WO2023281961A1 - 封着材料層付きガラス基板及び気密パッケージの製造方法 - Google Patents

封着材料層付きガラス基板及び気密パッケージの製造方法 Download PDF

Info

Publication number
WO2023281961A1
WO2023281961A1 PCT/JP2022/022811 JP2022022811W WO2023281961A1 WO 2023281961 A1 WO2023281961 A1 WO 2023281961A1 JP 2022022811 W JP2022022811 W JP 2022022811W WO 2023281961 A1 WO2023281961 A1 WO 2023281961A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing material
material layer
glass substrate
less
ppm
Prior art date
Application number
PCT/JP2022/022811
Other languages
English (en)
French (fr)
Inventor
徹 白神
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022043654A external-priority patent/JP2023008800A/ja
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to KR1020247001815A priority Critical patent/KR20240031317A/ko
Priority to CN202280046396.6A priority patent/CN117581355A/zh
Publication of WO2023281961A1 publication Critical patent/WO2023281961A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • H01L23/08Containers; Seals characterised by the material of the container or its electrical properties the material being an electrical insulator, e.g. glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container

Definitions

  • the present invention relates to a method for manufacturing a glass substrate with a sealing material layer and an airtight package.
  • Airtight packages equipped with electronic elements such as ultraviolet LEDs have come to be used in various fields such as lighting and communication for reasons such as long life and energy saving.
  • the package base on which the electronic element is mounted is sometimes covered with a glass substrate (glass lid) so that the electronic element is housed inside.
  • Patent Document 1 discloses an airtight package including a package base on which an electronic element is mounted, a frame surrounding the electronic element, and a lid made of a glass substrate covering one end opening of the frame.
  • Patent document 2 also discloses an airtight package in which a package substrate is provided with a recess for housing an electronic element, and a lid made of a glass substrate covers the recess.
  • quartz has the property of being difficult to absorb light with wavelengths in the ultraviolet region. For this reason, when the airtight package is an ultraviolet LED package, a quartz substrate is sometimes used for the lid from the viewpoint of increasing the ultraviolet transmittance.
  • An object of the present invention is to provide a method for manufacturing a glass substrate and an airtight package that can maintain high airtightness.
  • the present inventors have solved the above problems by forming a sealing material layer on a glass substrate having a high ultraviolet transmittance and reducing the difference in thermal expansion coefficient between the glass substrate and the sealing material layer.
  • the glass substrate with a sealing material layer of the present invention is a glass substrate with a sealing material layer in which a sealing material layer is formed on a glass substrate. is 85% or more, and the difference in thermal expansion coefficient between the sealing material layer and the glass substrate in the temperature range of 30 to 300° C. is 5 ppm/° C. or less.
  • Average transmittance at a thickness of 0.2 mm and 250 nm or more and less than 300 nm means that when the thickness of the glass substrate is other than 0.2 mm, the average transmittance is calculated by converting the thickness to 0.2 mm.
  • the ratio of the area where the sealing material layer is formed on the surface of the glass substrate on which the sealing material layer is formed is 1 to 50%. preferable.
  • the sealing material layer preferably has a plurality of sealing patterns, and the sealing pattern preferably has a closed loop shape.
  • the sealing pattern preferably has a closed loop shape.
  • the "closed loop shape” includes not only a shape composed only of curved lines, but also a shape composed of a combination of curved lines and straight lines, and a shape composed only of straight lines (for example, a square shape and other polygonal shapes).
  • the sealing material layer is a sintered body of composite powder containing at least bismuth-based glass powder and ceramic powder, and the content of bismuth-based glass in the sealing material layer is is preferably 65 to 95% by volume, and the ceramic content is preferably 5 to 35% by volume.
  • the sealing material layer preferably does not substantially contain a laser absorber.
  • the sealing material layer does not substantially contain a laser absorbing agent refers to the case where the content of the laser absorbing material in the sealing material layer is less than 1% by volume.
  • the average thickness of the sealing material layer is 15 ⁇ m or less, and the value obtained by dividing the average thickness of the sealing material layer by the thickness of the glass substrate is 0.005 to 0.05 ⁇ m. 5 is preferred.
  • the average width of the sealing material layer is 1000 ⁇ m or less, and the value obtained by dividing the average thickness of the sealing material layer by the average width of the sealing material layer is 0.005. ⁇ 0.1 is preferred.
  • the glass substrate with the sealing material layer of the present invention preferably has a rectangular shape, a circular shape, or a circular shape with an orientation flat.
  • an antireflection film is formed on either surface of the glass substrate. In this way, reflection losses are reduced and the light extraction efficiency of the LED device is improved.
  • the glass substrate with a sealing material layer of the present invention is preferably used for sealing with a laser beam. By doing so, it becomes easier to prevent thermal deterioration of the electronic element at the time of sealing.
  • the method for manufacturing an airtight package comprises steps of preparing a package base, steps of preparing a glass substrate with a sealing material layer having a plurality of sealing patterns, and sealing with the package base through the sealing material layer.
  • the airtight package of the present invention is an airtight package in which a glass substrate and a package base are airtightly integrated by a sealing material layer, and the glass substrate has a thickness of 0.2 mm and an average transmittance of 85% or more at 250 nm or more and less than 300 nm.
  • the difference in thermal expansion coefficient between the sealing material layer and the glass substrate in a temperature range of 30 to 300° C. is 5 ppm/° C. or less.
  • the present invention it is possible to provide a method for manufacturing a glass substrate with a sealing material layer and an airtight package that can maintain high airtightness.
  • FIG. 4 is a photograph showing a glass substrate with a sealing material layer in Example 2.
  • FIG. 4 is a photograph showing a glass substrate with a sealing material layer in Example 2.
  • the glass substrate has a thickness of 0.2 mm and an average transmittance of 85% or more, preferably 86% or more, 87% or more, 88% or more, and 89% or more at 250 nm or more and less than 300 nm. , 90% or more, 91% or more, in particular 92% or more. If the glass substrate has a thickness of 0.2 mm and an average transmittance of 250 nm or more and less than 300 nm is too low, it will be difficult for ultraviolet light to pass therethrough, making it difficult to apply to hermetic packages such as ultraviolet LED packages.
  • the glass substrate has a thickness of 0.2 mm and an average transmittance of 300 nm or more and less than 1000 nm. . If the glass substrate has a thickness of 0.2 mm and an average transmittance of 300 nm or more and less than 1000 nm, it becomes difficult for visible light to pass therethrough, making it difficult to apply to an airtight package such as an LED package.
  • the difference in thermal expansion coefficient between the sealing material layer and the glass substrate in the temperature range of 30 to 300° C. is 5 ppm/° C. or less, preferably 4 ppm/° C. or less, 3.5 ppm/° C. or less, 3.2 ppm/° C. or less, especially 3 ppm/°C or less. If the difference in thermal expansion coefficient in the temperature range of 30 to 300° C. between the sealing material layer and the glass substrate is too large, residual stress is generated at or near the joint after sealing, and the glass substrate is damaged (e.g., cracked). cracks) are likely to occur. If the glass substrate is damaged, the airtightness of the housing space of the airtight package may deteriorate.
  • the thermal expansion coefficient of the glass substrate in the temperature range of 30 to 300° C. is preferably 11 ppm/° C. or less, 10 ppm/° C. or less, 9 ppm/° C. or less, 8 ppm/° C. or less, 7 ppm/° C. or less, 6 ppm/° C. or less, particularly 3 ppm/° C. /°C to 5 ppm/°C.
  • the thermal expansion coefficient of the glass substrate in the temperature range of 30 to 300° C. is preferably 10 ppm/° C. or less, 9 ppm/° C. or less, 8 ppm/° C. or less, 7 ppm/° C.
  • the glass substrate has a glass composition of SiO 2 50 to 80%, Al 2 O 3 +B 2 O 3 (total amount of Al 2 O 3 and B 2 O 3 ) 1 to 45%, and Li 2 O + Na 2 in mass %.
  • O+K 2 O total amount of Li 2 O, Na 2 O and K 2 O
  • MgO+CaO+SrO+BaO total amount of MgO, CaO, SrO and BaO
  • % display represents the mass % except when there is particular notice.
  • SiO2 is the main component that forms the skeleton of glass.
  • the content of SiO 2 is preferably 50-80%, 55-75%, 58-70%, especially 60-68%. If the content of SiO2 is too small, Young's modulus and acid resistance tend to decrease. On the other hand, if the content of SiO 2 is too high, the viscosity at high temperatures tends to increase, and meltability tends to decrease. Become.
  • Al 2 O 3 and B 2 O 3 are components that improve devitrification resistance.
  • the content of Al 2 O 3 +B 2 O 3 is preferably 1-40%, 5-35%, 10-30%, especially 15-25%. If the content of Al 2 O 3 +B 2 O 3 is too small, the glass tends to devitrify. On the other hand, if the content of Al 2 O 3 +B 2 O 3 is too large, the component balance of the glass composition is lost, and the glass tends to devitrify.
  • Al 2 O 3 is a component that increases Young's modulus and suppresses phase separation and devitrification.
  • the content of Al 2 O 3 is preferably 0-20%, 1-20%, 3-18%, especially 5-16%. If the content of Al 2 O 3 is too small, the Young's modulus tends to decrease, and the glass tends to undergo phase separation and devitrification. On the other hand, if the content of Al 2 O 3 is too high, the high-temperature viscosity increases and the meltability tends to decrease.
  • B 2 O 3 is a component that enhances meltability and resistance to devitrification, and is a component that improves the susceptibility to scratches and enhances strength.
  • the content of B 2 O 3 is preferably 0-25%, 1-25%, 2-25%, 3-25%, 5-22%, 7-19%, especially 9-16%. If the content of B 2 O 3 is too small, the meltability and devitrification resistance tend to deteriorate, and the resistance to hydrofluoric acid-based chemicals tends to deteriorate. On the other hand, if the content of B 2 O 3 is too large, Young's modulus and acid resistance tend to decrease.
  • Li 2 O, Na 2 O and K 2 O are components that lower the high-temperature viscosity, remarkably improve the meltability, and contribute to the initial melting of the glass raw material.
  • the content of Li 2 O+Na 2 O+K 2 O is preferably 0-25%, 1-20%, 4-15%, especially 7-13%. If the content of Li 2 O+Na 2 O+K 2 O is too small, the meltability tends to deteriorate. On the other hand, if the content of Li 2 O+Na 2 O+K 2 O is too high, the coefficient of thermal expansion may become unduly high.
  • Li 2 O is a component that lowers the high-temperature viscosity, remarkably increases the meltability, and contributes to the initial melting of the glass raw material.
  • the content of Li 2 O is preferably 0-5%, 0-3%, 0-1%, especially 0-0.1%. If the content of Li 2 O is too small, the meltability tends to decrease, and the coefficient of thermal expansion may unduly decrease. On the other hand, when the content of Li 2 O is too large, the glass tends to undergo phase separation.
  • Na 2 O is a component that lowers the high-temperature viscosity, remarkably increases the meltability, and contributes to the initial melting of the glass raw material. It is also a component for adjusting the coefficient of thermal expansion.
  • the content of Na 2 O is preferably 0-25%, 1-20%, 3-18%, 5-15%, especially 7-13%. If the content of Na 2 O is too small, the meltability tends to deteriorate, and the coefficient of thermal expansion may unduly decrease. On the other hand, if the content of Na 2 O is too high, the coefficient of thermal expansion may become unduly high.
  • K 2 O is a component that lowers the high-temperature viscosity, remarkably increases the meltability, and contributes to the initial melting of the glass raw material. It is also a component for adjusting the coefficient of thermal expansion.
  • the content of K 2 O is preferably 0-15%, 0.1-10%, 1-10%, especially 3-5%. If the K 2 O content is too high, the coefficient of thermal expansion may become unduly high.
  • MgO, CaO, SrO and BaO are components that lower high-temperature viscosity and increase meltability.
  • the content of MgO+CaO+SrO+BaO is preferably 0-25%, 0-15%, 0.1-12%, 1-5%. If the content of MgO+CaO+SrO+BaO is too high, the glass tends to devitrify.
  • MgO is a component that lowers high-temperature viscosity and increases meltability, and among alkaline earth metal oxides, it is a component that significantly increases Young's modulus.
  • the content of MgO is preferably 0-10%, 0-8%, 0-5%, especially 0-1%. If the content of MgO is too high, the devitrification resistance tends to decrease.
  • CaO is a component that lowers high-temperature viscosity and significantly increases meltability.
  • the raw material to be introduced since the raw material to be introduced is relatively inexpensive, it is a component that reduces the raw material cost.
  • the content of CaO is preferably 0-15%, 0.1-12%, 0.5-10%, especially 1-5%. If the CaO content is too high, the glass tends to devitrify. In addition, when the content of CaO is too small, it becomes difficult to receive the above effects.
  • SrO is a component that enhances devitrification resistance.
  • the content of SrO is preferably 0-7%, 0-5%, 0-3%, especially 0-1%. If the SrO content is too high, the component balance of the glass composition is lost, and the glass tends to devitrify.
  • BaO is a component that enhances devitrification resistance.
