WO2012016375A1 - 检测多种海水养殖动物病原菌的基因芯片及其应用 - Google Patents

检测多种海水养殖动物病原菌的基因芯片及其应用 Download PDF

Info

Publication number
WO2012016375A1
WO2012016375A1 PCT/CN2010/075677 CN2010075677W WO2012016375A1 WO 2012016375 A1 WO2012016375 A1 WO 2012016375A1 CN 2010075677 W CN2010075677 W CN 2010075677W WO 2012016375 A1 WO2012016375 A1 WO 2012016375A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
probe
vibrio
toxr
chip
Prior art date
Application number
PCT/CN2010/075677
Other languages
English (en)
French (fr)
Inventor
黄倢
李晨
杨冰
王秀华
荆晓艳
张庆利
张宝存
赵培
谢国驷
闫丽
Original Assignee
中国水产科学研究院黄海水产研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国水产科学研究院黄海水产研究所 filed Critical 中国水产科学研究院黄海水产研究所
Priority to CN201080004017.4A priority Critical patent/CN102869785B/zh
Priority to PCT/CN2010/075677 priority patent/WO2012016375A1/zh
Publication of WO2012016375A1 publication Critical patent/WO2012016375A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria

Definitions

  • the invention relates to a detection technology of pathogenic bacteria in marine cultured animals, and particularly relates to a gene chip and application for detecting a plurality of marine cultured animal pathogenic bacteria.
  • Bacterial diseases have an important impact on the health of marine animals and the quality and safety of aquatic products. It can lead to a wide variety of bacteria causing disease in marine aquaculture animals, and multiple infections of microorganisms often occur.
  • Traditional bacterial detection methods are mostly physiological and biochemical identification and 16S. rR A sequencing combines, but the operation is cumbersome and time-consuming, and it is impossible to judge the pathogenicity of microorganisms.
  • Further development of detection methods include indirect fluorescent antibody technology, nucleic acid blot hybridization, PCR detection methods, etc., but none of them can meet the demand for high-throughput detection of multiple pathogens in marine animal diseases.
  • the rapid development of gene chip technology in the 1990s is a fast, sensitive, simple, high-throughput detection technology that can simultaneously and parallelly detect a large number of samples to make up for the above detection methods.
  • the method has been widely used in the fields of gene diagnosis, gene expression analysis, genome research, drug screening, and microbial detection.
  • the existing chips mainly use the highly conserved ribosome sequence or the sequence of some characteristic genes as probes, and are committed to the accurate identification of pathogen species, but lack of favorable evidence and persuasiveness in the virulence analysis of pathogenic bacteria. . It is an urgent need for production and scientific research to invent a detection technology capable of simultaneously detecting a plurality of marine aquaculture animal pathogens at the same time and analyzing the virulence of pathogenic bacteria, and the present invention has been developed in this case.
  • the object of the present invention is to provide a gene chip and an application for detecting a plurality of mariculture animal pathogenic bacteria, which can detect high-throughput multi-stream animal pathogenic bacteria, and can analyze bacterial virulence and genetic chip.
  • the technology is better applied to high-throughput detection of marine cultured animal pathogens.
  • the invention selects common pathogenic bacteria of marine culture animals as detection objects, including:
  • Vibrio anguillarum Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio harveyi, Vibrio fischeri, Vibrio cholerae, Vibrio fluvialis, Vibrio vulnificus, Vibrio cholerae type 01, mimetic Vibrio, Vibrio cholerae;
  • Aeromonas hydrophila Aeromonas aeruginosa, Aeromonas aeruginosa:
  • the characteristic gene is roughly the housekeeping gene, part of the virulence-related gene and the characteristic gene of the pathogen of the pathogen, and the nucleic acid information is as follows (the gene name is followed by the serial number of Genbank):
  • the characteristic genes used to identify Vibrio anguillarum include: toxR gene (AB042547), angM gene (AY312585), empA gene (EU360910), vahl gene (S83534), virA gene ( L08012), virC gene (U17054), fatA gene (AY255699), vac gene (AB004934), flaA gene (L47122), tonB2 gene (AY644719), vah4 gene (AB189397).
  • Vibrio alginolyticus The characteristic genes used to identify Vibrio alginolyticus include: toxR gene (FM202715, AF170882), tlh gene (AY829371), pyrH gene (EU251673), flaA gene (EF125175), dnaJ gene (AB263020) ).
  • the characteristic genes used to identify Vibrio parahaemolyticus include: toxR gene (AB029915), tdh gene (AY044110), trhl gene (M88112), trh2 gene (AB 112353), tlh gene (EF640375), pR72H gene (L03116), vppC gene (DQ479431), spa24 gene (EU185084). lafA gene (L06176).
  • Vibrio harveyi The characteristic genes used to identify Vibrio harveyi include: toxR gene (DQ503438), vhh-l gene (AF217649), vhhA gene (AF293430), pap6 gene (AF508306), dam gene (EF421460) ).
  • Vibrio vulnificus The characteristic genes of Vibrio vulnificus include: toxR gene (AF170883), vvhA gene (AB 1248303, M34670), vvp gene (DQ923325, U48780), vuuA gene (AF156494), vlly gene (U97357 ), gyrB gene (EF642630), tolC gene (DQ296642), rtxE gene (AM293860).
  • toxR gene AF170883
  • vvhA gene AB 1248303, M34670
  • vvp gene DQ923325, U48780
  • vuuA gene AF156494
  • vlly gene U97357
  • gyrB gene EF642630
  • tolC gene DQ296642
  • rtxE gene A293860.
  • the characteristic genes for identifying Non-01 Vibrio cholerae include: toxR gene (DQ774024), stn gene (L03220), recA gene (AF301127), ctxA gene (EU487781), ctxB gene (U25679), ace gene (AF542089), zot gene (AF175708), tagA gene (U12265), mdh gene (EU085335), ompW gene (DQ776044), hlyA gene (X51746), hk gene (DQ775819), flaA gene (DQ774943 ), tcpA gene (EU622529).
  • Vibrio fluvialis include: hupO gene (AY560602), vfh gene (AF348455), vfpA gene (AB071709).
  • the characteristic genes used to identify Vibrw flscheri include: toxR gene (L29053), ampC gene (AY438037), hemolysin gene (AB 105805), vhh/tlh gene (DQ839418), gacA gene
  • the characteristic genes used to identify Vibrio spkndid include: aerV gene (AM157713), als gene (AM157713), vsm gene (DQ987707, EU349013), toxR gene (AY751344).
  • the characteristic genes used to identify Vibrio mimicu ⁇ include: toxR gene (EF693743), vmc gene (AF004832), vmhA gene (U68271), hlyA gene (EF187437), mhuA gene (AB048382), mhuB gene ( AB048382), zot gene (AF207857).
  • (11) Including the characteristic genes that can be used to identify Vibrio salmonicida include: luxC gene (AF452135), luxD gene (AF452135), luxE gene (AF452135), luxl gene (AF452135), toxR gene (FM178379).
  • Aeromonas hydrop cd Including the characteristic genes that can be used to identify Aeromonas hydrop cd: aerA gene (DQ186611), alt gene (L77573), ahal gene (DQ302125), ahpA gene (DQ189993), ompTS gene (AF276639) Lip gene (U63543).
  • Aeromonas sobria Extracellular serine protease gene (AF253471) metalloprotease gene (DQ784565).
  • vapA gene M64655, AJ749890
  • fstA gene X87995
  • evpA gene (AY424360), esaV gene (AY643478), esrB gene (AY643478), mukF gene (AY078510), ethA gene (D89876), ethB Gene (D89876), hlyB gene (AB231542), katB gene (AY178620), gadB gene (AY078505), pstS gene (AF491965), for gene (EF197912), fimA gene (DQ914634, AB100170).
  • E. sinensis iEdwardsiella ictalurO include: eihA gene (AY338755), eihB gene (AY338755), eipl8 gene (AF037441), eipl9 gene (AF037441), eip20 gene (AF037441), eip55 Gene (AF037441).
  • Including the characteristic genes that can be used to identify Mycobacterium marinum include: dnaJ gene (AB292549), rpoB gene (AF057476, AM885925), virulence protein gene (AY517551), hsp65 gene (AF547855).
  • rpoD gene EF044537
  • gyrB gene AB178862 mucA gene
  • algD gene M63283
  • pfhR gene AF 127222
  • algU gene EF540906
  • aprX gene AY298902
  • Streptococcus includes: tuf gene (EU156909, AF274742) sodA gene (Y12224 EU661272), sly gene (EU043374), ef gene (DQ410864), cps2J gene (DQ410853 ), aroA gene (DQ279120), dpr gene (AJ833016), gki gene (AJ491513), gyrB gene (AF175042), IctO gene (EU086699), IctP gene (Y07622), mrp gene (AM493977, AM493986)
  • the characteristic nucleic acid fragments of the above pathogenic bacteria genes were screened by online BLAST for the above-mentioned gene alignment and multiplicity analysis of biological software. Priming the obtained nucleic acid fragments in a gene chip design software with uniform parameters The design of the probe was used to prepare probes and primer sequences on the gene chip.
  • a-d indicates four sets of probe information designed for one or two sequences of the same gene; "F” indicates the forward primer sequence; “R” indicates the reverse primer sequence; “P” indicates the probe sequence;
  • nucleic acid information is as follows (the gene name is followed by Genbank's serial number):
  • Hybrid positive external control QC3 The characteristic genes of cattle used include: ⁇ -globin gene (DQ277007, ⁇ 00376), thymosin ⁇ proTa gene (DQ333385), on-globin HBAl gene (AJ242799), Growth hormone GH gene (AF117346), antibacterial peptide factor HAMP gene (EU863791).
  • the characteristic genes of Arabidopsis thaliana used in the negative control QC4 include: the gene encoding the major protein TCP10 (EU550966, NM_128662), and the related gene regulating the initiation of floral meristem LFY (AF056550, EF598403).
  • the key gene STM of the tissue characteristics (1132344, EF598777).
  • Table 2 Probe and primer sequence information for the characteristic genes of the QC system
  • a- ⁇ denotes multiple sets of probe information designed for one to two sequences of the same characteristic gene
  • F denotes a forward primer sequence
  • R denotes a reverse primer sequence
  • P denotes a probe Sequence
  • the probe point is made on the gene chip
  • the probe synthesized by the 3' amino group modification is dissolved into a solution having a final concentration of 10 to 100 ⁇ M, and then diluted with 30 to 60% of DMSO (dimethyl sulfoxide) to prepare a spot having a final concentration of 10 to 30 ⁇ M.
  • DMSO dimethyl sulfoxide
  • the sample was spotted onto a chip using a personal spotter.
  • the probe is spotted and fixed according to the instructions of the aldehyde-based or amino-substrate fixation process.
  • the application of the gene chip of the invention comprises the following steps:
  • the genomic DNA of the sample to be tested is extracted by a bacterial genomic DNA extraction kit or a conventional method, and diluted to 1.0 ng ⁇ L as a PCR reaction template.
  • 10 ⁇ 10 ( ⁇ L amplification reaction solution containing 0.5 ⁇ 2.0 ⁇ , 0.1 ⁇ 1.0 ⁇ of the DNA solution to be tested - a positive primer for a characteristic gene or a virulence-related gene of one or more pathogens and 0.1 to 1.0 ⁇ reverse primer 0.01 to 0.5 unit of Taq DNA polymerase, 0.1 to 1.0 mM dNTP, 1.0 to 8.0 mM Mg 2+ , 50 to 200 mM monovalent metal salt ion, pH 6.5 to 8.5.
  • the amplification procedure may include: 90 ⁇ 98°C 2 ⁇ 10min—times; 90 ⁇ 98°C 10 ⁇ 60s, 50 ⁇ 65°C 10—60s, 70— 75 °C 10 ⁇ 60s, 25 ⁇ 40 cycles; 70 ⁇ 75 °C extension 5 ⁇ 20 min.
  • the resulting PCR product was used in subsequent chip hybridization experiments.
  • the hybridization solution is 10 ⁇ 30 L system: 2 ⁇ 4 x citrate solution (SSC), 10% ⁇ 50% deionized formamide, 2 ⁇ 10 X blocking agent (Denhardts', etc.), 0.05% ⁇ 0.5% twelve Sodium alkyl sulfate (SDS), 0.2 ⁇ 2.0 hybrid positive control quality control PCR product, mixed PCR product solution (mixed PCR product solution of sample is prepared by mixing aliquots of all primer amplification products outside the quality control system).
  • SSC 2 ⁇ 4 x citrate solution
  • SDS 0.05% ⁇ 0.5% twelve Sodium alkyl sulfate
  • mixed PCR product solution mixed PCR product solution (mixed PCR product solution of sample is prepared by mixing aliquots of all primer amplification products outside the quality control system).
