WO2016136899A1 - 気密パッケージの製造方法 - Google Patents

気密パッケージの製造方法 Download PDF

Info

Publication number
WO2016136899A1
WO2016136899A1 PCT/JP2016/055675 JP2016055675W WO2016136899A1 WO 2016136899 A1 WO2016136899 A1 WO 2016136899A1 JP 2016055675 W JP2016055675 W JP 2016055675W WO 2016136899 A1 WO2016136899 A1 WO 2016136899A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing material
material layer
glass
ceramic substrate
glass substrate
Prior art date
Application number
PCT/JP2016/055675
Other languages
English (en)
French (fr)
Inventor
徹 白神
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to KR1020177015495A priority Critical patent/KR102406788B1/ko
Priority to US15/552,535 priority patent/US10600954B2/en
Priority to JP2017502479A priority patent/JP6697718B2/ja
Priority to CN201680004161.5A priority patent/CN107112974B/zh
Publication of WO2016136899A1 publication Critical patent/WO2016136899A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00269Bonding of solid lids or wafers to the substrate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/04Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass
    • C04B37/045Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass characterised by the interlayer used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • H01L23/08Containers; Seals characterised by the material of the container or its electrical properties the material being an electrical insulator, e.g. glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/02Forming enclosures or casings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/10Glass interlayers, e.g. frit or flux
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/52Pre-treatment of the joining surfaces, e.g. cleaning, machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/59Aspects relating to the structure of the interlayer
    • C04B2237/592Aspects relating to the structure of the interlayer whereby the interlayer is not continuous, e.g. not the whole surface of the smallest substrate is covered by the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks

Definitions

  • the present invention relates to a method for manufacturing an airtight package by a sealing process using laser light (hereinafter referred to as laser sealing).
  • ⁇ Efforts are being made to maintain the characteristics of the hermetic package and to extend its service life.
  • a piezoelectric vibrator element is a sensitive element that easily deteriorates when exposed to oxygen or moisture in the surrounding environment. Therefore, it has been studied to incorporate the piezoelectric vibrator element into the piezoelectric vibrator package in an airtight state so as to maintain the characteristics of the piezoelectric vibrator package and extend its life.
  • the glass substrate and the glass substrate are surrounded so as to surround the piezoelectric vibrator element in a state in which the glass substrate is opposed to the element base on which the piezoelectric vibrator element is arranged with a space therebetween.
  • An airtight structure in which a gap between the element substrate and a sealing material layer is sealed has been studied.
  • the element base ceramic, for example, alumina is generally used.
  • the piezoelectric vibrator element has low heat resistance. Therefore, if the element substrate and the glass substrate are sealed by firing in the softening flow temperature range of the sealing material layer, the characteristics of the piezoelectric vibrator element may be thermally deteriorated.
  • laser sealing has been studied as a sealing method for hermetic packages.
  • only the portion to be sealed can be locally heated, so that it is possible to seal the element substrate and the glass substrate while preventing thermal degradation of elements having low heat resistance.
  • laser sealing is a method in which the sealing material layer is locally heated to soften and flow the sealing material layer, so that the time required for sealing is short, and accordingly, the element substrate and the sealing material The time for the layer to react is also reduced. As a result, the reaction layer is not sufficiently formed at the interface between the element substrate and the sealing material layer, and the fixing strength between the element substrate and the sealing material layer is lowered.
  • the present invention has been made in view of the above circumstances, and its technical problem is to provide a method capable of increasing the fixing strength between the element substrate and the sealing material layer without causing thermal degradation of the member accommodated therein.
  • the idea is to increase the long-term reliability of the airtight package.
  • the manufacturing method of the hermetic package of the present invention includes a step of preparing a ceramic base, forming a sealing material layer on the ceramic base, a glass substrate, and a sealing material on the ceramic base.
  • Sealing material usually contains low melting point glass. This low-melting glass erodes the surface layer of the element substrate during laser sealing, and a reaction layer is generated.
  • the element substrate is made of glass, a reaction layer is generated to some extent by laser sealing, and the fixing strength can be ensured.
  • the element substrate is a ceramic, the low melting point glass hardly erodes the surface layer of the element substrate at the time of laser sealing, and the reaction layer is not sufficiently formed. That is, when the element substrate is glass, the reaction layer can be formed by laser sealing, but when the element substrate is ceramic, it is difficult to form the reaction layer by laser sealing.
  • the ceramic substrate and the glass substrate are sealed by laser sealing.
  • the fixing strength between the ceramic substrate and the sealing material layer can be increased, and the fixing strength between the glass substrate and the sealing material layer can be ensured.
  • the sealing material layer is previously formed on the ceramic substrate by electric furnace firing or the like, the reaction layer can be sufficiently formed on the surface layer of the ceramic substrate.
  • the method for manufacturing an airtight package of the present invention uses a ceramic base having a base and a frame provided on the base, and forms a sealing material layer on the top of the frame. In this way, it becomes easy to accommodate a member such as a piezoelectric vibrator element in the hermetic package.
  • the top of the frame it is preferable to polish the top of the frame so that the surface roughness Ra of the top of the frame is less than 0.5 ⁇ m.
  • a sealing material layer made of a sintered body of a sealing material on a ceramic substrate by applying and baking a sealing material paste.
  • the method for manufacturing an airtight package of the present invention preferably uses a sealing material containing 55 to 95 volume% bismuth glass and 5 to 45 volume% refractory filler.
  • Bismuth-based glass has better reactivity with ceramics than other types of glass. Thereby, the adhesion strength between the ceramic substrate and the sealing material layer can be increased.
  • bismuth-based glass has a low melting point but high thermal stability (devitrification resistance). Thereby, it can soften and flow well at the time of laser sealing, and the accuracy of laser sealing can be increased.
  • the “bismuth-based glass” refers to glass containing Bi 2 O 3 as a main component, and specifically refers to glass containing 50% by mass or more of Bi 2 O 3 in the glass composition.
  • the average thickness of the sealing material layer is preferably less than 10 ⁇ m.
  • the difference in thermal expansion coefficient between the ceramic substrate and the sealing material layer is less than 45 ⁇ 10 ⁇ 7 / ° C., and the thermal expansion coefficient between the sealing material layer and the glass substrate. Is preferably less than 45 ⁇ 10 ⁇ 7 / ° C.
  • the hermetic package of the present invention is preferably manufactured by the above-described method for manufacturing an airtight package.
  • the method for manufacturing an airtight package of the present invention includes a step of preparing a ceramic substrate and forming a sealing material layer on the ceramic substrate.
  • a sealing material paste is applied on the ceramic substrate to form a sealing material film, and then the sealing material film is dried and the solvent is volatilized.
  • a method of firing at a temperature higher than the softening point of the sealing material to incinerate the resin component in the sealing material paste (debinding treatment) and sinter (fixing) the sealing material is preferable. In this way, the sealing material layer can be easily formed and the fixing strength between the ceramic substrate and the sealing material layer can be increased.
  • alumina, aluminum nitride, zirconia, mullite and the like are preferable from the viewpoint of material cost and sintering strength.
  • a glass ceramic (hereinafter referred to as LTCC) obtained by sintering a green sheet laminate is also preferable as the ceramic substrate.
  • Alumina is advantageous in terms of material costs.
  • Aluminum nitride is advantageous from the viewpoint of heat dissipation.
  • LTCC has the advantage that it is easy to produce a ceramic substrate having a frame portion.
  • the thickness of the ceramic substrate is preferably 0.1 to 1.0 mm. Thereby, thickness reduction of an airtight package can be achieved.
  • a ceramic base having a base and a frame provided on the base as the ceramic base, and form a sealing material layer on the top of the frame. In this way, it becomes easy to accommodate a member such as a piezoelectric vibrator element in the hermetic package.
  • the surface roughness Ra of the top of the ceramic substrate is preferably less than 0.5 ⁇ m and not more than 0.2 ⁇ m, particularly 0.01 to 0.15 ⁇ m.
  • the surface roughness RMS of the top of the ceramic substrate is preferably less than 1.0 ⁇ m, 0.5 ⁇ m or less, in particular 0.05 to 0.3 ⁇ m. In this way, the surface smoothness of the sealing material layer is improved, and the accuracy of laser sealing can be increased. As a result, it becomes possible to increase the sealing strength of the hermetic package.
  • “Surface roughness Ra” and “surface roughness RMS” can be measured by, for example, a stylus type or non-contact type laser film thickness meter or surface roughness meter.
  • the sealing material paste is preferably applied in a frame shape along the outer peripheral edge region of the ceramic substrate. In this way, the effective area that functions as a device can be expanded. Moreover, it becomes easy to accommodate a member such as a piezoelectric vibrator element in an airtight package.
  • the frame portion is provided in a frame shape along the outer peripheral edge region of the ceramic substrate, and the sealing material paste is applied to the top of the frame portion.
  • the effective area that functions as a device can be expanded.
  • members such as a piezoelectric vibrator element, in the inside of a frame part.
  • the sealing material paste is usually produced by kneading the sealing material and the vehicle with a three-roller or the like.
  • a vehicle usually includes a resin and a solvent.
  • the resin used for the vehicle acrylic ester (acrylic resin), ethyl cellulose, polyethylene glycol derivative, nitrocellulose, polymethylstyrene, polyethylene carbonate, polypropylene carbonate, methacrylic ester and the like can be used.
  • Solvents used in vehicles include N, N′-dimethylformamide (DMF), ⁇ -terpineol, higher alcohol, ⁇ -butyllactone ( ⁇ -BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl Ether, diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether , Tripropylene glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DM O), N-methyl-2-pyrrolidone and the like can be used.
  • DMF N′-dimethylformamide
  • ⁇ -BL ⁇ -
  • the sealing material for example, a composite powder of glass powder and refractory filler powder can be used.
  • the glass powder various materials can be used, for example, bismuth glass, tin phosphate glass, vanadium glass, etc. can be used, from the viewpoint of thermal stability and depth of the reaction layer, Bismuth-based glass is preferred.
  • the “tin phosphate glass” refers to a glass mainly composed of SnO and P 2 O 5 , and specifically includes SnO and P 2 O 5 in a total amount of 40% by mass or more in the glass composition.
  • glass “Vanadium-based glass” refers to glass mainly composed of V 2 O 5 , and specifically refers to glass containing 25% by mass or more of V 2 O 5 in the total amount in the glass composition.
  • the bismuth-based glass has a transition metal oxide content of 0.5% by mass or more (preferably 2 to 18% by mass, more preferably 3 to 15% by mass, still more preferably 4 to 12% by mass, particularly preferably glass composition). 5 to 10% by mass) is desirable. If it does in this way, light absorption characteristics can be improved, suppressing a fall of thermal stability.
  • Bismuth-based glass contains, as a glass composition, Bi 2 O 3 67 to 90%, B 2 O 3 2 to 12%, ZnO 1 to 20%, CuO + Fe 2 O 3 0.5 to 18% by mass. It is preferable. The reason for limiting the content of each component as described above will be described below. In addition, in description of the containing range of each component,% display points out the mass%. “CuO + Fe 2 O 3 ” is the total amount of CuO and Fe 2 O 3 .
  • Bi 2 O 3 is a main component for forming the reaction layer and a main component for lowering the softening point, and its content is preferably 67 to 87%, more preferably 70 to 85%, Particularly preferred is 72 to 83%.
  • the content of Bi 2 O 3 is less than 67%, the reaction layer is difficult to be generated, and the softening point becomes too high, and the glass is difficult to soften even when irradiated with laser light.
  • the content of Bi 2 O 3 is more than 90%, the glass becomes thermally unstable, and the glass tends to devitrify when melted, sintered (fixed), or sealed with laser.
  • B 2 O 3 is a component that forms a glass network of bismuth-based glass, and its content is preferably 2 to 12%, more preferably 3 to 10%, still more preferably 4 to 10%, particularly preferably. 5-9%.
  • the content of B 2 O 3 is less than 2%, the glass becomes thermally unstable, and the glass tends to be devitrified during melting, sintering (adhering), or laser sealing.
  • the content of B 2 O 3 is more than 12%, the softening point becomes too high and the glass is difficult to soften even when irradiated with laser light.
  • ZnO is a component that suppresses devitrification at the time of melting, sintering (adhering), or laser sealing, and lowers the coefficient of thermal expansion, and its content is preferably 1 to 20%, more preferably Is from 2 to 15%, more preferably from 3 to 11%, particularly preferably from 3 to 9%. If the ZnO content is less than 1%, it is difficult to obtain the above effect. On the other hand, if the ZnO content is more than 20%, the component balance in the glass composition is impaired, and conversely, the glass tends to devitrify.
  • CuO + Fe 2 O 3 is a component having light absorption characteristics, and when irradiated with laser light having a predetermined emission center wavelength, CuO + Fe 2 O 3 is a component that easily absorbs the laser light and softens the glass.
  • CuO + Fe 2 O 3 is a component that suppresses devitrification at the time of melting, sintering (adhering), or laser sealing.
  • the content of CuO + Fe 2 O 3 is preferably 0.5 to 18%, more preferably 3 to 15%, still more preferably 3.5 to 15%, still more preferably 4 to 12%, and particularly preferably 5 to 10%. %.
  • the CuO content is preferably 0 to 15%, 1 to 15%, 2 to 12%, 3 to 10%, particularly 4.5 to 10%.
  • the content of Fe 2 O 3 is preferably 0 to 7%, 0.05 to 7%, 0.1 to 4%, especially 0.2 to 3%.
  • Fe ions in iron oxide exist in the state of Fe 2+ or Fe 3+ .
  • Fe ions in iron oxide are not limited to either Fe 2+ or Fe 3+ , and may be any. Therefore, in the present invention, even Fe 2+ is handled after being converted to Fe 2 O 3 .
  • the ratio of Fe 2+ is preferably large.
  • the ratio of Fe 2+ / Fe 3+ in iron oxide is 0. It is preferable to regulate to 0.03 or more (preferably 0.08 or more).
  • SiO 2 is a component that improves water resistance.
  • the content of SiO 2 is preferably 0 to 10%, 0 to 3%, in particular 0 to less than 1%. If the content of SiO 2 is more than 10%, the softening point becomes too high, and the glass is difficult to soften even when irradiated with laser light.
  • Al 2 O 3 is a component that improves water resistance.
  • the content of Al 2 O 3 is preferably 0 to 5%, 0 to 2%, in particular 0 to less than 0.5%.
  • the softening point becomes too high and the glass is difficult to soften even when irradiated with laser light.
  • MgO + CaO + SrO + BaO (total amount of MgO, CaO, SrO and BaO) is a component that suppresses devitrification at the time of melting, sintering (adhering), or laser sealing, and the content of MgO + CaO + SrO + BaO is preferably 0 to 15%, especially 0-10%. If the content of MgO + CaO + SrO + BaO is more than 15%, the softening point becomes too high, and the glass is difficult to soften even when irradiated with laser light.
