WO2012013068A1 - Circuit de chauffage de batterie - Google Patents

Circuit de chauffage de batterie Download PDF

Info

Publication number
WO2012013068A1
WO2012013068A1 PCT/CN2011/074442 CN2011074442W WO2012013068A1 WO 2012013068 A1 WO2012013068 A1 WO 2012013068A1 CN 2011074442 W CN2011074442 W CN 2011074442W WO 2012013068 A1 WO2012013068 A1 WO 2012013068A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
battery
storage element
charge storage
switch unit
Prior art date
Application number
PCT/CN2011/074442
Other languages
English (en)
Inventor
Wenhui Xu
Yaochuan Han
Wei FENG
Qinyao Yang
Wenjin Xia
Xianyin Li
Original Assignee
Byd Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Byd Company Limited filed Critical Byd Company Limited
Publication of WO2012013068A1 publication Critical patent/WO2012013068A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/345Arrangements for heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6572Peltier elements or thermoelectric devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00711Regulation of charging or discharging current or voltage with introduction of pulses during the charging process
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention pertains to electric and electronic field, in particular to a battery heating circuit.
  • the battery which serves as the power supply unit for electric motor cars or electronic devices, must be adaptive to these complex conditions.
  • the service life and charging/discharging cycle performance of battery must be considered; especially, when electric motor cars or electronic devices are used in low temperature environments, the battery must have outstanding low temperature charging/discharging performance and higher input/output power.
  • the present invention provides a battery heating circuit.
  • the object of the present invention is to provide a battery heating circuit, in order to solve the problem of decreased capacity of battery caused by increased resistance and polarization of battery under low temperature conditions.
  • the present invention provides a battery heating circuit, wherein, the battery comprises a battery El and a battery E2, the heating circuit comprises: a first charging/discharging circuit, which is connected with the battery El, and comprises a damping element Rl, a current storage element LI, a first switch unit and a charge storage element C, all of which are connected in series to each other; and a second charging/discharging circuit, which is connected to the battery E2, and comprises a damping element R2, a current storage element L2, a second switch unit and the charge storage element C, all of which are connected in series with each other.
  • the battery heating circuit provided in the present invention can be used to heat up multiple batteries simultaneously, or heat up some batteries among the multiple batteries separately by controlling the first switch unit and/or the second switch unit.
  • the battery heating circuit provided in the present invention can be used to make the batteries with electric quantity more than the average electric quantity transfer the excessive electric quantity into the charge storage element C through a charging/discharging circuit; then, the energy stored in the charge storage element C can be transfers to batteries with less electric quantity through another charging/discharging circuit, so as to attain the objective of electric quantity balance among the batteries.
  • FIG. 1 is a schematic diagram of the battery heating circuit provided in the present invention.
  • Figure 2A-2F are schematic diagrams of an embodiment of the first switch unit and/or the second switch unit shown in Figure 1 ;
  • Figure 3 is a schematic diagram of the first embodiment of the battery heating circuit provided in the present invention.
  • Figure 4A-4C are schematic diagrams of an embodiment of the polarity inversion unit shown in Figure 3;
  • Figure 4D is a schematic diagram of an embodiment of the DC-DC module shown in Figure 4C;
  • Figure 5A is a schematic diagram of the second embodiment of the battery heating circuit provided in the present invention.
  • Figure 5B is a timing sequence diagram of the waveform corresponding to the heating circuit shown in Figure 5A;
  • Figure 6A is a schematic diagram of the third embodiment of the battery heating circuit provided in the present invention.
  • Figure 6B is a timing sequence diagram of the waveform corresponding to the heating circuit shown in Figure 6 A.
  • switching control module refers to any controller that can output control commands (e.g., pulse waveform) under preset conditions or at preset times and thereby controls the switch unit connected to it to switch on or switch off accordingly, for example, the switching control module can be a PLC;
  • switch refers to a switch that achieve ON/OFF control by means of electrical signals or achieve ON/OFF control on the basis of the characteristics of the element or component, which is to say, the switch can be a one-way switch (e.g., a switch composed of a two-way switch and a diode connected in series, which can switch on in one direction) or a two-way switch (e.g., a Metal Oxide Semiconductor Field Effect Transistor (MOSFET) or an IGBT with an anti-parallel freewheeling diode); where mentioned in the following text, the term “two-way switch” refers to a
  • the "battery” refers to an ideal battery that doesn't have internal parasitic resistance and inductance or has very low internal parasitic resistance and inductance, or refers to a battery pack that has internal parasitic resistance and inductance; therefore, those skilled in the art should appreciate: if the battery is an ideal battery that doesn't have internal parasitic resistance and inductance or has very low internal parasitic resistance and inductance, the damping element Rl and R2 refer to damping elements external to the battery, and the current storage element LI and L2 refer to current storage elements external to the battery; if the battery is a battery pack that has internal parasitic resistance and inductance, the damping element Rl and R2 refer to damping elements external to the battery, or refer to the parasitic resistance in the battery pack; likewise, the current storage element LI and L2 refer to current storage elements external to the battery, or refer to the parasitic inductance in the battery pack.
  • the battery can be heated under low temperature condition, which is to say, when the heating condition is met, the heating circuit is controlled to start heating for the battery; when the heating stop condition is met, the heating circuit is controlled to stop heating.
  • the battery heating condition and heating stop condition can be set according to the actual ambient conditions, to ensure normal charging/discharging performance of the battery.
  • FIG. 1 is a schematic diagram of the battery heating circuit provided in the present invention.
  • the present invention provides a battery heating circuit, wherein, the battery comprises a battery El and a battery E2, the heating circuit comprises: a first charging/discharging circuit, which is connected with the battery El, and comprises a damping element Rl, a current storage element LI, a first switch unit 1 and a charge storage element C, all of which are connected in series to each other; and a second charging/discharging circuit, which is connected to the battery E2, and comprises a damping element R2, a current storage element L2, a second switch unit 2 and the charge storage element C, all of which are connected in series with each other.
  • a first charging/discharging circuit which is connected with the battery El, and comprises a damping element Rl, a current storage element LI, a first switch unit 1 and a charge storage element C, all of which are connected in series to each other
  • a second charging/discharging circuit which is connected to the battery E2, and comprises a
  • damping element Rl and damping element R2 can be the parasitic resistance in the battery El and battery E2 respectively; the current storage element LI and current storage element L2 can be the parasitic inductance in the battery El and battery E2 respectively.
  • the heating circuit can further comprise a switching control module 100, which is connected with the first switch unit 1 and second switch unit 2, and the switching control module 100 is configured to control ON/OFF of the first switch unit 1 and second switch unit 2, so that the energy flows to and fro between the battery El and the first charging/discharging circuit and/or flows to and fro between the battery E2 and the second charging/discharging circuit when the switch unit 1 and/or the second switch unit 2 switch(es) on, so that the damping element Rl and/or damping element R2 generate(s) heat, and thereby attain the objective of heating up the battery.
  • a switching control module 100 which is connected with the first switch unit 1 and second switch unit 2
  • the switching control module 100 is configured to control ON/OFF of the first switch unit 1 and second switch unit 2, so that the energy flows to and fro between the battery El and the first charging/discharging circuit and/or flows to and fro between the battery E2 and the second charging/discharging circuit when the switch unit 1 and/or the second switch unit 2 switch
  • the switching control module 100 can be a separate controller, which, by means of internal program setting, achieves ON/OFF control of different external switches; or, the switching control module 100 can be a plurality of controllers, for example, a switching control module 100 can be set for each external switch; or, the plurality of switching control modules 100 can be integrated into an assembly.
  • the present invention doesn't define any limitation to the form of implementation of the switching control module 100.
  • the switching control module 100 is configured to control the first switch unit 1 to switch on and control the second switch unit 2 to switch off so that the battery El charges the charge storage element C, when the electric quantity in the battery El is more than the electric quantity in the battery E2; then, control the first switch unit 1 to switch off and control the second switch unit 2 to switch on, so that the charge storage element C charges the electric quantity stored in it into the battery E2, when the current flowing through the first charging/discharging circuit reaches to zero after the positive half cycle, so as to achieve the objective of energy balance between the batteries.
  • FIGS. 2A-2F are schematic diagrams of embodiments of the first switch unit and/or the second switch unit shown in Figure 1.
  • the embodiments of the first switch unit and/or second switch unit will be detailed, with reference to Figure 2A-2F.
  • the first switch unit 1 and/or second switch unit 2 can be two-way switches K3, as shown in Figure 2A.
  • the switching control module 100 controls ON/OFF of the two-way switch K3; when the battery is to be heat up, the two-way switch K3 can be controlled to switch on; if heating is to be paused or is not required, the two-way switch K3 can be controlled to switch off.
  • the switch unit 1 and/or second switch unit 2 can comprise a first one-way branch configured to implement energy flow from the battery to the charging/discharging circuit, and a second one-way branch configured to implement energy flow from the charging/discharging circuit to the battery; wherein, the switching control module 100 is connected to either or both of the first one-way branch and second one-way branch, to control ON/OFF the connected branches.
  • both the first one-way branch and the second oneway branch can be controlled to switch on; when heating is to be paused, either or both of the first one-way branch and the second one-way branch can be controlled to switch off; when heating is not required, both of the first one-way branch and the second one-way branch can be controlled to switch off.
  • both of the first one-way branch and the second one-way branch are subject to the control of the switching control module 100; thus, energy flow in forward direction and reverse direction can be implemented flexibly.
  • the first switch unit 1 and/or second switch unit 2 can comprise a two-way switch K4 and a two-way switch K5, wherein, the two-way switch K4 and two-way switch K5 are connected in series opposite to each other, to form the first one-way branch and the second one-way branch; the switching control module 100 is connected with the two-way switch K4 and the two-way switch K5 respectively, to control ON/OFF of the first one-way branch and second one-way branch by controlling ON/OFF of the two-way switch K4 and two-way switch K5.
  • the two-way switches K4 and K5 can be controlled to switch on; when heating is to be paused, either or both of the two-way switch K4 and two- way switch K5 can be controlled to switch off; when heating is not required, both of the two-way switch K4 and two-way switch K5 can be controlled to switch off.
  • the first one-way branch and the second one-way branch can be controlled separately to switch on or off, and therefore energy flow in forward direction and reverse direction in the circuit can be implemented flexibly.
  • the first switch unit 1 and/or second switch unit 2 can comprise a switch K6, a one-way semiconductor element Dll and a one-way semiconductor element D12, wherein, the switch K6 and the one-way semiconductor element Dll are connected in series with each other to form the first oneway branch; the one-way semiconductor element D12 forms the second one-way branch; the switching control module 100 is connected with the switch K6, to control ON/OFF of the first one-way branch by controlling ON/OFF of the switch K6.
  • the switch K6 when heating is required, the switch K6 can be controlled to switch on; when heating is not required, the switch K6 can be controlled to switch off.
  • switch units shown in Figure 2C implements to-and-fro energy flow along separate branches, it can't implement energy flow cut-off function in reverse direction.
  • the present invention further puts forward another embodiment of switch units, as shown in Figure 2D, the first switch unit 1 and/or second switch unit 2 can further comprise a switch K7 in the second one-way branch, wherein, the switch K7 is connected with the one-way semiconductor element D12 in series, the switching control module 100 is also connected with the switch K7, and the switching control module 100 is configured to control ON/OFF of the second one-way branch by controlling ON/OFF of the switch K7.
  • switches i.e., switch K6 and switch K7
  • the first switch unit 1 and/or second switch unit 2 can further comprise a resistor connected with the first one-way branch and/or second one-way branch, to reduce the current in the charging/discharging circuit, so as to avoid damage to the batteries due to over-current.
  • a resistor R6 connected in series with the two-way switch K4 and two-way switch K5 can be added in the switch units shown in Figure 2B, to obtain another implementation of the switch units, as shown in Figure 2E.
  • Figure 2F shows an embodiment of the switch units, which is obtained by connecting resistor R3 and resistor R4 in series in the two one-way branches in the switch units shown in Figure 2D, respectively.
  • the switch unit can be switched off at any point of time in one or more cycles, which is to say, the switch unit can be switched off at any time, for example, the switch unit can be switched off when the current flows through the switch unit in forward direction or reverse direction, and is equal to zero or not equal to zero.
  • a specific implementation form of switch unit can be selected, depending on the required cut-off strategy; if only current flow cut-off in forward direction is required, the implementation form of switch unit shown in Figure 2A or Figure 2C can be selected; if current flow cut-off in forward direction and reverse direction is required, the switch unit with two controllable one-way branches shown in Figure 2B or Figure 2D can be selected.