  • the hybridization solution After the hybridization solution is uniformly mixed, it is thermally denatured by a PCR instrument or a constant temperature water bath at 90 to 98 °C for 2 to 10 minutes, and suddenly changed on ice for more than 10 seconds, and added to the spotting hole corresponding to each square array on the cover sheet, and placed in the hybridization furnace. Or incubate in a constant temperature water bath, 37 ⁇ 55 °C for 0.5 ⁇ 4h.
  • one or more target gene probes for each disease are used as detection points, and more than one probe is positive, then it is judged as a positive point; each target gene probe has three repeated detection points, and two or more are Positive is judged as a positive point.
  • the test object of the present invention covers the marine culture of the Blue Book, the OIE Aquatic Animal Disease List, the Asia-Pacific Aquaculture Center Network (NACA) Aquatic Animal Disease List, and the like.
  • the main pathogenic protobacteria of marine aquaculture animals such as prawn and bivalve, totaling 20 species of mariculture animal pathogens of the genus, fully utilizing the high-throughput characteristics of gene chip technology.
  • various characteristic genes closely related to the pathogenicity and pathogenic mechanism of the pathogenic bacteria are selected in the invention, and the accurate identification of the pathogenic bacteria can be carried out, and the preliminary analysis of the virulence of the bacteria can be carried out, which is more conducive to the disease of marine fish culture animals.
  • Clinical diagnosis and effective prevention and control Combined with the omni-directional and highly sensitive quality control system gene design, the problem of false positives and false negatives in gene chip detection is avoided, making the chip more practical.
  • Figure 1 Schematic diagram of the on-chip probe layout for detecting multiple marine animal pathogens (24 x 24 square matrix).
  • Figure 2 Schematic diagram of the results of the detection of Vibrio anguillarum genomic DNA using a gene chip.
  • each circle in Figure 1 represents a probe point, and each of the three probe points is a set of probes, a total of 192 sets of probes; wherein the gray background probe is a gene probe set of the quality control system;
  • Figure 2 shows 24 sets of probes corresponding to QC1, QC2-16S rRNA (a), QC3-HBB (a), QC4-TCP10, toxR of a Vibrio anguillarum (a;), toxR of Vibrio anguillarum (b) , angM of Vibrio anguillarum, empA of Vibrio anguillarum, QC2-16S rRNA (b), vahl (a) of Vibrio anguillarum, vahl (b) of Vibrio anguillarum, virA of Vibrio anguillarum, virC of Vibrio anguillarum ;, the fatA (a:) of Vibrio anguillarum, fatA (b) of Vibrio anguillarum, vac, QC3-HBB (b) of Vibrio anguillarum, flaA of Vibrio anguillarum, tonB2 of Vibrio anguillarum, Vi
  • the probe array on the chip was a 24 ⁇ 24 square array, ie 576 probe points, of which each of the 3 points was a set of probes; 189 sets of probes and 3 groups containing 134 characteristic genes and 9 genes of 9 quality control systems in the above-mentioned sequence table Surface chemistry quality control sites.
  • the position of the top 192 probe sets of the chip is shown in Table 3, where the gray background is located where the gene probes of the QC system are located.
  • the table is an array of probes on the gene chip, ie each cell represents a set of probes (three probe repeats); except for "QC1" stands for HEX fluorescently labeled dye as surface chemical quality control, each unit
  • the number of the Gerry corresponds to the probe of the corresponding numerical serial number of the probe information table 1 or 2, for example, “Table 2: 3” indicates that the chip here is the 16S rRNA probe of the probe information No. 3 in Table 2; “Table 1: 3” indicates that the chip here is a probe of the Vibrio anguillarum toxR gene of sequence 3 in the probe information table 1.
  • Table 3 3 Table 2: 24 QC3: HBB Table 2: 25
  • Table 3 4 Table 2: 50 QC4: TCP 10 Table 2: 51, 52 Table 3: 5 Table 1: 3 V.anguillarum: toxR Table 1: 4
  • Table 3 6 Table 1: 7 V.anguillarum: toxR Table 1: 8
  • Table 3 7 Table 1: 11 V.anguillarum: angM Table 1: 12
  • Table 3 8 Table 1: 15 V.anguillarum: empA Table 1: 15, 16, 17 Table 3: 9 Table 2: 6 QC2: 16SrRNA Table 2: 7, 8, 9 Table 3: 10 Table 1: 20 V. Anguillarum : vahl Table 1: 21
  • Table 3 11 Table 1: 24 V.anguillarum: vahl Table 1: 25
  • Table 3 13 Table 1: 31 V.anguillarum: virC Table 1: 32, 33 Table 3: 17 Table 2: 28 QC3: HBB Table 2: 29
  • Table 3 21 Table 1: 54 V.alginolyticus: toxR Table 1: 55
  • Table 3 22 Table 1: 58 V.alginolyticus: toxR Table 1: 59
  • Table 3 24 Table 1: 65 V.alginolyticus: tlh Table 1: 66
  • Table 3 29 Table 1: 78 V. parahaemolyticus toxR Table 1: 79 Table 3: 30 Table 1: 82 V. parahaemolyticus: tdh Table 1: 83 Table 3: 40 Table 1: 113 V. harveyi: vhh- 1 Table 1: 114, 115 Table 3: 41 Table 1: 118 V.
  • hydrophila aerA Table 1: 319 Table 3: 114 Table 1: 328 A. hydrophila: ahal Table 1: 329 Table 3: 115 Table 1: 332 A. hydrophila: ahpA Table 1: 333 Table 3: 121 Table 1: 351 A.salmonicida-. vapA Table 1: 352 Table 3: 125 Table 1: 364 E. tarda-. evpA Table 1: 365, 366 367 Table 3: 129 Table 1: 379 E. tarda-. mukF Table 1: 380 Table 3: 130 Table 1: 383 E. tarda-. ethA Table 1: 384 Table 3: 149 Table 1: 441 R.
  • the 3' amino-modified probe is dissolved to a final concentration of 10 to 100 ⁇ M, mixed with 30 to 60% of DMSO (dimethyl sulfoxide), and diluted to a spotted sample having a final concentration of 10 to 30 ⁇ M.
  • the dot system of the chip is performed by a personal spotter, and the layout of the probe array on the chip is shown in Table 3.
  • the probe is spotted and fixed according to the instructions of the aldehyde-based or amino-substrate fixing process.
  • the pathogen is cultured overnight in a liquid medium at a suitable temperature, and bacterial genomic DNA is extracted using a bacterial genomic DNA extraction kit or a conventional method, and diluted to 1.0 ng/L as a PCR reaction template.
  • the 14 characteristic genes of 8 pathogens and the 3 genes of the quality control system were randomly selected for simultaneous gene chip test.
  • the primers and probe information corresponding to these 17 genes are as follows:
  • Table 5 Primer and probe information corresponding to 14 genes of 8 marine animal pathogens
  • F denotes a forward primer sequence
  • R denotes a reverse arch I sequence
  • P denotes a probe sequence
  • F denotes a forward primer sequence
  • R denotes a reverse arch I sequence
  • P denotes a probe sequence
  • the amplification reaction solution includes template 1.0, forward primer (10 ⁇ ) and reverse primer (10 ⁇ ) each 1.0 ⁇ xL, lO ⁇ x Taq buffer 2.5 ⁇ xL, Ex Taq (5 unit/L) 0.3 ⁇ L, 2.5 mM dNTP 2.0 ⁇ L, sterile water is added to 25 ⁇ ! ⁇ .
  • PCR amplification procedure 94 °C for 4 min; 94 °C for 30 s, 58 °C for 30 s, 72 °C for 40 s, 35 cycles; 72 °C for 10 min.
  • the PCR product was sequenced and the resulting PCR product was used in subsequent chip hybridization experiments.
  • Hybrid solution is 15 ⁇ system: 20 X citrate solution (SSC) 2.25 L, deionized formamide 3.75 ⁇ , closed (50xDenhardts') 1.5 ⁇ , 10% sodium dodecyl sulfate (SDS) 0.3 , 0.2 L of the hybrid positive control quality control PCR product, and the mixed PCR product solution of the sample was added to 15 L.
  • SSC X citrate solution
  • SDS sodium dodecyl sulfate
  • the mixed PCR product solution of the sample was added to 15 L.
  • the hybridization solution is uniformly mixed, it is thermally denatured by a PCR instrument or a constant temperature water bath at 94 ° C for 4 min, and suddenly changed on ice for 1 min, and added to the spotting hole corresponding to each square matrix on the cover sheet, and placed in a hybridization furnace or a constant temperature water bath. Incubate at 42 ° C for 2 h.
  • the slides were washed in the following two wash solutions at 42 ° C for 2 min.
  • the lotion I component has 0.3 x SSC and 0.1% SDS, and the lotion component is only 0.06 X SSC.
  • the slide was placed in a 50 ml conical centrifuge tube and centrifuged at 1500 r/min for 3 min.
  • the signal was collected using the LuxScan 10K-A scanner from Boao Biotechnology Co., Ltd.
  • the gene chip can accurately identify the pathogens of marine cultured animals, which is consistent with the 16S rRNA molecular sequencing of bacteria, API reagent strips and other biochemical tests, and greatly shortens the detection time;
  • the detection of virulence-related genes can be used for preliminary virulence analysis of the pathogens, which is more conducive to the prevention and treatment of marine animal diseases.
  • the amplification reaction solution includes the genomic DNA of the turbot tissue, the dominant genomic DNA 1.0 ⁇ , the forward primer ( ⁇ ), and the reverse primer ( ⁇ ).
  • ⁇ ⁇ lO ⁇ x Taq buffer 2.5 Ex Taq (5 ⁇ / ⁇ ) 0.3 2.5mM dNTP 2.0 ⁇ , Sterile water is added to 25 ⁇ ! ⁇ .
  • PCR amplification procedure 94 °C for 4 min ; 94"C 30s, 58 V 30s, 72 °C 40s, 35 cycles; 72 °C extension for 10 min.
  • the PCR product was sequenced to confirm that no false positive amplification occurred.
  • the PCR product was used in subsequent chip hybridization experiments.
  • Hybrid solution is 15 ⁇ system: 20 X citrate solution (SSC) 2.25 L, deionized formamide 3.75 ⁇ , blocking agent (50xDenhardts') 1.5 ⁇ , 10% sodium dodecyl sulfate (SDS) 0.3 , hybridization positive Control the quality of the PCR product 0.2 ⁇ , mix the sample with the mixed PCR product solution to 15 and mix the hybridization solution uniformly, then heat-denatured for 4 min at 94 °C using a PCR instrument or a constant temperature water bath, and suddenly change on ice for 1 min, and add to the cover sheet. Place the spotted wells corresponding to each square matrix into a hybridization oven or a constant temperature water bath and incubate at 42 °C for 2 h.
  • SSC sodium citrate solution
  • SDS sodium dodecyl sulfate
  • the results showed that the surface chemical quality control signal showed good results, indicating that the sampling was successful; the three quality control system probe sites showed normal signals, and the hybridization results were reliable; the pathogen tissue genomic DNA and bacterial genomic DNA PCR products were hybridized with the chip.
  • the results were consistent, and the hybridization positive signal appeared at the probe site of the toxR gene, angM gene and empA gene of Vibrio anguillarum, indicating that the pathogenic bacteria was Vibrio anguillarum, and the detection result of the gene chip was the same as that of the bacteria.
  • the rRNA sequencing results were consistent, and it was confirmed that the diseased turbot was infected with Vibrio anguillarum.
  • the application of the gene chip can identify the pathogen species within 5-6 hours, and the traditional identification method and sequencing method require at least 24 hours to produce results. Therefore, the gene chip of the present invention can accurately and rapidly identify marine pathogenic bacteria.
  • the invention analyzes and designs the characteristic genes and the quality control system genes which can be used to construct a plurality of maritime animal pathogenic gene chip according to the biological information of 20 pathogens and quality control system genes of 7 genera of marine animals currently collected. Primer and its corresponding oligonucleotide probe sequence, the chip has a large amount of information, can quickly and high-throughput diagnosis of common diseases of marine animals, and play an effective early warning role, which can effectively guarantee seawater Healthy and sustainable development of the aquaculture industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

