WO2017212828A1 - 気密パッケージの製造方法及び気密パッケージ - Google Patents

気密パッケージの製造方法及び気密パッケージ Download PDF

Info

Publication number
WO2017212828A1
WO2017212828A1 PCT/JP2017/016975 JP2017016975W WO2017212828A1 WO 2017212828 A1 WO2017212828 A1 WO 2017212828A1 JP 2017016975 W JP2017016975 W JP 2017016975W WO 2017212828 A1 WO2017212828 A1 WO 2017212828A1
Authority
WO
WIPO (PCT)
Prior art keywords
material layer
sealing material
ceramic substrate
glass lid
glass
Prior art date
Application number
PCT/JP2017/016975
Other languages
English (en)
French (fr)
Inventor
徹 白神
岡 卓司
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2018522372A priority Critical patent/JP6819943B2/ja
Priority to US16/305,964 priority patent/US20190296194A1/en
Priority to KR1020187032938A priority patent/KR102361856B1/ko
Priority to CN201780025389.7A priority patent/CN109075128B/zh
Publication of WO2017212828A1 publication Critical patent/WO2017212828A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/62Surface treatment of fibres or filaments made from glass, minerals or slags by application of electric or wave energy; by particle radiation or ion implantation
    • C03C25/6206Electromagnetic waves
    • C03C25/6208Laser
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/142Silica-free oxide glass compositions containing boron containing lead
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/04Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass
    • C04B37/045Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass characterised by the interlayer used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • H01L23/08Containers; Seals characterised by the material of the container or its electrical properties the material being an electrical insulator, e.g. glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/59Aspects relating to the structure of the interlayer
    • C04B2237/592Aspects relating to the structure of the interlayer whereby the interlayer is not continuous, e.g. not the whole surface of the smallest substrate is covered by the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/62Forming laminates or joined articles comprising holes, channels or other types of openings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages

Definitions

  • the present invention relates to a method for manufacturing an airtight package in which an aluminum nitride substrate and a glass lid are hermetically sealed by a sealing process using laser light (hereinafter referred to as laser sealing).
  • aluminum nitride is used as a substrate from the viewpoint of thermal conductivity, and glass is used as a lid material from the viewpoint of light transmittance in the ultraviolet wavelength region.
  • an organic resin adhesive having a low temperature curing property has been used as an adhesive material for an ultraviolet LED package.
  • the organic resin adhesive is easily deteriorated by light in the ultraviolet wavelength region, and there is a possibility that the airtightness of the ultraviolet LED package is deteriorated with time.
  • gold-tin solder is used instead of the organic resin adhesive, deterioration due to light in the ultraviolet wavelength region can be prevented.
  • gold-tin solder has a problem that the material cost is high.
  • the composite powder containing glass powder and refractory filler powder is characterized by being hardly deteriorated by light in the ultraviolet wavelength region and having a low material cost.
  • the glass powder has a higher softening temperature than the organic resin adhesive, there is a possibility that the ultraviolet LED element is thermally deteriorated during sealing. For these reasons, laser sealing has attracted attention. According to laser sealing, only the portion to be sealed can be locally heated, and the aluminum nitride and the glass lid can be hermetically sealed without thermally degrading the ultraviolet LED element.
  • the conventional composite powder has a problem that it is difficult to ensure the sealing strength because it hardly reacts at the interface of the ceramic substrate, particularly the aluminum nitride substrate, during laser sealing. If the output of the laser beam is increased in order to increase the sealing strength, the glass lid or the sealing material layer is likely to be cracked or cracked. This problem becomes more obvious as the thermal conductivity of the ceramic substrate increases.
  • the present invention has been made in view of the above circumstances, and its technical problem is that when the ceramic substrate and the glass lid are laser-sealed, the glass lid or the sealing material layer is cracked or cracked.
  • the idea is to secure the hermetic reliability of the hermetic package by devising a method that can ensure a strong sealing strength.
  • the present inventors have obtained the following knowledge about the cause of difficulty in securing the sealing strength when performing laser sealing.
  • the conventional sealing material has too high light absorption characteristics, when laser light is irradiated from the glass lid side toward the sealing material layer, the region on the glass lid side of the sealing material layer excessively emits laser light. Absorb.
  • the laser beam reaching the region of the sealing material layer on the ceramic substrate side tends to be insufficient.
  • the ceramic substrate has a high thermal conductivity, the heat of the sealing material layer is taken away.
  • the region on the ceramic substrate side of the sealing material layer does not rise in temperature sufficiently, and the softening deformation becomes insufficient, so that it becomes difficult to form a reaction layer on the surface layer of the ceramic substrate. As a result, it becomes difficult to ensure the sealing strength.
  • the present inventors have found that the above technical problem can be solved by regulating the total light transmittance of the sealing material layer within a predetermined range, and propose the present invention. . That is, in the method for manufacturing an airtight package of the present invention, the step of preparing a ceramic substrate, the step of preparing a glass lid, and the total light transmittance in the thickness direction at the wavelength of the laser beam to be irradiated on the glass lid is 10 % Of the sealing material layer to be 80% or less, a step of laminating and arranging the glass lid and the ceramic substrate through the sealing material layer, and from the glass lid side toward the sealing material layer Irradiating a laser beam to soften and deform the sealing material layer to hermetically integrate the ceramic base and the glass lid to obtain an airtight package.
  • the “total light transmittance” can be measured by a commercially available transmittance measuring device.
  • “Ceramic” includes glass ceramic (crystallized glass).
  • a sealing material layer is formed on a glass lid instead of on a ceramic substrate. In this way, it is not necessary to fire the ceramic substrate before laser sealing, so that it is possible to accommodate a light emitting element or the like in the ceramic substrate before laser sealing, and to form electrical wiring or the like. As a result, the manufacturing efficiency of the hermetic package can be increased.
  • the manufacturing method of the hermetic package of the present invention includes a step of forming a sealing material layer on the glass lid so that the total light transmittance in the thickness direction at the wavelength of the laser beam to be irradiated is 10% or more and 80% or less. Have. In this way, even if the output of the laser beam is not excessively increased, the laser beam is properly transmitted in the region on the glass lid side of the sealing material layer, and the laser is transmitted in the region on the ceramic substrate side of the sealing material layer. Since the light is properly absorbed, the temperature of the sealing material layer appropriately rises at the interface between the ceramic substrate and the sealing material layer during laser sealing.
  • the hermetic reliability of the hermetic package can be greatly enhanced. Furthermore, since the region on the glass lid side of the sealing material layer is not heated more than necessary, the temperature difference between the members is reduced, and due to the difference in thermal expansion between the members, the glass lid and the sealing material layer are cracked. Cracks are less likely to occur.
  • the method for manufacturing an airtight package of the present invention includes a step of preparing a ceramic substrate, a step of preparing a glass lid, and a total light transmittance in the thickness direction at a wavelength of 808 nm on the glass lid of 10% or more and 80% or less.
  • the laser beam used for laser sealing generally has a wavelength of 600 to 1600 nm. If the wavelength 808 nm is adopted as a representative value in this wavelength region and the total light transmittance in the thickness direction of the sealing material layer at the wavelength 808 nm is regulated as described above, the above-described effects can be enjoyed accurately.
  • the sealing material layer so that the average thickness is less than 8.0 ⁇ m. In this way, at the time of laser sealing, the temperature difference between the glass lid side region and the ceramic substrate side region of the sealing material layer becomes small. Cracks and cracks are less likely to occur in the sealing material layer.
  • the manufacturing method of the airtight package of this invention forms a sealing material layer on a glass cover by baking the composite powder containing a bismuth-type glass powder and a refractory filler powder at least.
  • Bismuth-based glass has a feature that a reaction layer can be easily formed on the surface layer of a ceramic substrate at the time of laser sealing as compared with other types of glass. Further, the refractory filler powder can increase the mechanical strength of the sealing material layer while reducing the thermal expansion coefficient of the sealing material layer.
  • the “bismuth-based glass” refers to a glass mainly composed of Bi 2 O 3 , and specifically refers to a glass containing 25 mol% or more of Bi 2 O 3 in the glass composition.
  • the method for manufacturing an airtight package of the present invention preferably uses a ceramic substrate having a base and a frame provided on the base. If it does in this way, it will become easy to accommodate light emitting elements, such as an ultraviolet LED element, in an airtight package.
  • the method for manufacturing an airtight package of the present invention is such that the ceramic substrate has the property of absorbing the laser beam to be irradiated, that is, the thickness is 0.5 mm and the total light transmittance at the wavelength of the laser beam to be irradiated is. It is preferable that it is 10% or less. If it does in this way, it will become easy to raise the temperature of a sealing material layer in the interface of a ceramic base
  • the manufacturing method of the hermetic package of the present invention includes a step of preparing a ceramic substrate in which a black pigment is dispersed, a step of preparing a glass lid, and a thickness at the wavelength of the laser light to be irradiated on the glass lid.
  • Forming a sealing material layer having a total light transmittance in the direction of 10% or more and 80% or less, a step of laminating and arranging a glass lid and a ceramic substrate via the sealing material layer, and a glass lid A process of obtaining an airtight package by irradiating a laser beam from the side toward the sealing material layer to soften and deform the sealing material layer and heating the ceramic base to hermetically integrate the ceramic base and the glass lid. And.
  • the hermetic package of the present invention is a hermetic package in which the ceramic substrate and the glass lid are hermetically integrated through the sealing material layer, and the total light transmittance in the thickness direction of the sealing material layer at a wavelength of 808 nm. Is 10% or more and 80% or less.
  • the average thickness of the sealing material layer is less than 8.0 ⁇ m. In this way, since the residual stress in the hermetic package is reduced, the hermetic reliability of the hermetic package can be improved.
  • the sealing material layer is preferably a sintered body of a composite powder containing at least a bismuth glass powder and a refractory filler powder.
  • the sealing material layer does not substantially contain a laser absorber.
  • substantially does not contain a laser absorber refers to a case where the content of the laser absorber in the sealing material layer is 0.1% by volume or less.
  • the ceramic base has a base portion and a frame portion provided on the base portion. If it does in this way, it will become easy to accommodate light emitting elements, such as an ultraviolet LED element, in an airtight package.
  • the ceramic substrate preferably has a thermal conductivity of 1 W / (m ⁇ K) or more. If the thermal conductivity of the ceramic substrate is high, the ceramic substrate is likely to dissipate heat, and therefore the temperature of the sealing material layer is difficult to rise at the interface between the ceramic substrate and the sealing material layer during laser sealing. Therefore, the higher the thermal conductivity of the ceramic substrate, the greater the effect of the present invention.
  • the ceramic substrate is preferably made of glass ceramic, aluminum nitride, alumina, or a composite material thereof.
  • the hermetic package of the present invention preferably contains an ultraviolet LED element.
  • the “ultraviolet LED element” includes a deep ultraviolet LED element.
  • any of a sensor element, a piezoelectric vibration element, and a wavelength conversion element in which quantum dots are dispersed in resin may be accommodated.
  • the method for manufacturing an airtight package of the present invention includes a step of preparing a ceramic substrate. If necessary, a sintered glass-containing layer may be formed on the ceramic substrate. In this way, it is possible to prevent the occurrence of foaming in the sealing material layer while increasing the sealing strength during laser sealing. As a result, the airtight reliability of the airtight package can be enhanced.
  • the sintered glass-containing layer is formed by applying a glass-containing paste on a ceramic substrate to form a glass-containing film, then drying the glass-containing film, volatilizing the solvent, and further irradiating the glass-containing film with laser light. Thus, a method of sintering (adhering) the glass-containing film is preferable.
  • the sintered glass-containing layer can be formed without thermally degrading the electrical wiring and the light emitting element formed in the ceramic substrate.
  • the sintered glass-containing layer may be formed by firing a glass-containing film instead of laser light irradiation. In this case, in order to prevent thermal degradation of the light emitting element or the like, it is preferable to fire the glass-containing film before mounting the light emitting element or the like in the ceramic substrate.
  • the thermal conductivity of the ceramic substrate is preferably 1 W / (m ⁇ K) or more, 10 W / (m ⁇ K) or more, 50 W / (m ⁇ K) or more, particularly 100 W / (m ⁇ K) or more. If the thermal conductivity of the ceramic substrate is high, the ceramic substrate is likely to dissipate heat, and therefore the temperature of the sealing material layer is difficult to rise at the interface between the ceramic substrate and the sealing material layer during laser sealing. Therefore, the higher the thermal conductivity of the ceramic substrate, the greater the effect of the present invention.
  • the ceramic substrate has the property of absorbing the laser beam to be irradiated, that is, the thickness is 0.5 mm, and the total light transmittance at the wavelength of the laser beam to be irradiated is 10% or less (preferably 5% or less). preferable.
  • the ceramic substrate preferably has a total light transmittance of 10% or less (desirably 5% or less) at a thickness of 0.5 mm and a wavelength of 808 nm. If it does in this way, it will become easy to raise the temperature of a sealing material layer in the interface of a ceramic base
  • the ceramic substrate is preferably sintered in a state containing a laser absorber (for example, a black pigment). If it does in this way, the property which absorbs the laser beam which should be irradiated can be provided with respect to a ceramic base
  • a laser absorber for example, a black pigment
  • the thickness of the ceramic substrate is preferably 0.1 to 4.5 mm, particularly preferably 0.5 to 3.0 mm. Thereby, thickness reduction of an airtight package can be achieved.
  • a ceramic base having a base and a frame provided on the base as the ceramic base. If it does in this way, it will become easy to accommodate light emitting elements, such as an ultraviolet LED element, in the frame part of a ceramic base.
  • light emitting elements such as an ultraviolet LED element
  • substrate in order to prevent thermal degradation, such as a light emitting element, it is preferable to form a sintered glass content layer in the top part of a frame part.
  • the ceramic substrate has a frame portion
  • the ceramic substrate is preferably one of glass ceramic, aluminum nitride, alumina, or a composite material thereof.
  • aluminum nitride and alumina have good heat dissipation, it is possible to appropriately prevent the airtight package from being excessively heated by light emitted from a light emitting element such as an ultraviolet LED element.
  • the ceramic substrate is preferably dispersed with black pigment (sintered with the black pigment dispersed). In this way, the ceramic substrate can absorb the laser light transmitted through the sealing material layer. As a result, since the ceramic substrate is heated during laser sealing, the formation of the reaction layer can be promoted at the interface between the sealing material layer and the ceramic substrate.
  • the method for manufacturing an airtight package of the present invention includes a step of preparing a glass lid and forming a sealing material layer on the glass lid.
  • the total light transmittance in the thickness direction of the sealing material layer at the wavelength of the laser beam to be irradiated is 10% or more, preferably 15% or more, 20% or more, particularly 25%. That's it. If the total light transmittance in the thickness direction of the sealing material layer at the wavelength of the laser beam to be irradiated is too low, the glass of the sealing material layer is irradiated when laser light is irradiated from the glass lid side toward the sealing material layer. The region on the lid side preferentially softens and flows, and sufficient laser light does not reach the region on the ceramic substrate side of the sealing material layer.
  • the temperature hardly rises at the interface between the ceramic substrate and the sealing material layer, and the reaction layer is hardly formed on the surface layer of the ceramic substrate.
  • the total light transmittance in the thickness direction of the sealing material layer at the wavelength of the laser beam to be irradiated is 80% or less, preferably 60% or less, 50% or less, 45% or less, and particularly 40% or less. If the total light transmittance in the thickness direction of the sealing material layer at the wavelength of the laser light to be irradiated is too high, the sealing material layer will be lasered even if laser light is irradiated from the glass lid side toward the sealing material layer.
  • the temperature of the sealing material layer is hardly increased, and the reaction layer is hardly formed on the surface layer of the ceramic substrate.
  • a method for increasing the total light transmittance in the thickness direction of the sealing material layer a method for reducing the content of the laser absorber, a laser absorbing component in the glass composition of the glass powder (for example, CuO, Fe 2 O 3 ) And a method for lowering the content of.
  • the total light transmittance in the thickness direction of the sealing material layer at a wavelength of 808 nm is 10% or more, preferably 15% or more, 20% or more, and particularly 25% or more. If the total light transmittance in the thickness direction of the sealing material layer at a wavelength of 808 nm is too low, the region on the glass lid side of the sealing material layer when the laser beam is irradiated from the glass lid side toward the sealing material layer It preferentially softens and flows, and it becomes difficult for the temperature to rise at the interface between the ceramic substrate and the sealing material layer, and it becomes difficult to form a reaction layer on the surface layer of the ceramic substrate.
  • the total light transmittance in the thickness direction of the sealing material layer at a wavelength of 808 nm is 80% or less, preferably 60% or less, 50% or less, 45% or less, particularly 40% or less. If the total light transmittance in the thickness direction of the sealing material layer at a wavelength of 808 nm is too high, the sealing material layer accurately absorbs the laser light even if laser light is irradiated from the glass lid side toward the sealing material layer. Accordingly, the temperature of the sealing material layer is hardly increased, and the reaction layer is hardly formed on the surface layer of the ceramic substrate.
