WO2012014360A1 - 発光モジュール - Google Patents

発光モジュール Download PDF

Info

Publication number
WO2012014360A1
WO2012014360A1 PCT/JP2011/003155 JP2011003155W WO2012014360A1 WO 2012014360 A1 WO2012014360 A1 WO 2012014360A1 JP 2011003155 W JP2011003155 W JP 2011003155W WO 2012014360 A1 WO2012014360 A1 WO 2012014360A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
filter layer
emitting module
layer
Prior art date
Application number
PCT/JP2011/003155
Other languages
English (en)
French (fr)
Inventor
隆明 小松
康章 堤
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to EP11812041.9A priority Critical patent/EP2600427B1/en
Priority to PCT/JP2011/004187 priority patent/WO2012014439A1/ja
Priority to CN201180036466.1A priority patent/CN103026515B/zh
Priority to JP2012526305A priority patent/JPWO2012014439A1/ja
Publication of WO2012014360A1 publication Critical patent/WO2012014360A1/ja
Priority to US13/724,991 priority patent/US8704261B2/en
Priority to JP2015166658A priority patent/JP2016021582A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body

Definitions

  • the present invention relates to a light emitting module including a light emitting element such as a light emitting diode.
  • LEDs Light Emitting Diodes
  • LEDs Light Emitting Diodes
  • the light of the LED chip is wavelength-converted by the phosphor and emitted in all directions, so a part of the wavelength-converted light is again returned to the LED chip side and absorbed and lost as heat. As a result, the light extraction efficiency from the LED chip is reduced.
  • the light-emitting device described in Patent Document 1 has an air layer between the LED chip and the wavelength selection filter layer, and the difference in refractive index between the LED chip and air is large. It becomes easy to be trapped inside. As a result, light extraction is small and a high-luminance light-emitting device cannot be obtained. Further, in another embodiment in which the LED chip is covered with glass, the surface area of the light emitting layer is increased, so that the light emitting device with high luminance is not obtained.
  • the light-emitting device described in Patent Document 2 includes a sealing resin between the LED chip and the wavelength selection filter layer, so that the light extraction efficiency from the LED chip is improved.
  • the angle (incident angle) when the LED chip light is incident on the wavelength selective filter layer greatly affects the transmittance of the wavelength selective filter layer compared to the case without the sealing resin. give. In particular, the greater the incident angle, the lower the light transmittance. As a result, a high-luminance light emitting device is not obtained. Further, since the sealing resin is thick in the light emitting device described in Patent Document 2, the point that the LED chip light spreads and is absorbed by the sealing resin before reaching the filter layer also inhibits the luminance improvement.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a light emitting module having high luminance.
  • a light-emitting module is a plate-shaped semiconductor light-emitting element and a plate-like member that is provided to face the light-emitting surface of the semiconductor light-emitting element and converts the wavelength of light emitted by the semiconductor light-emitting element
  • the light wavelength conversion member and the surface of the plate-shaped light wavelength conversion member are formed on at least one of a surface and a side surface facing the semiconductor light emitting element, and transmits light emitted from the semiconductor light emitting element and transmits light.
  • a filter layer that reflects light wavelength-converted by the wavelength conversion member.
  • the semiconductor light emitting device is configured such that the ratio of the energy of the emitted light within a range of ⁇ 60 degrees from the front direction is 80% or more with respect to the total energy of the emitted light.
  • the light extraction efficiency in the front direction is improved.
  • the light distribution of the semiconductor light emitting element is relatively concentrated on the front, and the light wavelength conversion member provided so as to face the light emitting surface of the semiconductor light emitting element is plate-like, so that Both the outgoing light and the converted light whose wavelength has been converted by the optical wavelength conversion member are likely to face in the front direction. Therefore, the brightness in the front direction of the light emitting module can be increased.
  • the filter layer is formed on the surface of the light wavelength conversion member facing the semiconductor light emitting element, and may further include an adhesive layer that bonds the filter layer and the semiconductor light emitting element.
  • the adhesive layer may include a material having a refractive index of 1.3 or more.
  • the adhesive layer may have a thickness of 0.1 ⁇ m to 100 ⁇ m. If the thickness of the adhesive layer is 0.1 ⁇ m or more, it is possible to bond the filter layer and the semiconductor light emitting element. Further, when the thickness of the adhesive layer is 100 ⁇ m or less, the light of the semiconductor light emitting element can reach the filter layer without spreading so much on the side surface of the adhesive layer, and the decrease in transmittance is also suppressed.
  • the filter layer may be configured to have a transmittance of 80% or more when light emitted from the semiconductor light emitting element is incident on the filter layer at an incident angle of 60 degrees. Thereby, most of the light emitted from the semiconductor light emitting element in the front direction can be guided to the light wavelength conversion member.
  • the light wavelength conversion member In the light wavelength conversion member, at least a part of the surface on which the filter layer is not formed may have an uneven shape. Thereby, the light extraction efficiency of the output surface of the light wavelength conversion member is improved.
  • the concavo-convex shape is composed of a plurality of grooves, and the grooves may have a width of 1 ⁇ m to 1000 ⁇ m and a depth of 1 ⁇ m to 1000 ⁇ m. Thereby, the light extraction efficiency of the output surface of the light wavelength conversion member is further improved.
  • the optical wavelength conversion member may have an arithmetic average roughness Ra of 100 nm to 1000 nm on at least a part of the surface where the filter layer is not formed. Thereby, the light extraction efficiency of the output surface of the light wavelength conversion member is further improved.
  • the number of semiconductor light-emitting elements included in the light-emitting module is N, the area of the emission surface facing the filter layer of each semiconductor light-emitting element is S, and the area of the incident surface of the light wavelength conversion member on the side facing the semiconductor light-emitting element is In the case of T, S ⁇ T / N ⁇ 4 ⁇ S may be satisfied. Thereby, the area of the light emission surface of a light wavelength conversion member can be restrict
  • the thickness of the light wavelength conversion member may be 1 ⁇ m to 1000 ⁇ m.
  • a light emitting module with high luminance can be provided.
  • the vehicle headlamp device includes a lamp unit that emits light capable of forming a partial region of a high beam light distribution pattern, and an irradiation control unit that controls the light irradiation state of the lamp unit. Prepare. And an irradiation control part controls the irradiation state of light so that the partial area
  • the intensity of the irradiation light corresponding to each partial area is individually adjusted to switch between the high beam irradiation mode and the daytime lighting irradiation mode to form a light intensity distribution suitable for the high beam irradiation mode and a light intensity distribution suitable for the daytime lighting irradiation mode.
  • the light emitting module according to each embodiment can be applied not only to a lamp unit that forms a high beam light distribution pattern, but also to a lamp unit that forms a low beam light distribution pattern.
  • FIG. 1 is a schematic structural diagram of a lamp body unit constituting the vehicle headlamp device according to the present embodiment.
  • the vehicle headlamp device according to the present embodiment includes a pair of lamp body units at the left and right ends in the vehicle width direction of the front portion of the vehicle. And the irradiation as a vehicle headlamp apparatus is completed by superimposing the light distribution pattern irradiated from the left and right lamp body units in front of the vehicle.
  • FIG. 1 shows a configuration of a lamp body unit 10 arranged on the right side of the left and right lamp body units.
  • FIG. 1 shows a sectional view of the lamp body unit 10 cut from a horizontal plane and seen from above for easy understanding.
  • the lamp body unit arranged on the left side has a symmetrical structure with the lamp body unit 10 arranged on the right side, and the basic structure is the same. Therefore, the description of the lamp body unit 10 disposed on the left side is omitted by describing the lamp body unit 10 disposed on the right side.
  • the direction in which the light from the lamp is irradiated may be described as the vehicle front (front side) and the opposite side as the vehicle rear (rear side).
  • the lamp body unit 10 includes a translucent cover 12, a lamp body 14, an extension 16, a first lamp unit 18, and a second lamp unit 20.
  • the lamp body 14 is formed into a cup shape having a long and narrow opening with resin or the like.
  • the translucent cover 12 is formed of a translucent resin or the like, and is attached to the lamp body 14 so as to close the opening of the lamp body 14.
  • the lamp body 14 and the translucent cover 12 form a lamp chamber that is substantially a closed space, and the extension 16, the first lamp unit 18, and the second lamp unit 20 are disposed in the lamp chamber.
  • the extension 16 has an opening for passing irradiation light from the first lamp unit 18 and the second lamp unit 20, and is fixed to the lamp body 14.
  • the first lamp unit 18 is disposed outside the second lamp unit 20 in the vehicle width direction of the vehicle.
  • the first lamp unit 18 is a so-called parabolic lamp unit, and forms a low beam light distribution pattern to be described later.
  • the first lamp unit 18 includes a reflector 22, a light source bulb 24, and a shade 26.
  • the reflector 22 is formed in a cup shape, and an insertion hole is provided in the center.
  • the light source bulb 24 is configured by an incandescent lamp having a filament such as a halogen lamp.
  • the light source bulb 24 may employ other types of light sources such as a discharge lamp.
  • the light source bulb 24 is inserted into the insertion hole of the reflector 22 so as to protrude inside, and is fixed to the reflector 22.
  • the reflector 22 has a curved inner surface so as to reflect the light emitted from the light source bulb 24 toward the front of the vehicle.
  • the shade 26 blocks light that travels directly from the light source bulb 24 toward the front of the vehicle.
  • FIG. 2 is a diagram showing a configuration of the second lamp unit 20 included in the lamp body unit 10 of the present embodiment.
  • FIG. 2 shows a cross-sectional view of the second lamp unit 20 cut from a horizontal plane and viewed from above.
  • the second lamp unit 20 includes a holder 28, a projection lens 30, a light emitting module 32, and a heat sink 38.
  • the 2nd lamp unit 20 is a lamp unit which irradiates the light which can form all or one part area
  • the second lamp unit 20 irradiates light alone in the daytime lighting irradiation mode, so that it is easy to recognize the presence of the vehicle by an oncoming vehicle or a pedestrian during daytime, so-called daylighting lamp. It functions as a time running lamp (DRL).
  • DRL time running lamp
  • the projection lens 30 is a plano-convex aspheric lens having a convex front surface and a flat rear surface, and projects a light source image formed on the rear focal plane onto a virtual vertical screen in front of the lamp as a reverse image. To do.
  • the projection lens 30 is attached to one opening of a holder 28 formed in a cylindrical shape.
  • the light emitting module 32 corresponds to the light emitting module according to each embodiment described below.
  • FIG. 3 is a cross-sectional view showing a main part of the light emitting module according to the first embodiment.
  • the light emitting module 40 includes an LED chip 42 as a semiconductor light emitting element, a plate-like phosphor layer 44 that is provided to face the light emitting surface 42a of the LED chip 42, and converts the wavelength of light emitted from the LED chip 42.
  • a filter that is formed on the surface 44a of the surface of the plate-like phosphor layer 44 that faces the LED chip 42 and that transmits the light emitted from the LED chip 42 and reflects the light whose wavelength is converted by the phosphor layer 44.