说 明 书
检测多种海水养殖动物病原菌的基因芯片及其应用 · 技术领域
本发明涉及海水养殖动物中病原菌的检测技术, 具体涉及一种检测多种海水养殖动物病 原菌的基因芯片及应用。
背景技术
细菌性疾病对海水养殖动物健康及水产品质量安全造成重要影响, 可导致海水养殖动物 致病的细菌种类繁多, 经常发生多种微生物的同时感染, 传统的细菌检测方式多为生理生化 鉴定与 16S rR A测序相结合, 但是操作繁琐、 时间较长, 更无法对微生物的致病性进行判 断。 继而发展的检测方法有间接荧光抗体技术、 核酸印迹杂交、 PCR检测方法等, 但都不能 应对海水养殖动物疾病多种病原高通量检测的需求。 20世纪 90年代迅速发展起来的基因芯 片技术, 是一种快速、 灵敏、 简便的、 高通量的检测技术, 可对大量样品进行同时、 平行的 检测, 弥补.了以上检测方法的不足, 此方法己在疾病的基因诊断、 基因的表达分析、 基因组 的研究、 药物筛选、 微生物检测等领域得到了广泛应用。
目前,已经有检测海水养殖动物部分病原性细菌基因芯片技术的报道,如美国学者 Warsen 根据细菌 16S rDNA设计寡核苷酸探针构建基因芯片, 对 18种细菌进行检测, 其中包括嗜水 气单胞菌、 爱德华氏菌、 葡萄球菌、 链球菌等】 5种鱼类常见病原菌, 结果能 100%特异性地 检测出这些病原菌; Georg Mitterer等根据 23S rDNA设计特殊的引物和探针,建立固相 PCR- 芯片检测技术, 可以检测出多种葡萄球菌、 大肠杆菌、 假单胞菌等。 但己有的芯片主要是利 用属间高度保守的核糖体序列或某些特征基因的序列作为探针, 致力于病原菌种类的准确鉴 定, 但在病原菌的毒力分析上缺乏有利的证据和说服力。 发明一种既能同时快速检测多种海 水养殖动物病原菌, 又能对病原菌的毒力进行分析的检测技术是生产和科研的迫切需求, 本 发明就是在此情况下应运而生的。
发明内容
. 本发明的目的是提供一种检测多种海水养殖动物病原菌的基因芯片及应用, 即可平行高 通量的检测多种海水养殖动物病原性细菌, 又可初歩分析细菌毒力, 使基因芯片技术更好地 应用于海水养殖动物病原菌的高通量检测。
本发明的技术方案包括:
一、 基因芯片上的探针选择
1、 动物病原菌特征基因探针
本发明选择海水养殖动物常见病原菌作为检测对象, 包括:
弧菌属的鳗弧菌、 溶藻胶弧菌、 副溶血弧菌、 哈维氏弧菌、 费氏弧菌、 灿烂弧菌、 河流 弧菌、 创伤弧菌、 非 01型霍乱弧菌、 拟态弧菌、 杀鲑弧菌;
气单胞菌属的嗜水气单胞菌、 温和气单胞菌、 杀鲑气单胞菌:
爱德华氏菌属的迟缓爱德华氏菌、 鲇鱼爱德华氏菌;
替换页 (细则第 26条) 鲑鱼肾杆菌、 海洋分枝杆菌、 假单胞菌属及链球菌属细菌等。
特征基因大致为病原菌的管家基因、 部分毒力相关基因及菌体特征基因, 其核酸信息如 下 (基因名后面为 Genbank的序列号):
(1)用于鉴定鳗弧菌(f¾ o a«gM //arara)的特征基因包括: toxR基因(AB042547)、 angM 基因 (AY312585)、 empA基因 (EU360910)、 vahl基因 (S83534)、 virA基因 (L08012)、 virC基因 (U17054)、 fatA基因 (AY255699)、 vac基因 (AB004934)、 flaA基因 (L47122)、 tonB2基因 (AY644719)、 vah4基因 (AB189397)。
(2)用于鉴定溶藻胶弧菌( Vibrio alginolyticus)的特征基因包括: toxR基因(FM202715、 AF170882 ) , tlh基因 (AY829371 )、 pyrH基因 (EU251673 )、 flaA基因 (EF125175)、 dnaJ 基因 (AB263020)。
(3)用于鉴定副溶血弧菌 ( Vibrio parahaemolyticus ) 的特征基因包括: toxR 基因 (AB029915)、 tdh基因 (AY044110)、 trhl基因 (M88112)、 trh2基因 (AB 112353 )、 tlh基 因 (EF640375)、 pR72H基因 (L03116)、 vppC基因(DQ479431 )、 spa24基因 (EU185084) . lafA基因 (L06176)。
(4)用于鉴定哈维氏弧菌 ( Vibrio harveyi) 的特征基因包括: toxR基因 (DQ503438)、 vhh-l基因(AF217649)、vhhA基因( AF293430)、pap6基因(AF508306)、dam基因(EF421460)。
(5)用于鉴定创伤弧菌( Vibrio vulnificus 的特征基因包括: toxR基因( AF170883 )、 vvhA 基因 (AB 1248303、 M34670)、 vvp基因 (DQ923325、 U48780)、 vuuA基因 (AF156494)、 vlly基因(U97357)、 gyrB基因(EF642630)、 tolC基因(DQ296642)、 rtxE基因( AM293860)。
(6)用于鉴定非 01型霍乱弧菌 (Non-01 Vibrio cholerae) 的特征基因包括: toxR基因 (DQ774024 ) , stn基因 (L03220)、 recA基因 (AF301127)、 ctxA基因 (EU487781 )、 ctxB 基因 (U25679)、 ace基因 (AF542089)、 zot基因 (AF175708)、 tagA基因 (U12265)、 mdh 基因(EU085335)、 ompW基因 (DQ776044)、 hlyA基因 (X51746)、 hk基因 (DQ775819)、 flaA基因 (DQ774943 )、 tcpA基因 (EU622529)。
(7)用于鉴定河流弧菌 i Vibriofluvialis 的特征基因包括: hupO基因(AY560602)、 vfh 基因 (AF348455)、 vfpA基因 (AB071709)。
(8)用于鉴定费氏弧菌 Vibrw flscheri) 的特征基因包括: toxR基因 (L29053 )、 ampC 基因 (AY438037 )、 hemolysin基因 (AB 105805 )、 vhh/tlh基因 (DQ839418 )、 gacA基因
( AY377390 ) , recA基因 (AJ580909)、 cnfl基因 ( AF023157 )„
(9)用于鉴定灿烂弧菌 Vibrio spkndid 的特征基因包括: aerV基因 (AM157713 )、 als基因 (AM157713 )、 vsm基因 (DQ987707、 EU349013 )、 toxR基因 (AY751344)。
(10)用于鉴定拟态弧菌 Vibrio mimicu^的特征基因包括: toxR基因(EF693743 )、 vmc 基因(AF004832)、 vmhA基因(U68271 )、 hlyA基因(EF187437)、 mhuA基因(AB048382)、 mhuB基因 (AB048382)、 zot基因 (AF207857)。 (11) 包括可用于鉴定杀鲑弧菌 (Vibrio salmonicida) 的特征基因包括: luxC 基因 (AF452135)、 luxD基因(AF452135)、 luxE基因(AF452135)、 luxl基因(AF452135)、 toxR 基因 (FM178379)。
(12)包括可用于鉴定嗜水气单胞菌 eromonas hydrop cd的特征基因包括: aerA基 因(DQ186611)、 alt基因(L77573)、 ahal基因(DQ302125)、 ahpA基因(DQ189993)、 ompTS 基因 (AF276639)、 lip基因 (U63543)。
(13)包括可用于鉴定温和气单胞菌 eromonas sobria 的特征基因包括: extracellular serine protease gene基因 ( AF253471 ) metalloprotease gene基因 (DQ784565)。
(14) 包括可用于鉴定杀鲑气单胞菌 Aeromo salmonicida 的特征基因包括: vapA 基因 (M64655、 AJ749890)、 fstA基因 (X87995)。
(15) 包括可用于鉴定迟缓爱德华氏菌 Edwardsie tarda) 的特征基因包括: evpA基 因(AY424360)、 esaV基因 (AY643478)、 esrB基因(AY643478)、 mukF基因(AY078510)、 ethA基因(D89876)、 ethB基因(D89876)、 hlyB基因 (AB231542), katB基因(AY178620)、 gadB基因(AY078505)、 pstS基因(AF491965)、 for基因(EF197912)、 fimA基因(DQ914634、 AB100170)。
(16)包括可用于鉴定鲇鱼爱德华氏菌 iEdwardsiella ictalurO 的特征基因包括: eihA基 因(AY338755)、 eihB基因(AY338755)、 eipl8基因(AF037441)、 eipl9基因(AF037441)、 eip20基因 (AF037441)、 eip55基因 (AF037441)。
(17) 包括可用于鉴定鲑鱼肾杆菌 iRenibacterium salmoninarum) 的特征基因包括: p57 gene基因 (Z12174)、 hly基因 (AF428067)、 RRSA01248 gene基因 (EF426716)、 ITS基因
(AF239195)、 lysB基因 (AF428066)。
(18) 包括可用于鉴定海洋分枝杆菌 (Mycobacterium marinum) 的特征基因包括: dnaJ 基因( AB292549 )、 rpoB基因( AF057476、 AM885925 )、 virulence protein gene基因( AY517551 )、 hsp65基因 (AF547855)。
(19) 包括可用于鉴定假单胞菌属 Pseudomo sp) 的特征基因包括: rpoD 基因 (EF044537)、 gyrB基因 (AB178862) mucA基因 (L14760)、 algD基因 (M63283)、 pfhR 基因 (AF 127222)、 algU基因 (EF540906)、 aprX基因 (AY298902)。
(20)包括可用于鉴定链球菌属 (Streptococcus, sp)的特征基因包括: tuf基因(EU156909、 AF274742) sodA基因 (Y12224 EU661272), sly基因(EU043374)、 ef基因 (DQ410864), cps2J基因(DQ410853)、 aroA基因(DQ279120)、 dpr基因(AJ833016)、 gki基因(AJ491513)、 gyrB基因(AF175042)、 IctO基因(EU086699)、 IctP基因(Y07622)、 mrp基因(AM493977、 AM493986)„
通过在线 BLAST对上述基因逐一比对及生物学软件的多重性分析筛选出上述病原菌基 因的特征性核酸片段。 将所获得的核酸片段在基因芯片设计软件中用统一的参数进行引物和 探针的设计, 获得了用来制备基因芯片上的探针和引物序列。
表 1. 海水养殖动物常见病原菌特征基因的探针、 引物序列信息:
Figure imgf000006_0001
Figure imgf000007_0001
Figure imgf000008_0001
L8 ON QI ss J 乙 8 ..9S.0/0T0ZN3/X3d 雕 Ϊ0Ζ OAV
Figure imgf000009_0001
..9S.0/0T0ZN3/X3d 雕 Ϊ0Ζ OAV
Figure imgf000010_0001
..9S.0/0T0ZN3/X3d 雕 Ϊ0Ζ OAV
Figure imgf000011_0001
Figure imgf000012_0001
01
..9S.0/0T0ZN3/X3d 雕 Ϊ0Ζ OAV
Figure imgf000013_0001
Figure imgf000014_0001
II ..9S.0/0T0ZN3/X3d 雕 Ϊ0Ζ OAV
Figure imgf000015_0001
..9S.0/0T0ZN3/X3d 雕 Ϊ0Ζ OAV
Figure imgf000016_0001
Figure imgf000017_0001
..9S.0/0T0ZN3/X3d 雕 Ϊ0Ζ OAV
Figure imgf000018_0001
其中: "a-d"表示针对同一个基因的一至两条序列设计的四套探针信息; "F"表示正向引物 序列; "R"表示反向引物序列; "P "表示探针序列;
2、 质控系统的基因探针
采用同样的方法, 设计并筛选得到质控系统的 9种特征基因, 分别为细菌 16S rRNA的 保守性片段、 牛的特征基因以及拟南芥的特征基因等, 其核酸信息如下 (基因名后面为 Genbank的序列号):