  • the average thickness of the sealing material layer before laser sealing is less than 8.0 ⁇ m, particularly less than 6.0 ⁇ m.
  • the average thickness of the sealing material layer after laser sealing is preferably regulated to less than 8.0 ⁇ m, particularly less than 6.0 ⁇ m.
  • the smaller the average thickness of the sealing material layer the lower the stress remaining in the sealing portion after laser sealing when the thermal expansion coefficients of the sealing material layer and the glass lid are mismatched.
  • the accuracy of laser sealing can be increased.
  • Examples of the method for regulating the average thickness of the sealing material layer as described above include a method of thinly applying the composite powder paste and a method of polishing the surface of the sealing material layer.
  • the surface roughness Ra of the sealing material layer is preferably regulated to less than 1.0 ⁇ m and 0.5 ⁇ m or less, particularly 0.05 to 0.3 ⁇ m. In this way, the adhesion between the ceramic substrate and the sealing material layer is improved, and the accuracy of laser sealing is improved.
  • examples of the method for regulating the surface roughness Ra and RMS of the sealing material layer include a method of polishing the surface of the sealing material layer and a method of reducing the particle size of the refractory filler powder. “Surface roughness Ra” and “surface roughness RMS” can be measured by, for example, a stylus type or non-contact type laser film thickness meter or surface roughness meter.
  • the line width of the sealing material layer is preferably 2000 ⁇ m or less, 1500 ⁇ m or less, and particularly preferably 1000 ⁇ m or less. If the line width of the sealing material layer is too large, the stress remaining in the hermetic package tends to increase.
  • the sealing material layer is softened and deformed at the time of laser sealing to form a reaction layer on the surface of the ceramic substrate, and is preferably a composite powder sintered body containing at least a glass powder and a refractory filler powder.
  • Various materials can be used as the composite powder.
  • a composite powder containing a volume% refractory filler powder it is particularly preferable to use a composite powder containing 60 to 80 volume% bismuth glass and 20 to 40 volume% refractory filler powder.
  • the refractory filler powder is added, the thermal expansion coefficient of the sealing material layer is easily matched with the thermal expansion coefficient of the glass lid and the ceramic substrate. As a result, it becomes easy to prevent a situation in which undue stress remains in the sealed portion after laser sealing.
  • the content of the refractory filler powder is too large, the content of the bismuth-based glass powder becomes relatively small, so that the surface smoothness of the sealing material layer is lowered and the accuracy of laser sealing is lowered. It becomes easy.
  • the softening point of the soot composite powder is preferably 500 ° C. or lower, 480 ° C. or lower, particularly 450 ° C. or lower.
  • the lower limit of the softening point of the composite powder is not particularly set, but considering the thermal stability of the glass powder, the softening point of the composite powder is preferably 350 ° C. or higher.
  • the “softening point” is the fourth inflection point when measured with a macro DTA apparatus, and corresponds to Ts in FIG.
  • Bismuth-based glass is a glass composition including, in mol%, Bi 2 O 3 28 ⁇ 60%, B 2 O 3 15 ⁇ 37%, preferably contains ZnO 1 ⁇ 30%.
  • the reason for limiting the content range of each component as described above will be described below. In the description of the glass composition range,% display indicates mol%.
  • Bi 2 O 3 is a main component for lowering the softening point, and its content is preferably 28 to 60%, 33 to 55%, particularly preferably 35 to 45%.
  • the content of Bi 2 O 3 is too small, too high softening point, the fluidity tends to decrease.
  • the content of Bi 2 O 3 is too large, the glass is liable to be devitrified at the time of laser sealing, and fluidity is liable to decrease due to the devitrification.
  • B 2 O 3 is an essential component as a glass forming component, and its content is preferably 15 to 37%, 19 to 33%, particularly preferably 22 to 30%. If the content of B 2 O 3 is too small, it becomes difficult to form a glass network, so that the glass is easily devitrified at the time of laser sealing. On the other hand, when the content of B 2 O 3 is too large, the viscosity of the glass becomes high, the fluidity tends to decrease.
  • ZnO is a component that enhances devitrification resistance, and its content is preferably 1 to 30%, 3 to 25%, 5 to 22%, particularly preferably 7 to 20%.
  • the content of ZnO is out of the above range, the component balance of the glass composition is impaired, and the devitrification resistance tends to decrease.
  • SiO 2 is a component that enhances water resistance, and its content is preferably 0 to 5%, 0 to 3%, 0 to 2%, particularly preferably 0 to 1%. If the SiO 2 content is too large, the softening point is unduly increased. In addition, the glass is easily devitrified during laser sealing.
  • Al 2 O 3 is a component that improves water resistance, and its content is preferably 0 to 10%, 0.1 to 5%, particularly preferably 0.5 to 3%. When the content of Al 2 O 3 is too large, there is a possibility that the softening point is unduly increased.
  • Li 2 O, Na 2 O and K 2 O are components that reduce devitrification resistance. Therefore, the contents of Li 2 O, Na 2 O and K 2 O are 0 to 5%, 0 to 3%, particularly 0 to less than 1%, respectively.
  • MgO, CaO, SrO, and BaO are components that increase devitrification resistance, but are components that increase the softening point. Therefore, the contents of MgO, CaO, SrO and BaO are 0 to 20%, 0 to 10%, particularly 0 to 5%, respectively.
  • Fe 2 O 3 is a component that enhances devitrification resistance and laser absorption characteristics, and its content is preferably 0 to 10%, 0.1 to 5%, particularly preferably 0.4 to 2%. When the content of Fe 2 O 3 is too large, balance of components the glass composition is impaired, the devitrification resistance is liable to decrease conversely.
  • MnO is a component that enhances laser absorption characteristics.
  • the content of MnO is preferably 0 to 25%, 0.1 to 20%, particularly 5 to 15%. When there is too much content of MnO, devitrification resistance will fall easily.
  • Sb 2 O 3 is a component that enhances devitrification resistance, and its content is preferably 0 to 5%, particularly preferably 0 to 2%.
  • content of Sb 2 O 3 is too large, balance of components the glass composition is impaired, the devitrification resistance is liable to decrease conversely.
  • the average particle diameter D 50 of the glass powder less than 15 ⁇ m, 0.5 ⁇ 10 ⁇ m, particularly 0.8 ⁇ 5 [mu] m is preferred. As the average particle diameter D 50 of the glass powder is small, the softening point of the glass powder is lowered.
  • refractory filler powder it is preferable to use one or more selected from cordierite, zircon, tin oxide, niobium oxide, zirconium phosphate ceramic, willemite, ⁇ -eucryptite, ⁇ -quartz solid solution, In particular, ⁇ -eucryptite or cordierite is preferable.
  • These refractory filler powders have a low thermal expansion coefficient, high mechanical strength, and good compatibility with bismuth glass.
  • the average particle size D 50 of the refractory filler powder is preferably less than 2 ⁇ m, in particular less than 1.5 ⁇ m.
  • the average particle diameter D 50 of the refractory filler powder is less than 2 [mu] m, together with the surface smoothness of the sealing material layer is improved, easily regulate the average thickness of the sealing material layer less than 8 [mu] m, as a result, the laser The accuracy of sealing can be increased.
  • the 99% particle size D 99 of the refractory filler powder is preferably less than 5 ⁇ m, 4 ⁇ m or less, in particular 3 ⁇ m or less.
  • the 99% particle size D 99 of the refractory filler powder is less than 5 ⁇ m, the surface smoothness of the sealing material layer is improved and the average thickness of the sealing material layer is easily regulated to less than 8 ⁇ m.
  • the accuracy of laser sealing can be increased.
  • “average particle diameter D 50 ” and “99% particle diameter D 99 ” indicate values measured on a volume basis by a laser diffraction method.
  • the sealing material layer may further contain a laser absorbing material in order to enhance the light absorption characteristics.
  • the laser absorbing material excessively increases the light absorbing characteristics of the sealing material layer and reduces devitrification of the bismuth-based glass. It has a promoting effect. Therefore, the content of the laser absorbing material in the sealing material layer is preferably 10% by volume or less, 5% by volume or less, 1% by volume or less, and 0.5% by volume or less, particularly preferably substantially not contained.
  • the laser absorber Cu-based oxides, Fe-based oxides, Cr-based oxides, Mn-based oxides, spinel-type composite oxides, and the like can be used.
  • the thermal expansion coefficient of the sealing material layer is preferably 55 ⁇ 10 ⁇ 7 to 95 ⁇ 10 ⁇ 7 / ° C., 60 ⁇ 10 ⁇ 7 to 82 ⁇ 10 ⁇ 7 / ° C., in particular 65 ⁇ 10 ⁇ 7 to 76 ⁇ 10. -7 / ° C.
  • the “thermal expansion coefficient” is a value measured with a TMA (push-bar type thermal expansion coefficient measurement) apparatus in a temperature range of 30 to 300 ° C.
  • the sealing material layer is preferably formed by applying and sintering a composite powder paste.
  • the composite powder paste is a mixture of composite powder and vehicle.
  • the vehicle usually contains a solvent and a resin.
  • the resin is added for the purpose of adjusting the viscosity of the paste.
  • surfactant, a thickener, etc. can also be added as needed.
  • the produced composite powder paste is applied to the surface of the glass lid using an applicator such as a dispenser or a screen printer.
  • the composite powder paste is preferably applied in a frame shape along the outer peripheral edge region of the glass lid. In this way, it is possible to expand a region where light emitted from a light emitting element or the like is extracted to the outside.
  • the composite powder paste is usually produced by kneading the composite powder and vehicle with a three-roller or the like.
  • a vehicle usually includes a resin and a solvent.
  • the resin used for the vehicle acrylic ester (acrylic resin), ethyl cellulose, polyethylene glycol derivative, nitrocellulose, polymethylstyrene, polyethylene carbonate, polypropylene carbonate, methacrylic ester and the like can be used.
  • Solvents used in vehicles include N, N′-dimethylformamide (DMF), ⁇ -terpineol, higher alcohol, ⁇ -butyllactone ( ⁇ -BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl Ether, diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether , Tripropylene glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DM O), N-methyl-2-pyrrolidone and the like can be used.
  • DMF N′-dimethylformamide
  • ⁇ -BL ⁇ -
  • Various glasses can be used as the glass lid.
  • alkali-free glass, borosilicate glass, and soda lime glass can be used.
  • a low iron-containing glass lid (the content of Fe 2 O 3 in the glass composition is 0.015% by mass or less, particularly less than 0.010% by mass) is used. It is preferable.
  • the thickness of the glass lid is preferably 0.01 to 2.0 mm, 0.1 to 1 mm, particularly preferably 0.2 to 0.7 mm. Thereby, thickness reduction of an airtight package can be achieved. Further, the total light transmittance in the ultraviolet wavelength region can be increased.
  • the difference in thermal expansion coefficient between the sealing material layer and the glass lid is preferably less than 55 ⁇ 10 ⁇ 7 / ° C., particularly preferably 25 ⁇ 10 ⁇ 7 / ° C. or less. If these thermal expansion coefficient differences are too large, the stress remaining in the sealed portion becomes unduly high, and the hermetic reliability of the hermetic package tends to be lowered.
  • the manufacturing method of the hermetic package of the present invention is to hermetically integrate the ceramic substrate and the glass lid by irradiating laser light from the glass lid side toward the sealing material layer and softening and deforming the sealing material layer, Obtaining a hermetic package.
  • the glass lid may be disposed below the ceramic substrate, but it is preferable to dispose the glass lid above the ceramic substrate from the viewpoint of laser sealing efficiency.
  • a semiconductor laser a YAG laser, a CO 2 laser, an excimer laser, and an infrared laser are preferable in terms of easy handling.
  • the atmosphere for laser sealing is not particularly limited, and may be an air atmosphere or an inert atmosphere such as a nitrogen atmosphere.
  • the glass lid When performing the laser sealing, if the glass lid is preheated at a temperature of 100 ° C. or higher and below the heat resistant temperature of the light emitting element in the ceramic substrate, the glass lid can be prevented from cracking due to thermal shock. Moreover, if an annealing laser is irradiated from the glass lid side immediately after laser sealing, it is possible to suppress breakage of the glass lid due to thermal shock.
  • the hermetic package of the present invention is a hermetic package in which a ceramic substrate and a glass lid are hermetically integrated through a sealing material layer, and the total light transmittance in the thickness direction of the sealing material layer at a wavelength of 808 nm is 10% or more. And 80% or less.
  • the technical features of the hermetic package of the present invention are already described in the explanation section of the method for manufacturing the hermetic package of the present invention. Therefore, detailed description is omitted here for convenience.
  • FIG. 2 is a conceptual cross-sectional view for explaining an embodiment of the present invention.
  • An airtight package (for example, an ultraviolet LED package) 1 includes an aluminum nitride base 10 and a glass lid 11.
  • the aluminum nitride substrate 10 has a base portion 12 and further has a frame portion 13 on the outer peripheral edge of the base portion 12.
  • An internal element (for example, an ultraviolet LED element) 14 is accommodated in the frame portion 13 of the aluminum nitride substrate 10. And the surface of the top part 15 of this frame part 13 is grind
  • electrical wiring (not shown) for electrically connecting the ultraviolet LED element 14 and the outside is formed.
  • a frame-shaped sealing material layer 16 is formed on the surface of the glass lid 11.
  • the sealing material layer 16 includes bismuth glass and refractory filler powder, but does not substantially include a laser absorber.
  • the width of the sealing material layer 16 is slightly smaller than the width of the top portion 15 of the frame portion 13 of the aluminum nitride substrate 10. Furthermore, the average thickness of the sealing material layer 16 is less than 8.0 ⁇ m.
  • the laser beam L emitted from the laser irradiation device 17 is irradiated along the sealing material layer 16 from the glass lid 11 side.
  • the sealing material layer 16 softens and flows and reacts with the surface layer of the aluminum nitride substrate 10, whereby the aluminum nitride substrate 10 and the glass lid 11 are hermetically integrated, and the hermetic structure of the hermetic package 1 is formed. .
  • the average particle diameter D 50 of the refractory filler powder is 1.0 .mu.m, 99% particle size D 99 was 2.5 [mu] m.
  • Mn—Fe based composite oxide and Mn—Fe—Al based composite oxide were used as the laser absorber. These composite oxides had an average particle diameter D 50 of 1.0 ⁇ m and a 99% particle diameter D 99 of 2.5 ⁇ m.
  • the thermal expansion coefficient of the obtained composite powder was measured. The results are shown in Table 1.
  • the thermal expansion coefficient is a value measured with a push rod type TMA apparatus, and the measurement temperature range is 30 to 300 ° C.
  • a frame shape is formed on the outer peripheral edge of a glass lid (length 3 mm ⁇ width 3 mm ⁇ thickness 0.2 mm, alkali borosilicate glass substrate, coefficient of thermal expansion 66 ⁇ 10 ⁇ 7 / ° C.).
  • a sealing material layer was formed.
  • the powder is evenly mixed with a three-roll mill. The mixture was kneaded until dispersed to obtain a composite powder paste.
  • a vehicle in which an ethyl cellulose resin was dissolved in a glycol ether solvent was used.
  • the composite powder paste was printed in a frame shape by a screen printer along the outer peripheral edge of the glass lid. Furthermore, after drying at 120 ° C. for 10 minutes in an air atmosphere, baking is performed at 500 ° C. for 10 minutes in an air atmosphere to form a sealing material layer having a thickness of 5.0 ⁇ m and a width of 200 ⁇ m on the glass lid. did. With respect to the obtained sealing material layer, the total light transmittance in the thickness direction was measured with a spectrophotometer (U-4100 type spectrophotometer manufactured by Hitachi High-Technology Corporation). The results are shown in Table 1.
  • an aluminum nitride substrate (length 3 mm ⁇ width 3 mm ⁇ base thickness 0.7 mm, thermal expansion coefficient 46 ⁇ 10 ⁇ 7 / ° C.) was prepared, and the deep ultraviolet LED element was accommodated in the frame portion of the aluminum nitride substrate.
  • the frame portion has a frame shape with a width of 600 ⁇ m and a height of 400 ⁇ m, and is formed along the outer peripheral edge of the base portion of the aluminum nitride base.
  • the wavelength of 808 nm and 12 W from the glass lid side toward the sealing material layer is disposed.
  • the sealing strength of the obtained airtight package was evaluated. Specifically, after separating the aluminum nitride substrate from the airtight package obtained, the sealing material layer formed on the top of the aluminum nitride frame was removed, and the surface layer on the top of the frame was visually observed. The seal strength was evaluated with “ ⁇ ” indicating that the trace was observed and “X” indicating that the trace was not observed.
  • the airtight reliability of the obtained airtight package was evaluated. Specifically, after the high-temperature, high-humidity and high-pressure test: HAST test (Highly Accelerated Temperature and Humidity Stress test) was performed on the obtained hermetic package, the vicinity of the sealing material layer was observed to be altered, cracked, The airtight reliability was evaluated with “ ⁇ ” indicating that no peeling or the like was observed, and “X” indicating that alteration, cracking, peeling or the like was observed.
  • the conditions of the HAST test are 121 ° C., humidity 100%, 2 atm, and 24 hours.
  • the hermetic package of the present invention is suitable for an airtight package in which an ultraviolet LED element is mounted.
  • a sensor element, a piezoelectric vibration element, a wavelength conversion element in which quantum dots are dispersed in a resin, and the like are mounted. It can be suitably applied to an airtight package.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

