     前記電荷注入輸送層は、所定の溶剤に対して溶解可能である金属化合物を含み、
    前記所定の溶剤により溶解されて形成されている凹入部を有し、
     前記電荷注入輸送層の前記凹入部は、
     前記機能層の底面に接触する内底面と、
     前記内底面に連続し、前記機能層の側面の少なくとも一部に接触する内側面と、
     を有する発光素子。
  12.  前記電荷注入輸送層は、金属の酸化物、窒化物、または酸窒化物からなる正孔注入層である
     請求項11に記載の発光素子。
  13.  前記金属酸化物は、タングステンまたはモリブテンの酸化物である
    請求項11に記載の発光素子。
  14.  前記機能層は、前記正孔注入層から前記発光層に正孔を輸送する正孔輸送層を含み、
     前記正孔輸送層は、前記正孔注入層と前記発光層との間に介在する
     請求項12または13に記載の発光素子。
  15.  前記透明電極は、ITOまたはIZOである、
     請求項11~14のいずれかに記載の発光素子。
  16.  前記第1電極または前記第2電極の少なくともいずれか一方に、半透明もしくは透明な金属薄膜を積層する、
     請求項11~15のいずれかに記載の発光素子。
  17.  前記半透明もしくは透明な金属薄膜は、Ag、Mg、Al、Pt、Pd、Au、Ni、Ir、及びCrより選択されるいずれかを含む金属膜であって、
     その膜厚は3nmから30nmである、
     請求項16に記載の発光素子。
  18.  前記電荷注入輸送層は親液性を有し、前記バンクは溌液性を有する
    請求項11に記載の発光素子。
  19.  前記所定の溶剤は、前記バンクを形成する際に使用する現像液、または/および、前記バンク形成後に残留する残渣を洗浄するための洗浄液である
    請求項11に記載の発光素子。
  20.  請求項1~19のいずれかに記載の発光素子を含む表示装置。
  21.  基板上に透明電極からなる第1電極を形成する第1工程と、
     前記第1電極の上方に、所定の溶剤に対して溶解可能である金属化合物を含む薄膜を形成する第2工程と、
     前記薄膜上に、レジスト材料を含むレジスト膜を形成し、現像液によりエッチング処理し、バンクを形成する第3工程と、
     前記バンクを形成後、前記薄膜表面に付着するレジスト残渣を、洗浄液を用いて洗浄すると共に、前記洗浄液により前記薄膜の一部を溶解させ、内底面と前記内底面に連続する内側面とを備える凹入部を有する電荷注入輸送層を形成する第4工程と、
     前記バンクにより規定された領域内にインクを滴下し、前記電荷注入輸送層の前記内底面および前記内側面に沿って塗布させて乾燥させ、機能層を形成する第5工程と、
     前記機能層の上方に、透明電極からなる第2電極を形成する第6工程と、
    を有する発光素子の製造方法。
  22.  前記電荷注入輸送層は、金属の酸化物、窒化物、または酸窒化物からなる正孔注入層である
    請求項21に記載の発光素子の製造方法。
  23.  前記機能層は、前記正孔注入層から前記発光層に正孔を輸送する正孔輸送層を含み、
     前記正孔輸送層を、前記正孔注入層と前記発光層との間に介在させる
     請求項22に記載の発光素子の製造方法。
  24.  前記透明電極は、ITOまたはIZOである、
     請求項21~23のいずれかに記載の発光素子の製造方法。
  25.  前記第1電極または前記第2電極の少なくともいずれか一方に、半透明もしくは透明な金属薄膜を積層する工程を含む、
     請求項21~24のいずれかに記載の発光素子の製造方法。
  26.  前記半透明もしくは透明な金属薄膜を、Ag、Mg、Al、Pt、Pd、Au、Ni、Ir、及びCrより選択されるいずれかを含む金属膜で構成し、
     その膜厚を3nmから30nmとする
     請求項25に記載の発光素子の製造方法。
  27.  基板上に透明電極からなる第1電極を形成する第1工程と、
     前記第1電極の上方に、所定の溶剤に対して溶解可能である金属化合物を含む薄膜を形成する第2工程と、
     前記薄膜上に、レジスト材料を含むレジスト膜を形成し、現像液によりエッチング処理し、バンクを形成すると共に、前記現像液により薄膜表面に付着するレジスト残渣を洗浄し、かつ、前記薄膜の一部を溶解させ、内底面と前記内底面に連続する内側面とを備える凹入部を有する電荷注入輸送層を形成する第3工程と、
     前記バンクにより規定された領域内にインクを滴下し、前記電荷注入輸送層の前記内底面および前記内側面に沿って塗布させて乾燥させ、機能層を形成する第4工程と、
     前記機能層の上方に、透明電極からなる第2電極を形成する第5工程と、
     を有する発光素子の製造方法。
  28.  前記電荷注入輸送層は、金属の酸化物、窒化物、または酸窒化物からなる正孔注入層である
     請求項27に記載の発光素子の製造方法。
  29.  前記機能層は、前記正孔注入層から前記発光層に正孔を輸送する正孔輸送層を含み、
     前記正孔輸送層を、前記正孔注入層と前記発光層との間に介在させる
     請求項28に記載の発光素子の製造方法。
  30.  前記透明電極は、ITOまたはIZOである、
     請求項27~29のいずれかに記載の発光素子の製造方法。
  31.  前記第1電極または前記第2電極の少なくともいずれか一方に、半透明もしくは透明な金属薄膜を積層する工程を含む、
     請求項27~30のいずれかに記載の発光素子の製造方法。
  32.  前記半透明もしくは透明な金属薄膜を、Ag、Mg、Al、Pt、Pd、Au、Ni、Ir、及びCrより選択されるいずれかを含む金属膜で構成し、
     その膜厚を3nmから30nmとする
     請求項31に記載の発光素子の製造方法。
PCT/JP2010/004956 2010-08-06 2010-08-06 発光素子、表示装置、および発光素子の製造方法 WO2012017487A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2010/004956 WO2012017487A1 (ja) 2010-08-06 2010-08-06 発光素子、表示装置、および発光素子の製造方法
JP2012527465A JP5620494B2 (ja) 2010-08-06 2010-08-06 発光素子、表示装置、および発光素子の製造方法
US13/721,202 US8563994B2 (en) 2010-08-06 2012-12-20 Light-emitting element, display device, and method for producing light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/004956 WO2012017487A1 (ja) 2010-08-06 2010-08-06 発光素子、表示装置、および発光素子の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/721,202 Continuation US8563994B2 (en) 2010-08-06 2012-12-20 Light-emitting element, display device, and method for producing light-emitting element

