WO2012014710A1 - レーザ加工方法 - Google Patents

レーザ加工方法 Download PDF

Info

Publication number
WO2012014710A1
WO2012014710A1 PCT/JP2011/066321 JP2011066321W WO2012014710A1 WO 2012014710 A1 WO2012014710 A1 WO 2012014710A1 JP 2011066321 W JP2011066321 W JP 2011066321W WO 2012014710 A1 WO2012014710 A1 WO 2012014710A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
modified region
laser
laser beam
discolored
Prior art date
Application number
PCT/JP2011/066321
Other languages
English (en)
French (fr)
Inventor
英樹 下井
佳祐 荒木
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to JP2012526429A priority Critical patent/JP5554838B2/ja
Priority to CN201180036377.7A priority patent/CN103025475B/zh
Priority to KR1020137004727A priority patent/KR102035619B1/ko
Priority to EP11812302.5A priority patent/EP2599577A4/en
Priority to US13/388,739 priority patent/US8591753B2/en
Publication of WO2012014710A1 publication Critical patent/WO2012014710A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/384Removing material by boring or cutting by boring of specially shaped holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/55Working by transmitting the laser beam through or within the workpiece for creating voids inside the workpiece, e.g. for forming flow passages or flow patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0025Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/003Other surface treatment of glass not in the form of fibres or filaments by irradiation by X-rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/486Via connections through the substrate with or without pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/147Semiconductor insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Definitions

