JP5660105B2 - 蓄電システム - Google Patents

蓄電システム Download PDF

Info

Publication number
JP5660105B2
JP5660105B2 JP2012234793A JP2012234793A JP5660105B2 JP 5660105 B2 JP5660105 B2 JP 5660105B2 JP 2012234793 A JP2012234793 A JP 2012234793A JP 2012234793 A JP2012234793 A JP 2012234793A JP 5660105 B2 JP5660105 B2 JP 5660105B2
Authority
JP
Japan
Prior art keywords
voltage
power storage
resistor
storage block
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012234793A
Other languages
English (en)
Other versions
JP2014086296A (ja
Inventor
尭志 野沢
尭志 野沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012234793A priority Critical patent/JP5660105B2/ja
Priority to US14/058,899 priority patent/US9128138B2/en
Priority to CN201310498940.3A priority patent/CN103779620B/zh
Publication of JP2014086296A publication Critical patent/JP2014086296A/ja
Application granted granted Critical
Publication of JP5660105B2 publication Critical patent/JP5660105B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • G01R31/007Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks using microprocessors or computers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/27Testing of devices without physical removal from the circuit of which they form part, e.g. compensating for effects surrounding elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Combustion & Propulsion (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、電気的に直列に接続された複数の蓄電素子に対して設けられる過電圧保護素子を含む保護回路の異常を検出する技術に関する。
単電池の逆充電状態を回避するために、電気的に直列に接続された複数の単電池のそれぞれに対し、ツェナーダイオードを電気的に並列に接続することができる。例えば、単電池が逆充電状態となったときに、放電電流をツェナーダイオードに流して、単電池をバイパスさせることにより、単電池の過充電状態を解消させることができる。
しかしながら、ツェナーダイオードが故障して異常が生じると、ツェナーダイオードにリーク電流が流れるおそれがある。リーク電流によって並列に接続される単電池の電圧が低下するため、ツェナーダイオードの異常を検出する必要がある。特許文献1では、電池の充放電経路に開閉部(スイッチング素子)の故障を検出するために、別途の故障検出用スイッチング素子を設け、故障検出用スイッチング素子のオン/オフ制御に対して開閉部のオン/オフ状態を検出することで、開閉部の故障を検出している。
特開2010−140785号公報
特許文献1では、故障検出のためにオン/オフ制御可能な別途の故障検出用スイッチング素子を設けなければならないため、回路構成の複雑化を招くとともに、故障検出対象がスイッチング素子に限られてしまい、例えば、ツェナーダイオード等の過電圧保護回路に使用される素子に対する故障検出を行うことができない。
そこで、本発明の目的は、充放電を行う蓄電素子をそれぞれ含み、電気的に直列に接続された複数の蓄電ブロックそれぞれに対して設けられる過電圧保護素子を含む保護回路の異常を検出することができる蓄電システムを提供することにある。
本願第1の発明の蓄電システムは、負荷と接続されて充放電を行う蓄電素子をそれぞれ含み、直列に接続された複数の蓄電ブロックと、電圧検出ラインを介して各蓄電ブロックと接続され、各蓄電ブロックの電圧値を検出する電圧検出回路と、電圧検出ラインを介して蓄電ブロックに並列に接続される過電圧保護素子と、過電圧保護素子に直列に接続される第1抵抗とを含み、蓄電ブロックそれぞれに設けられる保護回路と、電圧検出ラインを介して過電圧保護素子それぞれに並列に接続されるとともに第1抵抗に直列に接続され、第1抵抗よりも大きい抵抗値を有する第2抵抗を含む放電回路と、電圧検出回路の検出値を用いて蓄電ブロック間電圧を比較し、過電圧保護素子の異常を検出するコントローラと、を有する。