Publications (1)

Publication Number Publication Date
WO2012017487A1 true WO2012017487A1 (ja) 2012-02-09

Family

ID=45559021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004956 WO2012017487A1 (ja) 2010-08-06 2010-08-06 発光素子、表示装置、および発光素子の製造方法

Country Status (3)

Country Link
US (1) US8563994B2 (ja)
JP (1) JP5620494B2 (ja)
WO (1) WO2012017487A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6470477B1 (ja) * 2017-11-28 2019-02-13 堺ディスプレイプロダクト株式会社 有機el発光素子及びその製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI515936B (zh) * 2011-12-15 2016-01-01 友達光電股份有限公司 發光裝置及其製作方法
TWI612656B (zh) * 2013-08-19 2018-01-21 友達光電股份有限公司 雙面發光式顯示面板
TWI566353B (zh) * 2013-08-21 2017-01-11 精材科技股份有限公司 半導體結構及其製造方法
CN103928497B (zh) * 2014-04-01 2016-07-13 京东方科技集团股份有限公司 Oled显示器件及其制作方法、显示装置
KR102475504B1 (ko) * 2015-08-20 2022-12-09 엘지디스플레이 주식회사 투명표시패널 및 이를 포함하는 투명표시장치
KR102536628B1 (ko) * 2015-08-24 2023-05-26 엘지디스플레이 주식회사 투명표시장치
US10304813B2 (en) * 2015-11-05 2019-05-28 Innolux Corporation Display device having a plurality of bank structures
KR102446139B1 (ko) * 2017-12-06 2022-09-22 삼성디스플레이 주식회사 발광 다이오드 장치 및 이의 제조 방법
CN109509782B (zh) * 2019-01-02 2022-09-16 京东方科技集团股份有限公司 像素界定层及其制造方法、自发光显示面板、显示装置
KR102715038B1 (ko) * 2019-07-01 2024-10-10 삼성전자주식회사 발광 화합물, 이의 제조 방법 및 이를 포함하는 발광 소자
KR20210055829A (ko) * 2019-11-07 2021-05-18 삼성디스플레이 주식회사 표시 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005267926A (ja) * 2004-03-17 2005-09-29 Japan Science & Technology Agency 両面発光有機elパネル
WO2008149498A1 (ja) * 2007-05-31 2008-12-11 Panasonic Corporation 有機el素子、およびその製造方法
JP2010010670A (ja) * 2008-05-28 2010-01-14 Panasonic Corp 発光装置及びその製造方法
JP2010050107A (ja) * 2008-02-28 2010-03-04 Panasonic Corp 有機elディスプレイパネル
JP2010103374A (ja) * 2008-10-24 2010-05-06 Panasonic Corp 有機エレクトロルミネッセンス素子及びその製造方法

