JP6256214B2 - 電動車両及びその制御方法 - Google Patents

電動車両及びその制御方法 Download PDF

Info

Publication number
JP6256214B2
JP6256214B2 JP2014122313A JP2014122313A JP6256214B2 JP 6256214 B2 JP6256214 B2 JP 6256214B2 JP 2014122313 A JP2014122313 A JP 2014122313A JP 2014122313 A JP2014122313 A JP 2014122313A JP 6256214 B2 JP6256214 B2 JP 6256214B2
Authority
JP
Japan
Prior art keywords
temperature
operation mode
power
power supply
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014122313A
Other languages
English (en)
Other versions
JP2016005297A (ja
Inventor
橋本 俊哉
俊哉 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014122313A priority Critical patent/JP6256214B2/ja
Priority to US14/705,367 priority patent/US9725007B2/en
Priority to CN201510324528.9A priority patent/CN105313714B/zh
Publication of JP2016005297A publication Critical patent/JP2016005297A/ja
Application granted granted Critical
Publication of JP6256214B2 publication Critical patent/JP6256214B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明は、電動車両及びその制御方法、特に電圧変換器を搭載した電動車両の制御方法に関する。
近年、ハイブリッド車両や電気自動車等の電動車両が多く用いられるようになってきている。このような電動車両では、バッテリの直流電力をインバータで交流電力に変換し、変換した交流電力でモータあるいはモータジェネレータを駆動するシステムが多く用いられている。最近は、昇圧コンバータ(電圧変換器)を用いてバッテリの電圧を昇圧してモータに供給することによりモータの回転数、トルクの動作範囲をより広くして電動車両の走行性能(速度、加減速性能)の向上を図ることが多い。更に、最近は複数のバッテリを並列接続として搭載し、バッテリの容量を大きくしてモータのみによって走行する、いわゆるEV走行の航続距離がより長い電動車両も用いられている。また、近年、4つのスイッチング素子のオン・オフ動作のパターンを様々に変更することによって、複数のバッテリの直並列の切換えや、直列接続での昇圧、並列接続での昇圧等多様な動作モードとすることが可能な電源システムが提案されている(例えば、特許文献1参照)。
特開2012−70514号公報
ところで、特許文献1に記載されたような電力変換器に接続される各バッテリの温度は常に同様ではなく、電力変換器の動作モードによって様々に変化する。このため、一部のバッテリの温度が入出力制限(入出力電流制限)の必要な程度に高くなったり、逆に一部のバッテリの温度が入出力制限(入出力電流制限)の必要な程度に低くなったりする場合がある。このような場合、温度によるバッテリの出力制限によって電動車両に必要な電力を供給することができない場合がある。
そこで、本発明は、複数のバッテリの直並列の切換え可能な電圧変換器を搭載した電動車両において、各バッテリの温度が所定の動作温度範囲を超えないようにすることを目的とする。
本発明の電動車両は、第1直流電源と、第2直流電源と、前記第1または第2直流電源のいずれか一方または両方と出力電路との間で双方向に電圧変換を行うと共に、前記出力電路に対する前記第1、第2直流電源の接続を直列とする直列動作モードと前記第1、第2直流電源の接続を並列とする並列動作モードとの間で動作モードを切換え可能な電圧変換器と、前記各直流電源の各温度を検出する温度センサと、前記電圧変換器の動作モードの切換えを行う制御部と、を備える電動車両であって、前記制御部は、前記各温度センサで検出した前記各直流電源のいずれか一方の温度が所定の高側閾値以上となった場合に前記電圧変換器の動作モードを並列動作モードに切換えると共に、温度が所定の高側閾値以上となった方の直流電源の電流を低減して該直流電源の温度を低減し、前記各温度センサで検出した前記各直流電源のいずれか一方の温度が所定の低側閾値以下となった場合、前記電圧変換器の動作モードを並列動作モードに切換えると共に、温度が所定の低側閾値以下となった方の直流電源の電流を増加させて該直流電源の温度を上昇させることを特徴とする。
本発明の電動車両において、前記制御部は、前記各直流電源のいずれか一方の温度が所定の高側閾値以上となった場合に、前記一方の直流電源の入出力電力分配比を低減し、他方の直流電源の入出力電力分配比を増加させ、前記各直流電源のいずれか一方の温度が所定の低側閾値以下となった場合に、前記一方の直流電源の入出力電力分配比を増加し、他方の直流電源の入出力電力分配比を低減させることとしても好適である。
