RU2366041C1 - Способ эксплуатации никель-водородной аккумуляторной батареи и аккумуляторная батарея для его реализации - Google Patents

Способ эксплуатации никель-водородной аккумуляторной батареи и аккумуляторная батарея для его реализации Download PDF

Info

Publication number
RU2366041C1
RU2366041C1 RU2008122643/09A RU2008122643A RU2366041C1 RU 2366041 C1 RU2366041 C1 RU 2366041C1 RU 2008122643/09 A RU2008122643/09 A RU 2008122643/09A RU 2008122643 A RU2008122643 A RU 2008122643A RU 2366041 C1 RU2366041 C1 RU 2366041C1
Authority
RU
Russia
Prior art keywords
battery
batteries
nickel
accumulator battery
thermal
Prior art date
Application number
RU2008122643/09A
Other languages
English (en)
Inventor
Виктор Владимирович Коротких (RU)
Виктор Владимирович Коротких
Наталья Владимировна Шаркова (RU)
Наталья Владимировна Шаркова
Original Assignee
Открытое акционерное общество "Информационные спутниковые системы" им. академика М.Ф. Решетнева"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Информационные спутниковые системы" им. академика М.Ф. Решетнева" filed Critical Открытое акционерное общество "Информационные спутниковые системы" им. академика М.Ф. Решетнева"
Priority to RU2008122643/09A priority Critical patent/RU2366041C1/ru
Application granted granted Critical
Publication of RU2366041C1 publication Critical patent/RU2366041C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

Изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации никель-водородных аккумуляторных батарей (НВАБ) преимущественно в автономных системах электропитания искусственных спутников Земли (ИСЗ). Техническим результатом изобретения является повышение надежности эксплуатации НВАБ за счет дополнительного термостатирования поверхности аккумуляторов, не находящейся в тепловом сопряжении с термоплатой. Согласно изобретению способ эксплуатации НВАБ заключается в проведении ее зарядов, хранении в заряженном состоянии с периодическими подзарядами, проведении разрядов и термостатировании аккумуляторов посредством термоплаты, находящейся в тепловом сопряжении с цилиндрическими поверхностями аккумуляторов, аккумуляторная батарея для реализации способа содержит аккумуляторы, вмонтированные в термоплату через электронепроводящий герметик. 2. н п. ф-лы, 2 ил.

Description

Предлагаемое изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации никель-водородных аккумуляторных батарей преимущественно в автономных системах электропитания искусственных спутников Земли (ИСЗ).
Известны аккумуляторные батареи и способы эксплуатации никель-водородных аккумуляторных батарей, описанные в технической литературе (см. Б.И.Центер, Н.Ю.Лызлов. "Металл-водородные электрические системы". Л.: "Химия", Ленинградское отделение, 1989 [1]).
Известен способ эксплуатации никель-водородной аккумуляторной батареи (патент № 2084055, Н01М 10/44), согласно которому заряд аккумуляторной батареи ограничивают, исходя из плотности водорода, рассчитанного на основании измеренных давления и температуры аккумуляторов, который обеспечивает заряд аккумуляторной батареи до уровня (60-80)% номинальной емкости.
Известен способ эксплуатации никель-водородной аккумуляторной батареи (авт. св. № 1746443, Н01М 10/44, 12/06), в котором управление заряд-разрядными циклами проводят по двухуставочному датчику давления с разницей уставок давления ΔР и температуре, а разряд оканчивают по минимальному напряжению, при достижении на разряде аккумуляторов минимального значения напряжения периодически повышают уставки датчика давления, причем нижнюю уставку повышают до уровня верхней, а верхнюю - на величину ΔР.
При практическом применении известных способов эксплуатации никель-водородных аккумуляторных батарей были выявлены следующие особенности поведения аккумуляторов.
Так на одном из действующих геостационарных ИСЗ, в процессе эксплуатации аккумуляторной батареи, в отдельных аккумуляторах наблюдалось постепенное снижение давления водорода. Учитывая, что давление водорода пропорционально степени заряженности никель-водородного аккумулятора, констатируем, что в батарее возник постепенно нарастающий разбаланс аккумуляторов по емкости. Более тщательный анализ напряжения аккумуляторов показал, что имеется некоторое количество аккумуляторов, имеющих тенденцию к снижению емкости.
Появление в составе батареи ряда аккумуляторов с пониженной емкостью резко сокращает энергетические возможности и ресурс батареи и ИСЗ в целом.
Проведенные исследования показали, что причиной пониженного разрядного напряжения этих аккумуляторов явилось возникновение в них температурного градиента. В результате этого из электролита в центральной области активной массы «уходит» вода в более холодные граничные области и, как следствие, повышается внутреннее сопротивление аккумулятора с соответствующим понижением разрядного напряжения.
Такой же факт снижения энергетических характеристик отдельных аккумуляторов зафиксирован при эксплуатации никель-водородной аккумуляторной батареи в составе ИСЗ Intelsat V F-6 и экспериментально подтвержден в лаборатории COMSAT (см. Martin Earl and Todd Burke Comsat Labs., Andrew Dunnet, INTELSAT. Method for Rejuvenating Ni-H2 Battery Cells. Eng. Conf. "Technol. Energy Effic. 21-st Century", San Diego, Calif., aug. 3-7, 1992: IECIC-92 Vol.1, 1992, p.127-132, [2]).
Движущей силой данного процесса является градиент температур: чем он выше, тем интенсивнее во времени происходит конденсация пара из электролита на более холодных областях аккумулятора.
Существует предельный градиент температур, ниже которого не происходит конденсация пара (при 15°С - примерно 7°С, а при 25°С - около 8°С).
Наиболее близким по технической сущности является способ эксплуатации никель-водородной аккумуляторной батареи в составе геостационарного искусственного спутника Земли (патент № 2305349), заключающийся в контроле установившегося тока саморазряда и степени заряженности аккумуляторной батареи по аналоговым датчикам давления, хранении в заряженном состоянии с проведением периодических дозарядов для компенсации саморазряда аккумуляторной батареи на солнечных орбитах, в проведении заряд-разрядных циклов на теневых орбитах и поддержании токов саморазряда в определенных диапазонах в зависимости от режима эксплуатации аккумуляторной батареи и температуры посадочного места. Этот способ принят за прототип.
Известный способ, базируясь на поддержании величины токов саморазряда аккумуляторов (которые находятся в прямой зависимости от степени заряженности и температуры аккумуляторов), позволяет косвенно ограничить нагрев последних и соответственно снизить вероятность появления критичного (выше предельного) градиента температур.
Однако в связи с тем, что в аккумуляторной батарее контролируются токи саморазряда только «управляющих» аккумуляторов и контроль их носит усредненный характер, не исключается возможность возникновения в отдельных аккумуляторах критичного температурного градиента, что снизит энергетические характеристики аккумуляторной батареи.
Известна никель-водородная аккумуляторная батарея (см. патент № 2133069, Н01М 2/10, Н01М 10/34): «Никель-водородная аккумуляторная батарея, состоящая из корпуса, в цилиндрических отверстиях которого размещены никель-водородные аккумуляторы, отличающаяся тем, что корпус батареи имеет в каждом из цилиндрических отверстий, в которых расположены никель-водородные аккумуляторы, кольцевую канавку, совмещенную с такой же канавкой в корпусе никель-водородного аккумулятора, где размещен гибкий шнур», принятая за прототип.
Недостатком известной аккумуляторной батареи является то, что в ее конструкции не учитывается неравномерность радиального тепловыделения по осевому сечению аккумуляторов и не принято конструктивных мер по выравниванию температуры в указанном сечении, что способствует объективному наличию нежелательного градиента температуры в аккумуляторах.
Задачей заявляемого изобретения является повышение надежности эксплуатации никель-водородной аккумуляторной батареи.
Поставленная цель достигается тем, что дополнительно термостатируют поверхности аккумуляторов, не находящиеся в тепловом сопряжении с термоплатой для повышения их текущей температуры. При этом в аккумуляторной батарее для реализации способа на поверхность аккумуляторов вне зоны сопряжения с термоплатой нанесено термоизолирующее покрытие.
Суть предлагаемого способа поясняется чертежами, где на фиг.1 представлены графики температуры аккумулятора в осевом направлении, а на фиг.2 - аккумуляторная батарея для реализации предлагаемого способа эксплуатации никель-водородной аккумуляторной батареи.
Для расчета температуры аккумуляторов использовалась созданная на предприятии теплофизическая модель аккумуляторной батареи 20-НВ70, разработки ОАО «Сатурн», г.Краснодар, которая описывается системой дифференциальных уравнений и решается численным интегрированием с шагом расчета 0,05 секунды. Модель предусматривает задание внешних тепловых интерфейсов с другими частями ИСЗ в виде фиксированных данных, предназначенных для расчетного моделирования "горячего" и "холодного" случаев, а также представляет прогнозы температур в тех узлах, которые соответствуют местам установки телеметрических датчиков, так, чтобы все измеряемые при эксплуатации в полете температуры имели расчетные прогнозы.
При разработке модели конструкция блока АБ разбита на ряд элементарных расчетных слоев, находящихся между собой в тепловом взаимодействии.
Проведенное тестирование модели по результатам термобалансных испытаний и штатной эксплуатации аккумуляторной батареи подтвердили соответствие расчетных данных штатным измерениям с высокой степенью точности.
На фиг.1 представлены графики температуры аккумулятора в осевом направлении. При этом под графиком условно изображено сечение аккумулятора 3, где 4 - электродная масса аккумулятора, а 5 - свободная от электродной массы зона в аккумуляторе.
Действительно, температура аккумуляторов, фиг.1, в осевом направлении имеет максимальное значение в поперечном сечении, проходящем через центр электродной массы, и незначительно уменьшается к краям зоны сопряжения аккумуляторов с термоплатой (график 1), при этом максимальный градиент температуры в аккумуляторе приходится на свободную от электродной массы зону.
Этот факт позволяет выбрать способ демпфирования нежелательного, в плане возникновения осевого градиента температуры явления.
Заявляемое изобретение предлагает реализовать процесс демпфирования возникновения существенного температурного градиента в осевом направлении аккумуляторов путем дополнительного термостатирования поверхностей аккумуляторов не находящиеся в тепловом сопряжении с термоплатой. При этом в аккумуляторной батарее для реализации способа на поверхность аккумуляторов вне зоны сопряжения с термоплатой нанесено термоизолирующее покрытие.
Снижение коэффициента теплоотдачи по не сопрягающимся с термоплатой поверхностям аккумуляторов вне зоны сопряжения аккумуляторов с термоплатой позволяет реализовать алгоритм пассивного термостатирования.
Расчет температуры аккумулятора в осевом направлении проводился для двух случаев:
1. Аккумулятор без термоизолирующего покрытия не сопрягающихся с термоплатой поверхностей. На фиг.1 - график температуры аккумулятора в осевом направлении - 1;
2. Аккумулятор с термоизолирующим покрытием не сопрягающихся с термоплатой поверхностей. При этом было выбрано покрытие: эпоксидный клей ВК-9, толщина 2 мм (плотность 1100 кг/м3, теплоемкость 0,4806 кДж/кг·К, теплопроводность 0,226 Дж/м·К). На фиг.1 - график температуры аккумулятора в осевом направлении - 2.
Как видно из приведенных графиков, введение термоизолирующего покрытия позволило существенно нивелировать градиент температуры в осевом направлении аккумулятора.
На фиг.2 схематично изображена никель-водородная аккумуляторная батарея.
В отверстиях термоплаты 6 установлены последовательно соединенные между собой в электрическую цепь аккумуляторы 3 (аккумулятор 3а показан в разрезе по продольному сечению). Зазоры между термоплатой и аккумуляторами заполнены теплопроводящей (электронепроводящей) пастой-герметиком 7. На поверхность аккумуляторов вне зоны контакта с термоплатой наносят термоизолирующее покрытие 8 с толщиной, линейно увеличивающейся от зоны сопряжения аккумуляторов с термоплатой до вершин полусфер аккумуляторов.
На виде А в увеличенном масштабе показано покрытие 8 нижней части аккумулятора 3а (под термоплатой 6). Покрытие верхней части аккумулятора (над термоплатой 6) - аналогично.
Таким образом, предлагаемый способ эксплуатации никель-водородной аккумуляторной батареи и аккумуляторная батарея позволяют снизить величину температурного градиента в осевом направлении аккумуляторов в процессе эксплуатации аккумуляторной батареи, что повышает надежность эксплуатации никель-водородной аккумуляторной батареи в составе автономной системы электропитания и ИСЗ.

Claims (2)

1. Способ эксплуатации никель-водородной аккумуляторной батареи, заключающийся в проведении ее зарядов, хранении в заряженном состоянии с периодическими подзарядами, проведении разрядов и термостатировании аккумуляторов посредством термоплаты, находящейся в тепловом сопряжении с цилиндрическими поверхностями аккумуляторов, отличающийся тем, что дополнительно термостатируют поверхности аккумуляторов, не находящиеся в тепловом сопряжении с термоплатой, для повышения их текущей температуры.
2. Аккумуляторная батарея для реализации способа по п.1, содержащая аккумуляторы, вмонтированные в термоплату через электронепроводящий герметик, отличающаяся тем, что на поверхность аккумуляторов вне зоны сопряжения с термоплатой нанесено термоизолирующее покрытие.
RU2008122643/09A 2008-06-04 2008-06-04 Способ эксплуатации никель-водородной аккумуляторной батареи и аккумуляторная батарея для его реализации RU2366041C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008122643/09A RU2366041C1 (ru) 2008-06-04 2008-06-04 Способ эксплуатации никель-водородной аккумуляторной батареи и аккумуляторная батарея для его реализации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008122643/09A RU2366041C1 (ru) 2008-06-04 2008-06-04 Способ эксплуатации никель-водородной аккумуляторной батареи и аккумуляторная батарея для его реализации

Publications (1)

Publication Number Publication Date
RU2366041C1 true RU2366041C1 (ru) 2009-08-27

Family

ID=41150029

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008122643/09A RU2366041C1 (ru) 2008-06-04 2008-06-04 Способ эксплуатации никель-водородной аккумуляторной батареи и аккумуляторная батарея для его реализации

Country Status (1)

Country Link
RU (1) RU2366041C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2529011C2 (ru) * 2012-06-22 2014-09-27 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Способ эксплуатации никель-водородной аккумуляторной батареи в автономной системе электропитания космического аппарата и автономная система электропитания для его реализации
RU2531383C1 (ru) * 2010-07-30 2014-10-20 ШЭНЬЧЖЭНЬ БИД АУТО Р энд Д КОМПАНИ ЛИМИТЕД Цепь нагрева аккумуляторной батареи
RU2534748C2 (ru) * 2012-11-06 2014-12-10 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решётнева" Способ эксплуатации никель-водородной аккумуляторной батареи в автономной системе электропитания космического аппарата и автономная система электропитания для его реализации
RU2543487C2 (ru) * 2013-04-23 2015-03-10 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Способ эксплуатации никель-водородных аккумуляторных батарей системы электропитания космического аппарата

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2531383C1 (ru) * 2010-07-30 2014-10-20 ШЭНЬЧЖЭНЬ БИД АУТО Р энд Д КОМПАНИ ЛИМИТЕД Цепь нагрева аккумуляторной батареи
RU2529011C2 (ru) * 2012-06-22 2014-09-27 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Способ эксплуатации никель-водородной аккумуляторной батареи в автономной системе электропитания космического аппарата и автономная система электропитания для его реализации
RU2534748C2 (ru) * 2012-11-06 2014-12-10 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решётнева" Способ эксплуатации никель-водородной аккумуляторной батареи в автономной системе электропитания космического аппарата и автономная система электропитания для его реализации
RU2543487C2 (ru) * 2013-04-23 2015-03-10 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Способ эксплуатации никель-водородных аккумуляторных батарей системы электропитания космического аппарата

Similar Documents

Publication Publication Date Title
US10594003B2 (en) Battery system
RU2366041C1 (ru) Способ эксплуатации никель-водородной аккумуляторной батареи и аккумуляторная батарея для его реализации
Yeow et al. 3D thermal analysis of Li-ion battery cells with various geometries and cooling conditions using abaqus
CN103904381B (zh) 电池内部温度测量装置
EP1018179A1 (en) Pressure system and method for rechargeable thin-film electrochemical cells
Wu et al. Experimental study on aerogel passive thermal control method for cylindrical lithium-ion batteries at low temperature
US20100315035A1 (en) Autonomous Module with Extended Operational Life and Method Fabrication the Same
CN112068000B (zh) 一种考虑动力电池耐久性影响的峰值功率预测方法
Uno et al. Accelerated ageing testing and cycle life prediction of supercapacitors for alternative battery applications
Ma et al. Electro-thermal modeling of a lithium-ion battery system
KR20180021570A (ko) 배터리의 용량상태 결정방법 및 그를 이용한 용량감소 측정방법
Lee et al. Three‐dimensional thermal modeling of electric vehicle batteries
Du et al. Characterization and analysis of the effect of pressure on the performance of a large format NMC/C lithium-ion battery
WO2007102758A1 (en) Power compensator
Ponnappan et al. Contact thermal resistance of Li-ion cell electrode stack
Iraola et al. Methodology for thermal modelling of lithium-ion batteries
US20230275288A1 (en) Evaluation of cell-level heat generation in battery electric system using direct-to-air heat pump
RU2339125C1 (ru) Аккумуляторная батарея космического аппарата
RU2314602C1 (ru) Способ эксплуатации никель-водородной аккумуляторной батареи
Ma et al. Comparative study of thermal characteristics of lithium-ion batteries for vehicle applications
WO2019195899A1 (en) Heating device for lead-acid batteries operating under low temperatures and a battery with this device
Mottard et al. Experimental study of the thermal behavior of a water cooled Ni–Cd battery
US10903537B2 (en) Optimized heat conducting member for battery cell thermal management
Huang et al. A two‐dimensional transient thermal model for valve‐regulated lead‐acid batteries under overcharge
RU2324262C2 (ru) Способ управления энергоемкостью металл-водородной аккумуляторной батареи с общим газовым коллектором

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150605