  • the contents of MgO, CaO and SrO are each preferably 0 to 5%, particularly preferably 0 to 2%.
  • the content of BaO is preferably 0 to 10%, in particular 0 to 8%.
  • CeO 2 , WO 3 , In 2 O 3 , Ga 2 O 3 and Sb 2 O 3 are components that suppress devitrification at the time of melting, sintering (adhering), or laser sealing.
  • the content of each component is preferably 0 to 10%, 0 to 5%, 0 to 2%, particularly 0 to 1%. When the content of each component is more than 10%, the component balance in the glass composition is impaired, and conversely, the glass is easily devitrified. From the viewpoint of enhancing the thermal stability, it is preferable to add a small amount of Sb 2 O 3 , and specifically, it is preferable to add 0.05% or more of Sb 2 O 3 .
  • the oxides of Li, Na, K and Cs are components that lower the softening point. However, since they have an action of promoting devitrification at the time of melting, the total amount is preferably regulated to less than 1%.
  • P 2 O 5 is a component that suppresses devitrification at the time of melting. However, if the content of P 2 O 5 is more than 1%, the glass tends to undergo phase separation during melting.
  • La 2 O 3, Y 2 O 3 and Gd 2 O 3 is a component to suppress phase separation during melting, when these total amount is more than 3%, the softening point becomes too high, the laser beam Even when irradiated, the glass becomes difficult to soften.
  • NiO, V 2 O 5 , CoO, MoO 3 , TiO 2, and MnO 2 are components having light absorption characteristics. When irradiated with laser light having a predetermined emission center wavelength, the laser light is absorbed and glass is absorbed. It is a component that facilitates softening.
  • the content of each component is preferably 0 to 7%, particularly 0 to 3%. If the content of each component is more than 7%, the glass tends to be devitrified during laser sealing.
  • PbO is a component that lowers the softening point, but is a component that is concerned about environmental impact. Therefore, the content of PbO is preferably less than 0.1%.
  • the refractory filler it is preferable to use one or more selected from cordierite, zircon, tin oxide, niobium oxide, zirconium phosphate ceramics, and willemite. These refractory fillers have a low thermal expansion coefficient, a high mechanical strength, and a good compatibility with bismuth glass. Of the above refractory fillers, cordierite is most preferred. Cordierite has a property that it is difficult to devitrify the bismuth glass even when the particle size is small, even when laser sealing. In addition to the above refractory filler, ⁇ -eucryptite, quartz glass, etc. may be added.
  • a transition metal oxide such as CuO or Fe 2 O 3
  • a refractory filler powder particularly cordierite
  • the average particle size D 50 of the refractory filler is preferably less than 2 ⁇ m, in particular less than 1.5 ⁇ m.
  • the average particle diameter D 50 of the refractory filler is less than 2 ⁇ m, the surface smoothness of the sealing material layer is improved and the average thickness of the sealing material layer is easily regulated to less than 10 ⁇ m. The accuracy of wearing can be increased.
  • Maximum particle diameter D 99 of the refractory filler is preferably less than 5 [mu] m, 4 [mu] m or less, particularly 3 ⁇ m or less.
  • the maximum particle diameter D 99 of the refractory filler is less than 5 [mu] m, together with the surface smoothness of the sealing material layer is improved, easily regulate the average thickness of the sealing material layer less than 10 [mu] m, as a result, the laser sealing The accuracy of wearing can be increased.
  • “average particle diameter D 50 ” and “maximum particle diameter D 99 ” indicate values measured on a volume basis by a laser diffraction method.
  • the thermal expansion coefficient of the sealing material is preferably 60 ⁇ 10 ⁇ 7 to 95 ⁇ 10 ⁇ 7 / ° C., 60 ⁇ 10 ⁇ 7 to 85 ⁇ 10 ⁇ 7 / ° C., in particular 65 ⁇ 10 ⁇ 7 to 80 ⁇ 10 ⁇ 7 / ° C.
  • the thermal expansion coefficient is a value measured with a push rod type TMA apparatus in a temperature range of 30 to 300 ° C.
  • the difference in thermal expansion coefficient between the ceramic substrate and the sealing material layer is preferably less than 45 ⁇ 10 ⁇ 7 / ° C., particularly preferably not more than 30 ⁇ 10 ⁇ 7 / ° C., and the thermal expansion coefficient between the sealing material layer and the glass substrate is 45 ⁇ 10 It is preferably less than ⁇ 7 / ° C., particularly 30 ⁇ 10 ⁇ 7 / ° C. or less. If the difference between the thermal expansion coefficients is too large, the stress remaining in the sealed portion is unduly high, and the long-term reliability of the hermetic package may be reduced.
  • the softening point of the sealing material is preferably 500 ° C. or lower, 480 ° C. or lower, particularly 450 ° C. or lower.
  • the lower limit of the softening point is not particularly set, but considering the thermal stability of the glass, the softening point is preferably 350 ° C. or higher.
  • the “softening point” is the fourth inflection point when measured with a macro DTA apparatus, and corresponds to Ts in FIG.
  • the sealing material may further contain a laser absorbing material in order to enhance the light absorption characteristics, but the laser absorbing material has an action of promoting devitrification of the bismuth-based glass. Therefore, the content of the laser absorbing material is preferably 0 to 15% by volume, 0 to 12% by volume, particularly 0 to 10% by volume. If the content of the laser absorbing material is more than 15% by volume, the glass tends to be devitrified at the time of laser sealing.
  • Cu-based oxides, Fe-based oxides, Cr-based oxides, Mn-based oxides and spinel complex oxides thereof can be used as the laser absorber, and in particular, from the viewpoint of compatibility with bismuth-based glass. Therefore, a Mn-based oxide is preferable.
  • the content is 0.1 volume% or more, 0.5 volume% or more, 1 volume% or more, 1.5 volume% or more, and especially 2 volume% or more is preferable.
  • the sealing material layer may be formed after the member is mounted on the ceramic substrate, but from the viewpoint of preventing thermal deterioration of the member (particularly an element that is easily thermally deteriorated), before the member is mounted on the ceramic substrate. It is preferable to carry out.
  • the average thickness of the sealing material layer after forming the sealing material layer on the ceramic substrate is less than 10 ⁇ m, less than 7 ⁇ m, particularly less than 5 ⁇ m.
  • the average thickness of the sealing material layer after laser sealing is preferably regulated to less than 10 ⁇ m, less than 7 ⁇ m, and particularly less than 5 ⁇ m.
  • the smaller the average thickness of the sealing material layer the lower the stress remaining in the sealing part after laser sealing, even if the thermal expansion coefficients of the sealing material layer and the ceramic substrate and the glass substrate are not sufficiently matched. .
  • the accuracy of laser sealing can be increased.
  • the method for regulating the average thickness of the sealing material layer includes a method of thinly applying the sealing material paste, and a method of polishing the surface of the sealing material layer after forming the sealing material layer. Can be mentioned.
  • the surface roughness Ra of the sealing material layer after forming the sealing material layer on the ceramic substrate is less than 0.5 ⁇ m and 0.2 ⁇ m or less, particularly 0.01 to 0.15 ⁇ m. Further, it is preferable to regulate the surface roughness RMS of the sealing material layer after forming the sealing material layer on the ceramic substrate to less than 1.0 ⁇ m and 0.5 ⁇ m or less, particularly 0.05 to 0.3 ⁇ m. By doing so, the adhesion between the glass substrate and the sealing material layer is improved, and the accuracy of laser sealing is improved.
  • methods for regulating the surface roughness Ra and RMS of the sealing material layer include a method for polishing the top of the frame portion of the ceramic substrate, a method for regulating the particle size of the refractory filler powder, and sealing. There is a method of polishing the surface of the material layer.
  • the manufacturing method of the hermetic package of the present invention includes the steps of preparing a glass substrate and arranging the ceramic substrate and the glass substrate so that the glass substrate is in contact with the sealing material layer on the ceramic substrate.
  • Various glasses can be used as the glass substrate.
  • alkali-free glass, borosilicate glass, and soda lime glass can be used.
  • alkali-free glass is suitable from the viewpoint of weather resistance.
  • the plate thickness of the glass substrate is preferably 0.01 to 2.0 mm, 0.1 to 1 mm, and particularly preferably 0.5 to 0.7 mm. Thereby, thickness reduction of an airtight package can be achieved.
  • the glass substrate may be disposed below the ceramic substrate, but it is preferable to dispose the glass substrate above the ceramic substrate from the viewpoint of laser sealing efficiency.
  • the method for manufacturing an airtight package of the present invention is a process of irradiating a sealing material layer with laser light from the glass substrate side, and sealing the ceramic substrate and the glass substrate through the sealing material layer to obtain an airtight package.
  • a semiconductor laser a YAG laser, a CO 2 laser, an excimer laser, an infrared laser, and the like are preferable in terms of easy handling.
  • the atmosphere for laser sealing is not particularly limited, and may be an air atmosphere or an inert atmosphere such as a nitrogen atmosphere.
  • FIG. 2 is a schematic cross-sectional view for explaining an embodiment of the hermetic package of the present invention.
  • a member (piezoelectric vibrator element) 11 is formed in the central region of a rectangular ceramic base 10, and the outer peripheral edge region of the ceramic base 10 surrounds the periphery of the member 11 in a frame shape.
  • a sealing material layer 12 is formed on the surface.
  • the sealing material layer 12 is formed by applying and drying a sealing material paste, followed by sintering.
  • the ceramic substrate 10 is formed with an electrode film (not shown) that electrically connects the member 11 and the outside.
  • the glass substrate 13 is arrange
  • the laser beam L emitted from the laser irradiation device 14 is irradiated along the sealing material layer 12 from the glass substrate 13 side.
  • the sealing material layer 12 softens and flows, the ceramic base 10 and the glass substrate 13 are sealed, and the hermetic structure of the hermetic package 1 is formed.
  • FIG. 3 is a schematic cross-sectional view for explaining an embodiment of the hermetic package of the present invention.
  • the hermetic package 2 has a frame portion 21 in an outer peripheral edge region of a rectangular ceramic substrate 20, and a member (resin in which quantum dots are dispersed) 22 is accommodated therein.
  • a sealing material layer 24 is formed on the top portion 23 of the frame portion 21.
  • the ceramic substrate 20 is produced by sintering a laminate of green sheets.
  • the top portion 23 of the frame portion 21 is previously polished, and the surface roughness Ra is 0.15 ⁇ m or less.
  • the sealing material layer 24 is formed by applying and drying a sealing material paste and then sintering.
  • the ceramic base 20 is formed with an electrode film (not shown) that electrically connects the member 22 and the outside.
  • the glass substrate 25 is disposed above the ceramic substrate 20 so as to be in contact with the sealing material layer 24. Further, the laser beam L emitted from the laser irradiation device 26 is irradiated along the sealing material layer 24 from the glass substrate 25 side. As a result, the sealing material layer 24 softens and flows, the ceramic base 20 and the glass substrate 24 are sealed, and the hermetic structure of the hermetic package 2 is formed.
  • a sealing material was prepared.
  • Table 1 shows the material structure of the sealing material.
  • Bismuth-based glass has a glass composition of mol%, Bi 2 O 3 76.5%, B 2 O 3 8.0%, ZnO 6.0%, CuO 5.0%, Fe 2 O 3 0.5. %, BaO 4.0%, and have the particle sizes listed in Table 1.
  • the glass transition point is a value measured with a push rod type TMA apparatus.
  • Softening point is a value measured with a macro DTA apparatus. The measurement was performed in an air atmosphere at a temperature rising rate of 10 ° C./min, and the measurement was performed from room temperature to 600 ° C.
  • the thermal expansion coefficient is a value measured with a push rod type TMA apparatus.
  • the measurement temperature range is 30 to 300 ° C.
  • a sealing material layer was formed on the ceramic substrate using the sealing material (Sample Nos. 1 to 6).
  • the sealing material vehicle, and solvent shown in Table 1 so that the viscosity is about 100 Pa ⁇ s (25 ° C., Shear rate: 4), until the powder is uniformly dispersed with a three-roll mill. Kneaded and pasted. A vehicle in which an ethyl cellulose resin was dissolved in a glycol ether solvent was used.
  • the above-mentioned sealing material paste has a thickness of about 5 ⁇ m or about 8 ⁇ m, and a width of about 0.1 mm. It was printed in a frame shape with a screen printer so as to be 3 mm. Furthermore, after drying at 120 ° C. for 10 minutes in an air atmosphere, firing is performed at 500 ° C. for 10 minutes in an air atmosphere to incinerate (debinder treatment) and seal the resin component in the sealing material paste. The material was sintered (fixed) to form a sealing material layer on the ceramic substrate. Thereafter, an element was formed in the central region of the ceramic substrate. As a comparative example, a sealing material was formed on a glass substrate under the same firing conditions (Sample Nos. 7 to 9).
  • the average thickness of the sealing material layer is a value measured with a non-contact type laser film thickness meter.
  • the output and scanning speed described in the table are applied along the sealing material layer from the glass substrate side.
  • the sealing material layer was softened and fluidized to seal the ceramic substrate and the glass substrate, and airtight packages described in Tables 2 and 3 were obtained.
  • HAST test Highly Accelerated Temperature and Humidity Stress test
  • the peelability was evaluated as “x” where peeling was recognized.
  • the conditions of the HAST test are 121 ° C., humidity 100%, 2 atm, and 24 hours.
  • the hermetic package of the present invention can be suitably applied to a piezoelectric vibrator package, but besides that, an airtight package that houses a light emitting diode, or a hermetic package that contains a resin in which quantum dots with low heat resistance are dispersed, etc.
  • the present invention can also be suitably applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

 本発明の技術的課題は、内部に収容される部材の熱劣化を招くことなく、素子基体と封着材料層の固着強度を高め得る方法を創案することにより、気密パッケージの長期信頼性を高めることである。本発明の気密パッケージの製造方法は、セラミック基体を用意すると共に、セラミック基体上に封着材料層を形成する工程と、ガラス基板を用意すると共に、ガラス基板がセラミック基体上の封着材料層に接触するように、セラミック基体とガラス基板を配置する工程と、レーザー光をガラス基板側から封着材料層に向けて照射し、封着材料層を介してセラミック基体とガラス基板を封着して、気密パッケージを得る工程と、を備えることを特徴とする。

Description

気密パッケージの製造方法
 本発明は、レーザー光を用いた封着処理(以下、レーザー封着)による気密パッケージの製造方法に関する。
 気密パッケージの特性維持及び長寿命化を図ることが鋭意検討されている。例えば、圧電振動子素子は、周囲環境の酸素や水分に暴露されることで、容易に劣化する敏感な素子である。そこで、圧電振動子パッケージ内に圧電振動子素子を気密状態で組み込み、圧電振動子パッケージの特性維持及び長寿命化を図ることが検討されている。
 圧電振動子パッケージの気密構造として、圧電振動子素子が配置された素子基体の上に、間隔を置いてガラス基板を対向配置させた状態で、圧電振動子素子の周囲を囲むようにガラス基板と素子基体との間の隙間を封着材料層で封着する気密構造が検討されている。なお、素子基体として、セラミック、例えばアルミナが一般的に使用される。
 しかし、圧電振動子素子は、耐熱性が低いことが知られている。よって、封着材料層の軟化流動温度域で焼成して、素子基体とガラス基板を封着すると、圧電振動子素子の特性が熱劣化する虞がある。
特開2008-186697号公報
 近年、気密パッケージの封着方法として、レーザー封着が検討されている。レーザー封着では、封着すべき部分のみを局所加熱し得るため、耐熱性が低い素子等の熱劣化を防止した上で、素子基体とガラス基板を封着することができる。
 その一方で、レーザー封着では、素子基体と封着材料層の固着強度を高めることが困難である。そして、素子基体がセラミックの場合、素子基体と封着材料層の固着強度を高めることが更に困難である。
 詳述すると、レーザー封着は、封着材料層を局所加熱して封着材料層を軟化流動させる方法であるため、封着に要する時間が短く、それに付随して、素子基体と封着材料層が反応する時間も短くなる。結果として、素子基体と封着材料層の界面で、反応層が十分に生成せず、素子基体と封着材料層の固着強度が低下してしまう。
 本発明は、以上の実情に鑑みなされたものであり、その技術的課題は、内部に収容される部材の熱劣化を招くことなく、素子基体と封着材料層の固着強度を高め得る方法を創案することにより、気密パッケージの長期信頼性を高めることである。
 本発明者は、鋭意検討の結果、セラミック基体上に予め封着材料層を形成して、セラミック基体と封着材料層の固着強度を高めた後、封着材料層を介して、ガラス基板を対向配置し、ガラス基板と封着材料層をレーザー封着すると、気密パッケージの封着強度が向上することを見出し、本発明として提案するものである。すなわち、本発明の気密パッケージの製造方法は、セラミック基体を用意すると共に、セラミック基体上に封着材料層を形成する工程と、ガラス基板を用意すると共に、ガラス基板がセラミック基体上の封着材料層に接触するように、セラミック基体とガラス基板を配置する工程と、レーザー光をガラス基板側から封着材料層に向けて照射し、封着材料層を介してセラミック基体とガラス基板を封着して、気密パッケージを得る工程と、を備えることを特徴とする。
 封着材料は、通常、低融点ガラスを含む。この低融点ガラスが、レーザー封着時に素子基体の表層を侵食して、反応層が生成することになる。素子基体がガラスである場合は、レーザー封着により反応層がある程度生成して、固着強度を確保することができる。しかし、素子基体がセラミックである場合、低融点ガラスが、レーザー封着時に素子基体の表層を侵食し難く、反応層が十分に生成しない。つまり素子基体がガラスの場合は、レーザー封着により反応層を形成し得るが、セラミックの場合は、レーザー封着により反応層を形成することが困難である。そこで、本発明では、電気炉焼成等により予めセラミック基体に封着材料層を形成した後、レーザー封着によりセラミック基体とガラス基板を封着している。これにより、セラミック基体と封着材料層の固着強度を高めると共に、ガラス基板と封着材料層の固着強度も確保することができる。なお、電気炉焼成等により予めセラミック基体に封着材料層を形成すれば、セラミック基体の表層に反応層を十分に形成することができる。
 第二に、本発明の気密パッケージの製造方法は、基部と基部上に設けられた枠部とを有するセラミック基体を用い、枠部の頂部に封着材料層を形成することが好ましい。このようにすれば、圧電振動子素子等の部材を気密パッケージ内に収容し易くなる。
 第三に、本発明の気密パッケージの製造方法は、枠部の頂部を研磨処理した後に、封着材料層を形成することが好ましい。
 第四に、本発明の気密パッケージの製造方法は、枠部の頂部の表面粗さRaが0.5μm未満になるように、枠部の頂部を研磨処理することが好ましい。
 第五に、本発明の気密パッケージの製造方法は、封着材料ペーストを塗布、焼成して、セラミック基体上に封着材料の焼結体からなる封着材料層を形成することが好ましい。これにより、封着材料層の機械的強度を高めつつ、薄い封着材料層を形成し易くなる。
 第六に、本発明の気密パッケージの製造方法は、55~95体積%のビスマス系ガラスと5~45体積%の耐火性フィラーを含有する封着材料を用いることが好ましい。ビスマス系ガラスは、他の系のガラスと比較して、セラミックとの反応性が良好である。これにより、セラミック基体と封着材料層の固着強度を高めることができる。更に、ビスマス系ガラスは、低融点であるが、熱的安定性(耐失透性)が高い。これにより、レーザー封着時に良好に軟化流動し、レーザー封着の精度を高めることができる。なお、「ビスマス系ガラス」とは、Biを主成分とするガラスを指し、具体的にはガラス組成中にBiを50質量%以上含むガラスを指す。
 第七に、本発明の気密パッケージの製造方法は、封着材料層の平均厚みを10μm未満とすることが好ましい。
 第八に、本発明の気密パッケージの製造方法は、セラミック基体と封着材料層の熱膨張係数の差を45×10-7/℃未満とし、且つ封着材料層とガラス基板の熱膨張係数の差を45×10-7/℃未満とすることが好ましい。これにより、封着部分に残留する応力が小さくなるため、封着部分の応力破壊を防止し易くなる。
 第九に、本発明の気密パッケージの製造方法は、グリーンシートの積層体を焼結して、セラミック基体を作製することが好ましい。このようにすれば、枠部を有するセラミック基体を作製し易くなる。
 第十に、本発明の気密パッケージは、上記の気密パッケージの製造方法により作製されてなることが好ましい。
マクロ型DTA装置で測定した時の封着材料の軟化点を示す模式図である。 本発明の気密パッケージの一実施形態を説明するための断面概念図である。 本発明の気密パッケージの一実施形態を説明するための断面概念図である。
 本発明の気密パッケージの製造方法では、セラミック基体を用意すると共に、セラミック基体上に封着材料層を形成する工程を有する。セラミック基体上に封着材料層を形成する方法として、封着材料ペーストをセラミック基体上に塗布して、封着材料膜を形成した後、封着材料膜を乾燥し、溶剤を揮発させて、更に封着材料の軟化点より高い温度で焼成して、封着材料ペースト中の樹脂成分の焼却(脱バインダー処理)及び封着材料の焼結(固着)を行う方法が好ましい。このようにすれば、封着材料層を容易に形成し得ると共に、セラミック基体と封着材料層の固着強度を高めることができる。
 セラミック基体として、材料コストと焼結強度の観点から、アルミナ、窒化アルミニウム、ジルコニア、ムライト等が好ましい。また、セラミック基体として、グリーンシートの積層体を焼結してなるガラスセラミック(以下、LTCCと称する)も好ましい。アルミナは、材料コストの点で有利である。窒化アルミニウムは、放熱性の観点から有利である。LTCCは、枠部を有するセラミック基体を作製し易い利点を有する。
 セラミック基体の厚みは0.1~1.0mmが好ましい。これにより、気密パッケージの薄型化を図ることができる。
 また、セラミック基体として、基部と基部上に設けられた枠部とを有するセラミック基体を用い、枠部の頂部に封着材料層を形成することが好ましい。このようにすれば、圧電振動子素子等の部材を気密パッケージ内に収容し易くなる。
 この場合、枠部の頂部を研磨処理することが好ましく、その場合、セラミック基体の頂部の表面粗さRaは、好ましくは0.5μm未満、0.2μm以下、特に0.01~0.15μmであり、セラミック基体の頂部の表面粗さRMSは、好ましくは1.0μm未満、0.5μm以下、特に0.05~0.3μmである。このようにすれば、封着材料層の表面平滑性が向上して、レーザー封着の精度を高めることができる。結果として、気密パッケージの封着強度を高めることが可能になる。なお、「表面粗さRa」及び「表面粗さRMS」は、例えば、触針式又は非接触式のレーザー膜厚計や表面粗さ計により測定することができる。
 封着材料ペーストは、セラミック基体の外周端縁領域に沿って、額縁状に塗布されることが好ましい。このようにすれば、デバイスとして機能する有効面積を広げることができる。また圧電振動子素子等の部材を気密パッケージ内に収容し易くなる。
 セラミック基体が枠部を有する場合、セラミック基体の外周端縁領域に沿って、枠部を額縁状に設けると共に、その枠部の頂部に封着材料ペーストを塗布することが好ましい。このようにすれば、デバイスとして機能する有効面積を広げることができる。また圧電振動子素子等の部材を枠部の内部に収容し易くなる。
 封着材料ペーストは、通常、三本ローラー等により、封着材料とビークルを混練することにより作製される。ビークルは、通常、樹脂と溶剤を含む。ビークルに用いる樹脂として、アクリル酸エステル(アクリル樹脂)、エチルセルロース、ポリエチレングリコール誘導体、ニトロセルロース、ポリメチルスチレン、ポリエチレンカーボネート、ポリプロピレンカーボネート、メタクリル酸エステル等が使用可能である。ビークルに用いる溶剤として、N、N’-ジメチルホルムアミド(DMF)、α-ターピネオール、高級アルコール、γ-ブチルラクトン(γ-BL)、テトラリン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3-メトキシ-3-メチルブタノール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、ジメチルスルホキシド(DMSO)、N-メチル-2-ピロリドン等が使用可能である。
封着材料として、種々の材料が使用可能であり、例えば、ガラス粉末と耐火性フィラー粉末の複合粉末が使用可能である。ガラス粉末としては、種々の材料が使用可能であり、例えば、ビスマス系ガラス、リン酸錫系ガラス、バナジウム系ガラス等が使用可能であり、熱的安定性と反応層の深さの観点から、ビスマス系ガラスが好適である。なお、「リン酸錫系ガラス」とは、SnOとPを主成分とするガラスを指し、具体的にはガラス組成中にSnOとPを合量で40質量%以上含むガラスを指す。「バナジウム系ガラス」とは、Vを主成分とするガラスを指し、具体的にはガラス組成中にVを合量で25質量%以上含むガラスを指す。
 特に、封着材料として、55~95体積%のビスマス系ガラスと5~45体積%の耐火性フィラーを含有する封着材料を用いることが好ましく、60~85体積%のビスマス系ガラスと15~40体積%の耐火性フィラーを含有する封着材料を用いることが更に好ましく、60~80体積%のビスマス系ガラスと20~40体積%の耐火性フィラーを含有する封着材料を用いることが特に好ましい。ビスマス系ガラスに耐火性フィラーを添加すれば、封着材料の熱膨張係数が、セラミック基体とガラス基板の熱膨張係数に整合し易くなる。その結果、レーザー封着後に封着部分に不当な応力が残留する事態を防止し易くなる。一方、耐火性フィラー粉末の含有量が多過ぎると、ビスマス系ガラスの含有量が相対的に少なくなるため、封着材料層の表面平滑性が低下して、レーザー封着の精度が低下し易くなる。
 ビスマス系ガラスは、ガラス組成として、遷移金属酸化物を0.5質量%以上(好ましくは2~18質量%、より好ましくは3~15質量%、更に好ましくは4~12質量%、特に好ましくは5~10質量%)含むことが望ましい。このようにすれば、熱的安定性の低下を抑制しつつ、光吸収特性を高めることができる。
 ビスマス系ガラスは、ガラス組成として、質量%で、Bi 67~90%、B 2~12%、ZnO 1~20%、CuO+Fe 0.5~18%を含有することが好ましい。上記のように各成分の含有量を限定した理由を以下に説明する。なお、各成分の含有範囲の説明において、%表示は、質量%を指す。また、「CuO+Fe」は、CuOとFeの合量である。
 Biは、反応層を形成するための主要成分であると共に、軟化点を下げるための主要成分であり、その含有量は、好ましくは67~87%、より好ましくは70~85%、特に好ましくは72~83%である。Biの含有量が67%より少ないと、反応層が生成し難くなることに加えて、軟化点が高くなり過ぎて、レーザー光を照射しても、ガラスが軟化し難くなる。一方、Biの含有量が90%より多いと、ガラスが熱的に不安定になり、溶融時、焼結(固着)時、又はレーザー封着時にガラスが失透し易くなる。
 Bは、ビスマス系ガラスのガラスネットワークを形成する成分であり、その含有量は、好ましくは2~12%、より好ましくは3~10%、更に好ましくは4~10%、特に好ましくは5~9%である。Bの含有量が2%より少ないと、ガラスが熱的に不安定になり、溶融時、焼結(固着)時、又はレーザー封着時にガラスが失透し易くなる。一方、Bの含有量が12%より多いと、軟化点が高くなり過ぎて、レーザー光を照射しても、ガラスが軟化し難くなる。
 ZnOは、溶融時、焼結(固着)時、又はレーザー封着時の失透を抑制すると共に、熱膨張係数を低下させる成分であり、その含有量は、好ましくは1~20%、より好ましくは2~15%、更に好ましくは3~11%、特に好ましくは3~9%である。ZnOの含有量が1%より少ないと、上記効果を得難くなる。一方、ZnOの含有量が20%より多いと、ガラス組成内の成分バランスが損なわれて、逆にガラスが失透し易くなる。
 CuO+Feは、光吸収特性を有する成分であり、所定の発光中心波長を有するレーザー光を照射すると、レーザー光を吸収して、ガラスを軟化させ易くする成分である。また、CuO+Feは、溶融時、焼結(固着)時、又はレーザー封着時の失透を抑制する成分である。CuO+Feの含有量は、好ましくは0.5~18%、より好ましくは3~15%、更に好ましくは3.5~15%、更に好ましくは4~12%、特に好ましくは5~10%である。CuO+Feの含有量が0.5%より少ないと、光吸収特性が乏しくなり、レーザー光を照射しても、ガラスが軟化し難くなる。一方、CuO+Feの含有量が18%より多いと、ガラス組成内の成分バランスが損なわれて、逆にガラスが失透し易くなる。なお、CuOの含有量は、好ましくは0~15%、1~15%、2~12%、3~10%、特に4.5~10%である。Feの含有量は、好ましくは0~7%、0.05~7%、0.1~4%、特に0.2~3%である。
 酸化鉄中のFeイオンは、Fe2+又はFe3+の状態で存在する。本発明において、酸化鉄中のFeイオンは、Fe2+又はFe3+の何れかに限定されるものではなく、何れであっても構わない。よって、本発明では、Fe2+の場合でも、Feに換算した上で取り扱うこととする。特に、照射光として赤外レーザーを使用する場合、Fe2+が赤外域に吸収ピークを有するため、Fe2+の割合は大きい方が好ましく、例えば、酸化鉄中のFe2+/Fe3+の割合を0.03以上(望ましくは0.08以上)に規制することが好ましい。
 上記成分以外にも、例えば、以下の成分を添加してもよい。
 SiOは、耐水性を高める成分である。SiOの含有量は、好ましくは0~10%、0~3%、特に0~1%未満である。SiOの含有量が10%より多いと、軟化点が高くなり過ぎて、レーザー光を照射しても、ガラスが軟化し難くなる。
 Alは、耐水性を高める成分である。Alの含有量は、好ましくは0~5%、0~2%、特に0~0.5%未満である。Alの含有量が5%より多いと、軟化点が高くなり過ぎて、レーザー光を照射しても、ガラスが軟化し難くなる。
 MgO+CaO+SrO+BaO(MgO、CaO、SrO及びBaOの合量)は、溶融時、焼結(固着)時、又はレーザー封着時の失透を抑制する成分であり、MgO+CaO+SrO+BaOの含有量は、好ましくは0~15%、特に0~10%である。MgO+CaO+SrO+BaOの含有量が15%より多いと、軟化点が高くなり過ぎて、レーザー光を照射しても、ガラスが軟化し難くなる。なお、MgO、CaO及びSrOの含有量は、それぞれ0~5%、特に0~2%が好ましい。BaOの含有量は、好ましくは0~10%、特に0~8%である。
 CeO、WO、In、Ga及びSbは、溶融時、焼結(固着)時、又はレーザー封着時の失透を抑制する成分である。各成分の含有量は、好ましくは0~10%、0~5%、0~2%、特に0~1%である。各成分の含有量が10%より多いと、ガラス組成内の成分バランスが損なわれて、逆にガラスが失透し易くなる。なお、熱的安定性を高める観点から、Sbの微量添加が好ましく、具体的にはSbを0.05%以上添加することが好ましい。
 Li、Na、K及びCsの酸化物は、軟化点を低下させる成分であるが、溶融時に失透を助長する作用を有するため、合量で1%未満に規制することが好ましい。
 Pは、溶融時の失透を抑制する成分である。しかし、Pの含有量が1%より多いと、溶融時にガラスが分相し易くなる。
 La、Y及びGdは、溶融時の分相を抑制する成分であるが、これらの合量が3%より多いと、軟化点が高くなり過ぎて、レーザー光を照射しても、ガラスが軟化し難くなる。
 NiO、V、CoO、MoO、TiO及びMnOは、光吸収特性を有する成分であり、所定の発光中心波長を有するレーザー光を照射すると、レーザー光を吸収して、ガラスを軟化させ易くする成分である。各成分の含有量は、好ましくは0~7%、特に0~3%である。各成分の含有量が7%より多いと、レーザー封着時にガラスが失透し易くなる。
 PbOは、軟化点を低下させる成分であるが、環境的影響が懸念される成分である。よって、PbOの含有量は、好ましくは0.1%未満である。
 上記以外の成分であっても、ガラス特性を損なわない範囲で、例えば5%まで添加してもよい。
 耐火性フィラーとして、コーディエライト、ジルコン、酸化錫、酸化ニオブ、リン酸ジルコニウム系セラミック、ウイレマイトから選ばれる一種又は二種以上を用いることが好ましい。これらの耐火性フィラーは、熱膨張係数が低いことに加えて、機械的強度が高く、しかもビスマス系ガラスとの適合性が良好である。上記の耐火性フィラーの内、コーディエライトが最も好ましい。コーディエライトは、粒径が小さくても、レーザー封着時にビスマス系ガラスを失透させ難い性質を有している。なお、上記の耐火性フィラー以外にも、β-ユークリプタイト、石英ガラス等を添加してもよい。
 耐火性フィラー粉末(特にコーディエライト)中にCuO、Fe等の遷移金属酸化物を0.1~5質量%(好ましくは1~3質量%)ドープすることが好ましい。このようにすれば、耐火性フィラー粉末に光吸収特性が付与されるため、封着材料の光吸収特性を高めることができる。
 耐火性フィラーの平均粒径D50は、好ましくは2μm未満、特に1.5μm未満である。耐火性フィラーの平均粒径D50が2μm未満であると、封着材料層の表面平滑性が向上すると共に、封着材料層の平均厚みを10μm未満に規制し易くなり、結果として、レーザー封着の精度を高めることができる。
 耐火性フィラーの最大粒径D99は、好ましくは5μm未満、4μm以下、特に3μm以下である。耐火性フィラーの最大粒径D99を5μm未満であると、封着材料層の表面平滑性が向上すると共に、封着材料層の平均厚みを10μm未満に規制し易くなり、結果として、レーザー封着の精度を高めることができる。ここで、「平均粒径D50」と「最大粒径D99」は、レーザー回折法により体積基準で測定した値を指す。
 封着材料の熱膨張係数は、好ましくは60×10-7~95×10-7/℃、60×10-7~85×10-7/℃、特に65×10-7~80×10-7/℃である。このようにすれば、封着材料層の熱膨張係数がガラス基板やセラミック基体の熱膨張係数に整合して、封着部分に残留する応力が小さくなると共に、耐火性フィラーの含有量を低減し得るため、レーザー封着時に封着材料層が軟化流動し易くなる。なお、熱膨張係数は、30~300℃の温度範囲において、押棒式TMA装置で測定した値である。
 セラミック基体と封着材料層の熱膨張係数の差は45×10-7/℃未満、特に30×10-7/℃以下が好ましく、封着材料層とガラス基板の熱膨張係数は45×10-7/℃未満、特に30×10-7/℃以下が好ましい。熱膨張係数の差が大き過ぎると、封着部分に残留する応力が不当に高くなり、気密パッケージの長期信頼性が低下する虞がある。
 封着材料の軟化点は、好ましくは500℃以下、480℃以下、特に450℃以下である。軟化点が500℃より高いと、封着材料の焼結(固着)時に表面平滑性を得難くなり、更にレーザー封着時に封着材料が軟化流動し難くなる。軟化点の下限は特に設定されないが、ガラスの熱的安定性を考慮すれば、軟化点は350℃以上が好ましい。ここで、「軟化点」は、マクロ型DTA装置で測定した際の第四変曲点であり、図1中のTsに相当する。
 封着材料は、光吸収特性を高めるために、更にレーザー吸収材を含んでもよいが、レーザー吸収材は、ビスマス系ガラスの失透を助長する作用を有する。よって、レーザー吸収材の含有量は、好ましくは0~15体積%、0~12体積%、特に0~10体積%である。レーザー吸収材の含有量が15体積%より多いと、レーザー封着時にガラスが失透し易くなる。レーザー吸収材として、Cu系酸化物、Fe系酸化物、Cr系酸化物、Mn系酸化物及びこれらのスピネル型複合酸化物等が使用可能であり、特に、ビスマス系ガラスとの適合性の観点から、Mn系酸化物が好ましい。なお、レーザー吸収材を添加する場合、その含有量は0.1体積%以上、0.5体積%以上、1体積%以上、1.5体積%以上、特に2体積%以上が好ましい。
 封着材料層の形成は、セラミック基体上に部材を実装した後に行ってもよいが、部材(特に熱劣化し易い素子)の熱劣化を防止する観点から、セラミック基体上に部材を実装する前に行うことが好ましい。
 セラミック基体上に封着材料層を形成した後の封着材料層の平均厚みを10μm未満、7μm未満、特に5μm未満に規制することが好ましい。同様にして、レーザー封着後の封着材料層の平均厚みも10μm未満、7μm未満、特に5μm未満に規制することが好ましい。封着材料層の平均厚みが小さい程、封着材料層とセラミック基体及びガラス基板の熱膨張係数が十分に整合していなくても、レーザー封着後に封着部分に残留する応力が低減される。また、レーザー封着の精度を高めることもできる。なお、上記のように封着材料層の平均厚みを規制する方法としては、封着材料ペーストを薄く塗布する方法、封着材料層を形成した後に封着材料層の表面を研磨処理する方法が挙げられる。
 セラミック基体上に封着材料層を形成した後の封着材料層の表面粗さRaを0.5μm未満、0.2μm以下、特に0.01~0.15μmに規制することが好ましい。また、セラミック基体上に封着材料層を形成した後の封着材料層の表面粗さRMSを1.0μm未満、0.5μm以下、特に0.05~0.3μmに規制することが好ましい。このようにすれば、ガラス基板と封着材料層の密着性が向上し、レーザー封着の精度が向上する。なお、上記のように封着材料層の表面粗さRa、RMSを規制する方法としては、セラミック基体の枠部の頂部を研磨処理する方法、耐火性フィラー粉末の粒度を規制する方法、封着材料層の表面を研磨処理する方法が挙げられる。
 本発明の気密パッケージの製造方法は、ガラス基板を用意すると共に、ガラス基板がセラミック基体上の封着材料層に接触するように、セラミック基体とガラス基板を配置する工程を有する。ガラス基板として、種々のガラスが使用可能である。例えば、無アルカリガラス、ホウケイ酸ガラス、ソーダ石灰ガラスが使用可能である。特に、耐候性の観点から、無アルカリガラスが好適である。
 ガラス基板の板厚は0.01~2.0mm、0.1~1mm、特に0.5~0.7mmが好ましい。これにより、気密パッケージの薄型化を図ることができる。
 ガラス基板は、セラミック基体よりも下方に配置してもよいが、レーザー封着の効率の観点から、ガラス基板をセラミック基体の上方に配置することが好ましい。
 本発明の気密パッケージの製造方法は、ガラス基板側からレーザー光を封着材料層に向けて照射し、封着材料層を介してセラミック基体とガラス基板を封着して、気密パッケージを得る工程を有する。
 レーザーとして、種々のレーザーを使用することができる。特に、半導体レーザー、YAGレーザー、COレーザー、エキシマレーザー、赤外レーザー等は、取扱いが容易な点で好ましい。
 レーザー封着を行う雰囲気は特に限定されず、大気雰囲気でもよく、窒素雰囲気等の不活性雰囲気でもよい。
 レーザー封着を行う際に、(100℃以上、且つガラス基板の歪点以下)の温度でガラス基板を予備加熱すると、サーマルショックによるガラス基板の割れを抑制することができる。またレーザー封着直後に、ガラス基板側からアニールレーザーを照射すると、サーマルショックによるガラス基板の割れを抑制することができる。
 以下、図面を参照しながら、本発明の気密パッケージの一実施形態を説明する。
 図2は、本発明の気密パッケージの一実施形態を説明するための断面概念図である。気密パッケージ1は、矩形状のセラミック基体10の中央領域に部材(圧電振動子素子)11が形成されており、且つ部材11の周囲を額縁状に取り囲むように、セラミック基体10の外周端縁領域に封着材料層12が形成されている。ここで、封着材料層12は、封着材料ペーストを塗布、乾燥した後、焼結させることにより形成したものである。なお、セラミック基体10には、部材11と外部を電気的に接続する電極膜(図示されていない)が形成されている。そして、ガラス基板13は、封着材料層12と接触するように、セラミック基体10の上方に配置されている。更に、レーザー照射装置14から出射したレーザー光Lが、ガラス基板13側から封着材料層12に沿って照射される。これにより、封着材料層12が軟化流動し、セラミック基体10とガラス基板13が封着されて、気密パッケージ1の気密構造が形成される。
 図3は、本発明の気密パッケージの一実施形態を説明するための断面概念図である。気密パッケージ2は、矩形状のセラミック基体20の外周端縁領域に枠部21を有し、その内部に部材(量子ドットが分散された樹脂)22が収容されている。そして、この枠部21の頂部23には封着材料層24が形成されている。ここで、セラミック基体20は、グリーンシートの積層体を焼結させることにより作製したものである。また、枠部21の頂部23は、予め研磨処理されており、表面粗さRaが0.15μm以下になっている。更に、封着材料層24は、封着材料ペーストを塗布、乾燥した後、焼結させることにより形成したものである。なお、セラミック基体20には、部材22と外部を電気的に接続する電極膜(図示されていない)が形成されている。ガラス基板25は、封着材料層24と接触するようにセラミック基体20の上方に配置されている。更に、レーザー照射装置26から出射したレーザー光Lが、ガラス基板25側から封着材料層24に沿って照射される。これにより、封着材料層24が軟化流動し、セラミック基体20とガラス基板24が封着されて、気密パッケージ2の気密構造が形成される。
 以下、実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は、単なる例示である。本発明は、以下の実施例に何ら限定されない。
 まず封着材料を作製した。表1は、封着材料の材料構成を示している。ビスマス系ガラスは、ガラス組成として、モル%で、Bi 76.5%、B 8.0%、ZnO 6.0%、CuO 5.0%、Fe 0.5%、BaO 4.0%を含有し、且つ表1に記載の粒度を有している。
Figure JPOXMLDOC01-appb-T000001
 上記のビスマス系ガラスと耐火性フィラー粉末とを表1に示す割合で混合して、封着材料を作製した。耐火物フィラーとして、表2に示す粒度を有するコーディエライトを用いた。この封着材料につき、ガラス転移点、軟化点、熱膨張係数を測定した。その結果を表1に示す。
 ガラス転移点は、押棒式TMA装置で測定した値である。
 軟化点は、マクロ型DTA装置で測定した値である。測定は、大気雰囲気下において、昇温速度10℃/分で行い、室温から600℃まで測定を行った。
 熱膨張係数は、押棒式TMA装置で測定した値である。測定温度範囲は30~300℃である。
 次に、上記封着材料を用いて、セラミック基体上に封着材料層を形成した(試料No.1~6)。まず粘度が約100Pa・s(25℃、Shear rate:4)になるように、表1に記載の封着材料とビークルおよび溶剤を混練した後、更に三本ロールミルで粉末が均一に分散するまで混錬し、ペースト化した。ビークルにはグリコールエーテル系溶剤にエチルセルロース樹脂を溶解させたものを使用した。次に、縦3mm×横3mm×厚み0.8mmのセラミック基体(アルミナ又はLTCC)の外周端縁領域に沿って、上記の封着材料ペーストを厚み:約5μm又は約8μm、幅:約0.3mmになるように、スクリーン印刷機で額縁状に印刷した。さらに、大気雰囲気下にて、120℃で10分間乾燥した後、大気雰囲気下にて、500℃で10分間焼成して、封着材料ペースト中の樹脂成分の焼却(脱バインダー処理)及び封着材料の焼結(固着)を行い、セラミック基体上に封着材料層を形成した。その後、セラミック基体の中央領域に素子を形成した。比較例として、同様の焼成条件により、ガラス基板上に封着材料を形成した(試料No.7~9)。
 封着材料層の平均厚みは、非接触式レーザー膜厚計で測定した値である。
 最後に、封着材料層を介して、セラミック基体とガラス基板とを大気雰囲気下で接触配置した後、ガラス基板側から封着材料層に沿って、表中に記載の出力、走査速度にて、波長808nmのレーザー光を照射することにより、封着材料層を軟化流動させて、セラミック基体とガラス基板を封着し、表2、3に記載の気密パッケージを得た。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 各試料に対して、高温高湿高圧試験:HAST試験(Highly Accelerated Temperature and Humidity Stress test)を行った後、セラミック基体とガラス基板について剥離の有無を観察し、剥離がなかったものを「○」、剥離が認められたものを「×」として、剥離性を評価した。なお、HAST試験の条件は、121℃、湿度100%、2atm、24時間である。
 表2、3から明らかなように、試料No.1~6は、セラミック基体側に封着材料層を形成した後、レーザー封着したため、剥離性の評価が良好であった。これは、封着材料層とセラミック基体が高い固着強度を有した状態でレーザー封着されたことを意味している。一方、試料No.7~9は、ガラス基板側に封着材料層を形成した後、レーザー封着したため、剥離性の評価が不良であった。これは、レーザー封着による封着材料層の軟化流動が短時間であるため、封着材料層とセラミック基体が十分に反応せず、強い固着強度が得られなかったことを意味している。
 本発明の気密パッケージは、圧電振動子パッケージに好適に適用可能であるが、それ以外にも、発光ダイオードを収容する気密パッケージ、耐熱性が低い量子ドットを分散させた樹脂等を収容する気密パッケージ等にも好適に適用可能である。
 1、2 気密パッケージ
10、20 セラミック基体
11、22 部材
12、24 封着材料層
13、25 ガラス基板
14、26レーザー照射装置
21 枠部
23 枠部の頂部
L レーザー光

Claims (10)

  1.  セラミック基体を用意すると共に、セラミック基体上に封着材料層を形成する工程と、
     ガラス基板を用意すると共に、ガラス基板がセラミック基体上の封着材料層に接触するように、セラミック基体とガラス基板を配置する工程と、
     レーザー光をガラス基板側から封着材料層に向けて照射し、封着材料層を介してセラミック基体とガラス基板を封着して、気密パッケージを得る工程と、を備えることを特徴とする気密パッケージの製造方法。
  2.  基部と基部上に設けられた枠部とを有するセラミック基体を用い、枠部の頂部に封着材料層を形成することを特徴とする請求項1に記載の気密パッケージの製造方法。
  3.  枠部の頂部を研磨処理した後に、封着材料層を形成することを特徴とする請求項2に記載の気密パッケージの製造方法。
  4.  枠部の頂部の表面粗さRaが0.5μm未満になるように、枠部の頂部を研磨処理することを特徴とする請求項2又は3に記載の気密パッケージの製造方法。
  5.  封着材料ペーストを塗布、焼成して、セラミック基体上に封着材料の焼結体からなる封着材料層を形成することを特徴とする請求項1~4の何れかに記載の気密パッケージの製造方法。
  6.  55~95体積%のビスマス系ガラスと5~45体積%の耐火性フィラーを含有する封着材料を用いることを特徴とする請求項5に記載の気密パッケージの製造方法。
  7.  封着材料層の平均厚みを10μm未満とすることを特徴とする請求項1~6の何れかに記載の気密パッケージの製造方法。
  8.  セラミック基体と封着材料層の熱膨張係数の差を45×10-7/℃未満とし、且つ封着材料層とガラス基板の熱膨張係数の差を45×10-7/℃未満とすることを特徴とする請求項1~7の何れかに記載の気密パッケージの製造方法。
  9.  グリーンシートの積層体を焼結して、セラミック基体を作製することを特徴とする請求項1~8の何れかに記載の気密パッケージの製造方法。
  10.  請求項1~9の何れかに記載の気密パッケージの製造方法により作製されてなることを特徴とする気密パッケージ。
PCT/JP2016/055675 2015-02-26 2016-02-25 気密パッケージの製造方法 WO2016136899A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177015495A KR102406788B1 (ko) 2015-02-26 2016-02-25 기밀 패키지의 제조 방법
US15/552,535 US10600954B2 (en) 2015-02-26 2016-02-25 Method for producing hermetic package
JP2017502479A JP6697718B2 (ja) 2015-02-26 2016-02-25 気密パッケージの製造方法
CN201680004161.5A CN107112974B (zh) 2015-02-26 2016-02-25 气密封装体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-036344 2015-02-26
JP2015036344 2015-02-26

Publications (1)

Publication Number Publication Date
WO2016136899A1 true WO2016136899A1 (ja) 2016-09-01

Family

ID=56788949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055675 WO2016136899A1 (ja) 2015-02-26 2016-02-25 気密パッケージの製造方法

Country Status (6)

Country Link
US (1) US10600954B2 (ja)
JP (1) JP6697718B2 (ja)
KR (1) KR102406788B1 (ja)
CN (1) CN107112974B (ja)
TW (1) TWI686968B (ja)
WO (1) WO2016136899A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018064081A (ja) * 2016-10-07 2018-04-19 日本電気硝子株式会社 気密パッケージ及びその製造方法
JP2018113424A (ja) * 2017-01-11 2018-07-19 日本電気硝子株式会社 気密パッケージ及びガラス蓋
WO2018131471A1 (ja) * 2017-01-11 2018-07-19 日本電気硝子株式会社 気密パッケージ及びガラス蓋
WO2018139148A1 (ja) * 2017-01-26 2018-08-02 日本電気硝子株式会社 気密パッケージ
WO2018147210A1 (ja) * 2017-02-07 2018-08-16 日本電気硝子株式会社 気密パッケージ
JP2018135246A (ja) * 2017-02-23 2018-08-30 日本電気硝子株式会社 ビスマス系ガラス粉末、封着材料及び気密パッケージ
JP2018142568A (ja) * 2017-02-27 2018-09-13 日本電気硝子株式会社 パッケージ基体及びそれを用いた気密パッケージ
CN108572005A (zh) * 2017-03-13 2018-09-25 欧姆龙株式会社 环境传感器
WO2019013009A1 (ja) * 2017-07-14 2019-01-17 日本電気硝子株式会社 封着材料層付きパッケージ基体の製造方法及び気密パッケージの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI686968B (zh) * 2015-02-26 2020-03-01 日商日本電氣硝子股份有限公司 氣密封裝及其製造方法
JP7168903B2 (ja) * 2018-09-06 2022-11-10 日本電気硝子株式会社 気密パッケージ
DE102019121298A1 (de) * 2019-08-07 2021-02-11 Schott Ag Hermetisch verschlossene Glasumhäusung
US11712753B2 (en) 2020-04-09 2023-08-01 Jenoptik Optical Systems Gmbh Method for making a thermally stable connection between a glass element and a support element, method for producing an optical device, and optical device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003158208A (ja) * 2001-11-20 2003-05-30 Seiko Epson Corp 圧電デバイス及びその製造方法
WO2012108083A1 (ja) * 2011-02-07 2012-08-16 株式会社Neomaxマテリアル 気密封止用蓋材、電子部品収納用パッケージおよび気密封止用蓋材の製造方法
JP2013038727A (ja) * 2011-08-11 2013-02-21 Nec Schott Components Corp 気密パッケージおよびその製造方法。
JP2015023263A (ja) * 2013-07-24 2015-02-02 日本電気硝子株式会社 電気素子パッケージの製造方法及び電気素子パッケージ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4784974A (en) * 1982-08-05 1988-11-15 Olin Corporation Method of making a hermetically sealed semiconductor casing
US4769345A (en) * 1987-03-12 1988-09-06 Olin Corporation Process for producing a hermetically sealed package for an electrical component containing a low amount of oxygen and water vapor
US5155299A (en) * 1988-10-05 1992-10-13 Olin Corporation Aluminum alloy semiconductor packages
US5188985A (en) * 1991-03-29 1993-02-23 Aegis, Inc. Surface mount device with high thermal conductivity
US5227583A (en) * 1991-08-20 1993-07-13 Microelectronic Packaging America Ceramic package and method for making same
US7091605B2 (en) * 2001-09-21 2006-08-15 Eastman Kodak Company Highly moisture-sensitive electronic device element and method for fabrication
US6621379B1 (en) * 2001-11-29 2003-09-16 Clarisay, Incorporated Hermetic package for surface acoustic wave device and method of manufacturing the same
JP2008186697A (ja) 2007-01-30 2008-08-14 Univ Of Tokyo パネル体の製造方法
US9090498B2 (en) * 2010-03-29 2015-07-28 Nippon Electric Glass Co., Ltd. Sealing material and paste material using same
KR20130119319A (ko) * 2010-10-01 2013-10-31 니폰 덴키 가라스 가부시키가이샤 전기소자 패키지
JPWO2014092013A1 (ja) * 2012-12-10 2017-01-12 旭硝子株式会社 封着材料、封着材料層付き基板、積層体および電子デバイス
TWI686968B (zh) * 2015-02-26 2020-03-01 日商日本電氣硝子股份有限公司 氣密封裝及其製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003158208A (ja) * 2001-11-20 2003-05-30 Seiko Epson Corp 圧電デバイス及びその製造方法
WO2012108083A1 (ja) * 2011-02-07 2012-08-16 株式会社Neomaxマテリアル 気密封止用蓋材、電子部品収納用パッケージおよび気密封止用蓋材の製造方法
JP2013038727A (ja) * 2011-08-11 2013-02-21 Nec Schott Components Corp 気密パッケージおよびその製造方法。
JP2015023263A (ja) * 2013-07-24 2015-02-02 日本電気硝子株式会社 電気素子パッケージの製造方法及び電気素子パッケージ

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018064081A (ja) * 2016-10-07 2018-04-19 日本電気硝子株式会社 気密パッケージ及びその製造方法
JP2018113424A (ja) * 2017-01-11 2018-07-19 日本電気硝子株式会社 気密パッケージ及びガラス蓋
WO2018131471A1 (ja) * 2017-01-11 2018-07-19 日本電気硝子株式会社 気密パッケージ及びガラス蓋
US11043616B2 (en) 2017-01-26 2021-06-22 Nippon Electric Glass Co., Ltd. Airtight package
CN109923665A (zh) * 2017-01-26 2019-06-21 日本电气硝子株式会社 气密封装体
CN109923665B (zh) * 2017-01-26 2023-10-13 日本电气硝子株式会社 气密封装体
KR102380455B1 (ko) * 2017-01-26 2022-03-31 니폰 덴키 가라스 가부시키가이샤 기밀 패키지
WO2018139148A1 (ja) * 2017-01-26 2018-08-02 日本電気硝子株式会社 気密パッケージ
JP2018120974A (ja) * 2017-01-26 2018-08-02 日本電気硝子株式会社 気密パッケージ
KR20190104983A (ko) * 2017-01-26 2019-09-11 니폰 덴키 가라스 가부시키가이샤 기밀 패키지
CN110249421A (zh) * 2017-02-07 2019-09-17 日本电气硝子株式会社 气密封装体
KR102414498B1 (ko) * 2017-02-07 2022-06-29 니폰 덴키 가라스 가부시키가이샤 기밀 패키지
US11871676B2 (en) 2017-02-07 2024-01-09 Nippon Electric Glass Co., Ltd. Airtight package including a package base and a glass cover hermetically sealed with each other via a sealing material layer
CN110249421B (zh) * 2017-02-07 2023-10-24 日本电气硝子株式会社 气密封装体
KR20190112716A (ko) * 2017-02-07 2019-10-07 니폰 덴키 가라스 가부시키가이샤 기밀 패키지
JPWO2018147210A1 (ja) * 2017-02-07 2019-12-19 日本電気硝子株式会社 気密パッケージ
WO2018147210A1 (ja) * 2017-02-07 2018-08-16 日本電気硝子株式会社 気密パッケージ
JP7222245B2 (ja) 2017-02-07 2023-02-15 日本電気硝子株式会社 気密パッケージ
CN110248904A (zh) * 2017-02-23 2019-09-17 日本电气硝子株式会社 铋系玻璃粉末、密封材料以及气密封装体
JP2018135246A (ja) * 2017-02-23 2018-08-30 日本電気硝子株式会社 ビスマス系ガラス粉末、封着材料及び気密パッケージ
JP2018142568A (ja) * 2017-02-27 2018-09-13 日本電気硝子株式会社 パッケージ基体及びそれを用いた気密パッケージ
US10823590B2 (en) 2017-03-13 2020-11-03 Omron Corporation Environmental sensor
CN108572005A (zh) * 2017-03-13 2018-09-25 欧姆龙株式会社 环境传感器
JP7047270B2 (ja) 2017-07-14 2022-04-05 日本電気硝子株式会社 封着材料層付きパッケージ基体の製造方法及び気密パッケージの製造方法
JP2019021716A (ja) * 2017-07-14 2019-02-07 日本電気硝子株式会社 封着材料層付きパッケージ基体の製造方法及び気密パッケージの製造方法
WO2019013009A1 (ja) * 2017-07-14 2019-01-17 日本電気硝子株式会社 封着材料層付きパッケージ基体の製造方法及び気密パッケージの製造方法

Also Published As

Publication number Publication date
KR20170121148A (ko) 2017-11-01
CN107112974A (zh) 2017-08-29
US10600954B2 (en) 2020-03-24
JP6697718B2 (ja) 2020-05-27
US20180033951A1 (en) 2018-02-01
TWI686968B (zh) 2020-03-01
TW201635603A (zh) 2016-10-01
CN107112974B (zh) 2021-06-04
KR102406788B1 (ko) 2022-06-10
JPWO2016136899A1 (ja) 2017-12-07

Similar Documents

Publication Publication Date Title
JP6697718B2 (ja) 気密パッケージの製造方法
JP6237989B2 (ja) 電気素子パッケージの製造方法及び電気素子パッケージ
KR102361856B1 (ko) 기밀 패키지의 제조 방법 및 기밀 패키지
JP6493798B2 (ja) 気密パッケージの製造方法
WO2017179381A1 (ja) 気密パッケージの製造方法及び気密パッケージ
JP6963214B2 (ja) ガラス粉末及びそれを用いた封着材料
WO2020071047A1 (ja) 気密パッケージ
KR102414498B1 (ko) 기밀 패키지
KR102380455B1 (ko) 기밀 패키지
WO2018155373A1 (ja) パッケージ基体及びそれを用いた気密パッケージ
WO2018216587A1 (ja) 気密パッケージの製造方法及び気密パッケージ
JP2020043097A (ja) 気密パッケージ
WO2018173834A1 (ja) カバーガラス及び気密パッケージ
WO2018155144A1 (ja) ビスマス系ガラス粉末、封着材料及び気密パッケージ
WO2018193767A1 (ja) カバーガラス及びこれを用いた気密パッケージ
JP2020001958A (ja) 封着材料層付きガラス蓋の製造方法及び気密パッケージの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017502479

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177015495

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755643

Country of ref document: EP

Kind code of ref document: A1