  • the present invention relates to a laser processing method, and more particularly to a laser processing method for forming a through hole in a processing object.
  • a modified region is formed by condensing laser light inside a workpiece formed of glass, and the modified region is removed by performing an etching process on the workpiece.
  • a through-hole in a processing object is known (for example, refer to patent documents 1).
  • the modified region is formed. For example, it is necessary to make the laser light ultrashort pulse or short wavelength, and it may be difficult to form the modified region. Therefore, in the laser processing method as described above, it is desired to improve the workability with respect to laser light in a processing target formed of glass.
  • an object of the present invention is to provide a laser processing method capable of enhancing the workability with respect to laser light in a processing object formed of glass.
  • One aspect of the present invention relates to a laser processing method.
  • a laser beam is focused inside a processing object formed of glass to form a modified region, and etching is performed along the modified region, thereby forming a through hole in the processing target.
  • a laser processing method for forming a browning process in which at least a part of a processing object is discolored by browning, and after the browning process, condensing laser light on the processing object to form a discolored portion of the processing object.
  • etching is performed on the object to be processed, and etching is selectively advanced along the modified region to form a through hole.
  • An etching process step is performed.
  • the laser beam condensing step it is possible to further include a recoloring step of recovering at least a part of the discolored portion of the processing object by performing a heat treatment on the processing object. In this case, it is possible to return the color of the discolored portion of the object to be processed to the state before the discoloration.
  • a plurality of portions are discolored in the processing object, and in the laser beam condensing process, the processing target is irradiated with laser light, and the laser light is relative to one direction so as to straddle the plurality of discolored parts. Can be moved.
  • each of the discolored portions has a low transmittance, so that the laser beam is easily absorbed, and thus the modified region is easily formed.
  • the non-discolored portion since the permeability is high, it becomes difficult to form the modified region.
  • the discolored portion can have a light and shade corresponding to the size of the modified region formed in the laser beam condensing process.
  • the discolored portion since the discolored portion has the transmittance of the laser light corresponding to the light and shade, the size of the modified region formed by condensing the laser light is controlled by the light and shade of the discolored portion of the workpiece. Can do.
  • the discolored portion can have a gradation.
  • the discolored portion has a laser light transmittance that changes stepwise according to gradation. Therefore, it is possible to collectively form a plurality of modified regions 7 having different sizes according to gradation.
  • the laser processing method of the present invention it becomes possible to improve the workability with respect to laser light in a processing object formed of glass.
  • FIG. 3 is a cross-sectional view taken along the line III-III of the workpiece in FIG. 2. It is a top view of the processing target after laser processing.
  • FIG. 5 is a cross-sectional view taken along the line VV of the workpiece in FIG. 4.
  • FIG. 5 is a cross-sectional view taken along line VI-VI of the workpiece in FIG. 4.
  • (a) is a flowchart which shows the laser processing method which concerns on 1st Embodiment of this invention
  • (b) is a flowchart which shows a continuation of FIG.
  • FIG. 7 (a), (c) shows a continuation of FIG.7 (b).
  • FIG. (a) is a flowchart showing the continuation of FIG. 7 (c)
  • (b) is a flowchart showing the continuation of FIG. 8 (a)
  • (c) is a flowchart showing the continuation of FIG. 8 (b).
  • (a) is a flowchart showing a laser processing method according to the second embodiment of the present invention
  • (b) is a flowchart showing a continuation of FIG. 9 (a)
  • (c) shows a continuation of FIG. 9 (b).
  • FIG. (a) is a flowchart showing the continuation of FIG. 9 (c)
  • (b) is a flowchart showing the continuation of FIG.
  • FIG. 10 (a), and (c) is a flowchart showing the continuation of FIG. 10 (b).
  • (a) is a flowchart which shows the laser processing method which concerns on 3rd Embodiment of this invention
  • (b) is a flowchart which shows a continuation of Fig.11 (a).
  • FIG. 12A is a flowchart showing the continuation of FIG. 11B
  • FIG. 12B is a flowchart showing the continuation of FIG. (a) is a flowchart showing a laser processing method according to a modification
  • (b) is a flowchart showing a continuation of FIG. 13 (a)
  • (c) is a flowchart showing a continuation of FIG. 13 (b).
  • (a) is a flowchart showing a laser processing method according to another modification
  • (b) is a flowchart showing a continuation of FIG. 14 (a)
  • (c) is a flowchart showing a continuation of FIG. 14 (b). is there.
  • the modified region is formed by condensing the laser beam inside the object to be processed. First, the formation of the modified region will be described below with reference to FIGS.
  • a laser processing apparatus 100 includes a laser light source 101 that oscillates a laser beam L, a dichroic mirror 103 that is arranged so as to change the direction of the optical axis (optical path) of the laser beam L, and A condensing lens 105 for condensing the laser light L. Further, the laser processing apparatus 100 includes a support base 107 for supporting the workpiece 1 irradiated with the laser light L condensed by the condensing lens 105, and a stage 111 for moving the support base 107. And a laser light source control unit 102 for controlling the laser light source 101 to adjust the output of the laser light L, the pulse width, and the like, and a stage control unit 115 for controlling the movement of the stage 111.
  • the laser beam L emitted from the laser light source 101 has its optical axis changed by 90 ° by the dichroic mirror 103, and is a plate-like processing object placed on the support base 107. 1 is condensed by the condensing lens 105. At the same time, the stage 111 is moved, and the workpiece 1 is moved relative to the laser beam L along the modified region formation scheduled portion 5. As a result, a modified region along the modified region formation scheduled portion 5 is formed on the workpiece 1.
  • a modified region formation scheduled portion 5 is set in the processing object 1.
  • the modified region formation scheduled portion 5 here is a virtual line extending linearly.
  • the laser beam L is applied to the modified region formation scheduled portion 5 in a state where the focusing point P is aligned with the inside of the workpiece 1. (Ie, in the direction of arrow A in FIG. 2).
  • a modified region 7 is formed inside the workpiece 1 along the modified region formation scheduled portion 5, and this modified region 7 is removed by etching described later. Region 8 is formed.
  • the condensing point P is a location where the laser light L is condensed.
  • the modified region formation scheduled portion 5 is not limited to a linear shape but may be a curved shape, a curved surface shape or a planar three-dimensional shape, or a coordinate-designated portion. Good.
  • the modified region 7 may be formed continuously or intermittently. Further, the modified region 7 may be in the form of a line or a dot. In short, the modified region 7 only needs to be formed at least inside the workpiece 1.
  • a crack may be formed starting from the modified region 7, and the crack and modified region 7 may be exposed on the outer surface (front surface, back surface, or outer peripheral surface) of the workpiece 1.
  • the laser beam L passes through the workpiece 1 and is particularly absorbed in the vicinity of the condensing point inside the workpiece 1, whereby a modified region 7 is formed in the workpiece 1.
  • a modified region 7 is formed in the workpiece 1.
  • surface absorption laser processing when a removed portion such as a hole or a groove is formed by being melted and removed from the front surface 3 (surface absorption laser processing), the processing region gradually proceeds from the front surface 3 side to the back surface side.
  • the modified region 7 refers to a region in which the density, refractive index, mechanical strength, and other physical characteristics are different from the surroundings.
  • the modified region 7 include a melt processing region, a crack region, a dielectric breakdown region, a refractive index change region, and the like, and there is a region where these are mixed.
  • the modified region 7 includes a region where the density of the material of the workpiece 1 is changed compared to the density of the non-modified region, and a region where lattice defects are formed (collectively, a high-density transition region). Also called).
  • the melt treatment region, the refractive index changing region, the region where the density of the modified region 7 is changed compared with the density of the non-modified region, and the region where lattice defects are formed are further included in these regions and the modified region.
  • cracks are included in the interface between the non-modified region 7 and the non-modified region.
  • the cracks included may be formed over the entire surface of the modified region 7, or may be formed in only a part or a plurality of parts. Examples of the processing object 1 include those containing glass or made of glass (details will be described later).
  • a crack included in the modified region 7 or extending from the modified region 7 is performed by etching the workpiece 1. Etching is selectively advanced along (also referred to as cracks, microcracks, cracks, etc., hereinafter simply referred to as “cracks”), and the portion along the modified region 7 in the workpiece 1 is removed.
  • an etchant is infiltrated into a crack included in or extending from the modified region 7 of the workpiece 1 and along the crack surface.
  • Etching progress.
  • etching progresses and is removed at a selective and high etching rate along the crack.
  • etching is selectively advanced along the modified region 7 and removed.
  • the etching process of this embodiment includes, for example, a case where a workpiece is immersed in an etchant (dipping method: Dipping) and a case where an etchant is applied while rotating the workpiece (spin etching method: SpinEtching). is there.
  • the etching here is isotropic etching.
  • the etching agent is used at a temperature from room temperature to around 100 ° C., and is set at an appropriate temperature according to the required etching rate.
  • a fluorine-based etching agent is used.
  • an alkaline solution such as KOH (potassium hydroxide) that is an alkaline etching agent, HF (hydrofluoric acid), HF and H 2 O (water)
  • KOH potassium hydroxide
  • HF hydrofluoric acid
  • H 2 O water
  • NH 4 F saturated aqueous solution of ammonium bifluoride
  • isotropic etching it can be applied to a relatively thin workpiece (for example, 10 ⁇ m to 100 ⁇ m in thickness), and etching can proceed in the same direction without depending on the crystal orientation and the modified region. . Also, in this case, if a crack is exposed on the surface, the etching solution is transmitted through the crack and infiltrated inside, and the entire surface in the thickness direction in the modified region is the starting point of the modified region. It is possible to take out the chip etched so that the surface is recessed in a semicircular shape.
  • the laser processing method according to the first embodiment of the present invention will be described in detail.
  • the thickness direction (irradiation direction of the laser beam L) of the workpiece 1 is defined as the Z direction, and one direction orthogonal to the thickness direction is defined as the X direction.
  • the present embodiment is a processing method for manufacturing a component (such as an interposer) that electrically connects a semiconductor device and a printed wiring board or a flexible substrate, for example.
  • a through electrode is formed by forming a through hole 24 (see FIG. 11) and burying a conductor in the through hole 24.
  • the process target 1 is a glass substrate which can be discolored by browning, and has a transparent color (transparency with respect to visible light).
  • glass other than quartz glass (Cortz) having high SiO 2 purity is used as the processing object 1. That is, the workpiece 1 can be discolored by browning and is formed of glass containing a predetermined amount or more of impurities having a composition other than SiO 2 .
  • the workpiece 1 has a front surface 3 and a back surface 21.
  • the modified region formation scheduled portion 5 is set in a programmable manner by three-dimensional coordinate designation.
  • the modified region formation scheduled portion 5 is set so as to extend along a direction inclined with respect to the thickness direction of the workpiece 1.
  • the workpiece 1 is processed by the laser processing method of the present embodiment, first, as shown in FIG. 7B, the workpiece 1 is first irradiated with an X-ray 2 from the surface 3 side for a predetermined time. Thereby, in the workpiece 1, the color is changed from a transparent color to a deep yellowish brown color by browning. As a result, a discolored portion H in which the transmittance of the laser light L is reduced is formed throughout the workpiece 1.
  • browning means a phenomenon that the glass is transformed and discolored (colored) when fast neutrons are irradiated to the glass.
  • the workpiece 1 is discolored so as to have a shade corresponding to the size of the modified region 7 formed later.
  • the irradiation conditions such as the irradiation intensity in X-rays and the time are set so that the discoloration portion H is discolored in light and shade where the transmittance of the laser light L becomes a predetermined value.
  • the X-ray 2 is irradiated for a predetermined time under irradiation conditions of 130 kV and 130 ⁇ A, and the discoloration portion H has a transmittance of several tens of percent (for example, 20%) with respect to the laser light L having a wavelength of 1064 nm.