  • the content of BaO is preferably 0-10%, 0-7%, 0-5%, 0-3%, 0-1%. If the BaO content is too high, the component balance of the glass composition is lost, and the glass tends to devitrify.
  • the total content of other components other than the above components is preferably 10% or less, 5% or less, and particularly 3% or less.
  • ZnO is a component that enhances meltability, but if it is contained in a large amount in the glass composition, the glass tends to devitrify.
  • the content of ZnO is preferably 0-5%, 0-3%, 0-1%, 0-1%, especially 0-0.1%.
  • ZrO 2 is a component that enhances acid resistance, but if it is contained in a large amount in the glass composition, the glass tends to devitrify.
  • the content of ZrO 2 is preferably 0-5%, 0-3%, 0-1%, 0-0.5%, especially 0.001-0.2%.
  • Fe 2 O 3 and TiO 2 are components that reduce transmittance in the deep ultraviolet region.
  • the content of Fe 2 O 3 +TiO 2 (the total amount of Fe 2 O 3 and TiO 2 ) is preferably 100 ppm or less, 80 ppm or less, 0.1-60 ppm, 0.3-40 ppm, 0.5-30 ppm, 0.5-30 ppm, 0 .8-20 ppm, 1-10 ppm, especially 2-5 ppm. If the content of Fe 2 O 3 +TiO 2 is too high, the glass will be colored and the transmittance in the deep ultraviolet region will tend to decrease. If the content of Fe 2 O 3 +TiO 2 is too small, high-purity glass raw materials must be used, resulting in an increase in batch cost.
  • Fe 2 O 3 is a component that reduces transmittance in the deep ultraviolet region.
  • the content of Fe 2 O 3 is preferably 100 ppm or less, 80 ppm or less, 0.05-60 ppm, 0.1-40 ppm, 0.5-20 ppm, 1-10 ppm, especially 2-8 ppm. If the content of Fe 2 O 3 is too high, the glass will be colored, and the transmittance in the deep ultraviolet region will tend to decrease. If the content of Fe 2 O 3 is too low, a high-purity glass raw material must be used, resulting in an increase in batch cost.
  • Fe ions in iron oxide exist in the form of Fe 2+ or Fe 3+ . If the proportion of Fe 2+ is too small, the transmittance in deep ultraviolet rays tends to decrease. Therefore, the mass ratio of Fe 2+ /(Fe 2+ +Fe 3+ ) in iron oxide is preferably 0.1 or more, 0.2 or more, 0.3 or more, 0.4 or more, particularly 0.5 or more.
  • TiO 2 is a component that reduces the transmittance in the deep UV region.
  • the content of TiO 2 is preferably 100 ppm or less, 80 ppm or less, 60 ppm or less, 40 ppm or less, 0.05-20 ppm, 0.1-10 ppm, in particular 0.5-5 ppm. If the content of TiO 2 is too high, the glass tends to be colored and the transmittance in the deep ultraviolet region tends to decrease. If the content of TiO 2 is too low, a high-purity glass raw material must be used, resulting in an increase in batch cost.
  • Sb 2 O 3 is a component that acts as a refining agent.
  • the content of Sb 2 O 3 is preferably 1000 ppm or less, 800 ppm or less, 600 ppm or less, 400 ppm or less, 200 ppm or less, 100 ppm or less, especially less than 50 ppm. If the Sb 2 O 3 content is too high, the transmittance in the deep ultraviolet region tends to decrease.
  • SnO2 is a component that acts as a refining agent.
  • the content of SnO 2 is preferably ⁇ 2000 ppm, ⁇ 1700 ppm, ⁇ 1400 ppm, ⁇ 1100 ppm, ⁇ 800 ppm, ⁇ 500 ppm, ⁇ 200 ppm, especially ⁇ 100 ppm. If the SnO 2 content is too high, the transmittance in the deep ultraviolet region tends to decrease.
  • F2 , Cl2 and SO3 are components that act as fining agents.
  • the content of F 2 +Cl 2 +SO 3 is preferably 10-10000 ppm.
  • a preferred lower limit range of F 2 +Cl 2 +SO 3 is 10 ppm or more, 20 ppm or more, 50 ppm or more, 100 ppm or more, 300 ppm or more, especially 500 ppm or more, and a suitable upper limit range is 3000 ppm or less, 2000 ppm or less, 1000 ppm or less, especially 800 ppm or less. is.
  • each of F 2 , Cl 2 and SO 3 preferably has a lower limit range of 10 ppm or more, 20 ppm or more, 50 ppm or more, 100 ppm or more, 300 ppm or more, particularly 500 ppm or more, and a preferable upper limit range of 3000 ppm or less and 2000 ppm or less. It is 1000 ppm or less, especially 800 ppm or less. If the content of these components is too small, it will be difficult to exhibit the refining effect. On the other hand, if the content of these components is too high, there is a risk that the fining gas will remain in the glass as bubbles.
  • the size of the glass substrate is preferably 600 mm 2 or more, 5000 mm 2 or more, particularly 15000 mm 2 or more.
  • the plate thickness of the glass substrate is preferably 2.0 mm or less, 1.5 mm or less, or 1.0 mm or less, particularly 0.1 to 0.5 mm. If the plate thickness is too large, the mass of the glass substrate increases, making it difficult to handle the glass substrate, and the transmittance in the deep ultraviolet region tends to decrease. On the other hand, if the plate thickness is too small, it becomes difficult for the glass substrate to maintain its rigidity on the transfer line, and the glass substrate is likely to be deformed, warped, or damaged.
  • the surface roughness Ra of the surface of the glass substrate is preferably 10 nm or less, 9 nm or less, 8 nm or less, 7 nm or less, 6 nm or less, 5 nm or less, 4 nm or less, 3 nm or less, 2 nm or less, and particularly 1 nm or less. If the surface roughness Ra of the surface is too large, the transmittance of the deep ultraviolet rays tends to decrease.
  • Ra is the arithmetic mean roughness defined in JIS B0601-1994.
  • the glass substrate is preferably rectangular, circular, or circular with an orientation flat. With such a shape, it is easy to form a plurality of sealing patterns on the surface of the glass substrate. Especially, if it is circular or circular with an orientation flat, laser sealing can be performed using a semiconductor manufacturing apparatus. It is preferable because
  • a functional film may be formed on the surface of the glass substrate, and an antireflection film is particularly preferable as the functional film. Thereby, the light reflected on the surface of the glass substrate can be reduced.
  • the sealing material layer is obtained by sintering a sealing material.
  • the sealing material is generally a composite powder containing glass powder and ceramic powder.
  • Various glass powders can be used as the glass powder.
  • Bi 2 O 3 -based glass, V 2 O 5 -based glass, and SnO-based glass are preferable in terms of low melting point characteristics, and Bi 2 O 3 -based glass is particularly preferable in terms of thermal stability and water resistance.
  • the term "--based glass” refers to a glass containing specified components as essential components and having a total amount of specified components of 25 mol% or more, preferably 30 mol% or more, more preferably 35 mol% or more. point to From an environmental point of view, the glass powder preferably does not substantially contain PbO (less than 0.1 mol %) in the glass composition.
  • the Bi 2 O 3 -based glass preferably contains 28 to 60% Bi 2 O 3 , 15 to 37% B 2 O 3 , and 1 to 30% ZnO in mol % as the glass composition.
  • the reason why the content range of each component is limited as described above will be explained below.
  • Bi 2 O 3 is a main component for lowering the softening point, and its content is preferably 28-60%, 33-55%, particularly 35-45%. If the content of Bi 2 O 3 is too small, the softening point becomes too high and the fluidity tends to decrease. On the other hand, if the Bi 2 O 3 content is too high, the glass tends to devitrify during firing, and this devitrification tends to reduce fluidity.
  • B 2 O 3 is an essential component as a glass-forming component, and its content is preferably 15 to 37%, 20 to 33%, particularly 25 to 30%. If the content of B 2 O 3 is too small, it becomes difficult to form a glass network, and the glass tends to devitrify during firing. On the other hand, if the content of B 2 O 3 is too high, the viscosity of the glass increases, and the fluidity tends to decrease.
  • ZnO is a component that enhances resistance to devitrification, and its content is preferably 1-30%, 3-25%, 5-22%, and particularly preferably 9-20%. If the content is less than 1% or more than 30%, the component balance of the glass composition is lost, and devitrification resistance tends to decrease.
  • ingredients for example, the following ingredients may be added.
  • SiO 2 is a component that increases water resistance, but it also has the effect of raising the softening point. Therefore, the content of SiO 2 is preferably 0-5%, 0-3%, 0-2%, particularly 0-1%. Also, if the content of SiO 2 is too high, the glass tends to devitrify during firing.
  • Al 2 O 3 is a component that increases water resistance, and its content is preferably 0 to 10%, 0 to 5%, particularly 0.1 to 2%. If the content of Al 2 O 3 is too high, the softening point may increase unduly.
  • Li 2 O, Na 2 O and K 2 O are components that reduce devitrification resistance.
  • the content of Li 2 O, Na 2 O and K 2 O is thus respectively 0-5%, 0-3% and in particular 0-1%.
  • MgO, CaO, SrO and BaO are components that increase devitrification resistance, but also components that increase the softening point.
  • the contents of MgO, CaO, SrO and BaO are thus respectively 0-20%, 0-10% and especially 0-5%.
  • Fe 2 O 3 is a component that enhances devitrification resistance and laser absorption characteristics, and its content is preferably 0 to 10%, 0.1 to 5%, particularly 0.5 to 3%. If the content of Fe 2 O 3 is too large, the component balance of the glass composition is disturbed, and the devitrification resistance tends to decrease.
  • Sb 2 O 3 is a component that increases devitrification resistance, and its content is preferably 0 to 5%, particularly 0 to 2%. If the content of Sb 2 O 3 is too large, the component balance of the glass composition is disturbed, and the devitrification resistance tends to decrease.
  • the average particle diameter D 50 of the glass powder is preferably less than 15 ⁇ m, preferably 0.5-10 ⁇ m, especially 1-5 ⁇ m.
  • the softening point of the glass powder decreases as the average particle diameter D50 of the glass powder decreases.
  • the content of the ceramic powder in the sealing material is preferably 5-35% by volume, 10-33% by volume, 15-30% by volume, particularly 20-30% by volume.
  • the content of glass powder in the sealing material is preferably 65-95% by volume, 67-90% by volume, 70-85% by volume, especially 70-80% by volume. If the content of the ceramic powder is too high, the content of the glass powder becomes relatively low, making it difficult to ensure desired fluidity and thermal stability. If the content of the ceramic powder is too small, the effect of adding the ceramic powder will be poor.
  • the ceramic powder one or two or more selected from ⁇ -eucryptite, cordierite, zircon, alumina, mullite, willemite, zirconium phosphate, zirconium phosphate tungstate, zirconium tungstate, etc. are preferable, especially thermal expansion ⁇ -eucryptite, which is highly effective in lowering the modulus, is particularly preferred.
  • glass powder and ceramic powder other powder materials may be introduced into the sealing material.
  • glass beads, spacers, and the like may be introduced.
  • the glass beads and spacers are made of a composition and material with high heat resistance so that the shape can be maintained even after sealing.
  • 1 to 15% by volume of laser absorbers such as Mn--Fe--Al oxides, carbon, and Mn--Fe--Cr oxides may be contained. Considering the thermal stability of , it is preferred that the laser absorber is not substantially contained.
  • the sealing material may be used in a powdered state, but it is preferable to knead it uniformly with the vehicle and make it into a paste because it is easier to handle.
  • a vehicle typically includes a solvent and a resin. Resin is added for the purpose of adjusting the viscosity of the paste. Moreover, a surfactant, a thickening agent, etc. can also be added as needed.
  • the prepared paste is applied to the surface of the glass substrate using a dispenser, a screen printer, or other applicator.
  • Usable resins include acrylic acid ester (acrylic resin), ethyl cellulose, polyethylene glycol derivatives, nitrocellulose, polymethylstyrene, polyethylene carbonate, methacrylic acid ester, and the like.
  • acrylic acid esters and nitrocellulose are preferable because of their good thermal decomposability.
  • Solvents include N,N'-dimethylformamide (DMF), ⁇ -terpineol, higher alcohols, ⁇ -butyl lactone ( ⁇ -BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl ether, Diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, water, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether , tripropylene glycol monobutyl ether, propylene carbonate, dimethylsulfoxide (DMSO), N-methyl-2-pyrrolidone and the like can be used.
  • DMSO dimethylsulfoxide
  • the thermal expansion coefficient of the sealing material layer in the temperature range of 30 to 300°C is preferably 50ppm/°C to 90ppm/°C, 55ppm/°C to 80ppm/°C, particularly 60ppm/°C to 75ppm/°C.
  • the thermal expansion coefficient of the sealing material layer in the temperature range of 30 to 300°C is preferably 60ppm/°C to 80ppm/°C, 65ppm/°C to 75ppm/°C, especially 68ppm/°C. ⁇ 73 ppm/°C. If the coefficient of thermal expansion of the sealing material layer is too high, residual stress is generated in or near the joint after sealing, and the glass substrate is likely to break (for example, breakage such as cracks).
  • the airtightness of the housing space of the airtight package may deteriorate.
  • the coefficient of thermal expansion of the sealing material layer is too low, the proportion of the refractory filler increases, so that the softening and fluidity of the sealing material is reduced, and the hermetic package is likely to suffer airtightness defects.
  • the thermal expansion coefficient of the package substrate in the temperature range of 30 to 300°C is preferably 10 ppm/°C or higher, 20 ppm/°C or higher, particularly 30 ppm/°C to 60 ppm/°C. If the coefficient of thermal expansion of the package substrate is too low, residual stress is generated in or near the joints after sealing, and the hermetic package tends to suffer airtightness failures.
  • the difference in thermal expansion coefficient between the glass substrate and the package substrate in the temperature range of 30 to 300° C. is preferably 6.5 ppm/° C. or less, 4.5 ppm/° C. or less, It is 3.5 ppm/°C or less, 2.0 ppm/°C or less, particularly 1.0 ppm/°C or less.
  • the average thickness of the sealing material layer is 15 ⁇ m or less, if the difference in thermal expansion coefficient between the glass substrate and the package substrate in the temperature range of 30 to 300° C. is too large, residual stress may occur at or near the joint after sealing. occurs, and the glass substrate is likely to be damaged (for example, fracture such as crack). If the glass substrate is damaged, the airtightness of the housing space of the airtight package may deteriorate.