  • a layer 46 In the light emitting module 40 according to the present embodiment, an air layer 48 is formed in the gap between the LED chip 42 and the filter layer 46.
  • Examples of the LED chip 42 include a flip chip type LED and a vertical type LED that are mounted face-down on a mounting board (not shown).
  • the phosphor layer 44 functions as a light wavelength conversion member that converts the wavelength of light emitted from the opposing LED chip 42 and emits it.
  • FIG. 4 is a cross-sectional view showing a main part of a modification of the light emitting module according to the first embodiment.
  • the light emitting module 50 is the same as the light emitting module 40 described above except that a CAN LD 52 is used as a semiconductor light emitting element.
  • FIG. 5 is a diagram showing an example of the light distribution of the LED chip suitable for the present embodiment.
  • the relative value when the luminous intensity in the front direction of the LED chip is 100 is shown in the irradiation direction range of ⁇ 90 ° to 90 °.
  • FIG. 13 is a diagram showing the relationship between the measurement angle of the LED chip having the light distribution shown in FIG. 5 and the cumulative luminous intensity ratio.
  • the cumulative luminous intensity ratio shown in FIG. 13 is each measurement when the value obtained by adding the luminous intensity measured every 10 degrees from the front direction (0 degrees) to the right lateral direction (90 degrees) of the LED chip is 100.
  • the ratio of the cumulative value of the luminous intensity up to the angle is shown.
  • the cumulative light intensity ratio R 60 up to the measurement angle 60 degrees is expressed by the following equation.
  • R 60 (I 0 + I 10 +... + I 60 ) / (I 0 + I 10 +... + I 80 + I 90 )
  • the cumulative luminous intensity ratio R 60 up to the measurement angle 60 exceeds 8% and is 88.7%.
  • the semiconductor light emitting element according to the present embodiment is configured such that the ratio of the energy of the emitted light within a range of ⁇ 60 degrees from the front direction is 80% or more with respect to the total energy of the emitted light. ing.
  • the emission wavelength of the semiconductor light emitting element may be not only in the visible light range but also in the ultraviolet light range. Further, the higher the directivity of the semiconductor light emitting element, the more light passes through the filter layer 46. Therefore, from the viewpoint of increasing the luminance of the light emitting module, LD, vertical LED, and flip chip LED are preferable in this order.
  • Examples of the material used for the light wavelength conversion member include a resin composition or a glass composition in which a powdered phosphor is dispersed, and fluorescent ceramics described later.
  • fluorescent ceramics which are inorganic materials, can be easily formed into various shapes and processed with high accuracy. Therefore, fluorescent ceramics are particularly suitable when used as a plate-like light wavelength conversion member. Ceramics (phosphor sintered bodies) made of phosphors are so-called luminescent ceramics or fluorescent ceramics, and are made using YAG (Yttrium Aluminum Garnet) powder, which is a phosphor excited by blue light. It can be obtained by sintering a ceramic substrate.
  • YAG Yttrium Aluminum Garnet
  • the light wavelength conversion ceramic thus obtained can suppress light diffusion on the surface of the powder unlike a powdered phosphor, for example, and the loss of light emitted from the semiconductor light emitting device is very small.
  • the phosphor to be sintered is not limited to the phosphor excited by blue light, and may be a phosphor excited by near ultraviolet light or ultraviolet light, for example.
  • the thickness of the light wavelength conversion member may be appropriately set in consideration of the color and brightness of light required for the light emitting module, the type of LED chip to be combined, and the like. For example, if the thickness is 1 ⁇ m or more, the light emitted from the LED chip can be sufficiently wavelength-converted. Moreover, if thickness is 1000 micrometers or less, the light of an LED chip can fully be permeate
  • the above-described filter layer 46 is preferably a so-called optical thin film that is appropriately designed so as to selectively transmit light having a desired wavelength.
  • the filter layer 46 functions as, for example, a dichroic mirror that is multilayered by alternately laminating materials having different refractive indexes. Each layer constituting the filter layer 46 is formed by vapor deposition or sputtering.
  • the filter layer 46 according to the present embodiment is provided so as to transmit blue light and reflect yellow light.
  • the filter layer 46 is not limited to the above, and for example, a long-pass filter, a short-pass filter, or a band-pass filter may be employed.
  • the filter layer 46 made of such an optical thin film is formed on a surface obtained by optically polishing the plate-like phosphor layer 44. Of course, the filter layer 46 can be formed on a roughened surface or an uneven surface.
  • the light emitting module 40 transmits the light emitted from the LED chip 42 by the filter layer 46 and reflects the light whose wavelength is converted by the phosphor layer 44, the light extraction efficiency in the front direction is reduced. Will improve.
  • the light distribution of the LED chip 42 is relatively concentrated on the front surface, and the phosphor layer 44 provided so as to face the light emitting surface 42a of the LED chip 42 is plate-like, and thus the LED chip 42 Both the outgoing light and the converted light whose wavelength is converted by the phosphor layer 44 are likely to face in the front direction. Therefore, the brightness in the front direction of the light emitting module 40 can be increased.
  • FIG. 6 is a cross-sectional view showing a main part of the light emitting module according to the second embodiment.
  • the light emitting module 60 according to the present embodiment is largely different from the light emitting module according to the first embodiment in that it further includes an adhesive layer 54 that bonds the filter layer 46 and the LED chip 42.
  • the adhesive layer 54 is made of a translucent material having a refractive index of 1.3 or more. Specifically, a fluorine-based adhesive, dimethyl silicone, bisphenol A type epoxy, TiO 2 sol-gel, and the like are suitable.
  • the difference in refractive index between the air layer 48 and the LED chip 42 is relatively large.
  • the light extraction efficiency of the LED chip 42 can be improved by bonding the filter layer 46 and the LED chip 42 with the adhesive layer 54 having a refractive index higher than that of air. As a result, the luminance of the light emitting module can be increased.
  • the film formation place of the filter layer 46 is formed only on the surface 44a facing the LED chip 42 in the surface of the phosphor layer 44.
  • the film forming location is not limited to this configuration. For example, it may be only the side surface of the surface of the phosphor layer 44, or both the side surface of the surface of the phosphor layer 44 and the surface 44 a facing the LED chip 42.
  • the filter layer 46 is formed on the side surface, the filter layer may be formed only on a part of the side surfaces instead of all the side surfaces in consideration of the effect of improving the luminance and the ease of manufacturing.
  • the phosphor layer 44 may be a rectangular parallelepiped, or the side surface of the rectangular parallelepiped may be tapered.
  • FIG. 7 is a cross-sectional view showing a phosphor layer 56 having a tapered side surface.
  • the tapered shape is formed so as to spread from the incident surface 56a of the phosphor layer 56 toward the emitting surface 56b.
  • an antireflection film may be formed on the surface of the phosphor layer 44 or the phosphor layer 56 where the filter layer 46 is not formed, or roughening or uneven processing may be performed.
  • the antireflection film include a film in which a dielectric multilayer film is formed after mirror-polishing the emission surface of the phosphor layer.
  • the surface roughening process include a method of processing with a polishing machine so that the arithmetic average roughness Ra of at least a part of the surface on which the filter layer is not formed is 10 nm to 1000 nm.
  • the surface is roughened so that the arithmetic average roughness Ra is 100 nm or more.
  • channel with a dicer in the surface in which the filter layer is not formed is mentioned, for example.
  • the groove to be formed has a line width of about 1 ⁇ m to 1000 ⁇ m and a depth of about 1 ⁇ m to 1000 ⁇ m.
  • the filter layer 46 when light is incident from an oblique direction, generally, transmission / reflection characteristics are shifted in a short wavelength direction (compared to a case where light is incident vertically). That is, the transmittance (or reflectance) changes abruptly when light enters the filter layer obliquely, compared to the wavelength at which the transmittance (or reflectance) changes abruptly when light enters the filter layer vertically. The wavelength shifts to the short wavelength side.
  • FIG. 8 is a graph showing the transmittance of a conventional filter layer.
  • FIG. 9 is a graph showing the transmittance of the filter layer according to the present embodiment.
  • FIG. 10 is a schematic diagram showing the definition of the incident angle. 8 and 9 show that the light (wavelength 420 to 480 nm) emitted from the LED chip 42 is an adhesive layer having a refractive index of 1.4 at the incident angle ⁇ (0, 30, 60 degrees) shown in FIG. The transmittance T when entering the filter layer 46 from 54 is shown.
  • the wavelength region with high transmittance is shifted to the short wavelength side as the incident angle ⁇ increases.
  • the incident angle is 60 degrees
  • the transmittance T in the wavelength region of the emission spectrum of the blue LED chip is reduced to 46%. Therefore, of the light emitted from the blue LED chip, in particular, most of the light incident on the filter layer 46 at a large incident angle is reflected, and the light reaching the phosphor layer is reduced. As a result, there is room for further improvement from the viewpoint of more effectively using the emitted light of the blue LED chip.
  • the filter layer shown in FIG. 9 is the same as the filter layer shown in FIG. 8 in that the wavelength region having a high transmittance shifts to the short wavelength side as the incident angle ⁇ increases.
  • the filter layer shown in FIG. 9 takes into account that the wavelength region with high transmittance shifts to the short wavelength side as the incident angle ⁇ increases, and the transmission / reflection characteristics at an incident angle of 0 degrees (see FIG. 9).
  • the line L1 ′) shown is configured to shift 15 nm to the long wavelength side with respect to the transmission / reflection characteristics (line L1 shown in FIG. 8) at the incident angle of 0 degrees of the conventional filter layer.
  • FIG. 11 is a graph showing the incident angle dependence of the transmittance of light emitting element light depending on the presence and type of the filter layer.
  • the transmittance was calculated for light traveling from the adhesive layer having a refractive index of 1.4 toward the filter layer.
  • the transmittance in the filter layer is 90% or more.
  • the present inventors have considered the directivity of the light distribution of the LED chip, the balance of the wavelength of the LED chip light, and the wavelength of the fluorescence, and the filter out of the emitted light from the LED chip. It has been found that a filter layer that transmits more light (corresponding to 90% of the total energy of light emitted from the LED chip) with an incident angle with respect to the layer of ⁇ 60 degrees is preferable.
  • the filter layer may be configured such that the transmittance when light emitted from the semiconductor light emitting element enters the filter layer at an incident angle of 60 degrees is 80% or more. Thereby, most of the light emitted from the semiconductor light emitting element in the front direction can be guided to the phosphor layer.
  • Example 1-1 to Example 1-3 the brightness of each type of semiconductor light emitting element in the light emitting module shown in FIG. 3 or 4 is compared.
  • the semiconductor light emitting element is a flip chip (FC) type LED and does not include a filter layer.
  • the semiconductor light emitting element is an FC type LED, and includes a filter layer.
  • the semiconductor light emitting element is a vertical (VC) type LED, and includes a filter layer.
  • the semiconductor light emitting element is an LD and includes a filter layer.
  • the fluorescent substance layer of the light emitting module which concerns on a comparative example and each Example is a glass composition which disperse