Family Cites Families (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443922A (en) 1991-11-07 1995-08-22 Konica Corporation Organic thin film electroluminescence element
JPH05163488A (ja) 1991-12-17 1993-06-29 Konica Corp 有機薄膜エレクトロルミネッセンス素子
US5294869A (en) 1991-12-30 1994-03-15 Eastman Kodak Company Organic electroluminescent multicolor image display device
US5688551A (en) 1995-11-13 1997-11-18 Eastman Kodak Company Method of forming an organic electroluminescent display panel
DE69729394T2 (de) 1996-11-29 2005-06-02 Idemitsu Kosan Co. Ltd. Organische elektrolumineszente Vorrichtung
JPH10162959A (ja) 1996-11-29 1998-06-19 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP3782245B2 (ja) 1998-10-28 2006-06-07 Tdk株式会社 有機el表示装置の製造装置及び製造方法
US6309801B1 (en) 1998-11-18 2001-10-30 U.S. Philips Corporation Method of manufacturing an electronic device comprising two layers of organic-containing material
JP4198253B2 (ja) 1999-02-02 2008-12-17 出光興産株式会社 有機エレクトロルミネッセンス素子およびその製造方法
JP2002075661A (ja) 2000-08-31 2002-03-15 Fujitsu Ltd 有機el素子及び有機el表示装置
US7153592B2 (en) 2000-08-31 2006-12-26 Fujitsu Limited Organic EL element and method of manufacturing the same, organic EL display device using the element, organic EL material, and surface emission device and liquid crystal display device using the material
JP2002318556A (ja) 2001-04-20 2002-10-31 Toshiba Corp アクティブマトリクス型平面表示装置およびその製造方法
US6900470B2 (en) 2001-04-20 2005-05-31 Kabushiki Kaisha Toshiba Display device and method of manufacturing the same
EP1388180A2 (en) 2001-05-18 2004-02-11 Cambridge University Technical Services Limited Electroluminescent device
JP2003007460A (ja) 2001-06-22 2003-01-10 Sony Corp 表示装置の製造方法および表示装置
JP3823916B2 (ja) 2001-12-18 2006-09-20 セイコーエプソン株式会社 表示装置及び電子機器並びに表示装置の製造方法
JP2003264083A (ja) 2002-03-08 2003-09-19 Sharp Corp 有機led素子とその製造方法
JP4216008B2 (ja) 2002-06-27 2009-01-28 株式会社半導体エネルギー研究所 発光装置およびその作製方法、ならびに前記発光装置を有するビデオカメラ、デジタルカメラ、ゴーグル型ディスプレイ、カーナビゲーション、パーソナルコンピュータ、dvdプレーヤー、電子遊技機器、または携帯情報端末
JP4165173B2 (ja) 2002-10-15 2008-10-15 株式会社デンソー 有機el素子の製造方法
GB0224121D0 (en) 2002-10-16 2002-11-27 Microemissive Displays Ltd Method of patterning a functional material on to a substrate
JP2004228355A (ja) 2003-01-23 2004-08-12 Seiko Epson Corp 絶縁膜基板の製造方法、絶縁膜基板の製造装置及び絶縁膜基板並びに電気光学装置の製造方法及び電気光学装置
JP2004234901A (ja) 2003-01-28 2004-08-19 Seiko Epson Corp ディスプレイ基板、有機el表示装置、ディスプレイ基板の製造方法および電子機器
DE602004015103D1 (de) 2003-05-12 2008-08-28 Cambridge Entpr Ltd Herstellung einer polymeren vorrichtung