コントローラは、負荷に接続されていない状態において、放電回路が動作して第2抵抗に電流を流す放電状態にある第1蓄電ブロックの電圧値と、放電回路による放電状態にない第2蓄電ブロック電圧値とを比較して、過電圧保護素子の異常を検出する。
本願第1の発明によれば、放電回路の第2抵抗の抵抗値が保護回路の第1抵抗の抵抗値よりも大きく構成されているので、異常が生じた状態の過電圧保護素子に流れる第1抵抗の抵抗値に応じたリーク電流が、放電回路が動作した際の過電圧保護素子に並列に接続された第2抵抗を介した電流経路を流れる電流よりも大きくなる。放電回路により放電状態にある蓄電ブロックの電圧値の低下量よりも、過電圧保護素子に異常が生じることで流れるリーク電流によって低下する電圧値の低下量が大きくなるため、蓄電ブロック間で電圧を比較することにより、過電圧保護素子に異常が生じてリーク電流が流れている蓄電ブロック、すなわち、過電圧保護素子の異常を検出することができる。
コントローラは、負荷に接続されていない状態において放電回路を動作させて各蓄電ブロックの電圧を均等化させる均等化処理を遂行する。このとき、コントローラは、放電回路を動作させて第1蓄電ブロックの電圧値を低下させる均等化処理中に所定の間隔で検出される第1蓄電ブロックの電圧値と、第2蓄電ブロックの電圧値との電圧差を求め、電圧差が所定の閾値を超えた場合に、第2蓄電ブロックに並列に接続される過電圧保護素子が異常状態であると検出することができる。
放電回路は、第2抵抗と、第2抵抗に直列に接続されるスイッチとを含むように構成することができる。また、過電圧保護素子は、ツェナーダイオードで構成することができる。
実施例1の車両に搭載される電池システムの構成を示す図である。 実施例1の組電池及び電圧監視ユニットの構成を示す図である。 実施例1の保護回路の異常によって生じるリーク電流と均等化による放電電流を説明するための図である。 実施例1の保護回路の異常検出を説明するための図である。 実施例1の保護回路の異常検出処理を示すフローチャートである。
以下、本発明の実施例について説明する。
(実施例1)
本実施例における電池システムについて、図1を用いて説明する。図1は、電池システムの構成を示す概略図である。本実施例の電池システムは、車両に搭載されている。車両としては、ハイブリッド自動車や電気自動車がある。本実施例では、ハイブリッド自動車を一例に説明しているが、例えば、車両を走行させる動力源として電池システム(組電池)だけを備えている電気自動車であってもよい。
電池システムは、組電池10を有する。組電池10の正極端子およびインバータ31は、正極ライン(ケーブル)PLを介して接続され、組電池10の負極端子およびインバータ31は、負極ライン(ケーブル)NLを介して接続されている。正極ラインPLには、システムメインリレーSMR−Bが設けられており、負極ラインNLには、システムメインリレーSMR−Gが設けられている。
インバータ31(負荷)は、組電池10から供給された直流電力を交流電力に変換する。インバータ31には、モータ・ジェネレータ32(交流モータ)が接続されており、モータ・ジェネレータ32は、インバータ31から供給された交流電力を受けて、車両を走行させるための運動エネルギを生成する。モータ・ジェネレータ32は、車輪33と接続されている。また、車両がハイブリッド自動車である場合は、車輪33に不図示のエンジンが接続され、エンジンで生成された運動エネルギが車輪33に伝達される。これにより、組電池10やエンジンの出力を用いて、車両を走行させることができる。
車両を減速させたり、停止させたりするとき、モータ・ジェネレータ32は、車両の制動時に発生する運動エネルギを電気エネルギ(交流電力)に変換する。インバータ31は、モータ・ジェネレータ32が生成した交流電力を直流電力に変換して、組電池10に供給する。これにより、組電池10は、回生電力を蓄えることができる。また、ハイブリッド自動車の場合では、回生電力の加え、エンジンによりモータ・ジェネレータ32を駆動させて電気エネルギを組電池10に蓄えることもできる。
コントローラ50は、インバータ31およびモータ・ジェネレータ32のそれぞれに制御信号を出力して、インバータ31およびモータ・ジェネレータ32の駆動を制御する。コントローラ50は、各種の情報を記憶する不図示のメモリを備えることができる。メモリは、コントローラ50に対して内蔵又は外付けされるように設けることができる。
なお、コントローラ50は、インバータ31及びモータ・ジェネレータ32毎に設けることも可能であり、後述する均等化処理や保護回路の異常検出処理を行うための別途のコントローラを、車両制御と独立して設けることも可能である。つまり、車両全体の制御を司る中央制御装置が、各部を制御したり、各部の制御毎の個別のコントローラを設けて中央制御装置が個別の各コントローラと接続される構成であってもよい。
また、コントローラ50には、車両のイグニッションスイッチのオン/オフ(IG−ON,IG−OFF)に関する情報が入力される。イグニッションスイッチのオン/オフに基づいて、コントローラ50は、システムメインリレーSMR−B,SMR−Gに制御信号を出力することにより、各システムメインリレーSMR−B,SMR−Gをオンおよびオフの間で切り替えられる。
