WO2012014815A1 - 半導体チップ実装用のガラス基板へのアブレーション加工の方法 - Google Patents

半導体チップ実装用のガラス基板へのアブレーション加工の方法 Download PDF

Info

Publication number
WO2012014815A1
WO2012014815A1 PCT/JP2011/066732 JP2011066732W WO2012014815A1 WO 2012014815 A1 WO2012014815 A1 WO 2012014815A1 JP 2011066732 W JP2011066732 W JP 2011066732W WO 2012014815 A1 WO2012014815 A1 WO 2012014815A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
light source
laser light
glass
wavelength
Prior art date
Application number
PCT/JP2011/066732
Other languages
English (en)
French (fr)
Inventor
元司 小野
賢治 北岡
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2012014815A1 publication Critical patent/WO2012014815A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/486Via connections through the substrate with or without pins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/034Observing the temperature of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • B23K26/0884Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
    • B23K26/128Laser beam path enclosures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0211Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track
    • B23K37/0235Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track the guide member forming part of a portal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • B23K37/0408Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work for planar work
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0025Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a method for ablation processing on a glass substrate for mounting a semiconductor chip such as an interposer.
  • the laser ablation method can form a fine pattern on a substrate material to be processed. Therefore, the laser ablation method is widely used in the field of semiconductor element manufacturing that requires miniaturization and high-density mounting. (For example, Patent Documents 1 and 2).
  • a fine pattern structure can be formed on a transparent base material such as a glass substrate by a laser ablation method using a laser beam such as an excimer laser.
  • a method of forming a micro electric circuit element or the like by applying a laser ablation method to a glass substrate has been proposed (for example, Patent Document 3).
  • Japanese Unexamined Patent Publication No. 2005-88045 Japanese Unexamined Patent Publication No. 2002-126886 Japanese Unexamined Patent Publication No. 2005-66687
  • the glass substrate does not necessarily have a sufficient absorption coefficient in the wavelength region of the irradiated laser light (for example, in the ultraviolet region in the case of an excimer laser), and often the glass substrate is irradiated.
  • the glass substrate cannot efficiently absorb the energy of the laser beam. In this case, a considerable time is required to form the through hole in the glass substrate, and the production efficiency is lowered.
  • the input energy that is not used for ablation processing may change to heat, etc., but this causes cracks in the glass substrate being processed or chipping around the processing holes. There is a risk of
  • the present invention has been made in view of such a background, and has better productivity than conventional ones, and is significantly reduced in cracking and chipping on a glass substrate, and for semiconductor chip mounting. It aims at providing the method of ablation processing to a glass substrate.
  • a method of ablation processing to a glass substrate for mounting a semiconductor chip (A) preparing a glass substrate; (B) in the processing region of the glass substrate, increasing the absorption of the first laser beam having a wavelength in the ultraviolet region; (C) irradiating the processing region of the glass substrate with the first laser beam.
  • the step (c) may be performed after the step (b), or the step (c) may be performed simultaneously with the step (b).
  • the processing region of the glass substrate or a region wider than the processing region of the glass substrate may be irradiated with a second light different from the first laser beam.
  • the second light may have a wavelength in the range of 126 nm to 355 nm.
  • the second light may be Ar 2 excimer lamp light source, Kr 2 excimer lamp light source, Xe lamp light source, Xe 2 excimer lamp light source, KrF excimer lamp light source, KrCl excimer lamp light source, XeCl excimer lamp.
  • the glass substrate in the step (b), may be heat-treated in a non-oxidizing atmosphere.
  • the treatment in the step (b) is effective in improving the laser processing because it promotes coloring by reduction of the material at a high temperature.
  • the heat treatment is preferably performed at a temperature equal to or lower than the softening point of the glass substrate.
  • the treatment in the step (b) may be performed at a temperature higher by 20 ° C. than the transition temperature of the glass substrate.
  • the heat treatment may be performed in a temperature range of 300 ° C. to 800 ° C.
  • the first laser light may be ArF excimer laser light, KrF excimer laser light, or F 2 excimer laser light.
  • the glass substrate may be non-alkali glass or soda lime glass.
  • the present invention can provide a method for ablating a glass substrate for mounting a semiconductor chip, which has better productivity than the prior art and significantly suppresses the occurrence of cracks and chipping in the glass substrate.
  • FIG. 1 is a diagram showing a schematic flow of a method of ablation processing to a glass substrate according to the present invention.
  • FIG. 2 schematically shows an example of a device configuration that can be used in carrying out the method according to the invention.
  • the method according to the invention comprises: (A) preparing a glass substrate; (B) in the processing region of the glass substrate, increasing the absorption of the first laser light having a wavelength in the ultraviolet region; (C) irradiating the processing region of the glass substrate with the first laser beam.
  • the “wavelength in the ultraviolet region” specifically refers to a wavelength in the range of 126 nm to 355 nm.
  • the glass substrate does not necessarily have a sufficient absorption coefficient in the wavelength region (ultraviolet region) of the irradiated laser light, and often the laser light irradiated on the glass substrate.
  • This energy may not be absorbed efficiently by the glass substrate. In this case, a considerable time is required to form the through hole in the glass substrate, and the production efficiency is lowered.
  • of the input energy that is not used for ablation processing may change to heat, etc., but this causes cracks in the glass substrate being processed or chipping around the processing holes. May occur.
  • the method according to the present invention includes the step of increasing the absorption of the first laser beam having a wavelength in the ultraviolet region in the processing region of the glass substrate. Therefore, in the present invention, at least when the glass substrate is irradiated with the first laser beam, the processed region of the glass substrate has a good absorption rate with respect to the irradiated laser beam. . For this reason, when the glass substrate is irradiated with the first laser light, this energy is effectively used for ablation processing.
  • the conventional problem that the input energy is not used for ablation processing but is changed to heat or the like and dissipated is significantly suppressed. Will improve. Further, since the input energy is effectively used for ablation processing, various problems due to heat generation and the like are suppressed. For example, the generation of cracks in the glass substrate being processed or the occurrence of chipping around the processed holes is significantly suppressed.
  • a method for ablation processing to a glass substrate for mounting a semiconductor chip which has good productivity as compared with the prior art and significantly suppresses occurrence of cracks and chipping in the glass substrate. Can be provided.
  • FIG. 1 shows a schematic flow diagram of a method of ablation processing to a glass substrate according to the present invention.