  • FIG 3 is a schematic diagram of an embodiment of the battery heating circuit provided in the present invention.
  • the heating circuit provided in the present invention can further comprise a polarity inversion unit 101, which is connected with the charge storage element C, and the polarity inversion unit 101 is configured to invert the voltage polarity of the charge storage element C.
  • the switching control module 100 is connected with the first switch unit 1, second switch unit 2 and polarity inversion unit 101, and is configured to control the first switch unit 1 and/or the second switch unit 2 to switch off when the current flowing through the first charging/discharging circuit and/or the second charging/discharging circuit reaches to zero after the negative half cycle, and then control the polarity inversion unit 101 to invert the voltage polarity of the charge storage element C.
  • FIGS. 4A-4C are schematic diagrams of an embodiment of the polarity inversion unit shown in Figure 3.
  • the embodiments of the polarity inversion unit 101 will be detailed, with reference to Figure 4A- Figure 4C.
  • the polarity inversion unit 101 comprises a single pole double throw switch Jl and a single pole double throw switch J2, wherein, the single pole double throw switch Jl is arranged at one end of the charge storage element C and the single pole double throw switch J2 is arranged at the other end of the charge storage element C; the input wire of the single pole double throw switch Jl is connected in the first and second charging/discharging circuits, the first output wire of the single pole double throw switch Jl is connected to the first pole plate of the charge storage element C, and the second output wire of the single pole double throw switch Jl is connected to the second pole plate of the charge storage element C; the input wire of the single pole double throw switch J2 is connected in the first and second charging/discharging circuits, the first output wire of the single pole double throw switch J2 is connected to the second pole plate of the charge storage element C, and the second output wire of the single pole double throw switch J2 is connected to the first pole plate of the charge storage element C;
  • connection relationships between the respective input wire and output wires of the single pole double throw switch Jl and single pole double throw switch J2 can be set in advance, so that the input wire of the single pole double throw switch Jl is connected with the first output wire of the single pole double throw switch Jl, while the input wire of the single pole double throw switch J2 is connected with the first output wire of the single pole double throw switch J2.
  • the input wire of the single pole double throw switch Jl can be switched to connect with the second output wire of the single pole double throw switch Jl, while the input wire of the single pole double throw switch J2 is switched to connect to the second output wire of the single pole double throw switch J2, under control of the switching control module 100, when the first switch unit 1 and second switch unit 2 switch off, so as to attain the objective of voltage polarity inversion of the charge storage element C.
  • the polarity inversion unit 101 comprises a one-way semiconductor element D3, a current storage element L3 and a switch K9, all of which are connected in series with each other, and the series circuit is connected in parallel between the ends of the charge storage element C; the switching control module 100 is also connected with the switch K9, and is configured to invert the voltage polarity of the charge storage element C by controlling the switch K9 to switch on.
  • the switch K9 can be controlled by the switching control module 100 to switch on, and thereby the charge storage element C, one-way semiconductor element D3, current storage element L3 and switch K9 form a LC oscillation circuit, and the charge storage element C discharges via the current storage element L3; when the current flowing through the current storage element L3 reaches to zero after the negative half cycle of current flowing through the oscillation circuit, the voltage polarity of the charge storage element C will be inverted.
  • the polarity inversion unit 101 comprises a DC-DC module 102 and a charge storage element CI, wherein, the DC-DC module 102 is connected in series with the charge storage element C and the charge storage element CI respectively; the switching control module 100 is also connected with the DC-DC module 102, and is configured to transfer the energy in the charge storage element C to the charge storage element CI and then transfer back the energy in the charge storage element CI to the charge storage element C by controlling the DC-DC module 102 to operate, so as to invert the voltage polarity of the charge storage element C.
  • the DC-DC module 102 is a DC-DC conversion circuit for voltage polarity inversion commonly used in the field.
  • the present invention doesn't define any limitation to the specific circuit structure of the DC-DC module 102, as long as the module can accomplish voltage polarity inversion of the charge storage element C. Those skilled in the art can add, replace, or delete the elements in the circuit as required.
  • FIG. 4D is a schematic diagram of an embodiment of the DC-DC module 102 provided in the present invention.
  • the DC-DC module 102 comprises: a two-way switch Ql, a two-way switch Q2, a two-way switch Q3, a two-way switch Q4, a first transformer Tl, a one-way semiconductor element D4, a one-way semiconductor element D5, a current storage element L4, a two-way switch Q5, a two-way switch Q6, a second transformer T2, a one-way semiconductor element D6, a one-way semiconductor element D7 and a one-way semiconductor element D8.
  • the two-way switch Ql, two-way switch Q2, two-way switch Q3 and two-way switch Q4 are MOSFETs; the two-way switch Q5 and two-way switch Q6 are IGBTs.
  • the Pin 1, 4 and 5 of the first transformer Tl are dotted terminals; the pin 2 and 3 of the second transformer T2 are dotted terminals.
  • the positive electrode of the one-way semiconductor element D7 is connected with the end 'a' of the charge storage element CI
  • the negative electrode of the one-way semiconductor element D7 is connected with the drain electrode of the two-way switch Ql and two-way switch Q2, respectively
  • the source electrode of the two-way switch Ql is connected with the drain electrode of the two-way switch Q3, and the source electrode of the two-way switch Q2 is connected with the drain electrode of the two-way switch Q4
  • the source electrodes of the two-way switch Q3 and two-way switch Q4 are connected with the end 'b' of the charge storage element CI respectively; thus, a full-bridge circuit is formed; here, the voltage polarity of the charge storage element CI is: end 'a' is positive, while end 'b' is negative.
  • the two-way switch Ql and two-way switch Q2 constitute the upper bridge arm, while the two-way switch Q3 and two-way switch Q4 constitute the lower bridge arm.
  • the full-bridge circuit is connected with the charge storage element CI via the first transformer Tl; the pin 1 of the first transformer Tl is connected with the first node Nl, the pin 2 of the transformer Tl is connected with the second node N2, the pin 3 and pin 5 of the transformer Tl are connected to the positive electrode of the one-way semiconductor element D4 and the positive electrode of the one-way semiconductor element D5, respectively; the negative electrode of one-way semiconductor element D4 and the negative electrode of one-way semiconductor element D5 are connected with one end of the current storage element L4, and the other end of the current storage element L4 is connected with the end 'd' of the charge storage element CI; the pin 4 of the transformer Tl is connected with the end 'c' of the charge storage element CI, the positive electrode of the one-way semiconductor element D8 is connected with the end 'd'
  • the end 'c' of the charge storage element CI is connected with the emitter electrode of the two-way switch Q5, the collector electrode of the two-way switch Q5 is connected with the pin 2 of the transformer T2, the pin 1 of the transformer T2 is connected with end 'a' of the charge storage element C, the pin 4 of the transformer T2 is connected with end 'a' of the charge storage element C, the pin 3 of the transformer T2 is connected with the positive electrode of the one-way semiconductor element D6, the negative electrode of the one-way semiconductor element D6 is connected with the collector electrode of the two-way switch Q6, and the emitter electrode of the two-way switch Q6 is connected with the end 'b' of the charge storage element CI.
  • the two-way switch Ql, two-way switch Q2, two-way switch Q3, two-way switch Q4, two-way switch Q5 and two-way switch Q6 are controlled by the switching control module 100 respectively to switch on and switch off.
  • the switching control module 100 controls the two-way switch Q5 and two-way switch Q6 to switch off, and control the two-way switch Ql and two-way switch Q4 to switch on at the same time, to form phase A; control the two-way switch Q2 and two-way switch Q3 to switch on at the same time, to form phase B; by controlling the phase A and phase B to switch on in alternate, a full-bridge circuit is formed;
  • the switching control module 100 controls the two-way switch Q5 to gate on, and therefore a path from the charge storage element CI to the charge storage element C is formed via the second transformer T2 and the one-way semiconductor element D8; thus, the energy in the charge storage element CI is transferred back to the charge storage element C, wherein, some energy will be stored in the second transformer T2; now, the switching control module 100 controls the two-way switch Q5 to gate off and controls the two-way switch Q6 to gate on, and therefore the energy stored in the second transformer T2 is transferred to the charge storage element C via the second transformer T2 and the one-way semiconductor element D6; now, the voltage polarity of the charge storage element C is inverted to: end 'a' is negative, while end 'b' is positive. Thus, the objective of inverting the voltage polarity of the charge storage element C is attained.
  • FIG. 5A is a schematic diagram of the second embodiment of the battery heating circuit provided in the present invention.
  • the first switch unit 1 is switch Kla
  • the second switch unit 2 is switch Klb
  • the polarity inversion unit 101 comprises one-way semiconductor element D3, switch K9 and current storage element L3, which are connected in series with each other, and the series circuit is connected in parallel between the ends of the charge storage element C, so as to invert the voltage polarity of the charge storage element C.
  • FIG. 5B is a timing sequence diagram of the waveform corresponding to the heating circuit shown in Figure 5A.
  • the switching control module 100 controls the switch Kla and switch Klb to switch on, and controls the switch K9 to switch off.
  • the battery El and battery E2 charges the charge storage element C simultaneously (see time period tl); when the current I E1 flowing through the battery El and the current I E2 flowing through the battery E2 reach to zero after the positive half cycle, the voltage Vc across the charge storage element reaches to the peak value, and the charge storage element C starts to charge back the energy stored in it to the battery El and battery E2, and the back-charge ends when the current I E1 and current I E2 reach to zero after the negative half cycle (see time period t2); then, the switching control module 100 controls the switch Kla and switch Klb to switch off, and controls the switch K9 to switch on; now, the polarity inversion unit 101 starts to invert the voltage polarity of the charge storage element C, and the polarity inversion ends when the current I c flowing through the charge storage element C reaches to zero after the negative half cycle (see time period t3, at this point, a complete working cycle T has just finished); then, the switching control module 100 controls the switch K9 to switch off.
  • FIG 5B shows the case that the battery El and battery E2 are heated up simultaneously.
  • the first switch unit 1 and second switch unit 2 can be controlled as required, so as to heat up either battery separately.
  • the switch-off control of switch Kla and switch Klb can be conducted within the grid section shown in Figure 5B.
  • FIG. 6A is a schematic diagram of a third embodiment of the battery heating circuit provided in the present invention.
  • the first switch unit 1 comprises a first one-way branch composed of a switch K6a and a one-way semiconductor element Dlla connected in series and a second one-way branch composed of a switch K7a and a one-way semiconductor element D12a connected in series; the first one-way branch and second one-way branch are connected in parallel opposite to each other.
  • the second switch unit 2 comprises a first one-way branch composed of a switch K6b and a one-way semiconductor element Dllb connected in series and a second one-way branch composed of a switch K7b and a one-way semiconductor element D12b connected in series; the first one-way branch and second one-way branch are connected in parallel opposite to each other.
  • the polarity inversion unit 101 comprises a one-way semiconductor element D3, a switch K9 and a current storage element L3, which are connected in series with each other, and the series circuit is connected in parallel between the ends of the charge storage element C, so as to invert the voltage polarity of the charge storage element C.
  • FIG. 6B is a timing sequence diagram of the waveform corresponding to the heating circuit shown in Figure 6A.
  • the switching control module 100 controls the switch K6a to switch on, and controls the switch K7b, switch K9, switch K7a and switch K7b to switch off.
  • the battery E2 charges the charge storage element C (see time period tl); when the current I E2 flowing through the battery E2 reaches to zero after the positive half cycle, the switching control module 100 controls the switch K6a to switch off and controls the switch K7b to switch on, so that the charge storage element C starts to charge back the energy stored in it to the battery El, and the back-charge ends when the current I EI flowing through the battery El reaches to zero after the negative half cycle (see time period t2); then, the switching control module 100 controls the switch K6a and switch K7b to switch off, and controls the switch K9 to switch on, so that the polarity inversion unit 101 starts to invert the voltage polarity of the charge storage element C, and the polarity inversion ends when the current Ic flowing through the charge storage element C reaches to zero after the negative half cycle (see time period t3, at this point, a complete working cycle T has just finished); then, the switching control module 100 controls the switch K9 to switch off.
  • the objective of heating up the battery can be attained when the battery returns the energy to itself; the objective of heating up the battery and an energy balance function can be attained when the battery returns the energy to itself and transfer partial energy to other batteries.
  • a specific heating circuit for battery El and battery E2 is only described here, virtually the battery heating circuit provided in the present invention can be extended to serve for multiple batteries, and can heat up all the batteries simultaneously, or heat up one or more batteries among the batteries separately, and achieve electric quantity balance among the batteries.
  • the durations of the time periods are adjustable, so as to control the effective current values of the batteries.