コントローラ50は、車両のイグニッションスイッチがオフからオンに切り替わると、システムメインリレーSMR−B,SMR−Gをオフからがオンに切り替え、組電池10とインバータ31とを接続する。これにより、図1に示す電池システムは、起動状態(Ready−On)となる。
一方、イグニッションスイッチがオンからオフに切り替わると、コントローラ50は、システムメインリレーSMR−B,SMR−Gをオンからオフに切り替え、組電池10とインバータ31との接続を遮断する。これにより、図1に示す電池システムは、停止状態(Ready−Off)となる。
なお、電流センサや温度センサを設けることもできる(不図示)。組電池10の電流経路上に設けられる電流センサは、組電池10に流れる充放電電流を検出し、検出結果をコントローラ50に出力することができる。また、組電池10に設けられる温度センサは、組電池10の電池温度を検出して、検出結果をコントローラ50に出力することができる。
コントローラ50は、電圧監視ユニット20の検出値、電流値等に基づいて組電池10の充電状態(SOC:State Of Charge)を算出したり、組電池10の出入力電力を把握することができ、車両出力要求に応じた充放電制御を行うことができる。
なお、本実施例の組電池10は、インバータ31に直接接続されているが、これに限るものではない。具体的には、組電池10およびインバータ31の間の電流経路に、昇圧回路を配置することができる。これにより、昇圧回路は、組電池10の出力電圧を昇圧し、昇圧後の電力をインバータ31に供給することができる。また、昇圧回路は、インバータ31の出力電圧を降圧し、降圧後の電力を組電池10に供給することができる。
組電池10は、外部電源を用いて充電することもできる。外部電源とは、車両の外部において、車両とは別に設けられた電源であり、外部電源としては、例えば、商用電源を用いることができる。商用電源を用いるときには、交流電力を直流電力に変換する不図示の充電器が必要となる。充電器は、車両の外部において、車両とは別に設けることもできるし、図1に示す電池システムに追加することもできる。
電圧監視ユニット40は、組電池10の電圧値を検出したり、組電池10に含まれる単電池11の電圧値を検出したりして、検出結果をコントローラ50に出力する。図2は、組電池10および電圧監視ユニット40の構成を示す図である。
図2に示すように、組電池10は、電気的に直列に接続された複数の単電池(蓄電素子に相当する)11を有する。組電池10を構成する単電池11の数は、組電池10の要求出力等に基づいて、適宜設定することができる。単電池11としては、ニッケル水素電池やリチウムイオン電池といった二次電池を用いることができる。また、二次電池の代わりに、電気二重層キャパシタを用いることができる。
電圧監視ユニット(電圧検出回路に相当する)40は、複数の電圧検出ラインL1,L2を介して、各単電池11と接続されている。なお、図2では省略しているが、電圧監視ユニット40および単電池11の間に位置する電圧検出ラインL1,L2には、スイッチを設けることができる。このスイッチとしては、例えば、フォトMOS(Metal Oxide Semiconductor)リレーを用いることができる。
2つの電圧検出ラインL1は、組電池10の正極端子および負極端子のそれぞれに接続されている。組電池10の正極端子は、図2に示す組電池10の回路構成において、一端に位置する単電池11の正極端子に相当する。組電池10の負極端子は、図2に示す組電池10の回路構成において、他端に位置する単電池11の負極端子に相当する。電圧検出ラインL2は、電気的に直列に接続された2つの単電池11において、一方の単電池11の負極端子と、他方の単電池11の正極端子とに接続されている。
各電圧検出ラインL1,L2には、抵抗R11(第1抵抗に相当する)が設けられている。許容電流値よりも大きな電流が抵抗R11に流れたとき、抵抗R11が溶断することにより、電圧監視ユニット40および組電池10の電気的な接続を遮断することができる。これにより、組電池10(単電池11)から電圧監視ユニット40に過大な電流が流れてしまうことを抑制できる。
各単電池11には、電圧検出ラインL1,L2を介してツェナーダイオードDが電気的に並列に接続されている。ツェナーダイオードDのカソードは、単電池11の正極端子と接続されており、カソードおよび正極端子の間の電流経路に抵抗R11が設けられている。ツェナーダイオードDのアノードは、単電池11の負極端子と接続されており、アノードおよび負極端子の間の電流経路に抵抗R11が設けられている。抵抗R11は、ツェナーダイオードDに直列に接続されている。
ツェナーダイオードDは、組電池10から電圧監視ユニット40に過電圧が印加することを抑制するために用いられる。すなわち、組電池10から電圧監視ユニット40に過電圧が印加されるときには、ツェナーダイオードDに電流が流れることにより、電圧監視ユニット40に過電圧が印加されることを抑制する。ここで、複数のツェナーダイオードDは、電気的に直列に接続されている。
電圧検出ラインL1には、抵抗R21が設けられており、抵抗R21は、電圧監視ユニット40に含まれている。抵抗R11,R21は、電気的に直列に接続されており、抵抗R11,R21の接続点に対して、ツェナーダイオードDのカソードが接続されている。
電圧検出ラインL2は、電圧監視ユニット40の内部において、2つの分岐ラインL21,L22に分岐されている。分岐ラインL21には、抵抗R21が設けられており、分岐ラインL22には、抵抗R22が設けられている。