本発明の電動車両は、第1直流電源と、第2直流電源と、前記第1または第2直流電源のいずれか一方または両方と出力電路との間で双方向に電圧変換を行うと共に、前記出力電路に対する前記第1、第2直流電源の接続を直列とする直列動作モードと前記第1、第2直流電源の接続を並列とする並列動作モードとの間で動作モードを切換え可能な電圧変換器と、前記各直流電源の各温度を検出する温度センサと、CPUを含み、前記電圧変換器の動作モードの切換えを行う制御部と、を備える電動車両であって、前記制御部は、前記CPUによって、前記各温度センサで検出した前記各直流電源のいずれか一方の温度が所定の高側閾値以上となった場合に前記電圧変換器の動作モードを並列動作モードに切換えると共に、温度が所定の高側閾値以上となった方の直流電源の電流を低減して該直流電源の温度を低減し、前記各温度センサで検出した前記各直流電源のいずれか一方の温度が所定の低側閾値以下となった場合、前記電圧変換器の動作モードを並列動作モードに切換えると共に、温度が所定の低側閾値以下となった方の直流電源の電流を増加させて該直流電源の温度を上昇させる動作モード切換プログラムを実行することを特徴とする。
本発明の電動車両の制御方法は、第1直流電源と、第2直流電源と、前記第1または第2直流電源のいずれか一方または両方と出力電路との間で双方向に電圧変換を行うと共に、前記出力電路に対する前記第1、第2直流電源の接続を直列とする直列動作モードと前記第1、第2直流電源の接続を並列とする並列動作モードとの間で動作モードを切換え可能な電圧変換器と、前記各直流電源の各温度を検出する温度センサと、前記電圧変換器の動作モードの切換えを行う制御部と、を備える電動車両の制御方法であって、前記各温度センサで検出した前記各直流電源のいずれか一方の温度が所定の高側閾値以上となった場合に前記電圧変換器の動作モードを並列動作モードに切換えると共に、温度が所定の高側閾値以上となった方の直流電源の電流を低減して該直流電源の温度を低減し、前記各温度センサで検出した前記各直流電源のいずれか一方の温度が所定の低側閾値以下となった場合、前記電圧変換器の動作モードを並列動作モードに切換えると共に、温度が所定の低側閾値以下となった方の直流電源の電流を増加させて該直流電源の温度を上昇させることを特徴とする。
本発明は、複数のバッテリの直並列の切換え可能な電圧変換器を搭載した電動車両において、各バッテリの温度が所定の動作温度範囲を超えないようにすることができるという効果を奏する。
電圧変換器を搭載する本発明の実施形態における電動車両の構成を示すシステム系統図である。 本発明の電動車両に搭載される電圧変換器の基本動作において、第1、第2のバッテリを直列接続し、リアクトルチャージを行う際の電流の流れを示す説明図である。 本発明の電動車両に搭載される電圧変換器の基本動作において、第1、第2のバッテリを直列接続し、電力出力を行う際の電流の流れを示す説明図である。 本発明の電動車両に搭載される電圧変換器の基本動作において、第1、第2のバッテリを並列接続し、リアクトルチャージを行う際の電流の流れを示す説明図である。 本発明の電動車両に搭載される電圧変換器の基本動作において、第1、第2のバッテリを並列接続し、電力出力を行う際の電流の流れを示す説明図である。 電圧変換器を搭載する本発明の電動車両の制御部の動作を示すフローチャート(1)である。 電圧変換器を搭載する本発明の電動車両の制御部の動作を示すフローチャート(2)である。 電圧変換器を搭載する本発明の電動車両の制御部の動作を示すフローチャート(3)である。
<電圧変化器を搭載した電動車両の構成>
以下、図面を参照しながら本発明の実施形態について説明する。図1に示すように、本実施形態の電動車両100は、第1直流電源である第1バッテリ20と、第2直流電源である第2バッテリ23と、複数のスイッチング素子31〜34及び第1リアクトル22、第2リアクトル25、第1コンデンサ21、第2コンデンサ24を含む電圧変換器10と、電圧変換器10の出力電路26と、出力電路26に接続される平滑コンデンサ41及びインバータ40と、インバータ40に接続されて電動車両100を駆動するモータジェネレータ50と、電圧変換器10の動作モードを切換える制御部80と、を備えている。なお、図1中の一点鎖線は信号線を示す。
電圧変換器10の出力電路26は、各バッテリ20,23のマイナス側に接続される基準電路11と電圧変換器10で昇圧した高電圧を出力する高圧電路12とを含み、複数のスイッチング素子31〜34は、高圧電路12から基準電路11に向って直列に接続され、各スイッチング素子31〜34には、それぞれダイオード35〜38が逆並列に接続されている。また、電圧変換器10は、スイッチング素子32とスイッチング素子33との間の第2接続点17と基準電路11との間を接続する第1電路13と、スイッチング素子31とスイッチング素子32との間の第1接続点16と、スイッチング素子33とスイッチング素子34との間の第3接続点18との間を接続する第2電路14と、を有している。第1バッテリ20と第1リアクトル22とは第1電路13の上に直列に配置され、第2バッテリ23と第2リアクトル25とは第2電路14の上に直列に配置されており、第1コンデンサ21は第1バッテリ20と並列に接続され、第2コンデンサ24は第2バッテリ23と並列に接続されている。また、平滑コンデンサ41は、高圧電路12と基準電路11との間に接続されている。
電圧変換器10に含まれるスイッチング素子31は、第1リアクトル22に蓄積(チャージ)された電力を出力電路26に出力する際または、第2リアクトル25に蓄積(チャージ)された電力を出力電路26に出力する際にオンとなる第1種類のスイッチング素子である。また、スイッチング素子32は、第2バッテリ23の電力を第2リアクトル25に蓄積(チャージ)する際または、第1リアクトル22に蓄積(チャージ)された電力を出力電路26に出力する際にオンとなる第2種類のスイッチング素子である。また、スイッチング素子33は、第1バッテリ20の電力を第1リアクトル22に蓄積(チャージ)する際または、第2バッテリ23の電力を第2リアクトル25に蓄積(チャージ)する際にオンとなる第3種類のスイッチング素子である。また、スイッチング素子34は、第1バッテリ20の電力を第1リアクトル22に蓄積(チャージ)する際または、第2リアクトル25に蓄積(チャージ)された電力を出力電路26に出力する際にオンとなる第4種類のスイッチング素子である。