( 1 ) 杂交阳性内对照质控 QC2采用的细菌 16S rRNA基因 (X76337)。
( 2 ) 杂交阳性外对照质控 QC3 采用的牛的特征基因包括: β-珠蛋白 ΗΒΒ 基因 (DQ277007 , Χ00376 ) , 胸腺素 α 原 ProTa基因 (DQ333385 )、 on-珠蛋白 HBAl 基因 (AJ242799)、 生长激素 GH基因 (AF117346)、 抗菌肽因子 HAMP基因 (EU863791 )。
(3 )阴性对照质控 QC4采用的拟南芥的特征基因包括:编码 TCP主要蛋白 TCP10的基 因(EU550966、NM_128662)、调控花分生组织启动的相关基因 LFY ( AF056550、 EF598403 ) 决定苗端分生组织特征的关键基因 STM (1132344、 EF598777)。 表 2. 质控系统特征基因的探针和引物序列信息
Figure imgf000018_0002
Figure imgf000019_0001
LI ..9S.0/0T0ZN3/X3d 雕 Ϊ0Ζ OAV
Figure imgf000020_0001
其中: "a-Γ表示针对同一个特征基因的一条至两条序列设计的多套探针信息; "F"表示正 向引物序列; "R"表示反向引物序列; "P"表示探针序列。
二、 探针点制到基因芯片上
将 3'端氨基修饰合成的探针溶解成终浓度 10〜100μΜ的溶液后, 与 30〜60%的 DMSO (二甲基亚砜) 混合稀释制成探针终浓度为 10〜30μΜ的点样样品, 采用个人点样仪点制到 芯片上。 探针点样后并按照醛基基片或氨基基片固定过程的说明书对其进行固定。
三、 本发明基因芯片的应用
本发明基因芯片的应用包括如下步骤:
( 1 ) 待检样品 DNA的提取
采用细菌基因组 DNA提取试剂盒或传统方法提取待检样品的基因组 DNA, 并稀释成为 1.0 ng^L作为 PCR反应模板。
(2) PCR同歩扩增特征基因及质控系统基因的靶序列
用选定的引物同时对待检样品 DNA进行扩增,每一个 PCR管中分别添加单独的引物对。 在 10〜10(^L的扩增反应液里包含待检 DNA溶液 0.5〜2.0 μ 、 0.1〜1.0 μΜ—种或多种病 原菌的特征性基因或毒力相关基因的正向引物和 0.1〜1.0 μΜ反向引物、 0.01〜0.5单位的 Taq DNA聚合酶、 0.1〜1.0 mM dNTP、 1.0〜8.0 mM Mg2+、 50〜200 mM单价金属盐离子, pH6.5〜 8.5。扩增程序可包括: 90〜98°C 2〜10min—次; 90〜98°C 10〜60s, 50〜65°C 10— 60s, 70— 75 °C 10〜60s, 25〜40个循环; 70〜75 °C 延伸 5〜20 min。所得的 PCR产物用于后续的芯片 杂交试验。
( 3 ) PCR产物与芯片杂交
杂交液为 10〜30 L体系: 2〜4 x柠檬酸盐溶液(SSC)、 10%〜50%去离子甲酰胺、 2〜 10 X封闭剂(Denhardts'等)、 0.05 %〜0.5%十二烷基硫酸钠(SDS)、 0.2〜2.0 杂交阳性对 照质控 PCR产物、 混合 PCR产物液 (样品的混合 PCR产物液是将出质控系统外的所有引物 扩增产物等份混合而成)。 将杂交液混合均匀后, 利用 PCR仪或恒温水浴锅 90〜98 °C热变性 2〜10min, 冰上骤变 10s以上, 加入盖片上每个方阵对应的点样孔内, 放入杂交炉或恒温水 浴锅中, 37〜55 °C孵育 0.5〜4h。
(4 ) 芯片杂交后的处理
玻片分别在以下两种洗液中, 37〜55 °C,清洗 l〜10min。其中洗液 I成分有 0.2〜0.5 x SSC 和 0.1%〜0.3% SDS, 洗液 II成分只是 0.04〜0.1 x SSC。 清洗后, 将玻片放入 50ml锥形离心 管中, 以转速 500〜1500r/min, 离心 l〜5min甩干。
( 5 ) 芯片的扫描及结果判读
利用扫描仪的绿色通道进行信号的采集, 扫描参数一般为 PMT=90-95、 Power=650-800o 各个探针位点在 532nm处的信号值与周围背景值之比是信噪比 (Signal to Noise Ratio, SNR), 该越大表示阳性信号越强, 也可利用荧光显影照相等技术进行信号数据的读取。 在检测的病 原中, 每种病原有一条以上目标基因探针作为检测点, 一条以上探针为阳性, 则判读为阳性 点; 每个目标基因的探针有三个重复检测点, 两个以上为阳性即判读为阳性点。
本发明的检测对象覆盖了蓝皮书、 国际兽疫局 (OIE)水生动物疾病名录、 亚太水产养殖中 心网络 (NACA)水生动物疾病名录等文献资料中记录的海水养殖鲽形目鱼类、鲈形目鱼类、对 虾类和双壳贝类等海洋水产养殖动物的主要病原性原核菌,共计 Ί个属的 20种海水养殖动物 病原菌, 充分利用了了基因芯片技术高通量的特点。 另外本发明中选用了多种与病原菌致病 力及致病机制密切相关的特征基因, 在实现病原菌准确鉴定的同时也可进行该菌毒力的初步 分析, 更有助于海水养殖动物疾病的临床诊断及有效的防控。 加之全方位的、 高灵敏性的质 控系统基因设计, 避免了以有基因芯片检测中的假阳性和假阴性问题, 使芯片更具实用性。 附图说明
图 1 : 检测多种海水养殖动物病原菌的基因芯片上探针布局示意图 (24 x 24 方阵)。 图 2: 利用基因芯片检测鳗弧菌基因组 DNA的结果示意图。
其中: 图 1的每个圆圈代表一个探针点, 每三个探针点为一组探针, 共计 192组探针; 其中灰色背景 的探针为质控系统的基因探针组;
图 2中显示 24组探针,分别对应 QC1、 QC2-16S rRNA (a), QC3-HBB (a), QC4-TCP10,鳗弧菌的 toxR (a;)、 鳗弧菌的 toxR (b)、 鳗弧菌的 angM、 鳗弧菌的 empA、 QC2-16S rRNA (b)、 鳗弧菌的 vahl (a), 鳗弧菌 的 vahl (b)、鳗弧菌的 virA、鳗弧菌的 virC;、鳗弧菌的 fatA (a:)、鳗弧菌的 fatA (b)、鳗弧菌的 vac、 QC3-HBB (b), 鳗弧菌的 flaA、 鳗弧菌的 tonB2、 鳗弧菌的 vah4、 溶藻胶弧菌的 toxR 、 溶藻胶弧菌的 toxR (b)、 溶 藻胶弧菌的 tlh(a)、溶藻胶弧菌 tlh(b);灰色背景点表示该探针位点为阳性信号,无背景颜色即为阴性信号。 具体实施方式
利用上述中的 20种属病原菌的 134种特征基因及其核酸信息, 在统一参数下设计出 170 组较优的正向引物序列、 反向引物序列及对应寡核苷酸探针序列, 构建可平行检测多种海水 养殖动物病原菌的基因芯片; 利用上述的 9种质控系统基因及其核酸信息, 在统一参数下设 计出 19组较优的正向引物序列、反向引物序列及对应的寡核苷酸探针序列, 组成多种海水养 殖动物病原菌基因芯片的杂交阳性内对照、 杂交阳性外对照及杂交阴性对照的质控系统; 另 外加入 3组荧光标记用的 HEX染料作为表面化学质控, 构建出可平行检测 7个属 20种海水 养殖动物病原菌的基因芯片, 该芯片上探针布局为 24x24的方阵, 即 576个探针点, 其中每 3个点为一组探针; 即含有上述序列表中的 20种海水养殖动物病原菌中 134种特征基因和质 控系统 9种基因的 189组探针和 3组表面化学质控位点。 该芯片的上 192个探针组的位置示 意图见表 3, 其中灰色背景的位置为质控系统各基因探针所在处。
表 3.检测多种海水养殖动物病原菌的基因芯片上各组探针的位置表:
'( h ¾ 2* m * 表 1: 3 表 1: 7 表 1: 11 表 1: 15 a 1: 1 表 1: 20 表 1: 24 表 1: 28 表 1: 31 表 1: 36 表 1: 39 表 1: 42
1: i 表 1: 45 表 1: 48 表 1: 51 表 1: 54 表 1: 58 表 1: 62 表 1: 65
:: :; 表 1: 69 表 1: 72 表 1: 75 表 1: 78 表 1: 82 表 1: 86 表 1: 89 表 1: 92 表 1: 95 表 1: 98 表 1: 101 表 1: 104 表 1: 107 表 1: 110 表 1: 113 表 1: 118 表 1: 123 表 1: 127 表 1: 130 表 1: 135 表 1: 138 表 1: 141 表 1: 144 表 1: 147 表 1: 150 表 1: 153 表 1: 156 表 1: 159 表 1: 162 表 1: 166 表 1: 170 表 1: 173 表 1: 176 表 1: 179 表 1: 182 表 1: 185 表 1: 188 表 1: 191 表 1: 194 表 1: 197 表 1: 200 表 1: 203 表 1: 206 表 1: 209 表 1: 212 表 1: 215 表 1: 218 表 1: 221 表 1: 224 表 1: 227 表 1: 232 表 1: 235 表 1: 238 表 1: 241 表 1: 244 表 1: 247 表 1: 250 表 1: 253 1« I 2: H 1表 1: 256 表 1: 260 表 1: 264 表 1: 269 表 1: 272 1: ¾!¾2* 71 «E. ->: 表 1: 275 表 1: 279 表 1: 282 表 1: 285 表 1: 288 ?, t 一 ΐ ~ I- ;:;:; 表 1: 291 表 1: 294 表 1: 297 表 1: 300 表 1: 303 表 1: 306 表 1: 309 表 1: 312 表 1: 315 表 1: 318 表 1: 322 表 1: 325 表 1: 328 表 1: 332 表 1: 336 表 1: 339 表 1: 342 表 1: 345 表 1: 348 表 1: 351 表 1: 355 表 1: 358 表 1: 361 表 1: 364 表 1: 370 表 1: 373 表 1: 376 表 1: 379 表 1: 383 表 1: 387 表 1: 390 表 1: 393 表 1: 396 表 1: 399 表 1: 402
Figure imgf000023_0001
该表格为基因芯片上探针的阵列示意表, 即每一个单元格代表一组探针(三个探针重复点);除" QC1" 代表 HEX荧光标记染料作为表面化学质控, 每一个单元格里的数字对应探针信息表 1或 2的相应数字序 号的探针, 例如 "表 2: 3"表示该芯片此处点制的是探针信息表 2中序号为 3的 16SrRNA探针; "表 1: 3"表示该芯片此处点制的是探针信息表 1中序列为 3的鳗弧菌 toxR基因的探针。
在设计的过程中, 有些基因设计了多组探针, 该基因在基因芯片上的位置及选用的、 可 替换探针的信息情况见表 4:
表 4.同一个基因的多组探针替换情况:
探针组 探针编号 宿主 (类型): 基因 替换探针编号 位置
表 3: 3 表 2: 24 QC3: HBB 表 2: 25
表 3: 4 表 2: 50 QC4: TCP 10 表 2: 51、 52 表 3: 5 表 1: 3 V.anguillarum: toxR 表 1: 4
表 3: 6 表 1: 7 V.anguillarum : toxR 表 1: 8
表 3: 7 表 1: 11 V.anguillarum : angM 表 1: 12
表 3: 8 表 1: 15 V.anguillarum : empA 表 1: 15、 16、 17 表 3: 9 表 2: 6 QC2: 16SrRNA 表 2: 7、 8、 9 表 3: 10 表 1: 20 V.anguillarum : vahl 表 1: 21
表 3: 11 表 1: 24 V.anguillarum : vahl 表 1: 25
表 3: 13 表 1: 31 V.anguillarum : virC 表 1: 32、 33 表 3: 17 表 2: 28 QC3: HBB 表 2: 29
表 3: 21 表 1: 54 V.alginolyticus: toxR 表 1: 55
表 3: 22 表 1: 58 V.alginolyticus : toxR 表 1: 59
表 3: 24 表 1: 65 V.alginolyticus : tlh 表 1: 66