  • the difference in thermal expansion coefficient between the sealing material layer and the package substrate in the temperature range of 30 to 300°C is preferably 5.5 ppm/°C or less, 4.0 ppm/°C or less, particularly 3.5 ppm/°C or less. If the difference in thermal expansion coefficient between the sealing material layer and the package substrate in the temperature range of 30 to 300° C. is too large, residual stress is generated at or near the joint after sealing, resulting in poor airtightness of the airtight package. becomes easier.
  • the package base preferably has a recess that can accommodate the electronic element. By doing so, it becomes easier to accommodate an electronic element such as a sensor element in the concave portion of the package base.
  • the recess of the package base is preferably formed like a frame along the outer edge region of the package base. In this way, the effective area functioning as a device can be expanded. In addition, it becomes easy to accommodate the electronic element in the space inside the package base, and to perform wiring connection and the like.
  • the package substrate is preferably a metal such as silicon, glass ceramic, aluminum nitride, aluminum oxide, or a composite material thereof (for example, aluminum nitride integrated with glass ceramic).
  • silicon is preferable because it has good heat dissipation properties and is easy to form concave portions by etching or the like.
  • the average thickness of the sealing material layer is preferably 15 ⁇ m or less and less than 8.0 ⁇ m, particularly 1.0 ⁇ m or more and less than 7.0 ⁇ m.
  • the value obtained by dividing the average thickness of the sealing material layer by the average width of the sealing material layer is preferably 0.005 to 0.1, particularly 0.01 to 0.05.
  • the value obtained by dividing the average thickness of the sealing material layer by the thickness of the glass substrate is preferably 0.005 to 0.5, particularly 0.01 to 0.1. If the average thickness of the sealing material layer, the value obtained by dividing the average thickness of the sealing material layer by the average width of the sealing material layer, or the value obtained by dividing the average thickness of the sealing material layer by the thickness of the glass substrate is outside the above range.
  • the accuracy of laser sealing tends to decrease.
  • the stress remaining in the sealing portion after laser sealing can be reduced when the thermal expansion coefficients of the sealing material layer and the glass substrate are mismatched.
  • a method for regulating the average thickness of the sealing material layer as described above there are a method of thinly applying the sealing material paste and a method of polishing the surface of the sealing material layer.
  • the average width of the sealing material layer is preferably 1 ⁇ m or more and 1000 ⁇ m or less, particularly 100 ⁇ m or more and 800 ⁇ m or less.
  • the average width of the sealing material layer is narrowed, it becomes easier to reduce the stress remaining in the sealing portion after laser sealing.
  • the maximum width of the sealing material layer is too narrow, bulk fracture of the sealing material layer is likely to occur when a large shear stress is applied to the sealing material layer. Furthermore, the accuracy of laser sealing tends to be lowered.
  • the ratio of the area where the sealing material layer is formed is preferably 1 to 50%, 10 to 48%, 20 to 45%, 23 to 43%. , in particular 25-40%. If the area ratio of the surface on which the sealing material layer is formed is large, residual stress is generated in or near the joint after sealing, and the glass substrate tends to break (for example, breakage such as cracks). On the other hand, when the ratio of the area where the sealing material layer is formed is large, it becomes possible to form many sealing patterns, that is, to fabricate many hermetic packages from one substrate.
  • the difference in thermal expansion coefficient between the sealing material layer and the glass substrate is strictly defined, even if the ratio of the area where the sealing material layer is formed is increased, , it is possible to reduce the residual stress generated in or near the joint after sealing.
  • the sealing material layer has a plurality of sealing patterns, and the sealing pattern has a closed loop shape.
  • an airtight package group can be obtained, and by dividing the airtight package group, airtight packages corresponding to the number of sealing patterns can be efficiently produced.
  • the number of sealing patterns is preferably 50-5000, 80-3000, especially 200-2500.
  • the method for manufacturing an airtight package of the present invention includes steps of preparing a package base, steps of preparing a glass substrate with a sealing material layer having a plurality of sealing patterns, and sealing with the base through the sealing material layer.
  • the glass substrate may be arranged below the package substrate, but from the viewpoint of the efficiency of laser sealing, the glass substrate should be arranged above the package substrate. is preferred.
  • lasers can be used as the laser irradiated from the glass substrate side.
  • semiconductor lasers YAG lasers, CO2 lasers, excimer lasers, and infrared lasers are preferred because they are easy to handle.
  • the beam shape of the laser light during laser sealing is not particularly limited.
  • the beam shape is generally circular, elliptical, or rectangular, but other shapes may be used.
  • the beam diameter of the laser light at the time of laser sealing is preferably 100 to 1000 mm.
  • the atmosphere for laser sealing is not particularly limited, and may be an air atmosphere or an inert atmosphere such as a nitrogen atmosphere.
  • the airtight package of the present invention is an airtight package in which a glass substrate and a package base are airtightly integrated by a sealing material layer, and the glass substrate has a thickness of 0.2 mm and an average transmittance of 85% or more at 250 nm or more and less than 300 nm.
  • the difference in thermal expansion coefficient between the sealing material layer and the glass substrate in a temperature range of 30 to 300° C. is 5 ppm/° C. or less.
  • FIG. 1 is a schematic cross-sectional view showing an example of the airtight package of the present invention.
  • the airtight package 1 includes a glass substrate 10 and a package base 11. As shown in FIG.
  • the package substrate 11 has a base portion 12, and further has a frame portion on the outer peripheral edge portion of the base portion 12, and a concave portion 13 is formed by these.
  • An electric element 14 is accommodated in the recess 13 of the package base 11 .
  • Electrical wiring (not shown) for electrically connecting the electrical element 14 and the outside is formed in the package base 11 .
  • a frame-shaped sealing material layer 15 is formed on the surface of the glass substrate 10 .
  • the width of the sealing material layer 15 is smaller than the width of the top portion 16 of the frame portion of the package base 11 .
  • the glass substrate 10 and the package base 11 are laminated so that the sealing material layer 15 of the glass substrate 10 and the center line of the top portion 16 of the frame portion of the package base 11 in the width direction are aligned. After that, the laser light L emitted from the laser irradiation device 17 is irradiated along the sealing material layer 15 from the glass substrate 10 side. As a result, after the sealing material layer 15 softens and flows, the glass substrate 10 and the package base 11 are hermetically sealed to form the hermetic structure of the hermetic package 1 .
  • Example No. 1 First, a silicon substrate (thermal expansion coefficient at 30 to 300° C. 3.8 ppm/° C., square 4 mm) was prepared.
  • a glass substrate made of alkali borosilicate glass (thermal expansion coefficient at 30 to 300° C.: 4.2 ppm/° C., square: 4 mm, thickness: 0.2 mm) was prepared.
  • This glass substrate has a glass composition of 70% by mass SiO2 , 5.9% Al2O3 , 18% B2O3, 1 % Li2O, 2 % Na2O , and K2O3 . %, Cl 0.1%, TiO 2 0.0001%, Fe 2 O 3 0.0001%, thickness 0.2 mm, average transmittance at 250 nm or more and less than 300 nm is 91%, thickness 0.2 mm , the average transmittance at 300 nm or more and less than 1000 nm is 92%.
  • a sealing material was prepared by mixing 73% by volume of bismuth-based glass powder and 27% by volume of ceramic powder.
  • the average particle diameter D50 of the bismuth-based glass powder is 1.0 ⁇ m
  • the 99 % particle diameter D99 is 2.8 ⁇ m
  • the average particle diameter D50 of the ceramic powder is 1.0 ⁇ m
  • the 99 % particle diameter D99 is 2.8 ⁇ m.
  • the bismuth-based glass has a glass composition of 36.5% Bi 2 O 3 , 28.5% B 2 O 3 , 9.5% ZnO, 1.5% Al 2 O 3 , and MnO 2 in terms of mol %. 9.5% CuO 13.6% Fe 2 O 3 0.9%.
  • the ceramic powder is ⁇ -eucryptite.
  • the thermal expansion coefficient of the obtained sealing material was measured, it was 7.1 ppm/°C.
  • the coefficient of thermal expansion was measured with a push rod type TMA apparatus, and the measurement temperature range was 30 to 300°C.
  • the sealing material was applied onto the glass substrate, dried, debindered, and sintered to form a closed loop-shaped sealing material layer.
  • the sealing material, vehicle, and solvent are kneaded so that the viscosity is within the range of 90 ⁇ 20 Pa ⁇ s (25° C., shear rate: 4), and then the powder is further processed by a three-roll mill.
  • the mixture was kneaded until it was uniformly dispersed and made into a paste to obtain a sealing material paste.
  • the vehicle was prepared by dissolving an ethyl cellulose organic resin in a glycol ether solvent.
  • a sealing material paste was printed in a frame shape on the outer peripheral edge of the glass substrate by a screen printer.
  • the glass substrate with the sintered sealing material layer and the silicon substrate are laminated, and a laser beam is irradiated from the glass substrate side to soften and flow the sealing material layer, thereby hermetically integrating the glass substrate and the silicon substrate.
  • An airtight package was obtained by The laser output is 10 W, the scanning speed is 15 mm/sec, and the beam diameter is ⁇ 500 ⁇ m.
  • Sample No. 2 Sample no. Sample No. 1 except that a glass substrate made of alkali borosilicate glass (thermal expansion coefficient at 30 to 300° C. 9.9 ppm/° C., square 4 mm, thickness 0.2 mm) was used instead of the glass substrate of Sample No. 1.
  • An airtight package was obtained in the same manner as in 1.
  • This glass substrate has a glass composition of SiO 2 70.2%, Al 2 O 3 1.6%, B 2 O 3 2.3%, Na 2 O 9.6%, and K 2 O 9 in mass %.
  • Sample No. 3 Sample no. 1 except that a quartz substrate (thermal expansion coefficient 0.6 ppm/° C. at 30 to 300° C., square 4 mm, thickness 0.5 mm) was used instead of the glass substrate of sample No. 1. An airtight package was obtained in the same manner as in 1.
  • the presence or absence of cracks was evaluated by observing the vicinity of the sealing material layer of the obtained airtight package with an optical microscope.
  • the obtained airtight package was subjected to repeated temperature cycles under the conditions of 125 ° C. ⁇ -55 ° C., 1000 cycles, and then the vicinity of the sealing material layer was observed and evaluated. A sample in which no cracks, peeling, etc. were observed was evaluated as " ⁇ ”, and a sample in which it was observed was evaluated as "X”.
  • High-temperature, high-humidity, high-pressure test is performed by holding the resulting airtight package under the conditions of 121°C, 100% humidity, 2 atm, and 24 hours in a high-temperature, high-humidity, high-pressure environment. The evaluation was made by observing the vicinity of the layer, and evaluation was given as "Good” when deterioration, cracks, peeling, etc. were not observed, and as "Poor” when observed.
  • sample No. 1 and sample no The airtight package obtained in 2 was evaluated favorably in the presence or absence of cracks, the temperature cycle test, and the high-temperature, high-humidity, and high-pressure test.
  • sample no The airtight package obtained in 3 was unsatisfactory in the presence or absence of cracks, temperature cycle test, and high-temperature, high-humidity, and high-pressure test.
  • a glass substrate made of alkali borosilicate glass (thermal expansion coefficient 4.2 ppm/° C. at 30 to 300° C., thickness 0.2 mm, square 44 mm) was prepared.
  • This glass substrate has a glass composition of 70% by mass SiO2 , 5.9% Al2O3 , 18% B2O3, 1 % Li2O, 2 % Na2O , and K2O3 . %, Cl 0.1%, TiO 2 0.0001%, Fe 2 O 3 0.0001%, thickness 0.2 mm, average transmittance at 250 nm or more and less than 300 nm is 91%, thickness 0.2 mm , the average transmittance at 300 nm or more and less than 1000 nm is 92%.
  • FIG. 2 is a photograph showing this glass substrate with a sealing material layer.
  • a silicon substrate (thermal expansion coefficient of 3.8 ppm/°C at 30 to 300°C) was prepared.
  • the ratio of the area on which the sealing material layer was formed was 27% on the surface of the glass substrate on which the sealing material layer was formed.
  • the silicon substrate and the glass substrate with the sealing material layer were laminated with the sealing material layer interposed therebetween.
  • a laser beam is irradiated from the glass substrate side to soften and deform the sealing material layer, thereby hermetically sealing the glass substrate and the silicon substrate to obtain an airtight package group.
  • rice field was then divided by dicing so as not to divide the sealing pattern, and 100 airtight packages were obtained.
  • a glass substrate made of alkali borosilicate glass (thermal expansion coefficient at 30 to 300 ° C. 9.9 ppm / ° C., 4 mm square, 0.2 mm thickness) was used.
  • a glass substrate with a sealing material layer and an airtight package were obtained in the same manner as in 2.
  • This glass substrate has a glass composition of SiO 2 70.2%, Al 2 O 3 1.6%, B 2 O 3 2.3%, Na 2 O 9.6%, and K 2 O 9 in mass %.
  • the airtight package of the present invention is suitable for airtight packages in which electric elements such as sensor chips and ultraviolet LEDs are mounted. It can also be suitably applied to an airtight package or the like that accommodates the .