電圧検出ラインL2において、抵抗R11,R21は、電気的に直列に接続されており、抵抗R11,R21の接続点には、ツェナーダイオードDのアノードが接続されている。また、電圧検出ラインL2において、抵抗R11,R22は、電気的に直列に接続されており、抵抗R11,R22の接続点には、ツェナーダイオードDのアノードが接続されている。
電圧検出ラインL1,L2において、抵抗R21,R22(第2抵抗に相当する)は、それぞれツェナーダイオードDに並列に接続されるとともに、抵抗R11(第1抵抗)に直列に接続されている。
ここで、本実施例のツェナーダイオードDは、過電圧保護素子であり、直列に接続される単電池11それぞれに対して電圧検出ラインL1,L2又はL2,L2を介して並列に接続され、直列に接続される各抵抗R11(第1抵抗)と共に、電圧監視ユニット40に過電圧が印加されることを抑制するための保護回路を構成している。
電圧検出ラインL1および分岐ラインL22には、キャパシタ(フライングキャパシタ)CおよびスイッチSW1が接続されている。具体的には、キャパシタCやスイッチSW1は、抵抗R21およびサンプリングスイッチSW21の間に位置する電圧検出ラインL1と、抵抗R22およびサンプリングスイッチSW22の間に位置する分岐ラインL22とに接続されている。サンプリングスイッチSW21は、電圧検出ラインL1に接続されており、サンプリングスイッチSW22は、分岐ラインL22に接続されている。
また、各単電池11の正極端子および負極端子と接続された2つの電圧検出ラインL2に関して、一方の電圧検出ラインL2における分岐ラインL21と、他方の電圧検出ラインL2における分岐ラインL22には、キャパシタCやスイッチSW1が接続されている。具体的には、キャパシタCやスイッチSW1は、抵抗R21およびサンプリングスイッチSW21の間に位置する分岐ラインL21と、抵抗R22およびサンプリングスイッチSW22の間に位置する分岐ラインL22とに接続されている。ここで、サンプリングスイッチSW21は、分岐ラインL21と接続されており、サンプリングスイッチSW22は、分岐ラインL22と接続されている。
スイッチSW1は、コントローラ50からの制御信号を受けることにより、オンおよびオフの間で切り替わる。スイッチSW1は、組電池10を構成する、すべての単電池11における電圧値を均等化させるために用いられる。
具体的には、特定の単電池11の電圧値が、他の単電池11の電圧値よりも高いときには、特定の単電池11と電気的に並列に接続されたスイッチSW1をオフからオンに切り替えることにより、特定の単電池11を放電させることができる。すなわち、スイッチSW1をオンにすると、特定の単電池11の放電電流を抵抗R21,R22に流すことができ、特定の単電池11の電圧値を低下させることができる。これにより、特定の単電池11の電圧値を、他の単電池11の電圧値に揃えることができる。
本実施例では、電圧検出ラインL1,L2を介してツェナーダイオードDに並列に接続され、均等化のための放電電流を流す抵抗である抵抗R21,R22(第2抵抗)は、直列に接続されるスイッチSW1(均等化スイッチ)と共に、均等化回路を構成している。なお、本実施例の均等化回路は、電圧監視ユニット40内に設けているが、電圧監視ユニット40に対して保護回路との間に個別に設けてもよい。
また、保護回路に含まれる抵抗R11と、均等化回路に含まれる抵抗R21,R22は、抵抗値において大小関係を有している。具体的には、抵抗R21,R22が抵抗R11よりも抵抗値が大きく構成されている。詳細については後述する。
キャパシタCは、電圧検出ラインL1,L2又は電圧検出ラインL2,L2を介して、単電池11と電気的に並列に接続されているため、キャパシタCには、単電池11に蓄えられた電荷がチャージされる。これにより、キャパシタCの電圧値は、単電池11の電圧値と等しくなる。
各単電池11の正極端子および負極端子と接続されたサンプリングスイッチSW21,SW22は、コンパレータ41に接続されている。具体的には、サンプリングスイッチSW21は、コンパレータ41における一方の入力端子と接続され、サンプリングスイッチSW22は、コンパレータ41における他方の入力端子と接続されている。ここで、各サンプリングスイッチSW21,SW22は、コントローラ50からの制御信号を受けてオンおよびオフの間で切り替わる。また、複数のサンプリングスイッチSW21,SW22は、マルチプレクサによって構成することができる。
特定の単電池11に対応したサンプリングスイッチSW21,SW22だけをオンにすると、コンパレータ41は、特定の単電池11の電圧値(特定の単電池11に対応するキャパシタCの電圧値)を出力する。このように、各単電池11に対応したサンプリングスイッチSW21,SW22を順次オンにすることにより、各単電池11の電圧値を順次検出することができる。コンパレータ41の出力信号は、AD変換された後に、コントローラ50に入力される。これにより、コントローラ50は、各単電池11の電圧を検出することができる。
次に、本実施例の保護回路の異常検出について説明する。複数の単電池11を電気的に直列に接続した組電池10は、組電池10の充放電によって複数の単電池11の間で電圧(言い換えれば、SOC)にバラツキが発生してしまうことがある。このため、電池システムには、均等化回路が設けられており、コントローラ50は、均等化回路を動作させて電圧が高い側の単電池11を放電させることにより、単電池11間の電圧のバラツキを抑制している。
しかしながら、図2に示す構成において、ツェナーダイオードDが故障すると、図3の矢印で示す方向において、単電池11Bと電気的に並列に接続されたツェナーダイオードDにリーク電流I_Leakが流れてしまう。この場合、単電池11Bが放電状態となり、蓄えられている電気エネルギが低下して単電池11Bの電圧が低下する。
このとき、コントローラ50は、ツェナーダイオードDが故障した単電池11B(第2蓄電ブロックに相当する)の電圧が、ツェナーダイオードDが故障していない他の単電池11Aよりも電圧が低下し、単電池11A,11B間で電圧にバラツキが生じるので、単電池11A,11B間の所定の電圧差をトリガーとして、単電池11Aの均等化回路を動作させて放電し、単電池11A(第1蓄電ブロックに相当する)の電圧を単電池11Bの電圧に合わせようと均等化処理を行う。
しかしながら、上述のように単電池11Bがリーク電流により放電状態になるので、例えば、単電池11Aの電圧を、リーク電流が流れることで下がり続ける単電池11Bの電圧に追随させるように低下させてしまい、電圧のバラツキの抑制はおろか、単電池11Aの電圧(SOC)を必要以上に低下させてしまうおそれがある。このため、ツェナーダイオードDの故障を検出する必要がある。
そこで、本実施例では、電圧検出ラインL1,L2(L2,L2)を介して単電池11に接続される保護回路においてツェナーダイオードDに直列に接続される抵抗R11に対し、ツェナーダイオードDに並列に接続される抵抗R21(又はR22)を含む均等化回路における当該抵抗R21(又はR22)の抵抗値を大きく構成している。
つまり、均等化回路の抵抗R21(又はR22)の抵抗値を、保護回路の抵抗R11の抵抗値よりも大きくすることで、異常が生じた状態のツェナーダイオードDに流れる抵抗R11の抵抗値に応じたリーク電流I_Leakが、均等化回路が動作した際のツェナーダイオードDに並列に接続された抵抗R21(又はR22)を介した電流経路を流れる放電電流I_Aveよりも大きくすることができる。
したがって、ツェナーダイオードDにリーク電流I_Leakが流れない単電池11Aの均等化による消費電力よりも、ツェナーダイオードDにリーク電流I_Leakが流れる単電池11の消費電力が大きくなるので、リーク電流I_Leakが流れることで単電池11A,11B間に生じる電圧のバラツキによって遂行される均等化処理中でも、単電池11A,11B間の電圧差が、時間の経過とともに徐々に大きくなる。
言い換えれば、均等化処理は、単電池11間の電圧にバラツキが生じた場合に、そのバラツキを抑制する処理であることから、ツェナーダイオードDが故障した単電池11Bは、ツェナーダイオードDが故障していない単電池11Aよりも電圧が低くなり、当該均等化処理によってツェナーダイオードDの故障の可能性が判断できる。そして、本実施例では、さらに、均等化回路の抵抗R21(又はR22)の抵抗値を保護回路の抵抗R11の抵抗値よりも大きく構成し、ツェナーダイオードDにリーク電流I_Leakが流れない単電池11Aの均等化電流値よりも、ツェナーダイオードDに流れるリーク電流I_Leakの電流値が大きくなるために単電池11A,11B間の電圧差が時間の経過とともに徐々に拡大していく現象を捉え、ツェナーダイオードDの異常を検出する。
なお、保護回路に含まれる抵抗R11の抵抗値と、抵抗R11の抵抗値よりも大きい均等化回路に含まれる抵抗R21(R22)の抵抗値とは、ツェナーダイオードDにある電流値以上のリーク電流が流れた場合に、ツェナーダイオードDの異常が検出できるような値に規定することができる。このとき、抵抗R21(R22)の抵抗値は、抵抗R11の抵抗値よりも大きい値で、かつ均等化処理の放電能力(例えば、単位時間当たりの電圧低下率)に応じた値とすることができる。
図4は、本実施例の保護回路の異常検出を説明するための図である。図4に示すように、ツェナーダイオードDにリーク電流が流れる異常(リーク異常)が生じていない場合、単電池11Aの電圧Va、単電池11Bの電圧Vbは、例えば、同じ電圧値となる。
そして、単電池11Bに並列に接続されるツェナーダイオードDにリーク電流が流れるリーク異常が生じると、電圧Vaに対して電圧Vbが低下し続け、電圧Va−電圧Vb間で電圧差が生じる。
コントローラ50は、電圧Va−電圧Vb間の電圧差が、予め設定された均等化処理を行うトリガーとなる電圧差V_ab1よりも大きくなった場合、単電池11AのスイッチSW1をオフからオンに切り替え、均等化回路を動作させて抵抗R21,R22に放電電流を流す。このとき、コントローラ50は、例えば、均等化処理を開始する時点の電圧Vbを目標値(V_base)として、放電電流を流す時間を算出し、算出された時間だけ均等化回路を動作させて抵抗R21,R22に放電電流を流すように制御することができる。
均等化回路が動作している単電池11Aの電圧Vaは、目標値(V_base)に向かって低下するが、ツェナーダイオードDにリーク異常が生じている単電池11Bの電圧Vbは、均等化回路は動作していない状態(スイッチSW1がオフ状態)でも、ツェナーダイオードDに流れるリーク電流I_Leakによって低下するとともに、単電池11Aの均等化処理により低下する電圧値よりも高い低下率で単電池11Bの電圧が低下する。
コントローラ50は、均等化処理中の単電池11A,11Bの各電圧を所定の時間間隔で取得し、単電池11A,11B間の電圧差を求める。単電池11A,11B間の電圧差が予め設定された閾値V_ab2を超えた時点で、単電池11Bに接続されるツェナーダイオードDが異常状態にあることを検出することができる。閾値V_ab2は、例えば、予め設定された均等化処理を行うトリガーとなる電圧差V_ab1よりも大きい値とすることができる。
図5は、本実施例の保護回路の異常検出処理の処理フローを示すフローチャートである。異常検出処理は、コントローラ50によって遂行され、本実施例では、コントローラ50が行う均等化処理に伴って(処理中に)遂行される。
図5に示すように、コントローラ50は、車両のイグニッションスイッチがオフ状態であるか否かを判別する(S101)。均等化処理は、負荷と接続されていない状態(システムメインリレーSMR−B,SMR−Gがオフ状態)、すなわち、単電池11が充放電を行っていない電圧変動がほぼない状況下で遂行される。
コントローラ50は、イグニッションスイッチがオフである場合、各単電池11の電圧を電圧監視ユニット40から取得し、単電池11間に予め設定された均等化処理を行うトリガーとなる電圧差V_ab1が生じているか否かを判別する(S102)。電圧差V_ab1が単電池11間で生じていない場合は、均等化処理(異常検出処理)を終了する。
コントローラ50は、ステップS102において電圧差V_ab1が単電池11間で生じていると判別された場合、均等化処理を遂行する(S103)。コントローラ50は、電圧管理ユニット40から取得した各電圧値から、単電池11間で生じた電圧差に対して電圧値が低い単電池11を特定し、電圧値が高い各単電池11の均等化回路を動作させる。このとき、電圧値が低い単電池11以外の均等化回路を動作させ、電圧値が低い単電池11の均等化回路を動作させないように制御される。
コントローラ50は、均等化処理が開始された後に、所定の時間間隔ですべての単電池11の電圧値を取得し(S104)、各単電池11の電圧値が目標値(V_base)に達したか否かをモニタリングし、目標値に達した単電池11に対しては均等化回路の動作を終了させて、目標値に達していない単電池11に対しては均等化回路の動作を継続させる。
さらに、コントローラ50は、取得した電圧値を用いて電圧値が低い単電池11、すなわち、均等化回路が動作していない単電池11の電圧値と他のいずれかの単電池11の電圧値との電圧差を算出する。コントローラ50は、均等化回路が動作していない単電池11(第2蓄電ブロック)の電圧値と均等化回路が動作している単電池11(第1蓄電ブロック)の電圧値との間の電圧差が、閾値V_ab2を超えたか否かを判別する(S105)。
コントローラ50は、均等化回路が動作していない単電池11の電圧値と均等化回路が動作している単電池11の電圧値との間の電圧差が、閾値V_ab2を超えていないと判別された場合、ツェナーダイオードDにリーク異常が生じていない(保護回路に異常が生じていない)正常判定を行い(S106)、均等化処理が終了するまでステップS103からステップS105を繰り返し行う(S107)。
一方、ステップS105においてコントローラ50は、均等化回路が動作していない単電池11の電圧値と均等化回路が動作している単電池11の電圧値との間の電圧差が、閾値V_ab2を超えていると判別された場合は、均等化回路が動作していない単電池11のツェナーダイオードDにリーク異常が生じている(保護回路に異常が生じている)異常判定を行い(S108)、均等化処理を終了する。
ステップS108において、コントローラ50は、ツェナーダイオードDのリーク異常判定に伴い、警告ランプの点灯や音声又は表示部を介したメッセージ出力などを通じてユーザ等に知らせる警告処理を行うことができる。
このように本実施例によれば、保護回路の異常検出のために別途の異常検出用スイッチング素子などを設けずに簡単な構成で異常を検出することができ、さらには、ツェナーダイオード等のスイッチング素子以外の保護回路に使用される素子に対する異常検出を行うことができる。
特に、本実施例では、均等化回路で使用される抵抗R21(R22)を、保護回路で使用される抵抗R11の抵抗値よりも大きく構成するだけで、ツェナーダイオードのリーク異常を検出することができる。したがって、保護回路及び均等化回路を備える電池システムに対し、既存の抵抗を取り替えるだけでツェナーダイオードのリーク異常検出を容易に実現でき、ツェナーダイオードのリーク異常検出のために別途の異常検出用の素子を加えたり、既存の回路構成を変更する必要がなく、ツェナーダイオードのリーク異常検出及び電池システム全体に設計の自由度が極めて高い効果を得ることができる。
なお、上記実施例において電圧監視ユニット40は、1つのコンパレータ41で複数の各単電池11それぞれの電圧をコントローラ50に出力しているが、例えば、各単電池11毎にコンパレータ41を設け、各コンパレータ41から単電池11それぞれの電圧を個別にコントローラ50に出力するように構成してもよい。
10:組電池
11:単電池(蓄電素子)
31:インバータ
32:モータ・ジェネレータ
33:車輪
40:電圧監視ユニット(電圧検出回路)
50:コントローラ
R11,R21,R22:抵抗
SW1,SW21,SW22:スイッチ
D:ツェナーダイオード
C:キャパシタ、
PL:正極ライン
NL:負極ライン
L1,L2:電圧検出ライン
L21,L22:分岐ライン

Claims (4)

  1. 負荷と接続されて充放電を行う蓄電素子をそれぞれ含み、直列に接続された複数の蓄電ブロックと、
    電圧検出ラインを介して前記各蓄電ブロックと接続され、前記各蓄電ブロックの電圧値を検出する電圧検出回路と、
    前記電圧検出ラインを介して前記蓄電ブロックに並列に接続される過電圧保護素子と、前記過電圧保護素子に直列に接続される第1抵抗とを含み、前記蓄電ブロックそれぞれに設けられる保護回路と、
    前記電圧検出ラインを介して前記過電圧保護素子それぞれに並列に接続されるとともに前記第1抵抗に直列に接続され、前記第1抵抗よりも大きい抵抗値を有する第2抵抗を含む放電回路と、
    前記電圧検出回路の検出値を用いて前記蓄電ブロック間電圧を比較し、前記過電圧保護素子の異常を検出するコントローラと、を有し、
    前記コントローラは、前記負荷に接続されていない状態において、前記放電回路が動作して前記第2抵抗に電流を流す放電状態にある第1蓄電ブロックの電圧値と、前記放電回路による前記放電状態にない第2蓄電ブロック電圧値とを比較して、前記過電圧保護素子の異常を検出することを特徴とする蓄電システム。
  2. 前記コントローラは、前記負荷に接続されていない状態において前記放電回路を動作させて前記各蓄電ブロックの電圧を均等化させる均等化処理を遂行するとともに、
    前記放電回路を動作させて前記第1蓄電ブロックの電圧値を低下させる前記均等化処理中に所定の間隔で検出される前記第1蓄電ブロックの電圧値と、前記第2蓄電ブロックの電圧値との電圧差を求め、前記電圧差が所定の閾値を超えた場合に、前記第2蓄電ブロックに並列に接続される前記過電圧保護素子が異常状態であると検出することを特徴とする請求項1に記載の蓄電システム。
  3. 前記放電回路は、前記第2抵抗と、前記第2抵抗に直列に接続されるスイッチとを含むことを特徴とする請求項1又は2に記載の蓄電システム。
  4. 前記過電圧保護素子は、ツェナーダイオードであることを特徴とする請求項1から3のいずれか1つに記載の蓄電システム。
JP2012234793A 2012-10-24 2012-10-24 蓄電システム Active JP5660105B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012234793A JP5660105B2 (ja) 2012-10-24 2012-10-24 蓄電システム
US14/058,899 US9128138B2 (en) 2012-10-24 2013-10-21 Electrical storage system
CN201310498940.3A CN103779620B (zh) 2012-10-24 2013-10-22 蓄电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012234793A JP5660105B2 (ja) 2012-10-24 2012-10-24 蓄電システム

Publications (2)

Publication Number Publication Date
JP2014086296A JP2014086296A (ja) 2014-05-12
JP5660105B2 true JP5660105B2 (ja) 2015-01-28

Family

ID=50484765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012234793A Active JP5660105B2 (ja) 2012-10-24 2012-10-24 蓄電システム

Country Status (3)

Country Link
US (1) US9128138B2 (ja)
JP (1) JP5660105B2 (ja)
CN (1) CN103779620B (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5999048B2 (ja) * 2012-10-24 2016-09-28 トヨタ自動車株式会社 蓄電システム
JP5870899B2 (ja) * 2012-10-30 2016-03-01 株式会社デンソー 電池監視装置
JP5867483B2 (ja) * 2013-11-08 2016-02-24 トヨタ自動車株式会社 蓄電システム
JP6274020B2 (ja) * 2014-06-09 2018-02-07 トヨタ自動車株式会社 電圧検出ユニット
EP3241264A4 (en) * 2014-09-22 2018-08-01 Polyvalor, Limited Partnership Energy storage device and modular circuit
JP6107836B2 (ja) * 2015-01-07 2017-04-05 トヨタ自動車株式会社 電池監視装置
CN104836272A (zh) * 2015-03-05 2015-08-12 南宁市鼎天机械制造有限公司 一种蓄电系统
JP6558204B2 (ja) * 2015-10-21 2019-08-14 株式会社デンソー 異常判定装置
CN105259494B (zh) * 2015-10-27 2018-04-03 北京新能源汽车股份有限公司 电池均衡电路的测试装置及方法
US20170219657A1 (en) * 2016-01-28 2017-08-03 Bae Systems Controls Inc. Online battery capacity estimation utilizing passive balancing
DE102016207272A1 (de) * 2016-04-28 2017-11-02 Bayerische Motoren Werke Aktiengesellschaft Schaltbares Speichersystem für ein Fahrzeug
JP6728991B2 (ja) * 2016-05-31 2020-07-22 株式会社オートネットワーク技術研究所 リレー装置及び電源装置
KR20180013574A (ko) * 2016-07-29 2018-02-07 주식회사 엘지화학 배터리 밸런싱 장치 및 방법
CN106324396B (zh) * 2016-08-17 2019-05-14 云南电网有限责任公司电力科学研究院 一种用于变电站中金属氧化物避雷器的计算方法
CN106291191B (zh) * 2016-08-17 2019-03-19 云南电网有限责任公司电力科学研究院 一种用于变电站中金属氧化物避雷器的计算模型
WO2018051574A1 (ja) * 2016-09-13 2018-03-22 三洋電機株式会社 管理装置および電源システム
EP3327455B1 (en) * 2016-11-28 2020-10-21 NXP USA, Inc. Leakage current determination
JP6655000B2 (ja) * 2016-12-20 2020-02-26 株式会社日立製作所 エレベーター装置及びエレベーター搭載蓄電素子劣化判定方法
KR102382003B1 (ko) * 2017-06-28 2022-04-04 삼성전자주식회사 복수의 배터리를 제어하기 위한 방법 및 그 전자 장치
CN107294167B (zh) * 2017-07-11 2020-08-25 成都芯源系统有限公司 电压均衡方法及电池均衡控制电路和电池均衡电路
EP3505943B1 (de) * 2017-12-29 2020-05-20 Siemens Aktiengesellschaft Nachweisen einer elektrischen überspannung
US11018511B2 (en) * 2018-06-29 2021-05-25 Caterpillar Inc. System and method for balancing battery cell charge in battery array for electrified machine
WO2020021888A1 (ja) * 2018-07-25 2020-01-30 パナソニックIpマネジメント株式会社 管理装置、及び電源システム
US10921378B2 (en) * 2019-02-25 2021-02-16 Ford Global Technologies, Llc System for measuring voltage differences between battery cells and for obtaining battery cell voltages using the voltage differences
CN112531850B (zh) * 2019-04-24 2022-08-02 宁德时代新能源科技股份有限公司 电池组均衡控制方法、装置、设备和介质
JP7196034B2 (ja) * 2019-06-11 2022-12-26 エイブリック株式会社 充放電制御回路及びこれを備えたバッテリ装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000057966A (ko) * 1999-02-12 2000-09-25 오세광 충전용 배터리 관리기 및 그 관리기에 의한 충전용 배터리관리 방법
JP3649135B2 (ja) * 2001-02-20 2005-05-18 日産自動車株式会社 組電池の異常検出装置
JP3699381B2 (ja) * 2001-10-02 2005-09-28 ソニーケミカル株式会社 保護回路付き二次電池
JP4015126B2 (ja) * 2004-03-08 2007-11-28 株式会社Nttファシリティーズ 直流電力供給システム
US20060022646A1 (en) * 2004-07-28 2006-02-02 Moore Stephen W Method for battery cold-temperature warm-up mechanism using cell equilization hardware
JP4237804B2 (ja) * 2007-03-28 2009-03-11 株式会社東芝 組電池の保護装置及び電池パック装置
JP5438931B2 (ja) * 2008-08-06 2014-03-12 Fdk株式会社 蓄電システムのモジュール間電圧バランス補正回路
JP5349021B2 (ja) * 2008-11-26 2013-11-20 三洋電機株式会社 バッテリシステム
JP2010140785A (ja) 2008-12-12 2010-06-24 Panasonic Corp 故障診断回路、及び電池パック
JP5627246B2 (ja) * 2009-04-03 2014-11-19 三洋電機株式会社 電池システム、電動車両及び電池制御装置
CN202042568U (zh) * 2010-07-30 2011-11-16 比亚迪股份有限公司 一种电池的加热电路
CN202435066U (zh) * 2011-12-12 2012-09-12 江苏富朗特新能源有限公司 一种具有双向限流的锂离子电池组管理系统
JP5585616B2 (ja) * 2012-06-26 2014-09-10 株式会社デンソー 回路保護装置

Also Published As

Publication number Publication date
US20140111160A1 (en) 2014-04-24
CN103779620A (zh) 2014-05-07
US9128138B2 (en) 2015-09-08
CN103779620B (zh) 2016-02-10
JP2014086296A (ja) 2014-05-12

Similar Documents

Publication Publication Date Title
JP5660105B2 (ja) 蓄電システム
JP5288041B1 (ja) 蓄電システムおよび、蓄電システムの制御方法
CN108377009B (zh) 供电系统
US10490865B2 (en) Abnormality determination apparatus
US8754654B2 (en) Power supply device for detecting disconnection of voltage detection lines
US9929674B2 (en) Power supply system for vehicle
JP5798887B2 (ja) 蓄電システム
JP5440708B2 (ja) 電池システムおよび、電池システムの制御方法
US9520613B2 (en) Battery control with block selection
JP6111848B2 (ja) 蓄電システム
US10017138B2 (en) Power supply management system and power supply management method
US20130063154A1 (en) Power supply apparatus
JP5839047B2 (ja) 監視システムおよび車両
JP2013085336A (ja) 蓄電システムおよび、蓄電システムの制御方法
JP5796457B2 (ja) バッテリシステムおよびバッテリシステムの制御方法
US9252608B2 (en) Electrical storage system, and control method for electrical storage system
JP5691993B2 (ja) 蓄電システム及び電流センサ異常を検出する方法
JP6015626B2 (ja) 蓄電システム
JP5987583B2 (ja) 蓄電システム及び電圧監視装置の異常検出方法。
JP2014090635A (ja) 蓄電システム
JP2011041386A (ja) 車両および車両の制御方法
JP2006067683A (ja) 蓄電装置
JP2016201956A (ja) バッテリ制御装置
JP2014223003A (ja) 蓄電システム
JP2014102079A (ja) 蓄電システム

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R151 Written notification of patent or utility model registration

Ref document number: 5660105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151