本発明の気密パッケージの製造方法は、セラミック基体を用意する工程と、ガラス蓋を用意する工程と、ガラス蓋上に、照射すべきレーザー光の波長における厚み方向の全光線透過率が10%以上、且つ80%以下になる封着材料層を形成する工程と、封着材料層を介して、ガラス蓋とセラミック基体とを積層配置する工程と、ガラス蓋側から封着材料層に向けてレーザー光を照射し、封着材料層を軟化変形させることにより、セラミック基体とガラス蓋とを気密一体化して、気密パッケージを得る工程と、を備えることを特徴とする。

Description

気密パッケージの製造方法及び気密パッケージ
 本発明は、レーザー光を用いた封着処理(以下、レーザー封着)により、窒化アルミニウム基体とガラス蓋を気密封着した気密パッケージの製造方法に関する。
 紫外LED素子が実装された気密パッケージには、熱伝導性の観点から、基体として窒化アルミニウムが使用されると共に、紫外波長領域の光透過性の観点から、蓋材としてガラスが使用される。
 従来まで、紫外LEDパッケージの接着材料として、低温硬化性を有する有機樹脂系接着剤が使用されていた。しかし、有機樹脂系接着剤は、紫外波長領域の光で劣化し易く、紫外LEDパッケージの気密性を経時的に劣化させる虞がある。また、有機樹脂系接着剤の代わりに金錫半田を用いると、紫外波長領域の光による劣化を防止することができる。しかし、金錫半田は、材料コストが高いという問題がある。
 一方、ガラス粉末と耐火性フィラー粉末を含む複合粉末は、紫外波長領域の光で劣化し難く、材料コストが低いという特長を有している。
 しかし、ガラス粉末は、有機樹脂系接着剤よりも軟化温度が高いため、封着時に紫外LED素子を熱劣化させる虞がある。このような事情から、レーザー封着が着目されている。レーザー封着によれば、封着すべき部分のみを局所的に加熱することが可能であり、紫外LED素子を熱劣化させることなく、窒化アルミニウムとガラス蓋を気密封着することができる。
特開2013-239609号公報 特開2014-236202号公報
 しかし、従来の複合粉末は、レーザー封着時にセラミック基体、特に窒化アルミニウム基体の界面で反応し難いため、封着強度を確保し難いという問題がある。そして、封着強度を高めるために、レーザー光の出力を高めると、ガラス蓋や封着材料層に割れ、クラック等が発生し易くなる。この問題は、セラミック基体の熱伝導率が高い程、顕在化し易くなる。
 そこで、本発明は、上記事情に鑑みなされたものであり、その技術的課題は、セラミック基体とガラス蓋とをレーザー封着する場合に、ガラス蓋や封着材料層に割れ、クラック等を発生させずに、強固な封着強度を確保し得る方法を創案することにより、気密パッケージの気密信頼性を確保することである。
 本発明者等は、レーザー封着する場合に、封着強度を確保し難い原因について以下の知見を得た。すなわち、従来の封着材料は、光吸収特性が高過ぎるため、ガラス蓋側から封着材料層に向けてレーザー光を照射すると、封着材料層のガラス蓋側の領域はレーザー光を過剰に吸収する。その一方で封着材料層のセラミック基体側の領域に届くレーザー光は不足しがちになる。しかもセラミック基体は、熱伝導率が高いことから、封着材料層の熱を奪ってしまう。それ故、従来のレーザー封着では、封着材料層のセラミック基体側の領域は、十分に温度上昇せず、軟化変形が不十分になるため、セラミック基体の表層で反応層が形成され難くなり、結果として封着強度を確保し難くなる。
 本発明者等は、上記知見に基づき、封着材料層の全光線透過率を所定範囲内に規制することにより、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明の気密パッケージの製造方法は、セラミック基体を用意する工程と、ガラス蓋を用意する工程と、ガラス蓋上に、照射すべきレーザー光の波長における厚み方向の全光線透過率が10%以上、且つ80%以下になる封着材料層を形成する工程と、封着材料層を介して、ガラス蓋とセラミック基体とを積層配置する工程と、ガラス蓋側から封着材料層に向けてレーザー光を照射し、封着材料層を軟化変形させることにより、セラミック基体とガラス蓋とを気密一体化して、気密パッケージを得る工程と、を備えることを特徴とする。ここで、「全光線透過率」は、市販の透過率測定装置により測定可能である。「セラミック」には、ガラスセラミック(結晶化ガラス)を含むものとする。
 本発明の気密パッケージの製造方法では、セラミック基体上ではなく、ガラス蓋上に封着材料層を形成する。このようにすれば、レーザー封着前にセラミック基体を焼成する必要がなくなるため、レーザー封着前にセラミック基体に発光素子等を収容し、また電気配線等を形成することができる。結果として、気密パッケージの製造効率を高めることができる。
 本発明の気密パッケージの製造方法は、ガラス蓋上に、照射すべきレーザー光の波長における厚み方向の全光線透過率が10%以上、且つ80%以下になる封着材料層を形成する工程を有する。このようにすれば、レーザー光の出力を過剰に高めなくても、封着材料層のガラス蓋側の領域でレーザー光が適正に透過すると共に、封着材料層のセラミック基体側の領域でレーザー光が適正に吸収されるため、レーザー封着時に、セラミック基体と封着材料層の界面で封着材料層の温度が適正に上昇する。その結果、セラミック基体の表層で反応層が形成されて、気密パッケージの気密信頼性を大幅に高めることができる。更に封着材料層のガラス蓋側の領域が必要以上に加熱されないことから、部材間の温度差が小さくなり、部材間の熱膨張差に起因して、ガラス蓋や封着材料層に割れ、クラック等が発生し難くなる。
 本発明の気密パッケージの製造方法は、セラミック基体を用意する工程と、ガラス蓋を用意する工程と、ガラス蓋上に、波長808nmにおける厚み方向の全光線透過率が10%以上、且つ80%以下になる封着材料層を形成する工程と、封着材料層を介して、ガラス蓋とセラミック基体とを積層配置する工程と、ガラス蓋側から封着材料層に向けてレーザー光を照射し、封着材料層を軟化変形させることにより、セラミック基体とガラス蓋とを気密一体化して、気密パッケージを得る工程と、を備えることを特徴とする。レーザー封着で用いるレーザー光は、一般的に600~1600nmの波長を有する。この波長域において波長808nmを代表値として採択し、波長808nmにおける封着材料層の厚み方向の全光線透過率を上記のように規制すれば、前述の効果を的確に享受することができる。
 第三に、本発明の気密パッケージの製造方法は、平均厚みが8.0μm未満になるように、封着材料層を形成することが好ましい。このようにすれば、レーザー封着時に、封着材料層のガラス蓋側の領域とセラミック基体側の領域において、温度差が小さくなるため、部材間の熱膨張差に起因して、ガラス蓋や封着材料層に割れ、クラック等が発生し難くなる。
 第四に、本発明の気密パッケージの製造方法は、少なくともビスマス系ガラス粉末と耐火性フィラー粉末を含む複合粉末を焼成して、ガラス蓋上に封着材料層を形成することが好ましい。ビスマス系ガラスは、他の系のガラスと比較して、レーザー封着時にセラミック基体の表層に反応層を形成し易いという特長を有する。また、耐火性フィラー粉末は、封着材料層の熱膨張係数を低下させつつ、封着材料層の機械的強度を高めることができる。なお、「ビスマス系ガラス」とは、Biを主成分とするガラスを指し、具体的にはガラス組成中にBiを25モル%以上含むガラスを指す。
 第五に、本発明の気密パッケージの製造方法は、基部と基部上に設けられた枠部とを有するセラミック基体を用いることが好ましい。このようにすれば、紫外LED素子等の発光素子を気密パッケージ内に収容し易くなる。
 第六に、本発明の気密パッケージの製造方法は、セラミック基体が、照射すべきレーザー光を吸収する性質を有すること、つまり厚み0.5mm、照射すべきレーザー光の波長における全光線透過率が10%以下であることが好ましい。このようにすれば、セラミック基体と封着材料層の界面で封着材料層の温度が上がり易くなる。
 第七に、本発明の気密パッケージの製造方法は、黒色顔料が分散されたセラミック基体を用意する工程と、ガラス蓋を用意する工程と、ガラス蓋上に、照射すべきレーザー光の波長における厚み方向の全光線透過率が10%以上、且つ80%以下になる封着材料層を形成する工程と、封着材料層を介して、ガラス蓋とセラミック基体とを積層配置する工程と、ガラス蓋側から封着材料層に向けてレーザー光を照射し、封着材料層を軟化変形させると共に、セラミック基体を加熱することにより、セラミック基体とガラス蓋とを気密一体化して、気密パッケージを得る工程と、を備えることを特徴とする。
 第八に、本発明の気密パッケージは、封着材料層を介して、セラミック基体とガラス蓋とが気密一体化された気密パッケージにおいて、波長808nmにおける封着材料層の厚み方向の全光線透過率が10%以上、且つ80%以下であることを特徴とする。
 第九に、本発明の気密パッケージは、封着材料層の平均厚みが8.0μm未満であることが好ましい。このようにすれば、気密パッケージ内での残留応力が小さくなるため、気密パッケージの気密信頼性を高めることができる。
 第十に、本発明の気密パッケージは、封着材料層が、少なくともビスマス系ガラス粉末と耐火性フィラー粉末を含む複合粉末の焼結体であることが好ましい。
 第十一に、本発明の気密パッケージは、封着材料層が実質的にレーザー吸収材を含んでいないことが好ましい。ここで、「実質的にレーザー吸収材を含んでいない」とは、封着材料層中のレーザー吸収材の含有量が0.1体積%以下の場合を指す。
 第十二に、本発明の気密パッケージは、セラミック基体が、基部と基部上に設けられた枠部とを有することが好ましい。このようにすれば、紫外LED素子等の発光素子を気密パッケージ内に収容し易くなる。
 第十三に、本発明の気密パッケージは、セラミック基体の熱伝導率が1W/(m・K)以上であることが好ましい。セラミック基体の熱伝導率が高いと、セラミック基体が放熱し易くなるため、レーザー封着時にセラミック基体と封着材料層の界面で封着材料層の温度が上がり難くなる。よって、セラミック基体の熱伝導率が高い程、本発明の効果が相対的に大きくなる。
 第十四に、本発明の気密パッケージは、セラミック基体がガラスセラミック、窒化アルミニウム、アルミナの何れか、或いはこれらの複合材料であることが好ましい。
 第十五に、本発明の気密パッケージは、紫外LED素子が収容されていることが好ましい。ここで、「紫外LED素子」には、深紫外LED素子を含むものとする。他にはセンサー素子、圧電振動素子、樹脂中に量子ドットを分散させた波長変換素子の何れかが収納されていても良い。
マクロ型DTA装置で測定した時の複合粉末の軟化点を示す模式図である。 本発明の一実施形態を説明するための断面概念図である。
 本発明の気密パッケージの製造方法では、セラミック基体を用意する工程を有する。必要に応じて、セラミック基体上に焼結ガラス含有層を形成してもよい。このようにすれば、レーザー封着時に封着強度を高めつつ、封着材料層中に発泡が生じる事態を防止することができる。結果として気密パッケージの気密信頼性を高めることができる。焼結ガラス含有層は、ガラス含有ペーストをセラミック基体上に塗布して、ガラス含有膜を形成した後、ガラス含有膜を乾燥し、溶剤を揮発させて、更にガラス含有膜にレーザー光を照射して、ガラス含有膜の焼結(固着)を行う方法が好ましい。レーザー光の照射によってガラス含有膜の焼結を行うと、セラミック基体内に形成された電気配線や発光素子を熱劣化させずに焼結ガラス含有層を形成することができる。なお、レーザー光の照射に代えて、ガラス含有膜の焼成により、焼結ガラス含有層を形成してもよい。この場合、発光素子等の熱劣化を防止するために、セラミック基体内に発光素子等を実装する前にガラス含有膜を焼成することが好ましい。
 セラミック基体の熱伝導率は1W/(m・K)以上、10W/(m・K)以上、50W/(m・K)以上、特に100W/(m・K)以上が好ましい。セラミック基体の熱伝導率が高いと、セラミック基体が放熱し易くなるため、レーザー封着時にセラミック基体と封着材料層の界面で封着材料層の温度が上がり難くなる。よって、セラミック基体の熱伝導率が高い程、本発明の効果が相対的に大きくなる。