  • the processing object 1 is placed and held on the mounting table with the front surface 3 side facing upward, and the laser beam L is condensed on the back surface 21 side of the processing object 1.
  • the points (hereinafter simply referred to as “focusing points”) are matched.
  • laser light L is irradiated ON / OFF from the surface 3 side under a fixed laser condition (scanning) while relatively moving the condensing point in the X direction.
  • the modified region 7 having a size corresponding to the density of the discolored portion H is formed at a position along the modified region formation scheduled portion 5 on the back surface 21 side of the discolored portion H.
  • the output of the laser beam L is 0.6 W / Pulse, and the pulse width is 100 ns.
  • the wavelength of the laser beam L is, for example, 1064 nm, and the pulse pitch is 0.25 ⁇ m (400 kHz—100 mm / s).
  • the pulsed laser beam is spot-irradiated as the laser beam L, the formed modified region 7 is composed of a modified spot. In the modified region 7, a crack generated from the modified region 7 is included (the same applies to the following modified regions).
  • the above-described scan is repeatedly performed by changing the Z-direction position of the condensing point in the order from the back surface 21 side to the front surface 3 side in the workpiece 1.
  • the modified region 7 connected to each other along the portion corresponding to the through hole 24 is formed in the workpiece 1. That is, the modified region 7 of the workpiece 1 is formed in the discolored portion H inside the workpiece 1.
  • the workpiece 1 is etched. Specifically, the etching agent is infiltrated into the modified region 7 from the front surface 3 and the back surface 21 side of the workpiece 1 and etching is selected along the modified region 7 and the crack included in the modified region 7. Make progress. Thereby, the inside of the workpiece 1 is selectively removed along the modified region 7, and the through hole 24 is formed in the workpiece 1.
  • the workpiece 1 is subjected to a heat treatment of, for example, about 400 ° C., and the discoloration portion H is restored. That is, the transparency of the workpiece 1 is restored (revitalized), and the color of the workpiece 1 is returned to the original transparent color before the color change. Thereafter, the workpiece 1 is oxidized by a wet oxidation method or the like, an insulating film having electrical insulation is generated on the inner surface of the through hole 24, and a conductor is embedded in the through hole 24. Then, electrode pads are formed on the front surface 3 and the back surface 21 so as to be electrically connected to the conductor, thereby forming a through electrode.
  • the transmittance of the laser light L is reduced in the discolored portion H by changing the color of the workpiece 1 by browning, the discolored portion H induces absorption of the laser light L.
  • the modified region 7 is easily formed by condensing the laser beam L. Therefore, according to the present embodiment, it becomes possible to improve the workability as the ease of processing with respect to the laser light L in the processing object 1 formed of glass, and the laser light L can be reduced in ultrashort pulse or shorter wavelength. The necessity for making it possible can be reduced.
  • the discolored portion H is recovered by heat treatment, and it is possible to suppress adverse effects on the product due to discoloration due to browning.
  • the workpiece 1 is discolored so as to have a shade corresponding to the size of the modified region 7 to be formed. That is, by adjusting the irradiation intensity and time of the X-ray 2, the density of the discolored portion H is adjusted, and the absorption rate of the laser light L in the workpiece 1 is controlled. Therefore, under the same irradiation condition of the laser beam L, the processing dimension (the size of the modified region 7) can be suitably controlled using the difference in the absorption rate of the laser beam L. As a result, it is possible to form a larger modified region 7 for condensing the laser light L by increasing the color changing portion H, and forming a smaller modified region 7 for condensing the laser light L by reducing the discolored portion H. .
  • the modified region 7 and the cracks included in the modified region 7 can be removed from the processed object 1 after processing by an etching process, so that the strength and quality can be improved. Moreover, since cutting dust is not generated during processing, an environment-friendly processing method can be realized. Furthermore, for example, in an interposer manufactured using the present embodiment, it is possible to reduce the wiring pitch, facilitate the design of the wiring, and reduce the electrical resistance of the wiring.
  • the processing object 1 is irradiated with the X-ray 2 as described above, it is difficult to apply the present embodiment to a laser processing method for cutting the processing object 1 as a semiconductor chip or the like. It may become.
  • the present embodiment forms the through hole 24 in the workpiece 1, and it can be said that there is little concern about this problem.
  • FIGS. 9 and 10 are flowcharts showing a laser processing method according to the second embodiment of the present invention.
  • differences from the first embodiment will be mainly described.
  • a mask 12 having a predetermined pattern is formed on the surface 3 of the processing object 1.
  • the mask 12 is made of a non-transmissive material (for example, lead or the like) with respect to the X-ray 2, and a plurality of openings 12a are arranged in parallel along the X direction.
  • the workpiece 1 is irradiated with the X-ray 2 from the surface 3 side for a predetermined time.
  • the workpiece 1 is selectively discolored according to the predetermined pattern of the mask 12.
  • the X-ray 2 is incident only on the region of the workpiece 1 corresponding to the opening 12a of the mask 12, and a plurality of discolored portions H are arranged in parallel along the X direction.
  • the focusing point is aligned with the back surface 21 side of the object 1 to be processed under a certain laser condition.
  • the laser beam L is relatively moved in the X direction (scanning). That is, while irradiating the laser beam L, the laser beam L is relatively moved in the X direction so as to straddle the plurality of discolored portions H.
  • the modified region 7 is formed.
  • the transmittance is high even when the laser light L is condensed. The modified region is not formed.
  • the above-described scan is repeatedly performed by changing the Z-direction position of the condensing point in the order from the back surface 21 side to the front surface 3 side in the workpiece 1.
  • modified regions 7 connected to each other at the discoloration portion H are formed in the workpiece 1.
  • the processing object 1 is subjected to an etching process, and the inside of the processing object 1 is selectively removed along the modified region 7.
  • the plurality of discolored portions H are removed, and a plurality of through holes 24 extending in the Z direction are formed.
  • region of the presence or absence of the browning of the process target object 1 is controlled using the mask 12, and the several part of the process target object 1 is discolored.
  • the workpiece 1 is partially browned by the mask 12 so that the transmission region and the non-transmission region of the laser beam L are formed in the same workpiece 1.
  • the laser beam L is moved relative to the workpiece 1 so as to straddle the plurality of discolored portions H, and the discolored portion H is selectively modified. . Therefore, the plurality of modified regions 7 can be formed with high accuracy in the workpiece 1 without irradiating the laser beam L ON / OFF. Therefore, when forming the plurality of modified regions 7 on the workpiece 1, it is not necessary to control the irradiation condition of the laser beam L with high accuracy and criticality.
  • 11 and 12 are flowcharts showing a laser processing method according to the third embodiment of the present invention.
  • differences from the first embodiment will be mainly described.
  • a mask 12 having a predetermined pattern is formed on the surface 3 of the processing object 1.
  • the mask 12 masks both ends of the workpiece 1, and has an opening 12 a that opens widely from one end side to the other end side.
  • X-ray 2 is spot-irradiated on the workpiece 1 (irradiation giving an intensity distribution using diffraction).
  • the intensity distribution of the X-ray 2 here is a quadratic-curve intensity distribution 2a that is higher at the center side and lowers as it goes outward.
  • the processing object 1 is discolored so that gradation as a stepwise gradation is added, and the discoloration portion H1 that becomes darker as the center side becomes darker and goes outward. Is formed.
  • a scan for irradiating the laser beam L ON / OFF under a certain laser beam L irradiation condition while moving the focal point in the X direction is performed on the workpiece 1. It repeats by changing the Z direction position of a condensing point in order of the back surface 21 side to the surface 3 side.
  • the modified region 7 having a size corresponding to the density of the discoloration portion H1 is formed so as to be connected to each other along the portion corresponding to the through hole 24.
  • the discoloration portion H has a gradation as described above, and the transmittance of the laser light L differs according to the gradation
  • the plurality of modified regions 7 having different sizes according to the gradation are provided. It is formed at a time by the scan. Specifically, the size of the plurality of modified regions 7 formed in a lump is large on the center side of the workpiece 1 and is reduced as going outward.
  • the workpiece 1 is subjected to an etching process, and the inside of the workpiece 1 is selectively removed along the modified region 7.
  • a plurality of through holes 24 having different diameters corresponding to the size of the modified region 7 are collectively formed.
  • the diameter of the through hole 24 here corresponds to the size of the modified region 7, that is, the gradation of the discoloration portion H 1, the through hole 24 on the center side of the workpiece 1 has a large diameter, and the outside As it goes, it becomes smaller.
  • a plurality of modified regions 7 having different sizes according to gradation are subjected to irradiation conditions of a certain laser beam L. Can be batch formed below.
  • a large modified region 7 is formed in a dark region of the discoloration portion H1, and a thin region.
  • a small modified region 7 can be formed.
  • the discoloration portion H1 has a gradation in which the center side is dark and gradually decreases toward the outside, but the gradation of the discoloration portion is not limited.
  • the workpiece 1 may have a gradation that gradually decreases (or becomes darker) from one end side in the X direction to the other end side.
  • the X-ray absorption filter 13 is disposed on the surface 3 of the workpiece 1.
  • the X-ray absorption pattern of the X-ray absorption filter 13 is a pattern corresponding to the gradation of the discolored portion H.
  • the pattern gradually increases from one end side to the other end side of the workpiece 1 in the X direction. (Or a smaller pattern).
  • the workpiece 1 is irradiated with a surface of the X-ray 2 through the X-ray absorption filter 13.
  • the intensity distribution of the X-ray 2 incident on the workpiece 1 is gradually reduced (increased) from the one end side in the X direction of the workpiece 1 to the other end side.
  • a discolored portion H2 is formed on the workpiece 1.
  • the laser beam L is appropriately irradiated on and off the workpiece 1 under a certain laser condition while relatively moving the condensing point, from one end side in the X direction.
  • a plurality of modified regions 7 are formed in the discolored portion H2 so as to become smaller in size toward the other end.
  • the discoloration portions H3 may be formed at arbitrary plural positions in the processing target portion 1, and gradation may be provided between the plural discoloration portions H3.
  • an X-ray absorption mechanism 14 in which a plurality of X-ray absorption filters having different transmittances are provided so as to be switchable is used. Irradiate at multiple positions.
  • the intensity distribution 2c of the incident X-ray is larger than when the X-ray 2 is irradiated at the position on the other end side.
  • the X-ray absorption filter of the X-ray absorption mechanism 14 is switched.
  • a plurality of discolored portions H ⁇ b> 3 that are thinner from the one end side in the X direction to the other end side of the workpiece 1 are formed on the workpiece 1.
  • the laser light incident surface and the X-ray incident surface when forming the modified region are not limited to the front surface 3 of the workpiece 1 but may be the back surface 21 of the workpiece 1.
  • X-ray 2 was irradiated in order to be browned, you may irradiate radiation different from X-ray 2, and what is necessary is just to discolor a process target object by browning.
  • all of the discolored portion H is recovered, but at least a part of the discolored portion may be recovered.
  • the scanning which moves a condensing point along the surface 3 of the workpiece 1 is repeatedly performed by changing the condensing point position of a Z direction, and the some modification
  • region 7 is formed.
  • the scan direction and the scan order are not limited.
  • the modified region 7 may be formed by irradiating the laser beam L while moving the condensing point along the through hole 24, and this may be repeated for the number of the through holes 24.
  • the ON / OFF irradiation of the laser beam L in the above embodiment controls the ON / OFF of the emission of the laser beam L, opens and closes a shutter provided on the optical path of the laser beam L,
  • the surface 3 of the object 1 may be masked or the like.
  • the intensity of the laser light L may be controlled between an intensity that is equal to or greater than a threshold (processing threshold) at which the modified region 7 is formed and an intensity that is less than the processing threshold.
  • the laser processing method of the present invention it becomes possible to improve the workability with respect to laser light in a processing object formed of glass.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Laser Beam Processing (AREA)
  • Surface Treatment Of Glass (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