Abstract

La présente invention concerne un circuit de chauffage de batterie, la batterie comprenant une batterie E1 et une batterie E2, le circuit de chauffage comprenant un premier circuit de charge/de décharge connecté à la batterie E1, et comprenant un élément d'amortissement R1, un élément de stockage de courant L1, une première unité de commutation (1) et un élément de stockage de charge C, tous étant connectés en série les uns aux autres; et un second circuit de charge/de décharge connecté à la batterie E2, et comprenant un élément d'amortissement R2, un élément de stockage de courant L2, une seconde unité de commutation (2) et l'élément de stockage de charge C, tous étant connectés en série les uns aux autres. L'unité de chauffage de batterie selon la présente invention peut être appliquée à de multiples batteries, et peut être utilisée pour chauffer de multiples batteries ensemble ou séparément, et permettre un équilibre de quantité électrique parmi les batteries.
PCT/CN2011/074442 2010-07-30 2011-05-20 Circuit de chauffage de batterie WO2012013068A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201010245288.0 2010-07-30
CN201010245288 2010-07-30
CN201010274785 2010-08-30
CN201010274785.3 2010-08-30

Publications (1)

Publication Number Publication Date
WO2012013068A1 true WO2012013068A1 (fr) 2012-02-02

Family

ID=44033178

Family Applications (16)

Application Number Title Priority Date Filing Date
PCT/CN2011/074456 WO2012013072A1 (fr) 2010-07-30 2011-05-20 Circuit de chauffage de batterie
PCT/CN2011/074440 WO2012013067A1 (fr) 2010-07-30 2011-05-20 Circuit de chauffage de batterie
PCT/CN2011/074461 WO2012013077A1 (fr) 2010-07-30 2011-05-20 Circuit de chauffage de batterie
PCT/CN2011/074457 WO2012013073A1 (fr) 2010-07-30 2011-05-20 Circuit de chauffage de batterie
PCT/CN2011/074462 WO2012013078A1 (fr) 2010-07-30 2011-05-20 Circuit de chauffage de batterie
PCT/CN2011/074460 WO2012013076A1 (fr) 2010-07-30 2011-05-20 Circuit de chauffage de batterie
PCT/CN2011/074442 WO2012013068A1 (fr) 2010-07-30 2011-05-20 Circuit de chauffage de batterie
PCT/CN2011/074449 WO2012013069A1 (fr) 2010-07-30 2011-05-20 Circuit de chauffage de batterie
PCT/CN2011/074458 WO2012013074A1 (fr) 2010-07-30 2011-05-20 Circuit de chauffage de batterie
PCT/CN2011/074459 WO2012013075A1 (fr) 2010-07-30 2011-05-20 Circuit de chauffage de batterie
PCT/CN2011/074438 WO2012013066A1 (fr) 2010-07-30 2011-05-20 Circuit de chauffage de batterie
PCT/CN2011/074455 WO2012013071A1 (fr) 2010-07-30 2011-05-20 Circuit de chauffage de batterie
PCT/CN2011/074453 WO2012013070A1 (fr) 2010-07-30 2011-05-20 Circuit de chauffage de batterie
PCT/CN2011/074463 WO2012013079A1 (fr) 2010-07-30 2011-05-20 Circuit de chauffage de batterie
PCT/CN2011/074536 WO2012013082A1 (fr) 2010-07-30 2011-05-23 Circuit de chauffage de batterie
PCT/CN2011/074531 WO2012013081A1 (fr) 2010-07-30 2011-05-23 Circuit de chauffage de batterie