WO2004100281A1 (en) 2003-05-12 2004-11-18 Cambridge University Technical Services Limited Polymer transistor
JP2005012173A (ja) 2003-05-28 2005-01-13 Seiko Epson Corp 膜パターン形成方法、デバイス及びデバイスの製造方法、電気光学装置、並びに電子機器
JP2004363170A (ja) 2003-06-02 2004-12-24 Seiko Epson Corp 導電パターンの形成方法、電気光学装置、電気光学装置の製造方法および電子機器
US20090160325A1 (en) 2003-12-16 2009-06-25 Panasonic Corporation Organic electroluminescent device and method for manufacturing the same
US7785718B2 (en) 2003-12-16 2010-08-31 Panasonic Corporation Organic electroluminescent device and method for manufacturing the same
JP2005203339A (ja) 2003-12-16 2005-07-28 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子およびその製造方法
JP2005203340A (ja) 2003-12-16 2005-07-28 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子
JP4857521B2 (ja) 2004-01-09 2012-01-18 セイコーエプソン株式会社 電気光学装置の製造方法、電気光学装置、及び電子機器
JP2005268099A (ja) 2004-03-19 2005-09-29 Mitsubishi Electric Corp 有機el表示パネル、有機el表示装置、および有機el表示パネルの製造方法
JP4645064B2 (ja) 2004-05-19 2011-03-09 セイコーエプソン株式会社 電気光学装置の製造方法
US7211456B2 (en) 2004-07-09 2007-05-01 Au Optronics Corporation Method for electro-luminescent display fabrication
US7910271B2 (en) 2004-10-13 2011-03-22 Sharp Kabushiki Kaisha Functional substrate
JP2006185869A (ja) 2004-12-28 2006-07-13 Asahi Glass Co Ltd 有機電界発光素子及びその製造方法
JP2006253443A (ja) 2005-03-11 2006-09-21 Seiko Epson Corp 有機el装置、その製造方法および電子機器
JP2006294261A (ja) 2005-04-05 2006-10-26 Fuji Electric Holdings Co Ltd 有機el発光素子およびその製造方法
JP2006344459A (ja) 2005-06-08 2006-12-21 Sony Corp 転写方法および転写装置
TWI307612B (en) 2005-04-27 2009-03-11 Sony Corp Transfer method and transfer apparatus
US7994711B2 (en) 2005-08-08 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
JP2007073499A (ja) 2005-08-08 2007-03-22 Semiconductor Energy Lab Co Ltd 発光装置およびその作製方法
JP2007095606A (ja) * 2005-09-30 2007-04-12 Seiko Epson Corp 有機el装置、その製造方法、及び電子機器
KR100643376B1 (ko) 2005-10-24 2006-11-10 삼성전자주식회사 표시장치와 표시장치의 제조방법
JP4318689B2 (ja) 2005-12-09 2009-08-26 出光興産株式会社 n型無機半導体、n型無機半導体薄膜及びその製造方法
JP4251331B2 (ja) 2005-12-27 2009-04-08 カシオ計算機株式会社 表示装置の製造装置及び表示装置の製造方法
JP2007214066A (ja) 2006-02-13 2007-08-23 Seiko Epson Corp 有機エレクトロルミネセンス装置の製造方法
JP2007288071A (ja) 2006-04-19 2007-11-01 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子およびその製造方法、それを用いた表示装置、露光装置
US20070241665A1 (en) 2006-04-12 2007-10-18 Matsushita Electric Industrial Co., Ltd. Organic electroluminescent element, and manufacturing method thereof, as well as display device and exposure apparatus using the same