 セラミック基体は、照射すべきレーザー光を吸収する性質を有すること、つまり厚み0.5mm、照射すべきレーザー光の波長における全光線透過率が10%以下(望ましくは5%以下)であることが好ましい。同様にして、セラミック基体は、厚み0.5mm、波長808nmにおける全光線透過率が10%以下(望ましくは5%以下)であることが好ましい。このようにすれば、セラミック基体と封着材料層の界面で封着材料層の温度が上がり易くなる。
 セラミック基体は、レーザー吸収材(例えば黒色顔料)を含んだ状態で焼結されていることが好ましい。このようにすれば、セラミック基体に対して、照射すべきレーザー光を吸収する性質を付与することができる。
 セラミック基体の厚みは0.1~4.5mm、特に0.5~3.0mmが好ましい。これにより、気密パッケージの薄型化を図ることができる。
 また、セラミック基体として、基部と基部上に設けられた枠部とを有するセラミック基体を用いることが好ましい。このようにすれば、セラミック基体の枠部内に紫外LED素子等の発光素子を収容し易くなる。なお、セラミック基体上に焼結ガラス含有層を形成する場合、発光素子等の熱劣化を防止するために、枠部の頂部に焼結ガラス含有層を形成することが好ましい。
 セラミック基体が枠部を有する場合、セラミック基体の外周端縁領域に沿って、枠部を額縁状に設けることが好ましい。このようにすれば、デバイスとして機能する有効面積を広げることができる。また紫外LED素子等の発光素子をセラミック基体の枠部内に収容し易くなる。
 セラミック基体は、ガラスセラミック、窒化アルミニウム、アルミナの何れか、或いはこれらの複合材料であることが好ましい。特に窒化アルミニウムとアルミナは、放熱性が良好であるため、紫外LED素子等の発光素子から放射される光により気密パッケージが過度に発熱する事態を適正に防止することができる。
 セラミック基体は、黒色顔料が分散されている(黒色顔料が分散された状態で焼結されてなる)ことが好ましい。このようにすれば、セラミック基体が、封着材料層を透過したレーザー光を吸収することができる。その結果、レーザー封着時にセラミック基体が加熱されるため、封着材料層とセラミック基体の界面で反応層の形成を促進することができる。
 本発明の気密パッケージの製造方法は、ガラス蓋を用意すると共に、ガラス蓋上に封着材料層を形成する工程を有する。
 本発明の気密パッケージの製造方法において、照射すべきレーザー光の波長における封着材料層の厚み方向の全光線透過率は10%以上であり、好ましくは15%以上、20%以上、特に25%以上である。照射すべきレーザー光の波長における封着材料層の厚み方向の全光線透過率が低過ぎると、ガラス蓋側から封着材料層に向けてレーザー光を照射した場合に、封着材料層のガラス蓋側の領域が優先的に軟化流動してしまい、封着材料層のセラミック基体側の領域に十分なレーザー光が届かなくなる。その結果、セラミック基体と封着材料層の界面で温度が上昇し難くなって、セラミック基体の表層で反応層が形成され難くなる。一方、照射すべきレーザー光の波長における封着材料層の厚み方向の全光線透過率は80%以下であり、好ましくは60%以下、50%以下、45%以下、特に40%以下である。照射すべきレーザー光の波長における封着材料層の厚み方向の全光線透過率が高過ぎると、ガラス蓋側から封着材料層に向けてレーザー光を照射しても、封着材料層がレーザー光を的確に吸収せず、封着材料層の温度が上がり難くなり、セラミック基体の表層で反応層が形成され難くなる。なお、封着材料層の厚み方向の全光線透過率を高める方法として、レーザー吸収材の含有量を低下させる方法、ガラス粉末のガラス組成中のレーザー吸収成分(例えば、CuO、Fe)の含有量を低下させる方法等が挙げられる。
 本発明の気密パッケージの製造方法において、波長808nmにおける封着材料層の厚み方向の全光線透過率は10%以上であり、好ましくは15%以上、20%以上、特に25%以上である。波長808nmにおける封着材料層の厚み方向の全光線透過率が低過ぎると、ガラス蓋側から封着材料層に向けてレーザー光を照射した場合に、封着材料層のガラス蓋側の領域が優先的に軟化流動してしまい、セラミック基体と封着材料層の界面で温度が上昇し難くなって、セラミック基体の表層で反応層が形成され難くなる。一方、波長808nmにおける封着材料層の厚み方向の全光線透過率は80%以下であり、好ましくは60%以下、50%以下、45%以下、特に40%以下である。波長808nmにおける封着材料層の厚み方向の全光線透過率が高過ぎると、ガラス蓋側から封着材料層に向けてレーザー光を照射しても、封着材料層がレーザー光を的確に吸収せず、封着材料層の温度が上がり難くなり、セラミック基体の表層で反応層が形成され難くなる。
 レーザー封着前の封着材料層の平均厚みを8.0μm未満、特に6.0μm未満に規制することが好ましい。同様にして、レーザー封着後の封着材料層の平均厚みも8.0μm未満、特に6.0μm未満に規制することが好ましい。封着材料層の平均厚みが小さい程、封着材料層とガラス蓋の熱膨張係数が不整合である時に、レーザー封着後に封着部分に残留する応力を低減することができる。またレーザー封着の精度を高めることもできる。なお、上記のように封着材料層の平均厚みを規制する方法としては、複合粉末ペーストを薄く塗布する方法、封着材料層の表面を研磨処理する方法が挙げられる。
 封着材料層の表面粗さRaを0.5μm未満、0.2μm以下、特に0.01~0.15μmに規制することが好ましい。また、封着材料層の表面粗さRMSを1.0μm未満、0.5μm以下、特に0.05~0.3μmに規制することが好ましい。このようにすれば、セラミック基体と封着材料層の密着性が向上し、レーザー封着の精度が向上する。なお、上記のように封着材料層の表面粗さRa、RMSを規制する方法としては、封着材料層の表面を研磨処理する方法、耐火性フィラー粉末の粒度を小さくする方法が挙げられる。なお、「表面粗さRa」及び「表面粗さRMS」は、例えば、触針式又は非接触式のレーザー膜厚計や表面粗さ計により測定することができる。
 封着材料層の線幅は、好ましくは2000μm以下、1500μm以下、特に1000μm以下が好ましい。封着材料層の線幅が大き過ぎると、気密パッケージに残留する応力が大きくなり易い。
 封着材料層は、レーザー封着時に軟化変形して、セラミック基体の表層に反応層を形成するものであり、少なくともガラス粉末と耐火性フィラー粉末を含む複合粉末の焼結体が好ましい。複合粉末として、種々の材料が使用可能である。その中でも、封着強度を高める観点から、ビスマス系ガラス粉末と耐火性フィラー粉末を含む複合粉末を用いることが好ましい。特に、複合粉末として、55~95体積%のビスマス系ガラスと5~45体積%の耐火性フィラー粉末を含有する複合粉末を用いることが好ましく、60~85体積%のビスマス系ガラスと15~40体積%の耐火性フィラー粉末を含有する複合粉末を用いることが更に好ましく、60~80体積%のビスマス系ガラスと20~40体積%の耐火性フィラー粉末を含有する複合粉末を用いることが特に好ましい。耐火性フィラー粉末を添加すれば、封着材料層の熱膨張係数が、ガラス蓋とセラミック基体の熱膨張係数に整合し易くなる。その結果、レーザー封着後に封着部分に不当な応力が残留する事態を防止し易くなる。一方、耐火性フィラー粉末の含有量が多過ぎると、ビスマス系ガラス粉末の含有量が相対的に少なくなるため、封着材料層の表面平滑性が低下して、レーザー封着の精度が低下し易くなる。
  複合粉末の軟化点は、好ましくは500℃以下、480℃以下、特に450℃以下である。複合粉末の軟化点が高過ぎると、封着材料層の表面平滑性を高め難くなる。複合粉末の軟化点の下限は特に設定されないが、ガラス粉末の熱的安定性を考慮すれば、複合粉末の軟化点は350℃以上が好ましい。ここで、「軟化点」は、マクロ型DTA装置で測定した際の第四変曲点であり、図1中のTsに相当する。
 ビスマス系ガラスは、ガラス組成として、モル%で、Bi 28~60%、B 15~37%、ZnO 1~30%含有することが好ましい。各成分の含有範囲を上記のように限定した理由を以下に説明する。なお、ガラス組成範囲の説明において、%表示はモル%を指す。
 Biは、軟化点を低下させるための主要成分であり、その含有量は28~60%、33~55%、特に35~45%が好ましい。Biの含有量が少な過ぎると、軟化点が高くなり過ぎて、流動性が低下し易くなる。一方、Biの含有量が多過ぎると、レーザー封着時にガラスが失透し易くなり、この失透に起因して、流動性が低下し易くなる。
 Bは、ガラス形成成分として必須の成分であり、その含有量は15~37%、19~33%、特に22~30%が好ましい。Bの含有量が少な過ぎると、ガラスネットワークが形成され難くなるため、レーザー封着時にガラスが失透し易くなる。一方、Bの含有量が多過ぎると、ガラスの粘性が高くなり、流動性が低下し易くなる。
 ZnOは、耐失透性を高める成分であり、その含有量は1~30%、3~25%、5~22%、特に7~20%が好ましい。ZnOの含有量が上記範囲外になると、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。
 上記成分以外にも、例えば、以下の成分を添加してもよい。
 SiOは、耐水性を高める成分であり、その含有量は0~5%、0~3%、0~2%、特に0~1%が好ましい。SiOの含有量が多過ぎると、軟化点が不当に上昇する。またレーザー封着時にガラスが失透し易くなる。
 Alは、耐水性を高める成分であり、その含有量は0~10%、0.1~5%、特に0.5~3%が好ましい。Alの含有量が多過ぎると、軟化点が不当に上昇する虞がある。
 LiO、NaO及びKOは、耐失透性を低下させる成分である。よって、LiO、NaO及びKOの含有量は、それぞれ0~5%、0~3%、特に0~1%未満である。
 MgO、CaO、SrO及びBaOは、耐失透性を高める成分であるが、軟化点を上昇させる成分である。よって、MgO、CaO、SrO及びBaOの含有量は、それぞれ0~20%、0~10%、特に0~5%である。
 ビスマス系ガラスの軟化点を下げるためには、ガラス組成中にBiを多量に導入する必要があるが、Biの含有量を増加させると、レーザー封着時にガラスが失透し易くなり、この失透に起因して流動性が低下し易くなる。特に、Biの含有量が30%以上になると、その傾向が顕著になる。この対策として、CuOを添加すれば、Biの含有量が30%以上であっても、ガラスの失透を効果的に抑制することができる。更にCuOを添加すれば、レーザー封着時のレーザー吸収特性を高めることができる。CuOの含有量は0~40%、5~35%、10~30%、特に13~25%が好ましい。CuOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下し易くなる。また封着材料層の全光線透過率が低くなり過ぎる。
 Feは、耐失透性とレーザー吸収特性を高める成分であり、その含有量は0~10%、0.1~5%、特に0.4~2%が好ましい。Feの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下し易くなる。
 MnOは、レーザー吸収特性を高める成分である。MnOの含有量は、好ましくは0~25%、0.1~20%、特に5~15%である。MnOの含有量が多過ぎると、耐失透性が低下し易くなる。
 Sbは、耐失透性を高める成分であり、その含有量は0~5%、特に0~2%が好ましい。Sbの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下し易くなる。
 ガラス粉末の平均粒径D50は15μm未満、0.5~10μm、特に0.8~5μmが好ましい。ガラス粉末の平均粒径D50が小さい程、ガラス粉末の軟化点が低下する。
 耐火性フィラー粉末として、コーディエライト、ジルコン、酸化錫、酸化ニオブ、リン酸ジルコニウム系セラミック、ウイレマイト、β-ユークリプタイト、β-石英固溶体から選ばれる一種又は二種以上を用いることが好ましく、特にβ-ユークリプタイト又はコーディエライトが好ましい。これらの耐火性フィラー粉末は、熱膨張係数が低いことに加えて、機械的強度が高く、しかもビスマス系ガラスとの適合性が良好である。
