WO2020050031A1 - 気密パッケージ - Google Patents

気密パッケージ Download PDF

Info

Publication number
WO2020050031A1
WO2020050031A1 PCT/JP2019/032658 JP2019032658W WO2020050031A1 WO 2020050031 A1 WO2020050031 A1 WO 2020050031A1 JP 2019032658 W JP2019032658 W JP 2019032658W WO 2020050031 A1 WO2020050031 A1 WO 2020050031A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
sealing material
material layer
laser
ceramic
Prior art date
Application number
PCT/JP2019/032658
Other languages
English (en)
French (fr)
Inventor
徹 白神
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to KR1020217000615A priority Critical patent/KR102633353B1/ko
Priority to CN201980058014.XA priority patent/CN112640093A/zh
Priority to US17/269,001 priority patent/US11398585B2/en
Publication of WO2020050031A1 publication Critical patent/WO2020050031A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • H01L23/08Containers; Seals characterised by the material of the container or its electrical properties the material being an electrical insulator, e.g. glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations

Definitions

  • the present invention relates to an airtight package, and more particularly to an airtight package capable of housing internal elements such as an LED and a sensor chip.
  • An airtight package generally includes a glass lid having a light transmitting property, a ceramic base having a base and a frame provided on the base, and an internal element housed in an internal space surrounded by the ceramic base and the ceramic base.
  • the internal element is less likely to be degraded by moisture in the surrounding environment.
  • the internal element may be thermally degraded during sealing.
  • the sealing material layer is softened and deformed by irradiating the sealing material layer with laser light having a wavelength in the near infrared region, and the ceramic base and the glass lid are hermetically integrated.
  • the ceramic base and the glass lid can be hermetically integrated without thermally deteriorating the internal elements.
  • the thermal conductivity of the ceramic substrate is high, and the temperature of the ceramic substrate does not easily rise during laser sealing, so that the ceramic substrate and the sealing material layer hardly react with each other. There is a problem that it is difficult to secure laser sealing strength.
  • the reactivity between the sealing material layer and the ceramic substrate can be increased. Since a large temperature difference occurs between the region and the region that is not locally heated, the glass lid is easily damaged by a thermal shock, and a problem arises in that the hermetic reliability in the hermetic package cannot be ensured.
  • the present invention has been made in view of the above circumstances, and a technical problem thereof is to provide an airtight package having high airtight reliability and high sealing strength.
  • the present inventor has found that the above technical problem can be solved by reducing the difference in laser absorption characteristics between the ceramic substrate and the sealing material layer, and proposes the present invention. is there. That is, in the hermetic package of the present invention, in a hermetic package in which a ceramic base and a glass lid are hermetically integrated by a sealing material layer, the ceramic base contains 0.1 to 10% by mass of a laser absorbing material, The difference between the light absorptivity in terms of wavelength 808 nm and 0.5 mm and the light absorptivity in terms of wavelength 808 nm and 0.005 mm of the sealing material layer is 30% or less.
  • 0.5 mm equivalent light absorptance refers to the light absorptance when the measurement optical path length is 0.5 mm.
  • the measurement optical path length is 0.005 mm.
  • the thickness of the sealing material layer is 0.01 mm, the measurement is performed. The optical path length is converted to 0.005 mm to determine the light absorption.
  • the light absorptance is calculated based on Equation 1 by calculating the total light transmittance and the total light reflectance in a predetermined wavelength region.
  • the total light reflectance of the ceramic substrate at a wavelength of 808 nm and 0.5 mm is 60% or less.
  • the “total light reflectance in terms of 0.5 mm” refers to the total light reflectance when the measured optical path length is 0.5 mm. For example, even when the thickness of the ceramic base is 1.0 mm, The total light reflectance is determined by converting the measurement optical path length to 0.5 mm.
  • the laser absorbing material contained in the ceramic substrate is at least one selected from the group consisting of Fe-based oxides, Cr-based oxides, Mn-based oxides, Cu-based oxides, and spinel-type composite oxides thereof. It is preferred to be composed of one.
  • the ceramic substrate is any one of glass ceramic, aluminum oxide, and aluminum nitride, or a composite material thereof.
  • the ceramic base has a base and a frame provided on the base, and has a sealing material layer between the top of the frame and the glass lid.
  • the sealing material layer contains a bismuth-based glass containing a transition metal oxide and a refractory filler in the glass composition, and contains substantially no laser absorber. .
  • the internal element is accommodated in the frame of the ceramic base.
  • FIG. 1 is a schematic sectional view of the hermetic package of the present invention.
  • the hermetic package 1 includes a glass lid 10 and a ceramic base 11.
  • the ceramic base 11 has a base 12, and further has a frame 13 on the outer peripheral edge of the base 12.
  • the internal element 14 is accommodated in the frame 13 of the ceramic base 11.
  • an electric wiring (not shown) for electrically connecting the internal element 14 to the outside is formed.
  • a frame-shaped sealing material layer 15 is formed on the surface of the glass lid 10.
  • the width of the sealing material layer 15 is smaller than the width of the top 16 of the frame 13 of the ceramic base 11.
  • the glass lid 10 and the ceramic base 11 are stacked and arranged so that the sealing material layer 15 of the glass lid 10 and the center line in the width direction of the top 16 of the frame 13 of the ceramic base 11 coincide. Thereafter, the laser light L emitted from the laser irradiation device 17 is irradiated from the glass lid 10 side along the sealing material layer 15. As a result, after the sealing material layer 15 softens and flows, the glass lid 10 and the ceramic base 11 are hermetically sealed to form the hermetic structure of the hermetic package 1.
  • FIG. 2 is a schematic cross-sectional view for explaining a mode of an airtight package of the present invention.
  • the hermetic package of the present invention has a ceramic base, and the ceramic base preferably has a base and a frame provided on the base. This makes it easier to accommodate internal elements such as sensor chips and LEDs in the frame.
  • the frame of the ceramic base is preferably formed in a frame shape along the outer peripheral edge of the ceramic base. By doing so, the effective area functioning as a device can be increased. Further, the internal elements such as the sensor chip and the LED are easily accommodated in the frame of the ceramic base, and the wiring is easily joined.
  • the ceramic substrate contains the laser absorbing material in a ratio of 0.1 to 10% by mass, preferably 0.2 to 5% by mass.
  • the laser absorbing material is composed of at least one selected from the group consisting of Fe-based oxides, Cr-based oxides, Mn-based oxides, Cu-based oxides, and spinel-type composite oxides from the viewpoint of laser absorption characteristics.
  • the ceramic substrate is preferably made of any one of glass ceramic, aluminum oxide, and aluminum nitride, or a composite material thereof (for example, a material obtained by integrating aluminum nitride and glass ceramic). Since glass ceramics can easily form thermal vias, it is possible to appropriately prevent a situation in which the hermetic package excessively generates heat during the operation of the internal element. Since aluminum nitride and aluminum oxide have good heat dissipation, it is possible to appropriately prevent a situation in which the hermetic package excessively generates heat during the operation of the internal element.
  • the light absorptance of the ceramic substrate at a wavelength of 808 nm and in terms of 0.5 mm is preferably 55 to 95%, 60 to 90%, particularly 65 to 80%. If the light absorption of the ceramic substrate at a wavelength of 808 nm and 0.5 mm is too low, it becomes difficult to absorb the laser light transmitted through the sealing material layer during laser sealing. On the other hand, if the wavelength of the ceramic substrate is too high at a wavelength of 808 nm or 0.5 mm, the heat absorption of the ceramic substrate tends to decrease due to the excessive content of the laser absorbing material, The manufacturing cost of the base is likely to increase.
  • the difference between the light absorptivity in terms of wavelength 808 nm and 0.5 mm of the ceramic substrate and the light absorptivity in terms of wavelength 808 nm and 0.005 mm of the sealing material layer is 30% or less, preferably 25% or less, and 20% or less. Below, it is 15% or less, 10% or less, especially 5% or less. If the difference between the light absorption of the ceramic substrate at 808 nm and 0.5 mm conversion and the light absorption of the sealing material layer at 808 nm and 0.005 mm conversion is too large, the laser light is sealed during laser sealing. The temperature of the ceramic substrate is hard to rise because it is absorbed too much by the coating material layer.
  • the ceramic base and the sealing material layer do not react sufficiently, and it is difficult to secure the laser sealing strength.
  • the sealing material layer does not absorb much laser light, and the sealing material layer is less likely to soften and flow. As a result, it becomes difficult to secure the laser sealing strength.
  • the total light reflectance of the ceramic substrate at a wavelength of 808 nm and converted to 0.5 mm is preferably 60% or less, 55% or less, particularly 50% or less. If the wavelength of the ceramic substrate is 808 nm and the total light reflectance in terms of 0.5 mm is too high, it becomes difficult to absorb laser light transmitted through the sealing material layer during laser sealing.
  • the thickness of the base of the ceramic base is preferably 0.1 to 5.0 mm, particularly preferably 0.2 to 1.5 mm. Thereby, the airtight package can be made thinner.
  • the thickness of the frame portion of the ceramic base is preferably 0.2 to 5.0 mm, particularly preferably 0.5 to 2.0 mm. Thereby, the airtight package can be easily made thin. Further, it is possible to easily accommodate internal elements such as a sensor chip and an LED, and also to easily perform wiring joining and the like.
  • the width of the frame portion of the ceramic base is preferably 0.3 to 5.0 mm, particularly preferably 0.5 to 4.0 mm. This facilitates the storage of the internal elements and the downsizing of the hermetic package.
  • the hermetic package of the present invention has a glass lid.
  • Various glasses can be used as the glass lid.
  • non-alkali glass, borosilicate glass, and soda-lime glass can be used.
  • the thickness of the glass lid is preferably 0.01 to 2.0 mm, 0.1 to 1.2 mm, particularly preferably 0.3 to 1.0 mm. Thereby, the airtight package can be made thinner.
  • a functional film may be formed on the surface of the glass lid on the side of the internal element, or a functional film may be formed on the outer surface of the glass lid.
  • an antireflection film is preferable as the functional film.
  • the glass lid may be a glass plate laminate in which the first glass plate and the second glass plate are laminated and integrated via an adhesive.
  • Various glasses can be used for the first glass plate and the second glass plate.
  • non-alkali glass, alkali borosilicate glass, and soda-lime glass can be used.
  • the glass plate laminate is preferably composed of two glass plates, but another plate may be further laminated as necessary.
  • the first glass plate and the second glass plate may use the same glass. That is, they may have the same glass composition. In this case, since the various characteristics such as the refractive index and the thermal expansion coefficient of the two coincide with each other, it is possible to suppress the warpage of the glass lid, the reflection on the bonding surface, and the like.
  • different glasses may be used for the first glass plate and the second glass plate. That is, they may have different glass compositions.
  • the coefficient of thermal expansion of the second glass plate is no longer limited by the coefficient of thermal expansion of the ceramic substrate, so that the ceramic substrate and the first glass plate can be strictly matched with each other while the inexpensive glass is used.
  • the plate can be used for a second glass plate. As a result, it becomes easy to achieve both the hermetic reliability of the hermetic package and the manufacturing cost.
  • the hermetic package of the present invention has a sealing material layer.
  • the sealing material layer is produced by applying a sealing material paste produced by kneading a sealing material and a vehicle, drying, debinding, and sintering.
  • the sealing material is generally a composite powder containing a glass powder and a refractory filler powder, and a laser absorbing material such as a coloring pigment may be added as necessary.
  • the sealing material is a material that softens and flows during the laser sealing to hermetically integrate the ceramic base and the glass lid.
  • the vehicle generally refers to a mixture of an organic resin and a solvent, that is, a viscous liquid in which the organic resin is dissolved, and a sealing material paste is obtained by dispersing a sealing material in the vehicle. Note that a surfactant, a thickener, and the like may be added to the vehicle as needed.
  • a composite powder containing a glass powder and a refractory filler powder As the composite powder, it is preferable to use a composite powder containing 60 to 100% by volume of glass powder and 0 to 40% by volume of a refractory filler powder, and 65 to 95% by volume of bismuth-based glass powder and 5 to 35% by volume. It is more preferable to use a composite powder containing the refractory filler powder of (1).
  • the refractory filler powder is added to facilitate matching of the coefficient of thermal expansion between the ceramic substrate and the glass lid. As a result, it is possible to prevent a situation in which an unreasonable stress remains in the sealing area after the laser sealing and the laser diode is broken.
  • the content of the refractory filler powder when the content of the refractory filler powder is too large, the content of the glass powder becomes relatively small, so that the surface smoothness of the sealing material layer is reduced, and the sealing with the top of the frame of the ceramic base is performed. The adhesiveness of the material layer is reduced, and the laser sealing strength is easily reduced.
  • the softening point of the sealing material is preferably 530 ° C or lower, 510 ° C or lower, particularly 480 ° C or lower. If the softening point of the sealing material is too high, it is difficult to enhance the surface smoothness of the sealing material layer. Further, it is necessary to excessively increase the temperature at the time of laser sealing, and the glass lid is easily broken. Although the lower limit of the softening point of the sealing material is not particularly set, the softening point of the sealing material is preferably 350 ° C. or higher in consideration of the thermal stability of the glass powder.
  • the “softening point” corresponds to a fourth inflection point when measured with a macro DTA device.
  • the glass powder is preferably a bismuth-based glass from the viewpoint of increasing the laser sealing strength.
  • Bismuth-based glass is a glass composition including, in mol%, Bi 2 O 3 28 ⁇ 60%, B 2 O 3 15 ⁇ 37%, ZnO 0 ⁇ 30%, CuO + MnO (CuO and the total amount of MnO) 1 ⁇ 40% Is preferable. The reason why the content range of each component is limited as described above will be described below. In the description of the glass composition range, the% display indicates mol%.
  • Bi 2 O 3 is a main component for lowering the softening point.
  • the content of Bi 2 O 3 is preferably 28 to 60%, 33 to 55%, particularly 35 to 45%. If the content of Bi 2 O 3 is too small, the softening point becomes too high, and the softening fluidity tends to decrease. On the other hand, if the content of Bi 2 O 3 is too large, the glass tends to be devitrified during laser sealing, and the softening fluidity is likely to be reduced due to the devitrification.
  • B 2 O 3 is an essential component as a glass-forming component.
  • the content of B 2 O 3 is preferably 15 to 37%, 19 to 33%, particularly 22 to 30%. If the content of B 2 O 3 is too small, a glass network is difficult to be formed, so that the glass tends to be devitrified during laser sealing. On the other hand, if the content of B 2 O 3 is too large, the viscosity of the glass increases, and the softening fluidity tends to decrease.
  • ZnO is a component that enhances devitrification resistance.
  • the content of ZnO is preferably 0 to 30%, 3 to 25%, 5 to 22%, particularly 5 to 20%. If the content of ZnO is too large, the component balance of the glass composition will be lost, and the devitrification resistance will be more likely to decrease.
  • CuO and MnO are components that greatly enhance the laser absorption capacity.
  • the total amount of CuO and MnO is preferably 1 to 40%, 3 to 35%, 10 to 30%, especially 15 to 30%. If the total amount of CuO and MnO is too small, the laser absorption capacity tends to decrease. On the other hand, if the total amount of CuO and MnO is too large, the softening point becomes too high, and the glass becomes difficult to soften and flow even when irradiated with laser light. Further, the glass becomes thermally unstable, and the glass is easily devitrified at the time of laser sealing.
  • the content of CuO is preferably 1 to 30%, particularly preferably 10 to 25%.
  • the content of MnO is preferably from 0 to 25%, from 1 to 25%, especially from 3 to 15%.
  • SiO 2 is a component that enhances water resistance.
  • the content of SiO 2 is preferably 0-5%, 0-3%, 0-2%, especially 0-1%. If the content of SiO 2 is too large, the softening point may be unduly increased. Further, the glass is easily devitrified during laser sealing.
  • Al 2 O 3 is a component that enhances water resistance.
  • the content of Al 2 O 3 is preferably 0 to 10%, 0.1 to 5%, particularly preferably 0.5 to 3%. If the content of Al 2 O 3 is too large, the softening point may be unduly increased.
  • Li 2 O, Na 2 O and K 2 O are components that reduce the devitrification resistance. Therefore, the contents of Li 2 O, Na 2 O and K 2 O are each preferably 0 to 5%, 0 to 3%, and particularly preferably 0 to less than 1%.
  • MgO, CaO, SrO, and BaO are components that increase devitrification resistance, but are components that increase the softening point. Therefore, the contents of MgO, CaO, SrO and BaO are preferably 0 to 20%, 0 to 10%, and particularly preferably 0 to 5%.
  • Fe 2 O 3 is a component that enhances devitrification resistance and laser absorption.
  • the content of Fe 2 O 3 is preferably 0 to 10%, 0.1 to 5%, particularly 0.4 to 2%. If the content of Fe 2 O 3 is too large, the component balance of the glass composition is lost, and the devitrification resistance is liable to be rather reduced.
  • Sb 2 O 3 is a component that enhances devitrification resistance.
  • the content of Sb 2 O 3 is preferably 0 to 5%, especially 0 to 2%. If the content of Sb 2 O 3 is too large, the component balance of the glass composition is lost, and the devitrification resistance is liable to be rather reduced.
  • the sealing material not only bismuth-based glass but also any one of silver phosphate-based glass and tellurium-based glass can be used as the sealing material.
  • silver phosphate-based glass and tellurium-based glass are easier to soften and flow at low temperatures and can reduce thermal distortion generated after laser sealing, thereby improving thermal reliability and mechanical reliability It has the feature that it can be.
  • the silver phosphate glass and the tellurium glass can increase the mechanical strength of the sealing material layer and the thermal expansion of the sealing material layer when the refractory filler powder is mixed similarly to the bismuth glass. The coefficient can be reduced.
  • the silver phosphate glass contains, as a glass composition, 10 to 50% of Ag 2 O, 10 to 35% of P 2 O 5 , 3 to 25% of ZnO, and 0 to 30% of transition metal oxide in mol%. Is preferred. Note that, in the description of the glass composition range of the silver phosphate-based glass, percentages indicate mol%.
  • Ag 2 O is a component that lowers the melting point of glass and hardly dissolves in water, thus increasing the water resistance.
  • the content of Ag 2 O is preferably 10 to 50%, particularly preferably 20 to 40%. If the content of Ag 2 O is too small, the viscosity of the glass becomes high, the fluidity tends to decrease, and the water resistance tends to decrease. On the other hand, if the content of Ag 2 O is too large, vitrification becomes difficult.
  • P 2 O 5 is a component that lowers the melting point of glass. Its content is preferably 10 to 35%, particularly preferably 15 to 25%. If the content of P 2 O 5 is too small, vitrification becomes difficult. On the other hand, if the content of P 2 O 5 is too large, the weather resistance and the water resistance are likely to decrease.
  • ZnO is a component that enhances devitrification resistance, and its content is preferably 3 to 25%, 5 to 22%, and particularly preferably 9 to 20%.
  • the content of ZnO is out of the above range, the component balance of the glass composition is impaired, and the devitrification resistance tends to be reduced.
  • the transition metal oxide is a component having laser absorption properties, and its content is preferably 0 to 30%, 1 to 30%, and particularly preferably 3 to 15%. If the content of the transition metal oxide is too large, the devitrification resistance tends to decrease.
  • the content of CuO is preferably from 0 to 30%, from 1 to 30%, particularly preferably from 3 to 15%. If the content of CuO is too large, the component balance of the glass composition is impaired, and conversely, the devitrification resistance tends to decrease.
  • TeO 2 is a glass-forming component and a component that lowers the melting point of glass.
  • the content of TeO 2 is preferably 0 to 40%, particularly preferably 10 to 30%.
  • Nb 2 O 5 is a component that enhances water resistance.
  • the content of Nb 2 O 5 is preferably 0 to 25%, particularly preferably 1 to 12%. If the content of Nb 2 O 5 is too large, the viscosity of the glass increases, and the fluidity tends to decrease.
  • Li 2 O, Na 2 O and K 2 O are components that reduce the devitrification resistance. Therefore, the contents of Li 2 O, Na 2 O and K 2 O are respectively 0 to 5%, 0 to 3%, particularly 0 to less than 1%.
  • MgO, CaO, SrO, and BaO are components that increase devitrification resistance, but are components that increase the softening point. Therefore, the contents of MgO, CaO, SrO and BaO are respectively 0 to 20%, 0 to 10%, especially 0 to 5%.
  • the tellurium-based glass preferably contains, as a glass composition, 20 to 80% of TeO 2 , 0 to 25% of Nb 2 O 5 , and 0 to 40% of a transition metal oxide.
  • % display indicates mol%.
  • TeO 2 is a glass-forming component and a component that lowers the melting point of glass.
  • the content of TeO 2 is preferably from 20 to 80%, particularly preferably from 40 to 75%.
  • Nb 2 O 5 is a component that enhances water resistance.
  • the content of Nb 2 O 5 is preferably 0 to 25%, 1 to 20%, particularly preferably 5 to 15%. If the content of Nb 2 O 5 is too large, the viscosity of the glass increases, and the fluidity tends to decrease.
  • the transition metal oxide is a component having laser absorption characteristics, and its content is preferably 0 to 40%, 5 to 30%, particularly preferably 15 to 25%. If the content of the transition metal oxide is too large, the devitrification resistance tends to decrease.
  • CuO has a high effect of improving laser absorption characteristics and a high effect of improving thermal stability.
  • the content of CuO is preferably 0 to 40%, 5 to 30%, particularly preferably 15 to 25%. If the content of CuO is too large, the component balance of the glass composition is impaired, and conversely, the devitrification resistance tends to decrease.
  • Li 2 O, Na 2 O and K 2 O are components that reduce the devitrification resistance. Therefore, the contents of Li 2 O, Na 2 O and K 2 O are respectively 0 to 5%, 0 to 3%, particularly 0 to less than 1%.
  • MgO, CaO, SrO, and BaO are components that increase devitrification resistance, but are components that increase the softening point. Therefore, the contents of MgO, CaO, SrO and BaO are respectively 0 to 20%, 0 to 10%, especially 0 to 5%.
  • the average particle size D 50 of the glass powder is preferably less than 15 ⁇ m, 0.5 to 10 ⁇ m, especially 1 to 5 ⁇ m. As the average particle diameter D 50 of the glass powder is small, the softening point of the glass powder is lowered.
  • the “average particle diameter D 50 ” indicates a value measured on a volume basis by a laser diffraction method.
  • refractory filler powder one or more selected from cordierite, zircon, tin oxide, niobium oxide, zirconium phosphate-based ceramics, willemite, ⁇ -eucryptite, and ⁇ -quartz solid solution are preferable, and particularly ⁇ - Eucryptite or cordierite is preferred.
  • These refractory filler powders have a low coefficient of thermal expansion, a high mechanical strength, and good compatibility with bismuth glass, silver phosphate glass, tellurium glass, and the like.
  • the average particle size D 50 of the refractory filler powder is preferably less than 2 ⁇ m, especially 0.1 ⁇ m or more and less than 1.5 ⁇ m.
  • the average particle diameter D 50 of the refractory filler powder is too large, the surface smoothness of the sealing material layer is liable to lower, likely the average thickness of the sealing material layer is increased, as a result, the laser sealing precision It tends to decrease.
  • the 99% particle size D 99 of the refractory filler powder is preferably less than 5 ⁇ m, 4 ⁇ m or less, particularly 0.3 ⁇ m or more and 3 ⁇ m or less. If the 99% particle size D 99 of the refractory filler powder is too large, the surface smoothness of the sealing material layer tends to decrease, and the average thickness of the sealing material layer tends to increase. Tends to decrease.
  • “99% particle diameter D 99 ” indicates a value measured on a volume basis by a laser diffraction method.
  • the sealing material may further contain a laser absorbing material in order to enhance the laser absorbing property, but the laser absorbing material has an effect of promoting devitrification of glass. Furthermore, when a laser absorbing material is introduced, the laser absorption characteristics of the sealing material become too high, and the difference in the laser absorption characteristics between the ceramic substrate and the sealing material layer tends to increase. Therefore, the content of the laser absorbing material in the sealing material layer is preferably 10% by volume or less, 5% by volume or less, 1% by volume or less, and 0.5% by volume or less, particularly preferably substantially not contained.
  • a laser absorber Cu-based oxides, Fe-based oxides, Cr-based oxides, Mn-based oxides, and spinel-type composite oxides thereof can be used.
  • the thermal expansion coefficient of the sealing material is preferably 55 ⁇ 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 / ° C., 60 ⁇ 10 ⁇ 7 to 100 ⁇ 10 ⁇ 7 / ° C., particularly 65 ⁇ 10 ⁇ 7 to 90 ⁇ 10 ⁇ . 7 / ° C.
  • the “thermal expansion coefficient” is a value measured by a TMA (push-bar type thermal expansion coefficient measurement) device in a temperature range of 30 to 200 ° C.
  • the sealing material paste is usually produced by kneading and dispersing the sealing material and the vehicle with a three-roller or the like.
  • the vehicle contains an organic resin and a solvent as described above.
  • the organic resin is added for the purpose of adjusting the viscosity of the paste.
  • Acrylic esters (acrylic organic resins), ethyl cellulose, polyethylene glycol derivatives, nitrocellulose, polymethylstyrene, polyethylene carbonate, polypropylene carbonate, methacrylic esters, and the like can be used as the organic resin to be added to the vehicle.
  • Solvents used for the vehicle include N, N'-dimethylformamide (DMF), ⁇ -terpineol, higher alcohol, ⁇ -butyl lactone ( ⁇ -BL), tetralin, terpene, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol Monoethyl ether, diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol Monomethyl ether, tripropylene glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide De (DMSO), N-methyl-2-pyrrolidone and the like can be used.
  • DMF dimethylformamide
  • ⁇ -BL
  • the application of the sealing material paste to the glass lid can be performed by a known method.
  • it can be performed by screen printing, dispenser application, or the like.
  • Drying of the coating film may be natural drying, but is preferably performed in an electric furnace or a drying furnace from the viewpoint of drying efficiency.
  • ⁇ ⁇ Sintering treatment can also be performed on the dried film by laser light irradiation.
  • the light absorption of the sealing material layer at a wavelength of 808 nm and in terms of 0.005 mm is preferably 50% or more, 65% or more, 70 to 95%, particularly 75 to 85%. If the light absorption of the sealing material layer at a wavelength of 808 nm or 0.005 mm is too low, the sealing material layer becomes difficult to absorb laser light, and the sealing material layer is hardly softened and flowed during laser sealing. On the other hand, if the wavelength of the sealing material layer is too high at 808 nm or 0.005 mm, the ceramic substrate is difficult to locally heat during laser sealing, so that the reaction between the ceramic substrate and the sealing material layer proceeds sufficiently. Without this, the laser sealing strength tends to decrease.
  • the average thickness of the sealing material layer is preferably less than 10.0 ⁇ m, particularly 1.0 ⁇ m or more and less than 7.0 ⁇ m. As the average thickness of the sealing material layer is smaller, the stress remaining in the sealing region after laser sealing can be reduced even if the thermal expansion coefficients of the sealing material layer, the ceramic substrate, and the glass lid are mismatched. . Further, the accuracy of laser sealing can be improved.
  • a method of regulating the average thickness of the sealing material layer as described above a method of applying a thin sealing material paste and a method of polishing the surface of the sealing material layer are exemplified.
  • the average width of the sealing material layer is preferably less than 3500 ⁇ m, less than 1200 ⁇ m, particularly 150 ⁇ m or more and less than 800 ⁇ m.
  • the average width of the sealing material layer is reduced, the stress remaining in the sealing region after laser sealing can be reduced. Further, the width of the frame portion of the ceramic base can be reduced, and the effective area functioning as an airtight package device can be increased.
  • the method of manufacturing the hermetic package includes a step of preparing a ceramic base having a base and a frame provided on the base, a step of preparing a glass lid, and sealing the top of the frame of the ceramic base and the glass lid. A step of laminating the ceramic base and the glass lid so as to be in contact with the material layer, and irradiating a laser beam from the glass lid side to soften and deform the sealing material layer, thereby airtightly integrating the ceramic base and the glass lid. And a step of obtaining an airtight package.
  • the glass lid may be disposed below the ceramic base. However, from the viewpoint of laser sealing efficiency, the glass lid is disposed above the ceramic base. Is preferred.
  • the sealing material layer and the top of the ceramic base frame are brought into contact with each other so that the sealing material layer is located on the center line in the width direction at the top of the ceramic base frame. It is preferable to arrange them. By doing so, the accuracy of laser sealing can be improved.
  • Various lasers can be used as the laser irradiated from the glass lid side.
  • a semiconductor laser, a YAG laser, a CO 2 laser, an excimer laser, and an infrared laser are preferable in terms of easy handling.
  • the beam shape of the laser beam at the time of laser sealing is not particularly limited.
  • the beam shape is generally circular, elliptical, or rectangular, but may be other shapes.
  • the beam diameter of the laser light at the time of laser sealing is preferably 0.3 to 3.5 mm.
  • the atmosphere for performing the laser sealing is not particularly limited, and may be an air atmosphere or an inert atmosphere such as a nitrogen atmosphere.
  • the ceramic substrate Before performing laser sealing, it is preferable to preheat the ceramic substrate at a temperature of 100 ° C. or more and a temperature of not more than the allowable temperature of the internal element. This can hinder heat conduction to the ceramic substrate side during laser sealing, so that laser sealing can be performed efficiently.
  • the method further includes a step of housing the internal element in the frame of the ceramic base before the ceramic base and the glass lid are stacked and arranged. Thereby, thermal degradation of the internal element can be suppressed.
  • a glass-ceramic substrate (15 mm long ⁇ 15 mm wide, 0.5 mm base thickness, 1.0 mm frame thickness, having a base portion and a frame portion provided on the base portion and containing 3% by mass of a laser absorbing material, thermal expansion)
  • a coefficient of 60 ⁇ 10 ⁇ 7 / ° C., a wavelength of 808 nm, and a light absorption of 73% converted to 0.5 mm) was prepared.
  • Glass ceramic is obtained by sintering a laminated sheet of green sheets containing glass powder and refractory filler powder.
  • a glass lid (15 mm long ⁇ 15 mm wide ⁇ 0.3 mm thick, BDA manufactured by NEC Corporation) made of alkali borosilicate glass was prepared.
  • a sealing material was prepared by mixing a bismuth-based glass powder at a ratio of 68% by volume and a refractory filler powder at a ratio of 32% by volume.
  • the average particle diameter D 50 of the bismuth-based glass powder is 1.0 ⁇ m
  • the 99% particle diameter D 99 is 2.8 ⁇ m
  • the average particle diameter D 50 of the refractory filler powder is 1.0 ⁇ m and 99% particle diameter D. 99 was set to 2.8 ⁇ m.
  • the bismuth-based glass has a glass composition of 39% by mol of Bi 2 O 3 , 24.5% of B 2 O 3 , 14.5% of ZnO, 1.0% of Al 2 O 3 , and 20.5% of CuO by mol%. %, And 0.5% of Fe 2 O 3 .
  • the refractory filler powder is ⁇ -eucryptite.
  • the coefficient of thermal expansion of the obtained sealing material was measured, the coefficient of thermal expansion was 66 ⁇ 10 ⁇ 7 / ° C.
  • the coefficient of thermal expansion was measured by a push-bar type TMA device, and the measured temperature range was 30 to 200 ° C.
  • the sealing material was applied on the glass lid, dried, debindered, and sintered along the outer peripheral edge of the glass lid to form a sealing material layer. More specifically, first, after kneading the above sealing material, vehicle and solvent so that the viscosity is within a range of 90 ⁇ 20 Pa ⁇ s (25 ° C., Shear rate: 4), the powder is further reduced by a three-roll mill. The mixture was kneaded until uniformly dispersed to obtain a paste, thereby obtaining a sealing material paste.
  • the vehicle used was one in which ethyl cellulose organic resin was dissolved in a glycol ether-based solvent.
  • a sealing material paste was printed in a frame shape on the outer peripheral portion of the glass lid by a screen printer. Furthermore, after drying at 120 ° C. for 10 minutes under an air atmosphere to obtain a dried film, the dried film is subjected to heat treatment in an electric furnace to remove the binder and sinter, thereby obtaining an average width of about 300 ⁇ m and an average thickness of about 300 ⁇ m. A sealing material layer having a thickness of about 5 ⁇ m was formed. The light absorptance of this sealing material layer at a wavelength of 808 nm and converted to 0.005 mm was 75%.
  • a glass lid in which the sealing material layer is sintered and a glass ceramic substrate in which a laser absorbing material is dispersed are laminated, and a laser beam is irradiated from the glass lid side to soften and flow the sealing material layer,
  • An airtight package was obtained by integrating the glass lid and the glass ceramic substrate in an airtight manner.
  • the laser output was 10 W
  • the scanning speed was 15 mm / sec
  • the beam diameter was 500 ⁇ m.
  • Example 2 Alumina ceramic substrate having a base portion and a frame portion provided on the base portion and containing 3% by mass of a laser absorbing material (length 15 mm ⁇ width 15 mm, base thickness 0.5 mm, frame thickness 1.0 mm, thermal expansion coefficient 70
  • a laser absorbing material length 15 mm ⁇ width 15 mm, base thickness 0.5 mm, frame thickness 1.0 mm, thermal expansion coefficient 70
  • An airtight package was obtained in the same manner as in Example 1 except that the light absorption rate was ⁇ 10 ⁇ 7 / ° C., the wavelength was 808 nm, and the light absorption rate in terms of 0.5 mm was 75%), and the laser output was set to 16 W. .
  • Example 1 A glass ceramic substrate having a base portion and a frame portion provided on the base portion and not containing a laser absorbing material (length 15 mm ⁇ width 15 mm, base portion thickness 0.5 mm, frame portion thickness 1.0 mm, thermal expansion coefficient 58 ⁇ 10 An airtight package was obtained in the same manner as in Example 1 except that -7 / ° C., a wavelength of 808 nm, and a light absorption rate in terms of 0.5 mm were 15%) and the laser output was set to 14 W.
  • a laser absorbing material length 15 mm ⁇ width 15 mm, base portion thickness 0.5 mm, frame portion thickness 1.0 mm, thermal expansion coefficient 58 ⁇ 10
  • Example 2 Alumina ceramic substrate having a base portion and a frame portion provided on the base portion and containing 0.05% of a laser absorbing material (length 15 mm ⁇ width 15 mm, base thickness 0.5 mm, frame thickness 1.0 mm, thermal expansion coefficient
  • a laser absorbing material length 15 mm ⁇ width 15 mm, base thickness 0.5 mm, frame thickness 1.0 mm, thermal expansion coefficient
  • An airtight package was obtained in the same manner as in Example 1 except that 69 ⁇ 10 ⁇ 7 / ° C., a wavelength of 808 nm, and a light absorption rate in terms of 0.5 mm of 34% were used and the laser output was set to 19 W.
  • a laser absorbing material length 15 mm ⁇ width 15 mm, base thickness 0.5 mm, frame thickness 1.0 mm, thermal expansion coefficient
  • the obtained hermetic package was evaluated by observing the vicinity of the sealing material layer after repeating the temperature cycle under the conditions of 125 ° C.-55 ° C. and 1000 cycles, and A sample in which cracks, peeling, etc. were not recognized was evaluated as "O", and a sample in which cracks, peeling, etc. were recognized was evaluated as "X".
  • High-temperature, high-humidity, high-pressure test is a method for sealing the obtained airtight package under a high-temperature, high-humidity, high-pressure environment at 121 ° C., 100% humidity, 2 atm, for 24 hours. The evaluation was made by observing the vicinity of the layer. Evaluation was made as “ ⁇ ”when no alteration, crack, peeling or the like was observed, and as“ X ”when observed.
  • the airtight package of the present invention is suitable for an airtight package in which internal elements such as a sensor chip and an LED are mounted, but also includes a piezoelectric vibrating element and a wavelength conversion element in which quantum dots are dispersed in an organic resin.
  • the present invention can be suitably applied to an airtight package to be accommodated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Glass Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

本発明の気密パッケージは、セラミック基体とガラス蓋とが、封着材料層により気密一体化された気密パッケージにおいて、セラミック基体が、黒色顔料を0.1~10質量%含み、セラミック基体の波長808nm、0.5mm換算の光吸収率と、封着材料層の波長808nm、0.005mm換算の光吸収率との差が30%以下であることを特徴とする。

Description

気密パッケージ
 本発明は、気密パッケージに関し、特にLEDやセンサーチップ等の内部素子を収容可能な気密パッケージに関する。
 気密パッケージは、一般的に、光透過性を有するガラス蓋と、基部と基部上に設けられた枠部とを有するセラミック基体と、それらで囲まれた内部空間に収容される内部素子と、を備えている。
 気密パッケージの内部に実装されるセンサー等の内部素子やその周辺部材は、周囲環境から浸入する水分により劣化する虞がある。
 従来まで、セラミック基体とガラス蓋とを一体化するために、低温硬化性または紫外線硬化性を有する有機樹脂系接着剤が使用されていた。しかし、有機樹脂系接着剤は、水分や気体を完全に遮蔽することは困難であるため、内部素子を経時的に劣化させる虞がある。
 一方、ガラス粉末を含む複合粉末を封着材料に用いると、内部素子が周囲環境の水分で劣化し難くなる。
 しかし、ガラス粉末は、有機樹脂系接着剤よりも軟化温度が高いため、封着時に内部素子を熱劣化させる虞がある。
 このような事情から、レーザー封着が注目されている。レーザー封着では、一般的に、近赤外域の波長を有するレーザー光を封着材料層に照射することによって、封着材料層を軟化変形させ、セラミック基体とガラス蓋を気密一体化する。そして、レーザー封着では、封着すべき部分のみを局所的に加熱することが可能であり、内部素子を熱劣化させることなく、セラミック基体とガラス蓋とを気密一体化することができる。
特開2013-239609号公報 特開2014-236202号公報
 ところで、セラミック基体とガラス蓋とをレーザー封着する場合、セラミック基体の熱伝導度が高く、レーザー封着時にセラミック基体の温度が上昇し難いため、セラミック基体と封着材料層が反応し難く、レーザー封着強度を確保し難いという問題がある。
 一方、レーザー光の出力を高くする、或いはレーザー光の走査速度を遅くすると、封着材料層とセラミック基体との反応性を高めることができるが、その場合、ガラス蓋において局所的に加熱された領域と局所的に加熱されていない領域で大きな温度差が生じるため、ガラス蓋がサーマルショックで破損し易くなり、気密パッケージ内の気密信頼性を確保できないという問題が生じる。
 そこで、本発明は、上記事情に鑑みなされたものであり、その技術的課題は、気密信頼性と封着強度が高い気密パッケージを提供することである。
 本発明者は、種々の実験を繰り返した結果、セラミック基体と封着材料層のレーザー吸収特性の差を低減することにより上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明の気密パッケージは、セラミック基体とガラス蓋とが、封着材料層により気密一体化された気密パッケージにおいて、セラミック基体が、レーザー吸収材を0.1~10質量%含み、セラミック基体の波長808nm、0.5mm換算の光吸収率と、封着材料層の波長808nm、0.005mm換算の光吸収率との差が30%以下であることを特徴とする。ここで、「0.5mm換算の光吸収率」とは、測定光路長を0.5mmとした時の光吸収率を指し、例えば、セラミック基体の厚みが1.0mmである場合でも、測定光路長を0.5mmに換算して、光吸収率を求めるものとする。また、「0.005mm換算の光吸収率」とは、測定光路長を0.005mmとした時の光吸収率を指し、例えば、封着材料層の厚みが0.01mmである場合でも、測定光路長を0.005mmに換算して、光吸収率を求めるものとする。
 なお、光吸収率は所定の波長領域における全光線透過率と全光線反射率を求め、式1に基づいて算出する。
[式1]
光吸収率(%)={100-(全光線透過率+全光線反射率)}(%)
 また、本発明の気密パッケージでは、セラミック基体の波長808nm、0.5mm換算の全光線反射率が60%以下であることが好ましい。ここで、「0.5mm換算の全光線反射率」とは、測定光路長を0.5mmとした時の全光線反射率を指し、例えば、セラミック基体の厚みが1.0mmである場合でも、測定光路長を0.5mmに換算して、全光線反射率を求めるものとする。
 また、本発明の気密パッケージでは、セラミック基体に含まれるレーザー吸収材が、Fe系酸化物、Cr系酸化物、Mn系酸化物、Cu系酸化物及びこれらのスピネル型複合酸化物から選ばれる少なくとも1つから構成されることが好ましい。
 また、本発明の気密パッケージでは、セラミック基体が、ガラスセラミック、酸化アルミニウム、窒化アルミニウムの何れか、或いはこれらの複合材料であることが好ましい。
 また、本発明の気密パッケージでは、セラミック基体が、基部と基部上に設けられた枠部とを有し、該枠部の頂部とガラス蓋との間に封着材料層を有することが好ましい。
 また、本発明の気密パッケージでは、封着材料層が、ガラス組成中に遷移金属酸化物を含むビスマス系ガラスと耐火性フィラーとを含み、且つ実質的にレーザー吸収材を含んでいないことが好ましい。
 また、本発明の気密パッケージでは、セラミック基体の枠部内に、内部素子が収容されていることが好ましい。
 以下、図面を参照しながら、本発明の形態を説明する。図1は、本発明の気密パッケージの断面概略図である。気密パッケージ1は、ガラス蓋10とセラミック基体11を備えている。セラミック基体11は基部12を有し、更に基部12の外周縁部上に枠部13を有している。また、セラミック基体11の枠部13内に内部素子14が収容されている。なお、セラミック基体11内には、内部素子14と外部を電気的に接続する電気配線(図示されていない)が形成されている。
 ガラス蓋10の表面には、額縁状の封着材料層15が形成されている。封着材料層15の幅は、セラミック基体11の枠部13の頂部16の幅よりも小さくなっている。
 ガラス蓋10とセラミック基体11は、ガラス蓋10の封着材料層15と、セラミック基体11の枠部13の頂部16の幅方向の中心線とが一致するように積層配置されている。その後、レーザー照射装置17から出射したレーザー光Lが、ガラス蓋10側から封着材料層15に沿って照射される。これにより、封着材料層15が軟化流動した後、ガラス蓋10とセラミック基体11が気密封着されて、気密パッケージ1の気密構造が形成される。
本発明の気密パッケージの形態を説明するための断面概略図である。
 本発明の気密パッケージは、セラミック基体を有しており、セラミック基体は、基部と基部上に設けられた枠部とを有することが好ましい。このようにすれば、枠部内にセンサーチップやLED等の内部素子を収容し易くなる。セラミック基体の枠部は、セラミック基体の外周縁部に沿って、額縁状に形成されていることが好ましい。このようにすれば、デバイスとして機能する有効面積を拡大することができる。更にセンサーチップやLED等の内部素子をセラミック基体の枠部内に収容し易くなり、且つ配線接合等も行い易くなる。
 セラミック基体は、レーザー吸収材を0.1~10質量%の割合で含んでおり、好ましくは0.2~5質量%の割合で含む。このようにすれば、レーザー封着時に、セラミック基体が封着材料層を透過したレーザー光を吸収することができる。その結果、封着材料層とセラミック基体の界面の温度が上昇して、セラミック基体と封着材料層の反応性が向上すると共に、セラミック基体側への熱流動が低下するため、レーザー封着を効率良く行うことができる。
 レーザー吸収材は、レーザー吸収特性の観点から、Fe系酸化物、Cr系酸化物、Mn系酸化物、Cu系酸化物及びこれらのスピネル型複合酸化物から選ばれる少なくとも1つから構成される
 セラミック基体は、ガラスセラミック、酸化アルミニウム、窒化アルミニウムの何れか、或いはこれらの複合材料(例えば、窒化アルミニウムとガラスセラミックを一体化したもの)であることが好ましい。ガラスセラミックは、サーマルビアを容易に形成し得るため、内部素子の動作時に、気密パッケージが過度に発熱する事態を適正に防止することができる。窒化アルミニウムと酸化アルミニウムは、放熱性が良好であるため、内部素子の動作時に、気密パッケージが過度に発熱する事態を適正に防止することができる。
 セラミック基体の波長808nm、0.5mm換算の光吸収率は、好ましくは55~95%、60~90%、特に65~80%である。セラミック基体の波長808nm、0.5mm換算の光吸収率が低過ぎると、レーザー封着時に封着材料層を透過したレーザー光を吸収し難くなる。一方、セラミック基体の波長808nm、0.5mm換算の光吸収率が高過ぎると、レーザー吸収材の含有量が過剰になることに起因して、セラミック基体の放熱性が低下し易くなり、またセラミック基体の製造コストが高騰し易くなる。
 セラミック基体の波長808nm、0.5mm換算の光吸収率と、封着材料層の波長808nm、0.005mm換算の光吸収率との差は30%以下であり、好ましくは25%以下、20%以下、15%以下、10%以下、特に5%以下である。セラミック基体の波長808nm、0.5mm換算の光吸収率と、封着材料層の波長808nm、0.005mm換算の光吸収率との差が大き過ぎると、レーザー封着の際にレーザー光が封着材料層に吸収され過ぎて、セラミック基体の温度が上昇し難くなる。結果として、セラミック基体と封着材料層が十分に反応せず、レーザー封着強度を確保し難くなる。或いは、レーザー封着の際に封着材料層がレーザー光をあまり吸収せず、封着材料層が軟化流動し難くなる。結果として、レーザー封着強度を確保し難くなる。
 セラミック基体の波長808nm、0.5mm換算の全光線反射率は、好ましくは60%以下、55%以下、特に50%以下である。セラミック基体の波長808nm、0.5mm換算の全光線反射率が高過ぎると、レーザー封着時に封着材料層を透過したレーザー光を吸収し難くなる。
 セラミック基体の基部の厚みは0.1~5.0mm、特に0.2~1.5mmが好ましい。これにより、気密パッケージの薄型化を図ることができる。
 セラミック基体の枠部の厚みは0.2~5.0mm、特に0.5~2.0mmが好ましい。これにより、気密パッケージを薄型化し易くなる。更にセンサーチップやLED等の内部素子を収容し易くなり、且つ配線接合等も行い易くすることができる。
 セラミック基体の枠部の幅は0.3~5.0mm、特に0.5~4.0mmが好ましい。これにより、内部素子を収納し易くなると共に、気密パッケージを小型化し易くなる。
 本発明の気密パッケージは、ガラス蓋を有している。ガラス蓋として、種々のガラスが使用可能である。例えば、無アルカリガラス、ホウケイ酸ガラス、ソーダ石灰ガラスが使用可能である。
ガラス蓋の板厚は0.01~2.0mm、0.1~1.2mm、特に0.3~1.0mmが好ましい。これにより、気密パッケージの薄型化を図ることができる。
 ガラス蓋の内部素子側の表面に機能膜を形成してもよく、ガラス蓋の外側の表面に機能膜を形成してもよい。特に機能膜として反射防止膜が好ましい。これにより、ガラス蓋の表面で反射する光を低減することができる。
 ガラス蓋は、第一のガラス板と第二のガラス板が接着剤を介して積層一体化されたガラス板積層体でもよい。第一のガラス板と第二のガラス板は、種々のガラスが使用可能である。例えば、無アルカリガラス、アルカリホウケイ酸ガラス、ソーダ石灰ガラスが使用可能である。なお、ガラス板積層体は、二枚のガラス板で構成されることが好ましいが、必要に応じて、別の板状体を更に積層させてもよい。
 第一のガラス板と第二のガラス板は、同一のガラスを用いてもよい。つまり同一のガラス組成を有していてもよい。このようにすれば、両者の屈折率、熱膨張係数等の各種特性が一致するため、ガラス蓋の反りや貼り合わせ面での反射等を抑制することができる。
 また、第一のガラス板と第二のガラス板は、異種のガラスを用いてもよい。つまり異種のガラス組成を有していてもよい。このようにすれば、第二のガラス板の熱膨張係数がセラミック基体の熱膨張係数に制約されなくなるため、セラミック基体と第一のガラス板の熱膨張係数を厳密に整合させつつ、安価なガラス板を第二のガラス板に使用することができる。結果として、気密パッケージの気密信頼性と製造コストを両立し易くなる。
 本発明の気密パッケージは、封着材料層を有している。封着材料層は、封着材料とビークルを混練して作製される封着材料ペーストを塗布、乾燥、脱バインダー、及び焼結することにより作製される。封着材料は、一般的に、ガラス粉末と耐火性フィラー粉末を含む複合粉末であり、必要に応じて、着色顔料等のレーザー吸収材が添加される場合がある。そして、封着材料は、レーザー封着の際に、軟化流動して、セラミック基体とガラス蓋を気密一体化する材料である。ビークルは、一般的に、有機樹脂と溶媒の混合物、つまり有機樹脂が溶解した粘稠液を指し、ビークル中に封着材料を分散させることで封着材料ペーストが得られる。なお、ビークル中に、必要に応じて、界面活性剤、増粘剤等が添加される場合もある。
 封着材料として、ガラス粉末と耐火性フィラー粉末を含む複合粉末を用いることが好ましい。複合粉末として、60~100体積%のガラス粉末と0~40体積%の耐火性フィラー粉末を含有する複合粉末を用いることが好ましく、65~95体積%のビスマス系ガラス粉末と5~35体積%の耐火性フィラー粉末を含有する複合粉末を用いることが更に好ましい。耐火性フィラー粉末は、セラミック基体とガラス蓋の熱膨張係数を整合し易くするために添加される。その結果、レーザー封着後に封着領域に不当な応力が残留し、破損する事態を防止することができる。一方、耐火性フィラー粉末の含有量が多過ぎると、ガラス粉末の含有量が相対的に少なくなるため、封着材料層の表面平滑性が低下して、セラミック基体の枠部の頂部と封着材料層の密着性が低下して、レーザー封着強度が低下し易くなる。
 封着材料の軟化点は、好ましくは530℃以下、510℃以下、特に480℃以下である。封着材料の軟化点が高過ぎると、封着材料層の表面平滑性を高め難くなる。更にレーザー封着時に過度に温度を高める必要があり、ガラス蓋が破損し易くなる。封着材料の軟化点の下限は特に設定されないが、ガラス粉末の熱的安定性を考慮すると、封着材料の軟化点は350℃以上が好ましい。ここで、「軟化点」は、マクロ型DTA装置で測定した際の第四変曲点に相当する。
 ガラス粉末は、レーザー封着強度を高める観点から、ビスマス系ガラスが好ましい。ビスマス系ガラスは、ガラス組成として、モル%で、Bi 28~60%、B 15~37%、ZnO 0~30%、CuO+MnO(CuOとMnOの合量) 1~40%を含有することが好ましい。各成分の含有範囲を上記のように限定した理由を以下に説明する。なお、ガラス組成範囲の説明において、%表示はモル%を指す。
 Biは、軟化点を低下させるための主要成分である。Biの含有量は、好ましくは28~60%、33~55%、特に35~45%である。Biの含有量が少な過ぎると、軟化点が高くなり過ぎて、軟化流動性が低下し易くなる。一方、Biの含有量が多過ぎると、レーザー封着の際にガラスが失透し易くなり、この失透に起因して、軟化流動性が低下し易くなる。
 Bは、ガラス形成成分として必須の成分である。Bの含有量は、好ましくは15~37%、19~33%、特に22~30%である。Bの含有量が少な過ぎると、ガラスネットワークが形成され難くなるため、レーザー封着の際にガラスが失透し易くなる。一方、Bの含有量が多過ぎると、ガラスの粘性が高くなり、軟化流動性が低下し易くなる。
 ZnOは、耐失透性を高める成分である。ZnOの含有量は、好ましくは0~30%、3~25%、5~22%、特に5~20%である。ZnOの含有量が多過ぎると、ガラス組成の成分バランスが崩れて、かえって耐失透性が低下し易くなる。
 CuOとMnOは、レーザー吸収能を大幅に高める成分である。CuOとMnOの合量は、好ましくは1~40%、3~35%、10~30%、特に15~30%である。CuOとMnOの合量が少な過ぎると、レーザー吸収能が低下し易くなる。一方、CuOとMnOの合量が多過ぎると、軟化点が高くなり過ぎて、レーザー光を照射しても、ガラスが軟化流動し難くなる。またガラスが熱的に不安定になり、レーザー封着時にガラスが失透し易くなる。なお、CuOの含有量は、好ましくは1~30%、特に10~25%である。MnOの含有量は、好ましくは0~25%、1~25%、特に3~15%である。
 上記成分以外にも、例えば、以下の成分を添加してもよい。
 SiOは、耐水性を高める成分である。SiOの含有量は、好ましくは0~5%、0~3%、0~2%、特に0~1%である。SiOの含有量が多過ぎると、軟化点が不当に上昇する虞がある。またレーザー封着の際にガラスが失透し易くなる。
 Alは、耐水性を高める成分である。Alの含有量は0~10%、0.1~5%、特に0.5~3%が好ましい。Alの含有量が多過ぎると、軟化点が不当に上昇する虞がある。
 LiO、NaO及びKOは、耐失透性を低下させる成分である。よって、LiO、NaO及びKOの含有量は、それぞれ0~5%、0~3%、特に0~1%未満が好ましい。
 MgO、CaO、SrO及びBaOは、耐失透性を高める成分であるが、軟化点を上昇させる成分である。よって、MgO、CaO、SrO及びBaOの含有量は、それぞれ0~20%、0~10%、特に0~5%が好ましい。
 Feは、耐失透性とレーザー吸収能を高める成分である。Feの含有量は、好ましくは0~10%、0.1~5%、特に0.4~2%である。Feの含有量が多過ぎると、ガラス組成の成分バランスが崩れて、かえって耐失透性が低下し易くなる。
 Sbは、耐失透性を高める成分である。Sbの含有量は、好ましくは0~5%、特に0~2%である。Sbの含有量が多過ぎると、ガラス組成の成分バランスが崩れて、かえって耐失透性が低下し易くなる。
 また、封着材料としてビスマス系ガラスだけでなく、銀リン酸系ガラスまたはテルル系ガラスの何れかを使用することもできる。銀リン酸系ガラスとテルル系ガラスは、ビスマス系ガラスと比較して、低温で軟化流動し易く、レーザー封着後に生じる熱歪みを低減し得るため、熱的信頼性及び機械的信頼性を高めることができるという特徴を有する。更に、銀リン酸系ガラスとテルル系ガラスは、ビスマス系ガラスと同様に、耐火性フィラー粉末を混合すると、封着材料層の機械的強度を高めることができ、且つ封着材料層の熱膨張係数を低下させることができる。
 銀リン酸系ガラスは、ガラス組成として、モル%で、AgO 10~50%、P 10~35%、ZnO 3~25%、遷移金属酸化物 0~30%を含有することが好ましい。なお、銀リン酸系ガラスのガラス組成範囲の説明において、%表示はモル%を指す。
 AgOは、ガラスを低融点化させると共に、水に溶け難いため、耐水性を高める成分である。AgOの含有量は10~50%、特に20~40%が好ましい。AgOの含有量が少な過ぎると、ガラスの粘性が高くなって、流動性が低下し易くなると共に、耐水性が低下し易くなる。一方、AgOの含有量が多過ぎると、ガラス化が困難になる。
 Pは、ガラスを低融点化させる成分である。その含有量は10~35%、特に15~25%が好ましい。Pの含有量が少な過ぎると、ガラス化が困難になる。一方、Pの含有量が多過ぎると、耐候性、耐水性が低下し易くなる。
 ZnOは、耐失透性を高める成分であり、その含有量は3~25%、5~22%、特に9~20%が好ましい。ZnOの含有量が上記範囲外になると、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。
 遷移金属酸化物は、レーザー吸収特性を有する成分であり、その含有量は0~30%、1~30%、特に3~15%が好ましい。遷移金属酸化物の含有量が多過ぎると、耐失透性が低下し易くなる。
 CuOを添加すれば、レーザー吸収特性を高めることができる。CuOの含有量は0~30%、1~30%、特に3~15%が好ましい。CuOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下し易くなる。
 上記成分以外にも、例えば、以下の成分を添加してもよい。
 TeOは、ガラス形成成分であり、ガラスを低融点化させる成分である。TeOの含有量は0~40%、特に10~30%が好ましい。
 Nbは、耐水性を高める成分である。Nbの含有量は0~25%、特に1~12%が好ましい。Nbの含有量が多過ぎると、ガラスの粘性が高くなって、流動性が低下し易くなる。
 LiO、NaO及びKOは、耐失透性を低下させる成分である。よって、LiO、NaO及びKOの含有量は、それぞれ0~5%、0~3%、特に0~1%未満である。
 MgO、CaO、SrO及びBaOは、耐失透性を高める成分であるが、軟化点を上昇させる成分である。よって、MgO、CaO、SrO及びBaOの含有量は、それぞれ0~20%、0~10%、特に0~5%である。
 テルル系ガラスは、ガラス組成として、モル%で、TeO 20~80%、Nb 0~25%、遷移金属酸化物 0~40%を含有することが好ましい。なお、テルル系ガラスのガラス組成範囲の説明において、%表示はモル%を指す。
 TeOは、ガラス形成成分であり、ガラスを低融点化させる成分である。TeOの含有量は20~80%、特に40~75%が好ましい。
 Nbは、耐水性を高める成分である。Nbの含有量は0~25%、1~20%、特に5~15%が好ましい。Nbの含有量が多過ぎると、ガラスの粘性が高くなって、流動性が低下し易くなる。
 遷移金属酸化物は、レーザー吸収特性を有する成分であり、その含有量は0~40%、5~30%、特に15~25%が好ましい。遷移金属酸化物の含有量が多過ぎると、耐失透性が低下し易くなる。
 遷移金属酸化物の中では、CuOは、レーザー吸収特性を高める効果が高く、熱的安定性を高める効果も高い。CuOの含有量は0~40%、5~30%、特に15~25%が好ましい。CuOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下し易くなる。
 上記成分以外にも、例えば、以下の成分を添加してもよい。
 LiO、NaO及びKOは、耐失透性を低下させる成分である。よって、LiO、NaO及びKOの含有量は、それぞれ0~5%、0~3%、特に0~1%未満である。
 MgO、CaO、SrO及びBaOは、耐失透性を高める成分であるが、軟化点を上昇させる成分である。よって、MgO、CaO、SrO及びBaOの含有量は、それぞれ0~20%、0~10%、特に0~5%である。
 ガラス粉末の平均粒径D50は、好ましくは15μm未満、0.5~10μm、特に1~5μmである。ガラス粉末の平均粒径D50が小さい程、ガラス粉末の軟化点が低下する。ここで、「平均粒径D50」は、レーザー回折法により体積基準で測定した値を指す。
 耐火性フィラー粉末として、コーディエライト、ジルコン、酸化錫、酸化ニオブ、リン酸ジルコニウム系セラミック、ウイレマイト、β-ユークリプタイト、β-石英固溶体から選ばれる一種又は二種以上が好ましく、特にβ-ユークリプタイト又はコーディエライトが好ましい。これらの耐火性フィラー粉末は、熱膨張係数が低いことに加えて、機械的強度が高く、しかもビスマス系ガラス、銀リン酸系ガラス、テルル系ガラス等との適合性が良好である。
 耐火性フィラー粉末の平均粒径D50は、好ましくは2μm未満、特に0.1μm以上、且つ1.5μm未満である。耐火性フィラー粉末の平均粒径D50が大き過ぎると、封着材料層の表面平滑性が低下し易くなると共に、封着材料層の平均厚みが大きくなり易く、結果として、レーザー封着精度が低下し易くなる。
 耐火性フィラー粉末の99%粒径D99は、好ましくは5μm未満、4μm以下、特に0.3μm以上、且つ3μm以下である。耐火性フィラー粉末の99%粒径D99が大き過ぎると、封着材料層の表面平滑性が低下し易くなると共に、封着材料層の平均厚みが大きくなり易く、結果として、レーザー封着精度が低下し易くなる。ここで、「99%粒径D99」は、レーザー回折法により体積基準で測定した値を指す。
 封着材料は、レーザー吸収特性を高めるために、更にレーザー吸収材を含んでもよいが、レーザー吸収材は、ガラスの失透を助長する作用を有する。更にレーザー吸収材を導入すると、封着材料のレーザー吸収特性が高くなり過ぎて、セラミック基体と封着材料層のレーザー吸収特性の差が大きくなり易い。よって、封着材料層中のレーザー吸収材の含有量は、好ましくは10体積%以下、5体積%以下、1体積%以下、0.5体積%以下、特に実質的に含有しないことが好ましい。なお、レーザー吸収材として、Cu系酸化物、Fe系酸化物、Cr系酸化物、Mn系酸化物及びこれらのスピネル型複合酸化物等が使用可能である。
 封着材料の熱膨張係数は、好ましくは55×10-7~110×10-7/℃、60×10-7~100×10-7/℃、特に65×10-7~90×10-7/℃である。このようにすれば、封着材料の熱膨張係数がガラス蓋やセラミック基体の熱膨張係数に整合して、封着領域に残留する応力が小さくなる。なお、「熱膨張係数」は、30~200℃の温度範囲において、TMA(押棒式熱膨張係数測定)装置で測定した値である。
 封着材料ペーストは、通常、三本ローラー等により、封着材料とビークルを混練、分散することにより作製される。ビークルは、上記の通り、有機樹脂と溶剤を含む。有機樹脂は、ペーストの粘性を調整する目的で添加される。
 ビークルに添加する有機樹脂として、アクリル酸エステル(アクリル有機樹脂)、エチルセルロース、ポリエチレングリコール誘導体、ニトロセルロース、ポリメチルスチレン、ポリエチレンカーボネート、ポリプロピレンカーボネート、メタクリル酸エステル等が使用可能である。ビークルに用いる溶剤として、N、N’-ジメチルホルムアミド(DMF)、α-ターピネオール、高級アルコール、γ-ブチルラクトン(γ-BL)、テトラリン、テルペン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3-メトキシ-3-メチルブタノール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、ジメチルスルホキシド(DMSO)、N-メチル-2-ピロリドン等が使用可能である。
 ガラス蓋への封着材料ペーストの塗布は、周知の方法で行うことができる。例えば、スクリーン印刷、ディスペンサー塗布等で行うことができる。塗布膜の乾燥は、自然乾燥でもよいが、乾燥効率の観点から、電気炉、乾燥炉で行うことが好ましい。
 乾燥膜に対して、電気炉等の全体加熱により脱バインダー処理を行い、且つガラス粉末の軟化点以上の温度で加熱して軟化流動させると、表面平滑性が高い封着材料層を得ることができる。
 乾燥膜に対して、レーザー光の照射によって焼結処理を行うこともできる。この時、乾燥膜にレーザー光を照射して、封着材料層を形成した後に、(100℃以上、且つガラス蓋の歪点以下)の温度でガラス蓋を熱処理することが好ましい。このようにすれば、ガラス蓋のサーマルショックが抑制されるため、ガラス蓋の割れを防止し易くなる。
 封着材料層の波長808nm、0.005mm換算の光吸収率は、好ましくは50%以上、65%以上、70~95%、特に75~85%である。封着材料層の波長808nm、0.005mm換算の光吸収率が低過ぎると、封着材料層がレーザー光を吸収し難くなり、レーザー封着時に封着材料層が軟化流動し難くなる。一方、封着材料層の波長808nm、0.005mm換算の光吸収率が高過ぎると、レーザー封着時にセラミック基体を局所加熱し難くなるため、セラミック基体と封着材料層の反応が十分に進行せず、レーザー封着強度が低下し易くなる。
 封着材料層の平均厚さは、好ましくは10.0μm未満、特に1.0μm以上、且つ7.0μm未満である。封着材料層の平均厚みが小さい程、封着材料層、セラミック基体及びガラス蓋の熱膨張係数が不整合であっても、レーザー封着後に封着領域に残留する応力を低減することができる。またレーザー封着の精度を高めることもできる。なお、上記のように封着材料層の平均厚みを規制する方法としては、封着材料ペーストを薄く塗布する方法、封着材料層の表面を研磨処理する方法が挙げられる。
 封着材料層の平均幅は、好ましくは3500μm未満、1200μm未満、特に150μm以上、且つ800μm未満である。封着材料層の平均幅を狭くすると、レーザー封着後に封着領域に残留する応力を低減することができる。更にセラミック基体の枠部の幅を狭小化することができ、気密パッケージのデバイスとして機能する有効面積を拡大することができる。
 気密パッケージの製造方法は、基部と基部上に設けられた枠部とを有するセラミック基体を用意する工程と、ガラス蓋を用意する工程と、セラミック基体の枠部の頂部とガラス蓋とが封着材料層と接するように、セラミック基体とガラス蓋を積層配置する工程と、ガラス蓋側からレーザー光を照射し、封着材料層を軟化変形させることにより、セラミック基体とガラス蓋を気密一体化して、気密パッケージを得る工程と、を備えることが好ましい。
 セラミック基体とガラス蓋を積層配置する工程を設ける工程では、ガラス蓋をセラミック基体の下方に配置してもよいが、レーザー封着の効率の観点から、ガラス蓋をセラミック基体の上方に配置することが好ましい。
 セラミック基体とガラス蓋を積層配置する際に、封着材料層がセラミック基体の枠部の頂部において幅方向の中心線上に位置するように、封着材料層とセラミック基体の枠部の頂部を接触配置することが好ましい。このようにすれば、レーザー封着の精度を高めることができる。
 ガラス蓋側から照射するレーザーとして、種々のレーザーを使用することができる。特に、半導体レーザー、YAGレーザー、COレーザー、エキシマレーザー、赤外レーザーは、取扱いが容易な点で好ましい。
 レーザー封着時におけるレーザー光のビーム形状は、特に限定されない。ビーム形状としては、円形、楕円形、矩形が一般的であるが、その他の形状でもよい。また、レーザー封着時におけるレーザー光のビーム径は0.3~3.5mmが好ましい。
 レーザー封着を行う雰囲気は特に限定されず、大気雰囲気でもよく、窒素雰囲気等の不活性雰囲気でもよい。
 レーザー封着を行う前に、(100℃以上、且つ内部素子の耐熱温度以下の温度)でセラミック基体を予備加熱することが好ましい。これにより、レーザー封着時にセラミック基体側への熱伝導を阻害し得るため、レーザー封着を効率良く行うことができる。
 ガラス蓋を押圧した状態でレーザー封着を行うことが好ましい。これにより、レーザー封着時に封着材料層の軟化変形を促進することができる。
 セラミック基体とガラス蓋を積層配置する前に、更にセラミック基体の枠部内に内部素子を収容する工程を備えることが好ましい。これにより、内部素子の熱劣化を抑制することができる。
 以下、実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は、単なる例示である。本発明は、以下の実施例に何ら限定されない。
(実施例1)
 先ず、基部と基部上に設けられた枠部とを有し、3質量%レーザー吸収材を含むガラスセラミック基体(縦15mm×横15mm、基部厚み0.5mm、枠部厚み1.0mm、熱膨張係数60×10-7/℃、波長808nm、0.5mm換算の光吸収率73%)を準備した。なお、「ガラスセラミック」は、ガラス粉末と耐火性フィラー粉末を含むグリーンシートの積層シートを焼結させたものである。
 次に、アルカリホウケイ酸ガラスからなるガラス蓋(縦15mm×横15mm×厚み0.3mm、日本電気硝子社製BDA)を用意した。
 また、ビスマス系ガラス粉末を68体積%、耐火性フィラー粉末を32体積%の割合で混合して、封着材料を作製した。ここで、ビスマス系ガラス粉末の平均粒径D50を1.0μm、99%粒径D99を2.8μmとし、耐火性フィラー粉末の平均粒径D50を1.0μm、99%粒径D99を2.8μmとした。なお、ビスマス系ガラスは、ガラス組成として、モル%で、Bi 39%、B 24.5%、ZnO 14.5%、Al 1.0%、CuO 20.5%、Fe 0.5%を含有している。また耐火性フィラー粉末はβ-ユークリプタイトである。
 得られた封着材料の熱膨張係数を測定したところ、その熱膨張係数は、66×10-7/℃であった。なお、熱膨張係数は、押棒式TMA装置で測定したものであり、その測定温度範囲は30~200℃である。
 次に、ガラス蓋の外周縁部に沿って、ガラス蓋上に上記封着材料を塗布、乾燥、脱バインダー、焼結を行い、封着材料層を形成した。詳述すると、まず粘度が90±20Pa・s(25℃、Shear rate:4)の範囲内になるように、上記の封着材料、ビークル及び溶剤を混練した後、更に三本ロールミルで粉末が均一分散するまで混錬して、ペースト化し、封着材料ペーストを得た。ビークルには、グリコールエーテル系溶剤にエチルセルロース有機樹脂を溶解させたものを使用した。次に、ガラス蓋の外周縁部上にスクリーン印刷機により封着材料ペーストを額縁状に印刷した。更に、大気雰囲気下にて、120℃で10分間乾燥して乾燥膜を得た後、電気炉で加熱処理することにより、乾燥膜を脱バインダー、焼結させて、平均幅約300μm、平均厚み約5μmを有する封着材料層を形成した。この封着材料層の波長808nm、0.005mm換算の光吸収率は75%であった。
 最後に、封着材料層を焼結させたガラス蓋と、レーザー吸収材を分散させたガラスセラミック基体を積層させて、ガラス蓋側からレーザー光を照射し、封着材料層を軟化流動させ、ガラス蓋とガラスセラミック基体を気密一体化させることで気密パッケージを得た。なお、レーザー出力は10W、走査速度は15mm/秒、ビーム直径はφ500μmである。
(実施例2)
 基部と基部上に設けられた枠部とを有し、3質量%レーザー吸収材を含むアルミナセラミック基体(縦15mm×横15mm、基部厚み0.5mm、枠部厚み1.0mm、熱膨張係数70×10-7/℃、波長808nm、0.5mm換算の光吸収率は75%)を用いた点、レーザー出力を16Wに設定した点以外は、実施例1と同様にして気密パッケージを得た。
(比較例1)
 基部と基部上に設けられた枠部とを有し、レーザー吸収材を含まないガラスセラミック基体(縦15mm×横15mm、基部厚み0.5mm、枠部厚み1.0mm、熱膨張係数58×10-7/℃、波長808nm、0.5mm換算の光吸収率は15%)を用いた点、レーザー出力を14Wに設定した点以外は、実施例1と同様にして気密パッケージを得た。
(比較例2)
 基部と基部上に設けられた枠部とを有し、レーザー吸収材を0.05%含むアルミナセラミック基体(縦15mm×横15mm、基部厚み0.5mm、枠部厚み1.0mm、熱膨張係数69×10-7/℃、波長808nm、0.5mm換算の光吸収率は34%)を用いた点、レーザー出力を19Wに設定した点以外は、実施例1と同様にして気密パッケージを得た。
(評価)
 実施例1、2及び比較例1、2で得られた気密パッケージについて、クラックの有無を観察すると共に、温度サイクル試験、高温高湿高圧試験を行った。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 クラックの有無は、得られた気密パッケージについて、光学顕微鏡で封着材料層の近傍を観察して、評価したものである。
 温度サイクル試験は、得られた気密パッケージについて、125℃⇔-55℃、1000サイクルの条件で温度サイクルを繰り返した後、封着材料層の近傍を観察して、評価したものであり、変質、クラック、剥離等が認められなかったものを「○」、認められたものを「×」として評価した。
 高温高湿高圧試験:PCT(Pressure Cooker Test)は、得られた気密パッケージについて、121℃、湿度100%、2atm、24時間の条件で、高温高湿高圧環境下で保持した後、封着材料層の近傍を観察して、評価したものであり、変質、クラック、剥離等が認められなかったものを「○」、認められたものを「×」として評価した。
 表1から分かるように、実施例1及び2で得られた気密パッケージは、クラックの有無、温度サイクル試験、高温高湿高圧試験の評価が良好であった。一方、比較例1及び2で得られた気密パッケージは、クラックの有無、温度サイクル試験、高温高湿高圧試験の評価が不良であった。
 本発明の気密パッケージは、センサーチップ、LED等の内部素子が実装された気密パッケージに好適であるが、それ以外にも圧電振動素子や有機樹脂中に量子ドットを分散させた波長変換素子等を収容する気密パッケージ等にも好適に適用可能である。
1 気密パッケージ
10 ガラス蓋
11 セラミック基体
12 基部
13 枠部
14 内部素子
15 封着材料層
16 枠部の頂部
17 レーザー照射装置
L レーザー光

Claims (7)

  1.  セラミック基体とガラス蓋とが、封着材料層により気密一体化された気密パッケージにおいて、
     セラミック基体が、レーザー吸収材を0.1~10質量%含み、
     セラミック基体の波長808nm、0.5mm換算の光吸収率と、封着材料層の波長808nm、0.005mm換算の光吸収率との差が30%以下であることを特徴とする気密パッケージ。
  2.  セラミック基体の波長808nm、0.5mm換算の全光線反射率が60%以下であることを特徴とする請求項1に記載の気密パッケージ。
  3.  セラミック基体に含まれるレーザー吸収材が、Fe系酸化物、Cr系酸化物、Mn系酸化物、Cu系酸化物及びこれらのスピネル型複合酸化物から選ばれる少なくとも1つから構成されることを特徴とする請求項1又は2に記載の気密パッケージ。
  4.  セラミック基体が、ガラスセラミック、酸化アルミニウム、窒化アルミニウムの何れか、或いはこれらの複合材料であることを特徴とする請求項1~3の何れかに記載の気密パッケージ。
  5.  セラミック基体が、基部と基部上に設けられた枠部とを有し、該枠部の頂部とガラス蓋との間に封着材料層を有することを特徴とする請求項1~4の何れかに記載の気密パッケージ。
  6.  封着材料層が、ガラス組成中に遷移金属酸化物を含むビスマス系ガラスと耐火性フィラーとを含み、且つ実質的にレーザー吸収材を含んでいないことを特徴とする請求項1~5の何れかに記載の気密パッケージ。
  7. セラミック基体の枠部内に、内部素子が収容されていることを特徴とする請求項1~6の何れかに記載の気密パッケージ。
PCT/JP2019/032658 2018-09-06 2019-08-21 気密パッケージ WO2020050031A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217000615A KR102633353B1 (ko) 2018-09-06 2019-08-21 기밀 패키지
CN201980058014.XA CN112640093A (zh) 2018-09-06 2019-08-21 气密封装体
US17/269,001 US11398585B2 (en) 2018-09-06 2019-08-21 Airtight package

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-166669 2018-09-06
JP2018166669A JP7168903B2 (ja) 2018-09-06 2018-09-06 気密パッケージ

Publications (1)

Publication Number Publication Date
WO2020050031A1 true WO2020050031A1 (ja) 2020-03-12

Family

ID=69721708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032658 WO2020050031A1 (ja) 2018-09-06 2019-08-21 気密パッケージ

Country Status (5)

Country Link
US (1) US11398585B2 (ja)
JP (1) JP7168903B2 (ja)
KR (1) KR102633353B1 (ja)
CN (1) CN112640093A (ja)
WO (1) WO2020050031A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199613A1 (ja) * 2020-03-31 2021-10-07 日本電気硝子株式会社 接合体の製造方法及び接合体
JP7487601B2 (ja) 2020-03-31 2024-05-21 日本電気硝子株式会社 接合体の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027219A (ja) * 2012-07-30 2014-02-06 Kyocera Corp 多数個取り配線基板、配線基板および多数個取り配線基板の製造方法
WO2017099022A1 (ja) * 2015-12-10 2017-06-15 京セラ株式会社 センサ用基板およびセンサ装置
WO2017212828A1 (ja) * 2016-06-10 2017-12-14 日本電気硝子株式会社 気密パッケージの製造方法及び気密パッケージ
JP2018135246A (ja) * 2017-02-23 2018-08-30 日本電気硝子株式会社 ビスマス系ガラス粉末、封着材料及び気密パッケージ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102471137B (zh) * 2009-07-31 2014-07-02 旭硝子株式会社 半导体器件用密封玻璃、密封材料、密封材料糊料以及半导体器件及其制造方法
WO2011130632A1 (en) * 2010-04-15 2011-10-20 Ferro Corporation Low-melting lead-free bismuth sealing glasses
JP5516194B2 (ja) * 2010-07-29 2014-06-11 旭硝子株式会社 光加熱封着用ガラス、封着材料層付きガラス部材、及び電子デバイスとその製造方法
US20130213852A1 (en) * 2010-10-01 2013-08-22 Yasuo Yamazaki Electrical element package
JP2013239609A (ja) 2012-05-16 2013-11-28 Asahi Glass Co Ltd 気密部材とその製造方法
JPWO2014092013A1 (ja) * 2012-12-10 2017-01-12 旭硝子株式会社 封着材料、封着材料層付き基板、積層体および電子デバイス
JP2014236202A (ja) 2013-06-05 2014-12-15 旭硝子株式会社 発光装置
JP6414076B2 (ja) * 2013-12-11 2018-10-31 Agc株式会社 発光ダイオードパッケージ用カバーガラス、封着構造体および発光装置
JP2016027610A (ja) * 2014-06-27 2016-02-18 旭硝子株式会社 パッケージ基板、パッケージ、および電子デバイス
TWI686968B (zh) * 2015-02-26 2020-03-01 日商日本電氣硝子股份有限公司 氣密封裝及其製造方法
JP6690607B2 (ja) * 2016-08-03 2020-04-28 信越化学工業株式会社 合成石英ガラスリッド及び光学素子用パッケージ
JP6819933B2 (ja) * 2016-10-07 2021-01-27 日本電気硝子株式会社 気密パッケージ及びその製造方法
JP6913276B2 (ja) * 2017-01-26 2021-08-04 日本電気硝子株式会社 気密パッケージ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027219A (ja) * 2012-07-30 2014-02-06 Kyocera Corp 多数個取り配線基板、配線基板および多数個取り配線基板の製造方法
WO2017099022A1 (ja) * 2015-12-10 2017-06-15 京セラ株式会社 センサ用基板およびセンサ装置
WO2017212828A1 (ja) * 2016-06-10 2017-12-14 日本電気硝子株式会社 気密パッケージの製造方法及び気密パッケージ
JP2018135246A (ja) * 2017-02-23 2018-08-30 日本電気硝子株式会社 ビスマス系ガラス粉末、封着材料及び気密パッケージ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199613A1 (ja) * 2020-03-31 2021-10-07 日本電気硝子株式会社 接合体の製造方法及び接合体
CN114981227A (zh) * 2020-03-31 2022-08-30 日本电气硝子株式会社 接合体的制造方法以及接合体
JP7487601B2 (ja) 2020-03-31 2024-05-21 日本電気硝子株式会社 接合体の製造方法

Also Published As

Publication number Publication date
US11398585B2 (en) 2022-07-26
US20210328109A1 (en) 2021-10-21
KR102633353B1 (ko) 2024-02-06
CN112640093A (zh) 2021-04-09
JP7168903B2 (ja) 2022-11-10
TW202020101A (zh) 2020-06-01
KR20210049773A (ko) 2021-05-06
JP2020043097A (ja) 2020-03-19

Similar Documents

Publication Publication Date Title
CN109075128B (zh) 气密封装体的制造方法及气密封装体
WO2020071047A1 (ja) 気密パッケージ
WO2020050031A1 (ja) 気密パッケージ
JP7222245B2 (ja) 気密パッケージ
KR102380455B1 (ko) 기밀 패키지
WO2018216587A1 (ja) 気密パッケージの製造方法及び気密パッケージ
KR102400344B1 (ko) 패키지 기체 및 그것을 사용한 기밀 패키지
TWI762584B (zh) 鉍系玻璃粉末、密封材料以及氣密封裝體
JP6944642B2 (ja) 気密パッケージの製造方法及び気密パッケージ
CN110402242B (zh) 盖玻璃和气密封装体
TWI835845B (zh) 氣密封裝體
WO2020003989A1 (ja) 封着材料層付きガラス蓋の製造方法及び気密パッケージの製造方法
JP6922253B2 (ja) ガラス蓋
WO2018131471A1 (ja) 気密パッケージ及びガラス蓋
JP7047270B2 (ja) 封着材料層付きパッケージ基体の製造方法及び気密パッケージの製造方法
WO2018193767A1 (ja) カバーガラス及びこれを用いた気密パッケージ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857177

Country of ref document: EP

Kind code of ref document: A1