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

本発明の封着材料層付きガラス基板は、ガラス基板に封着材料層が形成された封着材料層付きガラス基板において、ガラス基板の厚み0.2mm、250nm以上300nm未満における平均透過率が85%以上であり、封着材料層とガラス基板の30~300℃の温度範囲おける熱膨張係数差が5ppm/℃以下であることを特徴とする。

Description

封着材料層付きガラス基板及び気密パッケージの製造方法
 本発明は、封着材料層付きガラス基板及び気密パッケージの製造方法に関する。
 紫外LEDなどの電子素子を備えた気密パッケージは、長寿命や省エネルギーなどの理由から、照明や通信などの種々の分野で利用されるに至っている。
 この種の気密パッケージでは、電子素子を保護するために、電子素子が搭載されたパッケージ基体に、電子素子が内部に収容されるようにガラス基板(ガラス蓋)を被せる場合がある。
 例えば、特許文献1には、電子素子が搭載されたパッケージ基体と、電子素子の周囲を取り囲む枠部と、枠部の一端開口を覆うガラス基板からなる蓋部とを備えた気密パッケージが開示されている。また、特許文献2には、パッケージ基体に電子素子を収納するための凹部を設けて、その凹部を覆うガラス基板からなる蓋部を備えた気密パッケージも開示されている。
国際公開第2015/190242号 特開2016-027610号公報
 ところで、石英は、紫外域の波長の光を吸収し難い特性を有する。このため、気密パッケージが紫外線LEDパッケージの場合などには、紫外線透過性を高める観点から、蓋部に石英基板を用いる場合がある。
 しかし、石英基板を一般的な金属ロウ材(例えば、金スズ半田)を用いて、枠部やパッケージ基体に接合しようとすると、各材料間における熱膨張係数の整合が問題となる。つまり、石英基板の熱膨張係数(約0.6ppm)は、一般的な金属ロウ材の熱膨張係数(約12.0ppm)に比べて非常に低く、材料間の熱膨張係数差が大きい。この結果、接合部又はその近傍に残留応力が発生して石英基板に破損(例えばクラックなどの割れ)が生じ易くなる。このように石英基板が破損すると、気密パッケージの収容空間の気密性を維持できなくなる。
 本発明は、高い気密性を維持し得るガラス基板及び気密パッケージの製造方法を提供することを課題とする。
 本発明者は、鋭意検討の結果、紫外線透過率が高いガラス基板に封着材料層を形成し、且つガラス基板と封着材料層の熱膨張係数差を小さくすることにより、上記課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明の封着材料層付きガラス基板は、ガラス基板に封着材料層が形成された封着材料層付きガラス基板において、ガラス基板の厚み0.2mm、250nm以上300nm未満における平均透過率が85%以上であり、封着材料層とガラス基板の30~300℃の温度範囲おける熱膨張係数差が5ppm/℃以下であることを特徴とする。なお、「厚み0.2mm、250nm以上300nm未満における平均透過率」は、ガラス基板の厚みが0.2mm以外の場合、厚み0.2mm換算して平均透過率を算出することを意味する。
 また、本発明の封着材料層付きガラス基板は、ガラス基板の封着材料層が形成された側の表面において、封着材料層が形成された面積の割合が1~50%であることが好ましい。
 また、本発明の封着材料層付きガラス基板は、封着材料層が複数の封着パターンを有し、封着パターンが閉ループ形状であることが好ましい。このようにすれば、封着パターン毎に気密パッケージを形成できることから、一連のレーザー封着により、1枚の封着材料層付きガラス基板を用いて気密パッケージ群(複数の気密パッケージの集合体)を作製することができる。そして、この気密パッケージ群を分割、切断すれば、多数の気密パッケージを簡便に作製することが可能になる。なお、「閉ループ形状」とは、曲線のみによって構成される形状のみならず、曲線と直線との組み合わせにより構成される形状、直線のみによって構成される形状(例えば四角形状その他の多角形状)を含む。
 また、本発明の封着材料層付きガラス基板は、封着材料層が少なくともビスマス系ガラス粉末とセラミック粉末を含む複合粉末の焼結体であり、封着材料層中のビスマス系ガラスの含有量が65~95体積%、セラミックの含有量が5~35体積%であることが好ましい。
 また、本発明の封着材料層付きガラス基板は、封着材料層が実質的にレーザー吸収剤を含有しないことが好ましい。ここで、「封着材料層が実質的にレーザー吸収剤を含有しない」とは、封着材料層中のレーザー吸収材の含有量が1体積%未満である場合を指す。
 また、本発明の封着材料層付きガラス基板は、封着材料層の平均厚みが15μm以下であり、封着材料層の平均厚みをガラス基板の厚みで除した値が0.005~0.5であることが好ましい。
 また、本発明の封着材料層付きガラス基板は、封着材料層の平均幅が1000μm以下であり、封着材料層の平均厚みを封着材料層の平均幅で除した値が0.005~0.1であることが好ましい。
 また、本発明の封着材料層付きガラス基板は、ガラス基板が矩形、円形、又はオリエンテーションフラット付きの円形の何れかの形状であることが好ましい。
 ガラス基板の何れかの表面に反射防止膜が形成されていることが好ましい。このようにすれば、反射損失が低減されて、LEDデバイスの光取り出し効率が向上する。
 また、本発明の封着材料層付きガラス基板は、レーザー光による封着に用いられることが好ましい。このようにすれば、封着時に電子素子の熱劣化を防止し易くなる。
 本発明の気密パッケージの製造方法は、パッケージ基体を用意する工程と、複数の封着パターンを有する封着材料層付きガラス基板を用意する工程と、封着材料層を介して、パッケージ基体と封着材料層付きガラス基板とを積層配置する工程と、ガラス基板側からレーザー光を照射し、封着材料層を軟化変形させることにより、ガラス基板とパッケージ基体を気密封着して、気密パッケージ群を得る工程と、気密パッケージ群を分割して、複数の気密パッケージを得る工程と、を備え、封着材料層付きガラス基板が、上記の封着材料層付きガラス基板であることを特徴とする。
 本発明の気密パッケージは、ガラス基板とパッケージ基体とが、封着材料層により気密一体化された気密パッケージにおいて、ガラス基板の厚み0.2mm、250nm以上300nm未満における平均透過率が85%以上であり、封着材料層とガラス基板の30~300℃の温度範囲おける熱膨張係数差が5ppm/℃以下であることを特徴とする。
 本発明によれば、高い気密性を維持し得る封着材料層付きガラス基板及び気密パッケージの製造方法を提供することができる。
本発明の気密パッケージの一例を示す断面概略図である。 実施例2における封着材料層付きガラス基板を示す写真である。
 本発明の封着材料層付きガラス基板において、ガラス基板の厚み0.2mm、250nm以上300nm未満における平均透過率は85%以上、好ましくは86%以上、87%以上、88%以上、89%以上、90%以上、91%以上、特に92%以上である。ガラス基板の厚み0.2mm、250nm以上300nm未満における平均透過率が低過ぎると、紫外光が透過し難くなり、紫外LEDパッケージ等の気密パッケージに適用し難くなる。
 ガラス基板の厚み0.2mm、300nm以上1000nm未満における平均透過率は、好ましくは89%以上、90%以上、91%以上、92%以上、93%以上、94%以上、特に95%以上である。ガラス基板の厚み0.2mm、300nm以上1000nm未満における平均透過率が低過ぎると、可視光が透過し難くなり、LEDパッケージ等の気密パッケージに適用し難くなる。
 封着材料層とガラス基板の30~300℃の温度範囲おける熱膨張係数差は5ppm/℃以下であり、好ましくは4ppm/℃以下、3.5ppm/℃以下、3.2ppm/℃以下、特に3ppm/℃以下である。封着材料層とガラス基板の30~300℃の温度範囲おける熱膨張係数差が大き過ぎると、封着後に、接合部又はその近傍に残留応力が発生して、ガラス基板に破損(例えばクラックなどの割れ)が生じ易くなる。そして、ガラス基板が破損すると、気密パッケージの収容空間の気密性が低下する虞がある。
 ガラス基板の30~300℃の温度範囲における熱膨張係数は、好ましくは11ppm/℃以下、10ppm/℃以下、9ppm/℃以下、8ppm/℃以下、7ppm/℃以下、6ppm/℃以下、特に3ppm/℃~5ppm/℃である。特に、パッケージ基体がシリコンである場合、ガラス基板の30~300℃の温度範囲における熱膨張係数は、好ましくは10ppm/℃以下、9ppm/℃以下、8ppm/℃以下、7ppm/℃以下、6ppm/℃以下、特に3ppm/℃~5ppm/℃である。ガラス基板の熱膨張係数が低過ぎると、封着後に、接合部又はその近傍に残留応力が発生して、ガラス基板に破損(例えばクラックなどの割れ)が生じ易くなる。そして、ガラス基板が破損すると、気密パッケージの収容空間の気密性が低下する虞がある。
 ガラス基板は、ガラス組成として、質量%で、SiO 50~80%、Al+B(AlとBの合量) 1~45%、LiO+NaO+KO(LiO、NaO及びKOの合量) 0~25%、MgO+CaO+SrO+BaO(MgO、CaO、SrO及びBaOの合量) 0~25%であることが好ましい。上記のように各成分の含有量を限定した理由を以下に示す。なお、各成分の含有量の説明において、%表示は、特に断りがある場合を除き、質量%を表す。
 SiOは、ガラスの骨格を形成する主成分である。SiOの含有量は、好ましくは50~80%、55~75%、58~70%、特に60~68%である。SiOの含有量が少な過ぎると、ヤング率、耐酸性が低下し易くなる。一方、SiOの含有量が多過ぎると、高温粘度が高くなり、溶融性が低下し易くなることに加えて、クリストバライト等の失透結晶が析出し易くなって、液相温度が上昇し易くなる。
 AlとBは、耐失透性を高める成分である。Al+Bの含有量は、好ましくは1~40%、5~35%、10~30%、特に15~25%である。Al+Bの含有量が少な過ぎると、ガラスが失透し易くなる。一方、Al+Bの含有量が多過ぎると、ガラス組成の成分バランスが崩れて、逆にガラスが失透し易くなる。
 Alは、ヤング率を高める成分であると共に、分相、失透を抑制する成分である。Alの含有量は、好ましくは0~20%、1~20%、3~18%、特に5~16%である。Alの含有量が少な過ぎると、ヤング率が低下し易くなり、またガラスが分相、失透し易くなる。一方、Alの含有量が多過ぎると、高温粘度が高くなり、溶融性が低下し易くなる。
 Bは、溶融性、耐失透性を高める成分であり、また傷の付き易さを改善して、強度を高める成分である。Bの含有量は、好ましくは0~25%、1~25%、2~25%、3~25%、5~22%、7~19%、特に9~16%である。Bの含有量が少な過ぎると、溶融性、耐失透性が低下し易くなり、またフッ酸系の薬液に対する耐性が低下し易くなる。一方、Bの含有量が多過ぎると、ヤング率、耐酸性が低下し易くなる。