  • Table 1 summarizes the configuration and luminance of the light emitting modules according to Comparative Example 1 and Examples 1-1 to 1-3.
  • the provision of the filter layer improves the luminance as compared with the comparative example.
  • the light emitting module according to Example 1-3 provided with a highly directional LD has a 20% improvement in luminance over the light emitting module according to Comparative Example 1.
  • Example 2-1 and Example 2-2 In this example, it will be examined on which surface of the phosphor layer it is preferable to form the film layer.
  • the filter layer In the light emitting module according to Example 2-1, the filter layer is formed only on the side surface of the phosphor layer. In the light emitting module according to Example 2-2, the filter layer is formed on the side surface and the bottom surface of the phosphor layer.
  • Other configurations are the same as those in Comparative Example 1 and Example 1-1.
  • Table 2 summarizes the configuration and luminance of the light emitting modules according to Comparative Example 1 and Examples 1-1, 2-1, and 2-2.
  • the luminance of the light emitting module is improved by forming a filter layer on the surface of the phosphor layer.
  • Example 2-2 by providing a filter layer on the surface (bottom surface) and side surface of the phosphor layer facing the LED chip, the fluorescent light from the phosphor layer toward the LED chip is reflected. Since the light emitted from the side surface of the phosphor layer to the outside can be suppressed, the luminance of the light emitting module is further improved.
  • the light emitting module according to Example 3-1 includes a resin plate phosphor layer in which a powder phosphor is dispersed in bisphenol A type epoxy.
  • the light emitting module according to Example 3-2 includes a ceramic phosphor layer obtained by sintering a phosphor.
  • the light emitting module according to Comparative Example 3-1 includes a resin film phosphor layer in which powder phosphor is dispersed in dimethyl silicone resin.
  • the light emitting module according to Comparative Example 3-2 includes the resin plate phosphor layer according to Example 3-1, but the filter layer is not formed.
  • Table 3 summarizes the configurations and luminances of the light emitting modules according to Comparative Examples 3-1 and 3-2 and Examples 3-1 and 3-2.
  • the luminance of the light emitting module is improved by providing a plate-like phosphor layer.
  • the light emitting module according to Example 3-2 having a plate-like ceramic phosphor layer has a luminance improved by 16% compared to the light emitting module according to Comparative Example 1. Since the phosphor layer according to Comparative Example 3-1 is a resin film, it has insufficient hardness, and the film shape is easily deformed by an external force during processing. For this reason, problems such as cracks in the film and peeling of the deposited filter layer occurred during processing, and the brightness could not be measured accurately.
  • Example 4-1 to Example 4-4 the difference in refractive index of the light-transmitting adhesive layer is examined.
  • Table 4 summarizes the configuration and luminance of the light emitting modules according to Examples 4-1 to 4-4.
  • the luminance of the light emitting module is greatly improved by bonding the semiconductor light emitting element and the filter layer with an adhesive layer.
  • the light emitting module provided with the adhesive layer having a refractive index of 1.3 or more has a luminance improved by about 40% or more compared to the light emitting module according to Comparative Example 1.
  • luminance is improved, so that the light emitting module provided with the contact bonding layer with a high refractive index. This is because when the semiconductor light-emitting element is a flip-chip type LED chip, the exit surface is often made of sapphire, and the refractive index of sapphire is about 1.78. It is considered that the use of the adhesive layer improves the light extraction efficiency from the LED chip.
  • the adhesive layer preferably has a thickness in the range of 0.1 ⁇ m to 100 ⁇ m. If the thickness of the adhesive layer is 0.1 ⁇ m or more, it is possible to bond the filter layer and the semiconductor light emitting element. In addition, when the thickness of the adhesive layer is 100 ⁇ m or less, the light of the semiconductor light emitting element can reach the filter layer without spreading so much, and the decrease in transmittance is also suppressed.
  • Example 5 In this embodiment, the effect when an antireflection film is formed on the emission surface of the phosphor layer will be examined.
  • the emission surface of the phosphor layer is coated with an antireflection layer made of a dielectric multilayer film.
  • Table 5 summarizes the configuration and luminance of the light emitting modules according to Example 4-2 and Example 5.
  • Example 5 by forming an antireflection film on the emission surface of the phosphor layer, the light extraction efficiency from the phosphor layer is improved, and the luminance of the light emitting module is improved.
  • FIG. 12 is a cross-sectional view of a main part showing a concavo-convex shape by groove processing of the emission surface of the phosphor layer.
  • the phosphor layer 44 has a groove shape on at least a part of the surface where the filter layer 46 is not formed.
  • Parameters defining the groove shape include a groove width W, a groove depth D, and a space L that is the width of an unprocessed portion between the grooves.
  • the groove depth D with respect to the thickness of the phosphor layer is processed to be 90%, and the groove depth D is 45 ⁇ m to 450 ⁇ m. The range is different.
  • the groove width W and space L are all 100 ⁇ m.
  • the light emitting module in Example 6-6 is the same as that in Example 4-2, except that the filter layer is not provided.
  • Table 6 summarizes the configuration and luminance of the light emitting modules according to Example 4-2 and Examples 6-1 to 6-6.
  • the numerical value in parentheses in the luminance column in the table is the luminance when there is no filter layer.
  • the luminance of the light emitting module is improved.
  • the ratio of the groove depth D to the thickness of the phosphor layer is constant, the luminance of the light emitting module is higher as the groove depth is smaller, and the luminance improvement ratio when the filter layer is provided is also higher.
  • the luminance of the light emitting module according to the example in which the thickness of the phosphor layer is 150 ⁇ m or less is improved by 100% or more compared to the light emitting module according to Comparative Example 1.
  • Example 6-6 when the light emitting modules of Example 4-2 and Example 6-6 in which the ceramic phosphor layer has a thickness of 150 ⁇ m and is not grooved, the light emission according to Example 6-6 without the filter layer is compared.
  • the relative luminance of the module is 138
  • the relative luminance of the light emitting module according to Example 4-2 having the filter layer is 145. That is, the effect of providing the filter layer on the phosphor layer without groove processing is approximately 5% (138 ⁇ 145).
  • Example 6-3 in which the ceramic phosphor layer has a thickness of 150 ⁇ m and is grooved, the relative luminance of the light emitting module without the filter layer is 193, whereas the light emission with the filter layer is The relative luminance of the module is 221. That is, the effect of providing the filter layer on the phosphor layer with the groove processing is approximately 14% (193 ⁇ 221). That is, it can be seen that the brightness of the light emitting module is further improved by a synergistic effect by forming a filter layer on the phosphor layer and performing groove processing on the emission surface of the phosphor layer.
  • the difference in brightness improvement effect due to the presence or absence of groove processing is considered as follows. If there is no groove processing on the emission surface of the phosphor layer, the light that has been wavelength-converted by the phosphor layer and reflected by the filter layer in the direction of the emission surface is again reflected on the emission surface in the plate-like ceramic phosphor layer. It becomes easy to be reflected, is repeatedly reflected inside the phosphor layer, and finally becomes heat. For this reason, it is considered that the light reflected by the filter layer cannot be efficiently extracted outside the phosphor layer.
  • Example 7-1 to Example 7-4 Also in this embodiment, the effect of processing the unevenness (grooves) on the emission surface of the phosphor layer will be examined.
  • Each phosphor layer in Example 7-1 to Example 7-4 is processed so that the groove depth D differs from that of the phosphor layer having a constant thickness, and the groove depth D is 3 ⁇ m to 100 ⁇ m. The range is different.
  • the groove width W and space L are all 100 ⁇ m.
  • Table 7 summarizes the configuration and luminance of the light emitting modules according to Examples 7-1 to 7-4.
  • the numerical value in parentheses in the luminance column in the table is the luminance when there is no filter layer.
  • Examples 7-1 to 7-4 by providing the grooves on the emission surface of the phosphor layer, the light extraction efficiency of the emission surface of the phosphor layer is improved, and the luminance of the light emitting module is improved. . Moreover, the brightness
  • Example 8-1 to Example 8-4 In the present embodiment, the effect of the output surface roughening processing of the phosphor layer will be examined.
  • the arithmetic average roughness of the emission surface of the phosphor layer is different in the range of 100 nm to 1000 nm.
  • Table 8 summarizes the configuration and luminance of the light emitting modules according to Examples 8-1 to 8-4.
  • Examples 8-1 to 8-4 by roughening the emission surface of the phosphor layer, the light extraction efficiency of the emission surface of the phosphor layer is improved, and the luminance of the light emitting module is improved. . Further, when the arithmetic average roughness of the emission surface is 100 nm to 1000 nm, the luminance is improved by 100% or more with respect to the light emitting module according to Comparative Example 1. In particular, when the arithmetic average roughness is 400 nm to 1000 nm, the luminance is improved by 200% or more with respect to the light emitting module according to Comparative Example 1.
  • the number of semiconductor light-emitting elements included in the light-emitting module is not limited to a single one, and may be plural depending on applications and required characteristics.
  • the number of semiconductor light-emitting elements included in the light-emitting module is N
  • the area of the exit surface of each semiconductor light-emitting element facing the filter layer is S
  • the incidence of the phosphor layer facing the semiconductor light-emitting element When the area of the surface is T, S ⁇ T / N ⁇ 4 ⁇ S is preferably satisfied. Thereby, most of the light emitted from the semiconductor light emitting element enters the phosphor layer.
  • composition analysis The composition analysis of each film (layer) described above can be performed, for example, by performing elemental analysis with an energy dispersive X-ray analyzer (XMA) while observing a thin film cross section with a scanning electron microscope (SEM), A photoelectron spectrometer (XPS), a secondary ion mass spectrometer (SIMS), or the like is used while etching.
  • XMA energy dispersive X-ray analyzer
  • SEM scanning electron microscope
  • XPS photoelectron spectrometer
  • SIMS secondary ion mass spectrometer
  • optical simulation The optical properties of the optical thin film are specified using commercially available optical thin film design software (for example, Essential Macleod).
  • Such thin film design software can simulate the spectral characteristics of the multilayer film from the refractive index and film thickness data of the film material. At the same time, it is possible to reproduce spectral characteristics corresponding to the refractive index of an arbitrary adhesive resin and the incident angle of incident light.
  • a light emitting module that combines a semiconductor light emitting element that emits blue light and a yellow phosphor has been described.
  • the light emitting module a semiconductor light emitting element that emits ultraviolet light, and excited by ultraviolet light, And a plurality of phosphors that emit red, green, and blue light, respectively.
  • the light emitting module may include a semiconductor light emitting element that emits ultraviolet light and a phosphor that is excited by ultraviolet light and emits blue and yellow light.
  • the light emitting module according to the present embodiment can be used not only for a vehicle lamp but also for an illumination lamp.
  • the light emitting module of the present invention can be used for various lamps, for example, lighting lamps, displays, vehicle lamps, traffic lights, and the like.

Abstract

 発光モジュール40は、LEDチップ42と、LEDチップ42の発光面42aに対向するように設けられ、LEDチップ42が発する光の波長を変換する板状の蛍光体層44と、蛍光体層44の表面のうち、LEDチップ42と対向する面および側面の少なくともいずれかの表面に形成され、LEDチップ42から出射した光を透過させるとともに蛍光体層44で波長変換された光を反射するフィルタ層46と、を備える。フィルタ層46は、出射光の全エネルギーに対して、正面方向から±60度の範囲内の出射光のエネルギーの割合が80%以上となるように構成されている。

Description

発光モジュール
 本発明は、発光ダイオードなどの発光素子を備えた発光モジュールに関する。
 近年、環境への関心の高まりから照明器具の光源として、省電力が期待される発光ダイオード(LED:Light Emitting Diode)が注目されている。LEDを用いた白色光を発する照明器具としては、LEDチップと蛍光体を組み合わせた構成が知られている。
 このような構成では、LEDチップの光は蛍光体で波長変換され全方位に出射するため、波長変換された光の一部は再度LEDチップ側に戻って吸収され、熱となって消失する。その結果、LEDチップからの光取り出し効率が低下してしまうことになる。
 そこで、LEDチップから放射される光を透過しかつ蛍光体から放射される可視光を反射する波長選択フィルタ層を備えた発光装置が考案されている(特許文献1、2参照)。これにより、蛍光体から放射される可視光の一部がLEDチップ側に戻って吸収されることを抑制し、光取り出し効率の低下を防止できるとされている。
特開2008-270707号公報 特開2008-235827号公報
 しかしながら、前述の特許文献1に記載の発光装置は、LEDチップと波長選択フィルタ層との間に空気層があり、LEDチップと空気の屈折率の差が大きいため、LEDチップの光がLEDチップ内部に閉じ込められやすくなる。その結果、光取り出しが少なく、高輝度の発光装置とならない。また、ガラスでLEDチップを覆った別形態では、発光層の表面積が大きくなるため、高輝度の発光装置とならない。特許文献2に記載の発光装置は、LEDチップと波長選択フィルタ層との間に封止樹脂があり、LEDチップからの光の取り出し効率が向上する。一方、封止樹脂を有する発光装置は、封止樹脂がない場合に比べてLEDチップ光が波長選択フィルタ層へ入射するときの角度(入射角)が、波長選択フィルタ層の透過率に大きく影響を与える。特に、入射角が大きいほど光の透過率が低下する。その結果、高輝度の発光装置とならない。また、特許文献2に記載の発光装置は封止樹脂が厚いため、LEDチップ光がフィルタ層へ到達する前に光の広がりや封止樹脂による吸収を招く点も輝度向上を阻害する。
 本発明はこうした状況に鑑みてなされたものであり、その目的とするところは、輝度の高い発光モジュールを提供することにある。
 上記課題を解決するために、本発明のある態様の発光モジュールは、半導体発光素子と、半導体発光素子の発光面に対向するように設けられ、半導体発光素子が発する光の波長を変換する板状の光波長変換部材と、板状の光波長変換部材の表面のうち、半導体発光素子と対向する面および側面の少なくともいずれかの表面に形成され、半導体発光素子から出射した光を透過させるとともに光波長変換部材で波長変換された光を反射するフィルタ層と、を備える。半導体発光素子は、出射光の全エネルギーに対して、正面方向から±60度の範囲内の出射光のエネルギーの割合が80%以上となるように構成されている。
 この態様によると、フィルタ層によって、半導体発光素子から出射した光を透過させるとともに光波長変換部材で波長変換された光を反射するため、正面方向への光の取り出し効率が向上する。また、半導体発光素子の配光が比較的正面に集中しており、また、半導体発光素子の発光面に対向するように設けられている光波長変換部材が板状であるため、半導体発光素子の出射光および光波長変換部材で波長が変換された変換光は共に正面方向に向かいやすい。そのため、特に発光モジュールの正面方向の輝度を高めることができる。
 フィルタ層は、光波長変換部材の表面のうち半導体発光素子と対向する面に形成されており、フィルタ層と半導体発光素子とを接着する接着層を更に備えてもよい。接着層は、屈折率が1.3以上の材料を含んでいてもよい。フィルタ層と半導体発光素子との間が空気層の場合、空気層と半導体発光素子との屈折率の差が比較的大きいため、半導体発光素子の光の取り出し効率に改善の余地がある。そこで、フィルタ層と半導体発光素子とを空気より高い屈折率を有する接着層によって接着することで、半導体発光素子の光の取り出し効率を向上することができる。
 接着層は、厚みが0.1μm~100μmであってもよい。接着層の厚みが0.1μm以上であればフィルタ層と半導体発光素子とを接着することが可能となる。また、接着層の厚みが100μm以下であれば、半導体発光素子の光が接着層の側面にあまり広がらずにフィルタ層に到達でき、また、透過率の低下も抑制される。
 フィルタ層は、半導体発光素子が発する光が入射角60度で該フィルタ層に入射した場合の透過率が80%以上となるように構成されていてもよい。これにより、半導体発光素子から正面方向に出射された光の多くを光波長変換部材に導くことが可能となる。
 光波長変換部材は、フィルタ層が形成されていない面の少なくとも一部が凹凸形状を有していてもよい。これにより、光波長変換部材の出射面の光取り出し効率が向上する。
 凹凸形状は、複数の溝から構成されており、溝は、幅が1μm~1000μm、深さが1μm~1000μmであってもよい。これにより、光波長変換部材の出射面の光取り出し効率が更に向上する。
 光波長変換部材は、フィルタ層が形成されていない面の少なくとも一部の算術平均粗さRaが100nm~1000nmであってもよい。これにより、光波長変換部材の出射面の光取り出し効率が更に向上する。
 発光モジュールに含まれる半導体発光素子の個数をN、各半導体発光素子のフィルタ層と対向する側の出射面の面積をS、光波長変換部材の半導体発光素子と対向する側の入射面の面積をT、とした場合、S≦T/N≦4×Sを満たしてもよい。これにより、光波長変換部材の発光面の面積を小さく制限でき、発光モジュールの正面方向の輝度を高めることができる。
 光波長変換部材は、その厚みが1μm~1000μmであってもよい。
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、などの間で変換したものもまた、本発明の態様として有効である。
 本発明によれば、輝度の高い発光モジュールを提供することができる。
本実施の形態に係る車両用前照灯装置を構成する灯具本体ユニットの概略構造図である。 本実施の形態の灯具本体ユニットに含まれる第2灯具ユニットの構成を示す図である。 第1の実施の形態に係る発光モジュールの要部を示す断面図である。 第1の実施の形態に係る発光モジュールの変形例の要部を示す断面図である。 本実施の形態に好適なLEDチップの配光分布の一例を示す図である。 第2の実施の形態に係る発光モジュールの要部を示す断面図である。 側面がテーパ形状の蛍光体層を示す断面図である。 従来のフィルタ層の透過率を示したグラフである。 本実施の形態に係るフィルタ層の透過率を示したグラフである。 入射角の定義を示す概要図である。 フィルタ層の有無および種類による発光素子光の透過率の入射角度依存性を示したグラフである。 蛍光体層の出射面の溝加工による凹凸形状を示す要部断面図である。 図5に示す配光分布を有するLEDチップの測定角度と累積光度比との関係を示した図である。
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。
 近年、LEDやLD(Laser Diode)を用いた各種の照明装置の開発がすすんでいる。このような照明装置の中には、特性として高い輝度が求められるものがある。例えば、LEDやLDを光源とした発光モジュールを車両のヘッドライトに用いる場合、更なる高輝度化が求められることになる。そこで、本発明者らは、発光モジュールの高輝度化を実現すべく鋭意検討した結果、以下に述べる実施の形態に代表される発光モジュールを考案した。
 [車両用前照灯装置]
 はじめに、後述する各実施の形態に係る発光モジュールが好適な用途として、高輝度化が求められている車両用前照灯装置の概略について説明する。本実施の形態の車両用前照灯装置は、ハイビーム用配光パターンの一部領域を形成可能な光を照射する灯具ユニットと、この灯具ユニットの光の照射状態を制御する照射制御部とを備える。そして、照射制御部は、ハイビーム用配光パターンの一部領域が少なくとも車幅方向に複数に分割された部分領域により形成されるように光の照射状態を制御する。また、各部分領域に対応する照射光の光度を個別に調整してハイビーム照射モードと昼間点灯照射モードを切り替えてハイビーム照射モードに適した光度分布と昼間点灯照射モードに適した光度分布を形成する。なお、各実施の形態に係る発光モジュールは、ハイビーム用配光パターンを形成する灯具ユニットだけではなく、ロービーム用配光パターンを形成する灯具ユニットにも適用できる。
 図1は、本実施の形態に係る車両用前照灯装置を構成する灯具本体ユニットの概略構造図である。本実施の形態の車両用前照灯装置は、車両の前部の車幅方向左右両端に一対の灯具本体ユニットを含む。そして、左右の灯具本体ユニットから照射される配光パターンを車両の前方で重畳させることにより車両用前照灯装置としての照射を完成させる。図1は、左右の灯具本体ユニットのうち右側に配置される灯具本体ユニット10の構成を示す。図1では、理解を容易にするために灯具本体ユニット10を水平面で切断して上方から見た断面図を示している。なお、左側に配置される灯具本体ユニットは右側に配置される灯具本体ユニット10と左右対称の構造であり基本構造は同一である。したがって、右側に配置される灯具本体ユニット10を説明することで左側に配置される灯具本体ユニットの説明は省略する。また、以下では、便宜上、灯具の光が照射する方向を車両前方(前側)、その反対側を車両後方(後側)として説明する場合がある。
 灯具本体ユニット10は、透光カバー12、ランプボディ14、エクステンション16、第1灯具ユニット18、および第2灯具ユニット20を有する。ランプボディ14は、樹脂などによって細長い開口部を有するカップ型に成形されている。透光カバー12は、透光性を有する樹脂などによって成形され、ランプボディ14の開口部を塞ぐようにランプボディ14に取り付けられる。こうしてランプボディ14と透光カバー12とによって実質的に閉鎖空間となる灯室が形成され、この灯室内にエクステンション16、第1灯具ユニット18、および第2灯具ユニット20が配置される。
 エクステンション16は、第1灯具ユニット18および第2灯具ユニット20からの照射光を通すための開口部を有し、ランプボディ14に固定される。第1灯具ユニット18は、第2灯具ユニット20より車両の車幅方向の外側に配置される。第1灯具ユニット18は、いわゆるパラボラ型の灯具ユニットであり、後述するロービーム用配光パターンを形成する。
 第1灯具ユニット18は、リフレクタ22、光源バルブ24、およびシェード26を有する。リフレクタ22は、カップ型に形成され、中央に挿通孔が設けられている。本実施の形態では、光源バルブ24はハロゲンランプなどフィラメントを有する白熱灯によって構成されている。なお、光源バルブ24は、放電灯等他のタイプの光源が採用されてもよい。光源バルブ24は、内部に突出するようリフレクタ22の挿通孔に挿通されてリフレクタ22に固定される。リフレクタ22は、光源バルブ24が照射した光を車両前方に向けて反射させるよう、内面の曲面が形成されている。シェード26は、光源バルブ24から車両前方へ直接進行する光を遮断する。第1灯具ユニット18の構成は公知であるため、第1灯具ユニット18に関する詳細な説明は省略する。なお、第1灯具ユニット18の光源として後述の発光モジュールを用いても良い。
 図2は、本実施の形態の灯具本体ユニット10に含まれる第2灯具ユニット20の構成を示す図である。図2では、第2灯具ユニット20を水平面で切断して上方から見た断面図を示している。第2灯具ユニット20は、ホルダ28、投影レンズ30、発光モジュール32、およびヒートシンク38を備える。第2灯具ユニット20は、ハイビーム用配光パターンの全部または一部領域を形成可能な光を照射する灯具ユニットである。すなわち、第2灯具ユニット20は、ハイビーム照射モード時に、第1灯具ユニット18により形成されるロービーム用配光パターンの上部にハイビーム用配光パターンを形成する。ハイビーム用配光パターンがロービーム用配光パターンに追加されることで、全体として照射範囲が広くなり、遠方視認性能も向上する。また、第2灯具ユニット20は、昼間点灯照射モード時に単独で光を照射することにより、昼間など対向車や歩行者などに自車の存在を認識しやすくするための昼間点灯照射ランプ、いわゆるデイタイムランニングランプ(DRL)として機能する。
 投影レンズ30は、前方側表面が凸面で後方側表面が平面の平凸非球面レンズからなり、その後側焦点面上に形成される光源像を、反転像として灯具前方の仮想鉛直スクリーン上に投影する。投影レンズ30は筒状に形成されたホルダ28の一方の開口部に取り付けられる。なお、発光モジュール32は、以下に示す各実施の形態に係る発光モジュールに対応するものである。
 (第1の実施の形態)
 [発光モジュール]
 図3は、第1の実施の形態に係る発光モジュールの要部を示す断面図である。発光モジュール40は、半導体発光素子としてのLEDチップ42と、LEDチップ42の発光面42aに対向するように設けられ、LEDチップ42が発する光の波長を変換する板状の蛍光体層44と、板状の蛍光体層44の表面のうち、LEDチップ42と対向する面44a上に形成され、LEDチップ42から出射した光を透過させるとともに蛍光体層44で波長変換された光を反射するフィルタ層46と、を備える。なお、本実施の形態に係る発光モジュール40は、LEDチップ42とフィルタ層46との隙間に空気層48が形成されている。
 LEDチップ42としては、不図示の実装基板にフェイスダウンで実装されるフリップチップ型LEDや、縦型LEDなどが挙げられる。蛍光体層44は、対向するLEDチップ42が発する光を波長変換して出射する光波長変換部材として機能する。
 図4は、第1の実施の形態に係る発光モジュールの変形例の要部を示す断面図である。発光モジュール50は、半導体発光素子としてCAN型LD52が用いられている以外は前述の発光モジュール40と同様である。
 図5は、本実施の形態に好適なLEDチップの配光分布の一例を示す図である。図5では、LEDチップの正面方向の光度を100とした場合の相対値を照射方向が-90°から90°の範囲で示したものである。図13は、図5に示す配光分布を有するLEDチップの測定角度と累積光度比との関係を示した図である。図13に示す累積光度比とは、LEDチップの正面方向(0度)から真横方向(90度)に向かって10度ごとに測定した光度を足し合わせた値を100とした場合の、各測定角度までの光度の累積値の比率を示している。例えば、測定角度x(10,20,・・・80,90)における光度をIxとした場合、測定角度60度までの累積光度比R60は、以下の式で示される。
 R60=(I+I10+・・・+I60)/(I+I10+・・・+I80+I90
 本実施の形態に係るLEDチップは、測定角度60までの累積光度比R60が80%を超えて88.7%となっている。このように、本実施の形態に係る半導体発光素子は、出射光の全エネルギーに対して、正面方向から±60度の範囲内の出射光のエネルギーの割合が80%以上となるように構成されている。
 なお、半導体発光素子の発光波長は、可視光の範囲だけではなく紫外光の範囲であってもよい。また、半導体発光素子の指向性が高いほどフィルタ層46を透過する光が多くなるため、発光モジュールの輝度を高めるという観点では、LD、縦型LED、フリップチップ型LEDの順で好適である。
 [光波長変換部材]
 光波長変換部材に用いられる材料は、粉末の蛍光体を分散させた樹脂組成物やガラス組成物、後述する蛍光セラミックスが挙げられる。特に、無機材料である蛍光セラミックスは、多様な形状への成形や、精度の高い加工が容易に行える。そのため、蛍光セラミックスは、特に、板状の光波長変換部材として利用する場合に好適である。蛍光体からなるセラミックス(蛍光体焼結体)は、いわゆる発光セラミックス、または蛍光セラミックスと呼ばれるものであり、青色光によって励起される蛍光体であるYAG(Yttrium Aluminum Garnet)粉末を用いて作成されたセラミックス素地を焼結することにより得ることができる。このような光波長変換セラミックスの製造方法は公知であることから詳細な説明は省略する。こうして得られた光波長変換セラミックスは、例えば粉末状の蛍光体と異なり、粉末表面での光拡散を抑制でき、半導体発光素子が発する光の損失が非常に少ない。なお、焼結する蛍光体は、青色光によって励起される蛍光体に限られず、例えば、近紫外光、紫外光によって励起される蛍光体であっても良い。
 光波長変換部材の厚みは、発光モジュールとして必要とされる光の色や輝度、組み合わせるLEDチップの種類などを考慮して適宜設定すればよい。例えば、厚みが1μm以上であれば、LEDチップが発する光を十分波長変換することが可能となる。また、厚みが1000μm以下であれば、LEDチップの光を十分透過させることができる。
 [フィルタ層]
 前述のフィルタ層46は、所望の波長の光を選択的に透過させるように適宜設計されたいわゆる光学薄膜が好適である。フィルタ層46は、屈折率の異なる材料を交互に積層することにより多層化された、例えば、ダイクロイックミラーとして機能するものである。フィルタ層46を構成する各層は、蒸着やスパッタリングにより形成される。本実施の形態に係るフィルタ層46は、青色光を透過し、黄色光を反射するように設けられている。なお、フィルタ層46は上述したものに限られないことは勿論であり、例えばロングパスフィルタ、ショートパスフィルタ、またはバンドパスフィルタが採用されてもよい。このような光学薄膜からなるフィルタ層46は、板状の蛍光体層44を光学研磨した面に成膜される。なお、フィルタ層46は、粗化面や凹凸面に成膜されることももちろん可能である。
 本実施の形態に係る発光モジュール40は、フィルタ層46によって、LEDチップ42から出射した光を透過させるとともに蛍光体層44で波長変換された光を反射するため、正面方向への光の取り出し効率が向上する。また、LEDチップ42の配光が比較的正面に集中しており、また、LEDチップ42の発光面42aに対向するように設けられている蛍光体層44が板状であるため、LEDチップ42の出射光および蛍光体層44で波長が変換された変換光は共に正面方向に向かいやすい。そのため、特に発光モジュール40の正面方向の輝度を高めることができる。
 (第2の実施の形態)
 図6は、第2の実施の形態に係る発光モジュールの要部を示す断面図である。本実施の形態に係る発光モジュール60は、第1の実施の形態に係る発光モジュールと比較して、フィルタ層46とLEDチップ42とを接着する接着層54を更に備えている点が大きく異なる。接着層54は、屈折率が1.3以上の透光性の材料で構成されている。具体的には、フッ素系接着剤、ジメチルシリコーン、ビスフェノールA型エポキシ、TiO系ゾルゲル剤などが好適である。
 第1の実施の形態に係る発光モジュールのように、フィルタ層46とLEDチップ42との間が空気層48の場合、空気層48とLEDチップ42との屈折率の差が比較的大きいため、LEDチップ42の光の取り出し効率に改善の余地がある。そこで、フィルタ層46とLEDチップ42とを空気より高い屈折率を有する接着層54によって接着することで、LEDチップ42の光の取り出し効率を向上することができる。その結果、発光モジュールの輝度を高めることもできる。
 上述の各実施の形態に係る発光モジュールにおいては、フィルタ層46の成膜場所は蛍光体層44の表面のうち、LEDチップ42と対向する面44a上にのみ形成されているが、フィルタ層の成膜場所はこの構成に限られない。例えば、蛍光体層44の表面のうち側面のみであったり、蛍光体層44の表面のうち側面とLEDチップ42と対向する面44aの両方であったりしてもよい。フィルタ層46を側面に成膜する場合、輝度向上の効果と製造の容易さとを勘案して、全ての側面ではなく一部の側面のみにフィルタ層を成膜してもよい。
 上述の各実施の形態に係る蛍光体層44は、直方体であってもよく、直方体の側面がテーパ形状であってもよい。図7は、側面がテーパ形状の蛍光体層56を示す断面図である。なお、テーパ形状は、蛍光体層56の入射面56aから出射面56bに向かって広がるように形成されている。側面をこのようなテーパ形状にすることにより、フィルタ層46を透過した光が側面から出射しにくくなり、蛍光体層56の正面である出射面56bから出射する光束を増すことができることができる。
 また、蛍光体層44や蛍光体層56の表面のうちフィルタ層46が成膜されていない表面に、反射防止膜を形成したり、粗化または凹凸加工を施したりしてもよい。反射防止膜としては、例えば、蛍光体層の出射面を鏡面研磨した後に誘電体多層膜を成膜したものが挙げられる。また、表面の粗化加工としては、例えば、フィルタ層が形成されていない面の少なくとも一部の算術平均粗さRaが10nm~1000nmとなるように研磨機で加工する方法が挙げられる。なお、好ましくは、算術平均粗さRaが100nm以上となるように表面の粗化加工を行うとよい。また、表面の凹凸加工としては、例えば、フィルタ層が形成されていない面に、ダイサーにより複数の溝を形成する方法が挙げられる。形成する溝は、線幅が1μm~1000μm、深さが1μm~1000μm程度である。このように蛍光体層の表面に反射防止膜を形成したり表面を加工したりすることで、蛍光体層の出射面の光取り出し効率が更に向上する。
 なお、凹凸加工は、ダイサーによる研削加工以外に、レーザー加工、ブラスト加工、ドライエッチング加工、ウエットエッチング加工等を適宜用いてもよい。
 次に、青色発光LEDチップと黄色発光蛍光体を用いた白色発光モジュールを例に、更に好適なフィルタの特性について説明する。フィルタ層46が多層膜の場合、光が斜めから入射すると、一般的に、透過/反射特性が(垂直に入射する場合に比べて)短波長方向にシフトする。つまり、フィルタ層に光が垂直に入射する場合に透過率(または反射率)が急変する波長と比較して、フィルタ層に光が斜めに入射する場合に透過率(または反射率)が急変する波長は、短波長側にシフトする。
 図8は、従来のフィルタ層の透過率を示したグラフである。図9は、本実施の形態に係るフィルタ層の透過率を示したグラフである。図10は、入射角の定義を示す概要図である。なお、図8および図9は、LEDチップ42から出射された光(波長420~480nm)が、図10に示した入射角θ(0、30、60度)で屈折率1.4の接着層54からフィルタ層46へ入射する時の透過率Tを示している。
 図8に示すフィルタ層では、入射角θが大きくなるにつれて透過率が高い波長域が短波長側にシフトしている。特に、入射角60度の場合、青色LEDチップの発光スペクトルの波長域における透過率Tは46%まで低下している。したがって、青色LEDチップの出射光のうち、特に、大きな入射角でフィルタ層46に入射する光の多くが反射されてしまい、蛍光体層に到達する光が減少する。その結果、青色LEDチップの出射光をより有効に利用するという観点から更なる改良の余地がある。
 そこで、図9に示す特性を有するフィルタ層に想到した。図9に示すフィルタ層においても、入射角θが大きくなるにつれて透過率が高い波長域が短波長側にシフトする点は図8に示すフィルタ層と同様である。しかしながら、図9に示すフィルタ層は、入射角θの増大に伴い透過率が高い波長域が短波長側にシフトする点を考慮して、入射角0度での透過/反射特性(図9に示すラインL1’)が従来のフィルタ層の入射角0度での透過/反射特性(図8に示すラインL1)に対して長波長側に15nmシフトするように構成されている。
 図11は、フィルタ層の有無および種類による発光素子光の透過率の入射角度依存性を示したグラフである。なお、透過率は、屈折率1.4の接着層からフィルタ層に向かう光について算出した。図11に示すように、本実施の形態に係るフィルタ層では、LEDチップの光が入射角60度でフィルタ層に到達した場合でも、フィルタ層における透過率が90%以上となる。
 なお、シフト量を更に大きくすることで入射角60度以上のLEDチップの光の透過率の向上が可能である。その反面、入射角0度の場合の、透過率が高い波長域が蛍光波長域(490nm~780nm)の一部と重なるため反射性能が低下する。そこで、本発明者らは、光取り出し効率を最大化させるために、LEDチップの配光の指向性、LEDチップ光の波長、蛍光の波長のバランスを考慮して、LEDチップ出射光のうちフィルタ層に対する入射角が±60度の範囲の光(LEDチップの出射光の全エネルギーの90%相当)をより透過させるフィルタ層が好ましいことを見いだした。
 なお、フィルタ層は、半導体発光素子が発する光が入射角60度でフィルタ層に入射した場合の透過率が80%以上となるように構成されていてもよい。これにより、半導体発光素子から正面方向に出射された光の多くを蛍光体層に導くことが可能となる。
 以下、上述の種々の構成を組み合わせた発光モジュールの輝度について各実施例を参照して説明する。
 (実施例1-1~実施例1-3)
 本実施例では、図3または図4に示す発光モジュールにおいて、半導体発光素子のタイプ別の輝度を比較する。比較例1に係る発光モジュールは、半導体発光素子がフリップチップ(FC)型LEDであり、フィルタ層を備えていない。実施例1-1に係る発光モジュールは、半導体発光素子がFC型LEDであり、フィルタ層を備えている。実施例1-2に係る発光モジュールは、半導体発光素子が縦(VC)型LEDであり、フィルタ層を備えている。実施例1-3に係る発光モジュールは、半導体発光素子がLDであり、フィルタ層を備えている。なお、比較例および各実施例に係る発光モジュールの蛍光体層は、粉末の蛍光体を分散させたガラス組成物であり、厚みが150μmである。
 表1は、比較例1および実施例1-1~1-3に係る発光モジュールの構成および輝度をまとめたものである。
Figure JPOXMLDOC01-appb-T000001
 実施例1-1~1-3に示すように、フィルタ層を設けることにより比較例と比較して輝度が向上している。特に、指向性の高いLDを備えた実施例1-3に係る発光モジュールは、比較例1に係る発光モジュールに対して輝度が20%向上している。
 (実施例2-1、実施例2-2)
 本実施例では、フィルム層を蛍光体層のいずれの面に成膜することが好ましいかについて検討する。実施例2-1に係る発光モジュールは、蛍光体層の側面のみにフィルタ層が成膜してある。実施例2-2に係る発光モジュールは、蛍光体層の側面および底面にフィルタ層が成膜してある。なお、その他の構成は比較例1および実施例1-1と同様である。
 表2は、比較例1および実施例1-1、2-1、2-2に係る発光モジュールの構成および輝度をまとめたものである。
Figure JPOXMLDOC01-appb-T000002
 実施例1-1、2-1、2-2に示すように、蛍光体層の表面にフィルタ層を形成することで発光モジュールの輝度が向上する。また、実施例2-2に示すように、蛍光体層のLEDチップと対向する側の面(底面)および側面にフィルタ層を設けることにより、蛍光体層からLEDチップに向かう蛍光を反射するとともに蛍光体層の側面から外部へ出射する光を抑制することができるため、発光モジュールの輝度が更に向上する。
 (実施例3-1、実施例3-2)
 本実施例では、蛍光体層の種類について検討する。実施例3-1に係る発光モジュールは、粉末の蛍光体をビスフェノールA型エポキシに分散させた樹脂板蛍光体層を備えている。実施例3-2に係る発光モジュールは、蛍光体を焼結させたセラミックス蛍光体層を備えている。比較例3-1に係る発光モジュールは、粉末蛍光体をジメチルシリコーン樹脂に分散させた樹脂フィルム蛍光体層を備えている。比較例3-2に係る発光モジュールは、実施例3-1に係る樹脂板蛍光体層を備えているが、フィルタ層は成膜されていない。
 表3は、比較例3-1、3-2および実施例3-1、3-2に係る発光モジュールの構成および輝度をまとめたものである。
Figure JPOXMLDOC01-appb-T000003
 実施例3-1、3-2に示すように、板状の蛍光体層を備えることで発光モジュールの輝度が向上する。特に、板状のセラミックス蛍光体層を備える実施例3-2に係る発光モジュールは、比較例1に係る発光モジュールに対して輝度が16%向上している。なお、比較例3-1に係る蛍光体層は、樹脂フィルムであるため硬度が不足しており、加工時の外力でフィルム形状が変形しやすくなっている。そのため、加工時において、フィルムにクラックが発生したり蒸着されたフィルタ層が剥離したりする問題が発生し、輝度を正確に測定することができなかった。
 (実施例4-1~実施例4-4)
 本実施例では、透光性の接着層の屈折率の相違について検討する。実施例4-1に係る発光モジュールは、フッ素系接着剤(屈折率n=1.34)からなる接着層を備えている。実施例4-2に係る発光モジュールは、ジメチルシリコーン(n=1.41)からなる接着層を備えている。実施例4-3に係る発光モジュールは、ビスフェノールA型エポキシ(n=1.55)からなる接着層を備えている。実施例4-4に係る発光モジュールは、TiOゾルゲル剤(屈折率n=1.60)からなる接着層を備えている。なお、その他の構成は実施例3-2と同様である。
 表4は、実施例4-1~4-4に係る発光モジュールの構成および輝度をまとめたものである。
Figure JPOXMLDOC01-appb-T000004
 実施例4-1~4-4に示すように、半導体発光素子とフィルタ層を接着層で接着することで発光モジュールの輝度が大幅に向上する。特に、屈折率が1.3以上の接着層を備えた発光モジュールは、比較例1に係る発光モジュールに対して輝度が約40%以上向上している。また、屈折率が高い接着層を備えた発光モジュールほど輝度が向上している。これは、半導体発光素子がフリップチップ型のLEDチップの場合、出射面がサファイアで構成されていることが多く、サファイアの屈折率が1.78程度であるため、この屈折率により近い屈折率の接着層を用いることで、LEDチップからの光の取り出し効率が向上するためと考えられる。
 なお、接着層は、厚みが0.1μm~100μmの範囲が好適である。接着層の厚みが0.1μm以上であればフィルタ層と半導体発光素子とを接着することが可能となる。また、接着層の厚みが100μm以下であれば、半導体発光素子の光が余り広がらずにフィルタ層に到達でき、また、透過率の低下も抑制される。
 (実施例5)
 本実施例では、蛍光体層の出射面に反射防止膜を形成した場合の効果について検討する。実施例5に係る発光モジュールは、蛍光体層の出射面に誘電体多層膜からなる反射防止層がコーティングされている。
 表5は、実施例4-2、実施例5に係る発光モジュールの構成および輝度をまとめたものである。
Figure JPOXMLDOC01-appb-T000005
 実施例5に示すように、蛍光体層の出射面に反射防止膜を形成することで蛍光体層からの光取り出し効率が向上し、発光モジュールの輝度が向上する。
 (実施例6-1~実施例6-6)
 本実施例では、蛍光体層の出射面の凹凸(溝)加工の効果について検討する。図12は、蛍光体層の出射面の溝加工による凹凸形状を示す要部断面図である。図12に示すように、蛍光体層44は、フィルタ層46が形成されていない面の少なくとも一部に溝形状を有している。溝形状を定義するパラメータは、溝幅W、溝深さD、溝間の未加工の部分の幅であるスペースLがある。実施例6-1~実施例6-5における各蛍光体層においては、蛍光体層の厚みに対する溝深さDが90%になるように加工されており、溝深さDは45μm~450μmの範囲で異なっている。なお、溝幅WおよびスペースLは全て100μmである。また、実施例6-6における発光モジュールは、フィルタ層を備えていない点を除いて実施例4-2と同様である。
 表6は、実施例4-2、実施例6-1~6-6に係る発光モジュールの構成および輝度をまとめたものである。なお、表中の輝度の欄の括弧内の数値は、フィルタ層がない場合の輝度である。
Figure JPOXMLDOC01-appb-T000006
 実施例6-1~6-5に示すように、蛍光体層の出射面に溝を設けることで、蛍光体層の出射面の光取り出し効率が向上し、発光モジュールの輝度が向上している。また、蛍光体層の厚みに対する溝深さDの割合が一定の場合、溝深さが小さいほど発光モジュールの輝度が高く、またフィルタ層を設けたときの輝度向上の割合も高くなっている。特に、蛍光体層の厚みが150μm以下の実施例に係る発光モジュールは、比較例1に係る発光モジュールに対して輝度が100%以上向上している。
 また、セラミックスの蛍光体層の厚みが150μmであって溝加工がされてない実施例4-2および実施例6-6の発光モジュールを比較すると、フィルタ層のない実施例6-6に係る発光モジュールの相対輝度が138であるのに対して、フィルタ層のある実施例4-2に係る発光モジュールの相対輝度は145である。つまり、溝加工がない蛍光体層にフィルタ層を設けた効果はおよそ5%(138→145)である。
 セラミックスの蛍光体層の厚みが150μmであって溝加工がされている実施例6-3を見ると、フィルタ層のない発光モジュールの相対輝度が193であるのに対して、フィルタ層のある発光モジュールの相対輝度は221である。つまり、溝加工がある蛍光体層にフィルタ層を設けた効果はおよそ14%(193→221)である。つまり、蛍光体層にフィルタ層を成膜するとともに蛍光体層の出射面に溝加工を施すことで、相乗効果により発光モジュールの輝度がより向上していることがわかる。
 このように溝加工の有無による輝度向上の効果の相違は、以下のように考えられる。蛍光体層の出射面に溝加工がない場合、蛍光体層で波長変換された光のうちフィルタ層が出射面方向に反射した光は、板状のセラミックスの蛍光体層内において出射面で再度反射されやすくなり、蛍光体層内部で繰り返し反射され最終的に熱になる。そのため、フィルタ層で反射された光を蛍光体層の外部へ効率的に取り出せないと考えられる。一方、蛍光体層の出射面に溝加工がある場合、フィルタ層で反射された光を蛍光体層の外部へ効率的に取り出すことが可能となり、発光モジュールの輝度の更なる向上が実現されていると考えられる。
 (実施例7-1~実施例7-4)
 本実施例においても、蛍光体層の出射面の凹凸(溝)加工の効果について検討する。実施例7-1~実施例7-4における各蛍光体層においては、厚みが一定の蛍光体層に対して溝深さDが異なるように加工されており、溝深さDは3μm~100μmの範囲で異なっている。なお、溝幅WおよびスペースLは全て100μmである。
 表7は、実施例7-1~7-4に係る発光モジュールの構成および輝度をまとめたものである。なお、表中の輝度の欄の括弧内の数値は、フィルタ層がない場合の輝度である。
Figure JPOXMLDOC01-appb-T000007
 実施例7-1~7-4に示すように、蛍光体層の出射面に溝を設けることで、蛍光体層の出射面の光取り出し効率が向上し、発光モジュールの輝度が向上している。また、一定の厚みの蛍光体層に対して溝深さDが大きいほど発光モジュールの輝度が向上している。特に、溝深さDが3μm以上であれば、比較例1に係る発光モジュールに対して輝度が100%以上向上している。
 (実施例8-1~実施例8-4)
 本実施例では、蛍光体層の出射面粗化加工の効果について検討する。実施例8-1~実施例8-4における各蛍光体層においては、蛍光体層の出射面の算術平均粗さが100nm~1000nmの範囲で異なっている。
 表8は、実施例8-1~8-4に係る発光モジュールの構成および輝度をまとめたものである。
Figure JPOXMLDOC01-appb-T000008
 実施例8-1~8-4に示すように、蛍光体層の出射面を粗化することで、蛍光体層の出射面の光取り出し効率が向上し、発光モジュールの輝度が向上している。また、出射面の算術平均粗さが100nm~1000nmであれば、比較例1に係る発光モジュールに対して輝度が100%以上向上している。特に、算術平均粗さが400nm~1000nmであれば、比較例1に係る発光モジュールに対して輝度が200%以上向上している。
 以上の各実施の形態や各実施例に係る発光モジュールでは、主として半導体発光素子が単数の場合について説明している。しかしながら、発光モジュールが備える半導体発光素子は単数に限られず、用途や必要とされる特性に応じて複数であってもよい。
 このような場合、発光モジュールに含まれる半導体発光素子の個数をN、各半導体発光素子のフィルタ層と対向する側の出射面の面積をS、蛍光体層の半導体発光素子と対向する側の入射面の面積をT、とした場合、S≦T/N≦4×Sを満たすとよい。これにより、半導体発光素子から出射した光の多くが蛍光体層に入射する。
 [組成分析]
 上述の各膜(層)の組成分析は、例えば、薄膜断面を走査型電子顕微鏡(SEM)で観察しながらエネルギー分散型X線分析装置(XMA)で元素分析を行ったり、膜表面をイオンビームでエッチングしながら光電子分光装置(XPS)や二次イオン質量分析計(SIMS:Secondary Ion Mass Spectrometer)などを用いたりする。このような手法により、各膜の膜厚や材料が特定される。
 [光学シミュレーション]
 光学薄膜の光学特性は、市販光学薄膜設計ソフト(例えば、Essential Macleod)を用いて特定される。このような薄膜設計ソフトは、膜材料の屈折率と膜厚データから多層膜の分光特性をシミュレーションすることが可能である。同時に、任意の接着樹脂の屈折率と入射光線の入射角度に対応する分光特性を再現することが可能である。
 以上、本発明を各実施の形態や各実施例をもとに説明した。これら実施の形態や実施例は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 上述の実施の形態では、青色の光を発する半導体発光素子と黄色の蛍光体の組み合わせた発光モジュールについて説明したが、発光モジュールとしては、紫外光を発する半導体発光素子と、紫外光で励起され、赤、緑、青の光をそれぞれ発する複数の蛍光体と、を有するものであってもよい。あるいは、紫外光を発する半導体発光素子と、紫外光で励起され、青、黄の光を発する蛍光体と、を有する発光モジュールであってもよい。また、本実施の形態に係る発光モジュールは、車両用灯具だけではなく照明用灯具にも用いることができる。
 本発明の発光モジュールは、種々の灯具、例えば照明用灯具、ディスプレイ、車両用灯具、信号機等に利用することができる。
 10 灯具本体ユニット、 32 発光モジュール、 42 LEDチップ、 42a 発光面、 44 蛍光体層、 46 フィルタ層、 48 空気層、 52 CAN型LD、 54 接着層。

Claims (9)

  1.  半導体発光素子と、
     前記半導体発光素子の発光面に対向するように設けられ、前記半導体発光素子が発する光の波長を変換する板状の光波長変換部材と、
     前記板状の光波長変換部材の表面のうち、前記半導体発光素子と対向する面および側面の少なくともいずれかの表面に形成され、前記半導体発光素子から出射した光を透過させるとともに前記光波長変換部材で波長変換された光を反射するフィルタ層と、を備え、
     前記半導体発光素子は、出射光の全エネルギーに対して、正面方向から±60度の範囲内の出射光のエネルギーの割合が80%以上となるように構成されていることを特徴とする発光モジュール。
  2.  前記フィルタ層は、前記光波長変換部材の表面のうち前記半導体発光素子と対向する面に形成されており、
     前記フィルタ層と前記半導体発光素子とを接着する接着層を更に備え、
     前記接着層は、屈折率が1.3以上の材料を含んでいることを特徴とする請求項1に記載の発光モジュール。
  3.  前記接着層は、厚みが0.1μm~100μmであることを特徴とする請求項2に記載の発光モジュール。
  4.  前記フィルタ層は、前記半導体発光素子が発する光が入射角60度で該フィルタ層に入射した場合の透過率が80%以上となるように構成されていることを特徴とする請求項1乃至3のいずれかに記載の発光モジュール。
  5.  前記光波長変換部材は、前記フィルタ層が形成されていない面の少なくとも一部が凹凸形状を有していることを特徴とする請求項1乃至4のいずれか1項に記載の発光モジュール。
  6.  前記凹凸形状は、複数の溝から構成されており、
     前記溝は、幅が1μm~1000μm、深さが1μm~1000μmであることを特徴とする請求項5に記載の発光モジュール。
  7.  前記光波長変換部材は、前記フィルタ層が形成されていない面の少なくとも一部の算術平均粗さRaが100nm~1000nmであることを特徴とする請求項1乃至4のいずれか1項に記載の発光モジュール。
  8.  発光モジュールに含まれる前記半導体発光素子の個数をN、各前記半導体発光素子のフィルタ層と対向する側の出射面の面積をS、前記光波長変換部材の半導体発光素子と対向する側の入射面の面積をT、とした場合、
     S≦T/N≦4×S
     を満たすことを特徴とする請求項1乃至7のいずれか1項に記載の発光モジュール。
  9.  前記光波長変換部材は、その厚みが1μm~1000μmであることを特徴とする請求項1乃至8のいずれか1項に記載の発光モジュール。
PCT/JP2011/003155 2010-07-26 2011-06-03 発光モジュール WO2012014360A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP11812041.9A EP2600427B1 (en) 2010-07-26 2011-07-25 Light-emitting module
PCT/JP2011/004187 WO2012014439A1 (ja) 2010-07-26 2011-07-25 発光モジュール
CN201180036466.1A CN103026515B (zh) 2010-07-26 2011-07-25 发光模块
JP2012526305A JPWO2012014439A1 (ja) 2010-07-26 2011-07-25 発光モジュール
US13/724,991 US8704261B2 (en) 2010-07-26 2012-12-21 Light emitting module
JP2015166658A JP2016021582A (ja) 2010-07-26 2015-08-26 発光モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010167398 2010-07-26
JP2010-167398 2010-07-26

Publications (1)

Publication Number Publication Date
WO2012014360A1 true WO2012014360A1 (ja) 2012-02-02

Family

ID=45529599

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/003155 WO2012014360A1 (ja) 2010-07-26 2011-06-03 発光モジュール
PCT/JP2011/004187 WO2012014439A1 (ja) 2010-07-26 2011-07-25 発光モジュール

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004187 WO2012014439A1 (ja) 2010-07-26 2011-07-25 発光モジュール

Country Status (5)

Country Link
US (1) US8704261B2 (ja)
EP (1) EP2600427B1 (ja)
JP (2) JPWO2012014439A1 (ja)
CN (1) CN103026515B (ja)
WO (2) WO2012014360A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311409A (zh) * 2013-06-09 2013-09-18 上海蓝光科技有限公司 一种半导体发光器件及其制造方法
JP2019012775A (ja) * 2017-06-30 2019-01-24 日亜化学工業株式会社 発光装置の製造方法
WO2019021846A1 (ja) * 2017-07-27 2019-01-31 日本電気硝子株式会社 波長変換部材及び発光装置
JP2019029648A (ja) * 2017-07-27 2019-02-21 日本電気硝子株式会社 波長変換部材及び発光装置
WO2020080056A1 (ja) * 2018-10-15 2020-04-23 ソニー株式会社 発光デバイスおよび画像表示装置
JP2020087864A (ja) * 2018-11-30 2020-06-04 セイコーエプソン株式会社 光源装置および電子機器
WO2023229022A1 (ja) * 2022-05-27 2023-11-30 パナソニックIpマネジメント株式会社 蛍光体デバイス及び光源モジュール

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101959035B1 (ko) * 2011-10-31 2019-03-18 서울바이오시스 주식회사 발광 다이오드 패키지 및 그것을 제조하는 방법
JP2013232503A (ja) * 2012-04-27 2013-11-14 Toshiba Corp 半導体発光装置
JP6029095B2 (ja) * 2012-05-01 2016-11-24 国立研究開発法人物質・材料研究機構 Uv光励起黄色発光材料、その製造方法及び発光装置
US9617470B2 (en) 2012-05-01 2017-04-11 National Institute For Materials Science Optical material used in light-emitting device, optical isolator, and optical processing apparatus, and manufacturing method thereof
JP6139071B2 (ja) * 2012-07-30 2017-05-31 日亜化学工業株式会社 発光装置とその製造方法
JP6040019B2 (ja) * 2012-12-10 2016-12-07 スタンレー電気株式会社 半導体発光装置
JP6163754B2 (ja) * 2012-12-28 2017-07-19 日亜化学工業株式会社 発光装置に用いるバンドパスフィルタおよびこれを用いた発光装置
JP2014207436A (ja) * 2013-03-18 2014-10-30 日本碍子株式会社 波長変換体
JP2015002182A (ja) * 2013-06-13 2015-01-05 日立アプライアンス株式会社 照明装置
JP2016154062A (ja) * 2013-06-21 2016-08-25 パナソニックIpマネジメント株式会社 光源、及び光源を具備する車両用ヘッドランプ
JP6056705B2 (ja) * 2013-08-14 2017-01-11 富士ゼロックス株式会社 帯電ロール、帯電装置、プロセスカートリッジ、画像形成装置、および帯電ロールの製造方法
KR102231532B1 (ko) * 2013-08-20 2021-03-24 루미리즈 홀딩 비.브이. 반복 반사를 감소시키기 위한 성형된 형광체
CN103489994B (zh) * 2013-10-15 2016-03-02 晶科电子(广州)有限公司 一种强粘结性、高可靠性白光led芯片
JP6364257B2 (ja) * 2013-11-20 2018-07-25 日本碍子株式会社 光学部品
CN105848879B (zh) * 2013-12-27 2018-05-11 日本瑞翁株式会社 光学叠层体及面光源装置
KR20150093283A (ko) * 2014-02-06 2015-08-18 삼성디스플레이 주식회사 프레임 및 이를 포함하는 광원모듈
US9891511B2 (en) 2014-04-25 2018-02-13 Delta Electronics, Inc. Illumination system and wavelength-converting device thereof
JP2015211034A (ja) * 2014-04-25 2015-11-24 台達電子工業股▲ふん▼有限公司Delta Electronics,Inc. 照明システムおよびその波長変換デバイス
JP2016009761A (ja) * 2014-06-24 2016-01-18 株式会社小糸製作所 発光モジュール
JP6557948B2 (ja) * 2014-08-27 2019-08-14 カシオ計算機株式会社 光源装置及び投影装置
CN107002981B (zh) 2014-10-08 2021-05-07 通用电气照明解决方案有限责任公司 用于在照明装置中进行颜色过滤的材料和光学组件
RU2704054C2 (ru) * 2015-04-17 2019-10-23 ФОРД ГЛОУБАЛ ТЕКНОЛОДЖИЗ, ЭлЭлСи Молдинг с подсветкой для транспортного средства
US20160356435A1 (en) * 2015-06-04 2016-12-08 GE Lighting Solutions, LLC Led lighting units, materials, and optical components for white light illumination
US10644192B2 (en) * 2015-07-13 2020-05-05 Toyoda Gosei Co., Ltd. Method of manufacturing light-emitting device
JP6482993B2 (ja) * 2015-09-04 2019-03-13 シャープ株式会社 照明装置
US10371345B2 (en) * 2015-12-28 2019-08-06 Eaton Intelligent Power Limited Light emitting diode (LED) module for LED luminaire
JP6741340B2 (ja) * 2016-04-22 2020-08-19 スタンレー電気株式会社 波長変換装置及び光源装置
CN109328401B (zh) * 2016-06-22 2022-12-27 亮锐控股有限公司 光转换封装
KR102513351B1 (ko) * 2016-06-30 2023-03-23 엘지전자 주식회사 반도체 발광 소자를 이용한 차량용 램프
JP6765241B2 (ja) * 2016-07-13 2020-10-07 株式会社小糸製作所 車輌用照明装置
JP2018137428A (ja) * 2017-02-20 2018-08-30 京セラ株式会社 紫外線発光装置用部材および紫外線発光装置
JP2018141035A (ja) 2017-02-27 2018-09-13 日本特殊陶業株式会社 光波長変換部材及び発光装置
WO2018157288A1 (en) * 2017-02-28 2018-09-07 GE Lighting Solutions, LLC Low refractive index neodymium fluoride doped polycarbonate
CN108916688B (zh) * 2017-04-24 2020-08-18 京东方科技集团股份有限公司 光源和照明装置
US10802385B2 (en) * 2017-08-08 2020-10-13 Panasonic Intellectual Property Management Co., Ltd. Phosphor plate, light source apparatus, and projection display apparatus
CN107765437A (zh) * 2017-11-07 2018-03-06 丹阳丹耀光学有限公司 屋脊棱镜相位膜
FR3074257B1 (fr) * 2017-11-27 2020-11-13 Valeo Vision Module lumineux pour l’eclairage et/ou la signalisation d’un vehicule automobile
WO2019176622A1 (ja) * 2018-03-13 2019-09-19 日本電気硝子株式会社 波長変換部材及びそれを用いた発光装置
CN111448489A (zh) * 2018-03-13 2020-07-24 日本电气硝子株式会社 波长转换部件和使用该波长转换部件的发光装置
DE102018130543A1 (de) * 2018-11-30 2020-06-04 Erwin Hymer Group Se Leuchte
US10903398B2 (en) 2019-02-06 2021-01-26 Osram Opto Semiconductors Gmbh Dielectric film coating for full conversion ceramic platelets
JP2020160366A (ja) * 2019-03-27 2020-10-01 パナソニックIpマネジメント株式会社 波長変換素子及び照明装置
JP2021086743A (ja) * 2019-11-28 2021-06-03 東芝ライテック株式会社 車両用照明装置、および車両用灯具
US20220009555A1 (en) * 2020-07-08 2022-01-13 Ford Global Technologies, Llc Illuminatable outer body panel for a vehicle and outer body panel illumination method
WO2024063115A1 (ja) * 2022-09-21 2024-03-28 デンカ株式会社 波長変換部材および発光装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237264A (ja) * 2005-02-24 2006-09-07 Kyocera Corp 発光装置および照明装置
JP2007109946A (ja) * 2005-10-14 2007-04-26 Toyoda Gosei Co Ltd 蛍光体板及びこれを備えた発光装置
WO2010044239A1 (ja) * 2008-10-17 2010-04-22 株式会社小糸製作所 発光モジュール、発光モジュールの製造方法、および灯具ユニット

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7517728B2 (en) * 2004-03-31 2009-04-14 Cree, Inc. Semiconductor light emitting devices including a luminescent conversion element
US20070267646A1 (en) * 2004-06-03 2007-11-22 Philips Lumileds Lighting Company, Llc Light Emitting Device Including a Photonic Crystal and a Luminescent Ceramic
US7361938B2 (en) * 2004-06-03 2008-04-22 Philips Lumileds Lighting Company Llc Luminescent ceramic for a light emitting device
JP2008010518A (ja) * 2006-06-27 2008-01-17 Citizen Holdings Co Ltd 蛍光発光装置
JP2008235827A (ja) 2007-03-23 2008-10-02 Matsushita Electric Works Ltd 発光装置
JP4976974B2 (ja) 2007-03-28 2012-07-18 パナソニック株式会社 発光装置
DE102007025092A1 (de) * 2007-05-30 2008-12-04 Osram Opto Semiconductors Gmbh Lumineszenzdiodenchip
JP2009105379A (ja) * 2007-10-05 2009-05-14 Panasonic Electric Works Co Ltd 発光装置
DE102008017071A1 (de) * 2008-01-31 2009-08-06 Osram Opto Semiconductors Gmbh Optoelektronisches Modul und Projektionsvorrichtung mit dem optoelektronischen Modul

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237264A (ja) * 2005-02-24 2006-09-07 Kyocera Corp 発光装置および照明装置
JP2007109946A (ja) * 2005-10-14 2007-04-26 Toyoda Gosei Co Ltd 蛍光体板及びこれを備えた発光装置
WO2010044239A1 (ja) * 2008-10-17 2010-04-22 株式会社小糸製作所 発光モジュール、発光モジュールの製造方法、および灯具ユニット

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311409A (zh) * 2013-06-09 2013-09-18 上海蓝光科技有限公司 一种半导体发光器件及其制造方法
JP2019012775A (ja) * 2017-06-30 2019-01-24 日亜化学工業株式会社 発光装置の製造方法
US10461215B2 (en) 2017-06-30 2019-10-29 Nichia Corporation Method of manufacturing light-emitting device
US10651336B2 (en) 2017-06-30 2020-05-12 Nichia Corporation Light-emitting device
WO2019021846A1 (ja) * 2017-07-27 2019-01-31 日本電気硝子株式会社 波長変換部材及び発光装置
JP2019029648A (ja) * 2017-07-27 2019-02-21 日本電気硝子株式会社 波長変換部材及び発光装置
JP7090842B2 (ja) 2017-07-27 2022-06-27 日本電気硝子株式会社 波長変換部材及び発光装置
WO2020080056A1 (ja) * 2018-10-15 2020-04-23 ソニー株式会社 発光デバイスおよび画像表示装置
JPWO2020080056A1 (ja) * 2018-10-15 2021-09-30 ソニーグループ株式会社 発光デバイスおよび画像表示装置
JP2020087864A (ja) * 2018-11-30 2020-06-04 セイコーエプソン株式会社 光源装置および電子機器
JP7238367B2 (ja) 2018-11-30 2023-03-14 セイコーエプソン株式会社 光源装置および電子機器
WO2023229022A1 (ja) * 2022-05-27 2023-11-30 パナソニックIpマネジメント株式会社 蛍光体デバイス及び光源モジュール

Also Published As

Publication number Publication date
US20130105850A1 (en) 2013-05-02
EP2600427B1 (en) 2018-06-27
CN103026515A (zh) 2013-04-03
JP2016021582A (ja) 2016-02-04
US8704261B2 (en) 2014-04-22
EP2600427A4 (en) 2015-11-18
CN103026515B (zh) 2016-08-03
JPWO2012014439A1 (ja) 2013-09-12
WO2012014439A1 (ja) 2012-02-02
EP2600427A1 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
WO2012014360A1 (ja) 発光モジュール
JP5226077B2 (ja) 発光モジュール、発光モジュールの製造方法、および灯具ユニット
JP5152502B2 (ja) 灯具
JP5395097B2 (ja) 発光モジュールおよび灯具ユニット
JP5606922B2 (ja) 発光モジュールおよび灯具ユニット
US10365551B2 (en) Wavelength conversion member including phosphor
JP5410167B2 (ja) 発光モジュールおよび車両用前照灯
JP6785458B2 (ja) 光源装置
WO2014174618A1 (ja) 光源装置および車両用灯具
JP2011009305A (ja) 発光モジュール
WO2010044239A1 (ja) 発光モジュール、発光モジュールの製造方法、および灯具ユニット
JP5487204B2 (ja) 発光モジュール、発光モジュールの製造方法、および灯具ユニット
JP2013102078A (ja) 光源装置および照明装置
KR20160056087A (ko) 발광 장치
KR20140141581A (ko) 변환 소자 및 발광체
JP2016058624A (ja) 発光装置
JP2010267851A (ja) 発光モジュール、発光モジュールの製造方法、および灯具ユニット
JP2010219163A (ja) 発光モジュール、および灯具ユニット
JP2011222434A (ja) 発光モジュールおよび光波長変換部材
CN107210349A (zh) 发光装置
WO2010103840A1 (ja) 発光モジュール、および灯具ユニット
WO2020003787A1 (ja) 色変換素子及び照明装置
JP2007294379A (ja) 照明装置
WO2016035437A1 (ja) 発光装置、照明装置、スポットライト、車両用前照灯、および内視鏡
WO2014010211A1 (ja) 発光モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11811967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11811967

Country of ref document: EP

Kind code of ref document: A1