  • the method according to the present invention comprises: (A) a step of preparing a glass substrate (step S110); (B) In the processing region of the glass substrate, a step of increasing absorption of the first laser beam having a wavelength in the ultraviolet region (step S120); (C) irradiating the processing region of the glass substrate with the first laser beam (step S130); Have Hereinafter, each step will be described.
  • Step S110 First, a glass substrate to be ablated is prepared.
  • the manufacturing method of the glass substrate is not particularly limited.
  • the glass substrate may be manufactured by, for example, a float process or a fusion process.
  • the glass substrate may be manufactured by a method of forming a glass substrate from glass frit (powder) through a glass space (hereinafter referred to as “glass frit method”).
  • the glass frit method has an advantage that a glass substrate having a desired composition can be produced relatively easily.
  • the composition of the glass substrate is not particularly limited, and the glass substrate may be, for example, non-alkali glass or soda lime glass.
  • the glass frit method the light absorption characteristics of the glass substrate can be controlled. For example, when a glass substrate is obtained by the glass frit method, for example, when an appropriate pigment having an effect of absorbing light with a transition metal oxide is added to the paste, the energy absorption rate for the laser beam used may be increased. it can.
  • a glass substrate to which various additives are added is formed by the glass frit method, and various characteristics such as introduction of light scattering factors, induction of defects, and application of residual strain due to a difference in thermal expansion are expressed. May be.
  • the average thermal expansion coefficient at 50 ° C. to 300 ° C. of the glass substrate is preferably in the range of 30 ⁇ 10 ⁇ 7 / K to 150 ⁇ 10 ⁇ 7 / K, for example.
  • AN100 glass manufactured by Asahi Glass Co., Ltd.
  • soda lime glass has 50 ° C.
  • the average thermal expansion coefficient at ⁇ 300 ° C. is about 80 ⁇ 10 ⁇ 7 / K.
  • the average thermal expansion coefficient at 50 ° C. to 300 ° C. can be controlled to a desired value.
  • the glass substrate obtained by the glass frit method is extremely effective for the following reasons.
  • the interposer through hole is filled with a conductor such as copper.
  • a resin layer may be provided above and below the interposer so as to be in direct contact with the interposer.
  • a printed wiring board formed of glass epoxy, polyimide, or the like may be disposed through a solder layer, or a silicon chip may be disposed. That is, various members made of different materials are concentrated in the interior of the interposer or in the immediate vicinity thereof. Therefore, in order to increase the affinity between the members and suppress peeling and the like, it may be necessary to set the thermal expansion coefficient of the glass substrate to an appropriate value. In such a case, the glass frit method that can adjust the thermal expansion coefficient of the glass substrate to a desired value can be said to be a very preferable method.
  • the thickness of the glass substrate is not particularly limited, but the thinner the thickness, the shorter the time required for ablation processing, which is preferable.
  • the thickness of the glass substrate may be in the range of 10 ⁇ m to 500 ⁇ m, for example.
  • a glass substrate having a thickness of 300 ⁇ m or less can be easily manufactured.
  • Step S120 Next, based on the wavelength of the laser beam (first laser beam) used for ablation processing, a process for increasing the absorption rate of the first laser beam is performed in the region to be processed of the glass substrate.
  • the first laser light may be, for example, ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), or F 2 excimer laser light (wavelength 157 nm).
  • This process is performed, for example, in the following two steps: (I) A step of irradiating at least a region to be processed of the glass substrate with second light having a wavelength different from the first laser light. (Ii) A step of heat-treating the glass substrate in a non-oxidizing atmosphere.
  • the step (i) is performed for the purpose of solarization, that is, to introduce defects into the processed region of the glass substrate. By introducing this defect, it becomes possible to increase the absorption rate of the glass substrate in the wavelength region of the first laser beam.
  • the step (ii) is performed for the purpose of changing the valence of the element contained in the glass substrate. That is, the absorption wavelength of some elements such as iron (Fe) and tin (Sn) changes from the long wavelength (infrared or visible light) side to the short wavelength (ultraviolet) side depending on the valence state. . Therefore, by utilizing this phenomenon, it becomes possible to increase the absorption rate of the glass substrate in the wavelength region of the first laser beam.
  • some elements such as iron (Fe) and tin (Sn) changes from the long wavelength (infrared or visible light) side to the short wavelength (ultraviolet) side depending on the valence state. . Therefore, by utilizing this phenomenon, it becomes possible to increase the absorption rate of the glass substrate in the wavelength region of the first laser beam.
  • the laser light when laser light is used as the second light, the laser light may have a wavelength in the range of 126 nm to 355 nm.
  • the second light is, for example, Ar 2 excimer lamp source (wavelength 126 nm), Kr 2 excimer laser source (wavelength 146 nm), Xe lamp source (typical wavelength 310 nm), Xe 2 excimer lamp source (wavelength 172 nm), KrF Excimer laser source (wavelength 248 nm), KrCl excimer laser source (wavelength 222 nm), XeCl excimer laser source (wavelength 308 nm), third harmonic of Nd: YAG laser source (wavelength 355 nm), and Deep UV laser source It may be laser light emitted from a light source.
  • the heat treatment is effective in improving laser processing by increasing the temperature.
  • the heat treatment temperature is preferably below the softening point. You may implement at 20 degreeC or more higher than the transition temperature of the said glass substrate.
  • the heat treatment may be performed in a temperature range of 300 ° C. to 800 ° C.
  • the heat treatment is effective for improving the laser processing by increasing the temperature.
  • the heat treatment temperature is preferably equal to or lower than the softening point.
  • silica glass, alkali-free glass, borosilicate glass, and soda lime glass may be performed at a temperature that is 20 ° C. or more higher than the transition temperature of the glass substrate.
  • the heat treatment is performed in a temperature range of 300 ° C. to 800 ° C.
  • the non-oxidizing atmosphere may be, for example, an inert gas atmosphere such as nitrogen or argon, or a reducing gas atmosphere containing hydrogen.
  • Step S130 the first laser beam is irradiated onto the processing region of the glass substrate.
  • the region to be processed of the glass substrate has a high absorption rate with respect to the wavelength region of the first laser beam. For this reason, the energy of the first laser beam is effectively absorbed by the glass substrate, and the efficiency of the ablation processing is improved.
  • the amount of energy that changes to heat or the like and is no longer used effectively for ablation processing can be significantly suppressed, thereby significantly suppressing the occurrence of cracks and chipping in the glass substrate during processing. Is done.
  • step S130 may be performed after step S120 or simultaneously with step S120.
  • the effect of improving the absorptance of the glass substrate with respect to the first laser beam is limited to the surface of the glass substrate and the position from the surface to a very small depth of about 0.1 ⁇ m to 5 ⁇ m (particularly, Method (i)).
  • step S130 when step S130 is performed in the state where step S120 is performed, the efficiency of ablation processing can be further improved.
  • FIG. 2 schematically shows an example of a device configuration used when executing step S130.
  • the apparatus 200 includes a first light source 211 for laser light, a homogenizer 216, a mask 213 having a plurality of through holes, a projection lens 217, and a stage 214.
  • the apparatus 200 includes a plurality of mirrors 215 for guiding the laser light 221 emitted from the first laser light source 211 to a desired position.