 LiO、NaO及びKOは、高温粘性を下げて、溶融性を顕著に高めると共に、ガラス原料の初期の溶融に寄与する成分である。LiO+NaO+KOの含有量は、好ましくは0~25%、1~20%、4~15%、特に7~13%である。LiO+NaO+KOの含有量が少な過ぎると、溶融性が低下し易くなる。一方、LiO+NaO+KOの含有量が多過ぎると、熱膨張係数が不当に高くなる虞がある。
 LiOは、高温粘性を下げて、溶融性を顕著に高めると共に、ガラス原料の初期の溶融に寄与する成分である。LiOの含有量は、好ましくは0~5%、0~3%、0~1%、特に0~0.1%である。LiOの含有量が少な過ぎると、溶融性が低下し易くなることに加えて、熱膨張係数が不当に低くなる虞がある。一方、LiOの含有量が多過ぎると、ガラスが分相し易くなる。
 NaOは、高温粘性を下げて、溶融性を顕著に高めると共に、ガラス原料の初期の溶融に寄与する成分である。また熱膨張係数を調整するための成分である。NaOの含有量は、好ましくは0~25%、1~20%、3~18%、5~15%、特に7~13%である。NaOの含有量が少な過ぎると、溶融性が低下し易くなることに加えて、熱膨張係数が不当に低くなる虞がある。一方、NaOの含有量が多過ぎると、熱膨張係数が不当に高くなる虞がある。
 KOは、高温粘性を下げて、溶融性を顕著に高めると共に、ガラス原料の初期の溶融に寄与する成分である。また熱膨張係数を調整するための成分である。KOの含有量は、好ましくは0~15%、0.1~10%、1~10%、特に3~5%である。KOの含有量が多過ぎると、熱膨張係数が不当に高くなる虞がある。
 MgO、CaO、SrO及びBaOは、高温粘性を下げて、溶融性を高める成分である。MgO+CaO+SrO+BaOの含有量は、好ましくは0~25%、0~15%、0.1~12%、1~5%である。MgO+CaO+SrO+BaOの含有量が多過ぎると、ガラスが失透し易くなる。
 MgOは、高温粘性を下げて、溶融性を高める成分であり、アルカリ土類金属酸化物の中では、ヤング率を顕著に高める成分である。MgOの含有量は、好ましくは0~10%、0~8%、0~5%、特に0~1%である。MgOの含有量が多過ぎると、耐失透性が低下し易くなる。
 CaOは、高温粘性を下げて、溶融性を顕著に高める成分である。またアルカリ土類金属酸化物の中では、導入原料が比較的安価であるため、原料コストを低廉化する成分である。CaOの含有量は、好ましくは0~15%、0.1~12%、0.5~10%、特に1~5%である。CaOの含有量が多過ぎると、ガラスが失透し易くなる。なお、CaOの含有量が少な過ぎると、上記効果を享受し難くなる。
 SrOは、耐失透性を高める成分である。SrOの含有量は、好ましくは0~7%、0~5%、0~3%、特に0~1%未満である。SrOの含有量が多過ぎると、ガラス組成の成分バランスが崩れて、かえってガラスが失透し易くなる。
 BaOは、耐失透性を高める成分である。BaOの含有量は、好ましくは0~10%、0~7%、0~5%、0~3%、0~1%未満である。BaOの含有量が多過ぎると、ガラス組成の成分バランスが崩れて、かえってガラスが失透し易くなる。
 上記成分以外にも、任意成分として、他の成分を導入してもよい。なお、上記成分以外の他の成分の含有量は、本発明の効果を的確に享受する観点から、合量で10%以下、5%以下、特に3%以下が好ましい。
 ZnOは、溶融性を高める成分であるが、ガラス組成中に多量に含有させると、ガラスが失透し易くなる。よって、ZnOの含有量は、好ましくは0~5%、0~3%、0~1%、0~1%未満、特に0~0.1%である。
 ZrOは、耐酸性を高める成分であるが、ガラス組成中に多量に含有させると、ガラスが失透し易くなる。よって、ZrOの含有量は、好ましくは0~5%、0~3%、0~1%、0~0.5%、特に0.001~0.2%である。
 FeとTiOは、深紫外域での透過率を低下させる成分である。Fe+TiO(FeとTiOの合量)の含有量は、好ましくは100ppm以下、80ppm以下、0.1~60ppm、0.3~40ppm、0.5~30ppm、0.8~20ppm、1~10ppm、特に2~5ppmである。Fe+TiOの含有量が多過ぎると、ガラスが着色して、深紫外域での透過率が低下し易くなる。なお、Fe+TiOの含有量が少な過ぎると、高純度のガラス原料を使用しなければならず、バッチコストの高騰を招く。
 Feは、深紫外域での透過率を低下させる成分である。Feの含有量は、好ましくは100ppm以下、80ppm以下、0.05~60ppm、0.1~40ppm、0.5~20ppm、1~10ppm、特に2~8ppmである。Feの含有量が多過ぎると、ガラスが着色して、深紫外域での透過率が低下し易くなる。なお、Feの含有量が少な過ぎると、高純度のガラス原料を使用しなければならず、バッチコストの高騰を招く。
 酸化鉄中のFeイオンは、Fe2+又はFe3+の状態で存在する。Fe2+の割合が少な過ぎると、深紫外線での透過率が低下し易くなる。よって、酸化鉄中のFe2+/(Fe2++Fe3+)の質量割合は、好ましくは0.1以上、0.2以上、0.3以上、0.4以上、特に0.5以上である。
 TiOは、深紫外域での透過率を低下させる成分である。TiOの含有量は、好ましくは100ppm以下、80ppm以下、60ppm以下、40ppm以下、0.05~20ppm、0.1~10ppm、特に0.5~5ppmである。TiOの含有量が多過ぎると、ガラスが着色して、深紫外域での透過率が低下し易くなる。なお、TiOの含有量が少な過ぎると、高純度のガラス原料を使用しなければならず、バッチコストの高騰を招く。
 Sbは、清澄剤として作用する成分である。Sbの含有量は、好ましくは1000ppm以下、800ppm以下、600ppm以下、400ppm以下、200ppm以下、100ppm以下、特に50ppm未満である。Sbの含有量が多過ぎると、深紫外域での透過率が低下し易くなる。
 SnOは、清澄剤として作用する成分である。SnOの含有量は、好ましくは2000ppm以下、1700ppm以下、1400ppm以下、1100ppm以下、800ppm以下、500ppm以下、200ppm以下、特に100ppm以下である。SnOの含有量が多過ぎると、深紫外域での透過率が低下し易くなる。
 F、Cl及びSOは、清澄剤として作用する成分である。F+Cl+SOの含有量は10~10000ppmであることが好ましい。F+Cl+SOの好適な下限範囲は10ppm以上、20ppm以上、50ppm以上、100ppm以上、300ppm以上、特に500ppm以上であり、好適な上限範囲は3000ppm以下、2000ppm以下、1000ppm以下、特に800ppm以下である。また、F、Cl、SOの各々の好適な下限範囲は10ppm以上、20ppm以上、50ppm以上、100ppm以上、300ppm以上、特に500ppm以上であり、好適な上限範囲は3000ppm以下、2000ppm以下、1000ppm以下、特に800ppm以下である。これらの成分の含有量が少な過ぎると、清澄効果を発揮し難くなる。一方、これらの成分の含有量が多過ぎると、清澄ガスがガラス中に泡として残存する虞がある。
 ガラス基板のサイズは600mm以上、5000mm以上、特に15000mm以上が好ましい。サイズが大きい程、一枚のガラス基板から多数の気密パッケージを採取し得るため、気密パッケージの製造コストを低廉化し易くなる。
 ガラス基板の板厚は2.0mm以下、1.5mm以下、1.0mm以下、特に0.1~0.5mmが好ましい。板厚が大き過ぎると、ガラス基板の質量が大きくなり、ガラス基板を扱い難くなると共に、深紫外域での透過率が低下し易くなる。一方、板厚が小さ過ぎると、搬送ラインでガラス基板が剛性を維持し難くなり、ガラス基板の変形、反り、破損が発生し易くなる。
 ガラス基板の表面の表面粗さRaは10nm以下、9nm以下、8nm以下、7nm以下、6nm以下、5nm以下、4nm以下、3nm以下、2nm以下、特に1nm以下が好ましい。表面の表面粗さRaが大き過ぎると、深紫外線での透過率が減少する傾向がある。ここで、「Ra」は、JIS B0601-1994で定義された算術平均粗さ(arithmetical mean roughness)である。
 ガラス基板は、矩形、円形、又はオリエンテーションフラット付きの円形の何れかの形状であることが好ましい。このような形状であれば、ガラス基板の表面に複数の封着パターンを形成し易くなる、特に円形またはオリエンテーションフラット付きの円形であれば、半導体製造装置を利用して、レーザー封着を行うことができるため好ましい。
 ガラス基板の表面に機能膜を形成してもよく、特に機能膜として反射防止膜が好ましい。これにより、ガラス基板の表面で反射する光を低減することができる。
 本発明の封着材料層付きガラス基板において、封着材料層は、封着材料を焼結させたものである。封着材料は、一般的に、ガラス粉末とセラミック粉末を含む複合粉末である。ガラス粉末として、種々のガラス粉末を用いることができる。例えば、Bi系ガラス、V系ガラス、SnO系ガラスが低融点特性の点で好適であり、Bi系ガラスが熱的安定性、耐水性の点で特に好ましい。ここで、「~系ガラス」とは、明示の成分を必須成分として含有し、且つ明示の成分の合量が25モル%以上、好ましくは30モル%以上、より好ましくは35モル%以上のガラスを指す。なお、ガラス粉末は、環境的観点から、ガラス組成中に実質的にPbOを含まないこと(0.1モル%未満)が好ましい。
 Bi系ガラスは、ガラス組成として、モル%で、Bi 28~60%、B 15~37%、ZnO 1~30%含有することが好ましい。各成分の含有範囲を上記のように限定した理由を以下に説明する。なお、ガラス組成範囲の説明において、%表示はモル%を指す。
 Biは、軟化点を低下させるための主要成分であり、その含有量は28~60%、33~55%、特に35~45%が好ましい。Biの含有量が少な過ぎると、軟化点が高くなり過ぎて、流動性が低下し易くなる。一方、Biの含有量が多過ぎると、焼成時にガラスが失透し易くなり、この失透に起因して、流動性が低下し易くなる。
 Bは、ガラス形成成分として必須の成分であり、その含有量は15~37%、20~33%、特に25~30%が好ましい。Bの含有量が少な過ぎると、ガラスネットワークが形成され難くなるため、焼成時にガラスが失透し易くなる。一方、Bの含有量が多過ぎると、ガラスの粘性が高くなり、流動性が低下し易くなる。
 ZnOは、耐失透性を高める成分であり、その含有量は1~30%、3~25%、5~22%、特に9~20%が好ましい。その含有量が1%より少なく、或いは30%より多いと、ガラス組成の成分バランスが崩れて、耐失透性が低下し易くなる。
 上記成分以外にも、例えば、以下の成分を添加してもよい。
 SiOは、耐水性を高める成分であるが、軟化点を上昇させる作用を有する。このため、SiOの含有量は0~5%、0~3%、0~2%、特に0~1%が好ましい。また、SiOの含有量が多過ぎると、焼成時にガラスが失透し易くなる。