JP2007288074A (ja) 2006-04-19 2007-11-01 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子およびその製造方法
JP2007287353A (ja) 2006-04-12 2007-11-01 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子の製造方法およびそれを用いて作成された有機エレクトロルミネッセント素子
JP2008041747A (ja) 2006-08-02 2008-02-21 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント発光装置およびその製造方法
US20070290604A1 (en) 2006-06-16 2007-12-20 Matsushita Electric Industrial Co., Ltd. Organic electroluminescent device and method of producing the same
JP4915650B2 (ja) 2006-08-25 2012-04-11 パナソニック株式会社 有機エレクトロルミネッセンス素子
JP2008091072A (ja) 2006-09-29 2008-04-17 Seiko Epson Corp 電気光学装置、およびその製造方法
JP4915913B2 (ja) 2006-11-13 2012-04-11 パナソニック株式会社 有機エレクトロルミネッセンス素子
JP2008140724A (ja) 2006-12-05 2008-06-19 Toppan Printing Co Ltd 有機el素子の製造方法および有機el素子
WO2008075615A1 (en) 2006-12-21 2008-06-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
JP5326289B2 (ja) 2007-03-23 2013-10-30 凸版印刷株式会社 有機el素子およびそれを備えた表示装置
JP5333211B2 (ja) 2007-03-29 2013-11-06 大日本印刷株式会社 有機エレクトロルミネッセンス素子及びその製造方法
JP2009004347A (ja) 2007-05-18 2009-01-08 Toppan Printing Co Ltd 有機el表示素子の製造方法及び有機el表示素子
JP4328384B2 (ja) 2007-05-30 2009-09-09 パナソニック株式会社 有機elディスプレイパネルおよびその製造方法
KR101581475B1 (ko) * 2007-07-31 2015-12-30 스미또모 가가꾸 가부시키가이샤 유기 전계발광 소자 및 그의 제조 방법
JP5001745B2 (ja) 2007-08-10 2012-08-15 住友化学株式会社 有機エレクトロルミネッセンス素子及び製造方法
JP2009048960A (ja) 2007-08-23 2009-03-05 Canon Inc 電極洗浄処理方法
JP2009058897A (ja) 2007-09-03 2009-03-19 Hitachi Displays Ltd 表示装置
JP4410313B2 (ja) 2007-12-10 2010-02-03 パナソニック株式会社 有機elデバイスおよびelディスプレイパネル、ならびにそれらの製造方法
JP4439589B2 (ja) 2007-12-28 2010-03-24 パナソニック株式会社 有機elデバイスおよび有機elディスプレイパネル、ならびにそれらの製造方法
JP2009218156A (ja) 2008-03-12 2009-09-24 Casio Comput Co Ltd Elパネル及びelパネルの製造方法
JP5267246B2 (ja) 2008-03-26 2013-08-21 凸版印刷株式会社 有機エレクトロルミネッセンス素子及びその製造方法並びに有機エレクトロルミネッセンス表示装置
JP2009239180A (ja) 2008-03-28 2009-10-15 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子
JP4931858B2 (ja) 2008-05-13 2012-05-16 パナソニック株式会社 有機エレクトロルミネッセント素子の製造方法
JP4678421B2 (ja) 2008-05-16 2011-04-27 ソニー株式会社 表示装置
JP2008241238A (ja) 2008-05-28 2008-10-09 Mitsubishi Electric Corp 冷凍空調装置及び冷凍空調装置の制御方法
JP2010021138A (ja) 2008-06-09 2010-01-28 Panasonic Corp 有機エレクトロルミネッセント装置およびその製造方法
JP5199773B2 (ja) * 2008-07-30 2013-05-15 住友化学株式会社 有機エレクトロルミネッセンス素子およびその製造方法
JP4723692B2 (ja) 2008-09-19 2011-07-13 パナソニック株式会社 有機エレクトロルミネッセンス素子及びその製造方法
JP2011040167A (ja) 2008-11-12 2011-02-24 Panasonic Corp 表示装置およびその製造方法
JP2010123716A (ja) 2008-11-19 2010-06-03 Fujifilm Corp 有機電界発光素子
JP4856753B2 (ja) 2008-12-10 2012-01-18 パナソニック株式会社 光学素子および光学素子を具備する表示装置の製造方法