  • a glass substrate 212 for processing is placed on the stage 214.
  • the laser light 221 when the laser light 221 is emitted from the first laser light source 211, the laser light 221 is guided into the homogenizer 216, where the laser light has a uniform intensity. 222 is adjusted.
  • the laser beam 222 is guided toward the mask 213 by a mirror 215 or the like. Since the mask 213 has a large number of through holes as described above, a part of the laser beam 222 is guided to the projection lens 217 through the through holes. Further, the laser beam 223 that has reached the projection lens 217 is irradiated onto the processing region of the glass substrate 212 in a reduced projection state. Thereby, a large number of through holes are formed in the region to be processed of the glass substrate 212.
  • the emission of the laser light 221 from the light source 211 is temporarily stopped and the glass substrate 212 is moved with respect to the stage 214. good. Then, the laser beam 221 may be emitted again from the light source 211 to perform the same thing.
  • step S130 may be performed using another apparatus. Further, the method (i) of step S120 described above may be performed with the same apparatus configuration as in FIG. 2
  • Example 1 As a glass substrate, an AN100 (Asahi Glass Co., Ltd.) glass substrate having a thickness of 0.3 mm and a thermal expansion coefficient of 38 ⁇ 10 ⁇ 7 / K was prepared.
  • This glass substrate contains 60% by mass of SiO 2 and 0.05% by mass of Fe in terms of Fe 2 O 3 oxide, and the total content of Na and K is less than 0.1% by mass in terms of oxide. It is.
  • the second light was irradiated over a region wider than the ablation processing region including the ablation processing region on the surface of the glass substrate.
  • a 1 kW Xe (xenon) lamp was used as the light source for the second light.
  • the second light was irradiated onto the glass substrate so that the illuminance on the surface of the glass substrate at a wavelength of 310 nm was 750 ⁇ W / cm 2 .
  • the irradiation time was 30 minutes.
  • the first laser beam was irradiated to the ablation processing region of the glass substrate.
  • ArF laser light was used as the first laser light.
  • the wavelength of this laser beam is 193 nm.
  • the irradiation fluence in the work area was 5 J / cm 2 .
  • the first laser light irradiation was continued until a predetermined number of through holes were formed in the glass substrate.
  • the number of shots was determined from the irradiation time required to form the through hole.
  • the number of shots is the product of the repetition frequency of laser light and the irradiation time, and the number of shots can be used as an index of energy applied to the glass substrate for ablation processing. As a result, the number of shots was 3600 shots.
  • the state of the glass substrate after processing was visually evaluated. As a result, it was confirmed that the glass substrate was not particularly cracked or chipped.
  • Example 2 The glass substrate was ablated by the same method as in Example 1. However, in this Example 2, the irradiation time of the second light by the Xe lamp was set to 1 hour.
  • the number of shots was 3400 shots. Further, the processed glass substrate was not particularly cracked or chipped.
  • Comparative Example 1 The glass substrate was ablated by the same method as in Example 1. However, in the comparative example 1, the second light irradiation by the Xe lamp before the first laser light irradiation was not performed.
  • the number of shots was 3900 shots although cracks and chipping were not particularly generated in the processed glass substrate. From this, it was confirmed that the number of shots was reduced by performing irradiation with the second light before irradiation with the first laser light. In particular, it was found that the number of shots is reduced by increasing the irradiation time with the second light.
  • Example 3 The glass substrate was ablated by the same method as in Example 1. However, in Example 3, light from a 1 kW Deep UV lamp (USHIO, UMX-1001MD) was used as the second light instead of the light from the Xe lamp. The second light was irradiated onto the glass substrate so that the illuminance on the surface of the glass substrate at a wavelength of 210 nm to 300 nm was 1 mW / cm 2 . The irradiation time was 30 minutes.
  • Example 3 a KrF (krypton fluorine) excimer laser beam having a wavelength of 248 nm was used as the first laser beam instead of the ArF laser beam. Accordingly, the corresponding wavelength of the reflective film and the antireflection film of the lens used was changed to 248 nm.
  • a KrF (krypton fluorine) excimer laser beam having a wavelength of 248 nm was used as the first laser beam instead of the ArF laser beam. Accordingly, the corresponding wavelength of the reflective film and the antireflection film of the lens used was changed to 248 nm.
  • the irradiation fluence of the first laser beam in the region to be processed was 28 J / cm 2 .
  • the first laser light irradiation was continued until a predetermined number of through holes were formed in the glass substrate.
  • the number of shots was determined from the irradiation time required to form the through hole. As a result, the number of shots was 740 shots.
  • the state of the glass substrate after processing was visually evaluated. As a result, it was confirmed that the glass substrate was not particularly cracked or chipped.
  • Example 4 The glass substrate was ablated by the same method as in Example 3. However, in this Example 4, the irradiation time of the second light by the Deep UV lamp was set to 1 hour.
  • the number of shots was 700 shots. Further, the processed glass substrate was not particularly cracked or chipped.
  • Comparative Example 2 The glass substrate was ablated by the same method as in Example 3. However, in Comparative Example 2, the second light irradiation by the Deep UV lamp before the first laser light irradiation was not performed.
  • the number of shots was 800 shots. Further, it was confirmed that cracks and chipping occurred around the through holes in the processed glass substrate.
  • Example 5 As a glass substrate, an AN100 (Asahi Glass Co., Ltd.) glass substrate having a thickness of 0.3 mm and a thermal expansion coefficient of 38 ⁇ 10 ⁇ 7 / K was prepared.
  • This glass substrate contains 60% by mass of SiO 2 and 0.05% by mass of Fe in terms of Fe 2 O 3 oxide, and the total content of Na and K is less than 0.1% by mass in terms of oxide. It is.
  • this glass substrate was placed in an electric furnace having a 100% nitrogen atmosphere inside and subjected to heat treatment.
  • the heat treatment temperature was 750 ° C. (glass transition temperature + 30 ° C.), and the time was 30 minutes. Thereafter, the glass substrate was cooled to 450 ° C. at a cooling rate of 30 ° C. per hour while maintaining the atmosphere in a nitrogen atmosphere. Then, after standing to cool and becoming room temperature, the glass substrate was taken out from the electric furnace.
  • the first laser light was irradiated to the ablation processing region of the glass substrate using the apparatus as shown in FIG.
  • ArF laser light was used as the first laser light.
  • the wavelength of this laser beam is 193 nm.
  • the irradiation fluence in the work area was 5 J / cm 2 .
  • the first laser light irradiation was continued until a predetermined number of through holes were formed in the glass substrate.
  • the number of shots was determined from the irradiation time required to form the through hole.
  • the number of shots was 3500 shots, and it was found that the number of shots was smaller compared to the case where heat treatment was not performed (Comparative Example 1).
  • the state of the glass substrate after processing was visually evaluated. As a result, it was confirmed that the glass substrate was not particularly cracked or chipped.
  • the present invention can be suitably used for applications such as a member for a semiconductor element, more specifically, an insulating layer of a multilayer circuit board, a wafer level package, a through hole for taking out an electrode, and an interposer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Toxicology (AREA)
  • Robotics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