表 3: 29 表 1: 78 V.parahaemolyticus toxR 表 1: 79 表 3: 30 表 1: 82 V.parahaemolyticus: tdh 表 1: 83 表 3: 40 表 1: 113 V.harveyi: vhh- 1 表 1: 114、 115 表 3: 41 表 1: 118 V.harveyi: vhhA 表 1: 119、 120 表 3: 42 表 1: 123 V.harveyi: pap6 表 1: 124 表 3: 44 表 1: 130 V.vulnificus: toxR 表 1: 131、 132 表 3: 54 表 1: 162 Non-Ol V.cholerae: toxR 表 1: 163 表 3: 55 表 1: 166 Non-Ol V.cholerae: stn 表 1: 167 表 3: 75 表 1: 227 V.fischeri: ampC 表 1: 228、 229 表 3: 86 表 1: 256 V.splendidu : aerV 表 1: 257 表 3: 87 表 1: 260 V.splendidu : als 表 1: 261 表 3: 88 表 1: 264 V.splendidu : als 表 1: 265、 266 表 3: 92 表 2: 67 QC4: STM 表 2: 68 表 3: 93 表 2: 71 QC4: STM 表 2: 72 表 3: 95 表 1: 275 V.splendidu : toxR 表 1: 276 表 3: 100 表 2: 43 QC3: bGH 表 2: 44 表 3: 111 表 1: 318 A. hydrophila: aerA 表 1: 319 表 3: 114 表 1: 328 A. hydrophila: ahal 表 1: 329 表 3: 115 表 1: 332 A. hydrophila: ahpA 表 1: 333 表 3: 121 表 1: 351 A.salmonicida-. vapA 表 1: 352 表 3: 125 表 1: 364 E. tarda-. evpA 表 1: 365、 366、 367 表 3: 129 表 1: 379 E. tarda-. mukF 表 1: 380 表 3: 130 表 1: 383 E. tarda-. ethA 表 1: 384 表 3: 149 表 1: 441 R. salmoninarum: p57 gene 表 1: 442、 443 表 3: 159 表 1: 473 M.marinum: hsp65 表 1: 474 表 3: 167 表 1: 498 S.sp: tuf 表 1: 499、 500 表 3: 168 表 2: 63 QC4: LFY 表 2: 64 表 3: 176 表 2: 36 QC3: HBA1 表 2: 37 表 3: 189 表 2: 58 QC4: LFY 表 2: 59、 60 表 3: 190 表 2: 32 QC3: ProTa 表 2: 33 然后按照以下具体步骤进行芯片的制备、样品的制备、芯片杂交及杂交结果的获取分析: 一、 芯片制备:
将 3'端氨基修饰的探针溶解成终浓度 10〜100 μΜ, 与 30〜60%的 DMSO (二甲基亚砜) 混合、 稀释成探针终浓度为 10〜30 μΜ的点样样品, 采用个人点样仪进行芯片的点制, 芯片 上探针阵列布局见表 3。 探针点样后并按照醛基基片或氨基基片固定过程的说明书对其进行 固定。
二、 芯片的应用
实施例 1: 芯片的效果检测
(1)待检样品 DNA的提取- 随机选择 8种海水养殖动物病原菌: 鳗弧菌、 溶藻胶弧菌、 副溶血弧菌、 费氏弧菌、 灿 烂弧菌、 嗜水气单胞菌、 杀鲑气单胞菌、 迟缓爱德华氏菌, 及小牛胸腺 DNA进行基因芯片 的效果检验。
用液体培养基在适宜温度下过夜培养病原菌, 采用细菌基因组 DNA提取试剂盒或传统 方法提取细菌基因组 DNA, 并稀释成为 1.0 ng/ L作为 PCR反应模板。
随机选择 8种病原菌的 14种特征基因、 质控系统的 3种基因进行同步的基因芯片检验, 这 17种基因对应的引物及探针信息如下:
表 5、 8种海水养殖动物病原菌的 14种基因对应的引物及探针信息
Figure imgf000025_0001
Figure imgf000026_0001
其中: "F'表示正向引物序列; "R"表示反向弓 I物序列; "P"表示探针序列;
表 6. 随机选取质控系统的 3种基因对应的引物及探针信息:
Figure imgf000026_0002
其中: "F'表示正向引物序列; "R"表示反向弓 I物序列; "P"表示探针序列;
用选定的引物同时对待检模板进行扩增, 每一个 PCR管中分别添加单独的引物对。扩增 反应液包括模板 1.0 ,正向引物 (10μΜ)和反向引物 (10μΜ)各 1.0 \xL, lO ^x Taq buffer 2.5 \xL, Ex Taq (5 unit/ L) 0.3 μL, 2.5mM dNTP 2.0 μL, 无菌水补齐到 25 μ!^。 PCR扩增程序: 94 °C 4min; 94 °C 30s, 58 °C 30s, 72 °C 40s, 35 个循环; 72°C 延伸 10 min。将 PCR产物测序确定, 所得的 PCR产物用于后续的芯片杂交试验。
(2) PCR产物与芯片杂交:
杂交液为 15 μί体系: 20 X柠檬酸盐溶液(SSC) 2.25 L, 去离子甲酰胺 3.75 μί, 封闭 剂 (50xDenhardts' ) 1.5 μί, 10%十二烷基硫酸钠 (SDS) 0.3 , 杂交阳性对照质控 PCR 产物 0.2 L, 用样品的混合 PCR产物液补齐到 15 L。 将杂交液混合均匀后, 利用 PCR仪或 恒温水浴锅 94°C热变性 4min, 冰上骤变 lmin, 加入盖片上每个方阵对应的点样孔内, 放入 杂交炉或恒温水浴锅中, 42°C孵育 2h。
(3) 芯片杂交后的处理:
玻片分别在以下两种洗液中,42 °C,清洗 2min。其中洗液 I成分有 0.3 x SSC和 0.1% SDS, 洗液 Π成分只是 0.06 X SSC。 清洗后, 将玻片放入 50ml锥形离心管中, 以转速 1500r/min, 离心 3min甩干。
(4) 芯片的扫描及结果判读- 采用博奥生物有限公司的 LuxScan 10K-A扫描仪进行信号采集, 扫描参数 PMT=90、 Power=700,扫描前打开绿光通道。如果芯片上有污浊、太脏或探针点不规整、连点等情况时, 该芯片杂交结果不可用; 然后根据质控体系的表面化学质控对照、 阳性内对照、 阳性外对照 以及阴性对照的信号情况来判断芯片制备、 杂交及清洗的质量好坏; 根据子阵中每种细菌对 应探针点的显色情况, 并计算扫描数据的相对信噪比, 对被检 DNA模板做出判定。
结果表明: 表面化学质控的信号显示良好, 说明点样成功; 3 个质控系统探针位点信号 显示正常, 杂交结果可信; 从 8种病原菌基因的 PCR产物与芯片杂交后的信号可以看出, 靶 基因的 PCR产物与探针有特异性的结合, 并且阳性信号的信噪比都大于 0。 验证结果分析如 下:
a) 试验结果证实利用鳗弧菌的 toxR基因引物(表 5 : 1、 2)、 angM基因引物(表 5 : 4、 5)、 empA基因引物 (表 5: 7、 8 )可以扩增出目的产物, 且只与其对应的寡核苷酸探针 (分 别对应表 5 : 3、 6、 9)特异性地结合, 因此该基因芯片可以特异性地检测出鳗弧菌的基因组 DNA;
b) 试验结果证实溶藻胶弧菌的特征基因 toxR (引物对应表 5: 10、 11 )与副溶血弧菌的 特征基因 toxR (引物对应表 5 : 16、 17)非常近源, 其 PCR产物及探针(对应表 5 : 12、 18) 间有相互结合反应, 但都不与其他几种病原菌的 PCR产物有交叉, 因此可以首先将溶藻胶弧 菌、 副溶血弧菌的基因组 DNA与其他病原基因组 DNA区分开来;
c) 试验结果证实溶藻胶弧菌特征基因 tlh的引物 (表 5 : 13、 14)、 副溶血弧菌特征基因 tdh的引物(表 5 : 19、 20)扩增出的 PCR产物只与其对应的寡核苷酸探针(分别对应于表 5: 15、 21 )特异性地结合, 由此可将溶藻胶弧菌基因组 DNA与副溶血弧菌基因组 DNA区分开; d) 试验结果证实利用费氏弧菌 ampC基因引物 (表 5 : 22、 23 )可以扩增出目的产物, 且只与其对应的寡核苷酸探针 (表 5: 24) 特异性地结合, 因此该基因芯片可以特异性地检 测出费氏弧菌基因组 DNA;
e) 试验结果证实利用灿烂弧菌 als基因引物 (表 5 : 25、 26)可以扩增出目的产物, 且 只与其对应的寡核苷酸探针 (表 5 : 27) 特异性地结合, 因此该基因芯片可以特异性地检测 出灿烂弧菌基因组 DNA;
f) 试验结果证实利用嗜水气单胞菌的 aerA基因引物(表 5 : 28、 29)、 ahal基因引物(表 5: 31、 32 )可以扩增出目的产物, 且只与其对应的寡核苷酸探针(分别对应于表 5 : 30、 33 ) 特异性地结合, 因此该基因芯片可以特异性地检测出嗜水气单胞菌基因组 DNA;
g) 试验结果证实利用杀鲑气单胞菌 vapA基因引物 (表 5 : 34、 35 ) 可以扩增出目的产 物, 且只与其对应的寡核苷酸探针 (表 5 : 36 ) 特异性地结合, 因此该基因芯片可以特异性 地检测出杀鲑气单胞菌基因组 DNA;
h) 试验结果证实利用迟缓爱德华氏菌 evpA基因引物 (表 5 : 37、 38)、 mukF基因引物 (表 5 : 40、 41 )可以扩增出目的产物, 且只与其对应的寡核苷酸探针(分别对应于表 5 : 39、
42 ) 特异性地结合, 因此该基因芯片可以特异性地检测出迟缓爱德华氏菌基因组 DNA。
上述结果表明该基因芯片可以准确地鉴定出海水养殖动物病原菌的种类, 与细菌的 16S rRNA分子测序、 API试剂条及其他一些生化试验鉴定的结果一致, 且大大缩短了检测时间; 加之随机选择的毒力相关基因的检测, 可对该病原菌进行初步的毒力分析, 更加有益于海水 养殖动物疾病的防治。
实施例 2: 芯片的应用
(1)待检样品 DNA的提取
取山东某养殖场患病大菱鲆的鳃组织, 其中一半利用天根生化科技有限公司生产的海洋 动物组织基因组 DNA提取试剂盒提取该组织基因组 DNA; 另一半在 2216E海水培养基上进 行细菌的培养及单菌落筛选, 保留其中一株优势菌, 并利用细菌基因组 DNA提取试剂盒提 取该细菌的基因组 DNA, 同样用于基因芯片的检测。
(2) PCR同步扩增特征基因及质控系统基因的靶序列:
用表 5中所有引物及表 6中 16S rRNA的引物同时对待检模板进行扩增, 每一个 PCR管 中分别添加单独的引物对。扩增反应液包括大菱鲆鳃组织基因组 DNA、优势菌基因组 DNA 1.0 μί, 正向引物(ΙΟμΜ)和反向引物 (ΙΟμΜ)各 Ι .Ο μΙ^ lO ^x Taq buffer 2.5 Ex Taq (5 υηίΐ/μί) 0.3 2.5mM dNTP 2.0 μί, 无菌水补齐到 25 μ!^。 PCR扩增程序: 94 °C 4min; 94 "C 30s, 58 V 30s, 72 °C 40s, 35 个循环; 72°C 延伸 10 min。 将 PCR产物测序, 确定没有发生假阳性 扩增, 所得的 PCR产物用于后续的芯片杂交试验。
(3) PCR产物与芯片杂交:
杂交液为 15 μί体系: 20 X柠檬酸盐溶液(SSC) 2.25 L, 去离子甲酰胺 3.75 μί, 封闭 剂 (50xDenhardts' ) 1.5 μί, 10 %十二烷基硫酸钠 (SDS ) 0.3 , 杂交阳性对照质控 PCR 产物 0.2 μί, 用样品的混合 PCR产物液补齐到 15 将杂交液混合均匀后, 利用 PCR仪或 恒温水浴锅 94°C热变性 4min, 冰上骤变 lmin, 加入盖片上每个方阵对应的点样孔内, 放入 杂交炉或恒温水浴锅中, 42°C孵育 2h。
(4) 芯片杂交后的处理: 玻片分别在以下两种洗液中,42 °C,清洗 2min。其中洗液 I成分有 0.3 x SSC和 0.1% SDS, 洗液 Π成分只是 0.06 x SSC。 清洗后, 将玻片放入 50ml锥形离心管中, 以转速 1500r/min, 离心 3min甩干。
(5) 芯片的扫描及结果判读- 采用博奥生物有限公司的 LuxScan 10K-A扫描仪进行信号采集, 扫描参数 PMT=90、 Power=700, 扫描前打开绿光通道。
结果表明: 表面化学质控的信号显示良好, 说明点样成功; 3 个质控系统探针位点信号 显示正常, 杂交结果可信; 病原组织基因组 DNA与细菌基因组 DNA的 PCR产物与芯片杂 交的结果一致, 都是在鳗弧菌的 toxR基因、 angM基因、 empA基因的探针位点处出现杂交 阳性信号, 表明该致病菌为鳗弧菌, 并且基因芯片的检测结果同该细菌的 16S rRNA测序结 果一致, 证实该患病大菱鲆感染有鳗弧菌。 并且, 应用本基因芯片, 可在 5-6h内鉴定出病原 菌的种类, 而传统的鉴定方法及测序方法需要至少 24h才能出结果。 因此, 本发明的基因芯 片可以准确、 快速的进行海水养殖动物病原菌的鉴定。
工业实用性
本发明根据搜集到的目前海水养殖动物的 7个属 20种病原菌及质控系统基因的生物学信 息, 分析并设计出可用于构建多种海水养殖动物病原菌基因芯片的特征基因及质控系统基因 的引物及其对应寡核苷酸探针序列, 该芯片信息量大, 可以快速的、 高通量地对海水养殖动 物常见的疾病进行诊断, 起到确定有效的预警作用, 可以有力地保障海水养殖业的健康、 可 持续发展。