 Alは、耐水性を高める成分であり、その含有量は0~10%、0~5%、特に0.1~2%が好ましい。Alの含有量が多過ぎると、軟化点が不当に上昇する虞がある。
 LiO、NaO及びKOは、耐失透性を低下させる成分である。よって、LiO、NaO及びKOの含有量は、それぞれ0~5%、0~3%、特に0~1%未満である。
 MgO、CaO、SrO及びBaOは、耐失透性を高める成分であるが、軟化点を上昇させる成分である。よって、MgO、CaO、SrO及びBaOの含有量は、それぞれ0~20%、0~10%、特に0~5%である。
 Bi系ガラスの軟化点を下げるためには、ガラス組成中にBiを多量に導入する必要があるが、Biの含有量を増加させると、焼成時にガラスが失透し易くなり、この失透に起因して流動性が低下し易くなる。特に、Biの含有量が30%以上になると、その傾向が顕著になる。この対策として、CuO、MnOを添加すれば、Biの含有量が30%以上であっても、ガラスの失透を効果的に抑制することができる。更にCuOを添加すれば、レーザー封着時のレーザー吸収特性を高めることができる。CuO、MnOの個別含有量は0~40%、5~35%、10~30%、特に15~25%が好ましい。CuO、MnOの含有量が多過ぎると、ガラス組成の成分バランスが崩れて、逆に耐失透性が低下し易くなる。
 Feは、耐失透性とレーザー吸収特性を高める成分であり、その含有量は0~10%、0.1~5%、特に0.5~3%が好ましい。Feの含有量が多過ぎると、ガラス組成の成分バランスが崩れて、逆に耐失透性が低下し易くなる。
 Sbは、耐失透性を高める成分であり、その含有量は0~5%、特に0~2%が好ましい。Sbの含有量が多過ぎると、ガラス組成の成分バランスが崩れて、逆に耐失透性が低下し易くなる。
 ガラス粉末の平均粒子径D50は15μm未満、0.5~10μm、特に1~5μmが好ましい。ガラス粉末の平均粒子径D50が小さい程、ガラス粉末の軟化点が低下する。
 封着材料中のセラミック粉末の含有量は、好ましくは5~35体積%、10~33体積%、15~30体積%、特に20~30体積%である。封着材料中のガラス粉末の含有量は、好ましくは65~95体積%、67~90体積%、70~85体積%、特に70~80体積%である。セラミック粉末の含有量が多過ぎると、ガラス粉末の含有量が相対的に少なくなり、所望の流動性及び熱的安定性を確保し難くなる。なお、セラミック粉末の含有量が少な過ぎると、セラミック粉末の添加効果が乏しくなる。
 セラミック粉末として、β-ユークリプタイト、コーディエライト、ジルコン、アルミナ、ムライト、ウイレマイト、リン酸ジルコニウム、リン酸タングステン酸ジルコニウム、タングステン酸ジルコニウム等から選ばれる一種又は二種以上が好ましく、特に熱膨張係数を低下させる効果が高いβ-ユークリプタイトが特に好ましい。
 封着材料には、ガラス粉末とセラミック粉末以外にも、他の粉末材料を導入してもよい。また、ガラスビーズ、スペーサー等を導入してもよい。ここで、ガラスビーズやスペーサーは、封着後も形状が維持できるよう耐熱性の高い組成、材料からなるものである。また、レーザー吸収特性を高めるために、Mn-Fe-Al系酸化物、カーボン、Mn-Fe-Cr系酸化物等のレーザー吸収剤を1~15体積%含んでいてもよいが、封着材料の熱的安定性を考慮すれば、レーザー吸収剤を実質的に含まないことが好ましい。
 封着材料は、粉末状態で使用に供してもよいが、ビークルと均一に混練し、ペースト化すると取り扱い易くなり、好ましい。ビークルは、通常、溶媒と樹脂を含む。樹脂は、ペーストの粘性を調整する目的で添加される。また、必要に応じて、界面活性剤、増粘剤等を添加することもできる。作製されたペーストは、ディスペンサーやスクリーン印刷機等の塗布機を用いて、ガラス基板の表面に塗布される。
 樹脂としては、アクリル酸エステル(アクリル樹脂)、エチルセルロース、ポリエチレングリコール誘導体、ニトロセルロース、ポリメチルスチレン、ポリエチレンカーボネート、メタクリル酸エステル等が使用可能である。特に、アクリル酸エステル、ニトロセルロースは、熱分解性が良好であるため、好ましい。
 溶媒としては、N、N’-ジメチルホルムアミド(DMF)、α-ターピネオール、高級アルコール、γ-ブチルラクトン(γ-BL)、テトラリン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3-メトキシ-3-メチルブタノール、水、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、ジメチルスルホキシド(DMSO)、N-メチル-2-ピロリドン等が使用可能である。特に、α-ターピネオールは、高粘性であり、樹脂等の溶解性も良好であるため、好ましい。
 封着材料層の30~300℃の温度範囲における熱膨張係数は、好ましくは50ppm/℃~90ppm/℃、55ppm/℃~80ppm/℃、特に60ppm/℃~75ppm/℃である。特に、パッケージ基体がシリコンである場合、封着材料層の30~300℃の温度範囲における熱膨張係数は、好ましくは60ppm/℃~80ppm/℃、65ppm/℃~75ppm/℃、特に68ppm/℃~73ppm/℃である。封着材料層の熱膨張係数が高過ぎると、封着後に、接合部又はその近傍に残留応力が発生して、ガラス基板に破損(例えばクラックなどの割れ)が生じ易くなる。そして、ガラス基板が破損すると、気密パッケージの収容空間の気密性が低下する虞がある。一方、封着材料層の熱膨張係数が低過ぎる場合、耐火性フィラーの割合が多くなるため、封着材料の軟化流動性が低下して、気密パッケージに気密不良等が発生し易くなる。
 パッケージ基体の30~300℃の温度範囲における熱膨張係数は、好ましくは10ppm/℃以上、20ppm/℃以上、特に30ppm/℃~60ppm/℃である。パッケージ基体の熱膨張係数が低過ぎると、封着後に、接合部又はその近傍に残留応力が発生して、気密パッケージに気密不良が発生し易くなる。
 封着材料層の平均厚みが15μm以下である場合、ガラス基板とパッケージ基体の30~300℃の温度範囲おける熱膨張係数差は、好ましくは6.5ppm/℃以下、4.5ppm/℃以下、3.5ppm/℃以下、2.0ppm/℃以下、特に1.0ppm/℃以下である。封着材料層の平均厚みが15μm以下である場合に、ガラス基板とパッケージ基体の30~300℃の温度範囲おける熱膨張係数差が大き過ぎると、封着後に、接合部又はその近傍に残留応力が発生して、ガラス基板に破損(例えばクラックなどの割れ)が生じ易くなる。そして、ガラス基板が破損すると、気密パッケージの収容空間の気密性が低下する虞がある。
 封着材料層とパッケージ基体の30~300℃の温度範囲おける熱膨張係数差は、好ましくは5.5ppm/℃以下、4.0ppm/℃以下、特に3.5ppm/℃以下である。封着材料層とパッケージ基体の30~300℃の温度範囲おける熱膨張係数差が大き過ぎると、封着後に、接合部又はその近傍に残留応力が発生して、気密パッケージの気密不良が発生し易くなる。
 パッケージ基体は、電子素子を収容し得る凹部を有することが好ましい。このようにすれば、パッケージ基体の凹部内にセンサー素子等の電子素子を収容し易くなる。パッケージ基体の凹部は、パッケージ基体の外側端縁領域に沿って、額縁状に形成されていることが好ましい。このようにすれば、デバイスとして機能する有効面積を拡大することができる。また電子素子をパッケージ基体内の空間に収容し易くなり、且つ配線接合等も行い易くなる。
 パッケージ基体は、シリコン等の金属、ガラスセラミック、窒化アルミニウム、酸化アルミニウムの何れか、或いはこれらの複合材料(例えば、窒化アルミニウムとガラスセラミックを一体化したもの)であることが好ましい。特にシリコンは、放熱性が良好であり、且つエッチング等で凹部が形成し易いため好ましい。
 封着材料層の平均厚みは、好ましくは15μm以下、8.0μm未満、特に1.0μm以上、且つ7.0μm未満である。封着材料層の平均厚みを封着材料層の平均幅で除した値は、好ましくは0.005~0.1、特に0.01~0.05である。封着材料層の平均厚みをガラス基板の厚みで除した値は、好ましくは0.005~0.5、特に0.01~0.1である。封着材料層の平均厚み、封着材料層の平均厚みを封着材料層の平均幅で除した値、封着材料層の平均厚みをガラス基板の厚みで除した値が上記範囲外になると、レーザー封着の精度が低下し易くなる。一方、これらの値が上記範囲内になると、封着材料層とガラス基板の熱膨張係数が不整合である時に、レーザー封着後に封着部分に残留する応力を低減することができる。なお、上記のように封着材料層の平均厚みを規制する方法としては、封着材料ペーストを薄く塗布する方法、封着材料層の表面を研磨処理する方法が挙げられる。
 封着材料層の平均幅は、好ましくは1μm以上、且つ1000μm以下、特に100μm以上、且つ800μm以下である。封着材料層の平均幅を狭くすると、レーザー封着後に封着部分に残留する応力を低減し易くなる。一方、封着材料層の最大幅が狭過ぎると、封着材料層に大きなせん断応力がかかった時に、封着材料層がバルク破壊し易くなる。更にレーザー封着の精度が低下し易くなる。
 ガラス基板の封着材料層が形成された側の表面において、封着材料層が形成された面積の割合は、好ましくは1~50%、10~48%、20~45%、23~43%、特に25~40%である。封着材料層が形成された表面の面積割合を大きいと、封着後に、接合部又はその近傍に残留応力が発生してガラス基板に破損(例えばクラックなどの割れ)が生じ易くなる。一方、封着材料層が形成された面積の割合を大きい場合、封着パターンを数多く形成すること、つまり1枚の基板から多数の気密パッケージを作製することが可能になる。本発明の封着材料層付きガラス基板は、封着材料層とガラス基板の熱膨張係数差を厳密に規定していることから、封着材料層が形成された面積の割合を多くしても、封着後に、接合部又はその近傍に発生する残留応力を低減することができる。
 本発明の封着材料層付きガラス基板において、封着材料層が複数の封着パターンを有し、封着パターンが閉ループ形状であることが好ましい。これにより、気密パッケージ群を得ることができ、この気密パッケージ群を分割すれば、封着パターンの数に応じた気密パッケージを効率よく作製することができる。封着パターンの数は、好ましくは50~5000個、80~3000個、特に200~2500個である。
本発明の気密パッケージの製造方法は、パッケージ基体を用意する工程と、複数の封着パターンを有する封着材料層付きガラス基板を用意する工程と、封着材料層を介して、基体と封着材料層付きガラス基板とを積層配置する工程と、ガラス基板側からレーザー光を照射し、封着材料層を軟化変形させることにより、ガラス基板とパッケージ基体を気密封着して、気密パッケージ群を得る工程と、気密パッケージ群を分割して、複数の気密パッケージを得る工程と、を備え、封着材料層付きガラス基板が、上記の封着材料層付きガラス基板であることを特徴とする。