 本発明は、半導体チップ実装用のガラス基板へのアブレーション加工の方法であって、 (a)ガラス基板を準備する工程と、(b)前記ガラス基板の加工領域において、紫外線領域の波長を有する第1のレーザ光に対する吸収を高める工程と、(c)前記ガラス基板の前記加工領域に、前記第1のレーザ光を照射する工程と、を有する方法に関する。

Description

半導体チップ実装用のガラス基板へのアブレーション加工の方法
 本発明は、インターポーザ等の半導体チップ実装用のガラス基板へのアブレーション加工の方法に関する。
 一般に、レーザアブレーション法では、被加工対象となる基板材料に微細パターンを形成することができるため、レーザアブレーション法は、小型化や高密度実装化の必要な半導体素子製造分野において、広く利用されている(例えば特許文献1、2)。
 最近では、ガラス基板のような透明基材に対しても、エキシマレーザのようなレーザ光を用いたレーザアブレーション法により、微細パターン構造を形成することが可能であることが明らかになっている。例えば、レーザアブレーション法をガラス基板に適用して、微小電気回路素子等を構成する方法が提案されている(例えば、特許文献3)。
日本国特開2005-88045号公報 日本国特開2002-126886号公報 日本国特開2005-66687号公報
 しかしながら、従来のレーザアブレーション法では、照射されるレーザ光の波長域(例えばエキシマレーザの場合、紫外線領域)において、ガラス基板が必ずしも十分な吸収係数を有するとは限られず、しばしば、ガラス基板に照射されるレーザ光のエネルギーを、ガラス基板に効率よく吸収させることができない場合がある。この場合、ガラス基板内に貫通孔を形成するのに相当の時間が必要となってしまい、生産効率が低下してしまう。また、投入エネルギーのうち、アブレーション加工に利用されなかった分は、熱等に変化する可能性があるが、これにより、加工中のガラス基板にクラックが生じたり、加工孔の周囲にチッピングが生じたりするおそれがある。
 本発明は、このような背景に鑑みなされたものであり、従来に比べて良好な生産性を有し、ガラス基板にクラックやチッピングが発生することが有意に抑制された、半導体チップ実装用のガラス基板へのアブレーション加工の方法を提供することを目的とする。
 本発明では、半導体チップ実装用のガラス基板へのアブレーション加工の方法であって、
(a)ガラス基板を準備する工程と、
(b)前記ガラス基板の加工領域において、紫外線領域の波長を有する第1のレーザ光に対する吸収を高める工程と、
(c)前記ガラス基板の前記加工領域に、前記第1のレーザ光を照射する工程と、を有する
 方法が提供される。
 ここで、本発明による方法において、
 前記(c)工程は、前記(b)工程の後に行われ、または
 前記(c)工程は、前記(b)工程と同時に行われても良い。
 また、本発明による方法において、
 前記(b)工程は、前記ガラス基板の前記加工領域に、または前記ガラス基板の前記加工領域よりも広い領域に、前記第1のレーザ光とは異なる第2の光を照射しても良い。
 また、本発明による方法において、前記第2の光は、126nm~355nmの範囲の波長を有しても良い。
 また、本発明による方法において、前記第2の光は、Arエキシマランプ光源、Krエキシマランプ光源、Xeランプ光源、Xeエキシマランプ光源、KrFエキシマランプ光源、KrClエキシマランプ光源、XeClエキシマランプ光源、KrFエキシマレーザ光源、ArFエキシマレーザ光源、XeClエキシマレーザ光源、Fエキシマレーザ光源、Nd:YAGレーザ光源の第三高調波、Nd:YAGレーザ光源の第四高調波、およびDeepUV源からなる群から選定された光源から放射された光であっても良い。
 また、本発明による方法において、前記(b)工程は、前記ガラス基板を、非酸化性雰囲気下で熱処理しても良い。
 ここで、前記(b)工程の処理は、高温にすることで材料の還元による着色を促すため、レーザ加工の向上に効果がある。一方、ガラスが変形しないようにするために、本発明による方法において、前記熱処理は、前記ガラス基板の軟化点以下の温度で実施されることが好ましい。前記(b)工程の処理は、前記ガラス基板の転移温度よりも20℃以上高い温度で実施されても良い。
 あるいは、前記熱処理は、300℃~800℃の温度範囲で実施されても良い。
 また、本発明による方法において、前記第1のレーザ光は、ArFエキシマレーザ光、KrFエキシマレーザ光、またはFエキシマレーザ光であっても良い。
 また、本発明による方法において、前記ガラス基板は、無アルカリガラス、またはソーダライムガラスであっても良い。
 本発明では従来に比べて良好な生産性を有し、ガラス基板にクラックやチッピングが発生することが有意に抑制された、半導体チップ実装用のガラス基板へのアブレーション方法を提供することができる。
図1は、本発明によるガラス基板へのアブレーション加工の方法の概略的なフローを示した図である。 図2は、本発明による方法を実施する際に使用され得る装置構成の一例を概略的に示した図である。
 以下、本発明について説明する。
 本発明による方法は、
(a)ガラス基板を準備する工程と、
(b)前記ガラス基板の加工領域において、紫外線領域の波長を有する第1のレーザ光に対する吸収を高める工程と、
(c)前記ガラス基板の前記加工領域に、前記第1のレーザ光を照射する工程と、を有する。ここで、「紫外線領域の波長」とは、具体的に、126nm~355nmの範囲の波長を言う。
 前述のように、従来のアブレーション方法では、照射されるレーザ光の波長域(紫外線領域)において、ガラス基板が必ずしも十分な吸収係数を有するとは限られず、しばしば、ガラス基板に照射されるレーザ光のエネルギーを、ガラス基板に効率よく吸収させることができない場合がある。この場合、ガラス基板内に貫通孔を形成するのに相当の時間が必要となってしまい、生産効率が低下してしまう。また、投入したエネルギーのうち、アブレーション加工に利用されなかった分は、熱等に変化する可能性があるが、これにより、加工中のガラス基板にクラックが生じたり、加工孔の周囲にチッピングが生じたりするおそれがある。
 これに対して、本発明による方法は、前述のように、前記ガラス基板の加工領域において、紫外線領域の波長を有する第1のレーザ光に対する吸収を高める工程を有する。従って、本発明では、少なくとも、ガラス基板に第1のレーザ光が照射される際には、ガラス基板の加工領域は、照射されるレーザ光に対して良好な吸収率を有する状態となっている。このため、ガラス基板に第1のレーザ光が照射されると、このエネルギーは、アブレーション加工に有効に利用されるようになる。
 従って、本発明による方法では、従来のように、投入したエネルギーがアブレーション加工に利用されず、熱等に変化して逸散してしまうという問題が有意に抑制され、これにより、アブレーション加工の効率が向上する。また、投入したエネルギーは、アブレーション加工に有効に利用されるようになるため、熱発生等に起因した各種問題が抑制される。例えば、加工中のガラス基板にクラックが生じたり、加工孔の周囲にチッピングが生じたりすることが有意に抑制される。
 このように本発明では、従来に比べて良好な生産性を有し、ガラス基板にクラックやチッピングが発生することが有意に抑制された、半導体チップ実装用のガラス基板へのアブレーション加工の方法を提供することができる。
 以下、図面を参照して、本発明による方法についてより詳しく説明する。
 図1には、本発明によるガラス基板へのアブレーション加工の方法の概略的なフロー図を示す。
 図1に示すように、本発明による方法は、
(a)ガラス基板を準備する工程(ステップS110)と、
(b)前記ガラス基板の加工領域において、紫外線領域の波長を有する第1のレーザ光に対する吸収を高める工程(ステップS120)と、
(c)前記ガラス基板の前記加工領域に、前記第1のレーザ光を照射する工程(ステップS130)と、
 を有する。以下、各工程について説明する。
 (ステップS110)
 まず、アブレーション加工されるガラス基板が準備される。
 ガラス基板の製造方法は、特に限られない。ガラス基板は、例えば、フロート法またはフュージョン法で製造されても良い。あるいは、ガラス基板は、ガラスフリット(粉)からガラススペーストを経由して、ガラス基板を形成する方法(以下「ガラスフリット法」と称する)で製造しても良い。ガラスフリット法では、所望の組成のガラス基板を比較的容易に製造することができるという利点がある。
 ガラス基板の組成は、特に限られず、ガラス基板は、例えば、無アルカリガラス、またはソーダライムガラスであっても良い。また、ガラスフリット法では、ガラス基板の光吸収特性を制御することができる。例えば、ガラスフリット法によってガラス基板を得る際に、例えば、遷移金属酸化物で光吸収の効果のある、適当な顔料をペースト中に添加した場合、使用レーザ光に対するエネルギー吸収率を高くすることができる。この他、ガラスフリット法によって、各種添加物が添加されたガラス基板を形成して、例えば、光散乱因子の導入、欠陥の誘起、熱膨張差による残留歪の付与などの様々な特性を発現させても良い。
 ガラス基板の50℃~300℃における平均熱膨張係数は、例えば、30×10-7/K~150×10-7/Kの範囲であることが好ましい。例えば、無アルカリガラスの一種であるAN100ガラス(旭硝子株式会社製)では、50℃~300℃における平均熱膨張係数は、約30×10-7/K程度であり、ソーダライムガラスでは、50℃~300℃における平均熱膨張係数は、約80×10-7/K程度である。また、ガラスフリット法では、50℃~300℃における平均熱膨張係数を所望の値に制御することができる。
 ここで、本発明による方法を、インターポーザのような半導体チップ実装用のガラス基板に適用することを考慮した場合、以下の理由により、ガラスフリット法で得られるガラス基板は、極めて有効である。
 通常の場合、インターポーザの貫通孔内には、銅のような導体が充填される。また、インターポーザの上下には、インターポーザと直接接するようにして、樹脂層が設置され得る。さらに、インターポーザの近傍には、ハンダ層を介して、ガラスエポキシやポリイミド等で形成されたプリント配線基盤が配置されたり、シリコンチップが配置されたりし得る。すなわち、インターポーザの内部またはその極近傍には、材質の異なる様々な部材が集中配置される。従って、各部材間での親和性を高め、剥離等を抑制するためには、ガラス基板の熱膨張係数を、適切な値に設定することが必要になる場合が生じ得る。このような場合、ガラス基板の熱膨張係数を所望の値に調整できる、ガラスフリット法は、極めて好ましい方法であると言える。
 ガラス基板の厚さは、特に限られないが、厚さが薄いほど、アブレーション加工に必要な時間が短くなるため、好ましい。ガラス基板の厚さは、例えば10μm~500μmの範囲であっても良い。例えば、前述のガラスペーストを使用して、スクリーン印刷法でガラス基板を形成した場合、300μm以下のガラス基板を容易に製造することができる。
 (ステップS120)
 次に、アブレーション加工に使用されるレーザ光(第1のレーザ光)の波長に基づいて、ガラス基板の被加工領域において、第1のレーザ光に対する吸収率を高める処理が行われる。
 なお、第1のレーザ光は、例えば、ArFエキシマレーザ光(波長193nm)、KrFエキシマレーザ光(波長248nm)、またはFエキシマレーザ光(波長157nm)等であっても良い。
 この処理は、例えば、以下の2通りの工程で実施される:
(i)ガラス基板の少なくとも被加工領域にわたって、第1のレーザ光とは波長の異なる第2の光を照射する工程。
(ii)ガラス基板を、非酸化性雰囲気下で熱処理する工程。
 このうち、(i)工程は、ソラリゼーション、すなわちガラス基板の被加工領域に、欠陥を導入することを目的として実施される。この欠陥導入により、第1のレーザ光の波長域でのガラス基板の吸収率を高めることが可能になる。
 一方、(ii)工程は、ガラス基板中に含まれる元素の価数を変化させることを目的として実施される。すなわち、鉄(Fe)やスズ(Sn)のようないくつかの元素は、価数状態によって、その吸収波長が長波長(赤外または可視光)側から、短波長(紫外)側に変化する。従って、これの現象を利用することにより、第1のレーザ光の波長域におけるガラス基板の吸収率を高めることが可能になる。