Claims

权 利 要 求 书
1、 一种检测多种海水养殖动物病原菌的基因芯片, 其特征在于将鳗弧菌 toxR, angM, empA, vahl , virA, virC, fat A, vac, flaA, tonB2, vah4基因 对应的探针; 溶藻胶弧菌 toxR, tlh, pyrH, flaA, dnaJ基因对应的探针; 副溶 血弧菌 toxR, tdh, trhl , trh2, tlh, pR72H, vppC, spa24, lafA基因对应的探 针;哈维氏弧菌 toxR, vhh-1 , vhhA, pap6, dam基因对应的探针;创伤弧菌 toxR, whA, wp, vuuA, vlly, gyrB, tolC, rtxE基因对应的探针; 非 01型霍乱弧菌 toxR, stn, recA, ctxA, ctxB, ace, zot, tag A, mdh, ompW, hlyA, hlx, flaA, tcpA基因对应的探针; 河流弧菌 hupO, vfh, vfpA基因对应的探针; 费氏弧菌 toxR, ampC, hemolysin gene, vhh/tlh, gacA, recA, cnfl基因对应的探针; 灿 烂弧菌 aerV, als, vsm, toxR基因对应的探针; 拟态弧菌 toxR, vmc, vmhA, hlyA, mhuA, mhuB, zot基因对应的探针; 杀鲑弧菌 luxC, luxD, luxE, luxl, tox 基因对应的探针; 嗜水气单胞菌 aerA, alt, ahal , ahpA, ompTS, lip基因 对应的探针; 温和气单胞菌丝氨酸蛋白酶基因, 金属蛋白酶基因对应的探针; 杀鲑气单胞菌 vapA, fstA基因对应的探针; 迟缓爱德华氏菌 evpA, esaV, esrB, mukF, ethA, ethB , hlyB, katB, gadB, pstS, fur, fimA基因对应的探针; 鲇 鱼爱德华氏菌 eihA, eihB, eipl8, eipl9, eip20, eip55基因对应的探针; 鲑鱼 肾杆菌 p57 gene, lily, RRSA01248 gene, ITS, lysB基因对应的探针; 海洋分 枝杆菌 dnaJ, φθΒ, virulence protein gene, hsp65基因对应的探针; ί叚单胞菌 rpoD, gyrB, mucA, algD, pfhR, algU, aprX基因对应的探针; 链球菌 tuf, sodA, sly, ef, cps2J, aroA, dpr, gki, gyrB, IctO, IctP, mrp基因对应的探针点制到 同一个芯片上, 各探针的序列信息如下: 序列
病原菌 特征基因 表编 探针序列 (5'— 3')
鳗弧菌 toxR (a) 3 P: aacatagttgtgaatacgcccatcaatcatccagacctaaacaaatggttaccttct
Vibrio anguillarum toxR (b) 7 P: aacatagttgtgaatacgcccatcaatcatccagacctaaacaaatggttaccttct angM 11 P: caatggtagcttactacctatagaggttgaaccgtgtgggagagccatatctactgg empA 15 P: atcagtacggaacagatttcccagggttagtgataaataaagtaggcaacacctgta vahl (a) 20 P: tcaatgtttggatggacaatcactgggtcaattacaaccttgtagttcgagtttagt vahl (b) 24 P: cggcctaatactgattatgaatgtacgtttaataactcacatctttgggatcgaggt virA 28 P: tggggaaatacagatagcaaccaagtaaaatatcactatcagagttacctgtttgga virC 31 P: agactatggttaacttagccgataatttattaaatcaaggtgagacagaagatgcct fatA (a) 36 P: gtgagcttgttactctcgatgtgttagccaaagatggcgatgatattgaagagctag
Figure imgf000031_0001
6Z ..9S.0/0T0ZN3/X3d 雕 Ϊ0Ζ OAV
Figure imgf000032_0001
οε
..9S.0/0T0ZN3/X3d 雕 Ϊ0Ζ OAV
Figure imgf000033_0001
Figure imgf000034_0001
ην (B)Vraij ..9S.0/0T0ZN3/X3d 雕 Ϊ0Ζ OAV gyrB 533 P: tgatcttgaaattatcggtgatactgacttatcaggaacaacagttcactttacgcc
IctO 536 P: cacaaattagccaatgagcaaggggaaatcgcaagtgccaaaggtgttaaagaattt
IctP (a) 539 P: cacaaattagccaatgagcaaggggaaatcgcaagtgccaaaggtgttaaagaattt
IctP (b) 542 P: ggtactttagggacttttattacagggagtgacacctctgctaatgttttgtttggt mrp (a) 545 P: acgaccaagcagttcttaaattctattatttagatcctacctataagggtgaagtag mrp (b) 548 P: actcctaagtcagctcttggcacagagtataatacagatgtggaccgtagaccagcc mrp (c) 551 P: actggtggtaagtatggaagaatctacatttctaaacaagtttggacaactgcgaaa mrp (d) 554 P: ctacaaagatacagaaggtaatgtgattaaagatccagaaacggatgtgtctgatgc
2、 如权利要求 1所述的检测多种海水养殖动物病原菌的基因芯片, 其特征 在于在上述芯片上点制了质控系统的杂交阳性内对照质控 QC2的 16S rRNA基 因对应的探针;杂交阳性外对照质控 QC3的 HBB, ProTa, HBA1 , bGH, HAMP 基因对应的探针; 杂交阴性对照质控 QC4的 TCP10, LFY, STM基因对应的探 针, 探针的序列信息如下:
Figure imgf000035_0001
3、 如权利要求 1所述的检测多种海水养殖动物病原菌的基因芯片, 其特征 在于在上述芯片上加入 3组荧光标记用的 HEX染料作为表面化学质控。
4、 如权利要求 1所述的检测多种海水养殖动物病原菌的基因芯片, 其特征 在于鳗弧菌的 toxR基因探针、 angM基因的探针、 empA基因的探针、 vahl基因 的探针、 virC基因的探针; 溶藻胶弧菌 toxR基因的探针、 tlh基因的探针; 副溶 血弧菌 toxR基因的探针、 tdh基因的探针; 哈维氏弧菌 vhh-1基因的探针、 vhhA 基因的探针、 pap6基因的探针; 创伤弧菌 toxR基因的探针; 非 01型霍乱弧菌 toxR基因的探针、 stn基因的探针; 费氏弧菌 ampC基因的探针; 灿烂弧菌 aerV 基因的探针、 als基因的探针、 toxR基因的探针; 嗜水气单胞菌 aerA基因的探 针、 ahal基因的探针、 ahpA基因的探针; 杀鲑气单胞菌 vapA基因的探针; 迟 缓爱德华氏菌 evpA基因的探针、 mukF基因的探针、 ethA基因的探针; 鲑鱼肾 杆菌 p57基因的探针; 海洋分枝杆菌 hsp65基因的探针; 链球菌属 tuf基因的探 针, 能由下列替补探针代替, 探针的序列信息如下:
在序列表
病原菌 特征基因 替补探针序列 (5 '— 3 ')
中的编号
toxR (a) 4 P: gcaaattgatgttggttgtggctcttttcttacctattctggctctcctattgacta toxR (b) 8 P: gcaaattgatgttggttgtggctcttttcttacctattctggctctcctattgacta angM 12 P: aaatgacaatggtagcttactacctatagaggttgaaccgtgtgggagagccatatc 鳗弧菌 16 PI : gatttcccagggttagtgataaataaagtaggcaacacctgtagcatggtgaatagc empA
Vibrio 17 P2: ttctttattgatgcgaactctggtgacgtattacaaacttgggaagggttaaaccat anguillarum vahl (a) 21 P: tgggtcaattacaaccttgtagttcgagtttagtccagcgttgggaatggatagaaa vahl (b) 25 P: tctcaatgactcttgattatcgtcaatcaggtgctgattacgtgacattagatgctt
32 PI : tgcttttgatagagcgatgaaaacaggttctaaacagttgcagtttaagactatggt virC
33 P2: caatgttgaacttgcttttgatagagcgatgaaaacaggttctaaacagttgcagtt 溶藻胶弧菌 toxR (a) 55 P: caattccgtcagattggtgagtatcaaaatgtaccagtgatgacacctgtaaatcac
Vibrio toxR (b) 59 P: gtatcatgctgcttctcgctattttgatgcctttgtgcgtcattctatttaccaatc alginolyticus tlh (b) 66 Pxaccacagttccaatactcaacacaggaagaaattgaaacgattcgtgcgaaagtat 副溶血弧菌 toxR 79 P: ctgtaaatcacccgcaaatcaacaactggttgccttctattgagcagtgcattgaac Vibrio
tdh 83 P: acgaagatgtttatggtcaatcagtattcacaacgtcaggtactaaatggttgacat parahaemolyticus
114 P 1: caacgatgcttagtgacatggataatgaaaagctcgataaaaacgccactgccaaag vhh-1
115 P2: cgatgcttagtgacatggataatgaaaagctcgataaaaacgccactgccaaagtag 哈维氏弧菌
119 PI : aactacaagcctgctaataccctgtttacccttgagtttggtctaaatgacttcatg Vibrio harveyi vhhA
120 P2:gatgcaacacgtgcaccacagtttacctactcgactcaagaagaaatcaacaagatc pap6 124 P: ggtacaaacttacaatggctatggtaatgtggaactttatgtagcaattgatcgccc 创伤弧菌 131 PI : atcctcgtcagaaattggtagagatgtcgcgcataatgctggcacgtcaacaaagat toxR
Vibrio vulnificus 132 P2: tcaaccaacaacgtgaatgacgcagcttctgaagcattagatcaagaagaattagaa 非 01型霍乱弧 toxR 163 P: tattactgctcactaacccgagccaaaccagctttaaacccctaacggttgtcgatg 菌
Non-01 Vibrio stn 167 P: agaaaacgataccaaaacagtgcagcaaccacaacaaattgaaagcaaggtaaatat cholerae
费氏弧菌 228 PI : tgaacaaacattaaaatcttggatgatgaataacaaagtgtctgacccactactgcg ampC
Vibrio fischeri 229 P2: gtctcaaacactcaacgctttgttatttggtaacactttaaacccacaggatgaaca 灿烂弧菌 aerV (b) 257 P: caaacagagaatacgtttaagtggcctcttgttggcgaaactaagctcaccattaag Vibrio splendidus als (a) 261 P: tattcaatctatcgctaaggtggcagggaaagttgttcctactatggcggttatgta
265 PI : tattcaatctatcgctaaggtggcagggaaagttgttcctactatggcggttatgta als (b)
266 P2: ttgtcgcatgtttaagcgttctgatttcaaatgcagaccaactgttgaatgctatta toxR 276 P: actgaagctgtcgagcccgagtcaattacaaagtttcaagaaaccaaagttgaagtg 嗜水气单胞菌 aerA (a) 319 P: caattttgcgtacaacctggaccctgacagcttcaaacatggtgatgtgacccagtc
Aeromonas ahal 329 P: tcagatcatctactccaacacctacggtggcttcaaaggcaaactgtcctatcaaac hydrophila ahpA 333 P: gtcctgcccaagctgccgttcgagaacagcaacatagacccctccaacagcaacttc 杀鲑气单胞菌
Aeromonas vapA (a) 352 P: taactatcactgaatatgcagatcatgctgccaatggtcgtggtgaaggtactgtat salmonicida
365 PI : aagctgaaagagcgcaaattcgtttcgattgatcgcgacaacttcaacgatgttatc 迟缓爱德华氏菌 evpA 366 P2: atacgttggatcgagtccgctcgccaagagtgcagattacctatgatgttgaaattg
Edwardsiella 367 P3: attgatcgcgacaacttcaacgatgttatcaaaggggtgcatccccatctgtcattc tarda mukF 380 P: gatctggtcgacgtattccgtcatgtcagcaagacatttgaacagacgcacgaaacc ethA (a) 384 P:taacctgacggtgcagaacgtcgccaaccgtaagacggagatcgacaaccacaccta 鲑鱼肾杆菌 442 PI : gttacagtcactaaccccggtggggagacggtaacgtacgagagtttccactacttc
Renibacterium p57 gene (a)
443 P2: ctgtaaaaacaccagcagtagatgccgctggcccggtaaaggttacagtcactaacc salmoninarum
海洋分枝杆菌
Mycobacterium hsp65 474 P: atcgagaaggcagtcgagaaggtcaccgagaccttgctcaagtcggccaaagaggtc marinum
链球菌属 499 PI : ccagtcgaagatgtattctcaatcacaggtcgtggtacagttgcttcaggacgtatc tuf (a)
Streptococcus, sp 500 P2: aaccattacttcttccagtcgaagatgtattctcaatcacaggtcgtggtacagttg o
5、 如权利要求 2所述的检测多种海水养殖动物病原菌的基因芯片, 其特征 在于质控系统的杂交阳性内对照质控 QC2的 16S rRNA基因的探针, 杂交阳性 外对照质控 QC3的 HBB基因的探针、 ProTa基因的探针、 HBA1基因的探针、 bGH基因的探针, 杂交阴性对照质控 QC4的 TCP10基因的探针、 LFY基因的 探针、 STM基因的探针, 可由下列探针序列代替, 替补探针的序列信息如下:
561 PI : gtctgcaactcgactccatgaagtcggaatcgctagtaatcgcaaatcagaatgttg 阳性内对照质控
16S rRNA (b) 562 P2: cttacgagtagggctacacacgtgctacaatggcgtatacagagggcagcgaatacc
QC2-16S rR A
563 P3: cgtgttgtgaaatgttgggttaagtcccgcaacgagcgcaacccttatccttgtttg
HBB (a) 579 P: catggcaagaaggtgctagattcctttagtaatggcatgaagcatctcgatgacctc
HBB (b) 583 P: cctgggcaggtaggtatcccacttacaaggcaggtttaaggagagtgaaatgcacct 杂交阳性外对照质控
ProTa 587 P: ggcagctgaagatgacgaggataacgatgtggataccaagaagcagaagactgataa QC3- Bos taurus
