WO2017179381A1 - 気密パッケージの製造方法及び気密パッケージ - Google Patents

気密パッケージの製造方法及び気密パッケージ Download PDF

Info

Publication number
WO2017179381A1
WO2017179381A1 PCT/JP2017/011489 JP2017011489W WO2017179381A1 WO 2017179381 A1 WO2017179381 A1 WO 2017179381A1 JP 2017011489 W JP2017011489 W JP 2017011489W WO 2017179381 A1 WO2017179381 A1 WO 2017179381A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
sealing material
aluminum nitride
material layer
containing layer
Prior art date
Application number
PCT/JP2017/011489
Other languages
English (en)
French (fr)
Inventor
徹 白神
岡 卓司
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201780020574.7A priority Critical patent/CN108886026A/zh
Priority to US16/092,571 priority patent/US20190122945A1/en
Priority to KR1020187018087A priority patent/KR20180131527A/ko
Publication of WO2017179381A1 publication Critical patent/WO2017179381A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/04Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass
    • C04B37/045Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass characterised by the interlayer used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/10Glass interlayers, e.g. frit or flux
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/121Metallic interlayers based on aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages

Definitions

  • the present invention relates to a method for manufacturing an airtight package in which an aluminum nitride substrate and a glass lid are hermetically sealed by a sealing process using laser light (hereinafter referred to as laser sealing).
  • aluminum nitride is used as a substrate from the viewpoint of thermal conductivity, and glass is used as a lid material from the viewpoint of light transmittance in the ultraviolet wavelength region.
  • an organic resin adhesive having a low temperature curing property has been used as an adhesive material for an ultraviolet LED package.
  • the organic resin adhesive is easily deteriorated by light in the ultraviolet wavelength region, and there is a possibility that the airtightness of the ultraviolet LED package is deteriorated with time.
  • gold-tin solder is used instead of the organic resin adhesive, deterioration due to light in the ultraviolet wavelength region can be prevented.
  • gold-tin solder has a problem that the material cost is high.
  • the sealing material containing glass powder has the feature that it is hardly deteriorated by light in the ultraviolet wavelength region and the material cost is low.
  • the glass powder has a higher softening temperature than the organic resin adhesive, there is a possibility that the ultraviolet LED element is thermally deteriorated during sealing. For these reasons, laser sealing has attracted attention. According to laser sealing, only the portion to be sealed can be locally heated, and the aluminum nitride and the glass lid can be hermetically sealed without thermally degrading the ultraviolet LED element.
  • the sealing material containing bismuth glass sufficiently reacts with the object to be sealed at the time of laser sealing, so that the laser sealing strength can be increased.
  • the sealing material containing other glass does not fully react with an object to be sealed at the time of laser sealing, and it is difficult to ensure the laser sealing strength.
  • a sealing material containing bismuth-based glass tends to react with aluminum nitride and cause foaming at the interface with aluminum nitride. For this reason, when a sealing material containing bismuth-based glass is used to laser seal an aluminum nitride substrate and a glass lid, there is a possibility that airtightness cannot be secured due to bubbles in the sealing material layer. Furthermore, there is a possibility that the mechanical strength of the airtight package cannot be secured due to the bubbles.
  • the present invention has been made in view of the above circumstances, and a technical problem thereof is that when laser sealing an aluminum nitride substrate and a glass lid, laser sealing while suppressing foaming in the sealing material layer.
  • the idea is to create a method to increase the wearing strength.
  • the present inventors can solve the above technical problem by performing laser sealing with a sintered glass-containing layer interposed between the aluminum nitride substrate and the sealing material layer.
  • a sintered glass-containing layer interposed between the aluminum nitride substrate and the sealing material layer.
  • a step of forming a layer a step of arranging an aluminum nitride substrate and a glass lid so that the sintered glass-containing layer and the sealing material layer are in contact, and irradiating the sealing material layer with laser light from the glass lid side
  • the step of softly deforming the sealing material layer to hermetically seal the sintered glass-containing layer and the sealing material layer to obtain an airtight package.
  • the method for manufacturing an airtight package according to the present invention includes forming a sintered glass-containing layer on aluminum nitride, and then placing the sintered glass-containing layer in contact with a sealing material layer on a glass lid, followed by laser sealing. It is characterized by doing. In this way, the sealing material layer is less likely to come into contact with the aluminum nitride substrate, and foaming is less likely to occur in the sealing material layer during laser sealing. Furthermore, since both the sealing material layer and the sintered glass-containing layer contain low-melting glass, they can react well during laser sealing and increase the laser sealing strength.
  • the width of the sintered glass-containing layer is larger than the width of the sealing material layer. This makes it difficult for the sealing material layer to come into contact with the aluminum nitride substrate, so that foaming in the sealing material layer is easily prevented.
  • the method for manufacturing an airtight package of the present invention regulates (the thickness of the sintered glass-containing layer) / (the thickness of the sealing material layer) to 0.5 or more. This makes it difficult for heat to be dissipated through the aluminum nitride substrate during laser sealing, thereby increasing the efficiency of laser sealing.
  • the method for manufacturing an airtight package of the present invention regulates (thermal expansion coefficient of the sintered glass-containing layer) / (thermal expansion coefficient of the aluminum nitride base) to 0.6 or more and 1.4 or less. Is preferred. If it does in this way, it will become difficult to generate
  • the “thermal expansion coefficient” is a value measured with a TMA (push bar thermal expansion coefficient measurement) apparatus in a temperature range of 30 to 300 ° C.
  • the glass-containing film is sintered by irradiating the glass-containing film with laser light, It is preferable to form a sintered glass-containing layer. In this way, it becomes easy to prevent thermal deterioration of the electrical wiring and the light emitting element in the aluminum nitride substrate.
  • the manufacturing method of the hermetic package of the present invention uses an aluminum nitride substrate having a base and a frame provided on the base, and forms a sintered glass-containing layer on the top of the frame. If it does in this way, it will become easy to accommodate light emitting elements, such as an ultraviolet LED element, in an airtight package.
  • the method for manufacturing an airtight package of the present invention further includes a step of polishing the surface of the sintered glass-containing layer. In this way, since the adhesion between the sintered glass-containing layer and the sealing material layer is improved, the accuracy of laser sealing can be increased.
  • the hermetic package of the present invention is an airtight package having an aluminum nitride substrate and a glass lid, wherein the aluminum nitride has a base portion and a frame portion provided on the base portion, and the top portion of the aluminum nitride frame portion.
  • a sintered glass-containing layer substantially free of bismuth-based glass is formed thereon, and a sealing material layer including bismuth-based glass and a refractory filler powder is formed on the glass lid, and is baked.
  • the glass-containing layer and the sealing material layer are hermetically integrated in a state of being in contact with each other.
  • a sintered glass-containing layer substantially free of bismuth glass is formed on the top of the aluminum nitride frame, and bismuth glass and a refractory filler are formed on the glass lid.
  • a sealing material layer containing powder is formed.
  • Bismuth glass has a feature that it is easy to form a reaction layer on the surface of an object to be sealed at the time of laser sealing compared to other types of glass. Has the disadvantage of causing foaming. Therefore, in the hermetic package of the present invention, a sintered glass-containing layer is provided between the aluminum nitride substrate and the sealing material layer.
  • the “bismuth-based glass” refers to a glass mainly composed of Bi 2 O 3 , and specifically refers to a glass containing 25 mol% or more of Bi 2 O 3 in the glass composition.
  • the “sintered glass-containing layer substantially free of bismuth-based glass” refers to a case where the content of Bi 2 O 3 in the sintered glass layer is less than 5 mol%.
  • the width of the sintered glass-containing layer is preferably larger than the width of the sealing material layer.
  • the thickness of the sintered glass-containing layer is preferably 0.5 or more.
  • thermo expansion coefficient of the sintered glass-containing layer / (thermal expansion coefficient of the aluminum nitride base) is preferably 0.6 or more and 1.4 or less.
  • the hermetic package of the present invention preferably contains an ultraviolet LED element in an aluminum nitride frame.
  • the “ultraviolet LED element” includes a deep ultraviolet LED element.
  • the method for manufacturing an airtight package of the present invention includes a step of preparing an aluminum nitride substrate and forming a sintered glass-containing layer on the aluminum nitride substrate.
  • a method for forming a sintered glass-containing layer on an aluminum nitride substrate a glass-containing paste is applied on the aluminum nitride substrate to form a glass-containing film, and then the glass-containing film is dried and the solvent is volatilized. Further, a method of sintering (fixing) the glass-containing film by irradiating the glass-containing film with laser light is preferable. In this way, the sintered glass-containing layer can be formed without thermally degrading the electrical wiring and light-emitting element formed in the aluminum nitride substrate.
  • the laser irradiation width is preferably larger than the width of the glass-containing film. If it does in this way, since an unsintered part will not remain easily in a sintered glass content layer, it will become easy to ensure the surface smoothness of a sintered glass content layer.
  • a sintered glass-containing layer may be formed by firing a glass-containing film.
  • the glass-containing layer is included before mounting the light-emitting element in the aluminum nitride substrate It is preferred to fire the film.
  • the sintered glass-containing layer is preferably a sintered body of a single glass powder from the viewpoint of enhancing the surface smoothness, but may be a sintered body of a composite powder containing a glass powder and a refractory filler powder.
  • the glass powder is preferably glass having low reactivity with the aluminum nitride substrate, and zinc-based glass powder (glass powder containing 25 mol% or more ZnO in the glass composition), alkali borosilicate glass powder, and the like are preferable. Further, it is preferable not to use bismuth-based glass having high reactivity with the aluminum nitride substrate as the glass powder.
  • the thickness of the sintered glass-containing layer it is preferable to regulate the thickness of the sintered glass-containing layer to 50 ⁇ m or less, 30 ⁇ m or less, particularly 15 ⁇ m or less. If it does in this way, it will become easy to prevent the crack etc. based on the thermal expansion coefficient difference of a sintered glass content layer and an aluminum nitride base.