 ここで、(i)工程において、第2の光にレーザ光を用いる場合、レーザ光は、126nm~355nmの範囲の波長を有しても良い。第2の光は、例えば、Arエキシマランプ源(波長126nm)、Krエキシマレーザ源(波長146nm)、Xeランプ源(代表的な波長310nm)、Xeエキシマランプ源(波長172nm)、KrFエキシマレーザ源(波長248nm)、KrClエキシマレーザ源(波長222nm)、XeClエキシマレーザ源(波長308nm)、Nd:YAGレーザ源の第三高調波(波長355nm)、およびDeepUVレーザ源からなる群から選定された光源から放射されたレーザ光であっても良い。
 前記(ii)工程において、熱処理は、高温にすることでレーザ加工の向上に効果がある。一方、ガラスが変形しないようにするために、熱処理温度は、軟化点以下であることが好ましい。前記ガラス基板の転移温度よりも20℃以上高い温度で実施されても良い。
 あるいは、前記熱処理は、300℃~800℃の温度範囲で実施されても良い。
 (ii)工程において、熱処理は、高温にすることでレーザ加工の向上に効果がある。一方、ガラス基板が変形しないようにするために、熱処理温度は、軟化点以下であることが好ましい。例えば、シリカガラス、無アルカリガラス、ホウ硅酸ガラス、ソーダライムガラスでは、ガラス基板の転移温度よりも20℃以上高い温度で実施されても良い。例えば、熱処理は、300℃~800℃の温度範囲で実施される。また、非酸化性雰囲気は、例えば、窒素やアルゴンなどの不活性ガス雰囲気、または水素を含む還元性ガス雰囲気等であっても良い。
 なお、以上の記載では、(i)工程および(ii)工程の処理を例に、ガラス基板の被加工領域における第1のレーザ光に対する吸収率を高める方法について説明した。しかしながら、(ステップS120)において、(i)工程および(ii)工程以外の方法を採用して、ガラス基板の被加工領域における第1のレーザ光に対する吸収率を高めても良いことは、当業者には明らかであろう。
 (ステップS130)
 次に、ガラス基板の被加工領域に、第1のレーザ光が照射される。前述のように、ガラス基板の被加工領域は、第1のレーザ光の波長域に対して、吸収率が高い状態になっている。このため、第1のレーザ光のエネルギーは、ガラス基板に有効に吸収され、アブレーション加工の効率が向上する。また、熱等に変化して、アブレーション加工に有効に利用されなくなるエネルギーの量を有意に抑制することができ、これにより、加工中に、ガラス基板にクラックやチッピングが発生することが有意に抑制される。
 なお、ステップS130は、ステップS120の後に実施されても、ステップS120と同時に実施されても良い。前者の場合、第1のレーザ光に対するガラス基板の吸収率の向上効果は、ガラス基板の表面と該表面から0.1μmないし5μm程度までのごく僅かの深さまでの位置に限定される(特に、方法(i)の場合)。
 これに対して、後者の場合、ソラリゼーションを継続的に導入することで、露出部分の第1のレーザ光に対する吸収率が、常に高い状態で、第1のレーザ光によるアブレーション加工を行うことができる。換言すれば、第1のレーザ光に対するガラス基板の吸収率の向上効果を、ガラス基板のより深い位置にまで継続することができる。従って、ステップS120を実施した状態のまま、ステップS130を実施した場合、アブレーション加工の効率を、よりいっそう向上させることができる。
 図2には、ステップS130を実施する際に使用される装置構成の一例を概略的に示す。
 図2に示すように、この装置200は、第1のレーザ光用の光源211と、ホモジナイザー216と、複数の貫通孔を有するマスク213と、投影レンズ217と、ステージ214とを備える。この他、装置200は、第1のレーザ光用の光源211から放射されたレーザ光221を所望の位置に誘導するための、複数のミラー215を有する。ステージ214上には、被加工用のガラス基板212が置載される。
 このような装置200の構成において、第1のレーザ光用の光源211からレーザ光221が放射されると、このレーザ光221は、ホモジナイザー216内に誘導され、ここで均一な強度を有するレーザ光222に調節される。レーザ光222は、ミラー215等により、マスク213の方に誘導される。マスク213は、前述のように多数の貫通孔を有するため、レーザ光222の一部は、これらの貫通孔を通り、投影レンズ217まで誘導される。さらに、投影レンズ217に到達したレーザ光223は、縮小投影された状態で、ガラス基板212の被加工領域に照射される。これにより、ガラス基板212の被加工領域に、多数の貫通孔が形成される。
 なお、ガラス基板212のより広い領域に、貫通孔を形成する場合、以上の操作の後、光源211からのレーザ光221の放射を一旦停止し、ステージ214に対してガラス基板212を動かしても良い。その後、再度、光源211からレーザ光221を放射して、同様のことを行っても良い。
 なお、図2の装置構成は、一例であって、他の装置を用いて、ステップS130の工程を実施しても良いことは、当業者には明らかであろう。また、図2と同様の装置構成により、前述のステップS120の方法(i)を実施しても良い。
 次に、本発明の実施例について説明する。
 (実施例1)
 ガラス基板として、厚さが0.3mmで、熱膨張係数が38×10-7/KのAN100(旭硝子社製)ガラス基板を準備した。このガラス基板は、SiOを60質量%、FeをFe酸化物換算で0.05質量%を含み、NaとKとの合計含有量は、酸化物換算で0.1質量%未満である。
 次に、前述の図2に示したような装置を用いて、ガラス基板表面の被アブレーション加工領域を含む、該被アブレーション加工領域よりも広い領域にわたって、第2の光を照射した。第2の光用の光源には、1kWのXe(キセノン)ランプを使用した。第2の光は、波長310nmにおけるガラス基板の表面での照度が750μW/cmとなるようにして、ガラス基板上に照射した。照射時間は、30分とした。
 次に、前述の図2に示したような装置を用いて、ガラス基板の被アブレーション加工領域に、第1のレーザ光を照射した。第1のレーザ光には、ArFレーザ光を使用した。このレーザ光の波長は、193nmである。被加工領域における照射フルエンスは、5J/cmとした。第1のレーザ光の照射は、ガラス基板に所定数の貫通孔が形成されるまで継続した。