 耐火性フィラー粉末の平均粒径D50は、好ましくは2μm未満、特に1.5μm未満である。耐火性フィラー粉末の平均粒径D50が2μm未満であると、封着材料層の表面平滑性が向上すると共に、封着材料層の平均厚みを8μm未満に規制し易くなり、結果として、レーザー封着の精度を高めることができる。
 耐火性フィラー粉末の99%粒径D99は、好ましくは5μm未満、4μm以下、特に3μm以下である。耐火性フィラー粉末の99%粒径D99が5μm未満であると、封着材料層の表面平滑性が向上すると共に、封着材料層の平均厚みを8μm未満に規制し易くなり、結果として、レーザー封着の精度を高めることができる。ここで、「平均粒径D50」と「99%粒径D99」は、レーザー回折法により体積基準で測定した値を指す。
 封着材料層は、光吸収特性を高めるために、更にレーザー吸収材を含んでもよいが、レーザー吸収材は、封着材料層の光吸収特性を過剰に高めると共に、ビスマス系ガラスの失透を助長する作用を有する。よって、封着材料層中のレーザー吸収材の含有量は、好ましくは10体積%以下、5体積%以下、1体積%以下、0.5体積%以下、特に実質的に含有しないことが好ましい。なお、レーザー吸収材として、Cu系酸化物、Fe系酸化物、Cr系酸化物、Mn系酸化物及びこれらのスピネル型複合酸化物等が使用可能である。
 封着材料層の熱膨張係数は、好ましくは55×10-7~95×10-7/℃、60×10-7~82×10-7/℃、特に65×10-7~76×10-7/℃である。このようにすれば、封着材料層の熱膨張係数がガラス蓋やセラミック基体の熱膨張係数に整合して、封着部分に残留する応力が小さくなる。なお、「熱膨張係数」は、30~300℃の温度範囲において、TMA(押棒式熱膨張係数測定)装置で測定した値である。
 本発明の気密パッケージの製造方法において、封着材料層は、複合粉末ペーストの塗布、焼結により形成することが好ましい。このようにすれば、封着材料層の寸法精度を高めることができる。ここで、複合粉末ペーストは、複合粉末とビークルの混合物である。そして、ビークルは、通常、溶媒と樹脂を含む。樹脂は、ペーストの粘性を調整する目的で添加される。また、必要に応じて、界面活性剤、増粘剤等を添加することもできる。作製された複合粉末ペーストは、ディスペンサーやスクリーン印刷機等の塗布機を用いて、ガラス蓋の表面に塗布される。
 複合粉末ペーストは、ガラス蓋の外周端縁領域に沿って、額縁状に塗布されることが好ましい。このようにすれば、発光素子等から放射される光を外部に取り出す領域を広げることができる。
 複合粉末ペーストは、通常、三本ローラー等により、複合粉末とビークルを混練することにより作製される。ビークルは、通常、樹脂と溶剤を含む。ビークルに用いる樹脂として、アクリル酸エステル(アクリル樹脂)、エチルセルロース、ポリエチレングリコール誘導体、ニトロセルロース、ポリメチルスチレン、ポリエチレンカーボネート、ポリプロピレンカーボネート、メタクリル酸エステル等が使用可能である。ビークルに用いる溶剤として、N、N’-ジメチルホルムアミド(DMF)、α-ターピネオール、高級アルコール、γ-ブチルラクトン(γ-BL)、テトラリン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3-メトキシ-3-メチルブタノール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、ジメチルスルホキシド(DMSO)、N-メチル-2-ピロリドン等が使用可能である。
 ガラス蓋として、種々のガラスが使用可能である。例えば、無アルカリガラス、ホウケイ酸ガラス、ソーダ石灰ガラスが使用可能である。特に、紫外波長領域の全光線透過率を高めるために、低鉄含有ガラス蓋(ガラス組成中のFeの含有量が0.015質量%以下、特に0.010質量%未満)を用いることが好ましい。
 ガラス蓋の板厚は0.01~2.0mm、0.1~1mm、特に0.2~0.7mmが好ましい。これにより、気密パッケージの薄型化を図ることができる。また紫外波長領域の全光線透過率を高めることができる。
 封着材料層とガラス蓋の熱膨張係数差は55×10-7/℃未満、特に25×10-7/℃以下が好ましい。これらの熱膨張係数差が大き過ぎると、封着部分に残留する応力が不当に高くなり、気密パッケージの気密信頼性が低下し易くなる。
 本発明の気密パッケージの製造方法は、ガラス蓋側から封着材料層に向けてレーザー光を照射し、封着材料層を軟化変形させることにより、セラミック基体とガラス蓋とを気密一体化して、気密パッケージを得る工程を有する。この場合、ガラス蓋をセラミック基体の下方に配置してもよいが、レーザー封着の効率の観点から、ガラス蓋をセラミック基体の上方に配置することが好ましい。
 レーザーとして、種々のレーザーを使用することができる。特に、半導体レーザー、YAGレーザー、COレーザー、エキシマレーザー、赤外レーザーは、取扱いが容易な点で好ましい。
 レーザー封着を行う雰囲気は特に限定されず、大気雰囲気でもよく、窒素雰囲気等の不活性雰囲気でもよい。
 レーザー封着を行う際に、(100℃以上、且つセラミック基体内の発光素子等の耐熱温度以下)の温度でガラス蓋を予備加熱すると、サーマルショックによるガラス蓋の割れを抑制することができる。またレーザー封着直後に、ガラス蓋側からアニールレーザーを照射すると、サーマルショックによるガラス蓋の割れを抑制することができる。
 ガラス蓋を押圧した状態でレーザー封着を行うことが好ましい。これにより、レーザー封着時に封着材料層の軟化変形を促進することができる。
 本発明の気密パッケージは、封着材料層を介して、セラミック基体とガラス蓋とが気密一体化された気密パッケージにおいて、波長808nmにおける封着材料層の厚み方向の全光線透過率が10%以上、且つ80%以下であることを特徴とする。本発明の気密パッケージの技術的特徴は、本発明の気密パッケージの製造方法の説明欄に記載済みである。よって、ここでは、便宜上、詳細な説明を省略する。
 以下、図面を参照しながら、本発明を説明する。図2は、本発明の一実施形態を説明するための断面概念図である。気密パッケージ(例えば、紫外LEDパッケージ等)1は、窒化アルミニウム基体10とガラス蓋11を備えている。窒化アルミニウム基体10は基部12を有し、更に基部12の外周端縁上に枠部13を有している。また、窒化アルミニウム基体10の枠部13内には、内部素子(例えば、紫外LED素子等)14が収容されている。そして、この枠部13の頂部15の表面は、予め研磨処理されており、その表面粗さRaが0.15μm以下になっている。なお、窒化アルミニウム基体10内には、紫外LED素子14と外部を電気的に接続する電気配線(図示されていない)が形成されている。
 ガラス蓋11の表面には、額縁状の封着材料層16が形成されている。封着材料層16は、ビスマス系ガラスと耐火性フィラー粉末を含んでいるが、実質的にレーザー吸収材を含んでいない。そして、封着材料層16の幅は、窒化アルミニウム基体10の枠部13の頂部15の幅よりも若干小さくなっている。更に封着材料層16の平均厚みは8.0μm未満なっている。
 レーザー照射装置17から出射したレーザー光Lは、ガラス蓋11側から封着材料層16に沿って照射される。これにより、封着材料層16が軟化流動し、窒化アルミニウム基体10の表層と反応することで、窒化アルミニウム基体10とガラス蓋11が気密一体化されて、気密パッケージ1の気密構造が形成される。
 以下、実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は、単なる例示である。本発明は、以下の実施例に何ら限定されない。
 まずビスマス系ガラス粉末と、耐火性フィラー粉末と、必要に応じてレーザー吸収材とを表1に記載の割合で混合して、表1に記載の複合粉末を作製した。ここで、ビスマス系ガラス粉末の平均粒径D50は1.0μm、99%粒径D99は2.5μmであった。耐火性フィラー粉末の平均粒径D50は1.0μm、99%粒径D99は2.5μmであった。なお、レーザー吸収材として、Mn-Fe系複合酸化物とMn-Fe-Al系複合酸化物を用いた。これらの複合酸化物の平均粒径D50は1.0μm、99%粒径D99は2.5μmであった。
Figure JPOXMLDOC01-appb-T000001
 得られた複合粉末につき、熱膨張係数を測定した。その結果を表1に示す。なお、熱膨張係数は、押棒式TMA装置で測定した値であり、測定温度範囲は30~300℃である。
 次に、上記複合粉末を用いて、ガラス蓋(縦3mm×横3mm×厚み0.2mm、アルカリホウケイ酸ガラス基板、熱膨張係数66×10-7/℃)の外周端縁上に額縁状の封着材料層を形成した。詳述すると、まず粘度が約100Pa・s(25℃、Shear rate:4)になるように、表1に記載の複合粉末、ビークル及び溶剤を混練した後、更に三本ロールミルで粉末が均一に分散するまで混錬して、ペースト化し、複合粉末ペーストを得た。ビークルにはグリコールエーテル系溶剤にエチルセルロース樹脂を溶解させたものを使用した。次に、ガラス蓋の外周端縁に沿って、スクリーン印刷機により上記の複合粉末ペーストを額縁状に印刷した。更に、大気雰囲気下にて、120℃で10分間乾燥した後、大気雰囲気下にて、500℃で10分間焼成して、5.0μm厚、幅200μmの封着材料層をガラス蓋上に形成した。得られた封着材料層につき、分光光度計(日立ハイテクノロジー社製U-4100形分光光度計)により厚み方向の全光線透過率を測定した。その結果を表1に示す。
 また、窒化アルミニウム基体(縦3mm×横3mm×基部厚み0.7mm、熱膨張係数46×10-7/℃)を用意し、窒化アルミニウム基体の枠部内に深紫外LED素子を収容した。なお、枠部は、幅600μm、高さ400μmの額縁状であり、窒化アルミニウム基体の基部の外周端縁上に沿って形成されている。
 最後に、窒化アルミニウム基体の枠部の頂部と封着材料層が接触するように、窒化アルミニウム基体とガラス蓋を積層配置した後、ガラス蓋側から封着材料層に向けて波長808nm、12Wの半導体レーザーを照射して、封着材料層を軟化変形させることにより、焼結ガラス含有層と封着材料層を気密一体化して、各気密パッケージ(試料No.1~5)を得た。
 得られた気密パッケージについて、封着強度を評価した。詳述すると、得られた気密パッケージから窒化アルミニウム基体を分離した後、窒化アルミニウムの枠部の頂部に形成された封着材料層を除去し、枠部の頂部の表層を目視観察したところ、反応痕が認められたものを「○」、反応痕が認められなかったものを「×」として、封着強度を評価した。
 得られた気密パッケージについて、気密信頼性を評価した。詳述すると、得られた気密パッケージに対して、高温高湿高圧試験:HAST試験(Highly Accelerated Temperature and Humidity Stress test)を行った後、封着材料層の近傍を観察したところ、変質、クラック、剥離等が全く認められなかったものを「○」、変質、クラック、剥離等が認められたものを「×」として気密信頼性を評価した。なお、HAST試験の条件は、121℃、湿度100%、2atm、24時間である。
 表1から明らかなように、試料No.1~3に係る気密パッケージは、封着材料層の厚み方向の全光線透過率が所定範囲に規制されているため、封着強度と気密信頼性の評価が良好であった。試料No.4、5に係る気密パッケージは、封着材料層の厚み方向の全光線透過率が低過ぎるため、封着強度と気密信頼性の評価が不良であった。
 本発明の気密パッケージは、紫外LED素子が実装された気密パッケージに好適であるが、それ以外にもセンサー素子、圧電振動素子、樹脂中に量子ドットを分散させた波長変換素子等が実装された気密パッケージにも好適に適用可能である。
 1 気密パッケージ
10 窒化アルミニウム基体
11 ガラス蓋
12 基部
13 枠部
14 内部素子
15 枠部の頂部
16 封着材料層
17 レーザー照射装置
L レーザー光