  • the width of the sintered glass-containing layer is preferably larger than the width of the sealing material layer, and preferably 0.1 mm or more larger than the width of the sealing material layer. If the width of the sintered glass-containing layer is smaller than the width of the sealing material layer, the sealing material layer easily comes into contact with the aluminum nitride substrate, and thus foaming is likely to occur in the sealing material layer during laser sealing.
  • the surface of the sintered glass-containing layer is preferably subjected to polishing treatment.
  • the surface roughness Ra of the surface of the sintered glass-containing layer is preferably less than 0.5 ⁇ m, 0.2 ⁇ m or less, particularly 0.01 to 0.
  • the surface roughness RMS of the surface of the sintered glass-containing layer is preferably less than 1.0 ⁇ m, 0.5 ⁇ m or less, particularly 0.05 to 0.3 ⁇ m. If it does in this way, the adhesiveness of a sintered glass content layer and a sealing material layer will improve, and the precision of laser sealing can be raised. As a result, it becomes possible to increase the sealing strength of the hermetic package.
  • “Surface roughness Ra” and “surface roughness RMS” can be measured by, for example, a stylus type or non-contact type laser film thickness meter or surface roughness meter.
  • the thickness of the aluminum nitride substrate is preferably 0.1 to 1.5 mm, particularly preferably 0.5 to 1.2 mm. Thereby, thickness reduction of an airtight package can be achieved.
  • an aluminum nitride substrate having a base and a frame provided on the base as the aluminum nitride substrate, and form a sintered glass-containing layer on the top of the frame. If it does in this way, it will become easy to accommodate light emitting elements, such as an ultraviolet LED element, in the frame part of an aluminum nitride base.
  • the laser light irradiation width be smaller than the width of the frame portion. If it does in this way, while a glass content film will sinter appropriately at the time of laser irradiation, it will become difficult to damage a light emitting element etc. in a frame part.
  • the frame portion When the aluminum nitride substrate has a frame portion, it is preferable to provide the frame portion in a frame shape along the outer peripheral edge region of the aluminum nitride substrate and to apply a glass-containing film on the top of the frame portion. In this way, the effective area that functions as a device can be expanded. Moreover, it becomes easy to accommodate light emitting elements, such as an ultraviolet LED element, in the frame part of an aluminum nitride base.
  • light emitting elements such as an ultraviolet LED element
  • the method for manufacturing an airtight package of the present invention includes a step of preparing a glass lid and forming a sealing material layer on the glass lid.
  • the average thickness of the sealing material layer is preferably less than 10 ⁇ m, less than 7 ⁇ m, particularly less than 5 ⁇ m.
  • the average thickness of the sealing material layer after laser sealing is preferably regulated to less than 10 ⁇ m, less than 7 ⁇ m, and particularly less than 5 ⁇ m.
  • the smaller the average thickness of the sealing material layer the lower the stress remaining in the sealing portion after laser sealing, even if the thermal expansion coefficients of the sealing material layer and the glass lid are not sufficiently matched.
  • the accuracy of laser sealing can be increased.
  • Examples of the method for regulating the average thickness of the sealing material layer as described above include a method of thinly applying a sealing material paste and a method of polishing the surface of the sealing material layer.
  • the surface roughness Ra of the sealing material layer is preferably regulated to less than 0.5 ⁇ m and 0.2 ⁇ m or less, particularly 0.01 to 0.15 ⁇ m.
  • the surface roughness RMS of the sealing material layer is preferably regulated to less than 1.0 ⁇ m and 0.5 ⁇ m or less, particularly 0.05 to 0.3 ⁇ m. If it does in this way, the adhesiveness of a sintered glass content layer and a sealing material layer will improve, and the precision of laser sealing will improve.
  • examples of the method for regulating the surface roughness Ra and RMS of the sealing material layer include a method for polishing the surface of the sealing material layer and a method for regulating the particle size of the refractory filler powder.
  • the sealing material layer is a sintered body of a sealing material, and is softened and deformed during laser sealing to react with the glass-containing layer.
  • Various materials can be used as the sealing material. Among these, from the viewpoint of ensuring the laser sealing strength, it is preferable to use a composite powder containing a bismuth-based glass powder and a refractory filler powder. In particular, it is preferable to use a sealing material containing 55 to 95% by volume of bismuth-based glass and 5 to 45% by volume of refractory filler powder, and 60 to 85% by volume of bismuth-based glass and 15%.
  • a sealing material containing -40% by volume of refractory filler powder is used, and a sealing material containing 60-80% by volume of bismuth glass and 20-40% by volume of refractory filler powder is used. It is particularly preferred. If the refractory filler powder is added, the thermal expansion coefficient of the sealing material is easily matched to the thermal expansion coefficient of the glass lid and the sintered glass-containing layer. As a result, it becomes easy to prevent a situation in which undue stress remains in the sealed portion after laser sealing.
  • Bismuth-based glass is a glass composition including, in mol%, Bi 2 O 3 28 ⁇ 60%, B 2 O 3 15 ⁇ 37%, preferably contains ZnO 1 ⁇ 30%.
  • the reason for limiting the content range of each component as described above will be described below. In the description of the glass composition range,% display indicates mol%.
  • Bi 2 O 3 is a main component for lowering the softening point, and its content is preferably 28 to 60%, 33 to 55%, particularly preferably 35 to 45%.
  • the content of Bi 2 O 3 is too small, too high softening point, the fluidity tends to decrease.
  • the content of Bi 2 O 3 is too large, the glass is liable to be devitrified at the time of laser sealing, and fluidity is liable to decrease due to the devitrification.
  • B 2 O 3 is an essential component as a glass forming component, and its content is preferably 15 to 37%, 20 to 33%, particularly preferably 25 to 30%. If the content of B 2 O 3 is too small, it becomes difficult to form a glass network, so that the glass is easily devitrified at the time of laser sealing. On the other hand, when the content of B 2 O 3 is too large, the viscosity of the glass becomes high, the fluidity tends to decrease.
  • ZnO is a component that enhances devitrification resistance, and its content is preferably 1 to 30%, 3 to 25%, 5 to 22%, particularly preferably 9 to 20%. If the content is less than 1% or more than 30%, the component balance of the glass composition is impaired, and the devitrification resistance tends to be lowered.
  • SiO 2 is a component that increases water resistance, but has an action of increasing the softening point. For this reason, the content of SiO 2 is preferably 0 to 5%, 0 to 3%, 0 to 2%, particularly preferably 0 to 1%. If the content of SiO 2 is too large, the glass tends to be devitrified during laser sealing.
  • Al 2 O 3 is a component that enhances water resistance, and its content is preferably 0 to 10%, 0 to 5%, particularly preferably 0.1 to 2%. When the content of Al 2 O 3 is too large, there is a possibility that the softening point is unduly increased.
  • Li 2 O, Na 2 O and K 2 O are components that reduce devitrification resistance. Therefore, the contents of Li 2 O, Na 2 O and K 2 O are 0 to 5%, 0 to 3%, particularly 0 to less than 1%, respectively.
  • MgO, CaO, SrO, and BaO are components that increase devitrification resistance, but are components that increase the softening point. Therefore, the contents of MgO, CaO, SrO and BaO are 0 to 20%, 0 to 10%, particularly 0 to 5%, respectively.
  • Fe 2 O 3 is a component that enhances devitrification resistance and laser absorption characteristics, and its content is preferably 0 to 10%, 0.1 to 5%, particularly preferably 0.5 to 3%. When the content of Fe 2 O 3 is too large, balance of components the glass composition is impaired, the devitrification resistance is liable to decrease conversely.
  • Sb 2 O 3 is a component that enhances devitrification resistance, and its content is preferably 0 to 5%, particularly preferably 0 to 2%.
  • content of Sb 2 O 3 is too large, balance of components the glass composition is impaired, the devitrification resistance is liable to decrease conversely.
  • the average particle diameter D 50 of the glass powder is preferably less than 15 ⁇ m, 0.5 to 10 ⁇ m, particularly 1 to 5 ⁇ m. As the average particle diameter D 50 of the glass powder is small, the softening point of the glass powder is lowered.
  • refractory filler powder it is preferable to use one or more selected from cordierite, zircon, tin oxide, niobium oxide, zirconium phosphate ceramic, willemite, ⁇ -eucryptite, and ⁇ -quartz solid solution.
  • These refractory filler powders have a low thermal expansion coefficient, high mechanical strength, and good compatibility with bismuth glass.
  • the average particle size D 50 of the refractory filler powder is preferably less than 2 ⁇ m, in particular less than 1.5 ⁇ m.
  • the average particle diameter D 50 of the refractory filler powder is less than 2 [mu] m, together with the surface smoothness of the sealing material layer is improved, easily regulate the average thickness of the sealing material layer less than 10 [mu] m, as a result, the laser The accuracy of sealing can be increased.
  • the 99% particle size D 99 of the refractory filler powder is preferably less than 5 ⁇ m, 4 ⁇ m or less, in particular 3 ⁇ m or less.
  • the 99% particle size D 99 of the refractory filler powder is less than 5 ⁇ m, the surface smoothness of the sealing material layer is improved, and the average thickness of the sealing material layer is easily regulated to less than 10 ⁇ m.
  • the accuracy of laser sealing can be increased.
  • “average particle diameter D 50 ” and “99% particle diameter D 99 ” indicate values measured on a volume basis by a laser diffraction method.
  • the sealing material may further contain a laser absorbing material in order to enhance the light absorption characteristics, but the laser absorbing material has an action of promoting devitrification of the bismuth-based glass. Therefore, the content of the laser absorbing material is preferably 1 to 15% by volume, 3 to 12% by volume, particularly 5 to 10% by volume. When there is too much content of a laser absorber, it will become easy to devitrify glass at the time of laser sealing.
  • Cu-based oxides, Fe-based oxides, Cr-based oxides, Mn-based oxides and spinel complex oxides thereof can be used as the laser absorber, and in particular, from the viewpoint of compatibility with bismuth-based glass. Therefore, a Mn-based oxide is preferable.
  • the softening point of the sealing material is preferably 500 ° C. or lower, 480 ° C. or lower, particularly 450 ° C. or lower. When the softening point is too high, it becomes difficult to increase the surface smoothness of the sealing material layer.
  • the lower limit of the softening point is not particularly set, but considering the thermal stability of the glass, the softening point is preferably 350 ° C. or higher.
  • the “softening point” is the fourth inflection point when measured with a macro DTA apparatus, and corresponds to Ts in FIG.
  • the thermal expansion coefficient of the sealing material layer is preferably 60 ⁇ 10 ⁇ 7 to 95 ⁇ 10 ⁇ 7 / ° C., 65 ⁇ 10 ⁇ 7 to 82 ⁇ 10 ⁇ 7 / ° C., in particular 70 ⁇ 10 ⁇ 7 to 76 ⁇ 10. -7 / ° C. If it does in this way, the thermal expansion coefficient of a sealing material layer will match the thermal expansion coefficient of a glass lid or a sintered glass content layer, and the stress which remains in a sealing part will become small.