 その後、貫通孔形成までに要した照射時間から、ショット数を求めた。なお、ショット数とは、レーザ光の繰り返し周波数と照射時間の積であり、ショット数は、アブレーション加工のためガラス基板に投与されたエネルギーの一指標として使用することができる。その結果、ショット数は、3600ショットであった。
 加工後のガラス基板の状態を目視にて評価した。その結果、ガラス基板には、特に、クラックやチッピングが生じていないことが確認された。
(実施例2)
 実施例1と同様の方法により、ガラス基板に対してアブレーション加工を行った。ただし、この実施例2では、Xeランプによる第2の光の照射時間を、1時間とした。
 測定の結果、ショット数は、3400ショットであった。また、加工後のガラス基板には、特に、クラックやチッピングは生じていなかった。
(比較例1)
 実施例1と同様の方法により、ガラス基板に対してアブレーション加工を行った。ただしこの比較例1では、第1のレーザ光を照射する前の、Xeランプによる第2の光の照射は、実施しなかった。
 測定の結果、加工後のガラス基板には、特に、クラックやチッピングは生じていなかったものの、ショット数は、3900ショットであった。このことから、第1のレーザ光による照射前に、第2の光による照射を実施することにより、ショット数が少なくなることが確認された。特に、第2の光による照射時間を増加させることにより、ショット数がより少なくなることがわかった。
 表1には、実施例1、2、および比較例1において得られた結果をまとめて示した。
Figure JPOXMLDOC01-appb-T000001
 (実施例3)
 実施例1と同様の方法により、ガラス基板に対してアブレーション加工を行った。ただし、この実施例3では、第2の光として、Xeランプからの光の代わりに、1kWのDeepUVランプ(ウシオ電機製、UMX-1001MD)からの光を使用した。この第2の光は、波長210nm~300nmにおけるガラス基板の表面での照度が1mW/cmとなるようにして、ガラス基板上に照射した。また、照射時間は、30分とした。
 また、実施例3では、第1のレーザ光として、ArFレーザ光の代わりに、波長が248nmのKrF(クリプトンフッ素)エキシマレーザ光を使用した。これに伴い、使用レンズの反射膜および反射防止膜の対応波長を、248nmに変更した。
 被加工領域における第1のレーザ光の照射フルエンスは、28J/cmとした。第1のレーザ光の照射は、ガラス基板に所定数の貫通孔が形成されるまで継続した。
 その後、貫通孔形成までに要した照射時間から、ショット数を求めた。その結果、ショット数は、740ショットであった。
 加工後のガラス基板の状態を目視にて評価した。その結果、ガラス基板には、特に、クラックやチッピングが生じていないことが確認された。
 (実施例4)
 実施例3と同様の方法により、ガラス基板に対してアブレーション加工を行った。ただし、この実施例4では、DeepUVランプによる第2の光の照射時間を、1時間とした。
 測定の結果、ショット数は、700ショットであった。また、加工後のガラス基板には、特に、クラックやチッピングは生じていなかった。
(比較例2)
 実施例3と同様の方法により、ガラス基板に対してアブレーション加工を行った。ただしこの比較例2では、第1のレーザ光を照射する前の、DeepUVランプによる第2の光の照射は、実施しなかった。
 測定の結果、ショット数は、800ショットであった。また、加工後のガラス基板には、貫通孔の周囲にクラックやチッピングが発生していることが確認された。
 このことから、第1のレーザ光による照射前に、第2の光による照射を実施することにより、ショット数が少なくなることが確認された。また、第2の光による照射を実施しなかった場合、ガラス基板にクラックやチッピングが発生することがわかった。
 表2には、実施例3、4、および比較例2において得られた結果をまとめて示した。
Figure JPOXMLDOC01-appb-T000002
 (実施例5)
 ガラス基板として、厚さが0.3mmで、熱膨張係数が38×10-7/KのAN100(旭硝子社製)ガラス基板を準備した。このガラス基板は、SiOを60質量%、FeをFe酸化物換算で0.05質量%を含み、NaとKとの合計含有量は、酸化物換算で0.1質量%未満である。
 次に、このガラス基板を、内部が100%窒素雰囲気にされた電気炉内に設置し、熱処理を行った。熱処理温度は、750℃(ガラス転移温度+30℃)とし、時間は、30分とした。その後、雰囲気を窒素雰囲気に維持したまま、ガラス基板を1時間当たり30℃の冷却速度で、450℃まで降温した。その後、放冷し室温になってから、ガラス基板を電気炉から取り出した。
 次に、実施例1と同様、前述の図2に示したような装置を用いて、ガラス基板の被アブレーション加工領域に、第1のレーザ光を照射した。第1のレーザ光には、ArFレーザ光を使用した。このレーザ光の波長は、193nmである。被加工領域における照射フルエンスは、5J/cmとした。第1のレーザ光の照射は、ガラス基板に所定数の貫通孔が形成されるまで継続した。
 その後、貫通孔形成までに要した照射時間から、ショット数を求めた。ショット数は、3500ショットであり、熱処理を実施していない場合(比較例1)に比べて、ショット数が少なくなっていることがわかった。
 加工後のガラス基板の状態を目視にて評価した。その結果、ガラス基板には、特に、クラックやチッピングが生じていないことが確認された。
 前述の表1には、実施例5において得られた結果をまとめて示した。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の範囲と精神を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2010年7月27日出願の日本特許出願2010-168502に基づくものであり、その内容はここに参照として取り込まれる。
 本発明は、半導体素子用の部材、より詳しくは、多層回路基板の絶縁層、ウエハレベルパッケージ、電極取り出し用の貫通穴、およびインターポーザなどの用途に好適に用いることができる。
 200  装置
 211  第1のレーザ光用の光源
 212  ガラス基板
 213  マスク
 214  ステージ
 215  ミラー
 216  ホモジナイザー
 217  投影レンズ
 221、222、223 レーザ光