 ガラスで形成された加工対象物(1)の内部にレーザ光(L)を集光させて改質領域(7)を形成し、該改質領域(7)に沿ってエッチングすることにより、加工対象物(1)に貫通孔(24)を形成するレーザ加工方法であって、加工対象物(1)の少なくとも一部をブラウニングにより変色させるブラウニング工程と、ブラウニング工程の後、加工対象物(1)にレーザ光(L)を集光させることにより、加工対象物(1)の変色部分に改質領域(7)を形成するレーザ光集光工程と、レーザ光集光工程の後、加工対象物(1)にエッチング処理を施すことにより、改質領域(7)に沿ってエッチングを選択的に進展させて貫通孔(24)を形成するエッチング処理工程と、を含むレーザ加工方法。

Description

レーザ加工方法
 本発明は、レーザ加工方法に関し、特に、加工対象物に貫通孔を形成するレーザ加工方法に関する。
 従来のレーザ加工方法としては、ガラスで形成された加工対象物の内部にレーザ光を集光させて改質領域を形成し、この加工対象物にエッチング処理を施して改質領域を除去することにより、貫通孔を加工対象物に形成するものが知られている(例えば、特許文献1参照)。
特開2005-206401号公報
 ここで、上述したようなレーザ加工方法では、ガラスのレーザ光に対する透過率が著しく高いことから、ガラスで形成された加工対象物にレーザ光を集光させて改質領域を形成しようとすると、例えばレーザ光の超短パルス化や短波長化が必要であり、よって、改質領域を形成するのが困難となる場合がある。そのため、上述したようなレーザ加工方法では、ガラスで形成された加工対象物においてレーザ光に対する加工性を高めることが望まれている。
 そこで、本発明は、ガラスで形成された加工対象物においてレーザ光に対する加工性を高めることができるレーザ加工方法を提供することを課題とする。
 本発明の一側面はレーザ加工方法に関する。このレーザ加工方法は、ガラスで形成された加工対象物の内部にレーザ光を集光させて改質領域を形成し、該改質領域に沿ってエッチングすることにより、加工対象物に貫通孔を形成するレーザ加工方法であって、加工対象物の少なくとも一部をブラウニングにより変色させるブラウニング工程と、ブラウニング工程の後、加工対象物にレーザ光を集光させることにより、加工対象物の変色部分に改質領域を形成するレーザ光集光工程と、レーザ光集光工程の後、加工対象物にエッチング処理を施すことにより、改質領域に沿ってエッチングを選択的に進展させて貫通孔を形成するエッチング処理工程と、を含む。
 このレーザ加工方法では、ブラウニングにより変色させた加工対象物の変色部分にてレーザ光の透過率を低下させ、該レーザ光の吸収を誘発することができる。そのため、この加工対象物の変色部分では、レーザ光の集光によって改質領域が容易に形成されることとなる。よって、ガラスで形成された加工対象物においてレーザ光に対する加工性を高めることが可能となる。
 また、レーザ光集光工程の後、加工対象物に熱処理を施すことにより、加工対象物の変色部分における少なくとも一部を復色する復色工程をさらに含むことができる。この場合、加工対象物の変色部分の色を、変色前の状態へと戻すことが可能となる。
 また、ブラウニング工程では、加工対象物において複数部分を変色させ、レーザ光集光工程では、加工対象物にレーザ光を照射しつつ、該レーザ光を複数の変色部分を跨ぐように一方向に相対移動させることができる。この場合、レーザ光を照射しつつ相対移動させた際、変色部分のそれぞれでは、透過性が低くなっているためにレーザ光が吸収され易く、よって、改質領域が容易に形成される。一方、非変色部分では、透過性が高いために改質領域が形成され難くなる。従って、レーザ光をON・OFF照射することなく加工対象物に複数の改質領域を容易に形成することが可能となり、加工対象物に複数の改質領域を形成する上で、高精度で且つクリティカルなレーザ光の照射条件制御が不要となる。
 また、変色部分は、レーザ光集光工程で形成する改質領域の大きさに応じた濃淡を有することができる。この場合、変色部分はその濃淡に応じたレーザ光の透過率を有することから、レーザ光の集光で形成される改質領域の大きさを、加工対象物の変色部分の濃淡によって制御することができる。
 また、変色部分は、グラデーションを有することができる。この場合、変色部分は、グラデーションに応じて段階的に変化するレーザ光の透過率を有することになる。よって、グラデーションに応じて大きさが異なる複数の改質領域7を一括形成することができる。
 本発明のレーザ加工方法によれば、ガラスで形成された加工対象物においてレーザ光に対する加工性を高めることが可能となる。
改質領域の形成に用いられるレーザ加工装置の概略構成図である。 改質領域の形成の対象となる加工対象物の平面図である。 図2の加工対象物のIII-III線に沿っての断面図である。 レーザ加工後の加工対象物の平面図である。 図4の加工対象物のV-V線に沿っての断面図である。 図4の加工対象物のVI-VI線に沿っての断面図である。 (a)は本発明の第1実施形態に係るレーザ加工方法を示すフロー図、(b)は図7(a)の続きを示すフロー図、(c)は図7(b)の続きを示すフロー図である。 (a)は図7(c)の続きを示すフロー図、(b)は図8(a)の続きを示すフロー図、(c)は図8(b)の続きを示すフロー図である。 (a)は本発明の第2実施形態に係るレーザ加工方法を示すフロー図、(b)は図9(a)の続きを示すフロー図、(c)は図9(b)の続きを示すフロー図である。 (a)は図9(c)の続きを示すフロー図、(b)は図10(a)の続きを示すフロー図、(c)は図10(b)の続きを示すフロー図である。 (a)は本発明の第3実施形態に係るレーザ加工方法を示すフロー図、(b)は図11(a)の続きを示すフロー図である。 (a)は図11(b)の続きを示すフロー図、(b)は図12(a)の続きを示すフロー図である。 (a)は変形例に係るレーザ加工方法を示すフロー図、(b)は図13(a)の続きを示すフロー図、(c)は図13(b)の続きを示すフロー図である。 (a)は他の変形例に係るレーザ加工方法を示すフロー図、(b)は図14(a)の続きを示すフロー図、(c)は図14(b)の続きを示すフロー図である。
 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、以下の説明において同一又は相当要素には同一符号を付し、重複する説明を省略する。
 本実施形態に係るレーザ加工方法では、加工対象物の内部にレーザ光を集光させて改質領域を形成する。そこで、まず、改質領域の形成について、図1~図6を参照して以下に説明する。
 図1に示すように、レーザ加工装置100は、レーザ光Lをパルス発振するレーザ光源101と、レーザ光Lの光軸(光路)の向きを90°変えるように配置されたダイクロイックミラー103と、レーザ光Lを集光するための集光用レンズ105と、を備えている。また、レーザ加工装置100は、集光用レンズ105で集光されたレーザ光Lが照射される加工対象物1を支持するための支持台107と、支持台107を移動させるためのステージ111と、レーザ光Lの出力やパルス幅等を調節するためにレーザ光源101を制御するレーザ光源制御部102と、ステージ111の移動を制御するステージ制御部115と、を備えている。
 このレーザ加工装置100においては、レーザ光源101から出射されたレーザ光Lは、ダイクロイックミラー103によってその光軸の向きを90°変えられ、支持台107上に載置された板状の加工対象物1の内部に集光用レンズ105によって集光される。これと共に、ステージ111が移動させられ、加工対象物1がレーザ光Lに対して改質領域形成予定部5に沿って相対移動させられる。これにより、改質領域形成予定部5に沿った改質領域が加工対象物1に形成されることとなる。
 加工対象物1としては、半導体材料や圧電材料等が用いられ、図2に示すように、加工対象物1には、改質領域形成予定部5が設定されている。ここでの改質領域形成予定部5は、直線状に延びた仮想線である。加工対象物1の内部に改質領域を形成する場合、図3に示すように、加工対象物1の内部に集光点Pを合わせた状態で、レーザ光Lを改質領域形成予定部5に沿って(すなわち、図2の矢印A方向に)相対的に移動させる。これにより、図4~図6に示すように、改質領域7が改質領域形成予定部5に沿って加工対象物1の内部に形成され、この改質領域7が、後述のエッチングによる除去領域8となる。
 なお、集光点Pとは、レーザ光Lが集光する箇所のことである。また、改質領域形成予定部5は、直線状に限らず曲線状であってもよいし、曲面状や平面状の3次元状であってもよいし、座標指定されたものであってもよい。また、改質領域7は、連続的に形成される場合もあるし、断続的に形成される場合もある。また、改質領域7は列状でも点状でもよく、要は、改質領域7は少なくとも加工対象物1の内部に形成されていればよい。また、改質領域7を起点に亀裂が形成される場合があり、亀裂及び改質領域7は、加工対象物1の外表面(表面、裏面、若しくは外周面)に露出していてもよい。
 ちなみに、ここでは、レーザ光Lが、加工対象物1を透過すると共に加工対象物1の内部の集光点近傍にて特に吸収され、これにより、加工対象物1に改質領域7が形成される(すなわち、内部吸収型レーザ加工)。一般的に、表面3から溶融され除去されて穴や溝等の除去部が形成される(表面吸収型レーザ加工)場合、加工領域は表面3側から徐々に裏面側に進行する。
 ところで、本実施形態に係る改質領域7は、密度、屈折率、機械的強度やその他の物理的特性が周囲とは異なる状態になった領域をいう。改質領域7としては、例えば、溶融処理領域、クラック領域、絶縁破壊領域、屈折率変化領域等があり、これらが混在した領域もある。さらに、改質領域7としては、加工対象物1の材料において密度が非改質領域の密度と比較して変化した領域や、格子欠陥が形成された領域がある(これらをまとめて高密転移領域ともいう)。