  • the thickness of the sintered glass-containing layer it is preferable to regulate (the thickness of the sintered glass-containing layer) / (the thickness of the sealing material layer) to 0.5 or more, more than 1.0, and particularly more than 1.5. . If the thickness of the sintered glass-containing layer is too small compared to the thickness of the sealing material layer, heat is easily dissipated through the aluminum nitride substrate at the time of laser sealing, and the efficiency of laser sealing is likely to decrease.
  • thermo expansion coefficient of the sintered glass-containing layer is regulated to 0.6 to 1.4, 0.8 to 1.2, particularly 0.9 to 1.1. It is preferable to do. If (thermal expansion coefficient of the sintered glass-containing layer) / (thermal expansion coefficient of the aluminum nitride substrate) is outside the above range, undue stress tends to remain in the sintered glass-containing layer, and cracks occur in the sintered glass-containing layer. Is likely to occur.
  • the sealing material layer is preferably formed by applying and sintering a sealing material paste.
  • the sealing material paste is a mixture of a sealing material and a vehicle.
  • the vehicle usually contains a solvent and a resin.
  • the resin is added for the purpose of adjusting the viscosity of the paste.
  • surfactant, a thickener, etc. can also be added as needed.
  • the produced sealing material paste is applied to the surface of the glass lid using an applicator such as a dispenser or a screen printer.
  • the sealing material paste is preferably applied in a frame shape along the outer peripheral edge region of the glass lid. In this way, the area through which ultraviolet light or the like is transmitted can be increased.
  • the sealing material paste is usually produced by kneading the sealing material and the vehicle with a three-roller or the like.
  • a vehicle usually includes a resin and a solvent.
  • the resin used for the vehicle acrylic ester (acrylic resin), ethyl cellulose, polyethylene glycol derivative, nitrocellulose, polymethylstyrene, polyethylene carbonate, polypropylene carbonate, methacrylic ester and the like can be used.
  • DMF dimethylformamide
  • ⁇ -BL ⁇ -butyllactone
  • Various glasses can be used as the glass lid.
  • alkali-free glass, borosilicate glass, and soda lime glass can be used.
  • a low iron-containing glass lid (the content of Fe 2 O 3 in the glass composition is 0.015% by mass or less, particularly less than 0.010% by mass) is used. Is preferred.
  • the thickness of the glass lid is preferably 0.01 to 2.0 mm, 0.1 to 1 mm, particularly preferably 0.2 to 0.7 mm. Thereby, thickness reduction of an airtight package can be achieved. Further, the light transmittance in the ultraviolet wavelength region can be enhanced.
  • the difference in thermal expansion coefficient between the sealing material layer and the glass lid is preferably less than 40 ⁇ 10 ⁇ 7 / ° C., particularly 25 ⁇ 10 ⁇ 7 / ° C. or less.
  • the difference in thermal expansion coefficient between the sealing material layer and the sintered glass-containing layer is It is preferably less than 40 ⁇ 10 ⁇ 7 / ° C., particularly preferably 25 ⁇ 10 ⁇ 7 / ° C. or less. If the difference between these thermal expansion coefficients is too large, the stress remaining in the sealed portion is unduly high, and the long-term reliability of the hermetic package may be reduced.
  • the manufacturing method of the hermetic package of the present invention includes a step of arranging the aluminum nitride base and the glass lid so that the sintered glass-containing layer and the sealing material layer are in contact with each other.
  • the glass lid may be disposed below the aluminum nitride substrate, but from the viewpoint of laser sealing efficiency, the glass lid is preferably disposed above the aluminum nitride substrate.
  • the sintered glass-containing layer and the sealing material layer are sealed by irradiating the sealing material layer with laser light from the glass lid side to soften and deform the sealing material layer. Sealing to obtain an airtight package.
  • a semiconductor laser a YAG laser, a CO 2 laser, an excimer laser, and an infrared laser are preferable in terms of easy handling.
  • the atmosphere for laser sealing is not particularly limited, and may be an air atmosphere or an inert atmosphere such as a nitrogen atmosphere.
  • the glass lid When laser sealing is performed, if the glass lid is preheated at a temperature (100 ° C. or higher and below the heat-resistant temperature of the light emitting element in the aluminum nitride substrate), cracking of the glass lid due to thermal shock can be suppressed. . Moreover, if an annealing laser is irradiated from the glass lid side immediately after laser sealing, it is possible to suppress breakage of the glass lid due to thermal shock.
  • the hermetic package of the present invention is an airtight package having an aluminum nitride substrate and a glass lid, wherein the aluminum nitride has a base portion and a frame portion provided on the base portion, and is substantially above the top portion of the aluminum nitride frame portion.
  • a sintered glass-containing layer that does not contain bismuth-based glass is formed, a sealing material layer containing bismuth-based glass and a refractory filler powder is formed on the glass lid, and the sintered glass-containing layer And the sealing material layer are hermetically integrated in a state where they are arranged in contact with each other.
  • FIG. 2 is a conceptual cross-sectional view for explaining an embodiment of the present invention.
  • the hermetic package (ultraviolet LED package) 1 includes an aluminum nitride base 10 and a glass lid 11.
  • the aluminum nitride substrate 10 has a base portion 12 and further has a frame portion 13 on the outer peripheral edge of the base portion 12.
  • An ultraviolet LED element 14 is accommodated in the frame portion 13 of the aluminum nitride substrate 10.
  • a sintered glass-containing layer 16 is formed on the top portion 15 of the frame portion 13.
  • the surface of the sintered glass-containing layer 16 is polished in advance, and its surface roughness Ra is 0.15 ⁇ m or less.
  • the width of the sintered glass-containing layer 16 is slightly smaller than the width of the frame portion 13. Furthermore, the sintered glass-containing layer 16 is obtained by sintering a glass-containing film made of ZnO-based glass powder by irradiating laser light. In the aluminum nitride substrate 10, electrical wiring (not shown) for electrically connecting the ultraviolet LED element 14 and the outside is formed.
  • a frame-shaped sealing material layer 17 is formed on the surface of the glass lid 11.
  • the sealing material layer 17 contains bismuth glass and refractory filler powder.
  • the width of the sealing material layer 17 is slightly smaller than the width of the sintered glass-containing layer 16.
  • the thickness of the sealing material layer 17 is slightly smaller than the thickness of the sintered glass-containing layer 16.
  • the laser beam L emitted from the laser irradiation device 18 is irradiated along the sealing material layer 17 from the glass lid 11 side. Thereby, after the sealing material layer 17 softens and flows and reacts with the sintered glass-containing layer 16, the aluminum nitride substrate 10 and the glass lid 11 are hermetically sealed, and the hermetic structure of the hermetic package 1 is formed.
  • a sealing material was prepared.
  • Table 1 shows the material structure of the sealing material.
  • Bismuth-based glass has a glass composition of mol%, Bi 2 O 3 36.9%, B 2 O 3 25.8%, ZnO 16.6%, CuO 14.1%, Fe 2 O 3 0.7. %, BaO 5.9%, and have the particle sizes listed in Table 1.
  • the above-mentioned bismuth glass, refractory filler powder and laser absorber were mixed in the proportions shown in Table 1 to prepare a sealing material.
  • Cordierite having the particle size shown in Table 1 was used as the refractory filler powder.
  • An Mn—Fe—Al pigment was used as the laser absorber.
  • the average particle diameter D 50 of the Mn—Fe—Al composite oxide was 1.0 ⁇ m, and the 99% particle diameter D 99 was 2.5 ⁇ m.
  • This sealing material, the glass transition point, the softening point, and the thermal expansion coefficient were measured. The results are shown in Table 1.
  • the glass transition point is a value measured with a push rod type TMA apparatus.
  • Softening point is a value measured with a macro DTA apparatus. The measurement was performed in an air atmosphere at a temperature rising rate of 10 ° C./min, and the measurement was performed from room temperature to 600 ° C.
  • the thermal expansion coefficient is a value measured with a push rod type TMA apparatus.
  • the measurement temperature range is 30 to 300 ° C.
  • a frame shape is formed on the outer peripheral edge of a glass lid (length 3 mm ⁇ width 3 mm ⁇ thickness 0.2 mm, alkali borosilicate glass substrate, coefficient of thermal expansion 41 ⁇ 10 ⁇ 7 / ° C.).
  • the sealing material layer was formed. More specifically, first, the sealing material, vehicle, and solvent shown in Table 1 were kneaded so that the viscosity was about 100 Pa ⁇ s (25 ° C., Shear rate: 4), and then the powder was evenly mixed in a three-roll mill. Kneaded until dispersed into a paste. A vehicle in which an ethyl cellulose resin was dissolved in a glycol ether solvent was used.
  • the above-mentioned sealing material paste was printed in a frame shape by a screen printer along the outer peripheral edge of the glass lid. Furthermore, after drying at 120 ° C. for 10 minutes in an air atmosphere, baking was performed at 500 ° C. for 10 minutes in an air atmosphere to form a sealing material layer having a thickness of 5 ⁇ m and a width of 300 ⁇ m on the glass lid.
  • an aluminum nitride substrate (length 3 mm ⁇ width 3 mm ⁇ base thickness 0.7 mm, thermal expansion coefficient 46 ⁇ 10 ⁇ 7 / ° C.) was prepared, and the deep ultraviolet LED element was accommodated in the frame portion of the aluminum nitride substrate.
  • the frame portion has a frame shape with a width of 600 ⁇ m and a height of 400 ⁇ m, and is formed along the outer peripheral edge of the base portion of the aluminum nitride base.
  • a sintered glass-containing layer was formed on the frame portion of the aluminum nitride substrate using ZnO-based glass powder (GP-014 manufactured by Nippon Electric Glass Co., Ltd., thermal expansion coefficient 43 ⁇ 10 ⁇ 7 / ° C.).
  • ZnO-based glass powder GP-014 manufactured by Nippon Electric Glass Co., Ltd., thermal expansion coefficient 43 ⁇ 10 ⁇ 7 / ° C.
  • the powder is further uniformly dispersed by a three-roll mill. Kneaded and pasted. A vehicle in which an ethyl cellulose resin was dissolved in a glycol ether solvent was used.
  • the glass-containing paste was printed on the frame portion of the aluminum nitride substrate by a screen printer. Further, the obtained glass-containing film was irradiated with a CO 2 laser having a wavelength of 10.6 ⁇ m and 7 W to form a sintered glass-containing layer having a thickness of 20 ⁇ m and a width of 500 ⁇ m on the frame portion of the aluminum nitride substrate.
  • the sintered glass-containing layer and the sealing material layer were hermetically integrated to obtain an airtight package.
  • HAST test Highly Accelerated Temperature and Humidity Stress test
  • the conditions of the HAST test are 121 ° C., humidity 100%, 2 atm, and 24 hours.
  • the hermetic package of the present invention is suitable for an airtight package in which an ultraviolet LED element is mounted, but can also be suitably applied to an airtight package containing a resin or the like in which quantum dots are dispersed.
  • Airtight package (UV LED package) DESCRIPTION OF SYMBOLS 10 Aluminum nitride base
  • substrate 11 Glass cover 12 Base part 13 Frame part 14 Ultraviolet LED element 15 Top part 16 of a frame part Sintered glass containing layer 17 Sealing material layer 18 Laser irradiation apparatus L Laser beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Structural Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

本発明の気密パッケージの製造方法は、窒化アルミニウム基体を用意すると共に、窒化アルミニウム基体上に焼結ガラス含有層を形成する工程と、ガラス蓋を用意すると共に、ガラス蓋上に封着材料層を形成する工程と、焼結ガラス含有層と封着材料層が接触するように、窒化アルミニウム基体とガラス蓋を配置する工程と、ガラス蓋側から封着材料層に向けてレーザー光を照射し、封着材料層を軟化変形させることにより、焼結ガラス含有層と封着材料層を気密封着して、気密パッケージを得る工程と、を備えることを特徴とする。

Description

気密パッケージの製造方法及び気密パッケージ
 本発明は、レーザー光を用いた封着処理(以下、レーザー封着)により、窒化アルミニウム基体とガラス蓋を気密封着した気密パッケージの製造方法に関する。
 紫外LED素子が実装された気密パッケージには、熱伝導性の観点から、基体として窒化アルミニウムが使用されると共に、紫外波長領域の光透過性の観点から、蓋材としてガラスが使用される。
 従来まで、紫外LEDパッケージの接着材料として、低温硬化性を有する有機樹脂系接着剤が使用されていた。しかし、有機樹脂系接着剤は、紫外波長領域の光で劣化し易く、紫外LEDパッケージの気密性を経時的に劣化させる虞がある。また、有機樹脂系接着剤の代わりに金錫半田を用いると、紫外波長領域の光による劣化を防止することができる。しかし、金錫半田は、材料コストが高いという問題がある。
 一方、ガラス粉末を含む封着材料は、紫外波長領域の光で劣化し難く、材料コストが低いという特長を有している。
 しかし、ガラス粉末は、有機樹脂系接着剤よりも軟化温度が高いため、封着時に紫外LED素子を熱劣化させる虞がある。このような事情から、レーザー封着が着目されている。レーザー封着によれば、封着すべき部分のみを局所的に加熱することが可能であり、紫外LED素子を熱劣化させることなく、窒化アルミニウムとガラス蓋を気密封着することができる。
特開2013-239609号公報 特開2014-236202号公報
 本発明者等の調査によると、ビスマス系ガラスを含む封着材料は、レーザー封着時に被封着物と十分に反応するため、レーザー封着強度を高めることができる。なお、他のガラスを含む封着材料は、レーザー封着時に被封着物と十分に反応せず、レーザー封着強度を確保し難い。
 一方、ビスマス系ガラスを含む封着材料は、窒化アルミニウムと反応して、窒化アルミニウムとの界面で発泡を生じさせる傾向がある。このため、ビスマス系ガラスを含む封着材料を用いて、窒化アルミニウム基体とガラス蓋をレーザー封着すると、封着材料層内の気泡により気密性を確保できない虞がある。更に、この気泡により気密パッケージの機械的強度も確保できない虞がある。
 そこで、本発明は、上記事情に鑑みなされたものであり、その技術的課題は、窒化アルミニウム基体とガラス蓋をレーザー封着する場合に、封着材料層内の発泡を抑制しつつ、レーザー封着強度を高める方法を創案することである。
 本発明者等は、鋭意検討の結果、窒化アルミニウム基体と封着材料層の間に、焼結ガラス含有層を介在させた上でレーザー封着を行うと、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明の気密パッケージの製造方法は、窒化アルミニウム基体を用意すると共に、窒化アルミニウム基体上に焼結ガラス含有層を形成する工程と、ガラス蓋を用意すると共に、ガラス蓋上に封着材料層を形成する工程と、焼結ガラス含有層と封着材料層が接触するように、窒化アルミニウム基体とガラス蓋を配置する工程と、ガラス蓋側から封着材料層に向けてレーザー光を照射し、封着材料層を軟化変形させることにより、焼結ガラス含有層と封着材料層を気密封着して、気密パッケージを得る工程と、を備えることを特徴とする。
 本発明の気密パッケージの製造方法は、窒化アルミニウム上に焼結ガラス含有層を形成した後、この焼結ガラス含有層をガラス蓋上の封着材料層と接触配置させた上で、レーザー封着することを特徴としている。このようにすれば、封着材料層が窒化アルミニウム基体に接触し難くなるため、レーザー封着時に封着材料層内に発泡が生じ難くなる。更に、封着材料層と焼結ガラス含有層の双方は、低融点ガラスを含むため、レーザー封着の際に良好に反応し、レーザー封着強度を高めることができる。
 第二に、本発明の気密パッケージの製造方法は、焼結ガラス含有層の幅を封着材料層の幅よりも大きくすることが好ましい。このようにすれば、封着材料層が窒化アルミニウム基体上に接触し難くなるため、封着材料層内の発泡を防止し易くなる。
 第三に、本発明の気密パッケージの製造方法は、(焼結ガラス含有層の厚み)/(封着材料層の厚み)を0.5以上に規制することが好ましい。このようにすれば、レーザー封着時に熱が窒化アルミニウム基体を通して放散し難くなり、レーザー封着の効率を高めることができる。
 第四に、本発明の気密パッケージの製造方法は、(焼結ガラス含有層の熱膨張係数)/(窒化アルミニウム基体の熱膨張係数)を0.6以上、且つ1.4以下に規制することが好ましい。このようにすれば、焼結ガラス含有層と窒化アルミニウム基体の界面でクラック等が発生し難くなる。ここで、「熱膨張係数」は、30~300℃の温度範囲において、TMA(押棒式熱膨張係数測定)装置で測定した値である。
 第五に、本発明の気密パッケージの製造方法は、窒化アルミニウム基体上にガラス含有膜を形成した後に、ガラス含有膜に向けてレーザー光を照射することにより、ガラス含有膜を焼結させて、焼結ガラス含有層を形成することが好ましい。このようにすれば、窒化アルミニウム基体内の電気配線や発光素子の熱劣化を防止し易くなる。
 第六に、本発明の気密パッケージの製造方法は、基部と基部上に設けられた枠部とを有する窒化アルミニウム基体を用い、枠部の頂部に焼結ガラス含有層を形成することが好ましい。このようにすれば、紫外LED素子等の発光素子を気密パッケージ内に収容し易くなる。
 第七に、本発明の気密パッケージの製造方法は、更に、焼結ガラス含有層の表面を研磨する工程を備えることが好ましい。このようにすれば、焼結ガラス含有層と封着材料層の密着性が向上するため、レーザー封着の精度を高めることができる。
 第八に、本発明の気密パッケージは、窒化アルミニウム基体とガラス蓋とを有する気密パッケージにおいて、窒化アルミニウムが、基部と基部上に設けられた枠部とを有し、窒化アルミニウムの枠部の頂部上に、実質的にビスマス系ガラスを含まない焼結ガラス含有層が形成されており、ガラス蓋上に、ビスマス系ガラスと耐火性フィラー粉末を含む封着材料層が形成されており、且つ焼結ガラス含有層と封着材料層が接触配置された状態で気密一体化されていることを特徴とする。
 本発明の気密パッケージは、窒化アルミニウムの枠部の頂部上に、実質的にビスマス系ガラスを含まない焼結ガラス含有層が形成されていると共に、ガラス蓋上に、ビスマス系ガラスと耐火性フィラー粉末を含む封着材料層が形成されている。ビスマス系ガラスは、他の系のガラスと比較して、レーザー封着時に被封着物の表層に反応層を形成し易いという特長を有するが、窒化アルミニウムと過剰に反応し、封着材料層内に発泡を生じさせるという欠点を有する。そこで、本発明の気密パッケージは、窒化アルミニウム基体と封着材料層の間に、焼結ガラス含有層を設けている。これにより、レーザー封着時に封着材料層と焼結ガラス含有層の反応性を高めつつ、封着材料層内に発泡が生じる事態を防止することができる。更に焼結ガラス含有層の介在により、レーザー封着時に熱が窒化アルミニウム基体を通して放散し難くなり、レーザー封着の効率を高めることもできる。なお、「ビスマス系ガラス」とは、Biを主成分とするガラスを指し、具体的にはガラス組成中にBiを25モル%以上含むガラスを指す。「実質的にビスマス系ガラスを含まない焼結ガラス含有層」とは、焼結ガラス層中のBiの含有量が5モル%未満の場合を指す。
 第九に、本発明の気密パッケージは、焼結ガラス含有層の幅が封着材料層の幅よりも大きいことが好ましい。
 第十に、本発明の気密パッケージは、(焼結ガラス含有層の厚み)/(封着材料層の厚み)が0.5以上であることが好ましい。
 第十一に、本発明の気密パッケージは、(焼結ガラス含有層の熱膨張係数)/(窒化アルミニウム基体の熱膨張係数)が0.6以上、且つ1.4以下であることが好ましい。
 第十二に、本発明の気密パッケージは、窒化アルミニウムの枠部内に、紫外LED素子が収容されていることが好ましい。ここで、「紫外LED素子」には、深紫外LED素子を含むものとする。
マクロ型DTA装置で測定した時の封着材料の軟化点を示す模式図である。 本発明の一実施形態を説明するための断面概念図である。
 本発明の気密パッケージの製造方法では、窒化アルミニウム基体を用意すると共に、窒化アルミニウム基体上に焼結ガラス含有層を形成する工程を有する。窒化アルミニウム基体上に焼結ガラス含有層を形成する方法として、ガラス含有ペーストを窒化アルミニウム基体上に塗布して、ガラス含有膜を形成した後、ガラス含有膜を乾燥し、溶剤を揮発させて、更にガラス含有膜にレーザー光を照射して、ガラス含有膜の焼結(固着)を行う方法が好ましい。このようにすれば、窒化アルミニウム基体内に形成された電気配線や発光素子を熱劣化させずに焼結ガラス含有層を形成することができる。
 レーザー光の照射により焼結ガラス含有層を形成する場合、レーザー照射幅がガラス含有膜の幅よりも大きいことが好ましい。このようにすれば、焼結ガラス含有層内に未焼結部分が残存し難くなるため、焼結ガラス含有層の表面平滑性を確保し易くなる。
 ガラス含有膜の焼成により、焼結ガラス含有層を形成してもよいが、この場合、発光素子等の熱劣化を防止する観点から、窒化アルミニウム基体内に発光素子等を実装する前にガラス含有膜を焼成することが好ましい。
 焼結ガラス含有層は、表面平滑性を高める観点から、ガラス粉末単体の焼結体が好ましいが、ガラス粉末と耐火性フィラー粉末を含む複合粉末の焼結体であってもよい。ここで、ガラス粉末は、窒化アルミニウム基体と反応性が低いガラスが好ましく、亜鉛系ガラス粉末(ガラス組成中にZnOを25モル%以上含むガラス粉末)、アルカリホウケイ酸系ガラス粉末等が好ましい。また、ガラス粉末として、窒化アルミニウム基体と反応性が高いビスマス系ガラスを用いないことが好ましい。
 本発明の気密パッケージの製造方法において、焼結ガラス含有層の厚みを50μm以下、30μm以下、特に15μm以下に規制することが好ましい。このようにすれば、焼結ガラス含有層と窒化アルミニウム基体の熱膨張係数差に基づくクラック等を防止し易くなる。
焼結ガラス含有層の幅は、封着材料層の幅より大きいことが好ましく、封着材料層の幅より0.1mm以上大きいことが好ましい。焼結ガラス含有層の幅が封着材料層の幅より小さいと、封着材料層が窒化アルミニウム基体上に接触し易くなるため、レーザー封着時に封着材料層内に発泡が生じ易くなる。
 焼結ガラス含有層の表面を研磨処理することが好ましく、その場合、焼結ガラス含有層の表面の表面粗さRaは、好ましくは0.5μm未満、0.2μm以下、特に0.01~0.15μmであり、焼結ガラス含有層の表面の表面粗さRMSは、好ましくは1.0μm未満、0.5μm以下、特に0.05~0.3μmである。このようにすれば、焼結ガラス含有層と封着材料層の密着性が向上して、レーザー封着の精度を高めることができる。結果として、気密パッケージの封着強度を高めることが可能になる。なお、「表面粗さRa」及び「表面粗さRMS」は、例えば、触針式又は非接触式のレーザー膜厚計や表面粗さ計により測定することができる。
窒化アルミニウム基体の厚みは0.1~1.5mm、特に0.5~1.2mmが好ましい。これにより、気密パッケージの薄型化を図ることができる。
 また、窒化アルミニウム基体として、基部と基部上に設けられた枠部とを有する窒化アルミニウム基体を用い、枠部の頂部に焼結ガラス含有層を形成することが好ましい。このようにすれば、窒化アルミニウム基体の枠部内に紫外LED素子等の発光素子を収容し易くなる。
 レーザー光の照射により、窒化アルミニウム基体の枠部の頂部に焼結ガラス含有層を形成する場合、レーザー光の照射幅を枠部の幅より小さくすることが好ましい。このようにすれば、レーザー照射時にガラス含有膜が適正に焼結すると共に、枠部内の発光素子等が損傷し難くなる。
 窒化アルミニウム基体が枠部を有する場合、窒化アルミニウム基体の外周端縁領域に沿って、枠部を額縁状に設けると共に、その枠部の頂部にガラス含有膜を塗布することが好ましい。このようにすれば、デバイスとして機能する有効面積を広げることができる。また紫外LED素子等の発光素子を窒化アルミニウム基体の枠部内に収容し易くなる。
 本発明の気密パッケージの製造方法は、ガラス蓋を用意すると共に、ガラス蓋上に封着材料層を形成する工程を有する。
 封着材料層の平均厚みを10μm未満、7μm未満、特に5μm未満に規制することが好ましい。同様にして、レーザー封着後の封着材料層の平均厚みも10μm未満、7μm未満、特に5μm未満に規制することが好ましい。封着材料層の平均厚みが小さい程、封着材料層とガラス蓋の熱膨張係数が十分に整合していなくても、レーザー封着後に封着部分に残留する応力が低減される。また、レーザー封着の精度を高めることもできる。なお、上記のように封着材料層の平均厚みを規制する方法としては、封着材料ペーストを薄く塗布する方法、封着材料層の表面を研磨処理する方法が挙げられる。
 封着材料層の表面粗さRaを0.5μm未満、0.2μm以下、特に0.01~0.15μmに規制することが好ましい。また、封着材料層の表面粗さRMSを1.0μm未満、0.5μm以下、特に0.05~0.3μmに規制することが好ましい。このようにすれば、焼結ガラス含有層と封着材料層の密着性が向上し、レーザー封着の精度が向上する。なお、上記のように封着材料層の表面粗さRa、RMSを規制する方法としては、封着材料層の表面を研磨処理する方法、耐火性フィラー粉末の粒度を規制する方法が挙げられる。
 封着材料層は、封着材料の焼結体であり、レーザー封着時に軟化変形して、ガラス含有層を反応するものである。封着材料として、種々の材料が使用可能である。その中でも、レーザー封着強度を確保する観点から、ビスマス系ガラス粉末と耐火性フィラー粉末を含む複合粉末を用いることが好ましい。特に、封着材料として、55~95体積%のビスマス系ガラスと5~45体積%の耐火性フィラー粉末を含有する封着材料を用いることが好ましく、60~85体積%のビスマス系ガラスと15~40体積%の耐火性フィラー粉末を含有する封着材料を用いることが更に好ましく、60~80体積%のビスマス系ガラスと20~40体積%の耐火性フィラー粉末を含有する封着材料を用いることが特に好ましい。耐火性フィラー粉末を添加すれば、封着材料の熱膨張係数が、ガラス蓋と焼結ガラス含有層の熱膨張係数に整合し易くなる。その結果、レーザー封着後に封着部分に不当な応力が残留する事態を防止し易くなる。一方、耐火性フィラー粉末の含有量が多過ぎると、ビスマス系ガラスの含有量が相対的に少なくなるため、封着材料層の表面平滑性が低下して、レーザー封着の精度が低下し易くなる。
 ビスマス系ガラスは、ガラス組成として、モル%で、Bi 28~60%、B 15~37%、ZnO 1~30%含有することが好ましい。各成分の含有範囲を上記のように限定した理由を以下に説明する。なお、ガラス組成範囲の説明において、%表示はモル%を指す。
 Biは、軟化点を低下させるための主要成分であり、その含有量は28~60%、33~55%、特に35~45%が好ましい。Biの含有量が少な過ぎると、軟化点が高くなり過ぎて、流動性が低下し易くなる。一方、Biの含有量が多過ぎると、レーザー封着時にガラスが失透し易くなり、この失透に起因して、流動性が低下し易くなる。
 Bは、ガラス形成成分として必須の成分であり、その含有量は15~37%、20~33%、特に25~30%が好ましい。Bの含有量が少な過ぎると、ガラスネットワークが形成され難くなるため、レーザー封着時にガラスが失透し易くなる。一方、Bの含有量が多過ぎると、ガラスの粘性が高くなり、流動性が低下し易くなる。
 ZnOは、耐失透性を高める成分であり、その含有量は1~30%、3~25%、5~22%、特に9~20%が好ましい。その含有量が1%より少なく、或いは30%より多いと、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。
 上記成分以外にも、例えば、以下の成分を添加してもよい。
 SiOは、耐水性を高める成分であるが、軟化点を上昇させる作用を有する。このため、SiOの含有量は0~5%、0~3%、0~2%、特に0~1%が好ましい。また、SiOの含有量が多過ぎると、レーザー封着時にガラスが失透し易くなる。
 Alは、耐水性を高める成分であり、その含有量は0~10%、0~5%、特に0.1~2%が好ましい。Alの含有量が多過ぎると、軟化点が不当に上昇する虞がある。
 LiO、NaO及びKOは、耐失透性を低下させる成分である。よって、LiO、NaO及びKOの含有量は、それぞれ0~5%、0~3%、特に0~1%未満である。
 MgO、CaO、SrO及びBaOは、耐失透性を高める成分であるが、軟化点を上昇させる成分である。よって、MgO、CaO、SrO及びBaOの含有量は、それぞれ0~20%、0~10%、特に0~5%である。
 Bi系ガラスの軟化点を下げるためには、ガラス組成中にBiを多量に導入する必要があるが、Biの含有量を増加させると、レーザー封着時にガラスが失透し易くなり、この失透に起因して流動性が低下し易くなる。特に、Biの含有量が30%以上になると、その傾向が顕著になる。この対策として、CuOを添加すれば、Biの含有量が30%以上であっても、ガラスの失透を効果的に抑制することができる。更にCuOを添加すれば、レーザー封着時のレーザー吸収特性を高めることができる。CuOの含有量は0~40%、5~35%、10~30%、特に15~25%が好ましい。CuOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下し易くなる。
 Feは、耐失透性とレーザー吸収特性を高める成分であり、その含有量は0~10%、0.1~5%、特に0.5~3%が好ましい。Feの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下し易くなる。
 Sbは、耐失透性を高める成分であり、その含有量は0~5%、特に0~2%が好ましい。Sbの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下し易くなる。
 ガラス粉末の平均粒径D50は15μm未満、0.5~10μm、特に1~5μmが好ましい。ガラス粉末の平均粒径D50が小さい程、ガラス粉末の軟化点が低下する。
 耐火性フィラー粉末として、コーディエライト、ジルコン、酸化錫、酸化ニオブ、リン酸ジルコニウム系セラミック、ウイレマイト、β-ユークリプタイト、β-石英固溶体から選ばれる一種又は二種以上を用いることが好ましい。これらの耐火性フィラー粉末は、熱膨張係数が低いことに加えて、機械的強度が高く、しかもビスマス系ガラスとの適合性が良好である。
 耐火性フィラー粉末の平均粒径D50は、好ましくは2μm未満、特に1.5μm未満である。耐火性フィラー粉末の平均粒径D50が2μm未満であると、封着材料層の表面平滑性が向上すると共に、封着材料層の平均厚みを10μm未満に規制し易くなり、結果として、レーザー封着の精度を高めることができる。
 耐火性フィラー粉末の99%粒径D99は、好ましくは5μm未満、4μm以下、特に3μm以下である。耐火性フィラー粉末の99%粒径D99が5μm未満であると、封着材料層の表面平滑性が向上すると共に、封着材料層の平均厚みを10μm未満に規制し易くなり、結果として、レーザー封着の精度を高めることができる。ここで、「平均粒径D50」と「99%粒径D99」は、レーザー回折法により体積基準で測定した値を指す。
 封着材料は、光吸収特性を高めるために、更にレーザー吸収材を含んでもよいが、レーザー吸収材は、ビスマス系ガラスの失透を助長する作用を有する。よって、レーザー吸収材の含有量は、好ましくは1~15体積%、3~12体積%、特に5~10体積%である。レーザー吸収材の含有量が多過ぎると、レーザー封着時にガラスが失透し易くなる。レーザー吸収材として、Cu系酸化物、Fe系酸化物、Cr系酸化物、Mn系酸化物及びこれらのスピネル型複合酸化物等が使用可能であり、特に、ビスマス系ガラスとの適合性の観点から、Mn系酸化物が好ましい。
 封着材料の軟化点は、好ましくは500℃以下、480℃以下、特に450℃以下である。軟化点が高過ぎると、封着材料層の表面平滑性を高め難くなる。軟化点の下限は特に設定されないが、ガラスの熱的安定性を考慮すれば、軟化点は350℃以上が好ましい。ここで、「軟化点」は、マクロ型DTA装置で測定した際の第四変曲点であり、図1中のTsに相当する。
 封着材料層の熱膨張係数は、好ましくは60×10-7~95×10-7/℃、65×10-7~82×10-7/℃、特に70×10-7~76×10-7/℃である。このようにすれば、封着材料層の熱膨張係数がガラス蓋や焼結ガラス含有層の熱膨張係数に整合して、封着部分に残留する応力が小さくなる。
 本発明の気密パッケージの製造方法において、(焼結ガラス含有層の厚み)/(封着材料層の厚み)を0.5以上、1.0超、特に1.5超に規制することが好ましい。焼結ガラス含有層の厚みが封着材料層の厚みに比べて小さ過ぎると、レーザー封着時に熱が窒化アルミニウム基体を通して放散し易くなり、レーザー封着の効率が低下し易くなる。
 更に、(焼結ガラス含有層の熱膨張係数)/(窒化アルミニウム基体の熱膨張係数)を0.6~1.4、0.8~1.2、特に0.9~1.1に規制することが好ましい。(焼結ガラス含有層の熱膨張係数)/(窒化アルミニウム基体の熱膨張係数)が上記範囲外になると、焼結ガラス含有層に不当な応力が残存し易くなり、焼結ガラス含有層にクラックが発生し易くなる。
 本発明の気密パッケージの製造方法において、封着材料層は、封着材料ペーストの塗布、焼結により形成することが好ましい。このようにすれば、封着材料層の寸法精度を高めることができる。ここで、封着材料ペーストは、封着材料とビークルの混合物である。そして、ビークルは、通常、溶媒と樹脂を含む。樹脂は、ペーストの粘性を調整する目的で添加される。また、必要に応じて、界面活性剤、増粘剤等を添加することもできる。作製された封着材料ペーストは、ディスペンサーやスクリーン印刷機等の塗布機を用いて、ガラス蓋の表面に塗布される。
 封着材料ペーストは、ガラス蓋の外周端縁領域に沿って、額縁状に塗布されることが好ましい。このようにすれば、紫外光等が透過する面積を広げることができる。
 封着材料ペーストは、通常、三本ローラー等により、封着材料とビークルを混練することにより作製される。ビークルは、通常、樹脂と溶剤を含む。ビークルに用いる樹脂として、アクリル酸エステル(アクリル樹脂)、エチルセルロース、ポリエチレングリコール誘導体、ニトロセルロース、ポリメチルスチレン、ポリエチレンカーボネート、ポリプロピレンカーボネート、メタクリル酸エステル等が使用可能である。ビークルに用いる溶剤として、N、N’-ジメチルホルムアミド(DMF)、α-ターピネオール、高級アルコール、γ-ブチルラクトン(γ-BL)、テトラリン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3-メトキシ-3-メチルブタノール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、ジメチルスルホキシド(DMSO)、N-メチル-2-ピロリドン等が使用可能である。
 ガラス蓋として、種々のガラスが使用可能である。例えば、無アルカリガラス、ホウケイ酸ガラス、ソーダ石灰ガラスが使用可能である。特に、紫外波長領域の光透過性を高めるために、低鉄含有ガラス蓋(ガラス組成中のFeの含有量が0.015質量%以下、特に0.010質量%未満)を用いることが好ましい。
 ガラス蓋の板厚は0.01~2.0mm、0.1~1mm、特に0.2~0.7mmが好ましい。これにより、気密パッケージの薄型化を図ることができる。また紫外波長領域の光透過性を高めることができる。
 封着材料層とガラス蓋の熱膨張係数差は40×10-7/℃未満、特に25×10-7/℃以下が好ましく、封着材料層と焼結ガラス含有層の熱膨張係数差は40×10-7/℃未満、特に25×10-7/℃以下が好ましい。これらの熱膨張係数差が大き過ぎると、封着部分に残留する応力が不当に高くなり、気密パッケージの長期信頼性が低下する虞がある。
 本発明の気密パッケージの製造方法は、焼結ガラス含有層と封着材料層が接触するように、窒化アルミニウム基体とガラス蓋を配置する工程を有する。この場合、ガラス蓋を窒化アルミニウム基体の下方に配置してもよいが、レーザー封着の効率の観点から、ガラス蓋を窒化アルミニウム基体の上方に配置することが好ましい。
 本発明の気密パッケージの製造方法は、ガラス蓋側から封着材料層に向けてレーザー光を照射し、封着材料層を軟化変形させることにより、焼結ガラス含有層と封着材料層を気密封着して、気密パッケージを得る工程を有する。
 レーザーとして、種々のレーザーを使用することができる。特に、半導体レーザー、YAGレーザー、COレーザー、エキシマレーザー、赤外レーザーは、取扱いが容易な点で好ましい。
 レーザー封着を行う雰囲気は特に限定されず、大気雰囲気でもよく、窒素雰囲気等の不活性雰囲気でもよい。
 レーザー封着を行う際に、(100℃以上、且つ窒化アルミニウム基体内の発光素子等の耐熱温度以下)の温度でガラス蓋を予備加熱すると、サーマルショックによるガラス蓋の割れを抑制することができる。またレーザー封着直後に、ガラス蓋側からアニールレーザーを照射すると、サーマルショックによるガラス蓋の割れを抑制することができる。
 ガラス蓋を押圧した状態でレーザー封着を行うことが好ましい。これにより、レーザー封着時に封着材料層の軟化変形を促進することができる。
 本発明の気密パッケージは、窒化アルミニウム基体とガラス蓋とを有する気密パッケージにおいて、窒化アルミニウムが、基部と基部上に設けられた枠部とを有し、窒化アルミニウムの枠部の頂部上に、実質的にビスマス系ガラスを含まない焼結ガラス含有層が形成されており、ガラス蓋上に、ビスマス系ガラスと耐火性フィラー粉末を含む封着材料層が形成されており、且つ焼結ガラス含有層と封着材料層が接触配置された状態で気密一体化されていることを特徴とする。本発明の気密パッケージの技術的特徴は、本発明の気密パッケージの製造方法の説明欄に記載済みである。よって、ここでは、便宜上、詳細な説明を省略する。
 以下、図面を参照しながら、本発明を説明する。図2は、本発明の一実施形態を説明するための断面概念図である。気密パッケージ(紫外LEDパッケージ)1は、窒化アルミニウム基体10とガラス蓋11を備えている。窒化アルミニウム基体10は基部12を有し、更に基部12の外周端縁上に枠部13を有している。また、窒化アルミニウム基体10の枠部13内に紫外LED素子14が収容されている。そして、この枠部13の頂部15には焼結ガラス含有層16が形成されている。焼結ガラス含有層16の表面は、予め研磨処理されており、その表面粗さRaが0.15μm以下になっている。そして、焼結ガラス含有層16の幅は、枠部13の幅よりも若干小さくなっている。更に、焼結ガラス含有層16は、レーザー光を照射することによりZnO系ガラス粉末からなるガラス含有膜を焼結させたものである。なお、窒化アルミニウム基体10内には、紫外LED素子14と外部を電気的に接続する電気配線(図示されていない)が形成されている。
 ガラス蓋11の表面には、額縁状の封着材料層17が形成されている。封着材料層17は、ビスマス系ガラスと耐火性フィラー粉末を含んでいる。そして、封着材料層17の幅は、焼結ガラス含有層16の幅よりも若干小さくなっている。更に、封着材料層17の厚みは、焼結ガラス含有層16の厚みよりも若干小さくなっている。
 レーザー照射装置18から出射したレーザー光Lは、ガラス蓋11側から封着材料層17に沿って照射される。これにより、封着材料層17が軟化流動し、焼結ガラス含有層16と反応した後、窒化アルミニウム基体10とガラス蓋11が気密封着されて、気密パッケージ1の気密構造が形成される。
 以下、実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は、単なる例示である。本発明は、以下の実施例に何ら限定されない。
 まず封着材料を作製した。表1は、封着材料の材料構成を示している。ビスマス系ガラスは、ガラス組成として、モル%で、Bi 36.9%、B 25.8%、ZnO 16.6%、CuO 14.1%、Fe 0.7%、BaO 5.9%を含有し、且つ表1に記載の粒度を有している。
Figure JPOXMLDOC01-appb-T000001
 上記のビスマス系ガラス、耐火性フィラー粉末及びレーザー吸収材を表1に示す割合で混合して、封着材料を作製した。耐火物フィラー粉末として、表1に示す粒度を有するコーディエライトを用いた。レーザー吸収材として、Mn-Fe-Al系顔料を用いた。なお、Mn-Fe-Al系複合酸化物の平均粒径D50は1.0μm、99%粒径D99は2.5μmであった。この封着材料につき、ガラス転移点、軟化点、熱膨張係数を測定した。その結果を表1に示す。
 ガラス転移点は、押棒式TMA装置で測定した値である。
 軟化点は、マクロ型DTA装置で測定した値である。測定は、大気雰囲気下において、昇温速度10℃/分で行い、室温から600℃まで測定を行った。
 熱膨張係数は、押棒式TMA装置で測定した値である。測定温度範囲は30~300℃である。
 次に、上記封着材料を用いて、ガラス蓋(縦3mm×横3mm×厚み0.2mm、アルカリホウケイ酸ガラス基板、熱膨張係数41×10-7/℃)の外周端縁上に額縁状の封着材料層を形成した。詳述すると、まず粘度が約100Pa・s(25℃、Shear rate:4)になるように、表1に記載の封着材料とビークルおよび溶剤を混練した後、更に三本ロールミルで粉末が均一に分散するまで混錬し、ペースト化した。ビークルにはグリコールエーテル系溶剤にエチルセルロース樹脂を溶解させたものを使用した。次に、ガラス蓋の外周端縁に沿って、スクリーン印刷機により上記の封着材料ペーストを額縁状に印刷した。更に、大気雰囲気下にて、120℃で10分間乾燥した後、大気雰囲気下にて、500℃で10分間焼成して、5μm厚、幅300μmの封着材料層をガラス蓋上に形成した。
 また、窒化アルミニウム基体(縦3mm×横3mm×基部厚み0.7mm、熱膨張係数46×10-7/℃)を用意し、窒化アルミニウム基体の枠部内に深紫外LED素子を収容した。なお、枠部は、幅600μm、高さ400μmの額縁状であり、窒化アルミニウム基体の基部の外周端縁上に沿って形成されている。
 続いて、ZnO系ガラス粉末(日本電気硝子社製GP-014、熱膨張係数43×10-7/℃)を用いて、窒化アルミニウム基体の枠部上に焼結ガラス含有層を形成した。詳述すると、まず粘度が約100Pa・s(25℃、Shear rate:4)になるように、ZnO系ガラス粉末とビークルおよび溶剤を混練した後、更に三本ロールミルで粉末が均一に分散するまで混錬し、ペースト化した。ビークルにはグリコールエーテル系溶剤にエチルセルロース樹脂を溶解させたものを使用した。次に、スクリーン印刷機により上記のガラス含有ペーストを窒化アルミニウム基体の枠部上に印刷した。更に、得られたガラス含有膜に波長10.6μm、7WのCOレーザーを照射して、20μm厚、幅500μmの焼結ガラス含有層を窒化アルミニウム基体の枠部上に形成した。
 最後に、焼結ガラス含有層と封着材料層が接触するように、窒化アルミニウム基体とガラス蓋を配置した後、ガラス蓋側から封着材料層に向けて波長808nm、5Wの半導体レーザーを照射し、封着材料層を軟化変形させることにより、焼結ガラス含有層と封着材料層を気密一体化して、気密パッケージを得た。
 得られた気密パッケージに対して、高温高湿高圧試験:HAST試験(Highly Accelerated Temperature and Humidity Stress test)を行った後、封着材料層の近傍を観察したところ、変質、クラック、剥離等が全く認められなかった。なお、HAST試験の条件は、121℃、湿度100%、2atm、24時間である。
 本発明の気密パッケージは、紫外LED素子が実装された気密パッケージに好適であるが、それ以外にも量子ドットを分散させた樹脂等を収容する気密パッケージ等にも好適に適用可能である。
1 気密パッケージ(紫外LEDパッケージ)
10 窒化アルミニウム基体
11 ガラス蓋
12 基部
13 枠部
14 紫外LED素子
15 枠部の頂部
16 焼結ガラス含有層
17 封着材料層
18 レーザー照射装置
L レーザー光