Family Applications Before (6)

Application Number Title Priority Date Filing Date
PCT/CN2011/074456 WO2012013072A1 (fr) 2010-07-30 2011-05-20 Circuit de chauffage de batterie
PCT/CN2011/074440 WO2012013067A1 (fr) 2010-07-30 2011-05-20 Circuit de chauffage de batterie
PCT/CN2011/074461 WO2012013077A1 (fr) 2010-07-30 2011-05-20 Circuit de chauffage de batterie
PCT/CN2011/074457 WO2012013073A1 (fr) 2010-07-30 2011-05-20 Circuit de chauffage de batterie
PCT/CN2011/074462 WO2012013078A1 (fr) 2010-07-30 2011-05-20 Circuit de chauffage de batterie
PCT/CN2011/074460 WO2012013076A1 (fr) 2010-07-30 2011-05-20 Circuit de chauffage de batterie

Family Applications After (9)

Application Number Title Priority Date Filing Date
PCT/CN2011/074449 WO2012013069A1 (fr) 2010-07-30 2011-05-20 Circuit de chauffage de batterie
PCT/CN2011/074458 WO2012013074A1 (fr) 2010-07-30 2011-05-20 Circuit de chauffage de batterie
PCT/CN2011/074459 WO2012013075A1 (fr) 2010-07-30 2011-05-20 Circuit de chauffage de batterie
PCT/CN2011/074438 WO2012013066A1 (fr) 2010-07-30 2011-05-20 Circuit de chauffage de batterie
PCT/CN2011/074455 WO2012013071A1 (fr) 2010-07-30 2011-05-20 Circuit de chauffage de batterie
PCT/CN2011/074453 WO2012013070A1 (fr) 2010-07-30 2011-05-20 Circuit de chauffage de batterie
PCT/CN2011/074463 WO2012013079A1 (fr) 2010-07-30 2011-05-20 Circuit de chauffage de batterie
PCT/CN2011/074536 WO2012013082A1 (fr) 2010-07-30 2011-05-23 Circuit de chauffage de batterie
PCT/CN2011/074531 WO2012013081A1 (fr) 2010-07-30 2011-05-23 Circuit de chauffage de batterie

Country Status (8)

Country Link
US (16) US8816634B2 (fr)
EP (16) EP2421114A1 (fr)
CN (34) CN102088116B (fr)
CA (5) CA2805797C (fr)
HK (17) HK1158379A1 (fr)
RU (5) RU2537964C2 (fr)
TW (1) TWM439195U (fr)
WO (16) WO2012013072A1 (fr)