第1バッテリ20には、電圧VB1を検出する電圧センサ61と、温度TB1を検出する温度センサ62とが取り付けられ、第2バッテリ23には、電圧VB2を検出する電圧センサ71と、温度TB2を検出する温度センサ72とが取り付けられている。第1電路13、第2電路14には各電路13,14の各電流IL1,IL2を検出する電流センサ65,75が取り付けられている。第1電路13と基準電路11との間には第1コンデンサ21の両端の電圧VL1を検出する電圧センサ64が取り付けられ、第2電路14には、第2コンデンサ24の両端の電圧VL2を検出する電圧センサ74が取り付けられており、高圧電路12と基準電路11との間には、平滑コンデンサ41の両端の電圧VHを検出する電圧センサ91が取り付けられている。
インバータ40は、内部に図示しない複数のスイッチング素子を備え、各スイッチング素子をオン・オフ動作させて電圧変換器10の出力電路26(基準電路11と高圧電路12とで構成される)から出力された直流電力をU,V,Wの三相交流電力に変換して各相の出力線43,44,45から出力する。U相、V相、W相の各出力線43,44,45はモータジェネレータ50に接続され、V相出力線44とW相出力線45とには、各相の電流を検出する電流センサ92,93が取り付けられている。また、モータジェネレータ50にはロータの回転数、回転角度を検出するレゾルバ94が取り付けられている。モータジェネレータ50の出力軸51はギヤ装置52に接続され、ギヤ装置52には車軸53が接続され、車軸53には車輪54が取り付けられている。車軸53には車軸53の回転数から車速を検出する速度センサ95が取り付けられている。また、電動車両100の車室内には、アクセルペダル55、ブレーキペダル56、スタートスイッチ57が取り付けられており、アクセルペダル55、ブレーキペダル56には、各ペダル55,56の踏込量を検出するアクセルペダル踏込量センサ96,ブレーキペダル踏込量センサ97が取り付けられている。
制御部80は、演算及び情報処理を行うCPU81と、制御プログラム85及び制御データ86並びに後で説明する動作モード切換プログラム87、電力分配比変更プログラム88とを格納する記憶部82と、各機器、センサが接続される機器・センサインターフェース83とを含み、CPU81と記憶部82と機器・センサインターフェース83とは相互にデータバス84で接続されるコンピュータである。電圧変換器10の各スイッチング素子31〜34及びインバータ40の各スイッチング素子は、機器・センサインターフェース83を介して制御部80に接続され、CPU81の指令によってオン・オフ動作する。また、電圧センサ61,64,71,74,91及び電流センサ65,75,92,93及び温度センサ62,72、レゾルバ94、速度センサ95、アクセルペダル踏込量センサ96,ブレーキペダル踏込量センサ97、スタートスイッチ57はそれぞれ機器・センサインターフェース83を介して制御部80に接続され、各センサによって検出されたデータは制御部80に入力される。
<電圧変換器10の基本動作>
電圧変換器10は、4つのスイッチング素子31〜34のオン・オフ動作パターンを切換えることにより、第1、第2バッテリ20,23の電圧を昇圧して出力電路26に出力或いは出力電路26の電圧を降圧して第1、第2バッテリ20,23に充電するように、第1、第2バッテリ20,23のいずれか一方または両方と出力電路26との間で双方向に電圧変換を行うと共に、出力電路26に対する第1、第2バッテリ20,23の接続を直列と並列との間で切換え可能である。以下、図2〜図5を参照して電圧変換器10の基本動作について簡単に説明する。なお、以下の説明では、第1種類のスイッチング素子31は、記号S1と符号31を用いてS1(31)と記載し、第2種類のスイッチング素子32は、記号S2と符号32を用いてS2(32)と記載し、第3種類のスイッチング素子33は、記号S3と符号33を用いてS3(33)と記載し、第4種類のスイッチング素子34は、記号S4と符号34を用いてS4(34)と記載する。また、各スイッチング素子31〜34に逆並列に接続されている各ダイオード35〜38は、記号D1〜D4と符号35〜38を用いてD1(35)〜D4(38)と記載する。同様に、第1バッテリ20、第2バッテリ23はそれぞれ記号B1,B2と符号20,23を用いてB1(20)、B2(23)と記載し、第1、第2コンデンサ21,24はそれぞれ記号C1,C2と符号21,24を用いてC1(21)、C2(24)と記載し、第1、第2リアクトル22,25はそれぞれ記号L1、L2と符号22,25を用いてL1(22)、L2(25)と記載する。また、各スイッチング素子31〜34は、オンとなると図1の矢印の方向にのみ電流が流れ、矢印と反対方向には電流が流れないIGBT等の半導体素子であるが、図2〜図5ではスイッチング素子31〜34のオン・オフの状態が表示できるように単純なオン・オフスイッチに単純化して図示する。
<B1(20),B2(23)直列接続の場合の昇降圧動作(直列動作モード)>
図2、図3を参照してB1(20),B2(23)直列接続の場合の昇降圧動作について説明する。図2に示すように、制御部80は、S3(33)をオンに固定し、S1(31)とS2(32)とS4(34)とをオフ・オフ動作させる。図2に示すように、S1(31)がオフ、S2(32)、S4(34)がオンの瞬間には、[B1(20)→L1(22)→S3(33)→S4(34)→B1(20)]と電流が流れる回路R1と、[B2(23)→L2(25)→S2(32)→S3(33)→B2(23)]と電流が流れる回路R2とが形成され、B1(20)から出力された電力は回路R1を還流してL1(22)にチャージされ、B2(23)から出力された電力は回路R2を還流してL2(25)にチャージされる。
次に、図3に示すように、S1(31)がオン、S2(32)、S4(34)がオフの瞬間には、[B1(20)→L1(22)→S3(33)→B2(23)→L2(25)→D1(35)→高圧電路12→基準電路11→B1(20)]と電流が流れる回路R3が形成され、L1(22)、L2(25)にチャージされていた電力は、回路R3(実線で示す)を通って高圧電路12に出力される。また、S1(31)がオンとなっている間にモータジェネレータ50により回生電力が発生した場合、その回生電力は、図3に示すように、[高圧電路12→S1(31)→L2(25)→B2(23)→D3(37)→L1(22)→B1(20)→基準電路11→高圧電路12]と電流が流れる回路R4(破線で示す)を通ってB2(23)、B1(20)に充電される。
以上述べたように、制御部80は、S3(33)をオン固定とし、S1(31),S2(32),S3(33)をオン・オフ動作させることによってB1(20),B2(23)を昇圧した上で直列接続して出力電路26(高圧電路12、基準電路11)に出力するとともに、出力電路26の回生電力をB1(20)、B2(23)に充電する。
<B1(20),B2(23)並列接続の場合の昇降圧動作(並列動作モード)>
図4、図5を参照してB1(20),B2(23)並列接続の場合の昇降圧動作について説明する。この場合、図4、図5に示すように、制御部80は、S1(31)〜S4(34)をオン・オフ動作させる。図4に示すように、S1(31)がオフ、S2(32)〜S4(34)がオンの瞬間には、図2で説明したと同様、B1(20)から出力された電力は回路R1を還流してL1(22)にチャージされ、B2(23)から出力された電力は回路R2を還流してL2(25)にチャージされる。次に、図5に示すように、S3(33)がオフ、S1(31),S2(32),S4(34)がオンの瞬間には、[B1(20)→L1(22)→D2(36)→D1(35)→高圧電路12→基準電路11→B1(20)]と電流が流れる回路R5(実線で示す)と、[B2(23)→L2(25)→D1(35)→高圧電路12→基準電路11→D4(38)→B2(23)]と電流が流れる回路R6(実線で示す)とが形成され、L1(22)にチャージされた電力は回路R5を通って、L2(25)にチャージされた電力はR6を通ってそれぞれ高圧電路12に出力される。また、この瞬間にモータジェネレータ50により回生電力が発生した場合、その回生電力は、図5に示すように、[高圧電路12→S1(31)→S2(32)→L1(22)→B1(20)→基準電路11→高圧電路12]と電流が流れる回路R7(破線で示す)を通ってB1(20)に充電され、[高圧電路12→S1(31)→L2(25)→B2(23)→S4(34)→基準電路11→高圧電路12]と電流が流れる回路R8(破線で示す)を通ってB2(23)に充電される。
以上述べたように、制御部80は、S1(31)〜S4(34)をオン・オフ動作させることによってB1(20),B2(23)を昇圧した上で並列接続して出力電路26(高圧電路12、基準電路11)に出力するとともに、出力電路26の回生電力をB1(20)、B2(23)に充電する。
<直列動作モードと並列動作モード>
以上、電圧変換器10の基本動作について説明したが、直列動作モードは、B1(20),B2(23)を直列接続として使用するモードであり、B1(20)、B2(23)を流れる電流の大きさは同一となる。このため、例えば、一方のバッテリの温度が所定の動作温度範囲よりも高温となった場合には、温度の上昇した方のバッテリの出力電力あるいは、電流が制限され、これによって電圧変換器10の出力電力も制限されることになる。しかし、直列動作モードでは、B1(20)、B2(23)に流れる電流を別々に制御することができないので、電圧変換器10の出力電力を制限して温度が上昇した方のバッテリの温度が所定の動作温度範囲内に入るまで(温度が下がるまで)待たねばならなくなる。
また、電動車両100が低温環境下で一方のバッテリのみを用いて低速で走行していたような場合、使用している方のバッテリは電流が流れることにより温度が上昇しているので十分な出力が可能であるが、使用していないバッテリは温度が低いままの状態となっている。この状態で電動車両100の要求動力が上昇し、2つのバッテリを直列に接続する直列動作モードで電圧変換器10を動作させて電動車両100に電力を供給しようとした場合には、温度の低い側のバッテリの出力電力あるいは電流が制限されるので電圧変換器10からの供給電力も制限されることになる。この場合も、先に述べたと同様、直列動作モードでは、B1(20)、B2(23)に流れる電流を別々に制御することができないので、電圧変換器10の出力電力を制限して低温のバッテリの温度が所定の動作温度範囲内に入るまで(温度が上昇するまで)待たねばならなくなる。
そこで、本実施形態の電動車両100、B1(20)、B2(23)のうちのいずれか一方の温度が所定の高側閾値A以上になった場合あるいは所定の低側閾値B以下になった場合に、電圧変換器10の動作モードを先に説明した並列動作モードに切換えることともに、温度の高くなった方のバッテリの電流を低減してバッテリ温度を低下させ、逆に温度の低くなった方のバッテリの電流を増加させてバッテリの昇温を図り、バッテリ温度が所定の動作温度範囲を越えないようにするものである。以下、図6〜図8を参照しながら本実施形態の電動車両100の動作について説明する。
<電動車両100の動作説明>
制御部80のCPU81は、図1に示す動作モード切換プログラム87を実行する。制御部80は、図6のステップS101に示すように、図1に示す温度センサ62,72によってB1(20)、B2(23)の温度TB1、TB2を検出する。制御部80は、図6のステップS102に示すように、検出したTB1,TB2と所定の温度範囲の上限温度より少し低い温度である高側閾値A(例えば、40℃程度)及び、所定の温度範囲の下限温度よりも少し高い温度である低側閾値B(例えば、0℃)とを比較し、B1(20)、B2(23)の各温度TB1,TB2のいずれか一方が高側閾値A以上であるか、あるいは、各温度TB1,TB2のいずれか一方が低側閾値B以下であるかを判断する。そして制御部80は、各温度TB1,TB2のいずれか一方が高側閾値A以上であるか、あるいは、各温度TB1,TB2のいずれか一方が低側閾値B以下である場合には、図6のステップS103に進み、電圧変換器10の動作モードを先に説明した並列動作モードに切換える。また、温度TB1,TB2の両方が低側閾値Bを越え、高側閾値A未満の場合には、制御部80は、図6のステップS101に戻ってB1(20),B2(23)の各温度TB1,TB2の監視を継続する(動作モード切換プログラム87の終了)。
次に制御部80のCPU81は、図1に示す電力分配比変更プログラム88を実行する。制御部80は、図6のステップS104に示すように、図1に示すレゾルバ94、電流センサ92,93、速度センサ95、アクセルペダル踏込量センサ96、ブレーキペダル踏込量センサ97によってモータジェネレータ50の回転数、供給電流、車速、各ペダルの踏込量を検出する。制御部80は、図6のステップS105に示すように図6のステップS105で検出した各データに基づいて電動車両100の要求動力を算出し、図1に示す制御データ86に格納されている制御マップに基づいて、最適な昇圧後の高電圧VHの目標値である、目標VHを設定する。
次に、B1(20)、B2(23)のうちのいずれか一方の温度が所定の高側閾値A以上である場合について説明する。図6のステップS107に示すように、制御部80は、B1(20)、B2(23)のいずれか一方の温度が所定の高側閾値A以上であった場合には、図6に示すステップS108に進み、温度が所定の高側閾値A以上のバッテリ(以下、高温バッテリという)を電流源バッテリ、他方のバッテリ(以下、通常バッテリという)を電圧源バッテリに設定する。
列動作モードでは、B1(20)、B2(23)の両方で出力電圧を目標VHとする制御(電圧制御)を同時に実行すると、負荷に高電圧VHの要求電力を安定して供給することができない場合がある。このため、B1(20)、B2(23)の一方を出力電圧(昇圧電圧である高電圧VH)を制御する電圧源バッテリとして動作させ、他方のバッテリは、電源の電流を制御する電流源バッテリとして動作させる制御方法が用いられる。本実施形態では、温度が所定の高側閾値A以上のバッテリ(高温バッテリ)を電流源バッテリとして制御し、他方のバッテリ(通常バッテリ)を電圧源バッテリとして制御する制御について説明する。
図6のステップS109に示すように、制御部80は、電圧源バッテリ(通常バッテリ)の電圧を目標VHに昇圧するように、各スイッチング素子S1(31)〜S4(34)をオン・オフ動作させる。ここで、高温バッテリ(電流源バッテリ)の出力電力PHと通常バッテリ(電圧源バッテリ)の出力電力PSと電動車両100の要求電力PR、及び高温バッテリ(電流源バッテリ)における電流指令値Ihの関係は次の式のようになる。
通常バッテリの出力電力PS=要求電力PR−高温バッテリの出力電力PH
=要求電力PR−高温バッテリの電圧Vh×高温バッテリの電流指令値Ih
つまり、高温バッテリの出力電力PHは電流指令値Ihによって制御され、通常バッテリの出力電力PSは、電動車両100の要求電力PRと高温バッテリの出力電力PHとの差分となる。また、高バッテリと通常バッテリとは並列に接続されているので、通常バッテリの昇圧後の出力電圧は通常バッテリの出力電圧と同様の目標VHである。
制御部80は、図6のステップS110に示すように、高温バッテリ(電流源バッテリ)の電流指令値Ihを低減する指令を出力する。この指令により、高温バッテリ(電流源バッテリ)の出力電流が低減され、その結果、高温バッテリ(電流源バッテリ)の出力電力が低減される。一方、通常バッテリ(電圧源バッテリ)の出力電力は、高温バッテリ(電流源バッテリ)の出力電力が低減された分だけ増加する。制御部80は、図6のステップS111に示すように、図1に示す電流センサ65、75、電圧センサ61,71、温度センサ62,72により、B1(20)、B2(23)の各出力電流IL1,IL2、電圧B1,B2、温度TB1,TB2を検出し、図6のステップS112に示すように、B1(20)、B2(23)の出力電力を算出する。制御部80は、図7のステップS113に示すように出力電力が増加する通常バッテリ(電圧源バッテリ)の出力電力がそのバッテリの最大入出力可能電力近傍となっているかどうか判断する。例えば、B1(20)が通常バッテリ(電圧源バッテリ)の場合、制御部80は、図6のステップS112で算出したB1(20)の出力電力が図6のステップS111で検出したB1(20)の温度TB1における最大入出力可能電力の近傍、例えば、最大入出力可能電力の90%程度になっていない場合には、高温バッテリ(電流源バッテリ)の出力電力を低減して通常バッテリ(電圧源バッテリ)の出力電力を増加させる余裕があると判断し、図6に示すステップS110に戻って高温バッテリ(電流源バッテリ)の電流をさらに低減する。
制御部80は、通常バッテリ(電圧源バッテリ)の出力電力が最大入出力可能電力の近傍になるまで、図6に示すステップS110〜図7のステップS113を繰り返し、高温バッテリ(電流源バッテリ)の電流をできるだけ低減する。制御部80は、このような制御により、高温バッテリ(電流源バッテリ)の入出力電力分配比(電圧変換器10の総入出力電力に対する高温バッテリの入出力電力の割合)を低減し、通常バッテリ(電圧源バッテリ)の入出力電力分配比(電圧変換器10の総入出力電力に対する通常バッテリの入出力電力の割合)を増加し、高温バッテリの温度を低減して所定の動作温度範囲内で動作させることができる。
制御部80は、図7のステップS114に示すように、図1に示すスタートスイッチ57がオフかどうかを判断し、スタートスイッチ57がオフである場合には、端子4(図8中に丸囲み数字で示す)から図8のendに進み電力分配比変更プログラム88を終了し、スタートスイッチ57がオンである場合には、図8の端子5(図8中に丸囲み数字で示す)〜図6の端子5(図8中に丸囲み数字で示す)にジャンプし、図6に示すステップS101に戻り、B1(20)、B2(23)の温度TB1,TB2を監視する。
また、制御部80は、図6のステップS107でB1(20)、B2(23)のいずれか一方の温度が所定の高側閾値A以上ではないと判断した場合には、図8のステップS115にジャンプし、B1(20)、B2(23)のいずれか一方の温度が所定の低側閾値B以下であるかどうかを判断する。そして、制御部80は、B1(20)、B2(23)のいずれか一方の温度が所定の低側閾値B以下である場合には、図8のステップS116に示すように、温度の低い方のバッテリ(以下、低温バッテリという)を電流源バッテリに、他方のバッテリ(通常バッテリ)を電圧源バッテリに設定する。制御部80は、先に図6のステップS109〜図7のステップS113を参照して説明したと同様、図8のステップS117に示すように、通常バッテリ(電圧源バッテリ)の電圧を目標VHに昇圧し、図8のステップS118〜ステップS121に示すように、B1(20)、B2(23)の各出力電流IL1,IL2、電圧B1,B2、温度TB1,TB2を検出した後、B1(20)、B2(23)の出力電力を算出し、低バッテリ(電流源バッテリ)の出力電力がそのバッテリの最大入出力可能電力近傍となるまで、低温バッテリ(電流源バッテリ)の電流を増加する。
制御部80は、このような制御により、低温バッテリ(電流源バッテリ)の入出力電力分配比(電圧変換器10の総入出力電力に対する高温バッテリの入出力電力の割合)を増加させ、通常バッテリ(電圧源バッテリ)の入出力電力分配比(電圧変換器10の総入出力電力に対する通常バッテリの入出力電力の割合)を低減し、低温バッテリの温度を上昇させて所定の動作温度範囲内で動作させることができる。
制御部80は、図8のステップS122に示すように、図1に示すスタートスイッチ57がオフかどうかを判断し、スタートスイッチ57がオフである場合には電力分配比変更プログラム88を終了し、スタートスイッチ57がオンである場合には、図8の端子5(図8中に丸囲み数字で示す)〜図6の端子5(図中に丸囲み数字で示す)にジャンプし、図6に示すステップS101に戻り、B1(20)、B2(23)の温度TB1,TB2を監視する。
以上説明したように、制御部80は、複数のバッテリの直並列の切換え可能な電圧変換器10を搭載した本実施形態の電動車両100において、各バッテリの温度が所定の動作温度範囲を超えないようにすることができる。
本発明は以上説明した実施形態に限定されるものではなく、請求の範囲により規定されている本発明の技術的範囲ないし本質から逸脱することない全ての変更及び修正を包含するものである。例えば、実施形態で説明した電圧変換器10は、4つのスイッチング素子のオン・オフ動作によって第1、第2バッテリと出力電路26との接続を直列、並列の間で切換え可能なものであるとして説明したが、電圧変換器は、第1、第2バッテリと出力電路26との接続を直列、並列の間で切換え可能な構成であれば、3つのスイッチング素子を用いたものであってもよいし、5つもしくはそれ以上のスイッチング素子によって構成したものであってもよい。
また、各バッテリ20,23間の温度差が大きくなるような運転状態が継続し、温度差がさらに拡大すると各バッテリ20,23の入出力電力が制限される可能性が高くなってくる。また、温度差が大きい場合、一方のバッテリ負荷が他方のバッテリ負荷に比べて高い状態にあることが想定される。そこで、先に説明した実施形態の図6のステップS102,S103に示すように、B1(20)、B2(23)の各温度TB1,TB2のいずれか一方が高側閾値A以上であるか、あるいは、各温度TB1,TB2のいずれか一方が低側閾値B以下の場合に電圧変換器10の動作モードを並列動作モードに切換えることに代えて、B1(20)、B2(23)の各温度TB1,TB2の温度差が所定値以上となった場合に動作モードを並列動作モードに切換えることとしてもよい。そして、図6のステップS104からS122に示すように、高温バッテリ(電流源バッテリ)の入出力電力分配比を低減し、通常バッテリ(電圧源バッテリ)の入出力電力分配比を増加し、高温バッテリの温度を低減したり、低温バッテリ(電流源バッテリ)の入出力電力分配比を増加させ、通常バッテリ(電圧源バッテリ)の入出力電力分配比を低減し、低温バッテリの温度を上昇させたりすることによって、各バッテリ20,23間の温度差を低減し、各バッテリ20,23の入出力電力制限を回避するとともに、各バッテリ20,23の負荷を分散させることにより各バッテリ20,23の寿命を改善することができる。なお、図6に示すステップS102,103に加えて、B1(20)、B2(23)の各温度TB1,TB2の温度差が所定値以上となった場合に動作モードを並列動作モードに切換えるようにしてもよい。
10 電圧変換器、11 基準電路、12 高圧電路、13 第1電路、14 第2電路、16 第1接続点、17 第2接続点、18 第3接続点、20,23 バッテリ、21,24 コンデンサ、22,25 リアクトル、31〜34 各スイッチング素子、35〜38 ダイオード、26 出力電路、40 インバータ、41 平滑コンデンサ、
43,44,45 出力線、50 モータジェネレータ、51 出力軸、52 ギヤ装置、53 車軸、54 車輪、55 アクセルペダル、56 ブレーキペダル、57 スタートスイッチ、61,64,71,74,91 電圧センサ、62,72 温度センサ、65,75,92,93 電流センサ、80 制御部、81 CPU、82 記憶部、83 機器・センサインターフェース、84 データバス、85 制御プログラム、86 制御データ、87 動作モード切換プログラム、88 電力分配比変更プログラム、94 レゾルバ、95 速度センサ、96 アクセルペダル踏込量センサ、97 ブレーキペダル踏込量センサ、100 電動車両。

Claims (4)

  1. 第1直流電源と、
    第2直流電源と、
    前記第1または第2直流電源のいずれか一方または両方と出力電路との間で双方向に電圧変換を行うと共に、前記出力電路に対する前記第1、第2直流電源の接続を直列とする直列動作モードと前記第1、第2直流電源の接続を並列とする並列動作モードとの間で動作モードを切換え可能な電圧変換器と、
    前記各直流電源の各温度を検出する温度センサと、
    前記電圧変換器の動作モードの切換えを行う制御部と、を備える電動車両であって、
    前記制御部は、
    前記各温度センサで検出した前記各直流電源のいずれか一方の温度が所定の高側閾値以上となった場合に前記電圧変換器の動作モードを並列動作モードに切換えると共に、温度が所定の高側閾値以上となった方の直流電源の電流を低減して該直流電源の温度を低減し、
    前記各温度センサで検出した前記各直流電源のいずれか一方の温度が所定の低側閾値以下となった場合、前記電圧変換器の動作モードを並列動作モードに切換えると共に、温度が所定の低側閾値以下となった方の直流電源の電流を増加させて該直流電源の温度を上昇させる電動車両。
  2. 請求項1に記載の電動車両であって、
    前記制御部は、
    前記各直流電源のいずれか一方の温度が所定の高側閾値以上となった場合に、前記一方の直流電源の入出力電力分配比を低減し、他方の直流電源の入出力電力分配比を増加させ、前記各直流電源のいずれか一方の温度が所定の低側閾値以下となった場合に、前記一方の直流電源の入出力電力分配比を増加し、他方の直流電源の入出力電力分配比を低減させる電動車両。
  3. 第1直流電源と、
    第2直流電源と、
    前記第1または第2直流電源のいずれか一方または両方と出力電路との間で双方向に電圧変換を行うと共に、前記出力電路に対する前記第1、第2直流電源の接続を直列とする直列動作モードと前記第1、第2直流電源の接続を並列とする並列動作モードとの間で動作モードを切換え可能な電圧変換器と、
    前記各直流電源の各温度を検出する温度センサと、
    CPUを含み、前記電圧変換器の動作モードの切換えを行う制御部と、を備える電動車両であって、
    前記制御部は、前記CPUによって、前記各温度センサで検出した前記各直流電源のいずれか一方の温度が所定の高側閾値以上となった場合に前記電圧変換器の動作モードを並列動作モードに切換えると共に、温度が所定の高側閾値以上となった方の直流電源の電流を低減して該直流電源の温度を低減し、
    前記各温度センサで検出した前記各直流電源のいずれか一方の温度が所定の低側閾値以下となった場合、前記電圧変換器の動作モードを並列動作モードに切換えると共に、温度が所定の低側閾値以下となった方の直流電源の電流を増加させて該直流電源の温度を上昇させる動作モード切換プログラムを実行する電動車両。
  4. 第1直流電源と、
    第2直流電源と、
    前記第1または第2直流電源のいずれか一方または両方と出力電路との間で双方向に電圧変換を行うと共に、前記出力電路に対する前記第1、第2直流電源の接続を直列とする直列動作モードと前記第1、第2直流電源の接続を並列とする並列動作モードとの間で動作モードを切換え可能な電圧変換器と、
    前記各直流電源の各温度を検出する温度センサと、
    前記電圧変換器の動作モードの切換えを行う制御部と、を備える電動車両の制御方法であって、
    前記各温度センサで検出した前記各直流電源のいずれか一方の温度が所定の高側閾値以上となった場合に前記電圧変換器の動作モードを並列動作モードに切換えると共に、温度が所定の高側閾値以上となった方の直流電源の電流を低減して該直流電源の温度を低減し、
    前記各温度センサで検出した前記各直流電源のいずれか一方の温度が所定の低側閾値以下となった場合、前記電圧変換器の動作モードを並列動作モードに切換えると共に、温度が所定の低側閾値以下となった方の直流電源の電流を増加させて該直流電源の温度を上昇させる電動車両の制御方法。
JP2014122313A 2014-06-13 2014-06-13 電動車両及びその制御方法 Active JP6256214B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014122313A JP6256214B2 (ja) 2014-06-13 2014-06-13 電動車両及びその制御方法
US14/705,367 US9725007B2 (en) 2014-06-13 2015-05-06 Electric vehicle and control method therefor
CN201510324528.9A CN105313714B (zh) 2014-06-13 2015-06-12 电动车辆及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014122313A JP6256214B2 (ja) 2014-06-13 2014-06-13 電動車両及びその制御方法

Publications (2)

Publication Number Publication Date
JP2016005297A JP2016005297A (ja) 2016-01-12
JP6256214B2 true JP6256214B2 (ja) 2018-01-10

Family

ID=54835451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014122313A Active JP6256214B2 (ja) 2014-06-13 2014-06-13 電動車両及びその制御方法

Country Status (3)

Country Link
US (1) US9725007B2 (ja)
JP (1) JP6256214B2 (ja)
CN (1) CN105313714B (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6260587B2 (ja) * 2015-06-29 2018-01-17 トヨタ自動車株式会社 電源装置
JP6299782B2 (ja) * 2016-02-10 2018-03-28 トヨタ自動車株式会社 電源装置
JP6341222B2 (ja) * 2016-03-31 2018-06-13 トヨタ自動車株式会社 電源システム
US10202043B2 (en) * 2016-04-18 2019-02-12 Ford Global Technologies, Llc Structure to optimize electricity generation in a vehicle
GB2556914A (en) 2016-11-25 2018-06-13 Dyson Technology Ltd Battery system
JP7176852B2 (ja) * 2018-03-30 2022-11-22 本田技研工業株式会社 車両電源システム
DE102018213261A1 (de) * 2018-08-08 2020-02-13 Robert Bosch Gmbh Verfahren zum Betreiben eines Batteriesystems und Elektrofahrzeugs
JP6973857B2 (ja) * 2018-12-03 2021-12-01 Necプラットフォームズ株式会社 バッテリ制御システム、バッテリ装置、コンピュータ装置、バッテリ制御方法及びプログラム
JP7189009B2 (ja) 2018-12-25 2022-12-13 トヨタ自動車株式会社 車両の制御装置
JP7147621B2 (ja) * 2019-02-20 2022-10-05 トヨタ自動車株式会社 充電制御装置及び方法
JP7463921B2 (ja) 2020-09-10 2024-04-09 株式会社豊田自動織機 二次電池システム
DE102021121737A1 (de) 2021-08-23 2023-02-23 Volkswagen Aktiengesellschaft Antriebssystem mit verbesserter Batterieaufwärmung und Kraftfahrzeug

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4563621A (en) * 1983-12-07 1986-01-07 Travis Electronics, Inc. Speed control circuit for golf carts and the like
JPH1094182A (ja) * 1996-09-13 1998-04-10 Honda Motor Co Ltd 電源装置および電気自動車
EP1245452A1 (de) * 2001-03-30 2002-10-02 Siemens Aktiengesellschaft Fahrzeug-Bordnetzsystem, insbesondere für einen Lastkraftwagen
JP4060756B2 (ja) * 2003-06-03 2008-03-12 東芝電池株式会社 二次電池の充電方法及び充電装置とその充電制御プログラム
JP2008295123A (ja) * 2007-05-22 2008-12-04 Mitsubishi Electric Corp 車載用電源装置
CN101777675A (zh) * 2009-01-14 2010-07-14 常州麦科卡电动车辆科技有限公司 均衡充电方法及均衡充电器
JP5525743B2 (ja) * 2009-03-30 2014-06-18 株式会社日本総合研究所 電池制御装置、電池制御方法、及び車両
JP2010246320A (ja) * 2009-04-09 2010-10-28 Fujitsu Ten Ltd 制御装置及び制御方法
JP4960407B2 (ja) * 2009-05-20 2012-06-27 三菱電機株式会社 車両用駆動電源装置
CN102074760B (zh) * 2010-07-30 2012-07-18 比亚迪股份有限公司 一种电池的加热电路
JP5492040B2 (ja) 2010-09-22 2014-05-14 株式会社豊田中央研究所 電源システム
JP2012209070A (ja) * 2011-03-29 2012-10-25 Seiko Instruments Inc 燃料電池装置
JP5644648B2 (ja) * 2011-04-18 2014-12-24 株式会社デンソー 電池温度調整装置
JP6026093B2 (ja) * 2011-09-30 2016-11-16 株式会社豊田中央研究所 電源システム
JP5691981B2 (ja) * 2011-10-04 2015-04-01 トヨタ自動車株式会社 直並列電池システムの充電制御装置
JP5780914B2 (ja) * 2011-10-24 2015-09-16 株式会社豊田中央研究所 電力変換器の制御装置および制御方法
JP2013192278A (ja) * 2012-03-12 2013-09-26 Toyota Motor Corp 電動車両
CN103560307B (zh) * 2013-11-26 2017-02-08 山东威能环保电源科技股份有限公司 一种振荡式电池组快速加热电路及方法

Also Published As

Publication number Publication date
US9725007B2 (en) 2017-08-08
CN105313714B (zh) 2017-12-15
US20150360579A1 (en) 2015-12-17
CN105313714A (zh) 2016-02-10
JP2016005297A (ja) 2016-01-12

Similar Documents

Publication Publication Date Title
JP6256214B2 (ja) 電動車両及びその制御方法
US9902270B2 (en) Motor-driven vehicle
CN108569159B (zh) 驱动装置
JP4193704B2 (ja) 電源装置およびそれを搭載する自動車
US20130258734A1 (en) Apparatus for controlling voltage converting apparatus
JP5954356B2 (ja) 電動車両
US10040356B2 (en) Power supply device
US9647547B2 (en) Voltage conversion device for stepping up voltage
JP7041095B2 (ja) 電源システム
JP2019071711A (ja) 電源装置
JP2007166874A (ja) 電圧変換装置
JP5880518B2 (ja) 電動車両
JP7039520B2 (ja) 電源システム
JP7069075B2 (ja) 電源システム
JP2015089174A (ja) 電動車両
JP6024701B2 (ja) 電力変換回路
EP2808989B1 (en) Control apparatus for voltage conversion apparatus
JP5928442B2 (ja) 車両の電源装置
JP2014121221A (ja) 電源システム
JP2013207915A (ja) 電圧変換装置の制御装置
JP5621633B2 (ja) 電源装置
JP2019075886A (ja) 昇圧コンバータ装置
CN114590137A (zh) 电源系统
JP5915626B2 (ja) 電力変換装置及び電力変換方法
JP6862960B2 (ja) 駆動装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171120

R151 Written notification of patent or utility model registration

Ref document number: 6256214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151