Claims (12)

  1.  窒化アルミニウム基体を用意すると共に、窒化アルミニウム基体上に焼結ガラス含有層を形成する工程と、
     ガラス蓋を用意すると共に、ガラス蓋上に封着材料層を形成する工程と、
     焼結ガラス含有層と封着材料層が接触するように、窒化アルミニウム基体とガラス蓋を配置する工程と、
     ガラス蓋側から封着材料層に向けてレーザー光を照射し、封着材料層を軟化変形させることにより、焼結ガラス含有層と封着材料層を気密封着して、気密パッケージを得る工程と、を備えることを特徴とする気密パッケージの製造方法。
  2.  焼結ガラス含有層の幅を封着材料層の幅よりも大きくすることを特徴とする請求項1に記載の気密パッケージの製造方法。
  3.  (焼結ガラス含有層の厚み)/(封着材料層の厚み)を0.5以上に規制することを特徴とする請求項1又は2に記載の気密パッケージの製造方法。
  4.  (焼結ガラス含有層の熱膨張係数)/(窒化アルミニウム基体の熱膨張係数)を0.6以上、且つ1.4以下に規制することを特徴とする請求項1~3の何れかに記載の気密パッケージの製造方法。
  5.  窒化アルミニウム基体上にガラス含有膜を形成した後に、ガラス含有膜に向けてレーザー光を照射することにより、ガラス含有膜を焼結させて、焼結ガラス含有層を形成することを特徴とする請求項1~4の何れかに記載の気密パッケージの製造方法。
  6.  基部と基部上に設けられた枠部とを有する窒化アルミニウム基体を用い、枠部の頂部に焼結ガラス含有層を形成することを特徴とする請求項1~5の何れかに記載の気密パッケージの製造方法。
  7.  更に、焼結ガラス含有層の表面を研磨する工程を備えることを特徴とする請求項1~6の何れかに記載の気密パッケージの製造方法。
  8.  窒化アルミニウム基体とガラス蓋とを有する気密パッケージにおいて、
     窒化アルミニウムが、基部と基部上に設けられた枠部とを有し、
     窒化アルミニウムの枠部の頂部上に、実質的にビスマス系ガラスを含まない焼結ガラス含有層が形成されており、
     ガラス蓋上に、ビスマス系ガラスと耐火性フィラー粉末を含む封着材料層が形成されており、
     且つ焼結ガラス含有層と封着材料層が接触配置された状態で気密一体化されていることを特徴とする気密パッケージ。
  9.  焼結ガラス含有層の幅が封着材料層の幅よりも大きいことを特徴とする請求項8に記載の気密パッケージ。
  10.  (焼結ガラス含有層の厚み)/(封着材料層の厚み)が0.5以上であることを特徴とする請求項8又は9に記載の気密パッケージ。
  11.  (焼結ガラス含有層の熱膨張係数)/(窒化アルミニウム基体の熱膨張係数)が0.6以上、且つ1.4以下であることを特徴とする請求項8~10の何れかに記載の気密パッケージ。
  12.  窒化アルミニウムの枠部内に、紫外LED素子が収容されていることを特徴とする請求項8~10の何れかに記載の気密パッケージ。
PCT/JP2017/011489 2016-04-11 2017-03-22 気密パッケージの製造方法及び気密パッケージ WO2017179381A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780020574.7A CN108886026A (zh) 2016-04-11 2017-03-22 气密封装体的制造方法及气密封装体
US16/092,571 US20190122945A1 (en) 2016-04-11 2017-03-22 Method for producing hermetic package, and hermetic package
KR1020187018087A KR20180131527A (ko) 2016-04-11 2017-03-22 기밀 패키지의 제조 방법 및 기밀 패키지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-078643 2016-04-11
JP2016078643A JP2017191805A (ja) 2016-04-11 2016-04-11 気密パッケージの製造方法及び気密パッケージ

Publications (1)

Publication Number Publication Date
WO2017179381A1 true WO2017179381A1 (ja) 2017-10-19

Family

ID=60041739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011489 WO2017179381A1 (ja) 2016-04-11 2017-03-22 気密パッケージの製造方法及び気密パッケージ

Country Status (6)

Country Link
US (1) US20190122945A1 (ja)
JP (1) JP2017191805A (ja)
KR (1) KR20180131527A (ja)
CN (1) CN108886026A (ja)
TW (1) TW201737518A (ja)
WO (1) WO2017179381A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3860319A4 (en) * 2018-09-30 2021-12-01 BYD Company Limited HOUSING FOR ELECTRONIC DEVICE, ELECTRONIC DEVICE AND COMBINED BODY
WO2023281961A1 (ja) * 2021-07-05 2023-01-12 日本電気硝子株式会社 封着材料層付きガラス基板及び気密パッケージの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7011548B2 (ja) * 2017-07-14 2022-01-26 キヤノン株式会社 セラミックス造形用粉体、セラミックス造形物、およびその製造方法
JP6773093B2 (ja) 2018-09-20 2020-10-21 信越化学工業株式会社 光学素子パッケージ用リッド、光学素子パッケージ及びそれらの製造方法
US20240043323A1 (en) * 2020-03-31 2024-02-08 Nippon Electric Glass Co., Ltd. Bonded body manufacturing method and bonded body
DE102020117186A1 (de) 2020-06-30 2021-12-30 Schott Ag Gehäustes optoelektronisches Modul und Verfahren zu dessen Herstellung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502947A (ja) * 2007-11-20 2011-01-27 コーニング インコーポレイテッド ガラスシートに焼結フリットパターンを生成するためのフリット含有ペースト
WO2012117978A1 (ja) * 2011-02-28 2012-09-07 旭硝子株式会社 気密部材とその製造方法
JP2012227511A (ja) * 2011-04-20 2012-11-15 Lg Innotek Co Ltd 紫外線発光素子パッケージ
JP2014236202A (ja) * 2013-06-05 2014-12-15 旭硝子株式会社 発光装置
JP2015023263A (ja) * 2013-07-24 2015-02-02 日本電気硝子株式会社 電気素子パッケージの製造方法及び電気素子パッケージ
JP2016027610A (ja) * 2014-06-27 2016-02-18 旭硝子株式会社 パッケージ基板、パッケージ、および電子デバイス
JP2016044101A (ja) * 2014-08-22 2016-04-04 旭硝子株式会社 封着用無鉛ガラス、封着材料、封着材料ペーストおよび封着パッケージ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728425B2 (en) * 2005-06-21 2010-06-01 Hewlett-Packard Development Company, L.P. Seal of fluid port
DE102012109258B4 (de) * 2012-09-28 2020-02-06 Osram Oled Gmbh Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelementes
JP2015120623A (ja) * 2013-12-24 2015-07-02 旭硝子株式会社 封着材料、封着材料層付き基板およびその製造方法、ならびに封着体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502947A (ja) * 2007-11-20 2011-01-27 コーニング インコーポレイテッド ガラスシートに焼結フリットパターンを生成するためのフリット含有ペースト
WO2012117978A1 (ja) * 2011-02-28 2012-09-07 旭硝子株式会社 気密部材とその製造方法
JP2012227511A (ja) * 2011-04-20 2012-11-15 Lg Innotek Co Ltd 紫外線発光素子パッケージ
JP2014236202A (ja) * 2013-06-05 2014-12-15 旭硝子株式会社 発光装置
JP2015023263A (ja) * 2013-07-24 2015-02-02 日本電気硝子株式会社 電気素子パッケージの製造方法及び電気素子パッケージ
JP2016027610A (ja) * 2014-06-27 2016-02-18 旭硝子株式会社 パッケージ基板、パッケージ、および電子デバイス
JP2016044101A (ja) * 2014-08-22 2016-04-04 旭硝子株式会社 封着用無鉛ガラス、封着材料、封着材料ペーストおよび封着パッケージ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3860319A4 (en) * 2018-09-30 2021-12-01 BYD Company Limited HOUSING FOR ELECTRONIC DEVICE, ELECTRONIC DEVICE AND COMBINED BODY
JP2022501831A (ja) * 2018-09-30 2022-01-06 ビーワイディー カンパニー リミテッド 電子機器ケース、電子機器及び複合体
WO2023281961A1 (ja) * 2021-07-05 2023-01-12 日本電気硝子株式会社 封着材料層付きガラス基板及び気密パッケージの製造方法

Also Published As

Publication number Publication date
CN108886026A (zh) 2018-11-23
KR20180131527A (ko) 2018-12-10
JP2017191805A (ja) 2017-10-19
TW201737518A (zh) 2017-10-16
US20190122945A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
WO2017179381A1 (ja) 気密パッケージの製造方法及び気密パッケージ
US10600954B2 (en) Method for producing hermetic package
WO2017212828A1 (ja) 気密パッケージの製造方法及び気密パッケージ
US10377086B2 (en) Manufacturing method for airtight package
US11871676B2 (en) Airtight package including a package base and a glass cover hermetically sealed with each other via a sealing material layer
US11043616B2 (en) Airtight package
WO2018216587A1 (ja) 気密パッケージの製造方法及び気密パッケージ
WO2018155373A1 (ja) パッケージ基体及びそれを用いた気密パッケージ
WO2018173834A1 (ja) カバーガラス及び気密パッケージ
WO2018155144A1 (ja) ビスマス系ガラス粉末、封着材料及び気密パッケージ
JP6944642B2 (ja) 気密パッケージの製造方法及び気密パッケージ
JP6819933B2 (ja) 気密パッケージ及びその製造方法
JP6922253B2 (ja) ガラス蓋
WO2018193767A1 (ja) カバーガラス及びこれを用いた気密パッケージ
JP7047270B2 (ja) 封着材料層付きパッケージ基体の製造方法及び気密パッケージの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187018087

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782199

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782199

Country of ref document: EP

Kind code of ref document: A1