HBA1 (a) 591 P: ctgacttactcccttccgttctcaagacagctgacggactcttacaggatgcaggag bGH 598 P: tatagagcacacaggtcgggggaaagggagagagagaagaagccagggtataaaaat 阴性对照质控 605 PI : tcaacaacaagaacaagaagaaaggagtaatggtggtttcatggtgaatcatcatcc
TCP 10 (a)
QC4- Arabidopsis thaliana 606 P2: tcatcatcagaatcaagcttcttcgatgtttgcttcatcatcacagtatggttctca 613 PI : aatagacctagtgcaagaagtacgaggattaatgtcatgtacaggaattcaaagagt
LFY (a)
614 P2: acttgtatgatattgatttagagctactgtgtcgatagagtatgcagtcatagtctg
LFY (b) 618 P: ggagcttgaagagatgatgaatagtctctctcatatctttcgttgggagcttcttgt
STM (a) 622 P: cagggtgtcttggtgaagatccagggcttgatcaattcatggaagcttactgtgaaa
STM (b) 626 P: gaagaagaggaagaaaggaaagctccctaaagaagctcgtcaacaactgcttgattg
6、 权利要求 1所述的检测多种海水养殖动物病原菌的基因芯片的制备, 是 将人工合成的 3'端氨基修饰的探针溶解成终浓度为 10〜100μΜ的溶液,与 30〜 60%的二甲基亚砜混合制成探针终浓度为 10〜30μΜ 的点样样品后进行芯片的 点制, 固定。
7、权利要求 1或 2所述的检测多种海水养殖动物病原菌的基因芯片的应用, 包括如下的步骤: (1 )待检样品 DNA的提取; (2) PCR同步扩增特征基因及质 控系统基因的靶序列: 待检 DNA溶液 0.5〜2.0 μ , 在 10〜100μΙ^的扩增反应 液里还各含有 0.1〜1.0 μΜ用于样品 PCR扩增的正向引物和反向引物、0.01〜0.5 单位的 Taq DNA聚合酶、 0.1〜: 1.0 mM dNTPs、 1.0〜8.0 mM Mg2+、 50〜200 mM 单价金属盐离子, pH6.5〜8.5; 扩增程序包括: 90〜98°C 2〜10mm—次; 90〜 98 °C 10〜60s, 50〜65°C 10〜60s, 70〜75°C 10〜60s, 25〜40个循环; 70〜75 °C 延伸 5〜20 min; (3 )PCR产物与芯片杂交:杂交液为 10〜30 体系:2〜4 x SSC、 10%〜50%去离子甲酰胺、 2〜10 x Denhardts,液, 0.05%〜0.5% SDS、 0.2-2.0 杂交阳性对照质控 PCR产物, 用待测样品的混合 PCR产物补齐制成杂交液, 将 杂交液混合均勾后, 利用 PCR仪或恒温水浴锅 90°C -98°C热变性 2-10mm, 冰上 骤变 10s以上,加入盖片上每个方阵对应的点样孔内,放入杂交炉或恒温水浴锅 中, 37-55°C孵育 0.5-4h; (4 ) 芯片杂交后的处理: 玻片分别在以下两种洗液中, 37-55 °C, 清洗 l-10min; 其中洗液 I成分有 0.2-0.5 x SSC和 0.1%-0.3% SDS , 洗 液 Π成分只是 0.04-0.1 X SSC; 清洗后, 将玻片放入 50ml锥形离心管中, 以转 速 500-1500r/mm, 离心 l-5min甩干; (5)芯片的扫描及结果判读: 用芯片扫描仪 进行基因芯片的结果判读或进行荧光显影照相。
8、 如权利要求 7 所述的检测多种海水养殖动物病原菌的基因芯片的应用, 其特征在于上述的用于样品 PCR扩增的正向引物和反向引 ^ 序列信息如下: 在序列表中
病原菌 特征基因 引物序列 (5'— 3') 的编号
鳗弧菌 1 F: aacgagcctgaagaggaacc toxR (a)
Vibrio anguillarum 2 R: tgcttaggtgccagttctcc toxR (b) 5 F: acccgaagagacaacatccc
Figure imgf000039_0001
..9S.0/0T0ZN3/X3d 雕 Ϊ0Ζ OAV
Figure imgf000040_0001
..9S.0/0T0ZN3/X3d 雕 Ϊ0Ζ OAV
Figure imgf000041_0001
6C
..9S.0/0T0ZN3/X3d 雕 Ϊ0Ζ OAV
Figure imgf000042_0001
0
..9S.0/0T0ZN3/X3d 雕 Ϊ0Ζ OAV 287 R: caccaaccaacaactcaggag
289 F: gccgcatgtcgctttctac hlyA
290 R: gcatctccactgacttcaacc
292 F: cacgctaacctgggcaatg mhuA
293 R: gtcacgctcacgcatacg
295 F: gctcattgctggttgttcac mhuB
296 R: cgagtgcggattcaggatg
298 F: agaggcggcggagatagg zot
299 R: tgactgaggctcggattgc
301 F: acggttggacagcgatgg luxC
302 R: actggagactaaagcggtagc
304 F: tgagtagcggtgacattaacg luxD
305 R: ccaacgagtcattgtctaaagc 杀鲑弧菌 307 F: agcctgttactgatggtgaac luxE
Vibrio salmonicida 308 R: tcagtgaacttgccatagagag
310 F: tggatgctggcgtttaatacc luxl
311 R: gctcaattgctgtcgatgtaac
313 F: gcacctgtagactctgatgttg toxR
314 R: ctctgatcgctgtattcgctac
316 F: gtggcaaataagcggtctgg aerA (a)
317 R: tggtggcggtatcgtaacg
320 F: acaaggctgacatctcctatcc aerA (b)
321 R: tctgctgtatggtccagttcc
323 F: tatcagcacggcgtcacc alt
324 R: cgaacttgaacagggcatcc
326 F: gttgatggtgagctggttgg ahal
嗜水气单胞菌 327 R: ttgtcgtcgttggtttgatagg Aeromonas hydrophila 330 F: gtggtgaccggcagtagc ahpA
331 R: ttccgtcggcgttgatgg
334 F: ctggctacaaggatgttgatgg ompTS (a)
335 R: tgtcgtcgttggtctgatagg
337 F: ggtgacgcaggtaacttctatg ompTS (b)
338 R: tggatcttgtactcggtgtagg
340 F: atgatagtggcgaccgatacc
H
341 R: tgccttgaacagcccttcc extracellular serine 343 F: gctgatgtccgcctaccc 温和气单胞菌 protease gene 344 R: tcacctgaaccgcttctacc Aeromonas sob a 346 F: tggtggtggctgacaagag metalloprotease gene
347 R: gcgtggttgaggttgatgg 杀鲑气单胞菌 349 F: gccaacctcatccacattcg vapA (a)
Aeromonas salmonicida 350 R: cgtcagcagcaacatcagc vapA (b) 353 F: cgcttcttacactgctgatcc 354 R: tccaaccgaggctaacacc
356 F: accagaccaagcagtatgagg fstA (a)
357 R: aggagccgagccagtagg
359 F: gggattgagtgggatctgtttg fstA (b)
360 R: aggagccgagccagtagg
362 F: agtgaaagcaagcagcatacg evpA
363 R: tctcggtgcggaatgacag
368 F: gccagcgagacgagatagg esaV (a)
369 R: gagcgaccacgacgagag
371 F: cggacaggatggcgtagg esaV (b)
372 R: tgctgatgatggcggtctac
374 F: gcggtgacgacaacgatac esrB
375 R: atggcatccgtaatctcttgg
377 F: ttgctggctatcgctaccc mukF
378 R: cgctgacggatatagtaatcgg
381 F: ggaggtgctgctggatgg ethA (a)
382 R: cctggctatgattgttgtctcg
385 F: atggcggcggactatgtg ethA (b)
386 R: cggcggtgttgatgatgc
388 F: cggtgagcgagacaacaatc ethA (c)
389 R: gctgccgttgacctgaatatc 迟缓爱德华氏菌 391 F: gccgacgatgtctatctgttc ethB (a)
Edwardsiella tarda 392 R: tacgccactctgccatcc
394 F: ccgccctgtatctggagaag ethB (b)
395 R: atgtaggcacggctgtagc
397 F: ggcaccgaggcattaccc hlyB
398 R: cgcagatccagcacattcc
400 F: ccgctatcctatcgcaatatgg katB
401 R: cagaccttcgtggcatcaag
403 F: tcccgctttggttcagagg gadB
404 R: cgaacttatgccagcagacc
406 F: gtcaacgcacagtggaagag pstS
407 R: cggcagggtcgcatagtc
409 F: cccgtctcaagattctggaag fur
410 R: atcgtggtggtgctgttg
412 F: cttgtcaggtgagtggtgattc
413 R: atggtgaacgggctggtc
415 F: tgtgagtggtcaggcaagc
Figure imgf000044_0001
416 R: gtgttggcgtaagagcgatag 鲇鱼爱德华氏菌 418 F: gactattacggcgacggataag eihA
Edwardsiella ictaluri 419 R: tcctggctgctgcgattc eihB (a) 421 F: gtcggcggttcggtgatc 422 R: atgtaggcacggctgtagc
424 F: gccgacgatgtctatctgttc
425 R: tacgccactctgccatcc
427 F: ttactgcccgccttaccg p 18
428 R: ctggaagtggagatttgtaccc
430 F: atccagaacggcatcaaatacc eipl9
431 R: ggaacagaacggacatcagatc
433 F: tgtgccgctattcgctcag eip20
434 R: gtccgctcgccaagagtg
436 F: cctggcgttggcattagc eip55
437 R: ggaatgttcggactggatagc
439 F: ggatggcagcaacctattcg p57 gene (a)
440 R: cattcaccttcaccacagtacc
444 F: ccgcaggaggaccagttg p57 gene (b)
445 R: atccaccttcaccacagtacc
447 F: tgaccaccgacgacattacc hly
鲑鱼肾杆菌 448 R: tgccgactgccttgatgg
Renihacterium salmoninarum 450 F: ctaacgcagacggattctatgg
RRSA01248 gene
451 R: cttgaccttggactggaacttc
453 F: gctggttctgttctcggattg
ITS
454 R: tcaaacaacaacacccactcc
456 F: ccagaaccagtccgagcag lysB
457 R: caggtccacgccgttagc
459 F: ggagaccgagaccgaactg dnaJ
460 R: ggcaccgaaagcgttgag
462 F: cggtgggtgagctgatcc rpoB (a)
463 R: agagcgggttgttctggtc 海洋分枝杆菌 465 F: caagaagctcggcctgaac rpoB (b)
Mycobacterium marinum 466 R: cgtcctgggtggtcatcc
468 F: tttcgggacgggacttactac virulence protein gene
469 R: gcgaatgcgagagtcttgc
471 F: aaggaagttgccaagaagacc hsp65
472 R: tgcccaccttgtccatcg 假单胞菌属 475 F: gctggcaacggatgatgtc rpoD
Pseudomonas. sp 476 R: cgaagacgaagaagcggaag
478 F: agtgggcgacagtgaatcc gyrB
479 R: ggcgaggttgttcttcttgg
481 F: ggataacgaagcggatgaactc mucA
482 R: taccactgacggcggattg
484 F: cctactcaaccgttcgtctg algD
485 R: ccgttaaatgcctgccaatg pfhR 487 F: gccaagaccgaccagacc
Figure imgf000046_0001
ft ..9S.0/0T0ZN3/X3d 雕 Ϊ0Ζ OAV 553 R: ttggctcgtctggctctg
555 F: ttggaaacgatggctaataccg
16S rR A (a)
556 R: cgctacacctgaaattctaccc
558 F: gtcgtcagctcgtgttgtg
16S rR A (b)
559 R: ttgcgattactagcgattccg
564 F: ggcagcacagaggaacttg
16S rR A (c)
565 R: agcccttacctcaccaactag 阳性内对照质控 QC2-16S rRNA
567 F: tgagtaatgcctgggaaattgc
16S rR A (d)
568 R: ggtgcttcttctgtaggtaacg
570 F: gcaagcgttaatcggaattac
16S rR A (e)
571 R: tgagtgtcagtatctgtccag
573 F: cgcaacccttatccttgtttg
16S rR A (f)
574 R: cgtattcaccgcaacattctg
576 F: accatgctgactgctgagg
HBB (a)
577 R: cacaccattcaccaccttctg
580 F: ctatcatcgttcaagcctcacc
HBB (b)
581 R: cagcatcagcagtggacaag
584 F: aacgaggtagacgaagaagagg
ProTa
585 R: gggaagtggagggtgaatagg
588 F: tcaatcgcccgttcattcac 杂交阳性外对照质控 taurus HBA1 (a)
589 R: gttcttgcttccaccgtctg
592 F: ccgtgctgacctccaaatac
HBA1 (b)
593 R: cctccaccctctcactcttag
595 F: gggaacaggatgagtgagagg bGH
596 R: gcgaatggaggggattttagc
599 F: ccagacagacggcacaatg
HAMP
600 R: ctttacgacagcagccacag
9、如权利要求 8所述的检测多种海水养殖动物病原菌的基因芯片的应用,其 特征在于上述的正向引物的 5'端进行 HEX标记。
PCT/CN2010/075677 2010-08-03 2010-08-03 检测多种海水养殖动物病原菌的基因芯片及其应用 WO2012016375A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080004017.4A CN102869785B (zh) 2010-08-03 2010-08-03 检测多种海水养殖动物病原菌的基因芯片及应用
PCT/CN2010/075677 WO2012016375A1 (zh) 2010-08-03 2010-08-03 检测多种海水养殖动物病原菌的基因芯片及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/075677 WO2012016375A1 (zh) 2010-08-03 2010-08-03 检测多种海水养殖动物病原菌的基因芯片及其应用

Publications (1)

Publication Number Publication Date
WO2012016375A1 true WO2012016375A1 (zh) 2012-02-09

Family

ID=45558906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075677 WO2012016375A1 (zh) 2010-08-03 2010-08-03 检测多种海水养殖动物病原菌的基因芯片及其应用

Country Status (2)

Country Link
CN (1) CN102869785B (zh)
WO (1) WO2012016375A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605075A (zh) * 2012-03-22 2012-07-25 集美大学 一组能同时识别哈维氏弧菌和溶藻弧菌的寡核苷酸序列及其制备方法
CN103451310A (zh) * 2013-09-23 2013-12-18 国家海洋局第一海洋研究所 一种可并行检测多种弧菌的基因芯片及其检测方法
CN104004842A (zh) * 2014-05-27 2014-08-27 中国水产科学研究院珠江水产研究所 一种同时检测水生动物败血症三种致病菌的多重pcr引物组及检测方法
CN105002280A (zh) * 2015-07-24 2015-10-28 长江大学 弧菌的荧光定量pcr检测方法
CN105133040A (zh) * 2015-06-30 2015-12-09 宁波大学 一种检测海洋致病弧菌的基因芯片及其制备方法与检测方法
CN105385773A (zh) * 2015-12-24 2016-03-09 光明乳业股份有限公司 一种检测荧光假单胞菌的方法及其试剂盒和引物
CN105886637A (zh) * 2016-05-11 2016-08-24 辽宁大学 一种温和气单胞菌特异性引物及其在大菱鲆养殖过程中的应用
CN106811542A (zh) * 2017-03-28 2017-06-09 大连海洋大学 用于检测参虾贝养殖区致病弧菌群的基因芯片和使用方法
CN106939347A (zh) * 2017-04-26 2017-07-11 淮海工学院 三疣梭子蟹病原需钠弧菌双重pcr快速检测试剂盒与方法
CN107694618A (zh) * 2016-08-08 2018-02-16 香港中文大学 离心微流控系统和用于配置该系统的方法
CN107916294A (zh) * 2017-11-20 2018-04-17 中国水产科学研究院南海水产研究所 一种用于检测哈维弧菌多重毒力基因的引物组、试剂盒及其应用
CN107988341A (zh) * 2018-01-03 2018-05-04 北京毅新博创生物科技有限公司 质谱鉴定霍乱弧菌分型的方法及产品
CN108018333A (zh) * 2017-12-19 2018-05-11 杭州师范大学 一种用于同时检测六种实验动物病原体的基因芯片试剂盒及其检测方法
CN110093428A (zh) * 2019-01-30 2019-08-06 宁波大学 一种致病性弧菌的高通量定量检测试剂盒
CN110592240A (zh) * 2018-06-13 2019-12-20 杭州众测生物科技有限公司 哈维氏弧菌(vhv)的raa恒温荧光检测方法及试剂

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103757129B (zh) * 2014-02-18 2015-08-26 山东省海洋生物研究院 溶藻胶弧菌的lamp快速检测方法
CN104611447A (zh) * 2015-02-11 2015-05-13 北京市水产技术推广站 一种鲑肾杆菌的检测方法
CN104962617A (zh) * 2015-06-08 2015-10-07 国家海洋环境监测中心 一种浴场海水中致病性细菌的基因芯片检测方法
CN104975086A (zh) * 2015-06-15 2015-10-14 浙江省海洋开发研究院 一种水产品细菌性疾病的快速检测试剂盒及应用
CN105755156A (zh) * 2016-05-11 2016-07-13 辽宁大学 一种杀鲑气单胞菌特异性引物及其在大菱鲆养殖过程中的应用
CN106520962B (zh) * 2016-11-17 2019-11-01 中国水产科学研究院黑龙江水产研究所 杀鲑气单胞菌的SYBR Green I实时定量PCR检测方法及其应用
CN108841980B (zh) * 2018-07-27 2021-12-10 四川华汉三创生物科技有限公司 一种用于致病性弧菌检测的核酸组合及其应用
CN108841979B (zh) * 2018-07-27 2021-12-21 四川华汉三创生物科技有限公司 一种检测致病性弧菌的试剂盒
CN108841925B (zh) * 2018-07-27 2021-12-14 四川华汉三创生物科技有限公司 一种检测致病性弧菌的方法
CN109749966A (zh) * 2018-12-19 2019-05-14 中国水产科学研究院黄海水产研究所 一株假交替单胞菌及其作为益生菌在水产上的应用
CN109680087B (zh) * 2019-02-27 2019-10-18 云南省农业科学院甘蔗研究所 一种甘蔗白叶病植原体和白条黄单胞菌的双重pcr检测方法及其引物组
CN112280869B (zh) * 2020-10-27 2021-11-23 淮阴师范学院 一种利用基因芯片技术检测饲料中海洋哺乳类动物成分的方法
RU2766192C1 (ru) * 2021-05-05 2022-02-09 Федеральное казенное учреждение здравоохранения "Ростовский-на-Дону ордена Трудового Красного Знамени научно-исследовательский противочумный институт" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека Способ выявления токсигенных штаммов 01 vibrio cholerae "постгаитянской" линии методом пцр в режиме реального времени
CN113832241A (zh) * 2021-08-27 2021-12-24 江苏海洋大学 一种rpa-lfs快速检测杀鲑气单胞菌的探针及引物组、试剂盒、检测方法
CN116064868B (zh) * 2022-09-30 2023-12-29 青岛农业大学 一种水产病原灿烂弧菌的检测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101475986A (zh) * 2009-01-20 2009-07-08 中国水产科学研究院黄海水产研究所 一种对多种弧菌进行基因检测的共检芯片及其检测与应用
CN101691608A (zh) * 2009-06-03 2010-04-07 宁波大学 水产品养殖致病菌的基因芯片

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101475986A (zh) * 2009-01-20 2009-07-08 中国水产科学研究院黄海水产研究所 一种对多种弧菌进行基因检测的共检芯片及其检测与应用
CN101691608A (zh) * 2009-06-03 2010-04-07 宁波大学 水产品养殖致病菌的基因芯片

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI CHEN ET AL.: "Description of Gene Chip in Bacterial Detection and its Application in Aquaculture", CHINESE AGRICULTURAL SCIENCE BULLETIN, vol. 26, no. 4, February 2010 (2010-02-01), pages 41 - 44 *
XU LA ET AL.: "Application of gene chip in pathogen and its prospect in aquaculture detection", MARINE FISHERIES RESEARCH, vol. 29, no. 1, February 2008 (2008-02-01), pages 109 - 114 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605075A (zh) * 2012-03-22 2012-07-25 集美大学 一组能同时识别哈维氏弧菌和溶藻弧菌的寡核苷酸序列及其制备方法
CN103451310A (zh) * 2013-09-23 2013-12-18 国家海洋局第一海洋研究所 一种可并行检测多种弧菌的基因芯片及其检测方法
CN104004842A (zh) * 2014-05-27 2014-08-27 中国水产科学研究院珠江水产研究所 一种同时检测水生动物败血症三种致病菌的多重pcr引物组及检测方法
CN104004842B (zh) * 2014-05-27 2016-02-03 中国水产科学研究院珠江水产研究所 一种同时检测水生动物败血症三种致病菌的多重pcr引物组及检测方法
CN105133040A (zh) * 2015-06-30 2015-12-09 宁波大学 一种检测海洋致病弧菌的基因芯片及其制备方法与检测方法
CN105002280A (zh) * 2015-07-24 2015-10-28 长江大学 弧菌的荧光定量pcr检测方法
CN105385773A (zh) * 2015-12-24 2016-03-09 光明乳业股份有限公司 一种检测荧光假单胞菌的方法及其试剂盒和引物
CN105385773B (zh) * 2015-12-24 2019-01-29 光明乳业股份有限公司 一种检测荧光假单胞菌的方法及其试剂盒和引物
CN105886637A (zh) * 2016-05-11 2016-08-24 辽宁大学 一种温和气单胞菌特异性引物及其在大菱鲆养殖过程中的应用
CN107694618A (zh) * 2016-08-08 2018-02-16 香港中文大学 离心微流控系统和用于配置该系统的方法
CN107694618B (zh) * 2016-08-08 2020-10-30 香港中文大学 离心微流控系统和用于配置该系统的方法
CN106811542A (zh) * 2017-03-28 2017-06-09 大连海洋大学 用于检测参虾贝养殖区致病弧菌群的基因芯片和使用方法
CN106811542B (zh) * 2017-03-28 2020-08-21 大连海洋大学 用于检测参虾贝养殖区致病弧菌群的基因芯片和使用方法
CN106939347B (zh) * 2017-04-26 2020-08-04 淮海工学院 三疣梭子蟹病原需钠弧菌双重pcr快速检测试剂盒与方法
CN106939347A (zh) * 2017-04-26 2017-07-11 淮海工学院 三疣梭子蟹病原需钠弧菌双重pcr快速检测试剂盒与方法
CN107916294A (zh) * 2017-11-20 2018-04-17 中国水产科学研究院南海水产研究所 一种用于检测哈维弧菌多重毒力基因的引物组、试剂盒及其应用
CN107916294B (zh) * 2017-11-20 2021-12-24 中国水产科学研究院南海水产研究所 一种用于检测哈维弧菌多重毒力基因的引物组、试剂盒及其应用
CN108018333A (zh) * 2017-12-19 2018-05-11 杭州师范大学 一种用于同时检测六种实验动物病原体的基因芯片试剂盒及其检测方法
CN108018333B (zh) * 2017-12-19 2022-03-29 杭州师范大学 一种用于同时检测六种实验动物病原体的基因芯片试剂盒及其检测方法
CN107988341A (zh) * 2018-01-03 2018-05-04 北京毅新博创生物科技有限公司 质谱鉴定霍乱弧菌分型的方法及产品
CN110592240A (zh) * 2018-06-13 2019-12-20 杭州众测生物科技有限公司 哈维氏弧菌(vhv)的raa恒温荧光检测方法及试剂
CN110093428A (zh) * 2019-01-30 2019-08-06 宁波大学 一种致病性弧菌的高通量定量检测试剂盒
CN110093428B (zh) * 2019-01-30 2022-09-30 浙江正合谷生物科技有限公司 一种致病性弧菌的高通量定量检测试剂盒

Also Published As

Publication number Publication date
CN102869785A (zh) 2013-01-09
CN102869785B (zh) 2014-08-13

Similar Documents

Publication Publication Date Title
WO2012016375A1 (zh) 检测多种海水养殖动物病原菌的基因芯片及其应用
CN103898108B (zh) 对河流弧菌o2,o4,o13,o15和o18特异的核苷酸及其应用
KR20090078341A (ko) Dnaj 유전자를 사용한 박테리아의 검출, 및 그의 용도
Feng et al. A universal random DNA amplification and labeling strategy for microarray to detect multiple pathogens of aquatic animals
EP1651773A1 (en) Diagnostics of diarrheagenic escherichia coli (dec) and shigella spp.
JP5900979B2 (ja) 細胞膨張化致死毒を標的としたカンピロバクター属細菌の検出
CN105200044B (zh) 对河流弧菌o1,o6,o7,o8和o9特异的核苷酸及其应用
CN105200045B (zh) 对河流弧菌o11,o14,o16和o17特异的核苷酸及其应用
CN105256041B (zh) 对亲水气单胞菌o44,o24,o25和o28特异的核苷酸及应用
EP1952145B1 (en) A method for specific detection of legionella pneumophila
US9944995B2 (en) Diagnostic methods for detecting Clostridium difficile
CN105256042B (zh) 对亲水气单胞菌o13,o36,o16和o19特异的核苷酸及应用
EP1445331A1 (en) Molecular biological identification techniques for microorganism
JP6873903B2 (ja) 強毒型クロストリジウムディフィシル株の存在を検出するための方法
CA2471230A1 (en) New primers for the detection and identification of bacterial indicator groups and virulence factors
CN113957165B (zh) 一种基于高通量测序的假单胞菌种水平快速检测方法及其应用
JP2001046063A (ja) ユーバクテリウム属及びフソバクテリウム・バリウムグループ細菌用プライマー
JP2013523118A (ja) サルモネラ属菌の検出及び/又は定量化のためのペプチド核酸プローブ、キット及び方法、並びにその適用
CN105177133B (zh) 对霍乱弧菌o6,o4,o7和o15特异的核苷酸及其应用
CN105087569B (zh) 对霍乱弧菌o18,o19,o23和o12特异的核苷酸及其应用
CN105256043B (zh) 对亲水气单胞菌o29,o30,o33和o35特异的核苷酸及应用
JP2004081054A (ja) 腸管出血性大腸菌ベロトキシン検出のためのプライマーおよびそれを用いた腸管出血性大腸菌の同定法
JP5089223B2 (ja) プローブセット、プローブ固定担体及び検査方法
JP2001120271A (ja) ルミノコッカス属細菌菌種に特異的なプライマー
JP5089220B2 (ja) プローブセット、プローブ固定担体及び検査方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004017.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10855513

Country of ref document: EP

Kind code of ref document: A1