Claims (15)

  1.  セラミック基体を用意する工程と、
     ガラス蓋を用意する工程と、
     ガラス蓋上に、照射すべきレーザー光の波長における厚み方向の全光線透過率が10%以上、且つ80%以下になる封着材料層を形成する工程と、
     封着材料層を介して、ガラス蓋とセラミック基体とを積層配置する工程と、
     ガラス蓋側から封着材料層に向けてレーザー光を照射し、封着材料層を軟化変形させることにより、セラミック基体とガラス蓋とを気密一体化して、気密パッケージを得る工程と、を備えることを特徴とする気密パッケージの製造方法。
  2.  セラミック基体を用意する工程と、
     ガラス蓋を用意する工程と、
     ガラス蓋上に、波長808nmにおける厚み方向の全光線透過率が10%以上、且つ80%以下になる封着材料層を形成する工程と、
     封着材料層を介して、ガラス蓋とセラミック基体とを積層配置する工程と、
     ガラス蓋側から封着材料層に向けてレーザー光を照射し、封着材料層を軟化変形させることにより、セラミック基体とガラス蓋とを気密一体化して、気密パッケージを得る工程と、を備えることを特徴とする気密パッケージの製造方法。
  3.  平均厚みが8.0μm未満になるように、封着材料層を形成することを特徴とする請求項1又は2に記載の気密パッケージの製造方法。
  4.  少なくともビスマス系ガラス粉末と耐火性フィラー粉末を含む複合粉末を焼成して、ガラス蓋上に封着材料層を形成することを特徴とする請求項1~3の何れかに記載の気密パッケージの製造方法。
  5.  基部と基部上に設けられた枠部とを有するセラミック基体を用いることを特徴とする請求項1~4の何れかに記載の気密パッケージの製造方法。
  6.  セラミック基体が、照射すべきレーザー光を吸収する性質を有することを特徴とする請求項1~5の何れかに記載の気密パッケージの製造方法。
  7.  黒色顔料が分散されたセラミック基体を用意する工程と、
     ガラス蓋を用意する工程と、
     ガラス蓋上に、照射すべきレーザー光の波長における厚み方向の全光線透過率が10%以上、且つ80%以下になる封着材料層を形成する工程と、
     封着材料層を介して、ガラス蓋とセラミック基体とを積層配置する工程と、
     ガラス蓋側から封着材料層に向けてレーザー光を照射し、封着材料層を軟化変形させると共に、セラミック基体を加熱することにより、セラミック基体とガラス蓋とを気密一体化して、気密パッケージを得る工程と、を備えることを特徴とする気密パッケージの製造方法。
  8.  封着材料層を介して、セラミック基体とガラス蓋とが気密一体化された気密パッケージにおいて、
     波長808nmにおける封着材料層の厚み方向の全光線透過率が10%以上、且つ80%以下であることを特徴とする気密パッケージ。
  9.  封着材料層の平均厚みが8.0μm未満であることを特徴とする請求項8に記載の気密パッケージ。
  10.  封着材料層が、少なくともビスマス系ガラス粉末と耐火性フィラー粉末を含む複合粉末の焼結体であることを特徴とする請求項8又は9に記載の気密パッケージ。
  11.  封着材料層が実質的にレーザー吸収材を含んでいないことを特徴とする請求項8~10の何れかに記載の気密パッケージ。
  12.  セラミック基体が、基部と基部上に設けられた枠部とを有することを特徴とする請求項8~11の何れかに記載の気密パッケージ。
  13.  セラミック基体の熱伝導率が1W/(m・K)以上であることを特徴とする請求項8~12の何れかに記載の気密パッケージ。
  14.  セラミック基体がガラスセラミック、窒化アルミニウム、アルミナの何れか、或いはこれらの複合材料であることを特徴とする請求項8~13の何れかに記載の気密パッケージ。
  15.  紫外LED素子、センサー素子、圧電振動素子、樹脂中に量子ドットを分散させた波長変換素子の何れかが収容されていることを特徴とする請求項8~14の何れかに記載の気密パッケージ。
PCT/JP2017/016975 2016-06-10 2017-04-28 気密パッケージの製造方法及び気密パッケージ WO2017212828A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018522372A JP6819943B2 (ja) 2016-06-10 2017-04-28 気密パッケージの製造方法及び気密パッケージ
US16/305,964 US20190296194A1 (en) 2016-06-10 2017-04-28 Method for producing hermetic package, and hermetic package
KR1020187032938A KR102361856B1 (ko) 2016-06-10 2017-04-28 기밀 패키지의 제조 방법 및 기밀 패키지
CN201780025389.7A CN109075128B (zh) 2016-06-10 2017-04-28 气密封装体的制造方法及气密封装体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-115837 2016-06-10
JP2016115837 2016-06-10