JP4852660B2 (ja) 2008-12-18 2012-01-11 パナソニック株式会社 有機エレクトロルミネッセンス表示装置及びその製造方法
JP2010161185A (ja) 2009-01-08 2010-07-22 Ulvac Japan Ltd 有機el表示装置、有機el表示装置の製造方法
JP5513415B2 (ja) * 2009-02-10 2014-06-04 パナソニック株式会社 発光素子、表示装置、および発光素子の製造方法
EP2398084B1 (en) 2009-02-10 2018-06-06 Joled Inc. Light-emitting element, light-emitting device comprising light-emitting element, and method for manufacturing light-emitting element
JP5437736B2 (ja) 2009-08-19 2014-03-12 パナソニック株式会社 有機el素子
KR101539479B1 (ko) 2009-12-22 2015-07-24 가부시키가이샤 제이올레드 표시 장치와 그 제조 방법
WO2011077477A1 (ja) 2009-12-22 2011-06-30 パナソニック株式会社 表示装置とその製造方法
KR101643009B1 (ko) 2009-12-22 2016-07-27 가부시키가이샤 제이올레드 표시 장치와 그 제조 방법
JP5453303B2 (ja) 2010-02-22 2014-03-26 パナソニック株式会社 発光装置とその製造方法
JP5677437B2 (ja) 2010-08-06 2015-02-25 パナソニック株式会社 有機el素子
CN103053042B (zh) 2010-08-06 2016-02-24 株式会社日本有机雷特显示器 有机el元件及其制造方法
JP5612691B2 (ja) 2010-08-06 2014-10-22 パナソニック株式会社 有機el素子およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005267926A (ja) * 2004-03-17 2005-09-29 Japan Science & Technology Agency 両面発光有機elパネル
WO2008149498A1 (ja) * 2007-05-31 2008-12-11 Panasonic Corporation 有機el素子、およびその製造方法
JP2010050107A (ja) * 2008-02-28 2010-03-04 Panasonic Corp 有機elディスプレイパネル
JP2010010670A (ja) * 2008-05-28 2010-01-14 Panasonic Corp 発光装置及びその製造方法
JP2010103374A (ja) * 2008-10-24 2010-05-06 Panasonic Corp 有機エレクトロルミネッセンス素子及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6470477B1 (ja) * 2017-11-28 2019-02-13 堺ディスプレイプロダクト株式会社 有機el発光素子及びその製造方法
US10937985B2 (en) 2017-11-28 2021-03-02 Sakai Display Products Corporation Organic EL light-emitting element and manufacturing method thereof

Also Published As

Publication number Publication date
US20130119413A1 (en) 2013-05-16
JPWO2012017487A1 (ja) 2013-09-19
US8563994B2 (en) 2013-10-22
JP5620494B2 (ja) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5904471B2 (ja) 発光素子、表示装置、および発光素子の製造方法
JP5620494B2 (ja) 発光素子、表示装置、および発光素子の製造方法
JP5426527B2 (ja) 発光素子とその製造方法、および発光装置
US8927975B2 (en) Light emitting element, method for manufacturing same, and light emitting device
JP5658256B2 (ja) 発光素子とその製造方法、および発光装置
JP5336524B2 (ja) 発光素子の製造方法と発光素子、および発光装置の製造方法と発光装置
JP5620495B2 (ja) 発光素子、発光素子を備えた発光装置および発光素子の製造方法
US20130240854A1 (en) Organic el element, display panel, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855579

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012527465

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10855579

Country of ref document: EP

Kind code of ref document: A1