 また、溶融処理領域や屈折率変化領域、改質領域7の密度が非改質領域の密度と比較して変化した領域、格子欠陥が形成された領域は、更にそれら領域の内部や改質領域7と非改質領域との界面に亀裂(割れ、マイクロクラック)を内包している場合がある。内包される亀裂は改質領域7の全面に渡る場合や一部分のみや複数部分に形成される場合がある。加工対象物1としては、ガラスを含む、又はガラスからなるものが挙げられる(詳しくは後述)。
 ここで、本実施形態では、加工対象物1に改質領域7を形成した後、この加工対象物1にエッチング処理を施すことにより、改質領域7に含まれる又は改質領域7から延びる亀裂(クラック、微小クラック、割れ等とも称される。以下、単に「亀裂」という)に沿ってエッチングを選択的に進展させ、加工対象物1において改質領域7に沿った部分を除去する。
 例えば、本実施形態のエッチング処理では、毛細管現象等を利用して、加工対象物1の改質領域7に含まれる又は該改質領域7から延びる亀裂にエッチング剤を浸潤させ、亀裂面に沿ってエッチングを進展させる。これにより、加工対象物1では、亀裂に沿って選択的且つ高いエッチングレートでエッチングを進展させ除去する。これと共に、改質領域7自体のエッチングレートが高いという特徴を利用して、改質領域7に沿って選択的にエッチングを進展させ除去する。
 本実施形態のエッチング処理としては、例えばエッチング剤に加工対象物を浸漬する場合(ディッピング方式:Dipping)と、加工対象物を回転させつつエッチング剤を塗布する場合(スピンエッチング方式:SpinEtching)とがある。また、ここでのエッチングは、等方性エッチングである。
 また、エッチング剤は、常温~100℃前後の温度で用いられ、必要とされるエッチングレート等に応じて適宜の温度に設定される。エッチング剤としては、フッ素系のエッチング剤が用いられており、例えば、アルカリエッチング剤であるKOH(水酸化カリウム)等のアルカリ溶液、HF(フッ酸)、HFとHO(水)との混合液、又は、NHF(重フッ化アンモニウム飽和水溶液)が挙げられる。このエッチング剤としては、液体状のものだけでなく、ゲル状(ゼリー状,半固形状)のものを用いることができる。
 等方性エッチングの場合には、比較的薄い加工対象物(例えば、厚さ10μm~100μm)に適用でき、結晶方位や改質領域に依存せずに、等方向にエッチングを進行させることができる。また、この場合、表面に亀裂が露出していると、エッチング液が当該亀裂を伝わって内部に浸潤され、改質領域において厚さ方向の全面が改質領域の起点とされることから、切断面が半円形に窪むようにエッチングされたチップを取り出すことが可能となる。
[第1実施形態]
 次に、本発明の第1実施形態に係るレーザ加工方法ついて詳細に説明する。図7,8は本発明の第1実施形態に係るレーザ加工方法を示す各フロー図である。なお、以下の説明においては、加工対象物1の厚さ方向(レーザ光Lの照射方向)をZ方向とし、厚さ方向に直交する一方向をX方向として説明する。
 図7,8に示すように、本実施形態は、例えば半導体デバイスとプリント配線基板やフレキシブル基板とを互いに電気的に接続する部品(インターポーザ等)を製造する加工方法であり、加工対象物1に貫通孔24(図11参照)を形成し、貫通孔24に導体を埋め込むことによって貫通電極を形成する。
 図7(a)に示すように、加工対象物1は、ブラウニングにより変色可能なガラス基板であって、透明色(可視光に対する透明性)を有している。この加工対象物1としては、SiO純度が高い石英ガラス(コルツ)以外のガラスが用いられている。つまり、加工対象物1は、ブラウニングで変色可能なものであり、SiO以外の組成である不純物を所定量以上含むガラスで形成されている。この加工対象物1は表面3及び裏面21を有している。
 また、加工対象物1には、貫通孔24に対応する部分に沿って、改質領域形成予定部5が3次元的な座標指定によりプログラマブルに設定されている。この改質領域形成予定部5は、加工対象物1の厚さ方向に対し傾斜する方向に沿って延びるように設定されている。
 本実施形態のレーザ加工方法によって加工対象物1を加工する場合、図7(b)に示すように、まず、加工対象物1に対しX線2を表面3側から所定時間だけ面照射する。これにより、加工対象物1にあっては、ブラウニングにより透明色から濃い黄褐色へと変色される。その結果、レーザ光Lの透過率が低下した変色部分Hが、加工対象物1全域に形成される。なお、ブラウニングとは、ガラスに高速中性子が照射されることによって当該ガラスが変成して変色(着色)する現象を意味する。
 このブラウニングによる着色の際、本実施形態では、後段で形成する改質領域7の大きさに応じた濃淡を有するよう加工対象物1を変色させている。具体的には、レーザ光Lの透過性が所定値となる濃淡で変色部Hが変色されるように、X線における照射強度等の照射条件及び時間が設定されている。例えば、130kV,130μAの照射条件で所定時間だけX線2が照射され、変色部Hが波長1064nmのレーザ光Lに対して数10%(例えば20%)の透過率となっている。
 続いて、図7(c)に示すように、加工対象物1の表面3側を上方にして載置台に載置して保持し、加工対象物1の裏面21側にレーザ光Lの集光点(以下、単に「集光点」という)を合わせる。そして、この集光点をX方向に相対移動させながら、一定のレーザ条件でレーザ光Lを表面3側からON・OFF照射する(スキャン)。これにより、変色部分Hの裏面21側において改質領域形成予定部5に沿った位置に、変色部分Hの濃淡に応じた大きさの改質領域7が形成される。
 ここでは、レーザ光Lの出力が0.6W/Pulseとされ、パルス幅が100nsとされている。また、レーザ光Lの波長が、例えば1064nmとされ、パルスピッチが0.25μm(400kHz_100mm/s)とされている。なお、パルスレーザ光をレーザ光Lとしてスポット照射することから、形成される改質領域7は改質スポットで構成されている。また、改質領域7には、該改質領域7から発生した亀裂が内包されて形成されている(以下の改質領域について同じ)。
 続いて、図8(a)に示すように、上述のスキャンを、加工対象物1において裏面21側から表面3側の順で集光点のZ方向位置を変えて繰り返し実施する。これにより、貫通孔24に対応する部分に沿って互いに繋がる改質領域7が、加工対象物1内に形成される。つまり、加工対象物1の改質領域7が、加工対象物1の内部の変色部分Hに形成される。
 続いて、図8(b)に示すように、加工対象物1に対してエッチング処理を施す。具体的には、加工対象物1の表面3及び裏面21側から改質領域7へとエッチング剤を浸潤させ、改質領域7及び該改質領域7に内包された亀裂に沿ってエッチングを選択的に進展させる。これにより、加工対象物1の内部が改質領域7に沿って選択的に除去され、貫通孔24が加工対象物1に形成される。
 続いて、図8(c)に示すように、加工対象物1に例えば約400℃の熱処理を施し、変色部Hを復色させる。つまり、加工対象物1の透明性が復旧(復活)され、加工対象物1の色が変色前の元の透明色へ戻される。その後、ウェット酸化法等により加工対象物1を酸化し、電気的絶縁性を有する絶縁膜を貫通孔24の内面に生成し、貫通孔24内に導体を埋入する。そして、この導体と電気的に接続するように電極パッドを表面3及び裏面21上に形成し、これにより、貫通電極が構成される。
 以上、本実施形態では、ブラウニングにより加工対象物1を変色させることで、変色部分Hにてレーザ光Lの透過率を低下させているため、かかる変色部分Hでは、レーザ光Lの吸収が誘発され、レーザ光Lの集光によって改質領域7を容易に形成されることとなる。従って、本実施形態によれば、ガラスで形成された加工対象物1において、レーザ光Lに対する加工し易さとしての加工性を高めることが可能となり、レーザ光Lの超短パルス化や短波長化の必要性を低減することができる。
 その結果、加工対象物1の素材を変える毎に、レーザ光Lにおける波長等の照射条件を変えることが不要となる。よって、ガラスで形成された加工対象物1だけでなく、シリコン等の他の素材で形成された加工対象物に対しても、同一のレーザ光源を用いてレーザ加工を行うことが可能となり、ひいては、生産性を向上させることができる。
 また、本実施形態では、上述したように、熱処理によって変色部Hを復色させており、ブラウニングによる変色に起因した製品上の悪影響を抑制することが可能となる。
 また、本実施形態では、上述したように、形成する改質領域7の大きさに応じた濃淡を有するように加工対象物1を変色させている。すなわち、X線2の照射強度及び時間を制御することで変色部分Hの濃淡を調整し、加工対象物1におけるレーザ光Lの吸収率を制御している。よって、同一のレーザ光Lの照射条件の下において、レーザ光Lの吸収率の違いを利用して加工寸法(改質領域7の大きさ)を好適に制御することが可能となる。その結果、変色部Hを濃くすることでレーザ光Lの集光により大きい改質領域7を形成でき、変色部Hを薄くすることでレーザ光Lの集光により小さい改質領域7を形成できる。
 なお、本実施形態では、次の作用効果も奏する。例えば、貫通孔24の形成に際し、改質領域7及び該改質領域7に内包された亀裂をエッチング処理によって加工後の加工対象物1から除去できるため、その強度及び品質を向上可能となる。また、加工時に切削粉塵が発生しないため、環境に配慮した加工方法を実現できる。さらに、例えば、本実施形態を用いて製造したインターポーザ等においては、配線ピッチを微細化、配線の設計容易化、及び配線の電気抵抗低減が可能となる。
 ちなみに、本実施形態では、上記のように加工対象物1にX線2を照射することから、加工対象物1を半導体チップ等として互いに切断するレーザ加工方法に本実施形態を適応するのは困難となる場合がある。この点、本実施形態は、加工対象物1に貫通孔24を形成するものであり、かかる問題の懸念は少ないといえる。
[第2実施形態]
 次に、本発明の第2実施形態について説明する。図9,10は本発明の第2実施形態に係るレーザ加工方法を示す各フロー図である。なお、本実施形態の説明では、上記第1実施形態と異なる点について主に説明する。
 本実施形態のレーザ加工方法では、図9(a)に示すように、まず、加工対象物1の表面3に、所定パターンを有するマスク12を形成する。ここでは、マスク12は、X線2に対して非透過材料(例えば、鉛等)からなり、複数の開口部12aがX方向に沿って並設されている。
 続いて、図9(b)に示すように、加工対象物1に対しX線2を表面3側から所定時間だけ面照射する。これにより、加工対象物1は、マスク12の所定パターンに応じて選択的に変色される。具体的には、加工対象物1においてマスク12の開口部12aに対応する領域のみにX線2が入射され、複数の変色部分HがX方向に沿って並設される。
 続いて、図9(c)に示すように、マスク12を除去した後、図10(a)に示すように、加工対象物1の裏面21側に集光点を合わせ、一定のレーザ条件でレーザ光Lを表面3側から連続照射しながら、該レーザ光LをX方向に相対移動させる(スキャン)。つまり、レーザ光Lを照射しながら、該レーザ光Lを複数の変色部分Hを跨ぐようX方向に相対移動させる。これにより、変色部分Hのそれぞれでは、透過性が低くなっているために改質領域7が形成される一方、非変色部分では、レーザ光Lが集光されても、透過性が高いために改質領域が形成されないこととなる。
 続いて、上述のスキャンを、加工対象物1において裏面21側から表面3側の順で集光点のZ方向位置を変えて繰り返し実施する。これにより、図10(b)に示すように、変色部分Hおいて互いに繋がる改質領域7が加工対象物1内に形成される。そして、図10(c)に示すように、加工対象物1に対してエッチング処理を施し、加工対象物1の内部を改質領域7に沿って選択的に除去する。これにより、複数の変色部分Hが除去され、Z方向に延びる貫通孔24が複数形成される。
 以上、本実施形態においても、ガラスで形成された加工対象物1においてレーザ光Lに対する加工性を高めるという上記作用効果を奏する。
 また、本実施形態では、上述したように、マスク12を用いて加工対象物1のブラウニングの有無の領域を制御し、加工対象物1の複数部分を変色させている。換言すると、マスク12によって加工対象物1を部分的にブラウニングし、レーザ光Lの透過領域と非透過領域を同一の加工対象物1に作り込んでいる。そして、一定のレーザ光Lの照射条件の下、加工対象物1の複数の変色部分Hを跨ぐようにレーザ光Lを照しつつ相対移動させ、変色部分Hを選択的に改質している。従って、レーザ光LをON・OFF照射することなく加工対象物1に複数の改質領域7を精度よく形成できる。よって、加工対象物1に複数の改質領域7を形成する上で、高精度で且つクリティカルなレーザ光Lの照射条件制御が不要となる。
[第3実施形態]
 次に、本発明の第3実施形態について説明する。図11,12は本発明の第3実施形態に係るレーザ加工方法を示す各フロー図である。なお、本実施形態の説明では、上記第1実施形態と異なる点について主に説明する。
 本実施形態のレーザ加工方法では、図11(a)に示すように、まず、加工対象物1の表面3に、所定パターンを有するマスク12を形成する。ここでのマスク12は、加工対象物1の両端部をマスキングするものであり、その一端側から他端側に亘り広く開口する開口部12aが形成されている。
 続いて、加工対象物1に対しX線2をスポット照射(回折を利用して強度分布を与えた照射)する。ここでのX線2の強度分布は、中心側が高く外側に行くに従って曲線的に低くなるような2次曲線状の強度分布2aとなっている。これにより、図11(b)に示すように、加工対象物1においては、段階的な濃淡としてのグラデーションが付加されるよう変色され、中心側が濃く且つ外側に行くに従って徐々に薄くなる変色部分H1が形成される。
 続いて、図12(a)に示すように、集光点をX方向に相対移動させながら一定のレーザ光Lの照射条件でレーザ光LをON・OFF照射するスキャンを、加工対象物1において裏面21側から表面3側の順で集光点のZ方向位置を変えて繰り返し実施する。これにより、変色部分H1において該変色部分H1の濃淡に応じた大きさの改質領域7が、貫通孔24に対応する部分に沿って互いに繋がるよう形成される。
 このとき、上記のように変色部分Hがグラデーションを有しており、グラデーションに応じてレーザ光Lの透過率が異なっているため、該グラデーションに応じて大きさが異なる複数の改質領域7が上記スキャンによって一括形成される。具体的には、一括形成される複数の改質領域7の大きさは、加工対象物1の中心側で大きく、外側に行くに従って小さくされる。
 続いて、図12(b)に示すように、加工対象物1に対してエッチング処理を施し、加工対象物1の内部を改質領域7に沿って選択的に除去する。これにより、改質領域7の大きさに対応して互いに径が異なる複数の貫通孔24が、一括形成される。ここでの貫通孔24の径は、改質領域7の大きさ、すなわち変色部分H1のグラデーションに対応しており、加工対象物1の中心側の貫通孔24が大径とされ、且つ外側に行くに従って小径のものとなっている。
 以上、本実施形態においても、ガラスで形成された加工対象物1においてレーザ光Lに対する加工性を高めるという上記作用効果を奏する。
 また、本実施形態では、上述したように、変色部分H1がグラデーションを有していることから、グラデーションに応じて大きさが異なる複数の改質領域7を、一定のレーザ光Lの照射条件の下で一括形成することができる。つまり、集光点を相対移動させながら一定のレーザ条件でレーザ光Lを加工対象物1に適宜ON・OFF照射することで、変色部H1の濃い領域には大きい改質領域7し、薄い領域には小さい改質領域7を形成することができる。
 なお、本実施形態では、中心側が濃く且つ外側に行くに従って徐々に薄くなるようなグラデーションを変色部分H1が有しているが、変色部分のグラデーションは、限定されるものではない。
 例えば、図13に示すように、加工対象物1のX方向一端側から他端側に行くに従って徐々に薄くなる(又は、濃くなる)グラデーションを有していてもよい。この場合、まず、図13(a)に示すように、加工対象物1の表面3上に、X線吸収フィルタ13を配置する。X線吸収フィルタ13のX線吸収パターンにあっては、変色部分Hのグラデーションに対応するパターンとされ、ここでは、加工対象物1のX方向一端側から他端側に行くに従って徐々に大きくなる(又は、小さくなる)パターンとされている。
 続いて、加工対象物1に対しX線2をX線吸収フィルタ13を介して面照射する。これにより、加工対象物1に入射されるX線2の強度分布が、加工対象物1のX方向一端側から他端側に行くに従って徐々に小さく(大きくなる)強度部分2bとされる。その結果、図13(b)に示すように、変色部分H2が加工対象物1に形成される。
 従って、図13(c)に示すように、その後、集光点を相対移動させながら一定のレーザ条件でレーザ光Lを加工対象物1に適宜ON・OFF照射することで、X方向一端側から他端側に行くに従って小さいサイズのものとなるように、複数の改質領域7が変色部分H2に形成される。
 或いは、例えば図14に示すように、加工対象部1における任意の複数位置に変色部分H3を形成し、これら複数の変色部分H3の間でグラデーションを有していてもよい。この場合、図14(a)に示すように、透過率の異なる複数のX線吸収フィルタが切替可能に設けられたX線吸収機構14を用い、強度分布が互いに異なるようX線2を任意の複数位置で照射する。
 このとき、加工対象物1のX方向一端側の位置でX線2を照射する場合、他端側の位置でX線2を照射するときに比べて入射されるX線の強度分布2cが大きくなるようにX線吸収機構14のX線吸収フィルタを切り替える。その結果、図14(b)に示すように、加工対象物1のX方向一端側から他端側に行くに従って薄いものとされた複数の変色部分H3が、加工対象物1に形成される。
 従って、図14(c)に示すように、その後、集光点を相対移動させながら一定のレーザ条件でレーザ光Lを適宜ON・OFF照射するスキャンを実施すると、X方向一端側から他端側に行くに従って小さいサイズとなるように、複数の改質領域7それぞれが変色部分H3のそれぞれに形成される。
 以上、本発明の好適な実施形態について説明したが、本発明に係るレーザ加工方法は、上記実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲で変形し、又は他のものに適用したものであってもよい。
 例えば、改質領域を形成する際のレーザ光入射面及びX線入射面は、加工対象物1の表面3に限定されるものではなく、加工対象物1の裏面21であってもよい。また、上記実施形態では、ブラウニングするためにX線2を照射したが、X線2とは別の放射線を照射してもよく、要は、加工対象物をブラウニングにより変色させればよい。また、上記実施形態では、変色部分Hの全てを復色させているが、変色部分の少なくとも一部を復色させてもよい。
 また、上記実施形態では、加工対象物1の表面3に沿って集光点を移動させるスキャンを、Z方向の集光点位置を変えて繰り返し実施することにより、複数の改質領域7を形成したが、スキャン方向やスキャン順序は限定されるものではない。例えば、貫通孔24に沿って集光点を移動させながらレーザ光Lを照射して改質領域7を形成し、これを貫通孔24の数だけ繰り返してもよい。
 また、上記実施形態でのレーザ光LのON・OFF照射は、レーザ光Lの出射のON・OFFを制御する他に、レーザ光Lの光路上に設けられたシャッタを開閉したり、加工対象物1の表面3をマスキングしたり等して実施してもよい。さらに、レーザ光Lの強度を、改質領域7が形成される閾値(加工閾値)以上の強度と加工閾値未満の強度との間で制御してもよい。
 本発明のレーザ加工方法によれば、ガラスで形成された加工対象物においてレーザ光に対する加工性を高めることが可能となる。
 1…加工対象物、7…改質領域、24…貫通孔、H,H1,H2,H3…変色部分、L…レーザ光。

Claims (5)

  1.  ガラスで形成された加工対象物の内部にレーザ光を集光させて改質領域を形成し、該改質領域に沿ってエッチングすることにより、前記加工対象物に貫通孔を形成するレーザ加工方法であって、
     前記加工対象物の少なくとも一部をブラウニングにより変色させるブラウニング工程と、
     前記ブラウニング工程の後、前記加工対象物に前記レーザ光を集光させることにより、前記加工対象物の変色部分に前記改質領域を形成するレーザ光集光工程と、
     前記レーザ光集光工程の後、前記加工対象物にエッチング処理を施すことにより、前記改質領域に沿って前記エッチングを選択的に進展させて前記貫通孔を形成するエッチング処理工程と、を含むレーザ加工方法。
  2.  前記レーザ光集光工程の後、前記加工対象物に熱処理を施すことにより、前記加工対象物の変色部分における少なくとも一部を復色する復色工程をさらに含む請求項1記載のレーザ加工方法。
  3.  前記ブラウニング工程では、前記加工対象物において複数部分を変色させ、
     前記レーザ光集光工程では、前記加工対象物に前記レーザ光を照射しつつ、該レーザ光を複数の前記変色部分を跨ぐように一方向に相対移動させる請求項1又は2記載のレーザ加工方法。
  4.  前記変色部分は、前記レーザ光集光工程で形成する前記改質領域の大きさに応じた濃淡を有している請求項1~3の何れか一項記載のレーザ加工方法。
  5.  前記変色部分は、グラデーションを有している請求項4記載のレーザ加工方法。
PCT/JP2011/066321 2010-07-26 2011-07-19 レーザ加工方法 WO2012014710A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012526429A JP5554838B2 (ja) 2010-07-26 2011-07-19 レーザ加工方法
CN201180036377.7A CN103025475B (zh) 2010-07-26 2011-07-19 激光加工方法
KR1020137004727A KR102035619B1 (ko) 2010-07-26 2011-07-19 레이저 가공방법
EP11812302.5A EP2599577A4 (en) 2010-07-26 2011-07-19 LASER PROCESSING
US13/388,739 US8591753B2 (en) 2010-07-26 2011-07-19 Laser processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-167406 2010-07-26
JP2010167406 2010-07-26

Publications (1)

Publication Number Publication Date
WO2012014710A1 true WO2012014710A1 (ja) 2012-02-02

Family

ID=45529926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066321 WO2012014710A1 (ja) 2010-07-26 2011-07-19 レーザ加工方法

Country Status (7)

Country Link
US (1) US8591753B2 (ja)
EP (1) EP2599577A4 (ja)
JP (1) JP5554838B2 (ja)
KR (1) KR102035619B1 (ja)
CN (1) CN103025475B (ja)
TW (1) TWI531436B (ja)
WO (1) WO2012014710A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051781A1 (ja) * 2014-10-03 2016-04-07 日本板硝子株式会社 貫通電極付ガラス基板の製造方法及びガラス基板
US11478874B2 (en) 2019-04-05 2022-10-25 Tdk Corporation Method of processing inorganic material substrate, device, and method of manufacturing device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI547454B (zh) * 2011-05-31 2016-09-01 康寧公司 於玻璃中高速製造微孔洞的方法
US8997522B2 (en) * 2012-06-26 2015-04-07 Owens-Brockway Glass Container Inc. Glass container having a graphic data carrier
WO2016129254A1 (ja) * 2015-02-10 2016-08-18 日本板硝子株式会社 レーザ加工用ガラス及びそれを用いた孔付きガラスの製造方法
TW201704177A (zh) 2015-06-10 2017-02-01 康寧公司 蝕刻玻璃基板的方法及玻璃基板
US10410883B2 (en) 2016-06-01 2019-09-10 Corning Incorporated Articles and methods of forming vias in substrates
US10134657B2 (en) 2016-06-29 2018-11-20 Corning Incorporated Inorganic wafer having through-holes attached to semiconductor wafer
US10794679B2 (en) 2016-06-29 2020-10-06 Corning Incorporated Method and system for measuring geometric parameters of through holes
CN110402616B (zh) * 2016-11-18 2023-04-04 申泰公司 填充材料以及基板通孔的填充方法
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US10580725B2 (en) 2017-05-25 2020-03-03 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
TWI678342B (zh) 2018-11-09 2019-12-01 財團法人工業技術研究院 形成導角的切割方法
KR102470505B1 (ko) * 2020-02-21 2022-11-25 미쓰비시덴키 가부시키가이샤 가공 에너지의 제어 방법 및 레이저 가공 장치
CN112719628B (zh) * 2020-12-18 2023-08-29 浙江泰仑电力集团有限责任公司 基于异物透明度的复色激光异物清除装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574335A (ja) * 1991-09-11 1993-03-26 Matsushita Electric Ind Co Ltd 画像表示素子
JP2005206401A (ja) 2004-01-21 2005-08-04 Seiko Epson Corp 構造体の製造方法、液滴吐出ヘッド及び液滴吐出装置
JP2009143787A (ja) * 2007-12-18 2009-07-02 Saitama Univ ガラス薄板の3次元加工方法
JP2010155259A (ja) * 2008-12-26 2010-07-15 Seiko Epson Corp 溝形成方法

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04150212A (ja) 1990-10-09 1992-05-22 Seiko Epson Corp 水晶基板のエッチング加工方法
JPH0740482A (ja) 1993-07-27 1995-02-10 Jsp Corp 発泡ポリプロピレン系樹脂積層体及び該積層体の製造方法
JP2873937B2 (ja) 1996-05-24 1999-03-24 工業技術院長 ガラスの光微細加工方法
JP3473668B2 (ja) 1997-01-23 2003-12-08 セイコーエプソン株式会社 インクジェット式記録ヘッド
US6563079B1 (en) 1999-02-25 2003-05-13 Seiko Epson Corporation Method for machining work by laser beam
JP2001105398A (ja) * 1999-03-04 2001-04-17 Seiko Epson Corp 加工方法
JP2000313629A (ja) * 1999-04-27 2000-11-14 Japan Science & Technology Corp 微小穴開きガラス及びその製造方法
US6552301B2 (en) * 2000-01-25 2003-04-22 Peter R. Herman Burst-ultrafast laser machining method
JP4659300B2 (ja) 2000-09-13 2011-03-30 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップの製造方法
JP4880820B2 (ja) 2001-01-19 2012-02-22 株式会社レーザーシステム レーザ支援加工方法
US6588340B2 (en) * 2001-02-15 2003-07-08 Kodak Polychrome Graphics Llc Method for making a printing plate
ATE362653T1 (de) 2002-03-12 2007-06-15 Hamamatsu Photonics Kk Methode zur trennung von substraten
CA2428187C (en) 2002-05-08 2012-10-02 National Research Council Of Canada Method of fabricating sub-micron structures in transparent dielectric materials
JP4329374B2 (ja) 2002-07-29 2009-09-09 パナソニック電工株式会社 発光素子およびその製造方法
JP4158481B2 (ja) 2002-10-21 2008-10-01 セイコーエプソン株式会社 レーザー加工方法およびその装置、並びにその装置を用いた穴あけ加工方法
JP2004160618A (ja) 2002-11-15 2004-06-10 Seiko Epson Corp マイクロマシン及びマイクロマシンの製造方法
JP2004223586A (ja) 2003-01-24 2004-08-12 Institute Of Physical & Chemical Research 透明材料内部の処理方法
JP2008207563A (ja) * 2003-01-28 2008-09-11 Iwakura Yosetsu Kogyosho:Kk レーザによるカラーマーキング方法
JP2004304130A (ja) 2003-04-01 2004-10-28 Seiko Epson Corp 半導体装置の製造方法
JP2004351494A (ja) 2003-05-30 2004-12-16 Seiko Epson Corp レーザーに対して透明な材料の穴あけ加工方法
JP2004359475A (ja) 2003-06-02 2004-12-24 Seiko Epson Corp 光学素子の製造方法及び光学装置
JP4385656B2 (ja) 2003-06-11 2009-12-16 セイコーエプソン株式会社 液体噴射ヘッド、及び、その製造方法
JP4182841B2 (ja) 2003-08-28 2008-11-19 セイコーエプソン株式会社 単結晶基板の加工方法
JP2005121916A (ja) 2003-10-16 2005-05-12 Seiko Epson Corp レンチキュラレンズ用凹部付き基板の製造方法、レンチキュラレンズ用凹部付き基板、レンチキュラレンズ基板、透過型スクリーンおよびリア型プロジェクタ
JP2005121915A (ja) 2003-10-16 2005-05-12 Seiko Epson Corp マイクロレンズ用凹部付き基板の製造方法、マイクロレンズ用凹部付き基板、マイクロレンズ基板、液晶パネル用対向基板、液晶パネルおよび投射型表示装置
JP2005144586A (ja) 2003-11-13 2005-06-09 Seiko Epson Corp 構造体の製造方法、液滴吐出ヘッド、液滴吐出装置
JP2005144622A (ja) * 2003-11-18 2005-06-09 Seiko Epson Corp 構造体の製造方法、液滴吐出ヘッド、液滴吐出装置
JP2005152693A (ja) 2003-11-20 2005-06-16 Seiko Epson Corp 構造体の製造方法、液滴吐出ヘッド、液滴吐出装置
JP2005169993A (ja) 2003-12-15 2005-06-30 Canon Inc インクジェット記録ヘッドおよびインクジェット記録ヘッドの製造方法
JP2005208175A (ja) 2004-01-20 2005-08-04 Seiko Epson Corp 光部品及びその製造方法、光モジュール、光通信装置、電子機器
US7534733B2 (en) * 2004-02-23 2009-05-19 Corning Incorporated Synthetic silica glass optical material having high resistance to laser induced damage
JP2005306702A (ja) * 2004-04-26 2005-11-04 Namiki Precision Jewel Co Ltd テーパー形状を有する微小穴の形成方法
JP2005351774A (ja) 2004-06-10 2005-12-22 Seiko Epson Corp マイクロアレイ作製用ヘッドの製造方法、マイクロアレイ作製用ヘッドおよびマイクロアレイ作製用装置
JP4630971B2 (ja) 2004-12-21 2011-02-09 並木精密宝石株式会社 パルスレーザによる微小構造の形成方法
JP2006290630A (ja) 2005-02-23 2006-10-26 Nippon Sheet Glass Co Ltd レーザを用いたガラスの加工方法
JP4809632B2 (ja) * 2005-06-01 2011-11-09 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP2007036758A (ja) 2005-07-27 2007-02-08 Seiko Epson Corp Atカット水晶振動片、その製造方法、及び水晶デバイス
JP2007048958A (ja) * 2005-08-10 2007-02-22 Renesas Technology Corp 半導体装置の製造方法および半導体装置
JP2007069216A (ja) * 2005-09-02 2007-03-22 Nippon Sheet Glass Co Ltd 無機材料の加工方法
JP2007101833A (ja) 2005-10-04 2007-04-19 Seiko Epson Corp マイクロレンズの製造方法、マイクロレンズ、空間光変調装置、スクリーン及びプロジェクタ
US20090013724A1 (en) * 2006-02-22 2009-01-15 Nippon Sheet Glass Company, Limited Glass Processing Method Using Laser and Processing Device
JP2008026437A (ja) * 2006-07-19 2008-02-07 Covalent Materials Corp ガラス製マイクロレンズアレイの製造方法、ガラス製マイクロレンズアレイ
CN102623373B (zh) 2007-05-25 2015-07-15 浜松光子学株式会社 切断用加工方法
JP5439738B2 (ja) * 2008-05-07 2014-03-12 東洋製罐株式会社 構造体、レーザ加工方法及び真贋判定方法
JP2010024064A (ja) * 2008-07-15 2010-02-04 Seiko Epson Corp 構造体の製造方法、液滴吐出ヘッド
JP2010142837A (ja) * 2008-12-18 2010-07-01 Seiko Epson Corp レーザ加工方法
US8729427B2 (en) * 2009-03-27 2014-05-20 Electro Scientific Industries, Inc. Minimizing thermal effect during material removal using a laser
US20120181250A1 (en) * 2011-01-17 2012-07-19 Branson Ultrasonics Corporation Infrared laser welding of plastic parts with one or more of the parts having a modified surface providing increased absorbtivity to infrared laser light

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574335A (ja) * 1991-09-11 1993-03-26 Matsushita Electric Ind Co Ltd 画像表示素子
JP2005206401A (ja) 2004-01-21 2005-08-04 Seiko Epson Corp 構造体の製造方法、液滴吐出ヘッド及び液滴吐出装置
JP2009143787A (ja) * 2007-12-18 2009-07-02 Saitama Univ ガラス薄板の3次元加工方法
JP2010155259A (ja) * 2008-12-26 2010-07-15 Seiko Epson Corp 溝形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2599577A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051781A1 (ja) * 2014-10-03 2016-04-07 日本板硝子株式会社 貫通電極付ガラス基板の製造方法及びガラス基板
JPWO2016051781A1 (ja) * 2014-10-03 2017-07-20 日本板硝子株式会社 貫通電極付ガラス基板の製造方法及びガラス基板
US10276368B2 (en) 2014-10-03 2019-04-30 Nippon Sheet Glass Company, Limited Method for producing glass substrate with through glass vias and glass substrate
JP2020092270A (ja) * 2014-10-03 2020-06-11 日本板硝子株式会社 導電部付ガラス基板
US10727048B2 (en) 2014-10-03 2020-07-28 Nippon Sheet Glass Company, Limited Method for producing glass substrate with through glass vias and glass substrate
US11478874B2 (en) 2019-04-05 2022-10-25 Tdk Corporation Method of processing inorganic material substrate, device, and method of manufacturing device

Also Published As

Publication number Publication date
KR20130088146A (ko) 2013-08-07
TW201219141A (en) 2012-05-16
JPWO2012014710A1 (ja) 2013-09-12
TWI531436B (zh) 2016-05-01
EP2599577A4 (en) 2016-06-15
CN103025475A (zh) 2013-04-03
US8591753B2 (en) 2013-11-26
US20120131958A1 (en) 2012-05-31
KR102035619B1 (ko) 2019-12-16
JP5554838B2 (ja) 2014-07-23
EP2599577A1 (en) 2013-06-05
CN103025475B (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
JP5554838B2 (ja) レーザ加工方法
JP5389264B2 (ja) レーザ加工方法
JP5476476B2 (ja) レーザ加工方法
TWI674163B (zh) 玻璃基板
JP5574866B2 (ja) レーザ加工方法
WO2010116917A1 (ja) レーザ加工装置及びレーザ加工方法
JP2011026177A (ja) 加工対象物切断方法
TWI384551B (zh) 圖案化多晶氧化銦錫之方法
KR101942110B1 (ko) 레이저 가공방법
JP6162975B2 (ja) 微細孔を備えた基板の製造方法
JP2005305470A (ja) 紫外線補助超短パルスレーザ加工装置並びに方法
JP5530522B2 (ja) 半導体デバイスの製造方法
WO2012014815A1 (ja) 半導体チップ実装用のガラス基板へのアブレーション加工の方法
WO2012014711A1 (ja) レーザ加工方法
JP2010145562A (ja) パターン形成方法
JP2004226811A (ja) マイクロ光学素子およびその製造方法
JP2001351835A (ja) 凹穴型ドットマークの形成方法と同ドットマークを有する半導体ウェハ
JPH09120944A (ja) 薄膜加工方法
JP2010177397A (ja) パターン形成方法
JP2010106300A (ja) パターン形成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180036377.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 13388739

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812302

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012526429

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011812302

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137004727

Country of ref document: KR

Kind code of ref document: A