Publications (1)

Publication Number Publication Date
WO2017212828A1 true WO2017212828A1 (ja) 2017-12-14

Family

ID=60578557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016975 WO2017212828A1 (ja) 2016-06-10 2017-04-28 気密パッケージの製造方法及び気密パッケージ

Country Status (6)

Country Link
US (1) US20190296194A1 (ja)
JP (1) JP6819943B2 (ja)
KR (1) KR102361856B1 (ja)
CN (1) CN109075128B (ja)
TW (1) TWI726102B (ja)
WO (1) WO2017212828A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050031A1 (ja) * 2018-09-06 2020-03-12 日本電気硝子株式会社 気密パッケージ
WO2020071047A1 (ja) * 2018-10-04 2020-04-09 日本電気硝子株式会社 気密パッケージ
CN112753100A (zh) * 2018-10-05 2021-05-04 Agc株式会社 窗材料、光学封装体
WO2021199613A1 (ja) * 2020-03-31 2021-10-07 日本電気硝子株式会社 接合体の製造方法及び接合体
CN115213561A (zh) * 2022-07-29 2022-10-21 苏州大学 添加钛作为过渡层实现玻璃与不锈钢的激光封接方法
JP7487601B2 (ja) 2020-03-31 2024-05-21 日本電気硝子株式会社 接合体の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201839918A (zh) * 2017-02-07 2018-11-01 日商日本電氣硝子股份有限公司 氣密封裝
CN109896497A (zh) * 2019-01-31 2019-06-18 厦门大学 一种面向mems封装的纳米玻璃粉回流工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5180310A (ja) * 1975-01-06 1976-07-13 Hitachi Ltd
JP2010140848A (ja) * 2008-12-15 2010-06-24 Canon Inc 有機発光装置の製造方法
JP2013239609A (ja) * 2012-05-16 2013-11-28 Asahi Glass Co Ltd 気密部材とその製造方法
JP2015023263A (ja) * 2013-07-24 2015-02-02 日本電気硝子株式会社 電気素子パッケージの製造方法及び電気素子パッケージ
JP2016027610A (ja) * 2014-06-27 2016-02-18 旭硝子株式会社 パッケージ基板、パッケージ、および電子デバイス
JP2016044101A (ja) * 2014-08-22 2016-04-04 旭硝子株式会社 封着用無鉛ガラス、封着材料、封着材料ペーストおよび封着パッケージ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2943275B2 (ja) * 1990-08-07 1999-08-30 住友電気工業株式会社 高熱伝導性着色窒化アルミニウム焼結体およびその製造方法
JP2000233939A (ja) * 1999-11-26 2000-08-29 Asahi Techno Glass Corp 固体撮像素子パッケージ用窓ガラス
US20060231737A1 (en) * 2005-04-15 2006-10-19 Asahi Glass Company, Limited Light emitting diode element
US20110014731A1 (en) * 2009-07-15 2011-01-20 Kelvin Nguyen Method for sealing a photonic device
JP5768717B2 (ja) * 2009-10-15 2015-08-26 旭硝子株式会社 有機led素子の散乱層用ガラス及びそれを用いた有機led素子
US9540274B2 (en) * 2010-04-15 2017-01-10 Ferro Corporation Low-melting lead-free bismuth sealing glasses
US8871664B2 (en) * 2010-05-10 2014-10-28 Nippon Electric Glass Co., Ltd. Refractory filler, sealing material using same, and manufacturing method for refractory filler
CN202808586U (zh) * 2011-04-21 2013-03-20 日本电气硝子株式会社 料片及使用其的料片一体型排气管
KR101477044B1 (ko) * 2011-07-27 2014-12-29 니폰 덴키 가라스 가부시키가이샤 시일링 재료층이 형성된 유리 기판, 이것을 사용한 유기 el 디바이스, 및 전자 디바이스의 제조 방법
US20130155629A1 (en) * 2011-12-19 2013-06-20 Tong Hsing Electronic Industries, Ltd. Hermetic Semiconductor Package Structure and Method for Manufacturing the same
KR20140039740A (ko) * 2012-09-25 2014-04-02 엘지이노텍 주식회사 발광소자 패키지
WO2014092013A1 (ja) * 2012-12-10 2014-06-19 旭硝子株式会社 封着材料、封着材料層付き基板、積層体および電子デバイス
JP2014236202A (ja) * 2013-06-05 2014-12-15 旭硝子株式会社 発光装置
US9708213B2 (en) * 2013-10-21 2017-07-18 Nippon Electric Glass Co., Ltd. Sealing material
CN103840063A (zh) * 2013-11-15 2014-06-04 芜湖德豪润达光电科技有限公司 Led封装基板及其制作方法
WO2015087812A1 (ja) * 2013-12-11 2015-06-18 旭硝子株式会社 発光ダイオードパッケージ用カバーガラス、封着構造体および発光装置
WO2017057375A1 (ja) * 2015-09-30 2017-04-06 旭硝子株式会社 紫外線透過ガラス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5180310A (ja) * 1975-01-06 1976-07-13 Hitachi Ltd
JP2010140848A (ja) * 2008-12-15 2010-06-24 Canon Inc 有機発光装置の製造方法
JP2013239609A (ja) * 2012-05-16 2013-11-28 Asahi Glass Co Ltd 気密部材とその製造方法
JP2015023263A (ja) * 2013-07-24 2015-02-02 日本電気硝子株式会社 電気素子パッケージの製造方法及び電気素子パッケージ
JP2016027610A (ja) * 2014-06-27 2016-02-18 旭硝子株式会社 パッケージ基板、パッケージ、および電子デバイス
JP2016044101A (ja) * 2014-08-22 2016-04-04 旭硝子株式会社 封着用無鉛ガラス、封着材料、封着材料ペーストおよび封着パッケージ

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7168903B2 (ja) 2018-09-06 2022-11-10 日本電気硝子株式会社 気密パッケージ
JP2020043097A (ja) * 2018-09-06 2020-03-19 日本電気硝子株式会社 気密パッケージ
CN112640093A (zh) * 2018-09-06 2021-04-09 日本电气硝子株式会社 气密封装体
KR20210049773A (ko) * 2018-09-06 2021-05-06 니폰 덴키 가라스 가부시키가이샤 기밀 패키지
WO2020050031A1 (ja) * 2018-09-06 2020-03-12 日本電気硝子株式会社 気密パッケージ
KR102633353B1 (ko) 2018-09-06 2024-02-06 니폰 덴키 가라스 가부시키가이샤 기밀 패키지
WO2020071047A1 (ja) * 2018-10-04 2020-04-09 日本電気硝子株式会社 気密パッケージ
JP2020057736A (ja) * 2018-10-04 2020-04-09 日本電気硝子株式会社 気密パッケージ
CN112753100A (zh) * 2018-10-05 2021-05-04 Agc株式会社 窗材料、光学封装体
WO2021199613A1 (ja) * 2020-03-31 2021-10-07 日本電気硝子株式会社 接合体の製造方法及び接合体
JP7487601B2 (ja) 2020-03-31 2024-05-21 日本電気硝子株式会社 接合体の製造方法
CN115213561A (zh) * 2022-07-29 2022-10-21 苏州大学 添加钛作为过渡层实现玻璃与不锈钢的激光封接方法
CN115213561B (zh) * 2022-07-29 2023-11-24 苏州大学 添加钛作为过渡层实现玻璃与不锈钢的激光封接方法

Also Published As

Publication number Publication date
KR102361856B1 (ko) 2022-02-11
TW201810446A (zh) 2018-03-16
US20190296194A1 (en) 2019-09-26
CN109075128B (zh) 2023-02-28
KR20190017744A (ko) 2019-02-20
TWI726102B (zh) 2021-05-01
JPWO2017212828A1 (ja) 2019-04-04
CN109075128A (zh) 2018-12-21
JP6819943B2 (ja) 2021-01-27

Similar Documents

Publication Publication Date Title
WO2017212828A1 (ja) 気密パッケージの製造方法及び気密パッケージ
WO2016136899A1 (ja) 気密パッケージの製造方法
WO2017179381A1 (ja) 気密パッケージの製造方法及び気密パッケージ
JP7222245B2 (ja) 気密パッケージ
WO2018139148A1 (ja) 気密パッケージ
WO2018216587A1 (ja) 気密パッケージの製造方法及び気密パッケージ
WO2018155373A1 (ja) パッケージ基体及びそれを用いた気密パッケージ
WO2018173834A1 (ja) カバーガラス及び気密パッケージ
WO2018155144A1 (ja) ビスマス系ガラス粉末、封着材料及び気密パッケージ
JP6819933B2 (ja) 気密パッケージ及びその製造方法
JP6922253B2 (ja) ガラス蓋
WO2023281961A1 (ja) 封着材料層付きガラス基板及び気密パッケージの製造方法
WO2018193767A1 (ja) カバーガラス及びこれを用いた気密パッケージ
WO2018131471A1 (ja) 気密パッケージ及びガラス蓋
JP2023008800A (ja) 封着材料層付きガラス基板及び気密パッケージの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018522372

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187032938

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810010

Country of ref document: EP

Kind code of ref document: A1