Families Citing this family (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11397216B2 (en) 2010-05-21 2022-07-26 Qnovo Inc. Battery adaptive charging using a battery model
US11791647B2 (en) 2010-05-21 2023-10-17 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell
US8970178B2 (en) 2010-06-24 2015-03-03 Qnovo Inc. Method and circuitry to calculate the state of charge of a battery/cell
US9142994B2 (en) 2012-09-25 2015-09-22 Qnovo, Inc. Method and circuitry to adaptively charge a battery/cell
US8791669B2 (en) 2010-06-24 2014-07-29 Qnovo Inc. Method and circuitry to calculate the state of charge of a battery/cell
US10067198B2 (en) 2010-05-21 2018-09-04 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell using the state of health thereof
US11397215B2 (en) 2010-05-21 2022-07-26 Qnovo Inc. Battery adaptive charging using battery physical phenomena
WO2011146783A1 (fr) 2010-05-21 2011-11-24 Qnovo Inc. Procédé et circuit de charge adaptative d'un accumulateur/d'une cellule
US10389156B2 (en) 2010-05-21 2019-08-20 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell
US8994332B2 (en) 2010-07-30 2015-03-31 Byd Company Limited Battery heating circuits and methods using voltage inversion based on predetermined conditions
US8947049B2 (en) 2010-07-30 2015-02-03 Byd Company Limited Battery heating circuits and methods using voltage inversion and freewheeling circuit components
US9209644B2 (en) 2010-07-30 2015-12-08 Byd Company Limited Circuits and methods for heating batteries in series using resonance components in series
US9083196B2 (en) 2010-07-30 2015-07-14 Byd Company Limited Circuits and methods for heating batteries in parallel using resonance components in series
US9120394B2 (en) 2010-07-30 2015-09-01 Byd Company Limited Battery heating circuits and methods based on battery discharging and charging using resonance components in series and multiple charge storage components
US9160041B2 (en) 2010-07-30 2015-10-13 Byd Company Limited Battery heating circuits and methods using resonance components in series and bridging charge storage components
US9214706B2 (en) 2010-07-30 2015-12-15 Byd Company Limited Battery heating circuits and methods using resonance components in series based on charge balancing
WO2012013065A1 (fr) 2010-07-30 2012-02-02 Byd Company Limited Circuit de chauffage de batterie
US8941358B2 (en) 2010-07-30 2015-01-27 Byd Company Limited Heating circuits and methods based on battery discharging and charging using resonance components in series and freewheeling circuit components
CN102088116B (zh) 2010-07-30 2012-11-21 比亚迪股份有限公司 一种电池的加热电路
US8497031B2 (en) * 2010-08-10 2013-07-30 GM Global Technology Operations LLC Combined heating and pre-charging function and hardware for propulsion batteries
US9065293B2 (en) 2010-12-23 2015-06-23 Byd Company Limited Battery heating circuits and methods using transformers
CN102074752B (zh) 2010-12-23 2012-07-04 比亚迪股份有限公司 一种电池的加热电路
EP2662921B1 (fr) * 2011-01-07 2018-10-10 Mitsubishi Electric Corporation Appareil de chargement et de déchargement
US20120203404A1 (en) * 2011-02-04 2012-08-09 GM Global Technology Operations LLC Method for heating hybrid powertrain components
CN202178590U (zh) * 2011-07-29 2012-03-28 惠州比亚迪电池有限公司 一种电源系统
US20130108896A1 (en) * 2011-10-31 2013-05-02 Brammo, Inc. Methods and apparatus for combined thermal management, temperature sensing, and passive balancing for battery systems in electric vehicles
TWI493830B (zh) * 2011-11-07 2015-07-21 Byd Co Ltd 一種電池的加熱電路
TWI455443B (zh) * 2011-11-16 2014-10-01 Byd Co Ltd 一種電池的加熱電路
DE102011089309A1 (de) * 2011-12-20 2013-06-20 Robert Bosch Gmbh System und Verfahren zum Ansteuern einer Energiespeichereinrichtung
CN103213508B (zh) * 2012-01-18 2016-06-01 比亚迪股份有限公司 一种电动车行车控制系统
CN103213543B (zh) * 2012-01-18 2015-11-25 比亚迪股份有限公司 一种电动车行车控制系统
WO2013122766A1 (fr) 2012-02-16 2013-08-22 Lightening Energy Système de stockage d'énergie et procédé d'utilisation de batteries rapidement rechargeables
CN102593907A (zh) 2012-02-29 2012-07-18 华为技术有限公司 一种供电方法、供电设备及基站
US10084331B2 (en) * 2012-03-25 2018-09-25 Gbatteries Energy Canada Inc. Systems and methods for enhancing the performance and utilization of battery systems
US9966780B2 (en) * 2012-03-25 2018-05-08 Gbatteries Energy Canada Inc. Extended life battery
DE102012204861A1 (de) * 2012-03-27 2013-10-02 Robert Bosch Gmbh Verfahren zum Umladen von Energiespeicherzellen einer Energiespeichereinrichtung und Energiespeichereinrichtung mit umladbaren Energiespeicherzellen
DE102012205095A1 (de) * 2012-03-29 2013-10-02 Robert Bosch Gmbh Verfahren zum Aufheizen von Energiespeicherzellen einer Energiespeichereinrichtung und aufheizbare Energiespeichereinrichtung
CN103390778B (zh) * 2012-05-08 2017-04-05 海洋王照明科技股份有限公司 一种led灯具及其锂电池加热电路
CN103419659B (zh) * 2012-05-22 2016-04-13 比亚迪股份有限公司 电动汽车、电动汽车的动力系统及电池加热方法
CN103419656B (zh) * 2012-05-22 2016-03-30 比亚迪股份有限公司 电动汽车、电动汽车的动力系统及电池加热方法
WO2013174276A1 (fr) * 2012-05-22 2013-11-28 Shenzhen Byd Auto R&D Company Limited Système d'énergie de véhicule électrique et véhicule électrique le comprenant
CN103419667B (zh) * 2012-05-22 2016-03-09 比亚迪股份有限公司 用于电动车辆的动力系统及电动车辆
CN103419662B (zh) * 2012-05-22 2015-11-25 比亚迪股份有限公司 电动汽车、电动汽车的动力系统及电池加热方法
CN103419663B (zh) * 2012-05-22 2015-11-25 比亚迪股份有限公司 电动汽车、电动汽车的动力系统及电池加热方法
CN103419652B (zh) * 2012-05-22 2016-04-13 比亚迪股份有限公司 电动汽车、电动汽车的动力系统及电池加热方法
CN103419655B (zh) * 2012-05-22 2016-07-27 比亚迪股份有限公司 电动汽车、电动汽车的动力系统及电池加热方法
CN103419614B (zh) * 2012-05-22 2016-09-07 比亚迪股份有限公司 混合动力汽车、混合动力汽车的动力系统及电池加热方法
FR2991548B1 (fr) 2012-06-04 2016-03-11 Valeo Etudes Electroniques Dispositif et procede de maintien a temperature de fonctionnement d'une batterie
US9293944B2 (en) * 2012-06-28 2016-03-22 The Board Of Regents, The University Of Texas System Systems and methods for providing power to one or more loads in a circuit
GB2503693A (en) * 2012-07-03 2014-01-08 Bombardier Transp Gmbh Using impedance to control energy transfer in an inductively powered vehicle
US9148029B2 (en) * 2012-07-13 2015-09-29 Fu-Sheng Tsai Active balancing circuit for balancing battery units
KR101975395B1 (ko) * 2012-08-29 2019-05-07 삼성에스디아이 주식회사 배터리 팩 및 이의 제어 방법
JP5660105B2 (ja) * 2012-10-24 2015-01-28 トヨタ自動車株式会社 蓄電システム
KR101496810B1 (ko) * 2012-12-05 2015-02-27 삼성전기주식회사 역률 보정 장치, 전원 장치 및 모터 구동 장치
CN102974037B (zh) * 2012-12-20 2015-11-11 久心医疗科技(苏州)有限公司 一种具有自放电复用功能的除颤放电电路
KR101561375B1 (ko) 2013-01-10 2015-10-19 주식회사 엘지화학 리튬 인산철 나노분말 제조방법
KR101586556B1 (ko) 2013-01-10 2016-01-20 주식회사 엘지화학 탄소 코팅 리튬 인산철 나노분말 제조방법
KR101561373B1 (ko) 2013-01-10 2015-10-19 주식회사 엘지화학 리튬 인산철 나노분말 제조방법
KR101698771B1 (ko) * 2013-01-16 2017-01-23 삼성에스디아이 주식회사 배터리 온도 제어 시스템 및 그 제어 방법
JP5569606B1 (ja) * 2013-02-01 2014-08-13 株式会社安川電機 インバータ装置および電動機ドライブシステム
DE102013204526A1 (de) * 2013-03-15 2014-09-18 Robert Bosch Gmbh Batteriezelleinheit mit einer Batteriezelle und einer Überwachungs- und Ansteuerungseinheit zur Überwachung der Batteriezelle und Verfahren zur Überwachung einer Batteriezelle
US8901888B1 (en) 2013-07-16 2014-12-02 Christopher V. Beckman Batteries for optimizing output and charge balance with adjustable, exportable and addressable characteristics
US9461492B1 (en) 2013-04-19 2016-10-04 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell using a charge-time parameter
DE102013208556A1 (de) * 2013-05-08 2014-11-13 Siemens Aktiengesellschaft Verfahren für ein Aufheizen einer Energiespeicheranordnung und Energiespeicheranordnung
US9478829B2 (en) 2013-05-16 2016-10-25 Ec Power, Llc Rechargeable battery with multiple resistance levels
CN103413984A (zh) * 2013-07-24 2013-11-27 许玉林 一种锂电池组的充电方法
CN103414222B (zh) * 2013-07-24 2017-03-08 杭州安靠电源有限公司 一种锂电池组的能量回收方法
US9586497B2 (en) * 2013-08-22 2017-03-07 Lightening Energy Electric vehicle recharging station including a battery bank
US9502708B2 (en) 2013-10-11 2016-11-22 Ec Power, Llc Ohmically modulated battery
US10033071B2 (en) 2013-10-11 2018-07-24 Ec Power, Llc Ohmically modulated battery
US9882197B2 (en) 2013-10-11 2018-01-30 Ec Power, Llc All climate battery and manufacturing and using the same
CN103560307B (zh) * 2013-11-26 2017-02-08 山东威能环保电源科技股份有限公司 一种振荡式电池组快速加热电路及方法
CN104723893B (zh) * 2013-12-20 2017-08-04 北汽福田汽车股份有限公司 一种电池加热系统及电动汽车
KR101551068B1 (ko) * 2014-03-14 2015-09-07 현대자동차주식회사 차량용 고전압 배터리 시스템의 전원 공급 안정화 장치
JP6256214B2 (ja) * 2014-06-13 2018-01-10 トヨタ自動車株式会社 電動車両及びその制御方法
US10574079B1 (en) 2014-06-20 2020-02-25 Qnovo Inc. Wireless charging techniques and circuitry for a battery
KR102213020B1 (ko) * 2014-07-28 2021-02-08 이씨 파워, 엘엘씨 저온에서 배터리를 고속으로 충전하는 시스템 및 방법
US9627723B2 (en) 2014-07-30 2017-04-18 Ec Power, Llc Operation of electrochemical energy systems
DE102014012068A1 (de) 2014-08-13 2015-03-12 Daimler Ag Verfahren zum Beheizen einer Batterie und Schaltungsanordnung zum Beheizen einer Batterie
US20160111904A1 (en) * 2014-10-16 2016-04-21 Aurosens Inc. Multi-function Apparatus
WO2016089698A1 (fr) 2014-12-01 2016-06-09 Ec Power, Llc Batterie au lithium tout solide
WO2016090267A1 (fr) * 2014-12-04 2016-06-09 The Regents Of The University Of Michigan Réchauffage économiseur d'énergie de cellules lithium-ion à partir des températures inférieures à zéro
EP3317214B1 (fr) 2015-07-01 2020-02-19 Otis Elevator Company Système de charge de batterie au lithium-ion pour système d'ascenseur alimenté par batterie
CN104935059A (zh) * 2015-07-18 2015-09-23 周虎 电动汽车低温充电方法及充电设备
DE102015011179A1 (de) 2015-08-27 2016-03-03 Daimler Ag Zusatzkapazität mit Filterfunktion einer Impedanzheizung bei Einzelzellschaltung
DE102015117744A1 (de) * 2015-10-19 2017-04-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Batteriesystem
CN105186634B (zh) * 2015-10-26 2017-11-28 维沃移动通信有限公司 一种充电电路及移动终端
CN105514526B (zh) * 2015-12-02 2019-02-26 北京新能源汽车股份有限公司 电池模组的加热控制系统和方法
CN105428753B (zh) * 2015-12-07 2019-08-30 国安新能源(荆门)有限公司 一种锂电池快速加温的方法
CN105449298B (zh) * 2016-01-13 2018-02-23 深圳先进储能材料国家工程研究中心有限公司 一种便携式电池组低温高功率输出辅助装置
US11081742B2 (en) * 2016-05-31 2021-08-03 Volvo Truck Corporation Method and system for thermal conditioning of a battery pack
US10840725B2 (en) 2016-07-10 2020-11-17 Gbatteries Energy Canada Inc. Battery charging with charging parameters sweep
CN106025443B (zh) * 2016-07-25 2018-12-07 北京理工大学 一种基于lc谐振进行加热的电源系统及车辆
CN106450586B (zh) * 2016-07-25 2018-12-07 北京理工大学 一种基于lc谐振和ptc电阻带进行加热的电源系统及车辆
CN106376104B (zh) * 2016-09-07 2020-12-08 合肥工业大学智能制造技术研究院 电池自放电加热电路
CN106299547B (zh) * 2016-09-07 2019-04-12 中国北方车辆研究所 锂离子蓄电池电源自动均衡加温系统及加温方法
US10550829B2 (en) * 2016-09-08 2020-02-04 Edwards Vacuum Llc Ion trajectory manipulation architecture in an ion pump
CN206180041U (zh) * 2016-10-14 2017-05-17 深圳市沃特玛电池有限公司 电池组制冷制热系统
CN109843288A (zh) * 2016-10-21 2019-06-04 狮王株式会社 眼科用制剂和眼科用药
CN108075208A (zh) * 2016-11-11 2018-05-25 佛山市欣源电子股份有限公司 一种具有低温预热功能的锂电池模组
CN106787824B (zh) * 2017-02-09 2023-08-04 南方电网科学研究院有限责任公司 子模块电路及控制方法和模块化多电平换流器
CN108511851A (zh) * 2017-02-27 2018-09-07 北京小米移动软件有限公司 电池加热电路、电池加热方法及装置、终端
CN106992569A (zh) * 2017-05-05 2017-07-28 江苏金帆电源科技有限公司 一种充放电控制电路
DE102017210747A1 (de) * 2017-06-27 2018-12-27 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Vorwärmen einer Batterie eines elektrisch betriebenen Kraftfahrzeugs sowie Ladevorrichtung
US10749718B2 (en) 2017-06-29 2020-08-18 Allen-Vanguard Corporation System and method for modulation classification using signal graphs
CN107394294B (zh) * 2017-07-20 2018-09-04 浙江谷神能源科技股份有限公司 用于锂离子电池充放电的系统、控制装置以及相关方法
RU2672048C1 (ru) * 2017-10-12 2018-11-09 Игорь Васильевич Бухтояров Устройство для автоматического подогрева аккумуляторной батареи в зимнее время
CN108232344B (zh) * 2018-01-22 2020-08-14 山东大学 一种耦合非耗散式均衡系统的电池低温加热系统及方法
CN108321465B (zh) * 2018-02-02 2020-01-10 山东大学 基于电容器的电池内部交流加热电路、系统及方法
CN108767345A (zh) * 2018-02-13 2018-11-06 南京博兰得电子科技有限公司 一种电池预热装置及方法
CN108448189B (zh) * 2018-05-16 2024-01-30 济南保特电子设备有限公司 低温进行充电的蓄电池组实现装置
DE102018207797B3 (de) * 2018-05-17 2019-11-14 Volkswagen Aktiengesellschaft Vorrichtung zur Temperaturkonditionierung einer Batterie, Batterieeinheit und Verfahren zur Temperaturkonditionierung einer Batterie
CN108666713B (zh) 2018-05-22 2020-05-05 宁德时代新能源科技股份有限公司 用于双车加热的电池组加热装置与控制方法
CN108878996B (zh) * 2018-05-22 2021-03-23 宁德时代新能源科技股份有限公司 电池组系统及其控制方法、管理设备
CN108736107B (zh) * 2018-05-22 2020-06-23 宁德时代新能源科技股份有限公司 加热模块和电池组加热方法、加热系统
CN108879027B (zh) 2018-05-22 2021-08-17 宁德时代新能源科技股份有限公司 加热系统和功率开关器件
CN108705943B (zh) 2018-05-22 2020-05-05 宁德时代新能源科技股份有限公司 一种电池组加热装置与控制方法
CN108711662B (zh) 2018-05-22 2020-05-05 宁德时代新能源科技股份有限公司 一种电池组加热装置与控制方法
CN108736108B (zh) * 2018-05-22 2020-03-10 宁德时代新能源科技股份有限公司 加热控制方法和加热控制装置
CN109659993A (zh) * 2018-12-10 2019-04-19 深圳供电局有限公司 续流装置及无人机供电系统
US10873199B2 (en) * 2018-12-28 2020-12-22 Delphi Automotive Systems Luxembourg S.A. Vehicle electrical system to charge capacitors
CN109742486B (zh) * 2019-01-14 2021-07-06 山东大学 一种锂电池交流电内部加热电路及加热方法
CN109860955B (zh) * 2019-01-31 2020-12-29 欣旺达电子股份有限公司 加热电路及装置
US11258288B2 (en) * 2019-02-11 2022-02-22 Infineon Technologies Austria Ag Circuit for inducing multi-directional current in a battery
CN117614091A (zh) * 2019-04-01 2024-02-27 福州欣联达电子科技有限公司 一种电流可控的单双向开关电路及其控制方法
CN110116653B (zh) * 2019-04-19 2024-02-09 清华大学 电动汽车驱动系统、驱动电路及电动汽车电池加热方法
CN109950644A (zh) * 2019-05-24 2019-06-28 常熟华兴创一新能源科技有限公司 一种全气候应用的电池包热管理系统
CN112356738B (zh) * 2019-06-24 2022-04-22 宁德时代新能源科技股份有限公司 电机控制器、整车控制器、电池管理系统及控制方法
DE102019007174A1 (de) 2019-10-16 2020-07-23 Daimler Ag Verfahren zur Verringerung einer Verlustleistung eines elektrischen Energiespeichers, sowie elektrische Speichervorrichtung und Fahrzeug
CN111422100A (zh) * 2019-11-29 2020-07-17 蜂巢能源科技有限公司 电池包的加热电路、电源系统和电动车辆
CN111391717B (zh) * 2020-06-04 2020-10-20 比亚迪股份有限公司 能量转换装置、方法及车辆
CN111391710B (zh) * 2020-06-04 2020-10-23 比亚迪股份有限公司 车辆工作模式切换控制方法、装置和车辆
EP3945159B1 (fr) * 2020-07-29 2024-03-27 Joseph Vögele AG Dispositif de commutation pour un dispositif de chauffage électrique à madrier d'une finisseuse routière
CN112865508A (zh) * 2021-01-28 2021-05-28 三峡大学 一种非对称新型t型桥的单相三电平功率因数校正电路
CN113225850A (zh) * 2021-05-06 2021-08-06 阳光电源股份有限公司 一种加热控制电路及光伏系统
CN113381599B (zh) * 2021-06-29 2022-11-29 哈尔滨工业大学 一种并联SiC MOSFET安全工作域计算方法
CN113517492A (zh) * 2021-06-29 2021-10-19 广西汽车集团有限公司 一种实现电池均衡充电的系统
EP4178057A1 (fr) * 2021-11-03 2023-05-10 Wiferion GmbH Dispositif de stockage d'énergie électrique avec un circuit électronique et un élément de roue libre à sécurité intégrée et circuit de protection pour un tel dispositif de stockage d'énergie électrique
CN115366750A (zh) * 2021-12-27 2022-11-22 宁德时代新能源科技股份有限公司 一种电池加热控制方法、装置和电子设备
JP7407848B2 (ja) 2022-02-22 2024-01-04 本田技研工業株式会社 昇温装置
WO2023164082A1 (fr) * 2022-02-23 2023-08-31 Iontra Inc Systèmes et procédés de chauffage de batterie commandé
CN117183810A (zh) * 2022-05-31 2023-12-08 比亚迪股份有限公司 电池电路以及车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990661A (en) * 1998-04-30 1999-11-23 Daimlerchrysler Corporation Circulating current battery heater
US6211652B1 (en) * 2000-02-04 2001-04-03 Milwaukee Electric Tool Corporation Discharge protection apparatus for a battery-powered device and a method of preventing overdischarge of a battery
US6340879B1 (en) * 1999-02-03 2002-01-22 Nokia Mobile Phones Ltd. Device for reactivating an electric battery
CN1630129A (zh) * 2003-12-18 2005-06-22 明基电通股份有限公司 低温下对可充电式电池加热及充电的设备
CN102074761A (zh) * 2010-07-30 2011-05-25 比亚迪股份有限公司 一种电池的加热电路

Family Cites Families (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1918726B2 (de) * 1969-04-12 1970-07-02 Varta Ag Verfahren und Vorrichtung zum Anwaermen von Akkumulatoren,insbesondere von Bleiakkumulatoren
US3808481A (en) * 1972-04-14 1974-04-30 Electric Fuel Propulsion Corp Commutating circuit for electrical vehicle
JPS5022876A (fr) 1973-06-29 1975-03-11
US4222000A (en) * 1977-07-15 1980-09-09 Lucas Industries Limited Battery heating system
US4184197A (en) 1977-09-28 1980-01-15 California Institute Of Technology DC-to-DC switching converter
US4171508A (en) 1977-12-08 1979-10-16 Lucas Industries Limited Circuits for heating storage batteries
SU813544A1 (ru) 1979-06-28 1981-03-15 Ленинградский Ордена Ленина Ин-Ститут Инженеров Железнодорожноготранспорта Им. Акад. B.H.Образцова Аккумул тор с устройством дл РАзОгРЕВА
KR930007087B1 (ko) * 1989-09-22 1993-07-29 미쯔비시 덴끼 가부시기가이샤 다회로제어장치
JPH0412472A (ja) * 1990-04-27 1992-01-17 Toyoda Gosei Co Ltd バッテリ装置
US5523671A (en) 1991-02-14 1996-06-04 Dell Usa, L.P. Charging system for battery powered devices
JP3145734B2 (ja) * 1991-07-15 2001-03-12 松下電工株式会社 充電制御回路
JP3173068B2 (ja) 1991-10-22 2001-06-04 株式会社日立製作所 電力変換器
DE4142628C1 (fr) * 1991-12-21 1993-05-06 Dieter Braun
US5270913A (en) 1992-04-06 1993-12-14 D.C. Transformation, Inc. Compact and efficient transformerless power conversion system
TW220014B (fr) 1992-07-23 1994-02-01 Gali Carl E
US5396165A (en) * 1993-02-02 1995-03-07 Teledyne Industries, Inc. Efficient power transfer system
CN2172810Y (zh) * 1993-08-15 1994-07-27 李宏伟 汽车低温启动充电器
US5362942A (en) * 1993-08-24 1994-11-08 Interdigital Technology Corporation Battery heating system using internal battery resistance
DE69509117D1 (de) * 1994-11-28 1999-05-20 Chartec Lab As VERFAHREN UND VORRICHTUNG ZUR STEUERUNG DER BATTERIETEMPERATUR WaHREND DES AUF-/ENTLADENS
US5646534A (en) 1995-01-06 1997-07-08 Chrysler Corporation Battery monitor for electric vehicles
TW269727B (en) 1995-04-03 1996-02-01 Electrosource Inc Battery management system
US5905371A (en) 1995-06-23 1999-05-18 D.C. Transformation, Inc. Sequential discharge and its use for rectification
JP3424398B2 (ja) 1995-07-26 2003-07-07 松下電工株式会社 電力変換装置
DE19543702A1 (de) 1995-11-23 1997-05-28 Asea Brown Boveri Stromrichterschaltungsanordnung
DE69626863T2 (de) 1995-12-13 2003-12-24 Michael A V Ward Induktives hochenergiezündsystem mit niedriger eigeninduktivität
JPH09266666A (ja) * 1996-03-28 1997-10-07 Rohm Co Ltd 昇圧回路とその制御回路
US5948298A (en) * 1996-04-26 1999-09-07 Ford Global Technologies, Inc. Battery heating system
JP3099181B2 (ja) 1996-09-10 2000-10-16 本田技研工業株式会社 蓄電器の電圧制御装置
RU2122262C1 (ru) * 1997-01-14 1998-11-20 Военный автомобильный институт Аккумуляторная батарея
US6002240A (en) 1997-12-12 1999-12-14 Dell Usa, L.P. Self heating of batteries at low temperatures
US5943224A (en) 1998-04-06 1999-08-24 Lucent Technologies Inc. Post regulator with energy recovery snubber and power supply employing the same
US6259229B1 (en) * 1998-04-30 2001-07-10 Daimlerchrysler Corporation Circulating current battery heater
JP4081855B2 (ja) * 1998-05-14 2008-04-30 日産自動車株式会社 電池の昇温装置
JP3379444B2 (ja) * 1998-09-07 2003-02-24 トヨタ自動車株式会社 ハイブリッド車の充放電状態制御装置
US6072301A (en) * 1998-10-20 2000-06-06 Chrysler Corporation Efficient resonant self-heating battery electric circuit
US6882061B1 (en) 1998-12-31 2005-04-19 Daimlerchrysler Corporation Battery self-warming mechanism using the inverter and the battery main disconnect circuitry
US6577105B1 (en) * 1999-05-17 2003-06-10 Matsushita Electric Industrial Co., Ltd. Circuit and device for protecting secondary battery
RU2171527C1 (ru) * 2000-02-21 2001-07-27 Махорин Андрей Олегович Автономный источник питания
US6340876B1 (en) * 2000-09-18 2002-01-22 Texas Instruments Incorporated Method for detecting battery removal or absent battery condition in a constant current charger
RU2210173C2 (ru) * 2001-05-16 2003-08-10 Общевойсковая Академия Вооруженных Сил Российской Федерации Аварийный регулятор напряжения с температурной компенсацией
CA2406500C (fr) * 2001-10-01 2008-04-01 Research In Motion Limited Circuit de protection contre les surtensions pour circuit de charge
US6841971B1 (en) * 2002-05-29 2005-01-11 Alpha Technologies, Inc. Charge balancing systems and methods
RU2227843C2 (ru) * 2002-06-18 2004-04-27 Уфимский государственный авиационный технический университет Система зажигания двигателя внутреннего сгорания
US6771518B2 (en) 2002-08-26 2004-08-03 Potentia Semiconductor, Inc. DC converters
CN2604813Y (zh) * 2002-11-19 2004-02-25 比亚迪股份有限公司 快速充电器
RU29408U1 (ru) * 2003-01-23 2003-05-10 Орлов Сергей Борисович Аккумуляторная батарея
US7632583B2 (en) * 2003-05-06 2009-12-15 Ballard Power Systems Inc. Apparatus for improving the performance of a fuel cell electric power system
GB2403609A (en) 2003-07-01 2005-01-05 Univ Leicester Pulse charging an electrochemical device
WO2005006289A1 (fr) 2003-07-15 2005-01-20 Hitachi, Ltd. Circuit d'attaque d'ecran a plasma utilisant une forme d'onde decalee
EP1676427B1 (fr) 2003-10-03 2012-08-01 Black & Decker Inc. Procedes pour controler la decharge d'un bloc-pile d'un systeme d'outil electrique sans fil, systeme d'outil electrique sans fil et bloc-pile con us avec une protection contre la decharge excessive et un controle de decharge
US20050077879A1 (en) 2003-10-14 2005-04-14 Near Timothy Paul Energy transfer device for series connected energy source and storage devices
TW200518370A (en) 2003-11-21 2005-06-01 Benq Corp Apparatus for charging and heating a rechargeable battery at low temperature
JP4079871B2 (ja) * 2003-12-17 2008-04-23 三洋電機株式会社 パック電池
US20050156578A1 (en) 2004-01-20 2005-07-21 Mathews Associates, Inc. System and method for detecting a reversed battery cell in a battery pack
US7292010B2 (en) 2004-01-29 2007-11-06 Yen-Weay Hsu Energy attenuating device with the dynamical and adaptive damping feature
US6965215B2 (en) * 2004-02-04 2005-11-15 General Atomics Capacitor pulse forming network with multiple pulse inductors
US7646169B2 (en) 2004-03-25 2010-01-12 O2Micro International Ltd. Trickle discharge for battery pack protection
US7154068B2 (en) * 2004-05-26 2006-12-26 Ford Global Technologies, Llc Method and system for a vehicle battery temperature control
DE102005023171A1 (de) 2004-05-28 2005-12-22 Harison Toshiba Lighting Corp. Lichtvorrichtung für Entladungslampen
JP4252953B2 (ja) * 2004-11-26 2009-04-08 株式会社日立製作所 電力貯蔵式き電線電圧補償装置及び方法
TWM275625U (en) 2005-03-11 2005-09-11 Amita Technologies Inc Protection device of charging battery
US7382102B2 (en) * 2005-06-13 2008-06-03 Chrysler Llc Heating of batteries using reactive power
US7511929B2 (en) 2005-11-28 2009-03-31 Panasonic Corporation Switching power supply and semiconductor device used therefor
JP4016045B2 (ja) 2005-12-13 2007-12-05 株式会社エヌ・ティ・ティ・データ・イー・エックス・テクノ バッテリーのウォーミングアップ回路及びバッテリー
US8493036B2 (en) 2006-10-21 2013-07-23 Advanced Analogic Technologies, Inc. Controllable charge paths, and related methods
US7643256B2 (en) * 2006-12-06 2010-01-05 General Electric Company Electromechanical switching circuitry in parallel with solid state switching circuitry selectively switchable to carry a load appropriate to such circuitry
US8278606B2 (en) 2007-07-11 2012-10-02 Sanyo Electric Co., Ltd. Pocketable body warmer
JPWO2009013804A1 (ja) * 2007-07-23 2010-09-24 株式会社パルステックジャパン 内燃機関の低燃費化方法及びこれに用いられるパルス発生装置
JP2009093833A (ja) * 2007-10-04 2009-04-30 Toshiba Corp 誘導加熱調理器
US8061014B2 (en) 2007-12-03 2011-11-22 Covidien Ag Method of assembling a cordless hand-held ultrasonic cautery cutting device
WO2009088843A2 (fr) 2008-01-03 2009-07-16 Teknic, Inc. Procédé et appareil pour enlever de l'énergie à charges de courant continu
US7928698B2 (en) * 2008-03-25 2011-04-19 Spx Corporation Battery charging apparatus and method
CN201243067Y (zh) * 2008-05-12 2009-05-20 上海广为美线电源电器有限公司 电池延寿器
RU2366041C1 (ru) * 2008-06-04 2009-08-27 Открытое акционерное общество "Информационные спутниковые системы" им. академика М.Ф. Решетнева" Способ эксплуатации никель-водородной аккумуляторной батареи и аккумуляторная батарея для его реализации
CN101685971B (zh) * 2008-09-27 2015-01-14 比亚迪股份有限公司 车载磷酸铁锂锂电池的低温激活装置及方法
US7876583B2 (en) 2008-12-22 2011-01-25 Power Integrations, Inc. Flyback power supply with forced primary regulation
JP5621193B2 (ja) 2009-01-15 2014-11-05 日産自動車株式会社 電力変換装置
RU2398315C1 (ru) * 2009-03-11 2010-08-27 Общество с ограниченной ответственностью "Транспорт" Аккумуляторная батарея с автоматическим внутренним подогревом
CN201397868Y (zh) 2009-04-15 2010-02-03 天津力神电池股份有限公司 锂离子电池组自加热装置
CN201435426Y (zh) * 2009-04-20 2010-03-31 赛恩斯能源科技有限公司 具有热管理单元的电池组
CN101552479B (zh) 2009-05-25 2010-12-08 青岛大学 一种直流降压电路
EP2443693A4 (fr) 2009-06-18 2013-10-16 Byd Co Ltd Procédé et dispositif de commande de chauffage de batterie
US9083065B2 (en) 2009-08-02 2015-07-14 Revision Electronics & Power Systems Incorporated Self heating battery system
TWI397252B (zh) 2009-10-26 2013-05-21 Metal Ind Res & Dev Ct 應用於超音波馬達之單極具零電流切換之驅動電路
CN102055042B (zh) 2009-10-29 2013-10-02 比亚迪股份有限公司 一种车辆用电池加热控制系统及其控制方法
US8452490B2 (en) 2009-12-14 2013-05-28 Control Solutions LLC Electronic circuit for charging and heating a battery
CN201667552U (zh) 2010-03-30 2010-12-08 比亚迪股份有限公司 一种电池加热装置
US8941358B2 (en) 2010-07-30 2015-01-27 Byd Company Limited Heating circuits and methods based on battery discharging and charging using resonance components in series and freewheeling circuit components
US9214706B2 (en) 2010-07-30 2015-12-15 Byd Company Limited Battery heating circuits and methods using resonance components in series based on charge balancing
US8947049B2 (en) * 2010-07-30 2015-02-03 Byd Company Limited Battery heating circuits and methods using voltage inversion and freewheeling circuit components
US9160041B2 (en) 2010-07-30 2015-10-13 Byd Company Limited Battery heating circuits and methods using resonance components in series and bridging charge storage components
US9083196B2 (en) 2010-07-30 2015-07-14 Byd Company Limited Circuits and methods for heating batteries in parallel using resonance components in series
US8994332B2 (en) * 2010-07-30 2015-03-31 Byd Company Limited Battery heating circuits and methods using voltage inversion based on predetermined conditions
WO2012013065A1 (fr) 2010-07-30 2012-02-02 Byd Company Limited Circuit de chauffage de batterie
US9120394B2 (en) 2010-07-30 2015-09-01 Byd Company Limited Battery heating circuits and methods based on battery discharging and charging using resonance components in series and multiple charge storage components
US9209644B2 (en) 2010-07-30 2015-12-08 Byd Company Limited Circuits and methods for heating batteries in series using resonance components in series
CN202009059U (zh) 2010-12-23 2011-10-12 比亚迪股份有限公司 一种电池的加热电路
CN102074752B (zh) 2010-12-23 2012-07-04 比亚迪股份有限公司 一种电池的加热电路
US9065293B2 (en) 2010-12-23 2015-06-23 Byd Company Limited Battery heating circuits and methods using transformers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990661A (en) * 1998-04-30 1999-11-23 Daimlerchrysler Corporation Circulating current battery heater
US6340879B1 (en) * 1999-02-03 2002-01-22 Nokia Mobile Phones Ltd. Device for reactivating an electric battery
US6211652B1 (en) * 2000-02-04 2001-04-03 Milwaukee Electric Tool Corporation Discharge protection apparatus for a battery-powered device and a method of preventing overdischarge of a battery
CN1630129A (zh) * 2003-12-18 2005-06-22 明基电通股份有限公司 低温下对可充电式电池加热及充电的设备
CN102074761A (zh) * 2010-07-30 2011-05-25 比亚迪股份有限公司 一种电池的加热电路
CN102074758A (zh) * 2010-07-30 2011-05-25 比亚迪股份有限公司 一种电池的加热电路

Also Published As

Publication number Publication date
CN102255108A (zh) 2011-11-23
EP2413457A1 (fr) 2012-02-01
HK1159318A1 (en) 2012-07-27
US20120025776A1 (en) 2012-02-02
WO2012013075A1 (fr) 2012-02-02
EP2413462B1 (fr) 2019-04-17
CN202076379U (zh) 2011-12-14
CN102074756A (zh) 2011-05-25
US9093413B2 (en) 2015-07-28
EP2413462A1 (fr) 2012-02-01
WO2012013082A1 (fr) 2012-02-02
EP2413463B1 (fr) 2013-03-06
CA2806628A1 (fr) 2012-02-02
US20120025780A1 (en) 2012-02-02
US8836277B2 (en) 2014-09-16
RU2013101533A (ru) 2014-09-10
CN102306849A (zh) 2012-01-04
WO2012013067A1 (fr) 2012-02-02
CN102074755B (zh) 2012-05-09
US8816647B2 (en) 2014-08-26
US8941356B2 (en) 2015-01-27
CN202076380U (zh) 2011-12-14
RU2537964C2 (ru) 2015-01-10
US8816634B2 (en) 2014-08-26
CN102074760A (zh) 2011-05-25
US20120025783A1 (en) 2012-02-02
CN102074762A (zh) 2011-05-25
CN202042572U (zh) 2011-11-16
WO2012013078A1 (fr) 2012-02-02
HK1159321A1 (en) 2012-07-27
CN102170031B (zh) 2012-11-21
CN102170030A (zh) 2011-08-31
CN102306849B (zh) 2013-01-02
WO2012013071A1 (fr) 2012-02-02
US20120025775A1 (en) 2012-02-02
CN102074761B (zh) 2012-09-05
CN102074758B (zh) 2012-06-20
EP2413469A1 (fr) 2012-02-01
CA2805781C (fr) 2016-10-11
US20120025756A1 (en) 2012-02-02
CA2806407A1 (fr) 2012-02-02
CN202145485U (zh) 2012-02-15
CN202042566U (zh) 2011-11-16
EP2413458A1 (fr) 2012-02-01
CN102074759B (zh) 2012-06-06
US20120032642A1 (en) 2012-02-09
CN102170031A (zh) 2011-08-31
WO2012013073A1 (fr) 2012-02-02
WO2012013066A1 (fr) 2012-02-02
EP2413461A1 (fr) 2012-02-01
RU2537968C2 (ru) 2015-01-10
HK1158829A1 (en) 2012-07-20
CN201936966U (zh) 2011-08-17
US9059125B2 (en) 2015-06-16
CN201936969U (zh) 2011-08-17
WO2012013076A1 (fr) 2012-02-02
CN102074762B (zh) 2012-07-04
CN102074753A (zh) 2011-05-25
CA2807002C (fr) 2016-11-29
EP2413465A1 (fr) 2012-02-01
US20120025781A1 (en) 2012-02-02
RU2531383C1 (ru) 2014-10-20
US9087806B2 (en) 2015-07-21
EP2421114A1 (fr) 2012-02-22
US20120025772A1 (en) 2012-02-02
CN202042568U (zh) 2011-11-16
US9093414B2 (en) 2015-07-28
CA2806407C (fr) 2016-03-15
CN102170030B (zh) 2012-12-19
CA2807002A1 (fr) 2012-02-02
RU2013101534A (ru) 2014-09-10
CN102255110A (zh) 2011-11-23
US20120031890A1 (en) 2012-02-09
WO2012013070A1 (fr) 2012-02-02
HK1158374A1 (en) 2012-07-13
EP2413456A1 (fr) 2012-02-01
CN102074759A (zh) 2011-05-25
EP2413459A1 (fr) 2012-02-01
CN102088116A (zh) 2011-06-08
EP2413455A1 (fr) 2012-02-01
US20120025779A1 (en) 2012-02-02
HK1158370A1 (en) 2012-07-13
WO2012013079A1 (fr) 2012-02-02
CN102088117A (zh) 2011-06-08
HK1158375A1 (en) 2012-07-13
CN202103139U (zh) 2012-01-04
CN102074760B (zh) 2012-07-18
CN102088116B (zh) 2012-11-21
CA2805797C (fr) 2016-03-15
CN102088117B (zh) 2012-09-05
CN102074755A (zh) 2011-05-25
CN202042567U (zh) 2011-11-16
CN102074756B (zh) 2012-07-18
US8841883B2 (en) 2014-09-23
RU2013101535A (ru) 2014-09-10
CN201966300U (zh) 2011-09-07
WO2012013072A1 (fr) 2012-02-02
EP2413468A1 (fr) 2012-02-01
US20120025782A1 (en) 2012-02-02
TWM439195U (en) 2012-10-11
CN102082306A (zh) 2011-06-01
HK1158831A1 (en) 2012-07-20
WO2012013069A1 (fr) 2012-02-02
CN201936967U (zh) 2011-08-17
US8941357B2 (en) 2015-01-27
RU2564521C2 (ru) 2015-10-10
RU2013101536A (ru) 2014-09-10
US20120025777A1 (en) 2012-02-02
CN102255108B (zh) 2012-12-12
CA2806628C (fr) 2016-03-15
EP2413463A1 (fr) 2012-02-01
US20120025778A1 (en) 2012-02-02
CN102082306B (zh) 2012-11-21
CA2805797A1 (fr) 2012-02-02
HK1159319A1 (en) 2012-07-27
HK1158830A1 (en) 2012-07-20
EP2413464A1 (fr) 2012-02-01
CN102074758A (zh) 2011-05-25
US9105595B2 (en) 2015-08-11
HK1158378A1 (en) 2012-07-13
CN102074753B (zh) 2012-07-04
HK1158379A1 (en) 2012-07-13
US9082740B2 (en) 2015-07-14
HK1158371A1 (en) 2012-07-13
CN202009060U (zh) 2011-10-12
HK1162766A1 (en) 2012-08-31
HK1158372A1 (en) 2012-07-13
CN202009058U (zh) 2011-10-12
EP2413460B1 (fr) 2013-07-10
US20120025774A1 (en) 2012-02-02
CA2805781A1 (fr) 2012-02-02
RU2013101532A (ru) 2014-09-10
WO2012013074A1 (fr) 2012-02-02
US8975872B2 (en) 2015-03-10
WO2012013081A1 (fr) 2012-02-02
CN202076381U (zh) 2011-12-14
EP2413464B1 (fr) 2016-04-06
EP2413460A1 (fr) 2012-02-01
HK1158373A1 (en) 2012-07-13
HK1159320A1 (en) 2012-07-27
US20120024838A1 (en) 2012-02-02
US8970172B2 (en) 2015-03-03
EP2413467A1 (fr) 2012-02-01
CN102255111A (zh) 2011-11-23
US20120025754A1 (en) 2012-02-02
US8823317B2 (en) 2014-09-02
RU2528622C1 (ru) 2014-09-20
CN102074761A (zh) 2011-05-25
EP2413466A1 (fr) 2012-02-01
CN202121024U (zh) 2012-01-18
CN102255110B (zh) 2012-10-17
WO2012013077A1 (fr) 2012-02-02
US9209103B2 (en) 2015-12-08
HK1158828A1 (en) 2012-07-20
CN102255111B (zh) 2012-11-21
CN202042565U (zh) 2011-11-16

Similar Documents

Publication Publication Date Title
EP2413457A1 (fr) Circuit de chauffage de batterie
US9214706B2 (en) Battery heating circuits and methods using resonance components in series based on charge balancing
US8941358B2 (en) Heating circuits and methods based on battery discharging and charging using resonance components in series and freewheeling circuit components
US8994332B2 (en) Battery heating circuits and methods using voltage inversion based on predetermined conditions
US9160041B2 (en) Battery heating circuits and methods using resonance components in series and bridging charge storage components
US8947049B2 (en) Battery heating circuits and methods using voltage inversion and freewheeling circuit components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11811770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11811770

Country of ref document: EP

Kind code of ref document: A1