WO2019176622A1 - 波長変換部材及びそれを用いた発光装置 - Google Patents

波長変換部材及びそれを用いた発光装置 Download PDF

Info

Publication number
WO2019176622A1
WO2019176622A1 PCT/JP2019/008470 JP2019008470W WO2019176622A1 WO 2019176622 A1 WO2019176622 A1 WO 2019176622A1 JP 2019008470 W JP2019008470 W JP 2019008470W WO 2019176622 A1 WO2019176622 A1 WO 2019176622A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
conversion member
conductive particles
member according
inorganic binder
Prior art date
Application number
PCT/JP2019/008470
Other languages
English (en)
French (fr)
Inventor
忠仁 古山
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018224494A external-priority patent/JP7469847B2/ja
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to US16/970,646 priority Critical patent/US20200381597A1/en
Priority to DE112019001280.0T priority patent/DE112019001280T5/de
Priority to CN201980006195.1A priority patent/CN111448489A/zh
Publication of WO2019176622A1 publication Critical patent/WO2019176622A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to a wavelength conversion member that converts a wavelength of light emitted from a light emitting diode (LED: Light Emitting Diode) or a laser diode (LD: Laser Diode) to another wavelength and a light emitting device using the same.
  • LED Light Emitting Diode
  • LD Laser Diode
  • next-generation light-emitting device that replaces fluorescent lamps and incandescent lamps
  • a wavelength conversion member that absorbs part of light from the LED and converts it into yellow light is disposed on the LED that emits blue light.
  • a light emitting device is disclosed. This light emitting device emits white light that is a combined light of blue light emitted from the LED and yellow light emitted from the wavelength conversion member.
  • the wavelength conversion member As the wavelength conversion member, a material in which phosphor particles are dispersed in a resin matrix has been conventionally used.
  • the resin is deteriorated by the light from the excitation light source and the luminance of the light emitting device tends to be lowered.
  • the mold resin deteriorates due to heat generated by the excitation light source or high-energy short-wavelength (blue to ultraviolet) light, causing discoloration or deformation.
  • the wavelength conversion member has a feature that glass as a base material is not easily deteriorated by the heat of LED or irradiation light, and problems such as discoloration and deformation hardly occur.
  • the output of LEDs and LDs used as excitation light sources has increased for the purpose of achieving higher power.
  • the temperature of the wavelength conversion member increases due to heat from the excitation light source and heat emitted from the phosphor irradiated with excitation light, and as a result, the emission intensity decreases with time (temperature quenching). is there. In some cases, the temperature rise of the wavelength conversion member becomes significant, and the constituent material (glass matrix or the like) may be melted.
  • the present invention provides a wavelength conversion member capable of suppressing a decrease in light emission intensity over time and melting of constituent materials when irradiated with high-power excitation light, a method for manufacturing the same, and the wavelength conversion.
  • An object is to provide a light emitting device using a member.
  • the wavelength conversion member of the present invention is a wavelength conversion member in which phosphor particles and heat conductive particles are dispersed in an inorganic binder, and the refractive index difference between the inorganic binder and the heat conductive particles is 0.2 or less.
  • the volume ratio of each content of the inorganic binder and the thermally conductive particles is 80:20 to more than 40: less than 60.
  • the wavelength conversion member can be set as the wavelength conversion member with a small porosity by prescribing
  • the translucency of the wavelength conversion member can be improved, resulting in excitation.
  • the light extraction efficiency of the fluorescence emitted from the light or the phosphor particles can be improved. Furthermore, by reducing the difference in refractive index between the inorganic binder and the thermally conductive particles as described above, light scattering caused by reflection at the interface between the two can be reduced, which also improves the light extraction efficiency of excitation light and fluorescence. Can be made.
  • the wavelength conversion member of the present invention preferably has a porosity of 10% or less.
  • the distance between the plurality of adjacent heat conductive particles and / or the distance between the heat conductive particles and the phosphor particles adjacent thereto is 0.08 mm or less.
  • the plurality of thermally conductive particles and / or the thermally conductive particles and the phosphor particles are in contact with each other. In this way, the heat transfer distance of the inorganic binder having low thermal conductivity is shortened, and further, a heat conduction path is formed between the plurality of heat conductive particles, so that the heat generated inside the wavelength conversion member is reduced. It becomes easy to conduct to the outside.
  • Wavelength conversion member of the present invention preferably has an average particle diameter D 50 of the thermally conductive particles is 20 ⁇ m or less. If it does in this way, it will become easy to disperse
  • the heat conductive particles have a higher thermal conductivity than the phosphor particles.
  • the wavelength conversion member of the present invention can be made of, for example, oxide ceramics as thermally conductive particles.
  • the heat conductive particles are preferably at least one selected from aluminum oxide, magnesium oxide, yttrium oxide, zinc oxide, and magnesia spinel.
  • the softening point of the inorganic binder is preferably 1000 ° C. or less.
  • the refractive index (nd) of the inorganic binder is preferably 1.6 to 1.85.
  • the inorganic binder is preferably glass.
  • glass does not contain an alkali metal component substantially.
  • the alkali metal component contained in the glass is subjected to excitation light, it tends to become a coloring center, becomes an absorption source of excitation light or fluorescence, and the light emission efficiency may decrease. Therefore, if the glass which is an inorganic binder has a configuration that does not substantially contain an alkali metal component, the above-described problems are less likely to occur, and the light emission efficiency of the wavelength conversion member is likely to be improved.
  • the difference in thermal expansion coefficient between the inorganic binder and the thermally conductive particles in the temperature range of 30 to 380 ° C. is preferably 60 ⁇ 10 ⁇ 7 or less. If it does in this way, it will become difficult to generate
  • the wavelength conversion member of the present invention preferably has a phosphor particle content of 1 to 70% by volume.
  • the wavelength conversion member of the present invention preferably has a thickness of 500 ⁇ m or less.
  • the wavelength conversion member of the present invention preferably has a thermal diffusivity of 5 ⁇ 10 ⁇ 7 m 2 / s or more.
  • the light incident surface and / or the light exit surface be subjected to antireflection treatment. By doing so, it is possible to suppress reflection loss on the surface of the member when excitation light is incident or fluorescence is emitted.
  • a light-emitting device of the present invention is characterized by comprising the above-described wavelength conversion member and a light source that irradiates the wavelength conversion member with excitation light.
  • the light source is preferably a laser diode. In this way, it is possible to increase the emission intensity. In the case where a laser diode is used as the light source, the temperature of the wavelength conversion member is likely to rise, so that the effects of the present invention can be easily enjoyed.
  • a wavelength conversion member capable of suppressing a decrease in emission intensity over time and melting of constituent materials, a manufacturing method thereof, and the wavelength conversion member It is possible to provide the light emitting device used.
  • FIG. 1 is a schematic cross-sectional view showing a wavelength conversion member according to an embodiment of the present invention.
  • the wavelength conversion member 10 is formed by dispersing phosphor particles 2 and heat conductive particles 3 in an inorganic binder 1.
  • the wavelength conversion member 10 according to the present embodiment is a transmission type wavelength conversion member.
  • the excitation light is irradiated from one main surface of the wavelength conversion member 10
  • a part of the incident excitation light is converted in wavelength by the phosphor particles 2 and becomes fluorescent, and the fluorescence is irradiated to the outside from the other main surface.
  • the excitation light that has not been wavelength-converted by the phosphor particles 2 is also emitted to the outside from the other main surface. That is, the combined light of fluorescence and excitation light is emitted to the outside.
  • the shape of the wavelength conversion member 10 is not particularly limited, the planar shape is usually a rectangular or circular plate shape.
  • a plurality of thermally conductive particles 3 are close to or in contact with each other. Thereby, the distance of the inorganic binder 1 with low thermal conductivity existing between the plurality of thermally conductive particles 3 is shortened. In particular, a heat conduction path is formed at a place where the plurality of heat conductive particles 3 are in contact with each other. Further, in this embodiment, the thermally conductive particles 3 are close to or in contact with the phosphor particles 2, whereby the inorganic binder 1 having a low thermal conductivity existing between the phosphor particles 2 and the thermally conductive particles 3. The distance is getting shorter.
  • a heat conduction path is formed at a place where the heat conductive particles 3 and the phosphor particles 2 are in contact with each other.
  • the distance between the plurality of adjacent heat conductive particles 3 and / or the distance between the heat conductive particles 3 and the phosphor particles 2 adjacent thereto is preferably 0.08 mm or less, particularly preferably 0.05 mm or less. . If it does in this way, it will become easy to conduct the heat which generate
  • the distance between the plurality of adjacent heat conductive particles 3 and the distance between the heat conductive particles 3 and the phosphor particles 2 adjacent thereto are measured from a cross-sectional image of the wavelength conversion member 10 by a reflected electron image. Can do.
  • the inorganic binder 1 it is preferable to use one having a softening point of 1000 ° C. or less in consideration of thermal deterioration of the phosphor particles 2 in the firing step during production.
  • An example of such an inorganic binder 1 is glass. Glass is superior in heat resistance as compared to an organic matrix such as a resin and has a feature that the structure of the wavelength conversion member 10 is easily densified because it tends to soften and flow by heat treatment.
  • the softening point of the glass is preferably 250 to 1000 ° C., more preferably 300 to 950 ° C., further preferably 400 to 900 ° C., and particularly preferably 400 to 850 ° C.
  • the softening point of the glass is preferably 500 ° C. or higher, 600 ° C. or higher, 700 ° C. or higher, 800 ° C. or higher, and particularly 850 ° C. or higher. .
  • the softening point of the glass increases, the firing temperature also increases, and as a result, the manufacturing cost tends to increase.
  • the heat resistance of the phosphor particles 2 is low, there is a risk of deterioration during firing. Therefore, when the wavelength conversion member 10 is manufactured inexpensively or when using the phosphor particles 2 having low heat resistance, the softening point of the glass matrix is 550 ° C. or less, 530 ° C. or less, 500 ° C. or less, 480 ° C. or less, In particular, the temperature is preferably 460 ° C. or lower.
  • examples of such glass include tin phosphate glass, bismuthate glass, and tellurite glass.
  • the glass constituting the inorganic binder 1 does not substantially contain an alkali metal component. This is because the alkali metal component contained in the glass tends to become a coloring center when it receives excitation light, becomes an absorption source of excitation light or fluorescence, and the light emission efficiency may decrease.
  • glass powder is usually used as the glass used for the inorganic binder 1.
  • the average particle size of the glass powder is preferably 50 ⁇ m or less, 30 ⁇ m or less, 10 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
  • the minimum of the average particle diameter of glass powder is not specifically limited, Usually, it is 0.5 micrometer or more, Furthermore, it is 1 micrometer or more.
  • the average particle diameter refers to a value measured by the laser diffraction method, and in the cumulative particle size distribution curve based on volume when measured by the laser diffraction method, the cumulative amount is accumulated from the smaller particle size to 50.
  • the refractive index of the inorganic binder 1 is preferably selected so as to be close to the refractive index of the thermally conductive particles 3.
  • the refractive index (nd) of the inorganic binder 1 is preferably 1.6 to 1.85, and more preferably 1.65 to 1.8.
  • the phosphor particles 2 are not particularly limited as long as they emit fluorescence when incident excitation light is incident.
  • Specific examples of the phosphor particles 2 include, for example, oxide phosphors, nitride phosphors, oxynitride phosphors, chloride phosphors, acid chloride phosphors, sulfide phosphors, oxysulfide phosphors, Examples thereof include at least one selected from a halide phosphor, a chalcogenide phosphor, an aluminate phosphor, a halophosphate phosphor, and a garnet compound phosphor.
  • emits green light, yellow light, or red light as fluorescence can be used, for example.
  • the average particle diameter of the phosphor particles 2 is preferably 1 to 50 ⁇ m, particularly preferably 5 to 30 ⁇ m. If the average particle size of the phosphor particles 2 is too small, the emission intensity tends to decrease. On the other hand, if the average particle diameter of the phosphor particles 2 is too large, the emission color tends to be non-uniform. Therefore, from the viewpoint of improving the uniformity of the emission color, the average particle diameter of the phosphor particles 2 is preferably 20 ⁇ m or less, 10 ⁇ m or less, and particularly preferably less than 10 ⁇ m.
  • the content of the phosphor particles 2 in the wavelength conversion member 10 is preferably 1 to 70% by volume, 1 to 50% by volume, particularly 1 to 30% by volume.
  • the content of the phosphor particles 2 in the wavelength conversion member 10 is preferably 1 to 70% by volume, 1 to 50% by volume, particularly 1 to 30% by volume.
  • the thermally conductive particles 3 have a higher thermal conductivity than the inorganic binder 1.
  • the heat conductive particles 3 have a higher thermal conductivity than the inorganic binder 1 and the phosphor particles 2.
  • the thermal conductivity of the heat conductive particles 3 is preferably 5 W / m ⁇ K or more, 20 W / m ⁇ K or more, 40 W / m ⁇ K or more, particularly 50 W / m ⁇ K or more.
  • oxide ceramics is preferable.
  • the oxide ceramic include aluminum oxide, magnesium oxide, yttrium oxide, zinc oxide, and magnesia spinel (MgAl 2 O 4 ). These may be used alone or in combination of two or more. Among these, it is preferable to use aluminum oxide or magnesium oxide having a relatively high thermal conductivity, and it is particularly preferable to use magnesium oxide having a high thermal conductivity and low light absorption. Note that magnesia spinel is preferable because it is relatively easy to obtain and inexpensive.
  • the average particle diameter (D 50 ) of the heat conductive particles 3 is preferably 20 ⁇ m or less, 15 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
  • the average particle diameter of the heat conductive particles 3 is too large, it becomes difficult to uniformly disperse the heat conductive particles 3 between the inorganic binders. Further, the distance between the phosphor particles 2 becomes too wide, and unevenness in the orientation of the fluorescence emitted from the wavelength conversion member 10 is likely to occur.
  • the average particle diameter of the heat conductive particles 3 is too small, the specific surface area of the heat conductive particles 3 is increased, and the denseness of the wavelength conversion member 10 is liable to be reduced. Therefore, 0.1 ⁇ m or more, 1 ⁇ m or more, It is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more.
  • the volume ratio of the contents of the inorganic binder 1 and the heat conductive particles 3 in the wavelength conversion member 10 is 80:20 to more than 40: less than 60, preferably 80:20 to 41:59, 75: It is more preferably 25 to 50:50, further preferably 73:27 to 55:45, and particularly preferably 72:28 to 60:40.
  • content of the inorganic binder 1 is too much
  • the content of the heat conductive particles 3 is too large (the content of the inorganic binder 1 is too small), the number of voids in the wavelength conversion member 10 increases, so that a desired heat dissipation effect cannot be obtained or wavelength conversion is performed. Light scattering inside the member 10 becomes excessive, and the fluorescence intensity tends to decrease. Such inconvenience when the content of the heat conductive particles 3 is too large tends to be prominent particularly when the particle size of the heat conductive particles 3 is small.
  • the total amount of the inorganic binder 1 and the heat conductive particles 3 in the wavelength conversion member 10 is 30 to 99% by volume, 50 to 99% by volume, and particularly 70 to 99% by volume in consideration of the content of the phosphor particles 2. It is preferable to adjust in the range of%.
  • the porosity (volume%) in the wavelength conversion member 10 is preferably 10% or less, 5% or less, and particularly preferably 3% or less. When the porosity is too large, the heat dissipation effect tends to be reduced. Further, light scattering inside the wavelength conversion member 10 becomes excessive, and the fluorescence intensity tends to decrease.
  • the refractive index difference (nd) between the inorganic binder 1 and the heat conductive particles 3 is 0.2 or less, preferably 0.15 or less, particularly preferably 0.1 or less.
  • the refractive index difference between the inorganic binder 1 and the thermally conductive particles 3 can be calculated from the refractive index values of the respective raw materials. Or about the wavelength conversion member 10 after sintering, the refractive index difference of the inorganic binder 1 and the heat conductive particle 3 can also be measured by using the commercially available transmission phase shift laser interference microscope.
  • the difference in thermal expansion coefficient (30 to 380 ° C.) between the inorganic binder 1 and the heat conductive particles 3 is preferably 60 ⁇ 10 ⁇ 7 or less, particularly 50 ⁇ 10 ⁇ 7 or less. If it does in this way, it will become difficult to generate
  • the thickness of the wavelength conversion member 10 is preferably 500 ⁇ m or less, and more preferably 300 ⁇ m or less. If the thickness of the wavelength conversion member 10 is too large, light scattering and absorption in the wavelength conversion member 10 become too large, and the emission efficiency of fluorescence tends to decrease. Moreover, since the thermal conductivity is lowered, the temperature of the wavelength conversion member 10 is increased, and the emission intensity is lowered with time and the constituent materials are easily melted. In addition, it is preferable that the lower limit of the thickness of the wavelength conversion member 10 is about 100 micrometers. If the thickness of the wavelength conversion member 10 is too small, the mechanical strength tends to decrease. Moreover, since it is necessary to increase the content of the phosphor particles 2 in order to obtain a desired emission color, the content of the heat conductive particles 3 is relatively decreased, and the thermal conductivity is likely to be lowered.
  • the light incident surface and / or the light exit surface of the wavelength conversion member 10 is subjected to an antireflection treatment.
  • an antireflection treatment include an antireflection film such as a dielectric multilayer film, or a microstructure such as a moth-eye structure.
  • a bandpass filter on the light incident surface of the wavelength conversion member 10, it is possible to suppress the fluorescence generated inside the wavelength conversion member 10 from leaking to the light incident surface side.
  • the wavelength conversion member 10 has excellent thermal diffusivity by having the above configuration. Specifically, the thermal diffusivity of the wavelength conversion member 10 is 5 ⁇ 10 ⁇ 7 m 2 / s or more, 6 ⁇ 10 ⁇ 7 m 2 / s or more, 7 ⁇ 10 ⁇ 7 m 2 / s or more, particularly 8 ⁇ . It is preferably 10 ⁇ 7 m 2 / s or more.
  • the wavelength converting member 10 may be used by being joined to another heat radiating member such as metal or ceramic. If it does in this way, it will become possible to discharge
  • Examples of the method for producing the wavelength conversion member 10 include (i) a method of firing a preform that is obtained by pressing a mixed powder containing the inorganic binder 1, the phosphor particles 2 and the heat conductive particles 3 with a mold.
  • the preform is preferably fired in a reduced pressure atmosphere such as a vacuum. If it does in this way, it will become easy to obtain the wavelength conversion member with a low porosity.
  • an organic component such as a resin, a solvent, or a plasticizer is added to the mixed powder containing the inorganic binder 1, the phosphor particles 2 and the heat conductive particles 3 and kneaded.
  • the firing temperature is preferably 1000 ° C. or lower, 950 ° C. or lower, particularly 900 ° C. or lower. If the firing temperature is too high, the phosphor particles 2 are likely to be thermally deteriorated. If the firing temperature is too low, it becomes difficult to obtain a dense sintered body. Therefore, it is preferably 250 ° C. or higher, 300 ° C. or higher, particularly 400 ° C. or higher.
  • the above production methods (i) and (ii) are effective when the volume ratio of the heat conductive particles 3 to the total amount of the inorganic binder 1 and the heat conductive particles 3 is approximately 40% or less.
  • the volume ratio of the heat conductive particles 3 is too large, it becomes difficult to obtain a dense sintered body.
  • a method for producing the wavelength conversion member 10 (iii) a method in which a mixed powder containing the inorganic binder 1, the phosphor particles 2, and the heat conductive particles 3 is hot-pressed can be mentioned.
  • the hot press can be performed by a hot press apparatus, a discharge plasma sintering apparatus, or a hot isostatic press apparatus. By using these apparatuses, a dense sintered body can be easily obtained.
  • the heating press is preferably performed in a reduced-pressure atmosphere. If it does in this way, defoaming at the time of baking will be accelerated
  • the temperature during the hot pressing is preferably 1000 ° C. or lower, 950 ° C. or lower, particularly 900 ° C. or lower. If the temperature during the hot pressing is too high, the phosphor particles 2 are likely to be thermally deteriorated. In addition, when the temperature at the time of hot pressing is too low, it becomes difficult to obtain a dense sintered body. Therefore, it is preferably 250 ° C. or higher, 300 ° C. or higher, particularly 400 ° C. or higher.
  • the pressure at the time of hot pressing is preferably adjusted as appropriate in the range of, for example, 10 to 100 MPa, particularly 20 to 60 MPa so that a dense sintered body can be obtained.
  • the material of the sintering mold is not particularly limited, and for example, a mold made of carbon or ceramic can be used.
  • the above production method (iii) is easy to obtain a dense sintered body, when the volume ratio of the heat conductive particles 3 to the total amount of the inorganic binder 1 and the heat conductive particles 3 is large (for example, 35% or more, further 40 More than%).
  • FIG. 2 is a schematic side view showing a light emitting device using the wavelength conversion member according to the embodiment described above.
  • the light emitting device 20 includes a wavelength conversion member 10 and a light source 4.
  • the excitation light L 0 emitted from the light source 4 is converted into fluorescence L 1 by the wavelength conversion member 10.
  • a part of the excitation light L 0 passes through the wavelength conversion member 10 as it is.
  • the combined light L 2 of the excitation light L 0 and the fluorescence L 1 is emitted from the wavelength conversion member 10.
  • the excitation light L 0 is blue light and the fluorescence L 1 is yellow light
  • white synthetic light L 2 can be obtained.
  • the light emitting device 20 uses a wavelength converting member 10 described above, the heat generated by the excitation light L 0 in the wavelength conversion member 10 is irradiated, it is possible to efficiently released to the outside. Therefore, it can suppress that the temperature of the wavelength conversion member 10 rises unjustly.
  • the light source 4 examples include LEDs and LDs. From the viewpoint of increasing the light emission intensity of the light emitting device 20, the light source 4 is preferably an LD capable of emitting high intensity light. When the LD is used as the light source, the temperature of the wavelength conversion member 10 is likely to rise, so that the effects of the present invention can be easily enjoyed.
  • Table 1 shows examples (Nos. 1 to 10) and comparative examples (Nos. 11 to 12) of the present invention.
  • the mixed powder was obtained by mixing the heat conductive particles, the inorganic binder, and the phosphor particles so as to have the ratio shown in Table 1.
  • the content of the phosphor particles is the content of the mixed powder, and the remainder is occupied by the heat conductive particles and the inorganic binder.
  • the following materials were used as each material.
  • the wavelength conversion members 1 to 3 and 7 to 12 were produced as follows.
  • the mixed powder obtained above was placed in a 30 mm ⁇ 40 mm mold and pressed at a pressure of 25 MPa to produce a preform.
  • the obtained preform was heated to the heat treatment temperature shown in Table 1 in a vacuum atmosphere and held for 20 minutes (reduced pressure firing), and then gradually cooled to room temperature while returning to atmospheric pressure by introducing N 2 gas.
  • N 2 gas By subjecting the obtained sintered body to grinding and polishing, a rectangular plate-shaped wavelength conversion member of 5 mm ⁇ 5 mm ⁇ 0.5 mm was obtained.
  • the wavelength converting members 4 to 6 were produced as follows.
  • the mixed powder obtained above was placed in a 30 mm ⁇ 40 mm mold and pressed at a pressure of 25 MPa to produce a preform.
  • the obtained preform was placed in a 30 mm ⁇ 40 mm carbon mold installed in a hot press furnace (High Multi 5000) manufactured by Fuji Denpa Kogyo Co., Ltd., and heated and pressed.
  • the temperature was raised to the heat treatment temperature shown in Table 1 in a vacuum atmosphere, and after pressurizing for 20 minutes at a pressure of 40 MPa, the mixture was gradually cooled to room temperature while introducing N 2 gas.
  • a rectangular plate-shaped wavelength conversion member of 5 mm ⁇ 5 mm ⁇ 0.5 mm was obtained.
  • the resulting wavelength conversion member was evaluated for porosity, thermal diffusivity, heat dissipation, translucency, and light emission unevenness by the following methods. The results are shown in Table 1. No. A partial cross-sectional photograph of the wavelength conversion member 4 is shown in FIG.
  • the porosity was binarized using image analysis software Winroof for the cross-sectional photograph of the reflected electron image of the wavelength conversion member, and was calculated from the area ratio occupied by the voids in the obtained processed image.
  • the thermal diffusivity was measured with an ai-phase thermal diffusivity measuring device manufactured by Eye Phase.
  • the heat dissipation was measured as follows. Two 30 mm ⁇ 30 mm ⁇ 2 mm aluminum plates having a ⁇ 3 mm opening formed in the center were prepared, and a wavelength conversion member was sandwiched and fixed between the two aluminum plates. The wavelength conversion member was fixed so as to be positioned at a substantially central portion of the aluminum plate, and the wavelength conversion member was exposed from the opening of each aluminum plate. From one opening of the aluminum plate, the exposed wavelength conversion member is irradiated with LD excitation light (wavelength 445 nm, output 1.8 W) for 10 minutes, and the temperature of the surface opposite to the laser irradiation surface of the wavelength conversion member is FLIR. It was measured with a thermography made by the manufacturer. In addition, when the glass matrix melt
  • Translucency was judged by placing the obtained wavelength conversion member on a paper surface on which letters were written under a 1000 lux fluorescent lamp, and whether or not the shadow of the letters could be confirmed. What was able to confirm the shadow of a character was set as "(circle)", and what was not able to be confirmed was set as "x".
  • the light emission unevenness was evaluated as follows. In the heat dissipation test, a white reflector was installed at a distance of 1 m from the light exit side of the wavelength conversion member, and the presence or absence of color unevenness of the light projected on the white reflector was confirmed. Evaluation was made with “ ⁇ ” indicating that there was no color unevenness, “ ⁇ ” indicating that the color unevenness was slightly confirmed, and “X” indicating that the color unevenness was confirmed.
  • No. 1 as an example.
  • the wavelength conversion members 1 to 10 had a high thermal diffusivity of 5.9 ⁇ 10 ⁇ 7 m 2 / s or more, and the temperature of the wavelength conversion member was 45 to 89 ° C. at a relatively low temperature in the heat dissipation test. Further, No. 1 using heat conductive particles having a small average particle diameter of 8 to 9 ⁇ m. The wavelength conversion members 1 to 8 had no unevenness in light emission and were excellent in the uniformity of emitted light. On the other hand, No. which is a comparative example.
  • the wavelength conversion member 11 has a low thermal diffusivity of 3.5 ⁇ 10 ⁇ 7 m 2 / s because the content ratio of the heat conductive particles is too small, and the glass matrix of the wavelength conversion member was melted in the heat dissipation test. .
  • No. No. 12 of the wavelength conversion member had a large refractive index difference of 0.24 between the thermally conductive particles and the inorganic binder, so that light scattering at the interface between them was too strong and the translucency was “x”.
  • the wavelength conversion member of the present invention is suitable as a structural member for general illumination such as white LED and special illumination (for example, projector light source, automobile headlamp light source, endoscope light source).
  • general illumination such as white LED and special illumination (for example, projector light source, automobile headlamp light source, endoscope light source).

Abstract

ハイパワーの励起光を照射した場合に、経時的な発光強度の低下や構成材料の融解を抑制することが可能な波長変換部材及びその製造方法、並びに当該波長変換部材を用いた発光装置を提供する。 無機バインダー1中に蛍光体粒子2と熱伝導性粒子3が分散されてなる波長変換部材10であって、 無機バインダー1と熱伝導性粒子3の屈折率差が0.2以下であり、 無機バインダー1と熱伝導性粒子3の各含有量の体積比が80:20~40超:60未満であることを特徴とする波長変換部材10。

Description

波長変換部材及びそれを用いた発光装置
 本発明は、発光ダイオード(LED:Light Emitting Diode)やレーザーダイオード(LD:Laser Diode)等の発する光の波長を別の波長に変換する波長変換部材及びそれを用いた発光装置に関するものである。
 近年、蛍光ランプや白熱灯に変わる次世代の発光装置として、低消費電力、小型軽量、容易な光量調節という観点から、LEDやLD等の励起光源を用いた発光装置に対する注目が高まってきている。そのような次世代発光装置の一例として、例えば特許文献1には、青色光を出射するLED上に、LEDからの光の一部を吸収して黄色光に変換する波長変換部材が配置された発光装置が開示されている。この発光装置は、LEDから出射された青色光と、波長変換部材から出射された黄色光との合成光である白色光を発する。
 波長変換部材としては、従来、樹脂マトリクス中に蛍光体粒子を分散させたものが用いられている。しかしながら、当該波長変換部材を用いた場合、励起光源からの光により樹脂が劣化し、発光装置の輝度が低くなりやすいという問題がある。特に、励起光源が発する熱や高エネルギーの短波長(青色~紫外)光によってモールド樹脂が劣化し、変色や変形を起こすという問題がある。
 そこで、樹脂マトリクスに代えてガラスマトリクス中に蛍光体粒子を分散固定した、完全無機固体からなる波長変換部材が提案されている(例えば、特許文献2及び3参照)。当該波長変換部材は、母材となるガラスがLEDの熱や照射光により劣化しにくく、変色や変形といった問題が生じにくいという特徴を有している。
特開2000-208815号公報 特開2003-258308号公報 特許第4895541号公報
 近年、ハイパワー化を目的として、励起光源として用いるLEDやLDの出力が上昇している。それに伴い、励起光源からの熱や、励起光を照射された蛍光体から発せられる熱により波長変換部材の温度が上昇し、その結果、発光強度が経時的に低下する(温度消光)という問題がある。また、場合によっては、波長変換部材の温度上昇が顕著となり、構成材料(ガラスマトリクス等)が融解するおそれがある。
 以上に鑑み、本発明は、ハイパワーの励起光を照射した場合に、経時的な発光強度の低下や構成材料の融解を抑制することが可能な波長変換部材及びその製造方法、並びに当該波長変換部材を用いた発光装置を提供することを目的とする。
 本発明の波長変換部材は、無機バインダー中に蛍光体粒子と熱伝導性粒子が分散されてなる波長変換部材であって、無機バインダーと熱伝導性粒子の屈折率差が0.2以下であり、無機バインダーと熱伝導性粒子の各含有量の体積比が80:20~40超:60未満であることを特徴とする。上記構成のように、波長変換部材に含まれる熱伝導性粒子の含有量を多くすることで、励起光自体の熱や、励起光を波長変換部材に照射した際に蛍光体粒子から発生する熱が熱伝導性粒子を介して伝わり、効率良く外部に放出される。これにより、波長変換部材の温度上昇を抑制して、経時的な発光強度の低下や構成材料の融解を抑制することが可能となる。また、波長変換部材に含まれる熱伝導性粒子の上限を上記の通り規定することで、空隙率の小さい波長変換部材とすることができる。このようにすれば、波長変換部材内部において熱伝導性の低い空気の存在割合が低下し、波長変換部材の熱伝導率を向上させることができる。また、無機バインダー、熱伝導性粒子または蛍光体粒子と、空隙に含まれる空気との屈折率差による光散乱を低減できるため、波長変換部材の透光性を向上させることができ、結果として励起光または蛍光体粒子から発せられる蛍光の光取出し効率を向上させることができる。さらに、無機バインダーと熱伝導性粒子の屈折率差を上記の通り小さくすることで、両者の界面での反射に起因する光散乱を軽減でき、これによっても励起光や蛍光の光取出し効率を向上させることができる。
 本発明の波長変換部材は、空隙率が10%以下であることが好ましい。
 本発明の波長変換部材は、近接する複数の熱伝導性粒子同士の距離、及び/または、熱伝導性粒子とそれに近接する蛍光体粒子との距離が、0.08mm以下であることが好ましい。特に、複数の熱伝導性粒子同士、及び/または、熱伝導性粒子と蛍光体粒子が接触していることが好ましい。このようにすれば、熱伝導性の低い無機バインダーを伝熱する距離が短くなり、さらには複数の熱伝導性粒子間で熱伝導経路が形成されるため、波長変換部材内部で発生した熱を外部に伝導させやすくなる。
 本発明の波長変換部材は、熱伝導性粒子の平均粒子径D50が20μm以下であることが好ましい。このようにすれば、熱伝導性粒子を無機バインダー中に均一に分散させやすくなる。また、蛍光体粒子も無機バインダー中に均一に分散でき、波長変換部材から発せられる蛍光の配向性も向上しやすくなる。
 本発明の波長変換部材は、熱伝導性粒子が蛍光体粒子より高い熱伝導率を有することが好ましい。
 本発明の波長変換部材は、熱伝導性粒子として例えば酸化物セラミックスからなるものを使用することができる。具体的には、熱伝導性粒子が、酸化アルミニウム、酸化マグネシウム、酸化イットリウム、酸化亜鉛及びマグネシアスピネルから選択される少なくとも1種であることが好ましい。
 本発明の波長変換部材は、無機バインダーの軟化点が1000℃以下であることが好ましい。
 本発明の波長変換部材は、無機バインダーの屈折率(nd)が1.6~1.85であることが好ましい。
 本発明の波長変換部材は、無機バインダーがガラスであることが好ましい。この場合、ガラスは実質的にアルカリ金属成分を含有しないことが好ましい。ガラスに含まれるアルカリ金属成分は励起光を受けると着色中心となりやすく、励起光や蛍光の吸収源となり、発光効率が低下する場合がある。そこで、無機バインダーであるガラスが実質的にアルカリ金属成分を含有しない構成とすれば、上記のような不具合が発生しにくくなり、波長変換部材の発光効率が向上しやすくなる。
 本発明の波長変換部材は、無機バインダーと熱伝導性粒子の30~380℃の温度範囲における熱膨張係数差が60×10-7以下であることが好ましい。このようにすれば、製造工程における焼成時に、無機バインダーと熱伝導性粒子の熱膨張係数差に起因する空隙が発生しにくくなる。
 本発明の波長変換部材は、蛍光体粒子の含有量が1~70体積%であることが好ましい。
 本発明の波長変換部材は、厚みが500μm以下であることが好ましい。
 本発明の波長変換部材は、熱拡散率が5×10-7/s以上であることが好ましい。
 本発明の波長変換部材は、光入射面及び/または光出射面に無反射処理が施されていることが好ましい。このようにすれば、励起光の入射や蛍光の出射の際に、部材表面での反射損失を抑制することができる。
 本発明の発光装置は、上記の波長変換部材と、波長変換部材に励起光を照射する光源とを備えてなることを特徴とする。
 本発明の発光装置は、光源がレーザーダイオードであることが好ましい。このようにすれば、発光強度を高めることが可能となる。なお、光源としてレーザーダイオードを用いた場合は、波長変換部材の温度が上昇しやすくなるため、本発明の効果を享受しやすくなる。
 本発明によれば、ハイパワーの励起光を照射した場合に、経時的な発光強度の低下や構成材料の融解を抑制することが可能な波長変換部材及びその製造方法、並びに当該波長変換部材を用いた発光装置を提供することが可能となる。
本発明の一実施形態に係る波長変換部材を示す模式的断面図である。 本発明の一実施形態に係る波長変換部材を用いた発光装置を示す模式的側面図である。 実施例のNo.4の波長変換部材の部分断面写真である。
 以下、本発明の実施形態を図面を用いて詳細に説明する。ただし、本発明は以下の実施形態に何ら限定されるものではない。
 (波長変換部材)
 図1は、本発明の一実施形態に係る波長変換部材を示す模式的断面図である。波長変換部材10は、無機バインダー1中に蛍光体粒子2と熱伝導性粒子3が分散されてなるものである。本実施形態に係る波長変換部材10は透過型の波長変換部材である。波長変換部材10の一方の主面から励起光を照射すると、入射した励起光の一部が蛍光体粒子2により波長変換されて蛍光となり、当該蛍光は他方の主面から外部に照射される。また、蛍光体粒子2により波長変換されなかった励起光も、他方の主面から外部に出射される。つまり、蛍光と励起光の合成光が外部に出射される。波長変換部材10の形状は特に限定されないが、通常は平面形状が矩形や円形の板状である。
 図1に示すように、本実施形態では複数の熱伝導性粒子3が互いに近接または接触している。それにより、複数の熱伝導性粒子3の間に存在する熱伝導性の低い無機バインダー1の距離が短くなっている。特に、複数の熱伝導性粒子3同士が接触している箇所では熱伝導経路が形成されている。また、本実施形態では熱伝導性粒子3が蛍光体粒子2に近接または接触しており、それにより蛍光体粒子2と熱伝導性粒子3の間に存在する熱伝導性の低い無機バインダー1の距離が短くなっている。特に、熱伝導性粒子3と蛍光体粒子2が接触している箇所では熱伝導経路が形成されている。近接する複数の熱伝導性粒子3同士の距離、及び/または、熱伝導性粒子3とそれに近接する蛍光体粒子2との距離は、0.08mm以下、特に0.05mm以下であることが好ましい。このようにすれば、蛍光体粒子2で発生した熱を外部に伝導させやすくなり、波長変換部材10の温度が不当に上昇することを抑制できる。
 なお、近接する複数の熱伝導性粒子3同士の距離、及び、熱伝導性粒子3とそれに近接する蛍光体粒子2との距離は、波長変換部材10の反射電子像による断面画像から測定することができる。
 以下、各構成要素について詳細に説明する。
 無機バインダー1としては、製造時の焼成工程における蛍光体粒子2の熱劣化を考慮し、軟化点が1000℃以下のものを使用することが好ましい。そのような無機バインダー1としてはガラスが挙げられる。ガラスは樹脂等の有機系マトリクスと比較して耐熱性に優れるとともに、熱処理により軟化流動しやすいため、波長変換部材10の構造を緻密化しやすいという特徴がある。ガラスの軟化点は250~1000℃であることが好ましく、300~950℃であることがより好ましく、400~900℃であることがさらに好ましく、400~850℃であることが特に好ましい。ガラスの軟化点が低すぎると、波長変換部材10の機械的強度や化学的耐久性が低下する場合がある。また、ガラス自体の耐熱性が低いため、蛍光体粒子2から発生する熱により軟化変形するおそれがある。一方、ガラスの軟化点が高すぎると、製造時の焼成工程において蛍光体粒子2が劣化して、波長変換部材10の発光強度が低下する場合がある。なお、波長変換部材10の化学的安定性及び機械的強度を高める観点からはガラスの軟化点は500℃以上、600℃以上、700℃以上、800℃以上、特に850℃以上であることが好ましい。そのようなガラスとしては、ホウケイ酸塩系ガラス、ケイ酸塩系ガラス、アルミノケイ酸塩系ガラス等が挙げられる。ただし、ガラスの軟化点が高くなると、焼成温度も高くなり、結果として製造コストが高くなる傾向がある。また、蛍光体粒子2の耐熱性が低い場合、焼成時に劣化するおそれがある。よって、波長変換部材10を安価に製造する場合や、耐熱性の低い蛍光体粒子2を使用する場合は、ガラスマトリクスの軟化点は550℃以下、530℃以下、500℃以下、480℃以下、特に460℃以下であることが好ましい。そのようなガラスとしては、スズリン酸塩系ガラス、ビスマス酸塩系ガラス、テルライト系ガラスが挙げられる。
 無機バインダー1を構成するガラスは実質的にアルカリ金属成分を含有しないことが好ましい。ガラスに含まれるアルカリ金属成分は励起光を受けると着色中心となりやすく、励起光や蛍光の吸収源となり、発光効率が低下する場合があるためである。
 なお、無機バインダー1に使用されるガラスとしては、通常、ガラス粉末が使用される。ガラス粉末の平均粒子径は50μm以下、30μm以下、10μm以下、特に5μm以下であることが好ましい。ガラス粉末の平均粒子径が大きすぎると、緻密な焼結体が得にくくなる。ガラス粉末の平均粒子径の下限は特に限定されないが、通常、0.5μm以上、さらには1μm以上である。
 なお、本明細書において平均粒子径はレーザー回折法で測定した値を指し、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して50%である粒子径(D50)を表す。
 無機バインダー1の屈折率は、熱伝導性粒子3の屈折率と近くなるように選択することが好ましい。例えば、無機バインダー1の屈折率(nd)は1.6~1.85、さらには1.65~1.8であることが好ましい。
 蛍光体粒子2は、励起光の入射により蛍光を出射するものであれば、特に限定されるものではない。蛍光体粒子2の具体例としては、例えば、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、カルコゲン化物蛍光体、アルミン酸塩蛍光体、ハロリン酸塩化物蛍光体、ガーネット系化合物蛍光体から選ばれた少なくとも1種が挙げられる。また励起光として青色光を用いる場合、例えば、緑色光、黄色光または赤色光を蛍光として出射する蛍光体を用いることができる。
 蛍光体粒子2の平均粒子径は1~50μm、特に5~30μmであることが好ましい。蛍光体粒子2の平均粒子径が小さすぎると、発光強度が低下しやすくなる。一方、蛍光体粒子2の平均粒子径が大きすぎると、発光色が不均一になる傾向がある。そのため、発光色の均一性を高める観点からは、蛍光体粒子2の平均粒子径は20μm以下、10μm以下、特に10μm未満であることが好ましい。
 波長変換部材10中における蛍光体粒子2の含有量は1~70体積%、1~50体積%、特に1~30体積%であることが好ましい。蛍光体粒子2の含有量が少なすぎると、所望の発光強度が得にくくなる。一方、蛍光体粒子2の含有量が多すぎると、波長変換部材10の熱拡散率が低くなり放熱性が低下しやすくなる。
 熱伝導性粒子3は、無機バインダー1より高い熱伝導率を有している。特に、熱伝導性粒子3は無機バインダー1及び蛍光体粒子2より高い熱伝導率を有していることが好ましい。具体的には、熱伝導性粒子3の熱伝導率は5W/m・K以上、20W/m・K以上、40W/m・K以上、特に50W/m・K以上であることが好ましい。
 熱伝導性粒子3としては、酸化物セラミックスが好ましい。酸化物セラミックスの具体例としては、酸化アルミニウム、酸化マグネシウム、酸化イットリウム、酸化亜鉛、マグネシアスピネル(MgAl)等が挙げられる。これらは単独で使用してもよく、2種以上を混合して使用してもよい。なかでも、熱伝導率の比較的高い酸化アルミニウムまたは酸化マグネシウムを用いることが好ましく、特に熱伝導率が高く光吸収の少ない酸化マグネシウムを用いることがより好ましい。なお、マグネシアスピネルは比較的入手しやすく安価である点で好ましい。
 熱伝導性粒子3の平均粒子径(D50)は20μm以下、15μm以下、特に10μm以下であることが好ましい。熱伝導性粒子3の平均粒子径が大きすぎると、熱伝導性粒子3を無機バインダーの間に均一に分散させにくくなる。また、蛍光体粒子2間の距離が広くなり過ぎ、波長変換部材10から発せられる蛍光の配向性にムラが発生しやすくなる。なお、熱伝導性粒子3の平均粒子径が小さすぎると、熱伝導性粒子3の比表面積が大きくなり、波長変換部材10の緻密性が低下しやすくなるため、0.1μm以上、1μm以上、3μm以上、さらには5μm以上であることが好ましい。
 波長変換部材10中における無機バインダー1と熱伝導性粒子3の各含有量の体積比は80:20~40超:60未満であり、80:20~41:59であることが好ましく、75:25~50:50であることがより好ましく、73:27~55:45であることがさらに好ましく、72:28~60:40であることが特に好ましい。熱伝導性粒子3の含有量が少なすぎる(無機バインダー1の含有量が多すぎる)と、所望の放熱効果が得にくくなる。一方、熱伝導性粒子3の含有量が多すぎる(無機バインダー1の含有量が少なすぎる)と、波長変換部材10中における空隙が多くなるため、所望の放熱効果が得られなくなったり、波長変換部材10内部の光散乱が過剰となり蛍光強度が低下しやすくなる。このような熱伝導性粒子3の含有量が多すぎる場合の不具合は、特に熱伝導性粒子3の粒子径が小さい場合に顕著に表れる傾向がある。
 なお、波長変換部材10中における無機バインダー1と熱伝導性粒子3の合量は、蛍光体粒子2の含有量を考慮し、30~99体積%、50~99体積%、特に70~99体積%の範囲で調整することが好ましい。
 波長変換部材10中における空隙率(体積%)は10%以下、5%以下、特に3%以下であることが好ましい。空隙率が大きすぎると、放熱効果が低下しやすくなる。また、波長変換部材10内部の光散乱が過剰となり、蛍光強度が低下しやすくなる。
 無機バインダー1と熱伝導性粒子3の屈折率差(nd)は0.2以下であり、0.15以下、特に0.1以下であることが好ましい。当該屈折率差が大きすぎると、無機バインダー1と熱伝導性粒子3の界面での反射が大きくなり、その結果、光散乱が過剰となり蛍光強度が低下しやすくなる。
 無機バインダー1と熱伝導性粒子3の屈折率差は、各原料の屈折率の値から算出することができる。あるいは、焼結後の波長変換部材10について、市販されている透過型位相シフトレーザー干渉顕微鏡を使用することで、無機バインダー1と熱伝導性粒子3の屈折率差を測定することもできる。
 無機バインダー1と熱伝導性粒子3の熱膨張係数差(30~380℃)が60×10-7以下、特に50×10-7以下であることが好ましい。このようにすれば、製造工程における焼成時に、無機バインダーと熱伝導性粒子の熱膨張係数差に起因する空隙が発生しにくくなる。
 波長変換部材10の厚みは、500μm以下であることが好ましく、300μm以下であることがより好ましい。波長変換部材10の厚みが大きすぎると、波長変換部材10における光の散乱や吸収が大きくなりすぎ、蛍光の出射効率が低下する傾向がある。また、熱伝導性が低下することから波長変換部材10の温度が高くなって、経時的な発光強度の低下や構成材料の融解が発生しやすくなる。なお、波長変換部材10の厚みの下限値は、100μm程度であることが好ましい。波長変換部材10の厚みが小さすぎると、機械的強度が低下しやすくなる。また、所望の発光色を得るために蛍光体粒子2の含有量を増やす必要があるため、相対的に熱伝導性粒子3の含有量が少なくなり、熱伝導性が低下しやすくなる。
 波長変換部材10の光入射面及び/または光出射面に無反射処理が施されていることが好ましい。このようにすれば、励起光の入射や蛍光の出射の際に、部材表面での反射損失を抑制することができる。無反射処理としては、誘電体多層膜等の反射防止膜、あるいはモスアイ構造等のマイクロストラクチャーが挙げられる。また、波長変換部材10の光入射面にバンドパスフィルターを設けることにより、波長変換部材10の内部で発生した蛍光が光入射面側に漏出することを抑制できる。
 波長変換部材10は上記構成を有することにより優れた熱拡散性を有する。具体的には、波長変換部材10の熱拡散率は5×10-7/s以上、6×10-7/s以上、7×10-7/s以上、特に8×10-7/s以上であることが好ましい。
 波長変換部材10を金属やセラミック等の別の放熱部材に接合して使用してもよい。このようにすれば、波長変換部材10で発生した熱をより一層効率よく外部に放出することが可能となる。
 (波長変換部材の製造方法)
 波長変換部材10の製造方法として、(i)無機バインダー1、蛍光体粒子2及び熱伝導性粒子3を含む混合粉末を金型で加圧することで得られる予備成型体を焼成する方法が挙げられる。ここで、予備成型体を真空等の減圧雰囲気で焼成することが好ましい。このようにすれば、空隙率の低い波長変換部材が得やすくなる。
 あるいは、波長変換部材10の製造方法として、(ii)無機バインダー1、蛍光体粒子2及び熱伝導性粒子3を含む混合粉末に対して、樹脂、溶剤、可塑剤等の有機成分を添加、混練してなるスラリーを、ポリエチレンテレフタレート等の樹脂フィルム上にドクターブレード法等により成形し、加熱乾燥することにより得られるグリーンシート予備成型体を焼成する方法が挙げられる。グリーンシート予備成型体の焼成は、大気雰囲気で樹脂の分解温度以上で加熱した後に、減圧雰囲気で焼成温度まで加熱することが好ましい。このようにすれば、空隙率の低い波長変換部材が得やすくなる。
 上記製造方法(i)及び(ii)において、焼成温度は1000℃以下、950℃以下、特に900℃以下であることが好ましい。焼成温度が高すぎると、蛍光体粒子2が熱劣化しやすくなる。なお、焼成温度が低すぎると、緻密な焼結体が得にくくなるため、250℃以上、300℃以上、特に400℃以上であることが好ましい。
 上記製造方法(i)及び(ii)は、無機バインダー1と熱伝導性粒子3の合量に対する熱伝導性粒子3の体積比率が概ね40%以下の場合に有効である。熱伝導性粒子3の体積比率が大きすぎると、緻密な焼結体が得にくくなる。
 その他に、波長変換部材10の製造方法として、(iii)無機バインダー1、蛍光体粒子2及び熱伝導性粒子3を含む混合粉末を加熱プレスする方法が挙げられる。加熱プレスは、ホットプレス装置、放電プラズマ焼結装置または熱間静水圧プレス装置により行うことができる。これらの装置を使用することにより、緻密な焼結体を容易に得ることができる。なお、加熱プレスは減圧雰囲気で行うことが好ましい。このようにすれば、焼成時の脱泡が促進され、緻密な焼結体が得やすくなる。
 加熱プレスを行う際の温度は1000℃以下、950℃以下、特に900℃以下であることが好ましい。加熱プレスを行う際の温度が高すぎると、蛍光体粒子2が熱劣化しやすくなる。なお、加熱プレスを行う際の温度が低すぎると、緻密な焼結体が得にくくなるため、250℃以上、300℃以上、特に400℃以上であることが好ましい。
 加熱プレスする際の圧力は、緻密な焼結体が得られるよう、例えば10~100MPa、特に20~60MPaの範囲で適宜調整することが好ましい。
 焼結用金型の材質は特に限定されず、例えばカーボン製やセラミック製の金型を使用することができる。
 上記製造方法(iii)は緻密な焼結体が得やすいため、無機バインダー1と熱伝導性粒子3の合量に対する熱伝導性粒子3の体積比率が大きい場合(例えば35%以上、さらには40%超)に特に有効である。
 (発光装置)
 図2は、上述した実施形態に係る波長変換部材を用いた発光装置を示す模式的側面図である。図2に示すように、発光装置20は、波長変換部材10と光源4を備えている。光源4から出射された励起光Lは波長変換部材10により蛍光Lに変換される。また励起光Lの一部は波長変換部材10をそのまま透過する。このため、波長変換部材10からは、励起光Lと蛍光Lとの合成光Lが出射することとなる。例えば、励起光Lが青色光であり、蛍光Lが黄色光である場合、白色の合成光Lを得ることができる。
 発光装置20には上述の波長変換部材10を用いているため、波長変換部材10に励起光Lが照射されることにより発生した熱を、効率良く外部に放出することができる。よって、波長変換部材10の温度が不当に上昇することを抑制できる。
 光源4としては、LEDやLDが挙げられる。発光装置20の発光強度を高める観点からは、光源4は高強度の光を出射できるLDを用いることが好ましい。光源としてLDを用いた場合は、波長変換部材10の温度が上昇しやすくなるため、本発明の効果を享受しやすくなる。
 以下、本発明の波長変換部材を実施例を用いて詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 表1は本発明の実施例(No.1~10)及び比較例(No.11~12)を示す。
Figure JPOXMLDOC01-appb-T000001
 熱伝導性粒子、無機バインダー及び蛍光体粒子を、表1に記載の割合となるように混合することにより混合粉末を得た。なお表において、蛍光体粒子の含有量は混合粉末に占める含有量であり、残部を熱伝導性粒子と無機バインダーが占める。各材料としては以下のものを使用した。
 (a)熱伝導性粒子
 MgO(熱伝導率:約42W/m・K、平均粒子径D50:8μm、屈折率(nd):1.73)
 Al(熱伝導率:約20W/m・K、平均粒子径D50:9μm、屈折率(nd):1.76)
 MgAl(熱伝導率:約16W/m・K、平均粒径D50:21μm)
 (b)無機バインダー
 無機バインダーA(ケイ酸バリウム系ガラス粉末、軟化点:790℃、屈折率(nd):1.71、平均粒子径D50:2.5μm)
 無機バインダーB(ホウケイ酸塩系ガラス粉末、軟化点:775℃、屈折率(nd):1.49、平均粒子径D50:1.3μm)
 無機バインダーC(スズリン酸塩系ガラス粉末、軟化点:380℃、屈折率(nd):1.82、平均粒子径D50:3.8μm)
 無機バインダーD(ビスマス系ガラス粉末、軟化点:450℃、屈折率(nd):1.91、平均粒子径D50:2.7μm)
 (c)蛍光体粒子
 YAG蛍光体粒子(YAl12、平均粒子径:22μm)
 CASN蛍光体粒子(CaAlSiN、平均粒子径:15μm)
 表1のNo.1~3、7~12の波長変換部材は以下のようにして作製した。上記で得られた混合粉末を、30mm×40mmの金型に入れ25MPaの圧力でプレスし予備成型体を製作した。得られた予備成形体を真空雰囲気下で表1に示す熱処理温度まで昇温し20分保持(減圧焼成)した後、Nガスを導入して大気圧に戻しながら常温まで徐冷した。得られた焼結体に対し研削・研磨加工を施すことにより、5mm×5mm×0.5mmの矩形板状の波長変換部材を得た。
 表1のNo.4~6の波長変換部材は以下のようにして作製した。上記で得られた混合粉末を30mm×40mmの金型に入れ、25MPaの圧力でプレスし予備成型体を製作した。得られた予備成型体を富士電波工業製ホットプレス炉(ハイマルチ5000)内に設置された30mm×40mmのカーボン製金型に入れ、加熱プレスを行った。加熱プレスの条件としては、真空雰囲気下で表1に示す熱処理温度まで昇温し、40MPaの圧力で20分間加圧した後、Nガスを導入しながら常温まで徐冷した。得られた焼結体に対し研削・研磨加工を施すことにより、5mm×5mm×0.5mmの矩形板状の波長変換部材を得た。
 得られた波長変換部材について、以下の方法で空隙率、熱拡散率、放熱性、透光性、発光ムラを評価した。結果を表1に示す。また、No.4の波長変換部材の部分断面写真を図3に示す。
 空隙率は、波長変換部材の反射電子像による断面写真について、画像解析ソフトWinroofを用いて二値化し、得られた処理画像において空隙の占める面積割合から算出した。
 熱拡散率は、アイフェイズ社製の熱拡散率測定装置ai-phaseにより測定した。
 放熱性は以下のようにして測定した。中央部にφ3mmの開口部が形成された30mm×30mm×2mmのアルミニウム板2枚を準備し、当該2枚のアルミニウム板の間に波長変換部材を挟持して固定した。波長変換部材はアルミニウム板の略中央部に位置するように固定し、各アルミニウム板の開口部から波長変換部材が露出するようにした。アルミニウム板の一方の開口部から、露出した波長変換部材に対してLDの励起光(波長445nm、出力1.8W)を10分間照射し、波長変換部材のレーザー照射面と反対面の温度をFLIR製のサーモグラフィで測定した。なお、ガラスマトリクスが融解した場合は「×」として評価した。
 透光性は、得られた波長変換部材を1000ルクスの蛍光灯下で文字の書いた紙面上に載置し、その文字の陰影が確認できるか否かで判断した。文字の陰影が確認できたものを「○」、確認できなかったものを「×」とした。
 発光ムラは以下のようにして評価した。上記の放熱性試験において、波長変換部材の光出射側から1mの距離に白色反射板を設置し、当該白色反射板に投影された光の色ムラの有無を確認した。色ムラが無いものを「○」、色ムラが少し確認できたものを「△」、色ムラが確認できたものを「×」として評価した。
 表1から明らかなように、実施例であるNo.1~10の波長変換部材は、熱拡散率が5.9×10-7/s以上と高く、放熱性試験でも波長変換部材の温度が45~89℃と比較的低温であった。さらに、平均粒子径が8~9μmと小さい熱伝導性粒子を使用したNo.1~8の波長変換部材は、発光ムラがなく、出射光の均質性に優れていた。一方、比較例であるNo.11の波長変換部材は、熱伝導性粒子の含有比率が小さすぎるため、熱拡散率が3.5×10-7/sと低く、放熱性試験で波長変換部材のガラスマトリクスが融解した。また、No.12の波長変換部材は、熱伝導性粒子と無機バインダーの屈折率差が0.24と大きいため、両者の界面での光散乱が強くなり過ぎ、透光性が「×」となった。
 本発明の波長変換部材は、白色LED等の一般照明や特殊照明(例えば、プロジェクター光源、自動車のヘッドランプ光源、内視鏡の光源)等の構成部材として好適である。
1 無機バインダー
2 蛍光体粒子
3 熱伝導性粒子
4 光源
10 波長変換部材
20 発光装置

Claims (19)

  1.  無機バインダー中に蛍光体粒子と熱伝導性粒子が分散されてなる波長変換部材であって、
     無機バインダーと熱伝導性粒子の屈折率差が0.2以下であり、
     無機バインダーと熱伝導性粒子の各含有量の体積比が80:20~40超:60未満であることを特徴とする波長変換部材。
  2.  空隙率が10%以下であることを特徴とする請求項1に記載の波長変換部材。
  3.  近接する複数の熱伝導性粒子同士の距離、及び/または、熱伝導性粒子とそれに近接する蛍光体粒子との距離が、0.08mm以下であることを特徴とする請求項1または2に記載の波長変換部材。
  4.  複数の熱伝導性粒子同士、及び/または、熱伝導性粒子と蛍光体粒子が接触していることを特徴とする請求項1~3のいずれか一項に記載の波長変換部材。
  5.  熱伝導性粒子の平均粒子径D50が20μm以下であることを特徴とする請求項1~4のいずれか一項に記載の波長変換部材。
  6.  熱伝導性粒子が、蛍光体粒子より高い熱伝導率を有することを特徴とする請求項1~5のいずれか一項に記載の波長変換部材。
  7.  熱伝導性粒子が酸化物セラミックスからなることを特徴とする請求項1~6のいずれか一項に記載の波長変換部材。
  8.  熱伝導性粒子が、酸化アルミニウム、酸化マグネシウム、酸化イットリウム、酸化亜鉛及びマグネシアスピネルから選択される少なくとも1種であることを特徴とする請求項7に記載の波長変換部材。
  9.  無機バインダーの軟化点が1000℃以下であることを特徴とする請求項1~8のいずれか一項に記載の波長変換部材。
  10.  無機バインダーの屈折率(nd)が1.6~1.85であることを特徴とする請求項1~9のいずれか一項に記載の波長変換部材。
  11.  無機バインダーがガラスであることを特徴とする請求項1~10のいずれか一項に記載の波長変換部材。
  12.  ガラスが実質的にアルカリ金属成分を含有しないことを特徴とする請求項11に記載の波長変換部材。
  13.  無機バインダーと熱伝導性粒子の30~380℃の温度範囲における熱膨張係数差が60×10-7以下であることを特徴とする請求項1~12のいずれか一項に記載の波長変換部材。
  14.  蛍光体粒子の含有量が1~70体積%であることを特徴とする請求項1~13のいずれか一項に記載の波長変換部材。
  15.  厚みが500μm以下であることを特徴とする請求項1~14のいずれか一項に記載の波長変換部材。
  16.  熱拡散率が5×10-7/s以上であることを特徴とする請求項1~15のいずれか一項に記載の波長変換部材。
  17.  光入射面及び/または光出射面に無反射処理が施されていることを特徴とする請求項1~16のいずれか一項に記載の波長変換部材。
  18.  請求項1~17のいずれか一項に記載の波長変換部材と、波長変換部材に励起光を照射する光源とを備えてなることを特徴とする発光装置。
  19.  光源がレーザーダイオードであることを特徴とする請求項18に記載の発光装置。
PCT/JP2019/008470 2018-03-13 2019-03-04 波長変換部材及びそれを用いた発光装置 WO2019176622A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/970,646 US20200381597A1 (en) 2018-03-13 2019-03-04 Wavelength conversion member and light-emitting device using same
DE112019001280.0T DE112019001280T5 (de) 2018-03-13 2019-03-04 Wellenlängen-Umwandlungselement und Licht emittierende Vorrichtung unter Verwendung derselben
CN201980006195.1A CN111448489A (zh) 2018-03-13 2019-03-04 波长转换部件和使用该波长转换部件的发光装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-045056 2018-03-13
JP2018045056 2018-03-13
JP2018224494A JP7469847B2 (ja) 2018-03-13 2018-11-30 波長変換部材及びそれを用いた発光装置
JP2018-224494 2018-11-30

Publications (1)

Publication Number Publication Date
WO2019176622A1 true WO2019176622A1 (ja) 2019-09-19

Family

ID=67908150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008470 WO2019176622A1 (ja) 2018-03-13 2019-03-04 波長変換部材及びそれを用いた発光装置

Country Status (2)

Country Link
JP (1) JP2023083288A (ja)
WO (1) WO2019176622A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145656A1 (ja) * 2022-01-26 2023-08-03 株式会社小糸製作所 半導体発光素子、前照灯装置、および半導体発光素子の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014241431A (ja) * 2013-05-16 2014-12-25 株式会社日本セラテック 発光装置の製造方法
JP2016021582A (ja) * 2010-07-26 2016-02-04 株式会社小糸製作所 発光モジュール
JP2016225581A (ja) * 2015-06-04 2016-12-28 日本電気硝子株式会社 波長変換部材及びそれを用いた発光装置
WO2017170609A1 (ja) * 2016-03-29 2017-10-05 三菱化学株式会社 蛍光体、発光装置、照明装置及び画像表示装置
JP2018035055A (ja) * 2016-08-25 2018-03-08 セントラル硝子株式会社 波長変換部材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016021582A (ja) * 2010-07-26 2016-02-04 株式会社小糸製作所 発光モジュール
JP2014241431A (ja) * 2013-05-16 2014-12-25 株式会社日本セラテック 発光装置の製造方法
JP2016225581A (ja) * 2015-06-04 2016-12-28 日本電気硝子株式会社 波長変換部材及びそれを用いた発光装置
WO2017170609A1 (ja) * 2016-03-29 2017-10-05 三菱化学株式会社 蛍光体、発光装置、照明装置及び画像表示装置
JP2018035055A (ja) * 2016-08-25 2018-03-08 セントラル硝子株式会社 波長変換部材

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145656A1 (ja) * 2022-01-26 2023-08-03 株式会社小糸製作所 半導体発光素子、前照灯装置、および半導体発光素子の製造方法

Also Published As

Publication number Publication date
JP2023083288A (ja) 2023-06-15

Similar Documents

Publication Publication Date Title
Zhang et al. Pore-existing Lu3Al5O12: Ce ceramic phosphor: An efficient green color converter for laser light source
CN108291987B (zh) 波长转换部件和波长转换元件以及使用它们的发光装置
JP7268315B2 (ja) 波長変換部材及びその製造方法、並びに発光装置
TWI654078B (zh) 陶瓷磷光板及包括其之照明裝置
CN109415622B (zh) 波长转换部件以及使用其的发光器件
CN109798457B (zh) 一种透射式蓝光激光照明组件
WO2018003453A1 (ja) 波長変換部材及びそれを用いてなる発光デバイス
CN111213075B (zh) 波长变换部件和发光装置
CN208507721U (zh) 波长转换部件和波长转换元件以及使用它们的发光装置
WO2015093267A1 (ja) 波長変換部材及び発光デバイス
JP6365828B2 (ja) 波長変換材料に用いられるガラス、波長変換材料、波長変換部材及び発光デバイス
CN112154358A (zh) 波长转换材料和波长转换元件、以及它们的制造方法和发光装置
JP2018043912A (ja) 光変換部材、照明光源および光変換部材の製造方法
JP7469847B2 (ja) 波長変換部材及びそれを用いた発光装置
WO2017047412A1 (ja) 波長変換部材及び発光デバイス
JP2023083288A (ja) 波長変換部材及びそれを用いた発光装置
JP7376022B2 (ja) 蛍光体粒子分散ガラスおよび発光装置
WO2019116916A1 (ja) 波長変換部材及びその製造方法、並びに発光装置
WO2019239850A1 (ja) 波長変換部材及び波長変換素子、並びにそれらの製造方法、並びに発光装置
JP2019019011A (ja) 波長変換材料に用いられるガラス、波長変換材料、波長変換部材及び発光デバイス
WO2020213456A1 (ja) 波長変換部材及びその製造方法、並びに発光装置
CN109827096A (zh) 一种使用空心氧化铝微球的激光照明组件及其制造方法
WO2021132212A1 (ja) 波長変換部材、発光素子及び発光装置
TWI830902B (zh) 波長轉換構件及其製造方法、與發光裝置
JP2019008067A (ja) 波長変換部材及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767868

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19767868

Country of ref document: EP

Kind code of ref document: A1