 パッケージ基体とガラス基板を積層配置する工程を設ける工程では、ガラス基板をパッケージ基体の下方に配置してもよいが、レーザー封着の効率の観点から、ガラス基板をパッケージ基体の上方に配置することが好ましい。
ガラス基板側から照射するレーザーとして、種々のレーザーを使用することができる。特に、半導体レーザー、YAGレーザー、COレーザー、エキシマレーザー、赤外レーザーは、取扱いが容易な点で好ましい。
 レーザー封着時におけるレーザー光のビーム形状は、特に限定されない。ビーム形状としては、円形、楕円形、矩形が一般的であるが、その他の形状でもよい。また、レーザー封着時におけるレーザー光のビーム径は100~1000mmが好ましい。
 レーザー封着を行う雰囲気は特に限定されず、大気雰囲気でもよく、窒素雰囲気等の不活性雰囲気でもよい。
 レーザー封着を行う前に、(100℃以上、且つ電気素子の耐熱温度以下の温度)でパッケージ基体を予備加熱することが好ましい。これにより、レーザー封着時にパッケージ基体側への熱伝導を阻害し得るため、レーザー封着を効率良く行うことができる。
 ガラス基板を押圧した状態でレーザー封着を行うことが好ましい。これにより、レーザー封着時に封着材料層の軟化変形を促進することができる。
パッケージ基体とガラス基板を積層配置する前に、更にパッケージ基体の凹部内に電気素子を収容する工程を備えることが好ましい。
 本発明の気密パッケージは、ガラス基板とパッケージ基体とが、封着材料層により気密一体化された気密パッケージにおいて、ガラス基板の厚み0.2mm、250nm以上300nm未満における平均透過率が85%以上であり、封着材料層とガラス基板の30~300℃の温度範囲おける熱膨張係数差が5ppm/℃以下であることを特徴とする。本発明の技術パッケージの技術的特徴は、上記に既に記載されているため、ここでは詳細な記載を省略する。
 以下、図面を参照しながら、本発明の形態を説明する。図1は、本発明の気密パッケージの一例を示す断面概略図である。気密パッケージ1は、ガラス基板10とパッケージ基体11を備えている。パッケージ基体11は基部12を有し、更に基部12の外周縁部上に枠部を有し、これらにより凹部13が形成されている。また、パッケージ基体11の凹部13内に電気素子14が収容されている。なお、パッケージ基体11内には、電気素子14と外部を電気的に接続する電気配線(図示されていない)が形成されている。
ガラス基板10の表面には、額縁状の封着材料層15が形成されている。封着材料層15の幅は、パッケージ基体11の枠部の頂部16の幅よりも小さくなっている。
 ガラス基板10とパッケージ基体11は、ガラス基板10の封着材料層15と、パッケージ基体11の枠部の頂部16の幅方向の中心線とが一致するように積層配置されている。その後、レーザー照射装置17から出射したレーザー光Lが、ガラス基板10側から封着材料層15に沿って照射される。これにより、封着材料層15が軟化流動した後、ガラス基板10とパッケージ基体11が気密封着されて、気密パッケージ1の気密構造が形成される。
 以下、実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は、単なる例示である。本発明は、以下の実施例に何ら限定されない。
(試料No.1)
 先ず、シリコン基板(30~300℃における熱膨張係数3.8ppm/℃、□4mm)を準備した。
 次に、アルカリホウケイ酸ガラスからなるガラス基板(30~300℃における熱膨張係数4.2ppm/℃、□4mm、0.2mm厚)を用意した。このガラス基板は、ガラス組成として、質量%で、SiO 70%、Al 5.9%、B 18%、LiO 1%、NaO 2%、KO 3%、Cl 0.1%、TiO 0.0001%、Fe 0.0001%を含有し、厚み0.2mm、250nm以上300nm未満における平均透過率が91%であり、厚み0.2mm、300nm以上1000nm未満における平均透過率が92%である。
 また、ビスマス系ガラス粉末を73体積%、セラミック粉末を27体積%の割合で混合して、封着材料を作製した。ここで、ビスマス系ガラス粉末の平均粒径D50を1.0μm、99%粒径D99を2.8μmとし、セラミック粉末の平均粒径D50を1.0μm、99%粒径D99を2.8μmとした。なお、ビスマス系ガラスは、ガラス組成として、モル%で、Bi 36.5%、B 28.5%、ZnO 9.5%、Al 1.5%、MnO 9.5%、CuO 13.6%、Fe 0.9%を含有している。またセラミック粉末はβ-ユークリプタイトである。
 得られた封着材料の熱膨張係数を測定したところ、その熱膨張係数は、7.1ppm/℃であった。なお、熱膨張係数は、押棒式TMA装置で測定したものであり、その測定温度範囲は30~300℃である。
 次に、ガラス基板上に上記封着材料を塗布、乾燥、脱バインダー、焼結を行い、閉ループ形状の封着材料層を形成した。詳述すると、まず粘度が90±20Pa・s(25℃、Shear rate:4)の範囲内になるように、上記の封着材料、ビークル及び溶剤を混練した後、更に三本ロールミルで粉末が均一分散するまで混錬して、ペースト化し、封着材料ペーストを得た。ビークルには、グリコールエーテル系溶剤にエチルセルロース有機樹脂を溶解させたものを使用した。次に、ガラス基板の外周縁部上にスクリーン印刷機により封着材料ペーストを額縁状に印刷した。更に、大気雰囲気下にて、110℃で10分間乾燥して乾燥膜を得た後、電気炉で350℃15分間⇒500℃10分間の加熱処理を行うことにより、乾燥膜を脱バインダー、焼結させて、平均幅約400μm、平均厚み約5μmを有する封着材料層を形成した。
 最後に、封着材料層を焼結させたガラス基板と、シリコン基板を積層させて、ガラス基板側からレーザー光を照射し、封着材料層を軟化流動させ、ガラス基板とシリコン基板を気密一体化させることで気密パッケージを得た。なお、レーザー出力は10W、走査速度は15mm/秒、ビーム直径はφ500μmである。
(試料No.2)
 試料No.1に係るガラス基板に代えて、アルカリホウケイ酸ガラスからなるガラス基板(30~300℃における熱膨張係数9.9ppm/℃、□4mm、0.2mm厚)を使用した以外は、試料No.1と同様にして気密パッケージを得た。このガラス基板は、ガラス組成として、質量%で、SiO 70.2%、Al 1.6%、B 2.3%、NaO 9.6%、KO 9.1%、BaO 7.0%、Cl 0.4%、SrO 0.1%、TiO 0.0001%、Fe 0.0001%を含有し、厚み0.2mm、250nm以上300nm未満における平均透過率が89%であり、厚み0.2mm、300nm以上1000nm未満における平均透過率が92%である。
(試料No.3)
 試料No.1に係るガラス基板に代えて、石英基板(30~300℃における熱膨張係数0.6ppm/℃、□4mm、0.5mm厚)を使用した以外は、試料No.1と同様にして気密パッケージを得た。
(評価)
 試料No.1~3で得られた気密パッケージについて、クラックの有無を観察すると共に、温度サイクル試験、高温高湿高圧試験を行った。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 クラックの有無は、得られた気密パッケージについて、光学顕微鏡で封着材料層の近傍を観察して、評価したものである。
 温度サイクル試験は、得られた気密パッケージについて、125℃⇔-55℃、1000サイクルの条件で温度サイクルを繰り返した後、封着材料層の近傍を観察して、評価したものであり、変質、クラック、剥離等が認められなかったものを「○」、認められたものを「×」として評価した。
 高温高湿高圧試験:PCT(Pressure Cooker Test)は、得られた気密パッケージについて、121℃、湿度100%、2atm、24時間の条件で、高温高湿高圧環境下で保持した後、封着材料層の近傍を観察して、評価したものであり、変質、クラック、剥離等が認められなかったものを「○」、認められたものを「×」として評価した。
 表1から分かるように、試料No.1及び試料No.2で得られた気密パッケージは、クラックの有無、温度サイクル試験、高温高湿高圧試験の評価が良好であった。一方、試料No.3で得られた気密パッケージは、クラックの有無、温度サイクル試験、高温高湿高圧試験の評価が不良であった。
 アルカリホウケイ酸ガラスからなるガラス基板(30~300℃における熱膨張係数4.2ppm/℃、0.2mm厚、□44mm)を用意した。このガラス基板は、ガラス組成として、質量%で、SiO 70%、Al 5.9%、B 18%、LiO 1%、NaO 2%、KO 3%、Cl 0.1%、TiO 0.0001%、Fe 0.0001%を含有し、厚み0.2mm、250nm以上300nm未満における平均透過率が91%であり、厚み0.2mm、300nm以上1000nm未満における平均透過率が92%である。このガラス基板の一方の表面に、実施例1と同様の方法にて、□3.3mmの閉ループの封着パターン(封着材料層の平均厚み5μm、封着材料層の平均幅400μm)を100個形成し、封着材料層付きガラス基板を得た。図2は、この封着材料層付きガラス基板を示す写真である。
 また、シリコン基板(30~300℃における熱膨張係数3.8ppm/℃)を準備した。ここで、ガラス基板の封着材料層が形成された側の表面において、封着材料層が形成された面積の割合は27%であった。
 次に、封着材料層を介して、シリコン基板と封着材料層付きガラス基板とを積層配置した。その後、実施例1と同様の方法にて、ガラス基板側からレーザー光を照射し、封着材料層を軟化変形させることにより、ガラス基板とシリコン基板を気密封着して、気密パッケージ群を得た。最後に、封着パターンを分断しないように、気密パッケージ群をダイシングで分割し、100個の気密パッケージを得た。
 実施例2に係るガラス基板に代えて、アルカリホウケイ酸ガラスからなるガラス基板(30~300℃における熱膨張係数9.9ppm/℃、□4mm、0.2mm厚)を使用した以外は、実施例2と同様にして封着材料層付きガラス基板及び気密パッケージを得た。このガラス基板は、ガラス組成として、質量%で、SiO 70.2%、Al 1.6%、B 2.3%、NaO 9.6%、KO 9.1%、BaO 7.0%、Cl 0.4%、SrO 0.1%、TiO 0.0001%、Fe 0.0001%を含有し、厚み0.2mm、250nm以上300nm未満における平均透過率が89%であり、厚み0.2mm、300nm以上1000nm未満における平均透過率が92%である。
 本発明の気密パッケージは、センサーチップ、紫外LED等の電気素子が実装された気密パッケージに好適であるが、それ以外にも圧電振動素子や有機樹脂中に量子ドットを分散させた波長変換素子等を収容する気密パッケージ等にも好適に適用可能である。
1 気密パッケージ
10 ガラス基板
11 パッケージ基体
12 基部
13 凹部
14 電気素子
15 封着材料層
16 凹部の頂部
17 レーザー照射装置
L レーザー光