Claims (9)

  1.  半導体チップ実装用のガラス基板へのアブレーション加工の方法であって、
    (a)ガラス基板を準備する工程と、
    (b)前記ガラス基板の加工領域において、紫外線領域の波長を有する第1のレーザ光に対する吸収を高める工程と、
    (c)前記ガラス基板の前記加工領域に、前記第1のレーザ光を照射する工程と、を有する方法。
  2.  前記(c)工程は、前記(b)工程の後に行われ、または
     前記(c)工程は、前記(b)工程と同時に行われる請求項1に記載の方法。
  3.  前記(b)工程は、
     前記ガラス基板の前記加工領域に、または前記ガラス基板の前記加工領域よりも広い領域に、前記第1のレーザ光とは異なる第2の光を照射する請求項1または2に記載の方法。
  4.  前記第2の光は、126nm~355nmの範囲の波長を有する請求項3に記載の方法。
  5.  前記第2の光は、Arエキシマランプ光源、Krエキシマランプ光源、Xeランプ光源、Xeエキシマランプ光源、KrFエキシマランプ光源、KrClエキシマランプ光源、XeClエキシマランプ光源、KrFエキシマレーザ光源、ArFエキシマレーザ光源、XeClエキシマレーザ光源、Fエキシマレーザ光源、Nd:YAGレーザ光源の第三高調波、Nd:YAGレーザ光源の第四高調波、およびDeepUV源からなる群から選定された光源から放射された光である請求項3または4に記載の方法。
  6.  前記(b)工程は、
     前記ガラス基板を、非酸化性雰囲気下で熱処理する工程を有する請求項1または2に記載の方法。
  7.  前記熱処理は、前記ガラス基板の軟化点以下の温度で実施される請求項6に記載の方法。
  8.  前記第1のレーザ光は、ArFエキシマレーザ光、KrFエキシマレーザ光、またはFエキシマレーザ光である請求項1乃至7のいずれか一つに記載の方法。
  9.  前記ガラス基板は、無アルカリガラス、またはソーダライムガラスである請求項1乃至8のいずれか一つに記載の方法。
PCT/JP2011/066732 2010-07-27 2011-07-22 半導体チップ実装用のガラス基板へのアブレーション加工の方法 WO2012014815A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010168502A JP2013209223A (ja) 2010-07-27 2010-07-27 半導体チップ実装用のガラス基板へのアブレーション加工の方法
JP2010-168502 2010-07-27

Publications (1)

Publication Number Publication Date
WO2012014815A1 true WO2012014815A1 (ja) 2012-02-02

Family

ID=45530023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066732 WO2012014815A1 (ja) 2010-07-27 2011-07-22 半導体チップ実装用のガラス基板へのアブレーション加工の方法

Country Status (3)

Country Link
JP (1) JP2013209223A (ja)
TW (1) TW201206607A (ja)
WO (1) WO2012014815A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015101513A (ja) * 2013-11-26 2015-06-04 デクセリアルズ株式会社 微細構造体及びその製造方法、並びに微細構造体製造用組成物
JP5915976B2 (ja) * 2014-07-08 2016-05-11 ウシオ電機株式会社 ロングアーク型放電ランプおよび光照射装置
US10442720B2 (en) * 2015-10-01 2019-10-15 AGC Inc. Method of forming hole in glass substrate by using pulsed laser, and method of producing glass substrate provided with hole

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428590A (en) * 1977-08-08 1979-03-03 Hitachi Ltd Laser processing method
JPS62240187A (ja) * 1986-04-11 1987-10-20 Fujitsu Ltd レ−ザ光を用いた穿孔方法
JP2000301372A (ja) * 1999-04-23 2000-10-31 Seiko Epson Corp 透明材料のレーザ加工方法
JP2005088023A (ja) * 2003-09-12 2005-04-07 Seiko Epson Corp 透明体の加工方法
JP2008156200A (ja) * 2006-02-22 2008-07-10 Nippon Sheet Glass Co Ltd レーザを用いたガラスの加工方法および加工装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428590A (en) * 1977-08-08 1979-03-03 Hitachi Ltd Laser processing method
JPS62240187A (ja) * 1986-04-11 1987-10-20 Fujitsu Ltd レ−ザ光を用いた穿孔方法
JP2000301372A (ja) * 1999-04-23 2000-10-31 Seiko Epson Corp 透明材料のレーザ加工方法
JP2005088023A (ja) * 2003-09-12 2005-04-07 Seiko Epson Corp 透明体の加工方法
JP2008156200A (ja) * 2006-02-22 2008-07-10 Nippon Sheet Glass Co Ltd レーザを用いたガラスの加工方法および加工装置

Also Published As

Publication number Publication date
TW201206607A (en) 2012-02-16
JP2013209223A (ja) 2013-10-10

Similar Documents

Publication Publication Date Title
JP5554838B2 (ja) レーザ加工方法
JP5465235B2 (ja) 透明基板上の隆起特徴構造および関連方法
WO2011132600A1 (ja) 半導体デバイス貫通電極用のガラス基板
JPH11217237A (ja) レーザ加工用ガラス基材及びレーザ加工方法
CN1867419A (zh) 用于使用微微秒激光器处理存储器连结的基于激光的系统
JP2013144613A (ja) 半導体デバイス貫通電極形成用のガラス基板の製造方法
WO2012014815A1 (ja) 半導体チップ実装用のガラス基板へのアブレーション加工の方法
WO2017179381A1 (ja) 気密パッケージの製造方法及び気密パッケージ
WO2013129165A1 (ja) ガラス基板を製造する方法、およびガラス基板
EP2102897A1 (en) Method of sealing glass
WO2021183281A1 (en) Low temperature laser bleaching of polychromatic glass ceramics
JP2014214036A (ja) レーザを用いてガラス基板に貫通孔を形成する方法
JP2003332058A (ja) エレクトロルミネッセンスパネルおよびその製造方法
WO2014002685A1 (ja) ガラス基板の切断方法及びガラス基板の製造方法
JP2008524112A (ja) ガラス外被の作成方法
JP2005167005A (ja) 半導体基板の熱処理方法、半導体装置の製造方法、及び熱処理装置
JP5918160B2 (ja) ゲッタリング半導体ウエハおよびその製造方法
JP2011228495A (ja) 半導体デバイス貫通電極形成用のガラス基板の製造方法および半導体デバイス貫通電極形成用のガラス基板
JP5516994B2 (ja) リードスイッチ用ガラス管
JP2011137918A (ja) 金属封止電子素子の製造方法
JP2012020303A (ja) 積層基板の溝加工方法
JP2006216740A (ja) Soiウエーハの製造方法及びsoiウエーハ
TW202243562A (zh) 清除電路基板上的殘留錫之方法
JP2019129247A (ja) ガラス基板上の配線パターンの形成方法
JP2008247634A (ja) レーザー光照射によるガラス板の加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP