WO2017047412A1 - 波長変換部材及び発光デバイス - Google Patents
波長変換部材及び発光デバイス Download PDFInfo
- Publication number
- WO2017047412A1 WO2017047412A1 PCT/JP2016/075828 JP2016075828W WO2017047412A1 WO 2017047412 A1 WO2017047412 A1 WO 2017047412A1 JP 2016075828 W JP2016075828 W JP 2016075828W WO 2017047412 A1 WO2017047412 A1 WO 2017047412A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wavelength conversion
- conversion member
- phosphor layer
- substrate
- phosphor
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 69
- 239000000843 powder Substances 0.000 claims abstract description 82
- 239000000758 substrate Substances 0.000 claims abstract description 66
- 239000011521 glass Substances 0.000 claims abstract description 37
- 239000011159 matrix material Substances 0.000 claims abstract description 12
- 230000009477 glass transition Effects 0.000 claims abstract description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 149
- 230000005284 excitation Effects 0.000 claims description 18
- 238000010304 firing Methods 0.000 claims description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 150000004767 nitrides Chemical group 0.000 claims description 6
- 239000011224 oxide ceramic Substances 0.000 claims description 6
- 229910052574 oxide ceramic Inorganic materials 0.000 claims description 6
- 239000013078 crystal Substances 0.000 claims description 4
- 229910052594 sapphire Inorganic materials 0.000 claims description 4
- 239000010980 sapphire Substances 0.000 claims description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 3
- UAHZTKVCYHJBJQ-UHFFFAOYSA-N [P].S=O Chemical compound [P].S=O UAHZTKVCYHJBJQ-UHFFFAOYSA-N 0.000 claims description 3
- 150000004645 aluminates Chemical class 0.000 claims description 3
- 239000000075 oxide glass Substances 0.000 claims description 3
- 150000004820 halides Chemical class 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 6
- 239000002245 particle Substances 0.000 description 13
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- 229910052712 strontium Inorganic materials 0.000 description 4
- 229910017639 MgSi Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 229910052788 barium Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 229910019655 synthetic inorganic crystalline material Inorganic materials 0.000 description 3
- 229910003564 SiAlON Inorganic materials 0.000 description 2
- 229910004283 SiO 4 Inorganic materials 0.000 description 2
- 229910003668 SrAl Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 229910015999 BaAl Inorganic materials 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- 229910020068 MgAl Inorganic materials 0.000 description 1
- 101100476480 Mus musculus S100a8 gene Proteins 0.000 description 1
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000007578 melt-quenching technique Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/12—Compositions for glass with special properties for luminescent glass; for fluorescent glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/14—Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/04—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
Definitions
- the present invention relates to a wavelength conversion member suitable as a fluorescent wheel for a projector and a light emitting device using the same.
- a light emitting device using a light source such as an LED (Light Emitting Diode) and a wavelength conversion member having a phosphor layer has been proposed.
- the wavelength of light from a light source is converted by a phosphor layer, and the obtained fluorescence is reflected to the incident side of the light source by a reflective substrate provided adjacent to the wavelength conversion member, and is taken out to the outside.
- a wheel has been proposed (see, for example, Patent Document 1).
- the reflection type fluorescent wheel has an advantage that the fluorescent light extraction efficiency to the outside is high and the projector can easily have high brightness.
- the phosphor layer is required to have heat resistance because it generates heat when irradiated with light from a light source. Therefore, a wavelength conversion member having a phosphor layer in which an inorganic phosphor powder is dispersed in a glass matrix having high heat resistance has been proposed.
- stress strain may occur at the interface between the two. For example, when a metal substrate is used as the reflective substrate, the stress strain increases because the difference in thermal expansion coefficient from the phosphor layer is large. As a result, there may be a problem that a crack occurs in the phosphor layer due to vibrations received during use, or that the phosphor layer peels off from the reflective substrate.
- the prior art document 2 discloses a wavelength conversion member (projector fluorescent wheel) in which a reflective substrate has a two-layer structure of a ceramic substrate and a metal reflective layer, and a phosphor layer is provided on the surface of the ceramic substrate. Since the ceramic substrate has a lower thermal expansion coefficient than that of the metal material, the difference in thermal expansion coefficient from the phosphor layer can be reduced.
- the wavelength conversion member of the present invention is a wavelength conversion member formed by bonding a substrate and a phosphor layer in which an inorganic phosphor powder is dispersed in a glass matrix, and the phosphor layer is fixed at 30 ° C.
- the fixing point means a temperature represented by Tf- (Tf-Tg) / 3 (Tg: glass transition point, Tf: yield point).
- the stress strain generated at the interface between the substrate and the phosphor layer in the wavelength conversion member is caused by the manufacturing process. Specifically, it will be described as follows.
- the wavelength conversion member in which the phosphor layer is formed on the substrate is produced, for example, by attaching a green sheet containing glass powder and inorganic phosphor powder on the substrate and baking it. Specifically, when the green sheet is fired, a phosphor layer made of a sintered body of glass powder and inorganic phosphor powder is formed. The phosphor layer is fixed to the substrate at the fixing point, and then cooled to near room temperature, thereby obtaining a wavelength conversion member in which the phosphor layer is formed on the substrate.
- the temperature range from 30 ° C.
- the difference between the thermal expansion coefficient of the substrate and the thermal expansion coefficient of the phosphor layer is large, after the phosphor layer is fixed to the substrate, Residual stress is likely to occur at the interface between the two. Therefore, in the temperature range from 30 ° C. to the fixing point of the phosphor layer, the difference between the thermal expansion coefficient of the substrate and the thermal expansion coefficient of the phosphor layer is defined as described above, thereby suppressing the occurrence of the above-mentioned problems. Can do.
- the substrate is preferably made of oxide ceramics or glass.
- the oxide ceramic is preferably polycrystalline alumina or single crystal sapphire.
- the phosphor layer is preferably fused to the substrate.
- a wavelength conversion member having excellent heat resistance can be obtained.
- the resin adhesive deteriorates and blackens due to the irradiation heat of excitation light, the emission intensity tends to decrease with time, but such a problem hardly occurs according to the above configuration.
- the resin adhesive has low thermal conductivity, when the phosphor layer and the substrate are bonded with the resin adhesive, the heat generated in the phosphor layer is not easily radiated to the substrate side. On the other hand, if the phosphor layer is fused to the substrate, the heat generated in the phosphor layer is easily radiated efficiently to the substrate side.
- the phosphor layer preferably has a thickness of 30 to 300 ⁇ m.
- the inorganic phosphor powder includes nitride phosphor, oxynitride phosphor, oxide phosphor, sulfide phosphor, oxysulfide phosphor, halide phosphor, and aluminate phosphor. It is preferable that it consists of 1 or more types selected from a body.
- the content of the inorganic phosphor powder in the phosphor layer is preferably 30 to 80% by volume.
- the wavelength conversion member of the present invention preferably has a wheel shape. According to the said structure, the thermal radiation by rotation becomes easy and the damage accompanying the temperature rise of a fluorescent substance layer and temperature quenching can be reduced. Therefore, it is particularly suitable for a projector light source with high brightness.
- the light-emitting device of the present invention includes the above-described wavelength conversion member and a light source that irradiates the phosphor layer in the wavelength conversion member with excitation light.
- the light emitting device of the present invention is suitable as a projector light source.
- the method for producing a wavelength conversion member of the present invention includes a step of producing a green sheet containing glass powder and inorganic phosphor powder, and a step of forming a phosphor layer by sticking the green sheet on a substrate and baking it.
- a step of producing a green sheet containing glass powder and inorganic phosphor powder in the temperature range from 30 ° C. to the fixing point of the phosphor layer, when the thermal expansion coefficient of the substrate is ⁇ 1 and the thermal expansion coefficient of the phosphor layer is ⁇ 2 , ⁇ 10 ⁇ 10 ⁇ 7 ⁇ ⁇ 1 It is characterized by satisfying the relationship of ⁇ 2 ⁇ 10 ⁇ 10 ⁇ 7 (/ ° C.).
- the fixing point means a temperature represented by Tf- (Tf-Tg) / 3 (Tg: glass transition point, Tf: yield point), as described above.
- the present invention it is possible to provide a wavelength conversion member that reduces stress strain generated at the interface between the phosphor layer and the substrate and is less likely to be damaged during use.
- FIG. 1 is a schematic cross-sectional view of a wavelength conversion member showing an embodiment of the present invention.
- the wavelength conversion member 1 includes a substrate 10 and a phosphor layer 20 bonded to the surface thereof.
- the phosphor layer 20 is formed by dispersing an inorganic phosphor powder 22 in a glass matrix 21.
- the phosphor layer 20 is preferably fused to the substrate 10.
- a glass layer is mentioned as an inorganic joining layer. Specifically, the glass layer which consists of the same composition as the glass matrix 21 is mentioned.
- the shape dimension of the wavelength conversion member 1 can be appropriately set according to the shape dimension of the device in which the wavelength conversion member 1 is used.
- Examples of the shape of the wavelength conversion member 1 include a rectangular plate shape, a disk shape, and a wheel shape. In particular, when used for a light source for a projector, a wheel shape is preferable.
- the phosphor layer 20 may be formed on the entire surface (at least one main surface) of the substrate 10, or the phosphor layer 10 may be formed only on a part of the surface of the substrate 10.
- substrate 10 examples include those made of oxide ceramics or glass.
- oxide ceramic examples include polycrystalline alumina and single crystal sapphire.
- Polycrystalline alumina may be a porous body.
- Polycrystalline alumina is used as a reflective substrate.
- single crystal sapphire since single crystal sapphire is light-transmitting, it can be used as a transmission-type wavelength conversion member.
- the phosphor layer 20 includes a glass matrix 21 and an inorganic phosphor powder 22.
- the phosphor layer 20 is formed by dispersing an inorganic phosphor powder 22 in a glass matrix 21 made of a glass powder sintered body. In this way, the phosphor layer 20 in which the inorganic phosphor powder 22 is uniformly dispersed in the glass matrix 21 is easily obtained.
- composition of the glass matrix 21 for example, a composition containing 60 to 90% by mass of any one or more of SiO 2 and B 2 O 3 is preferable.
- R ′ is Li, Na or Ka
- examples thereof include glass and SiO 2 —B 2 O 3 —RO—R ′ 2 O-based glass.
- the thermal expansion coefficient of the substrate 10 is ⁇ 1 and the thermal expansion coefficient of the phosphor layer 20 is ⁇ 2 in the temperature range from 30 ° C. to the fixing point of the phosphor layer 20, ⁇ 10 ⁇ 10 ⁇ 7 ⁇ ⁇ 1 ⁇ 2 ⁇ 10 ⁇ 10 ⁇ 7 (/ ° C.) is satisfied. If ⁇ 1 - ⁇ 2 is too small, the stress strain generated at the interface between the substrate 10 and the phosphor layer 20 (tensile stress from the substrate 10 to the phosphor 20) increases for the reasons already described, and may be damaged during use. There is.
- ⁇ 1 - ⁇ 2 is preferably ⁇ 8 ⁇ 10 ⁇ 7 or more, particularly preferably ⁇ 6 ⁇ 10 ⁇ 7 or more (/ ° C.), more preferably 8 ⁇ 10 ⁇ 7 or less, and particularly preferably 6 ⁇ 10 ⁇ 7 or less (/ ° C.).
- the inorganic phosphor powder 22 is not particularly limited as long as it is generally available on the market.
- nitride phosphor powder, oxynitride phosphor powder, oxide phosphor powder including garnet phosphor powder such as YAG phosphor powder), sulfide phosphor powder, oxysulfide phosphor powder, halogen And phosphor powders (such as halophosphate powders) and aluminate phosphor powders.
- nitride phosphor powder, oxynitride phosphor powder, and oxide phosphor powder are preferable because they have high heat resistance and are relatively difficult to deteriorate during firing.
- the nitride phosphor powder and the oxynitride phosphor powder are characterized by converting near-ultraviolet to blue excitation light into a wide wavelength range from green to red and having a relatively high emission intensity. Therefore, the nitride phosphor powder and the oxynitride phosphor powder are particularly effective as the inorganic phosphor powder 22 used for the wavelength conversion member for white LED elements.
- the inorganic phosphor powder 22 has an excitation band at a wavelength of 300 to 500 nm and an emission peak at a wavelength of 380 to 780 nm, particularly blue (wavelength 440 to 480 nm), green (wavelength 500 to 540 nm), yellow (wavelength 540). ⁇ 595 nm) or red light (wavelength 600 to 700 nm).
- Examples of inorganic phosphor powders that emit blue light when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include (Sr, Ba) MgAl 10 O 17 : Eu 2+ , (Sr, Ba) 3 MgSi 2 O 8. : Eu 2+ and the like.
- Examples of inorganic phosphor powders that emit green fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include SrAl 2 O 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , Y 3 (Al, Gd) 5 O 12 : Ce 3+ , SrSiO n : Eu 2+ , ⁇ -SiAlON: Eu 2+ and the like.
- Examples of the inorganic phosphor powder that emits yellow fluorescence when irradiated with excitation light having a wavelength of 300 to 440 nm include La 3 Si 6 N 11 : Ce 3+ .
- Examples of the inorganic phosphor powder that emits yellow fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include Y 3 (Al, Gd) 5 O 12 : Ce 3+ and Sr 2 SiO 4 : Eu 2+ .
- Examples of the inorganic phosphor powder that emits red fluorescence when irradiated with excitation light having a wavelength of 300 to 440 nm include CaGa 2 S 4 : Mn 2+ , MgSr 3 Si 2 O 8 : Eu 2+ , Mn 2+ , Ca 2. MgSi 2 O 7: Eu 2+, Mn 2+ , and the like.
- Inorganic phosphor powders that emit red fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include CaAlSiN 3 : Eu 2+ , CaSiN 3 : Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+ , ⁇ -SiAlON: Eu 2+ and the like.
- a plurality of inorganic phosphor powders may be mixed and used in accordance with the wavelength range of excitation light or light emission. For example, when white light is obtained by irradiation with ultraviolet excitation light, inorganic phosphor powders emitting blue, green, yellow, and red fluorescence may be mixed and used.
- the content of the inorganic phosphor powder 22 in the phosphor layer 20 is preferably 20 to 90%, 30 to 80%, particularly 40 to 75% by volume%.
- the average particle diameter of the inorganic phosphor powder 22 is preferably 50 ⁇ m or less, particularly preferably 25 ⁇ m or less. However, if the average particle size of the inorganic phosphor powder 22 is too small, the emission intensity may be reduced. Therefore, the average particle diameter of the inorganic phosphor powder 22 is preferably 1 ⁇ m or more, and particularly preferably 5 ⁇ m or more.
- the thickness of the phosphor layer 20 is preferably 30 to 300 ⁇ m, particularly 50 to 200 ⁇ m. If the thickness of the phosphor layer 20 is too small, it becomes difficult to obtain a desired emission intensity. On the other hand, if the thickness of the phosphor layer 20 is too large, the light extraction efficiency from the phosphor layer 20 is inferior and the emission intensity tends to decrease. In addition, since the interface stress of the fluorescent substance layer 20 and the board
- a green sheet is produced using a mixed powder containing glass powder for constituting the glass matrix 21 and inorganic phosphor powder 22.
- a green sheet is obtained by adding an appropriate amount of an organic solvent, a resin binder, and the like to the mixed powder and kneading to obtain a slurry, and then forming the sheet on a resin film such as PET (polyethylene terephthalate). Is made.
- the maximum particle size (Dmax) is 200 ⁇ m or less (especially 150 ⁇ m or less, further 105 ⁇ m or less), and the average particle size (D50) is 0.1 ⁇ m or more (particularly 1 ⁇ m or more, further 2 ⁇ m or more). It is preferable that If the maximum particle diameter of the glass powder is too large, the excitation light is less likely to scatter in the phosphor layer 20 and the light emission efficiency tends to be reduced. On the other hand, if the average particle size is too small, in the phosphor layer 20, the excitation light is excessively scattered, and the luminous efficiency tends to decrease.
- the maximum particle size and the average particle size are values measured by a laser diffraction method.
- the wavelength conversion member 1 is obtained by firing the laminate.
- substrate 10 and glass powder select the material from which each thermal expansion coefficient becomes the above-mentioned relationship.
- the firing temperature is preferably equal to or higher than the softening point of the glass powder in order to obtain a dense sintered body.
- the firing temperature is preferably the softening point of the glass powder + 150 ° C. or less, particularly preferably the softening point of the glass powder + 100 ° C. or less.
- FIG. 2 is a schematic side view showing an embodiment of a light emitting device 2 using the wavelength conversion member 1.
- the light emitting device 2 includes a wavelength conversion member 1 and a light source 30.
- the light source 30 irradiates the wavelength conversion member 1 with excitation light L1.
- the excitation light L1 enters the phosphor layer 20 in the wavelength conversion member 1, the wavelength is converted into fluorescence L2.
- the fluorescence L2 is reflected by the substrate 10 which is a reflective substrate, and is emitted toward the light source 30 side.
- the fluorescence L2 is separated by the beam splitter 40 disposed between the light source 30 and the wavelength conversion member 1, and taken out to the outside.
- Table 1 shows Examples 1 to 3 and Comparative Examples 1 and 2.
- This slurry was applied onto a PET film using a doctor blade method (blade gap 200 ⁇ m) and dried to prepare a green sheet.
- the thickness of the obtained green sheet was 120 ⁇ m.
- the above green sheet cut to the same size is pasted on the surface of a polycrystalline alumina substrate (MARUWA HA-96-2, 180 mm ⁇ 15 mm, thickness 0.25 mm), and 10 kPa at 100 ° C. using a thermocompression bonding machine.
- a laminate was produced by applying pressure for 3 minutes. The laminate was degreased at 600 ° C. for 1 hour in the air, and then fired at the firing temperature shown in Table 1 for 30 minutes to prepare a wavelength conversion member. The thickness of the phosphor layer in the obtained wavelength conversion member was 100 ⁇ m.
- the fixing point of the phosphor layer and the thermal expansion coefficient in the temperature range from 30 ° C. to the fixing point were measured as follows.
- a green compact was produced by pressing the mixed powder of the glass powder and YAG phosphor powder obtained above at 50 MPa using a mold. The green compact was fired for 60 minutes at the firing temperature shown in Table 1 in an electric furnace to obtain a dense sintered body.
- the obtained sintered body is processed into a predetermined shape, and a glass transition point Tg and a yield point Tf are determined from a thermal expansion curve obtained using a TMA (thermo Thermo TMA8310), and a fixing point.
- the thermal expansion curve changes to a straight line with a steep gradient in the temperature rising process. This bending point was defined as the glass transition point Tg. When the temperature is further increased, the sintered body apparently stops due to softening and the contraction is detected. This inflection point was defined as the yield point Tf. Further, from the thermal expansion curve, the thermal expansion coefficient in the temperature range from 30 ° C. to the fixing point of the phosphor layer was calculated. For the polycrystalline alumina substrate, the thermal expansion coefficient in the temperature range from 30 ° C. to the fixing point of the phosphor layer was calculated from the thermal expansion curve obtained using the TMA apparatus.
- the wavelength conversion members of Examples 1 to 3 have a smaller absolute value of warpage than the wavelength conversion members of Comparative Examples 1 and 2, and remain at the interface between the substrate and the phosphor layer. It can be seen that the stress is small.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Ceramic Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Structural Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optical Filters (AREA)
Abstract
Description
図1は、本発明の一実施形態を示す波長変換部材の略図的断面図である。図1に示すように、波長変換部材1は、基板10と、その表面に接合されている蛍光体層20を備えている。蛍光体層20は、ガラスマトリクス21中に無機蛍光体粉末22が分散してなる。
基板10としては、酸化物セラミックスやガラスからなるものが挙げられる。酸化物セラミックスとしては、多結晶アルミナ、単結晶サファイア等が挙げられる。多結晶アルミナは多孔質体であっても良い。多結晶アルミナは反射基板として使用される。一方、単結晶サファイアは光透過性であるため、透過型の波長変換部材として使用することができる。
蛍光体層20は、ガラスマトリクス21と無機蛍光体粉末22を含む。例えば、蛍光体層20は、ガラス粉末焼結体からなるガラスマトリクス21中に無機蛍光体粉末22が分散してなる。このようにすれば、ガラスマトリクス21中に無機蛍光体粉末22が均一に分散した蛍光体層20が得られやすくなる。
次に、波長変換部材1の製造方法の一例について説明する。
図2は、波長変換部材1を用いた発光デバイス2の一実施形態を示す模式的側面図である。発光デバイス2は、波長変換部材1と光源30を有する。光源30は、波長変換部材1に対して励起光L1を照射する。励起光L1が波長変換部材1における蛍光体層20に入射すると、蛍光L2に波長変換される。蛍光L2は、反射基板である基板10により反射され、光源30側に向けて出射される。蛍光L2は、光源30と波長変換部材1との間に配されたビームスプリッタ40により分離され、外部に取り出される。
表1に記載のガラス組成となるように原料を調合し、溶融急冷法によってフィルム状にガラスを成形した。得られたガラスフィルムを、ボールミルを用いて湿式粉砕し、平均粒子径が2μmであるガラス粉末を得た。
上記で作製した波長変換部材につき、基板と蛍光体層の界面における残存応力を確認した。なお、基板及び蛍光体層はともに不透明体であり、偏光顕微鏡等による光学的歪みを観察することができないため、波長変換部材の反り量を測定して残存応力の指標とした。具体的には、波長変換部材の長手方向の端部を定盤上に押さえつけた際、反対側の端部と定盤との距離を測定し、反り量として評価した。なお、表には蛍光体層側が凹となるように反る場合を正、基板側が凹となるように反る場合を負として記載した。
2 発光デバイス
10 基板
20 蛍光体層
21 ガラスマトリクス
22 無機蛍光体粉末
30 光源
40 ビームスプリッタ
Claims (11)
- 基板と、ガラスマトリクス中に無機蛍光体粉末が分散してなる蛍光体層と、が接合してなる波長変換部材であって、
30℃~前記蛍光体層の固着点の温度範囲において、前記基板の熱膨張係数をα1、前記蛍光体層の熱膨張係数をα2とした場合、-10×10-7≦α1-α2≦10×10-7(/℃)の関係を満たすことを特徴とする波長変換部材。
ただし、固着点=Tf-(Tf-Tg)/3 (Tg:ガラス転移点、Tf:屈伏点) - 前記基板が酸化物セラミックスまたはガラスからなることを特徴とする請求項1に記載の波長変換部材。
- 前記酸化物セラミックスが多結晶アルミナまたは単結晶サファイアであることを特徴とする請求項2に記載の波長変換部材。
- 前記蛍光体層が、前記基板に融着していることを特徴とする請求項1~3のいずれか一項に記載の波長変換部材。
- 前記蛍光体層の厚みが30~300μmであることを特徴とする請求項1~4のいずれか一項に記載の波長変換部材。
- 前記無機蛍光体粉末が、窒化物蛍光体粉末、酸窒化物蛍光体粉末、酸化物蛍光体粉末、硫化物蛍光体粉末、酸硫化物蛍光体粉末、ハロゲン化物蛍光体粉末及びアルミン酸塩蛍光体粉末から選択される1種以上からなることを特徴とする請求項1~5のいずれか一項に記載の波長変換部材。
- 前記蛍光体層における前記無機蛍光体粉末の含有量が30~80体積%であることを特徴とする請求項1~6のいずれか一項のいずれか一項に記載の波長変換部材。
- ホイール形状であることを特徴とする請求項1~7のいずれか一項のいずれか一項に記載の波長変換部材。
- 請求項1~8のいずれか一項に記載の波長変換部材と、前記波長変換部材における前記蛍光体層に励起光を照射する光源とを備えることを特徴とする発光デバイス。
- プロジェクター光源として使用されることを特徴とする請求項9に記載の発光デバイス。
- ガラス粉末と無機蛍光体粉末を含むグリーンシートを作製する工程、
前記グリーンシートを基板上に貼付し、焼成することにより蛍光体層を形成する工程、
を含む波長変換部材の製造方法であって、
30℃~前記蛍光体層の固着点の温度範囲において、前記基板の熱膨張係数をα1、前記蛍光体層の熱膨張係数をα2とした場合、-10×10-7≦α1-α2≦10×10-7(/℃)の関係を満たすことを特徴とする波長変換部材の製造方法。
ただし、固着点=Tf-(Tf-Tg)/3 (Tg:ガラス転移点、Tf:屈伏点)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680053223.1A CN108026442B (zh) | 2015-09-15 | 2016-09-02 | 波长变换部件和发光设备 |
KR1020177035813A KR102576303B1 (ko) | 2015-09-15 | 2016-09-02 | 파장 변환 부재 및 발광 디바이스 |
US15/742,539 US20180180975A1 (en) | 2015-09-15 | 2016-09-02 | Wavelength conversion member and light-emitting device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-181709 | 2015-09-15 | ||
JP2015181709 | 2015-09-15 | ||
JP2016-005767 | 2016-01-15 | ||
JP2016005767A JP6740616B2 (ja) | 2015-09-15 | 2016-01-15 | 波長変換部材及び発光デバイス |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017047412A1 true WO2017047412A1 (ja) | 2017-03-23 |
Family
ID=58289157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/075828 WO2017047412A1 (ja) | 2015-09-15 | 2016-09-02 | 波長変換部材及び発光デバイス |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017047412A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018205599A (ja) * | 2017-06-07 | 2018-12-27 | セイコーエプソン株式会社 | 波長変換素子、波長変換装置、光源装置およびプロジェクター |
WO2019111726A1 (ja) * | 2017-12-05 | 2019-06-13 | シャープ株式会社 | 蛍光体層組成物、蛍光部材、光源装置、および投影装置 |
CN110360469A (zh) * | 2019-07-17 | 2019-10-22 | 上海应用技术大学 | 一种基于荧光体的全光谱激光 |
JP2020154033A (ja) * | 2019-03-18 | 2020-09-24 | セイコーエプソン株式会社 | 波長変換素子、光源装置、プロジェクター、及び波長変換素子の製造方法 |
US11329198B2 (en) | 2018-12-18 | 2022-05-10 | Panasonic Intellectual Property Management Co., Ltd. | Wavelength conversion member, optical device, and projector |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003258308A (ja) * | 2002-03-06 | 2003-09-12 | Nippon Electric Glass Co Ltd | 発光色変換部材 |
JP2009267386A (ja) * | 2008-03-31 | 2009-11-12 | Furukawa Electric Co Ltd:The | 半導体レーザモジュールおよび抑制部材 |
JP2010040986A (ja) * | 2008-08-08 | 2010-02-18 | Nec Lighting Ltd | Led装置 |
JP2013143436A (ja) * | 2012-01-10 | 2013-07-22 | Nippon Electric Glass Co Ltd | 波長変換部材、発光デバイス及び波長変換部材の製造方法 |
JP2013161825A (ja) * | 2012-02-01 | 2013-08-19 | Furukawa Electric Co Ltd:The | レーザモジュール |
JP2015042606A (ja) * | 2013-07-25 | 2015-03-05 | セントラル硝子株式会社 | 蛍光体分散ガラス |
WO2015068562A1 (ja) * | 2013-11-08 | 2015-05-14 | 日本電気硝子株式会社 | プロジェクター用蛍光ホイール及びプロジェクター用発光デバイス |
-
2016
- 2016-09-02 WO PCT/JP2016/075828 patent/WO2017047412A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003258308A (ja) * | 2002-03-06 | 2003-09-12 | Nippon Electric Glass Co Ltd | 発光色変換部材 |
JP2009267386A (ja) * | 2008-03-31 | 2009-11-12 | Furukawa Electric Co Ltd:The | 半導体レーザモジュールおよび抑制部材 |
JP2010040986A (ja) * | 2008-08-08 | 2010-02-18 | Nec Lighting Ltd | Led装置 |
JP2013143436A (ja) * | 2012-01-10 | 2013-07-22 | Nippon Electric Glass Co Ltd | 波長変換部材、発光デバイス及び波長変換部材の製造方法 |
JP2013161825A (ja) * | 2012-02-01 | 2013-08-19 | Furukawa Electric Co Ltd:The | レーザモジュール |
JP2015042606A (ja) * | 2013-07-25 | 2015-03-05 | セントラル硝子株式会社 | 蛍光体分散ガラス |
WO2015068562A1 (ja) * | 2013-11-08 | 2015-05-14 | 日本電気硝子株式会社 | プロジェクター用蛍光ホイール及びプロジェクター用発光デバイス |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018205599A (ja) * | 2017-06-07 | 2018-12-27 | セイコーエプソン株式会社 | 波長変換素子、波長変換装置、光源装置およびプロジェクター |
WO2019111726A1 (ja) * | 2017-12-05 | 2019-06-13 | シャープ株式会社 | 蛍光体層組成物、蛍光部材、光源装置、および投影装置 |
US11329198B2 (en) | 2018-12-18 | 2022-05-10 | Panasonic Intellectual Property Management Co., Ltd. | Wavelength conversion member, optical device, and projector |
JP2020154033A (ja) * | 2019-03-18 | 2020-09-24 | セイコーエプソン株式会社 | 波長変換素子、光源装置、プロジェクター、及び波長変換素子の製造方法 |
JP7279436B2 (ja) | 2019-03-18 | 2023-05-23 | セイコーエプソン株式会社 | 波長変換素子、光源装置、プロジェクター、及び波長変換素子の製造方法 |
CN110360469A (zh) * | 2019-07-17 | 2019-10-22 | 上海应用技术大学 | 一种基于荧光体的全光谱激光 |
CN110360469B (zh) * | 2019-07-17 | 2023-06-20 | 上海应用技术大学 | 一种基于荧光体的全光谱激光装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6740616B2 (ja) | 波長変換部材及び発光デバイス | |
WO2017047412A1 (ja) | 波長変換部材及び発光デバイス | |
CN108291987B (zh) | 波长转换部件和波长转换元件以及使用它们的发光装置 | |
JP6019842B2 (ja) | 波長変換部材の製造方法、波長変換部材及び発光デバイス | |
TWI654078B (zh) | 陶瓷磷光板及包括其之照明裝置 | |
JP6273799B2 (ja) | 波長変換材料に用いられるガラス、波長変換材料、波長変換部材及び発光デバイス | |
TW201638053A (zh) | 波長轉換構件及使用其之發光裝置 | |
JP2007048864A (ja) | 蛍光体複合材料 | |
JP2008169348A (ja) | 蛍光体複合材料 | |
TWI591862B (zh) | 波長變換構件之製造方法、波長變換構件及光源 | |
JP7268315B2 (ja) | 波長変換部材及びその製造方法、並びに発光装置 | |
JP5854367B2 (ja) | 蛍光体複合部材の製造方法 | |
WO2019102787A1 (ja) | 波長変換部材及び発光装置 | |
WO2018189997A1 (ja) | 波長変換部材及び波長変換素子、並びにそれらを用いた発光装置 | |
WO2021024914A1 (ja) | 蛍光体粒子分散ガラスおよび発光装置 | |
WO2020213456A1 (ja) | 波長変換部材及びその製造方法、並びに発光装置 | |
JP2012059893A (ja) | 波長変換部材、光源及び波長変換部材の製造方法 | |
JP2019019011A (ja) | 波長変換材料に用いられるガラス、波長変換材料、波長変換部材及び発光デバイス | |
JP2023083288A (ja) | 波長変換部材及びそれを用いた発光装置 | |
JP7022367B2 (ja) | 波長変換材料に用いられるガラス、波長変換材料、波長変換部材及び発光デバイス | |
WO2019116916A1 (ja) | 波長変換部材及びその製造方法、並びに発光装置 | |
JP6656580B2 (ja) | 波長変換部材の製造方法 | |
JP7480472B2 (ja) | 波長変換部材及びその製造方法、並びに発光装置 | |
JP2013105647A (ja) | 光源装置、発光色度調整方法、光源装置の製造方法 | |
WO2021132212A1 (ja) | 波長変換部材、発光素子及び発光装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16846283 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20177035813 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15742539 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16846283 Country of ref document: EP Kind code of ref document: A1 |