Claims (12)

  1.  ガラス基板に封着材料層が形成された封着材料層付きガラス基板において、
     ガラス基板の厚み0.2mm、250nm以上300nm未満における平均透過率が85%以上であり、
     封着材料層とガラス基板の30~300℃の温度範囲おける熱膨張係数差が5ppm/℃以下である、封着材料層付きガラス基板。
  2.  ガラス基板の封着材料層が形成された側の表面において、封着材料層が形成された面積の割合が1~50%である、請求項1に記載の封着材料層付きガラス基板。
  3.  封着材料層が複数の封着パターンを有し、封着パターンが閉ループ形状である、請求項1又は2に記載の封着材料層付きガラス基板。
  4.  封着材料層が少なくともビスマス系ガラス粉末と耐火性フィラー粉末を含む複合粉末の焼結体であり、
     封着材料層中のビスマス系ガラスの含有量が65~95体積%、耐火性フィラーの含有量が5~35体積%である、請求項1~3の何れかに記載の封着材料層付きガラス基板。
  5.  封着材料層が実質的にレーザー吸収剤を含有しない、請求項1~4の何れかに記載の封着材料層付きガラス基板。
  6.  封着材料層の平均厚みが15μm以下であり、封着材料層の平均厚みをガラス基板の厚みで除した値が0.005~0.5である、請求項1~5の何れかに記載の封着材料層付きガラス基板。
  7.  封着材料層の平均幅が1000μm以下であり、封着材料層の平均厚みを封着材料層の平均幅で除した値が0.005~0.1である、請求項1~6の何れかに記載の封着材料層付きガラス基板。
  8.  ガラス基板が矩形、円形、又はオリエンテーションフラット付きの円形の何れかの形状である、請求項1~7の何れかに記載の封着材料層付きガラス基板。
  9.  ガラス基板の何れかの表面に反射防止膜が形成されている、請求項1~8の何れかに記載の封着材料層付きガラス基板。
  10.  レーザー光による封着に用いられる、請求項1~9の何れかに記載の封着材料層付きガラス基板。
  11.  パッケージ基体を用意する工程と、
     複数の封着パターンを有する封着材料層付きガラス基板を用意する工程と、
     封着材料層を介して、パッケージ基体と封着材料層付きガラス基板とを積層配置する工程と、
     ガラス基板側からレーザー光を照射し、封着材料層を軟化変形させることにより、ガラス基板とパッケージ基体を気密封着して、気密パッケージ群を得る工程と、
     気密パッケージ群を分割して、複数の気密パッケージを得る工程と、を備え、
     封着材料層付きガラス基板が、請求項1~11の何れかに記載の封着材料層付きガラス基板である、気密パッケージの製造方法。
  12.  ガラス基板とパッケージ基体とが、封着材料層により気密一体化された気密パッケージにおいて、
     ガラス基板の厚み0.2mm、250nm以上300nm未満における平均透過率が85%以上であり、
     封着材料層とガラス基板の30~300℃の温度範囲おける熱膨張係数差が5ppm/℃以下であることを特徴とする気密パッケージ。
PCT/JP2022/022811 2021-07-05 2022-06-06 封着材料層付きガラス基板及び気密パッケージの製造方法 WO2023281961A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247001815A KR20240031317A (ko) 2021-07-05 2022-06-06 시일링 재료층 부착 유리 기판 및 기밀 패키지의 제조 방법
CN202280046396.6A CN117581355A (zh) 2021-07-05 2022-06-06 带封接材料层的玻璃基板以及气密封装体的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-111479 2021-07-05
JP2021111479 2021-07-05
JP2022043654A JP2023008800A (ja) 2021-07-05 2022-03-18 封着材料層付きガラス基板及び気密パッケージの製造方法
JP2022-043654 2022-03-18

Publications (1)

Publication Number Publication Date
WO2023281961A1 true WO2023281961A1 (ja) 2023-01-12

Family

ID=84800607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022811 WO2023281961A1 (ja) 2021-07-05 2022-06-06 封着材料層付きガラス基板及び気密パッケージの製造方法

Country Status (3)

Country Link
KR (1) KR20240031317A (ja)
TW (1) TW202308061A (ja)
WO (1) WO2023281961A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179381A1 (ja) * 2016-04-11 2017-10-19 日本電気硝子株式会社 気密パッケージの製造方法及び気密パッケージ
WO2018139148A1 (ja) * 2017-01-26 2018-08-02 日本電気硝子株式会社 気密パッケージ
JP2019091849A (ja) * 2017-11-16 2019-06-13 日本電気硝子株式会社 パッケージ及び波長変換部材の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106133927A (zh) 2014-06-09 2016-11-16 日本电气硝子株式会社 发光器件
JP2016027610A (ja) 2014-06-27 2016-02-18 旭硝子株式会社 パッケージ基板、パッケージ、および電子デバイス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179381A1 (ja) * 2016-04-11 2017-10-19 日本電気硝子株式会社 気密パッケージの製造方法及び気密パッケージ
WO2018139148A1 (ja) * 2017-01-26 2018-08-02 日本電気硝子株式会社 気密パッケージ
JP2019091849A (ja) * 2017-11-16 2019-06-13 日本電気硝子株式会社 パッケージ及び波長変換部材の製造方法

Also Published As

Publication number Publication date
TW202308061A (zh) 2023-02-16
KR20240031317A (ko) 2024-03-07

Similar Documents

Publication Publication Date Title
CN107112974B (zh) 气密封装体的制造方法
WO2017212828A1 (ja) 気密パッケージの製造方法及び気密パッケージ
WO2017179381A1 (ja) 気密パッケージの製造方法及び気密パッケージ
WO2020071047A1 (ja) 気密パッケージ
WO2017170051A1 (ja) ガラス粉末及びそれを用いた封着材料
US11871676B2 (en) Airtight package including a package base and a glass cover hermetically sealed with each other via a sealing material layer
KR102380455B1 (ko) 기밀 패키지
US11398585B2 (en) Airtight package
TWI790223B (zh) 氣密封裝體
WO2018216587A1 (ja) 気密パッケージの製造方法及び気密パッケージ
WO2023281961A1 (ja) 封着材料層付きガラス基板及び気密パッケージの製造方法
JP2023008800A (ja) 封着材料層付きガラス基板及び気密パッケージの製造方法
WO2018155144A1 (ja) ビスマス系ガラス粉末、封着材料及び気密パッケージ
WO2018173834A1 (ja) カバーガラス及び気密パッケージ
WO2024057823A1 (ja) 封着材料層付きガラス基板及び気密パッケージの製造方法
JP6922253B2 (ja) ガラス蓋
WO2020003989A1 (ja) 封着材料層付きガラス蓋の製造方法及び気密パッケージの製造方法
TW202414697A (zh) 帶密封材料層的玻璃基板及氣密封裝的製造方法
CN117581355A (zh) 带封接材料层的玻璃基板以及气密封装体的制造方法
TW201908266A (zh) 附有密封材料層封裝基體之製造方法及氣密封裝之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837380

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18565309

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280046396.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247001815

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE