WO2012005019A1 - ガラス基板端面の評価方法及びガラス基板端面の加工方法並びにガラス基板 - Google Patents

ガラス基板端面の評価方法及びガラス基板端面の加工方法並びにガラス基板 Download PDF

Info

Publication number
WO2012005019A1
WO2012005019A1 PCT/JP2011/053749 JP2011053749W WO2012005019A1 WO 2012005019 A1 WO2012005019 A1 WO 2012005019A1 JP 2011053749 W JP2011053749 W JP 2011053749W WO 2012005019 A1 WO2012005019 A1 WO 2012005019A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
face
end surface
image
area
Prior art date
Application number
PCT/JP2011/053749
Other languages
English (en)
French (fr)
Inventor
宮本 幹大
秀晴 鳥井
友紀 木村
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201180033900.0A priority Critical patent/CN102985386B/zh
Priority to JP2012523774A priority patent/JP5757289B2/ja
Priority to EP11803355.4A priority patent/EP2592057A4/en
Priority to KR1020137000467A priority patent/KR101811903B1/ko
Publication of WO2012005019A1 publication Critical patent/WO2012005019A1/ja
Priority to US13/735,469 priority patent/US20130122265A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/10Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/10Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of plate glass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • G01N21/9503Wafer edge inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/40Analysis of texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9511Optical elements other than lenses, e.g. mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9513Liquid crystal panels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24777Edge feature

Definitions

  • the present invention relates to a glass substrate end face evaluation method, a glass substrate end face processing method, and a glass substrate used for FPD (Flat Panel Display).
  • the glass substrate for FPD used for a liquid crystal display, a plasma display, or the like is chamfered at its end surface by a grinding member in a manufacturing process.
  • reference numeral G denotes a glass substrate.
  • the Ra value of the roughness of the glass substrate end surface is defined as 0.25 ⁇ m or less, and in Patent Document 2, the Ra value is defined as 0.1 ⁇ m to suppress dust adhesion on the end surface. Yes.
  • Such a roughness measurement of the glass substrate end surface is performed using a stylus type surface roughness meter provided with a stylus as described in Patent Document 2.
  • the glass substrate has defects such as burns, chipping, and chipping due to the chamfered shape of the end surface, the chamfered shape is also being studied.
  • Patent Document 3 proposes an invention related to a chamfered shape of an outer peripheral end surface of a hard disk substrate.
  • the purpose of Patent Document 3 is to prevent a substrate body of a hard disk substrate manufactured by a brittle material such as a carbon substrate or a glass substrate from becoming a defective product during its handling. Specifically, it is possible to prevent the occurrence of defects such as scratches and chipping on the outer peripheral end surface when the outer peripheral end surface of the substrate body contacts the transport cassette.
  • Patent Document 3 discloses that in a substrate body having an outer diameter of 65 mm, the chamfered portion of the outer peripheral end surface of the substrate body is rounded, and this rounded chamfered portion has only one radius.
  • a magnetic recording medium substrate is disclosed in which a side portion is formed in a round shape, and a round radius R is t / 2 or more and 2t or less (t: thickness of the substrate body).
  • Patent Document 1 also discloses a magnetic recording medium substrate in which the chamfered portions have different roundnesses on the top and bottom of the substrate, and their radii R 1 and R 2 are each less than t / 2.
  • Japanese Patent No. 4370611 Japanese Unexamined Patent Publication No. 2002-160147 Japanese Unexamined Patent Publication No. 9-102122
  • the conventional evaluation method of the glass substrate end face which measures the glass substrate end face with a stylus type surface roughness meter, jumps over the concave portion without the tip of the stylus entering the fine concave portion existing on the glass substrate end face. May end up. For this reason, there existed a problem that it was difficult to evaluate the property of the glass substrate end surface correctly. That is, the method of evaluating the properties of the end face of the glass substrate with a stylus type surface roughness meter is not highly reliable because its reliability depends on the size of the recess.
  • Such burns are unlikely to occur during chamfering of a small hard disk substrate as disclosed in Patent Document 3, and are generated on a glass substrate for FPD having a size of 400 mm ⁇ 300 mm or more. That is, as the relative travel distance of the grinding member with respect to the end surface of the glass substrate increases, the frequency of burns tends to increase. In particular, when a glass substrate having a size of 1200 mm ⁇ 1100 mm or more is used, the frequency of occurrence of a burn problem increases.
  • the end face shape is poor, not only the above-mentioned burns occurring during the chamfering process, but also chipping occurs frequently, which is a factor that hinders the productivity of the glass substrate. Further, depending on the degree of the burn or chipping, the glass substrate may be broken. Furthermore, when the end face shape is poor, there is also a problem that the processed end face is chipped.
  • the present invention has been made in view of such circumstances, a glass substrate end face evaluation method capable of accurately evaluating the properties of the end face of the glass substrate, and a glass substrate end face processing method based on the evaluation method.
  • a glass substrate capable of reducing dust adhesion on the end surface of the glass substrate and further on the basis of this processing method, a glass substrate capable of preventing the occurrence of defects such as burns, chipping and chipping on the chamfered surface.
  • the present invention captures a predetermined area on the end face of the glass substrate with an image pickup means, and performs black-and-white binarization processing on the picked-up image so that the concave portion existing on the end face is a white image.
  • the end surface of the glass substrate is characterized by identifying a flat portion serving as a mirror surface of the end surface as a black image, and evaluating the properties of the end surface of the glass substrate based on the ratio of the area of the white image to the area of the black image. Provide an evaluation method.
  • the evaluation method of the present invention provides an evaluation method using an imaging means such as a laser microscope.
  • the end face image picked up by the image pickup means is subjected to the black-and-white binarization process, and the concave portion existing on the end face is identified as the white image, and the flat portion that becomes the mirror surface of the end face is identified as the black image.
  • the property of the end surface of a glass substrate is evaluated based on the ratio of the area of a white image with respect to the area of a black image.
  • the properties of the glass substrate end face can be more accurately compared with the evaluation method using a conventional stylus type roughness meter in which the reliability of accuracy depends on the size of the concave portion existing on the end face. Can be evaluated. According to the present invention, it is preferable that a threshold of a ratio of the area of the white image to the area of the black image is 10%.
  • the inventor of the present application has intensively studied the ratio for suppressing dust adhesion on the end face, and as a result, found that if the ratio exceeds 10%, dust is likely to adhere, and if it is 10% or less, dust is difficult to adhere. Therefore, in evaluating the glass substrate end face, it is preferable to set the ratio threshold to 10%.
  • the present invention grinds the end surface of the glass substrate with a grinding member, images the ground end surface with an imaging means, and performs the binarization processing on the captured image.
  • the grinding member is identified such that a concave portion present on the end surface is identified as a white image, and a flat portion serving as a mirror surface of the end surface is identified as a black image, and the ratio of the area of the white image to the area of the black image is equal to or less than a predetermined threshold.
  • a method for processing a glass substrate end face is provided, wherein a grinding allowance for the end face is controlled.
  • the grinding allowance of the end face by the grinding member is controlled based on the ratio. That is, when the ratio is larger than the threshold value, it is judged that the grinding allowance by the grinding member (the amount of driving of the grinding member with respect to the end surface of the glass substrate) is small and there are many recesses, and the finishing quality is optimized. Optimal control. Thereby, the quality of the glass substrate end face is stabilized.
  • control is performed so that a threshold value of a ratio of the area of the white image to the area of the black image is 10% or less.
  • the present invention it is possible to stably manufacture a glass substrate in which dust hardly adheres to the end surface of the glass substrate.
  • the present invention provides a glass substrate processed by the method for processing an end face of the glass substrate of the present invention.
  • the glass substrate of the present invention since it is difficult for dust to adhere to the end surface of the glass substrate, a high-quality glass substrate can be provided.
  • the present invention is processed by the method for processing an end face of a glass substrate of the present invention, the size is 400 mm ⁇ 300 mm or more, and the plate thickness (t) is 0.05 mm or more and 2.8 mm or less.
  • the glass substrate is characterized in that the trapezoidal shape calculated by drawing three tangent lines on the end face having the chamfered portion satisfies the following dimensions.
  • Opening angle angle formed by the tangent of the chamfered curved surface of the end surface of the glass substrate at the intersection of the chamfered curved surface of the glass substrate end surface and the glass substrate end surface
  • 50 ° ⁇ 2 ⁇ ⁇ 80 ° W end face width (the length in the direction parallel to the plate surface of the glass substrate from the intersection of the chamfered curved surface of the glass substrate and the end surface of the glass substrate to the tangent line drawn to the tip of the end surface of the glass substrate)
  • the glass substrate end surface and the chamfered surface are the same surface, and the two intersections of tangent lines A and B drawn on the chamfered curved surface of the end surface of the glass substrate and tangent line C drawn on the tip of the end surface of the glass substrate are connected. Let the length of the ellipse segment be (f).
  • the present invention captures a predetermined area of an end face by an image pickup means, and performs black-and-white binarization processing on the picked-up image so that a concave portion existing on the end face is a white image, the end face
  • the glass substrate is characterized in that, when the flat portion serving as the mirror surface is identified as a black image, the ratio of the area of the white image to the area of the black image is 10% or less.
  • the predetermined area is an area of an arbitrary width of 100 ⁇ m ⁇ height of 50 ⁇ m in a 10 mm depth ⁇ 20 mm wide region including a central portion of the end surface processing region of the glass substrate in the traveling direction of the grindstone. It is preferable.
  • the size is 400 mm ⁇ 300 mm or more
  • the plate thickness (t) is 0.05 mm or more and 2.8 mm or less
  • three tangent lines are drawn and divided on the end face having the chamfered portion.
  • Opening angle angle formed by the tangent of the chamfered curved surface of the end surface of the glass substrate at the intersection of the chamfered curved surface of the glass substrate end surface and the glass substrate end surface
  • 50 ° ⁇ 2 ⁇ ⁇ 80 ° W end face width (the length in the direction parallel to the plate surface of the glass substrate from the intersection of the chamfered curved surface of the glass substrate end surface to the tangent line drawn on the end surface of the glass substrate end surface)
  • the properties of the glass substrate end face can be accurately evaluated. Moreover, according to the processing method of the end surface of the glass substrate of this invention, the glass substrate with which the quality of the end surface was stabilized can be manufactured. Furthermore, according to the glass substrate of the present invention, it is difficult for dust to adhere to the end face, and it is possible to prevent the occurrence of defects such as burns, chipping and chipping on the chamfered surface.
  • Photo image obtained by imaging the end surface of the glass substrate after processing with a chamfering grindstone with a laser microscope A photographic image in which the image data of FIG. 6 is binarized into black and white, and a color image is displayed with the concave portion present on the end face as a white image and the mirror surface of the end face as a black image.
  • Photo image obtained by imaging the end surface of the glass substrate after processing with a chamfering grindstone with a laser microscope A photographic image in which the image data of FIG. 10 is binarized and displayed in a color-coded manner with the concave portion present on the end face being a white image and the mirror surface of the end face being a black image.
  • the expanded sectional view of the glass substrate which is the glass substrate for FPD which concerns on embodiment, and showed the chamfering shape which has a flat part and a curved surface with two equal curvatures The figure which showed the trapezoid shape corresponding to FIG. 14A
  • the figure which showed the trapezoid shape corresponding to FIG. 14B The figure which showed the trapezoid shape in 1st Example of a glass substrate.
  • the figure which showed the trapezoid shape in 2nd Example of a glass substrate The figure which showed the trapezoid shape in 3rd Example of a glass substrate.
  • the figure which showed the trapezoid shape in 4th Example of a glass substrate The figure which showed the trapezoid shape in 5th Example of a glass substrate.
  • the figure which showed the trapezoid shape in 6th Example of a glass substrate The figure which showed the trapezoid shape in 7th Example of a glass substrate.
  • the figure which showed the trapezoid shape in 8th Example of a glass substrate Enlarged sectional view of a glass substrate showing a chamfered shape with a single curved surface An enlarged sectional view of a glass substrate showing a chamfered shape having a flat portion and two curved surfaces having the same curvature.
  • FIG. 1 is a diagram showing a glass substrate end face evaluation method and a glass substrate end face processing method according to the embodiment.
  • the end face processing (chamfering) process of the glass substrate G includes a processing process performed by a processing unit 12 including a chamfering grindstone (grinding member) 10, and a laser microscope (VK-9500 manufactured by Keyence Corporation) as an imaging means. ) 14, and an inspection process by the inspection unit 16 having 14.
  • the groove 10A of the rotating chamfering grindstone 10 is pressed against the end surface Z of the glass substrate G. Thereby, the end face Z is chamfered.
  • the end face Z in the processed portion 12 is finish-ground to a mirror surface by the chamfering grindstone 10 which is a finishing grindstone.
  • the chamfering grindstone 10 is an elastic resin bond grindstone using diamond and ceramics as abrasive grains, and the abrasive grains and bonds also contribute to the mirror finishing of the end face Z.
  • the count is preferably 220 to 1000, more preferably 220 to 600.
  • the peripheral speed of the chamfering grindstone 10 is 470 to 3000 m / min, and the grinding load at the time of processing is managed by the current value or the power value, and the peripheral speed is controlled so that the grinding load becomes constant.
  • the coolant liquid is supplied between the chamfering grindstone 10 and the end surface Z of the glass substrate G, and the end surface Z is prevented from being burned.
  • the glass substrate G whose end face Z is finish-ground in the processing section 12 is moved to an inspection process, and a predetermined area of the end face Z is imaged by the laser microscope 14 in the inspection section 16.
  • the area where the end face Z is imaged by the laser microscope 14 may be, for example, the area of the processing start portion of the end face Z of the glass substrate, the area of the central portion of the processing area, or the area of the processing end portion. Specifically, the following areas can be selected.
  • a sample having a depth of 10 mm and a width of 20 mm including an end face at a position of 100 mm from the grindstone contact start position to the grindstone traveling direction is cut out from the glass substrate, and an arbitrary width of 100 ⁇ m from the end face of the sample.
  • An area with a height of 50 ⁇ m can be selected.
  • an area having a width of 100 ⁇ m and a height of 50 ⁇ m at the center of the end face of the cut sample can be selected.
  • a sample having a depth of 10 mm ⁇ width of 20 mm including the center part in the grinding wheel traveling direction of the end surface processing region of the glass substrate is cut out from the glass substrate, and an arbitrary width of 100 ⁇ m ⁇ high from the end surface of the sample.
  • An area of 50 ⁇ m can be selected.
  • an area having a width of 100 ⁇ m and a height of 50 ⁇ m at the center of the end face of the cut sample can be selected.
  • a sample having a depth of 10 mm and a width of 20 mm including an end face at a position of 100 mm from the grinding wheel contact completion position in the direction opposite to the grinding wheel traveling direction is cut out from the glass substrate, and an arbitrary end face of the sample is obtained.
  • An area of width 100 ⁇ m ⁇ height 50 ⁇ m can be selected.
  • an area having a width of 100 ⁇ m and a height of 50 ⁇ m at the center of the end face of the cut sample can be selected.
  • the laser microscope 14 is a digital microscope that uses laser light as a light source. According to the laser microscope 14, an accurate focal position of the end face Z of the glass substrate G can be detected, so that an image with good contrast can be observed in a focused state by scanning in the height direction. Further, the laser microscope 14 can perform surface roughness and shape measurement as well as output of digital data of an enlarged image, and further measures the width and height of unevenness in addition to the luminance information of the end surface Z of the glass substrate G. Is also possible. That is, it is possible to represent the uneven state of the surface.
  • the image data of the end surface Z with high resolution captured by the laser microscope 14 is output to the image processing unit 18.
  • the image processing unit 18 performs black-and-white binarization processing on the image data to identify a concave portion existing on the end surface Z as a white image, and a flat portion which is a mirror surface of the end surface Z as a black image, and shows a white image and a black image.
  • the image data is output to the calculation unit 20.
  • Black and white binarization processing is performed by the following method.
  • An image obtained by photographing the end face of the roughly ground glass substrate G with the laser microscope 14 is prepared. In this case, the luminance is almost constant.
  • the image of the end face is expressed with 255 gradations.
  • Rough grinding is performed using a 450-600 metal bond grindstone.
  • the peripheral speed of the metal bond grindstone is 470 to 3000 m / min, the grinding load at the time of processing is managed by the current value or the electric power value, and the peripheral speed is controlled so that the grinding load becomes constant. Further, a coolant liquid is supplied between the metal bond grindstone and the end face Z of the glass substrate G, and there is an effect of preventing the end face Z from being burnt.
  • This standard deviation ⁇ is set as a reference threshold value for the black and white binarization process. That is, an image having a threshold value (standard deviation ⁇ ) or more is a white image, and an image having a threshold value (standard deviation ⁇ ) is a black image.
  • the calculation unit 20 calculates the ratio of the area occupied by the white image to the area occupied by the black image, and displays the ratio on the monitor 22. By confirming this ratio, the operator evaluates the properties of the end face Z of the glass substrate G based on this ratio.
  • the monitor 22 also displays an image of the end face Z captured by the laser microscope 14 and an image of the end face Z that has been subjected to the black and white binarization process.
  • the image of the end face Z imaged by the laser microscope 14 is subjected to the black and white binarization process, the concave portion existing on the end face is a white image, and the flat portion that is the mirror surface of the end face is a black image.
  • Identification is performed, and the property of the end face of the glass substrate is evaluated based on the ratio of the area of the white image to the area of the black image.
  • the properties of the end surface Z of the glass substrate G are more reliable than the evaluation method using a conventional stylus roughness meter whose reliability of accuracy depends on the size of the concave portion present on the end surface Z. Accurate evaluation is possible.
  • the threshold of the said ratio is set to 10%, and when it exceeds 10%, the grindstone moving part 24 is optimally controlled, and the grinding allowance of the end surface Z by the chamfering grindstone 10 is increased. To control.
  • the threshold value of the ratio is set to 10%.
  • the grinding allowance of the end face Z by the chamfering grindstone 10 is optimally controlled as described above based on the ratio calculated by the calculation unit 20. That is, when the calculated ratio is larger than 10% of the threshold value, it is determined that the grinding allowance by the chamfering grindstone 10 is small and there are many concave portions on the end surface Z, and the grindstone is optimized so that the finishing quality is optimized.
  • the moving unit 24 is controlled. Specifically, the ratio is controlled by moving the chamfering grindstone 10 with respect to the end face Z in the direction of arrow A in FIG. 1 and increasing the grinding allowance. Thereby, the quality of the end surface Z of the glass substrate G is stabilized.
  • the glass substrate G with the ratio exceeding 10% is returned from the inspection unit 16 to the processing unit 12 and reprocessed by the chamfering grindstone 10.
  • Example 1 The end face Z of the glass substrate G having a size of 1000 mm ⁇ 1000 mm was roughly ground using a metal bond grindstone having a count of 450 to 600 while controlling the peripheral speed of 470 to 3000 m / min so that the grinding load was constant. Next, the end face Z is mirror-finished by using a resin bond grindstone with a count of 600 as a finishing grind and controlling the peripheral speed so that the grinding load is constant in the peripheral speed range of 470 to 3000 m / min. Finished grinding.
  • the photographic image shown in FIG. 2 is a photographic image obtained by capturing an area of the processing center portion of the end surface Z of the glass substrate G with the laser microscope 14 after processing by the chamfering grindstone 10. .
  • FIG. 3 is a photographic image in which the image data of FIG. 2 is binarized into black and white, color-coded and displayed as a white image on the concave portion present on the end surface Z and a black image on the flat portion that is the mirror surface of the end surface. The ratio was calculated as 9.05%.
  • Example 2 The end face Z of the glass substrate G having a size of 1000 mm ⁇ 1000 mm was roughly ground using a metal bond grindstone having a count of 450 to 600 while controlling the peripheral speed of 470 to 3000 m / min so that the grinding load was constant.
  • the end face Z is mirror-finished by using a resilient resin bond grindstone with a count of 220 as a finishing grind and controlling the peripheral speed so that the grinding load is constant in the peripheral speed range of 470 to 3000 m / min. Finished grinding.
  • the photographic image shown in FIG. 4 is a photographic image obtained by capturing an area of the processing center portion of the end surface Z of the glass substrate G with the laser microscope 14 after processing with the chamfering grindstone 10. .
  • FIG. 5 is a photographic image in which the image data of FIG. 4 is subjected to black-and-white binarization processing and color-coded and displayed as a white image for the recesses present on the end face Z and a black image for the flat portion that is the mirror surface of the end face.
  • the ratio was calculated as 8.13%. That is, since the end face Z shown in FIGS. 4 and 5 has a ratio of 10% or less, the mirror finish with the chamfering grindstone 10 is satisfactorily performed, and the end face Z is hard to adhere to dust.
  • the end face Z is mirror-finished by using a resin bond grindstone with a number of 320 as a finishing grind and controlling the peripheral speed so that the grinding load is constant in the peripheral speed range of 470 to 3000 m / min. Finished grinding.
  • the photographic image shown in FIG. 6 is a photographic image obtained by imaging the glass substrate G after processing by the chamfering grindstone 10 with the laser microscope 14 in the processing central portion of the end surface Z of the glass substrate G.
  • FIG. 7 is a photographic image in which the image data of FIG. 6 is subjected to black-and-white binarization processing and color-coded and displayed as a white image for the concave portion present on the end surface Z and a black image for the flat portion serving as the mirror surface of the end surface.
  • FIG. 8 The photographic image shown in FIG. 8 is the glass substrate G after the end surface rough grinding process and before processing by the chamfering finishing grindstone 10, and the area of the processing center portion of the end surface Z of the roughly ground glass substrate G is shown by the laser microscope 14. It is the photographic image obtained by imaging by.
  • FIG. 9 is a photographic image in which the image data of FIG. 8 is subjected to black and white binarization processing and color-coded and displayed as a white image on the concave portion present on the end face Z and a black image on the mirror surface of the end face. It is calculated as .67%.
  • FIGS. 8 and 9 show the properties of the end face Z of the glass substrate G before processing with the chamfering grindstone 10.
  • Ra 0. It was 45 ⁇ m.
  • FIG. 10 is a glass substrate G processed by the chamfering grindstone 10, and is a photographic image obtained by imaging the processing center area of the end surface Z of the glass substrate G with the laser microscope 14.
  • FIG. . FIG. 11 is a photographic image in which the image data of FIG. 10 is subjected to black and white binarization processing, and is color-coded and displayed as a white image for the recesses existing on the end face Z and a black image for the mirror surface of the end face. Calculated as 10%.
  • the end face Z shown in FIGS. 10 and 11 has a ratio exceeding 10% and is an end face Z that easily adheres to dust, so that it is necessary to perform mirror finishing with the chamfering grindstone 10 again.
  • the photographic image shown in FIG. 12 is a glass substrate G processed by the chamfering grindstone 10, and is a photographic image obtained by imaging an area at the processing center of the end surface Z of the glass substrate G with the laser microscope 14. .
  • the ratio of Examples 2 and 3 is smaller than the ratio of Comparative Example 3, but the Ra of Examples 2 and 3 is larger than the Ra of Comparative Example 3. This is considered to be due to the following reason.
  • Ra is measured by measuring the end surface of the glass substrate with a stylus type surface roughness meter. When the concave portion present on the end surface of the glass substrate is fine, the tip of the stylus is present on the end surface of the glass substrate. However, the properties of the end face of the glass substrate cannot be accurately evaluated without jumping into the recesses.
  • the ratio of the white image to the black image evaluates the properties of the glass substrate end face based on the captured image, it can also measure the minute recesses present on the glass substrate end face, and the properties of the glass substrate end face can be measured. Accurately evaluated. For this reason, in Examples 2 and 3 and Comparative Example 3, it is considered that the magnitude of the ratio and the magnitude of Ra are reversed.
  • 14A and 14B are enlarged cross-sectional views showing the end surfaces of glass substrates G 1 and G 2 and the vicinity thereof in order to explain the glass substrate for FPD according to the embodiment.
  • 14A shows a glass substrate G 1 having a chamfered shape having a single curved surface R 1
  • FIG. 14B shows a glass having a chamfered shape having a flat portion E and two curved surfaces R 2 and R 2 having the same curvature. It shows a substrate G 2.
  • the said ratio of the end surface of the glass substrate G demonstrated below is 10% or less.
  • the glass substrates G 1 and G 2 of the embodiment have a size of 400 mm ⁇ 300 mm or more, and the plate thickness (t) is a size of 0.05 ⁇ t ⁇ 2.8 mm.
  • the trapezoidal shape shown in FIGS. 15A and 15B which is calculated by drawing three tangent lines A, B, and C on the end face having the chamfered portion, satisfies the following expression (1).
  • 14A corresponds to FIG. 15A
  • FIG. 14B corresponds to FIG. 15B.
  • the tangent A, B is a tangent of the curved surface R 1, R 2 in the intersection of the plate surface G f and the curved R 1, R 2 is a plane.
  • ( ⁇ ) is the opening angle. That is, the angle formed between the tangent lines A and B drawn on the chamfered curved surfaces (curved surfaces R 1 and R 2 ) of the end surfaces of the glass substrates G 1 and G 2 and the plate surfaces G f of the glass substrates G 1 and G 2.
  • the range is 50 ° ⁇ 2 ⁇ ⁇ 80 °.
  • (W) is the end face width of the glass substrates G 1 and G 2 . That is, from the points P 1 and P 2 where the plate surface G f of the glass substrates G 1 and G 2 and the tangents A and B intersect, to the tangent C drawn at the tips of the end surfaces of the glass substrates G 1 and G 2 . is the length in the direction parallel to the plate surface G f.
  • a trapezoidal shape is determined by drawing three tangents A, B, and C on the end surfaces of the glass substrates G 1 and G 2 having chamfered portions, and an optimal shape that solves the above-described problem is calculated for this trapezoidal shape. I found the parameters.
  • the thickness of the glass substrate G 1, G 2 (t) , at the opening angle of the end face of the glass substrate G 1, G 2 ( ⁇ ) , and the glass substrate G 1, G 2 of the end surface width (W) is there.
  • board thickness (t) it was prescribed
  • the opening angle ( ⁇ ) is defined as 50 ° ⁇ 2 ⁇ ⁇ 80 °, and the end face shape at this time is expressed by the equation (1) where “1/3 ⁇ 1-2tan ⁇ ⁇ W / t ⁇ 4/5”. Was satisfied.
  • the opening angle ( ⁇ ) is an important factor that affects the quality of the glass substrates G 1 and G 2 .
  • the technical significance of the range of the opening angle ( ⁇ ) will be described.
  • the coolant coolant liquid
  • the burnant is used for chamfering the end surface of the glass substrate during chamfering of the end surface of the glass substrate. Since it becomes difficult to enter the grindstone, it was confirmed by experiments that burns occurred on the end surface of the glass substrate during chamfering. When the burn is generated, the strength of the end face is remarkably lowered, so that there is a problem that a crack starting from the end face is likely to occur in the glass substrate.
  • the subject of patent document 3 is preventing the generation
  • the present invention is also aimed at preventing burns and chipping that occur during chamfering processing of a glass substrate, so the focus of the problem is completely different even though the shapes are similar. Also, when chamfering a small size hard disk substrate, the burn phenomenon is unlikely to occur. Therefore, the burn problem is a problem peculiar to a large size FPD glass substrate, and the present invention can solve the problem.
  • the present invention defines the range of the opening angle ( ⁇ ) as 50 ° ⁇ 2 ⁇ ⁇ 80 °.
  • the size is 400 mm ⁇ 300 mm or more
  • the plate thickness (t) is 0.05 ⁇ t ⁇ 2.8 mm
  • the opening angle ( ⁇ ) is 50 ° ⁇ 2 ⁇ ⁇ 80 °.
  • Glass substrates G 1 and G 2 are assumed. In the glass substrates G 1 and G 2 , it was experimentally determined that the tip of the end face is easily chipped when “f / t” is less than 3. This is because the end face has low rigidity. Further, it was confirmed by an experiment that when “f / t” exceeds 4/5, the edge portion at the tip of the end face is easily chipped. In addition, it was confirmed by experiments that the burn problem can be effectively solved in a glass substrate having a size of 1200 mm ⁇ 1100 mm or more.
  • the glass substrate G 1 satisfying “1/3 ⁇ f / t ⁇ 4/5” in the glass substrate having the conditions of the size, the plate thickness (t), and the opening angle ( ⁇ ).
  • the flat length (f) is 0.017 mm, and the glass substrate is 1/3 ⁇ f / t.
  • the glass substrate G 3 are a glass substrate satisfying the conditions of the present invention, according to the glass substrate G 3, burnt, chipping, the disadvantage of chipping was not confirmed in the chamfered surface.
  • the flat length (f) is 0.017 mm, and the glass substrate is 1/3 ⁇ f / t.
  • the glass substrate G 4 is also a glass substrate satisfying the conditions of the present invention. In this glass substrate G 4, burnt, chipping, the disadvantage of chipping was not confirmed in the chamfered surface.
  • the glass substrate G 5 is also a glass substrate satisfying the conditions of the present invention, even in the glass substrate G 5, burnt, chipping, the disadvantage of chipping was not confirmed in the chamfered surface.
  • the glass substrate G 6 is also a glass substrate satisfying the conditions of the present invention. In this glass substrate G 6, burnt, chipping, the disadvantage of chipping was not confirmed in the chamfered surface.
  • the flat length (f) 0.933 mm and a glass substrate of 1/3 ⁇ f / t.
  • the glass substrate G 7 is also a glass substrate satisfying the conditions of the present invention, even in the glass substrate G 7, burnt, chipping, the disadvantage of chipping was not confirmed in the chamfered surface.
  • the flat length (f) 0.933 mm and a glass substrate of 1/3 ⁇ f / t.
  • the glass substrate G 8 is also a glass substrate satisfying the conditions of the present invention. In this glass substrate G 8, burnt, chipping, the disadvantage of chipping was not confirmed in the chamfered surface.
  • the glass substrate G 9 is also a glass substrate satisfying the conditions of the present invention, even in the glass substrate G 9, burnt, chipping, the disadvantage of chipping was not confirmed in the chamfered surface.
  • the glass substrate G 10 is also a glass substrate satisfying the conditions of the present invention. In this glass substrate G 10, burnt, chipping, the disadvantage of chipping was not confirmed in the chamfered surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Textile Engineering (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Surface Treatment Of Glass (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

 本発明は、ガラス基板の端面の性状を正確に評価することができるガラス基板端面の評価方法、及びこの評価方法に基づいたガラス基板端面の加工方法、並びにこの加工方法に基づいて、ガラス基板端面の塵付着を低減できるガラス基板、更にこの加工方法に基づき面取り面においてヤケ、チッピング、欠け等の欠点発生を防止することができるガラス基板を提供する。 本発明によれば、レーザ顕微鏡14によって撮像した端面Zの画像を白黒二値化処理し、端面に存在する凹部を白画像、端面の鏡面を黒画像として識別し、そして、黒画像の面積に対する白画像の面積の比率に基づいてガラス基板の端面の性状を評価する。この評価方法によれば、精度の信頼性が端面Zに存在する凹部の大きさに依存する従来の触針式粗さ計による評価方法と比較して、ガラス基板Gの端面Zの性状をより正確に評価することができる。

Description

ガラス基板端面の評価方法及びガラス基板端面の加工方法並びにガラス基板
 本発明は、FPD(Flat Panel Display)用として使用されるガラス基板端面の評価方法及びガラス基板端面の加工方法並びにガラス基板に関する。
 液晶ディスプレイ、又はプラズマディスプレイ等に使用されるFPD用ガラス基板は、製造工程においてその端面が研削部材によって面取り加工される。面取りされたガラス基板の端面形状は、面取り砥石の形状によって図24Aに示すような単一の曲面Rをもつ端面形状と、図24Bに示すような平坦部Eと2つの曲率の等しい曲面R、Rをもつ端面形状とに大別される。なお、同図には面取りされた端面を拡大した断面が示されており、符号Gがガラス基板である。
 ところで、ガラス基板の端面の粗さが粗い場合には、その端面にカレット等の塵が付着し易くなることが知られている。端面に付着した塵は、ディスプレイの製造時に基板面に再付着するおそれがあるため、端面の粗さを小さくすることが望まれている。
 例えば、特許文献1では、ガラス基板端面の粗さのRa値を0.25μm以下と規定し、また、特許文献2ではRa値を0.1μmと規定することで端面の塵付着を抑制している。このようなガラス基板端面の粗さ計測は、特許文献2に記載の如く、触針を備えた触針式の表面粗さ計を使用して実施されている。
 一方でガラス基板は、端面の面取り形状によってヤケ、チッピング、欠け等の欠点が端面に発生するため、面取り形状に関しても検討が行われている。
 例えば、特許文献3には、ハードディスク用基板の外周端面の面取り形状に関する発明が提案されている。特許文献3の目的は、カーボン基板又はガラス基板等の脆性材料によって製造されているハードディスク用基板の基板本体が、その取り扱い時に欠陥品になることを防止するものである。具体的には、基板本体の外周端面が搬送用カセットに接触した際の外周端面の傷、欠け等の欠点発生を防止するものである。
 上記目的を達成するために特許文献3には、外径が65mmの基板本体において、基板本体の外周端面の面取部を丸み状とし、この丸み状の面取部が唯1つの半径を有する丸み形状で側部を形成し、丸み半径Rを、t/2以上2t以下(t:基板本体の板厚)とした磁気記録媒体用基板が開示されている。また、特許文献1には、面取部が基板の上下に異なる丸みをもち、且つそれらの半径R、Rがそれぞれt/2未満とした磁気記録媒体用基板も開示されている。
日本国特許第4370611号公報 日本国特開2002-160147号公報 日本国特開平9-102122号公報
 ガラス基板端面を触針式の表面粗さ計によって計測する従来のガラス基板端面の評価方法は、触針の先端がガラス基板端面に存在している微細な凹部に入り込まずに、凹部を飛び越えてしまう場合がある。このため、ガラス基板端面の性状を正確に評価することが難しいという問題があった。すなわち、触針式の表面粗さ計によって、ガラス基板端面の性状を評価する方法は、その信頼性が凹部の大きさに依存するため、信頼性の高いものではなかった。
 一方、サイズの大きいガラス基板となると、サイズの小さい磁気記録媒体用基板では想定できない問題が発生する。この問題は、面取り加工時にガラス基板の端面に発生するヤケである。
 このようなヤケは、特許文献3に開示されたような小サイズのハードディスク基板の面取り加工時には発生し難く、400mm×300mm以上の大きさのFPD用ガラス基板に発生する。すなわち、ガラス基板の端面に対する研削部材の相対的な走行距離が長くなるに従って、ヤケ発生の頻度は高くなる傾向にある。特に、大きさが1200mm×1100mm以上のガラス基板となるとヤケ問題が発生する頻度が高くなる。
 また、端面形状が悪い場合には、面取り加工中に生じる前記ヤケはもちろんのこと、チッピングの発生も多くなり、ガラス基板の生産性を阻害する要因となっていた。また、前記ヤケやチッピングの度合いによってはガラス基板が破壊する原因にもなっていた。更に、端面形状が悪い場合には、加工された端面に欠けが発生するという問題もある。
 本発明は、このような事情に鑑みてなされたもので、ガラス基板の端面の性状を正確に評価することができるガラス基板端面の評価方法、及びこの評価方法に基づいたガラス基板端面の加工方法、並びにこの加工方法に基づいて、ガラス基板端面の塵付着を低減できるガラス基板、更にこの加工方法に基づき面取り面においてヤケ、チッピング、欠け等の欠点発生を防止することができるガラス基板を提供することを目的とする。
 本発明は、前記目的を達成するために、ガラス基板の端面の所定のエリアを撮像手段によって撮像し、該撮像した画像を白黒二値化処理することにより、前記端面に存在する凹部を白画像、前記端面の鏡面となる平坦部を黒画像として識別し、前記黒画像の面積に対する前記白画像の面積の比率に基づいてガラス基板の端面の性状を評価することを特徴とするガラス基板端面の評価方法を提供する。
 本発明の評価方法は、レーザ顕微鏡等の撮像手段を用いた評価方法を提供する。本発明によれば、撮像手段によって撮像した端面の画像を白黒二値化処理して、端面に存在する凹部を白画像、端面の鏡面となる平坦部を黒画像として識別する。そして、黒画像の面積に対する白画像の面積の比率に基づいてガラス基板の端面の性状を評価する。
 本発明の評価方法によれば、精度の信頼性が端面に存在する凹部の大きさに依存する従来の触針式粗さ計による評価方法と比較して、ガラス基板端面の性状をより正確に評価することができる。
 また、本発明によれば、前記黒画像の面積に対する前記白画像の面積の比率の閾値を10%とすることが好ましい。
 本願発明者は、端面の塵付着を抑制する前記比率を鋭意検討した結果、比率が10%を超えると塵が付着し易く、10%以下であれば塵が付着し難くなることを突き止めた。したがって、ガラス基板端面を評価するに当たり、前記比率の閾値を10%に設定することが好適である。
 本発明は、前記目的を達成するために、ガラス基板の端面を研削部材によって研削し、該研削された前記端面を撮像手段によって撮像し、該撮像した画像を白黒二値化処理することにより、前記端面に存在する凹部を白画像、前記端面の鏡面となる平坦部を黒画像として識別し、前記黒画像の面積に対する前記白画像の面積の比率が所定の閾値以下となるように前記研削部材による前記端面の研削代を制御することを特徴とするガラス基板端面の加工方法を提供する。
 本発明によれば、前記比率に基づいて研削部材による端面の研削代を制御する。すなわち、前記比率が閾値よりも大きい場合には、研削部材による研削代(ガラス基板端面に対する研削部材の追い込み量)が少なく、凹部が多く存在していると判断し、仕上げ品質が最適になるように最適制御する。これにより、ガラス基板端面の品質が安定する。
 また、本発明によれば、前記黒画像の面積に対する前記白画像の面積の比率の閾値が10%以下となるように前記制御を行うことが好ましい。
 本発明によれば、ガラス基板端面に塵が付着し難いガラス基板を安定して製造することができる。
 本発明は、前記目的を達成するために、本発明のガラス基板端面の加工方法によって加工されたことを特徴とするガラス基板を提供する。
 本発明のガラス基板によれば、ガラス基板端面に塵が付着し難いため、品質のよいガラス基板を提供できる。
 本発明は、前記目的を達成するために、本発明のガラス基板端面の加工方法によって加工され、大きさが400mm×300mm以上であり、板厚(t)が0.05mm以上、2.8mm以下であり、面取り部を有する端面に3本の接線を引いて割り出される台形形状が以下の寸法を満足することを特徴とするガラス基板を提供する。
 1/3≦1-2tanβ×W/t≦4/5
 β:開口角度(ガラス基板の板面とガラス基板の端面の面取り曲面の交点におけるガラス基板の端面の面取り曲面の接線と、ガラス基板の板面とのなす角度)であって、50°≦2β≦80°
 W:端面幅(ガラス基板の板面とガラス基板の端面の面取り曲面の交点から、ガラス基板の端面の先端に引かれた接線までの、ガラス基板の板面と平行な方向における長さ)
 本発明によれば、前記大きさ、前記板厚(t)、前記開口角度(β)の条件を有するガラス基板において、「1/3≦f/t≦4/5」を満足するガラス基板を製造することにより、ガラス基板端面に塵が付着し難く、かつ面取り面においてヤケ、チッピング、欠け等の欠点発生を防止することができる。なお、ガラス基板端面と面取り面とは同一面であり、ガラス基板の端面の面取り曲面に引かれた接線A、Bとガラス基板の端面の先端に引かれた接線Cとの2つの交点を結んだ線分の長さを(f)とする。
 本発明は、前記目的を達成するために、端面の所定のエリアを撮像手段によって撮像し、該撮像した画像を白黒二値化処理することにより、前記端面に存在する凹部を白画像、前記端面の鏡面となる平坦部を黒画像として識別した場合の、前記黒画像の面積に対する前記白画像の面積の比率が10%以下であること特徴とするガラス基板を提供する。
 本発明によれば、前記所定のエリアが、前記ガラス基板の端面加工領域の砥石進行方向での中央部分を含んだ奥行き10mm×幅20mm領域中の任意の幅100μm×高さ50μmのエリアであることが好ましい。
 また、本発明によれば、大きさが400mm×300mm以上であり、板厚(t)が0.05mm以上、2.8mm以下であり、面取り部を有する端面に3本の接線を引いて割り出される台形形状が以下の寸法を満足する前記発明におけるガラス基板を提供する。
 1/3≦1-2tanβ×W/t≦4/5
 β:開口角度(ガラス基板の板面とガラス基板の端面の面取り曲面の交点におけるガラス基板の端面の面取り曲面の接線と、ガラス基板の板面とのなす角度)であって、50°≦2β≦80°
 W:端面幅(ガラス基板の板面とガラス基板の端面の面取り曲面の交点から、ガラス基板の端面の端面に引かれた接線までの、ガラス基板の板面と平行な方向における長さ)
 本発明のガラス基板端面の評価方法によれば、ガラス基板端面の性状を正確に評価することができる。また、本発明のガラス基板端面の加工方法によれば、端面の品質が安定したガラス基板を製造することができる。更に、本発明のガラス基板によれば、端面に塵が付着し難く、また、面取り面においてヤケ、チッピング、欠け等の欠点発生を防止することができる。
実施の形態に係るガラス基板端面の評価方法とガラス基板端面の加工方法を示した図 面取り砥石による加工後のガラス基板の端面をレーザ顕微鏡によって撮像して得られた写真画像 図2の画像データを白黒二値化処理し端面に存在する凹部を白画像、端面の鏡面を黒画像として色分け表示した写真画像 面取り砥石による加工後のガラス基板の端面をレーザ顕微鏡によって撮像して得られた写真画像 図4の画像データを白黒二値化処理し端面に存在する凹部を白画像、端面の鏡面を黒画像として色分け表示した写真画像 面取り砥石による加工後のガラス基板の端面をレーザ顕微鏡によって撮像して得られた写真画像 図6の画像データを白黒二値化処理し端面に存在する凹部を白画像、端面の鏡面を黒画像として色分け表示した写真画像 端面粗研削工程加工後のガラス基板の端面をレーザ顕微鏡によって撮像して得られた写真画像 図8の画像データを白黒二値化処理し端面に存在する凹部を白画像、端面の鏡面を黒画像として色分け表示した写真画像 面取り砥石による加工後のガラス基板の端面をレーザ顕微鏡によって撮像して得られた写真画像 図10の画像データを白黒二値化処理し端面に存在する凹部を白画像、端面の鏡面を黒画像として色分け表示した写真画像 面取り砥石による加工後のガラス基板の端面をレーザ顕微鏡によって撮像して得られた写真画像 図12の画像データを白黒二値化処理し端面に存在する凹部を白画像、端面の鏡面を黒画像として色分け表示した写真画像 実施の形態に係るFPD用ガラス基板であり、単一の曲面をもつ面取り形状を示したガラス基板の拡大断面図 実施の形態に係るFPD用ガラス基板であり、平坦部と2つの曲率の等しい曲面をもつ面取り形状を示したガラス基板の拡大断面図 図14Aに対応する台形形状を示した図 図14Bに対応する台形形状を示した図 ガラス基板の第1実施例における台形形状を示した図 ガラス基板の第2実施例における台形形状を示した図 ガラス基板の第3実施例における台形形状を示した図 ガラス基板の第4実施例における台形形状を示した図 ガラス基板の第5実施例における台形形状を示した図 ガラス基板の第6実施例における台形形状を示した図 ガラス基板の第7実施例における台形形状を示した図 ガラス基板の第8実施例における台形形状を示した図 単一の曲面をもつ面取り形状を示したガラス基板の拡大断面図 平坦部と2つの曲率の等しい曲面をもつ面取り形状を示したガラス基板の拡大断面図
 以下、添付図面に従って本発明に係るガラス基板端面の評価方法及びガラス基板端面の加工方法並びにガラス基板の好ましい実施の形態を詳説する。
 図1は、実施の形態に係るガラス基板端面の評価方法、及びガラス基板端面の加工方法を示した図である。
 図1に示すようにガラス基板Gの端面加工(面取り)工程は、面取り砥石(研削部材)10を備えた加工部12による加工工程、及び撮像手段であるレーザ顕微鏡(株式会社キーエンス製 VK-9500)14を備えた検査部16による検査工程からなる。
 加工部12においてガラス基板Gはその端面Zに、回転中の面取り砥石10の溝10Aが押し付けられる。これによって、端面Zが面取り加工される。なお、この加工工程の前段には、端面Zを粗研削する粗研削工程がある。よって、この加工部12において端面Zは、仕上げ砥石である面取り砥石10によって鏡面に仕上げ研削される。
 面取り砥石10は、砥粒としてダイヤモンド、セラミックスを使用した弾力性のあるレジンボンド砥石であり、砥粒及びボンドも端面Zの鏡面仕上げ加工に寄与している。また、番手としては220~1000番が好ましく、220~600番がより好ましい。更に、面取り砥石10の周速は470~3000m/分であり、加工時の研削負荷を電流値、又は電力値で管理し、研削負荷が一定となるように周速を制御している。また、面取り砥石10とガラス基板Gの端面Zとの間には、クーラント液が供給されており、端面Zのヤケが防止されている。
 加工部12で端面Zが仕上げ研削されたガラス基板Gは、検査工程に移動され、検査部16にて端面Zの所定のエリアがレーザ顕微鏡14によって撮像される。
 端面Zをレーザ顕微鏡14によって撮像するエリアは、例えば、ガラス基板の端面Zの加工開始部のエリア、加工する領域の中央部のエリア、加工終了部のエリアであってもよい。具体的には、以下のエリアを選ぶことができる。
 基板の加工開始部のエリアとしては、砥石接触開始位置から砥石進行方向へ100mmの位置の端面を含んだ奥行き10mm×幅20mmのサンプルをガラス基板から切り出し、そのサンプルの端面から任意の幅100μm×高さ50μmのエリアを選ぶことができる。好ましくは、切り出したサンプルの端面の中央の幅100μm×高さ50μmのエリアを選ぶことができる。
 基板の加工中央部のエリアとしては、ガラス基板の端面加工領域の砥石進行方向での中央部分を含んだ奥行き10mm×幅20mmサンプルをガラス基板から切り出し、そのサンプルの端面から任意の幅100μm×高さ50μmのエリアを選ぶことができる。好ましくは、切り出したサンプルの端面の中央の幅100μm×高さ50μmのエリアを選ぶことができる。
 基板の加工終了部のエリアとしては、砥石接触修了位置から砥石進行方向と逆方向へ100mmの位置の端面を含んだ奥行き10mm×幅20mmのサンプルをガラス基板から切り出し、そのサンプルの端面から任意の幅100μm×高さ50μmのエリアを選ぶことができる。好ましくは、切り出したサンプルの端面の中央の幅100μm×高さ50μmのエリアを選ぶことができる。
 レーザ顕微鏡14とは、光源にレーザ光を使用したデジタル顕微鏡である。このレーザ顕微鏡14によれば、ガラス基板Gの端面Zの正確な焦点位置を検出することができるので、高さ方向にスキャニングすることにより、コントラストの良い画像が焦点のあった状態で観察できる。また、レーザ顕微鏡14は、拡大像のデジタルデータの出力と共に表面粗さ、形状測定も行うことができ、更に、ガラス基板Gの端面Zの輝度情報に加えて凹凸の幅、高さ等の計測も可能である。すなわち、表面の凹凸状態をあらわすことが可能となる。
 レーザ顕微鏡14によって撮像された解像度の高い端面Zの画像データは、画像処理部18に出力される。画像処理部18では、前記画像データを白黒二値化処理して、端面Zに存在する凹部を白画像、端面Zの鏡面となる平坦部を黒画像として識別し、白画像及び黒画像を示す画像データを演算部20に出力する。
 白黒二値化処理は以下の方法で行う。粗研削したガラス基板Gの端面をレーザ顕微鏡14で撮影した画像を用意する。この場合、輝度はほぼ一定となる。得られた画像において、端面の画像は、255階調であらわされる。
 粗研削は、番手450~600番のメタルボンド砥石を用いて行う。メタルボンド砥石の周速は470~3000m/分とし、加工時の研削負荷は電流値、又は電力値で管理し、研削負荷が一定となるように周速は制御される。また、メタルボンド砥石とガラス基板Gの端面Zとの間には、クーラント液が供給されており、端面Zのやけを防止する効果がある。
 次いで、得られた画像の隣り合うピクセル間の階調の差分を求め、その差分値の度数分布を求め、その標準偏差σを算出する。この標準偏差σを白黒二値化処理の基準閾値とする。すなわち、閾値(標準偏差σ)以上の画像を白画像、閾値(標準偏差σ)未満の画像を黒画像とする。
 次に粗砥石後に仕上げ加工を実施した端面についても同様の処理を行い、上記で得られた粗加工での閾値(標準偏差σ)を用いて二値化処理を行い、黒と白の面積比率の比較を行う。これにより、仕上げが良好かどうかの詳細なチェックが可能となる。
 演算部20では、黒画像が占める面積に対する白画像が占める面積の比率を算出し、その比率をモニタ22に表示させる。この比率をオペレータが確認することにより、この比率に基づいてオペレータがガラス基板Gの端面Zの性状を評価する。なお、モニタ22には、レーザ顕微鏡14によって撮像された端面Zの画像、白黒二値化処理した端面Zの画像も表示される。
 すなわち、実施の形態の評価方法によれば、レーザ顕微鏡14によって撮像した端面Zの画像を白黒二値化処理し、端面に存在する凹部を白画像、端面の鏡面となる平坦部を黒画像として識別し、そして、黒画像の面積に対する白画像の面積の比率に基づいてガラス基板の端面の性状を評価する。
 この評価方法によれば、精度の信頼性が端面Zに存在する凹部の大きさに依存する従来の触針式粗さ計による評価方法と比較して、ガラス基板Gの端面Zの性状をより正確に評価することができる。
 また、演算部20では、前記比率の閾値が10%に設定されており、10%を超えた場合には、砥石移動部24を最適制御して、面取り砥石10による端面Zの研削代を増やすように制御する。
 本願発明者は、端面Zの塵付着を抑制する前記比率を鋭意検討した結果、比率が10%を超えると塵が付着し易く、10%以下であれば塵が付着し難くなることを突き止めた。したがって、ガラス基板Gの端面Zを評価するに当たり、前記比率の閾値を10%に設定している。
 また、実施の形態の端面加工方法によれば、演算部20で算出された前記比率に基づいて面取り砥石10による端面Zの研削代を、前述の如く最適制御している。すなわち、算出した前記比率が閾値の10%よりも大きい場合には、面取り砥石10による研削代が少なく、端面Zに凹部が多く存在していると判断し、仕上げ品質が最適になるように砥石移動部24を制御する。具体的には、端面Zに対する面取り砥石10を図1の矢印Aの方向に移動させ、研削代を増やすことによって前記比率を制御する。これにより、ガラス基板Gの端面Zの品質が安定する。また、加工されたガラス基板Gの端面Zには塵が付着し難いため、品質のよいガラス基板Gとなる。なお、前記比率が10%を超えたガラス基板Gは、検査部16から加工部12に戻されて、面取り砥石10によって再加工される。
 〔実施例1〕
 1000mm×1000mmのガラス基板Gの端面Zを番手450~600番のメタルボンド砥石を用いて、研削負荷が一定となるように470~3000m/分の周速を制御しながら粗研削した。次いで、端面Zを、番手が600番の弾力性のあるレジンボンド砥石を仕上げ砥石として使用し、周速470~3000m/分の範囲で研削負荷が一定となるように周速を制御して鏡面に仕上げ研削した。
 図2に示す写真画像は、面取り砥石10による加工後のガラス基板Gであって、このガラス基板Gの端面Zの加工中央部のエリアをレーザ顕微鏡14によって撮像して得られた写真画像である。
 図3は、図2の画像データを白黒二値化処理し、端面Zに存在する凹部を白画像、端面の鏡面となる平坦部を黒画像として色分け表示した写真画像であり、演算部20によってその比率が9.05%と算出されたものである。
 すなわち、図2、図3に示す端面Zは、比率が10%以下であるので、面取り砥石10による鏡面仕上げ加工が良好に行われ、塵が付着し難い端面Zとなっている。なお、端面Zの粗さを触針式の表面粗さ形状測定機(株式会社東京精密:製品名サーフコム:カットオフ値=0.25mm、測定長=10mm)によって計測したところ、Ra=0.11μmであった。
 〔実施例2〕
 1000mm×1000mmのガラス基板Gの端面Zを番手450~600番のメタルボンド砥石を用いて、研削負荷が一定となるように470~3000m/分の周速を制御しながら粗研削した。次いで、端面Zを、番手が220番の弾力性のあるレジンボンド砥石を仕上げ砥石として使用し、周速470~3000m/分の範囲で研削負荷が一定となるように周速を制御して鏡面に仕上げ研削した。
 図4に示す写真画像は、面取り砥石10による加工後のガラス基板Gであって、このガラス基板Gの端面Zの加工中央部のエリアをレーザ顕微鏡14によって撮像して得られた写真画像である。
 図5は、図4の画像データを白黒二値化処理し、端面Zに存在する凹部を白画像、端面の鏡面となる平坦部を黒画像として色分け表示した写真画像であり、演算部20によってその比率が8.13%と算出されたものである。
 すなわち、図4、図5に示す端面Zは、比率が10%以下であるので、面取り砥石10による鏡面仕上げ加工が良好に行われ、塵が付着し難い端面Zとなっている。なお、端面Zの粗さを触針式の表面粗さ形状測定機(株式会社東京精密:製品名サーフコム:カットオフ値=0.25mm、測定長=10mm)によって計測したところ、Ra=0.22μmであった。
 〔実施例3〕
 1000mm×1000mmのガラス基板Gの端面Zを番手450~600番のメタルボンド砥石を用いて、研削負荷が一定となるように470~3000m/分の周速を制御しながら粗研削した。次いで、端面Zを、番手が320番の弾力性のあるレジンボンド砥石を仕上げ砥石として使用し、周速470~3000m/分の範囲で研削負荷が一定となるように周速を制御して鏡面に仕上げ研削した。
 図6に示す写真画像は、面取り砥石10による加工後のガラス基板Gであって、このガラス基板Gの端面Zの加工中央部のエリアをレーザ顕微鏡14によって撮像して得られた写真画像である。
 図7は、図6の画像データを白黒二値化処理し、端面Zに存在する凹部を白画像、端面の鏡面となる平坦部を黒画像として色分け表示した写真画像であり、演算部20によってその比率が9.82%と算出されたものである。
 すなわち、図6、図7に示す端面Zは、比率が10%以下であるので、面取り砥石10による鏡面仕上げ加工が良好に行われ、塵が付着し難い端面Zとなっている。なお、端面Zの粗さを触針式の表面粗さ形状測定機(株式会社東京精密:製品名サーフコム:カットオフ値=0.25mm、測定長=10mm)によって計測したところ、Ra=0.23μmであった。
 〔比較例1〕
 1000mm×1000mmのガラス基板Gの端面Zを番手450~600番のメタルボンド砥石を用いて、研削負荷が一定となるように470~3000m/分の周速を制御しながら粗研削した。
 図8に示す写真画像は、端面粗研削工程加工後、面取り仕上げ砥石10による加工前のガラス基板Gであって、粗研削されたガラス基板Gの端面Zの加工中央部のエリアをレーザ顕微鏡14によって撮像して得られた写真画像である。図9は、図8の画像データを白黒二値化処理し、端面Zに存在する凹部を白画像、端面の鏡面を黒画像として色分け表示した写真画像であり、演算部20によってその比率が22.67%と算出されたものである。
 すなわち、図8、図9は、面取り砥石10による加工前のガラス基板Gの端面Zの性状が示されている。なお、端面Zの粗さを触針式の表面粗さ形状測定機(株式会社東京精密:製品名サーフコム:カットオフ値=0.25mm、測定長=10mm)によって計測したところ、Ra=0.45μmであった。
 〔比較例2〕
 1000mm×1000mmのガラス基板Gの端面Zを番手450~600番のメタルボンド砥石を用いて、研削負荷が一定となるように470~3000m/分の周速を制御しながら粗研削した。次いで、端面Zを、番手が220番~800番のレジンボンド砥石を仕上げ砥石として使用し、周速470~3000m/分の範囲で研削負荷が一定となるように周速を制御して鏡面に仕上げ研削した。
 図10に示す写真画像は、面取り砥石10による加工後のガラス基板Gであって、このガラス基板Gの端面Zの加工中央部のエリアをレーザ顕微鏡14によって撮像して得られた写真画像である。図11は、図10の画像データを白黒二値化処理し、端面Zに存在する凹部を白画像、端面の鏡面を黒画像として色分け表示した写真画像であり、演算部20によってその比率が13.10%と算出されたものである。
 すなわち、図10、図11に示す端面Zは、比率が10%を超えており、塵が付着し易い端面Zなので、面取り砥石10による鏡面仕上げ加工を再度行う必要がある。なお、端面Zの粗さを触針式の表面粗さ形状測定機(株式会社東京精密:製品名サーフコム:カットオフ値=0.25mm、測定長=10mm)によって計測したところ、Ra=0.32μmであった。
 〔比較例3〕
 図12に示す写真画像は、面取り砥石10による加工後のガラス基板Gであって、このガラス基板Gの端面Zの加工中央部のエリアをレーザ顕微鏡14によって撮像して得られた写真画像である。図13は、図12の画像データを白黒二値化処理し、端面Zに存在する凹部を白画像、端面の鏡面を黒画像として色分け表示した写真画像であり、演算部20によってその比率が16.73%と算出されたものである。
 すなわち、図12、図13に示す端面Zは、比率が10%を超えており、塵が付着し易い端面Zなので、面取り砥石10による鏡面仕上げ加工を再度行う必要がある。なお、端面Zの粗さを触針式の表面粗さ形状測定機(株式会社東京精密:製品名サーフコム:カットオフ値=0.25mm、測定長=10mm)によって計測したところ、Ra=0.14μmであった。
 実施例2、3の比率は比較例3の比率に比べ小さいが、実施例2、3のRaは比較例3のRaに比べ大きくなっている。これは以下の理由によると考えられる。
 Raの測定はガラス基板端面を触針式の表面粗さ計によって計測しており、ガラス基板端面に存在している凹部が微細な場合、触針の先端がガラス基板端面に存在している微細な凹部に入り込まずに、凹部を飛び越え、ガラス基板端面の性状を正確に評価できていない。
 一方、白画像と黒画像との比率では、撮像画像に基づいてガラス基板端面の性状を評価しているため、ガラス基板端面に存在している微細な凹部も測定でき、ガラス基板端面の性状を正確に評価できている。
 このため、実施例2、3と比較例3とにおいて、比率の大小とRaの大小が逆転したと考えられる。
 図14A、Bは、実施の形態に係るFPD用ガラス基板を説明するために、ガラス基板G、Gの端面及びその近傍を拡大して示した断面図である。また、図14Aは、単一の曲面Rをもつ面取り形状を有するガラス基板Gを示し、図14Bは平坦部Eと2つの曲率の等しい曲面R、Rをもつ面取り形状を有するガラス基板Gを示している。なお、以下に説明するガラス基板Gの端面の前記比率は10%以下である。
 実施の形態のガラス基板G、Gは、大きさが400mm×300mm以上であり、その板厚(t)は、0.05≦t≦2.8mmのサイズである。そして、面取り部を有する端面に3本の接線A、B、Cを引いて割り出される、図15A、Bの台形形状が以下の(1)式の寸法を満足するものである。なお、図14Aは図15Aに対応し、図14Bは図15Bに対応している。図14Aおよび図14Bにおいては、接線A、Bは、平面である板面Gと曲面R、Rとの交点における曲面R、Rの接線である。
 1/3≦1-2tanβ×W/t≦4/5 …(1)
 ここで、(β)とは開口角度である。すなわち、ガラス基板G、Gの板面Gとガラス基板G、Gの端面の面取り曲面(曲面R、R)に引かれた接線A、Bとのなす角度であって、その範囲は50°≦2β≦80°である。
 また、(W)とはガラス基板G、Gの端面幅である。すなわち、ガラス基板G、Gの板面Gと接線A、Bとが交差する点P、Pから、ガラス基板G、Gの端面の先端に引かれた接線Cまでの、板面Gと平行な方向における長さである。
 本願の発明者は、従来技術がかかえる問題の解決策を鋭意検討した結果、次の知見を得た。すなわち、面取り部を有するガラス基板G、Gの端面に3本の接線A、B、Cを引いて台形形状を割り出し、この台形形状に関して、上記課題を解決する最適形状を算出するためのパラメータを見出した。
 そのパラメータとは、ガラス基板G、Gの板厚(t)、ガラス基板G、Gの端面の開口角度(β)、及びガラス基板G、Gの端面幅(W)である。そして、板厚(t)に関しては、FPD用ガラス基板として通常使用される範囲である、0.05≦t≦2.8mmと規定した。また、開口角度(β)においては、50°≦2β≦80°と規定し、この際の端面形状が、「1/3≦1-2tanβ×W/t≦4/5」の(1)式を満足するものとした。
 開口角度(β)は、ガラス基板G、Gの品質に影響を及ぼす重要な要因である。この開口角度(β)の範囲の技術的意義について説明すると、2βが50°未満の場合には、ガラス基板の端面の面取り加工中に冷却液(クーラント液)が、ガラス基板の端面と面取り用砥石との間に入り難くなることから、面取り加工中にガラス基板の端面にヤケが発生することを実験によって確認した。前記ヤケが発生すると、端面の強度が著しく低下するので、端面を起点とする割れがガラス基板に発生し易くなるという問題が発生する。
 なお、特許文献3の課題は、基板本体の外周端面の角部がカセットに接触した時の傷、欠け等の発生を防止するものであり、その課題を解決するために、基板本体の外周端面の形状を規定したものである。これに対して、本願発明は、ガラス基板の面取り加工中に生じるヤケ、チッピングを防止することも目的としているので、形状が類似しているといえど、課題の着目が全く異なる。また、小サイズのハードディスク基板の面取り加工時には、ヤケ現象が発生し難く、よって、ヤケ問題は大サイズのFPD用ガラス基板特有の問題であり、本願発明はその問題を解決できる。
 一方で、2βが80°を超えると、面取り加工中において、平面である板面Gと面取り部との交点部分Q、Qにチッピングが発生することを実験により確認した。チッピングが発生すると、端面の再加工が必要となり、加工に手間がかかるという問題がある。
 このような理由により本発明は、開口角度(β)の範囲を50°≦2β≦80°と規定した。
 ところで、接線A、Bと接線Cとの2つの交点を結んだ線分の長さを(f)(以下、平坦長さという)とした場合、(1)式の「1-2tanβ×W/t」の式は、「f/t」と換算できる。よって、(1)式を「1/3≦f/t≦4/5」と表すこともできる。
 そして、本願の発明は、大きさが400mm×300mm以上であり、板厚(t)が0.05≦t≦2.8mmであり、開口角度(β)が50°≦2β≦80°であるガラス基板G、Gを前提としている。このガラス基板G、Gにおいて、「f/t」が1/3未満であると端面の先端が欠け易くなることを実験によって突き止めた。これは、端面の剛性が低くなることが原因である。また、「f/t」が4/5を超えると端面の先端のエッジ部分が欠け易くなることを実験によって確認した。また、大きさが1200mm×1100mm以上のガラス基板において、ヤケ問題を有効に解消できることを実験によって確認した。
 よって本発明は、前記大きさ、前記板厚(t)、前記開口角度(β)の条件を有するガラス基板において、「1/3≦f/t≦4/5」を満足するガラス基板G、Gを製造することにより、面取り面においてヤケ、チッピング、欠け等の欠点発生を防止することができる。
 以下、実施例を説明する。
 図16のガラス基板Gは、前記大きさを満足し、板厚(t)=0.05mm、開口角度(β)=25°(2β=50°)、端面幅(W)=0.0354mm、平坦長さ(f)=0.017mmであり、1/3<f/tのガラス基板である。
 このガラス基板Gは、本発明の条件を満足したガラス基板であり、このガラス基板Gによれば、面取り面においてヤケ、チッピング、欠け等の欠点が確認されなかった。
 図17のガラス基板Gは、前記大きさを満足し、板厚(t)=0.05mm、開口角度(β)=40°(2β=80°)、端面幅(W)=0.0197mm、平坦長さ(f)=0.017mmであり、1/3<f/tのガラス基板である。
 このガラス基板Gも、本発明の条件を満足したガラス基板である。このガラス基板Gにおいても、面取り面においてヤケ、チッピング、欠け等の欠点が確認されなかった。
 図18のガラス基板Gは、前記大きさを満足し、板厚(t)=0.05mm、開口角度(β)=25°(2β=50°)、端面幅(W)=0.0107mm、平坦長さ(f)=0.040mmであり、f/t=4/5のガラス基板である。
 このガラス基板Gも、本発明の条件を満足したガラス基板であり、このガラス基板Gにおいても、面取り面においてヤケ、チッピング、欠け等の欠点が確認されなかった。
 図19のガラス基板Gは、前記大きさを満足し、板厚(t)=0.05mm、開口角度(β)=40°(2β=80°)、端面幅(W)=0.006mm、平坦長さ(f)=0.040mmであり、f/t=4/5のガラス基板である。
 このガラス基板Gも、本発明の条件を満足したガラス基板である。このガラス基板Gにおいても、面取り面においてヤケ、チッピング、欠け等の欠点が確認されなかった。
 図20のガラス基板Gは、前記大きさを満足し、板厚(t)=2.8mm、開口角度(β)=25°(2β=50°)、端面幅(W)=2.002mm、平坦長さ(f)=0.933mmであり、1/3<f/tのガラス基板である。
 このガラス基板Gも、本発明の条件を満足したガラス基板であり、このガラス基板Gにおいても、面取り面においてヤケ、チッピング、欠け等の欠点が確認されなかった。
 図21のガラス基板Gは、前記大きさを満足し、板厚(t)=2.8mm、開口角度(β)=40°(2β=80°)、端面幅(W)=1.113mm、平坦長さ(f)=0.933mmであり、1/3<f/tのガラス基板である。
 このガラス基板Gも、本発明の条件を満足したガラス基板である。このガラス基板Gにおいても、面取り面においてヤケ、チッピング、欠け等の欠点が確認されなかった。
 図22のガラス基板Gは、前記大きさを満足し、板厚(t)=2.8mm、開口角度(β)=25°(2β=50°)、端面幅(W)=0.600mm、平坦長さ(f)=2.240mmであり、f/t=4/5のガラス基板である。
 このガラス基板Gも、本発明の条件を満足したガラス基板であり、このガラス基板Gにおいても、面取り面においてヤケ、チッピング、欠け等の欠点が確認されなかった。
 図23のガラス基板G10は、前記大きさを満足し、板厚(t)=2.8mm、開口角度(β)=40°(2β=80°)、端面幅(W)=0.334mm、平坦長さ(f)=2.240mmであり、f/t=4/5のガラス基板である。
 このガラス基板G10も、本発明の条件を満足したガラス基板である。このガラス基板G10においても、面取り面においてヤケ、チッピング、欠け等の欠点が確認されなかった。
 本出願を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2010年7月8日出願の日本特許出願(特願2010-155987)に基づくものであり、その内容はここに参照として取り込まれる。
 10…面取り砥石
12…加工部
14…レーザ顕微鏡
16…検査部
18…画像処理部
20…演算部
22…モニタ
24…砥石移動部
Z…端面
~G10…FPD用ガラス基板
…板面
A、B、C…接線

Claims (9)

  1.  ガラス基板の端面の所定のエリアを撮像手段によって撮像し、
     該撮像した画像を白黒二値化処理することにより、前記端面に存在する凹部を白画像、前記端面の鏡面となる平坦部を黒画像として識別し、
     前記黒画像の面積に対する前記白画像の面積の比率に基づいてガラス基板の端面の性状を評価することを特徴とするガラス基板端面の評価方法。
  2.  前記黒画像の面積に対する前記白画像の面積の比率の閾値を10%とする請求項1に記載のガラス基板端面の評価方法。
  3.  ガラス基板の端面を研削部材によって研削し、
     該研削された前記端面を撮像手段によって撮像し、
     該撮像した画像を白黒二値化処理することにより、前記端面に存在する凹部を白画像、前記端面の鏡面となる平坦部を黒画像として識別し、
     前記黒画像の面積に対する前記白画像の面積の比率が所定の閾値以下となるように前記研削部材による前記端面の研削代を制御することを特徴とするガラス基板端面の加工方法。
  4.  前記黒画像の面積に対する前記白画像の面積の比率の閾値が10%以下となるように前記制御を行う請求項3に記載のガラス基板端面の加工方法。
  5.  請求項4に記載のガラス基板端面の加工方法によって加工されたことを特徴とするガラス基板。
  6.  請求項4に記載のガラス基板端面の加工方法によって加工され、
     大きさが400mm×300mm以上であり、
     板厚(t)が0.05mm以上、2.8mm以下であり、
     面取り部を有する端面に3本の接線を引いて割り出される台形形状が以下の寸法を満足することを特徴とするガラス基板。
     1/3≦1-2tanβ×W/t≦4/5
     β:開口角度(ガラス基板の板面とガラス基板の端面の面取り曲面の交点におけるガラス基板の端面の面取り曲面の接線と、ガラス基板の板面とのなす角度)であって、50°≦2β≦80°
     W:端面幅(ガラス基板の板面とガラス基板の端面の面取り曲面の交点から、ガラス基板の端面の端面に引かれた接線までの、ガラス基板の板面と平行な方向における長さ)
  7.  端面の所定のエリアを撮像手段によって撮像し、該撮像した画像を白黒二値化処理することにより、前記端面に存在する凹部を白画像、前記端面の鏡面となる平坦部を黒画像として識別した場合の、前記黒画像の面積に対する前記白画像の面積の比率が10%以下であることを特徴とするガラス基板。
  8.  前記所定のエリアが、前記ガラス基板の端面加工領域の砥石進行方向での中央部分を含んだ奥行き10mm×幅20mm領域中の任意の幅100μm×高さ50μmのエリアである請求項7に記載のガラス基板。
  9.  大きさが400mm×300mm以上であり、
     板厚(t)が0.05mm以上、2.8mm以下であり、
     面取り部を有する端面に3本の接線を引いて割り出される台形形状が以下の寸法を満足する請求項7又は8に記載のガラス基板。
     1/3≦1-2tanβ×W/t≦4/5
     β:開口角度(ガラス基板の板面とガラス基板の端面の面取り曲面の交点におけるガラス基板の端面の面取り曲面の接線と、ガラス基板の板面とのなす角度)であって、50°≦2β≦80°
     W:端面幅(ガラス基板の板面とガラス基板の端面の面取り曲面の交点から、ガラス基板の端面の端面に引かれた接線までの、ガラス基板の板面と平行な方向における長さ)
     
PCT/JP2011/053749 2010-07-08 2011-02-21 ガラス基板端面の評価方法及びガラス基板端面の加工方法並びにガラス基板 WO2012005019A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180033900.0A CN102985386B (zh) 2010-07-08 2011-02-21 玻璃基板端面的评价方法及玻璃基板端面的加工方法以及玻璃基板
JP2012523774A JP5757289B2 (ja) 2010-07-08 2011-02-21 ガラス基板端面の加工装置及びガラス基板端面の加工方法並びにガラス基板
EP11803355.4A EP2592057A4 (en) 2010-07-08 2011-02-21 METHOD FOR EVALUATING THE END SURFACE OF A GLASS SUBSTRATE, METHOD FOR PROCESSING THE END SURFACE OF A GLASS SUBSTRATE, AND GLASS SUBSTRATE
KR1020137000467A KR101811903B1 (ko) 2010-07-08 2011-02-21 유리 기판 단부면의 평가 방법 및 유리 기판 단부면의 가공 방법 및 유리 기판
US13/735,469 US20130122265A1 (en) 2010-07-08 2013-01-07 Glass substrate end surface evaluation method, glass substrate end surface processing method, and glass substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-155987 2010-07-08
JP2010155987 2010-07-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/735,469 Continuation US20130122265A1 (en) 2010-07-08 2013-01-07 Glass substrate end surface evaluation method, glass substrate end surface processing method, and glass substrate

Publications (1)

Publication Number Publication Date
WO2012005019A1 true WO2012005019A1 (ja) 2012-01-12

Family

ID=45441006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053749 WO2012005019A1 (ja) 2010-07-08 2011-02-21 ガラス基板端面の評価方法及びガラス基板端面の加工方法並びにガラス基板

Country Status (7)

Country Link
US (1) US20130122265A1 (ja)
EP (1) EP2592057A4 (ja)
JP (1) JP5757289B2 (ja)
KR (1) KR101811903B1 (ja)
CN (1) CN102985386B (ja)
TW (1) TWI490479B (ja)
WO (1) WO2012005019A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027546A1 (ja) * 2012-08-13 2014-02-20 旭硝子株式会社 ガラス基板及びガラス基板の製造方法
JP2014114183A (ja) * 2012-12-10 2014-06-26 Asahi Glass Co Ltd 積層板の加工方法、加工された積層板
WO2014171375A1 (ja) * 2013-04-18 2014-10-23 旭硝子株式会社 ガラス板の製造方法及びガラス板の製造装置並びにガラス板
WO2015099251A1 (ko) * 2013-12-24 2015-07-02 주식회사 엘지실트론 웨이퍼의 형상 분석 방법 및 장치
JP2015124128A (ja) * 2013-12-27 2015-07-06 旭硝子株式会社 ガラス基板及びガラス基板の製造方法
JP2015205364A (ja) * 2014-04-18 2015-11-19 旭硝子株式会社 板状体の製造方法、およびゴム砥石
WO2017030112A1 (ja) * 2015-08-19 2017-02-23 旭硝子株式会社 ガラス板
JP2018052805A (ja) * 2016-09-21 2018-04-05 旭硝子株式会社 ガラス板
WO2021006116A1 (ja) * 2019-07-10 2021-01-14 Agc株式会社 ガラス基体およびその製造方法
JP2021060545A (ja) * 2019-10-09 2021-04-15 日本電波工業株式会社 光学ブランク部材

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101452250B1 (ko) * 2013-05-28 2014-10-22 코닝정밀소재 주식회사 기판 대칭 면취 방법 및 장치
TW201527109A (zh) * 2014-01-10 2015-07-16 Innolux Corp 板材及其製備方法
CN104526493A (zh) * 2014-11-18 2015-04-22 天津中环领先材料技术有限公司 一种单晶硅晶圆片边缘抛光工艺
MY190084A (en) * 2016-08-25 2022-03-25 Shinetsu Chemical Co Rectangular glass substrate and method for preparing the same
JP6913295B2 (ja) * 2016-12-27 2021-08-04 日本電気硝子株式会社 ガラス板、及びガラス板の製造方法
CN111183355B (zh) * 2017-05-17 2022-10-28 应用材料以色列公司 用于检测制造工艺缺陷的方法、计算机程序产品及系统
CN108705407B (zh) * 2018-04-25 2019-12-20 昆山国显光电有限公司 玻璃磨边装置
JP7017475B2 (ja) * 2018-06-19 2022-02-08 信越化学工業株式会社 フォトマスクブランク関連基板の表面状態の評価方法
CN116798456A (zh) * 2018-08-07 2023-09-22 Hoya株式会社 磁盘用基板以及磁盘
US11307458B2 (en) * 2020-09-23 2022-04-19 Luca HUNG Display device
US11664050B2 (en) * 2021-10-05 2023-05-30 Western Digital Technologies, Inc. Tuned edge profile of a disk substrate for use in magnetic recording media
CN117921450B (zh) * 2024-03-21 2024-05-24 成都晨航磁业有限公司 一种瓦形磁体生产加工方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102122A (ja) 1995-10-03 1997-04-15 Kao Corp 記録媒体用基板
JPH1192170A (ja) * 1997-09-10 1999-04-06 Nippon Electric Glass Co Ltd ガラス基板
JP2000017417A (ja) * 1998-07-03 2000-01-18 Kawasaki Steel Corp 合金化溶融亜鉛めっき鋼板
JP2001259978A (ja) * 2000-03-07 2001-09-25 Three M Innovative Properties Co ガラス板の端部を面取りする方法
JP2002160147A (ja) 2000-11-21 2002-06-04 Asahi Glass Co Ltd 板ガラスの端縁部研磨方法
JP2004256838A (ja) * 2003-02-24 2004-09-16 Jfe Steel Kk プレス成形性に優れた合金化溶融亜鉛めっき鋼板
JP2005052944A (ja) * 2003-08-06 2005-03-03 Hitachi Zosen Corp 研磨装置
JP4370611B2 (ja) 2002-04-17 2009-11-25 日本電気硝子株式会社 平面表示装置用板ガラス

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212134A (ja) * 1997-01-23 1998-08-11 Toshiba Glass Co Ltd 電子光学部品用ガラスおよびその製造方法
US6088092A (en) * 1999-06-21 2000-07-11 Phase Metrics, Inc. Glass substrate inspection apparatus
JP3595226B2 (ja) 1999-11-25 2004-12-02 日本板硝子株式会社 ガラス板のエッジ欠陥検出方法及び同検出装置
JP2003247953A (ja) 2002-02-25 2003-09-05 Seiko Epson Corp 液晶パネル外観検査方法及び検査装置
JP2006026845A (ja) * 2004-07-20 2006-02-02 Nakamura Tome Precision Ind Co Ltd 面取機の工具位置の調整方法
JP4626982B2 (ja) * 2005-02-10 2011-02-09 セントラル硝子株式会社 ガラス板の端面の欠陥検出装置および検出方法
JP5169163B2 (ja) * 2006-12-01 2013-03-27 旭硝子株式会社 予備研磨されたガラス基板表面を仕上げ加工する方法
JP4863168B2 (ja) * 2007-04-17 2012-01-25 日本電気硝子株式会社 フラットパネルディスプレイ用ガラス基板およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102122A (ja) 1995-10-03 1997-04-15 Kao Corp 記録媒体用基板
JPH1192170A (ja) * 1997-09-10 1999-04-06 Nippon Electric Glass Co Ltd ガラス基板
JP2000017417A (ja) * 1998-07-03 2000-01-18 Kawasaki Steel Corp 合金化溶融亜鉛めっき鋼板
JP2001259978A (ja) * 2000-03-07 2001-09-25 Three M Innovative Properties Co ガラス板の端部を面取りする方法
JP2002160147A (ja) 2000-11-21 2002-06-04 Asahi Glass Co Ltd 板ガラスの端縁部研磨方法
JP4370611B2 (ja) 2002-04-17 2009-11-25 日本電気硝子株式会社 平面表示装置用板ガラス
JP2004256838A (ja) * 2003-02-24 2004-09-16 Jfe Steel Kk プレス成形性に優れた合金化溶融亜鉛めっき鋼板
JP2005052944A (ja) * 2003-08-06 2005-03-03 Hitachi Zosen Corp 研磨装置

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027546A1 (ja) * 2012-08-13 2014-02-20 旭硝子株式会社 ガラス基板及びガラス基板の製造方法
JP2014114183A (ja) * 2012-12-10 2014-06-26 Asahi Glass Co Ltd 積層板の加工方法、加工された積層板
KR20150143493A (ko) 2013-04-18 2015-12-23 아사히 가라스 가부시키가이샤 유리판의 제조 방법 및 유리판의 제조 장치 및 유리판
WO2014171375A1 (ja) * 2013-04-18 2014-10-23 旭硝子株式会社 ガラス板の製造方法及びガラス板の製造装置並びにガラス板
KR102182871B1 (ko) * 2013-04-18 2020-11-25 에이지씨 가부시키가이샤 유리판의 제조 방법 및 유리판의 제조 장치 및 유리판
JPWO2014171375A1 (ja) * 2013-04-18 2017-02-23 旭硝子株式会社 ガラス板の製造方法及びガラス板の製造装置並びにガラス板
US9904994B2 (en) 2013-12-24 2018-02-27 Lg Siltron Incorporated Method and apparatus for analyzing shape of wafer
JP2017503164A (ja) * 2013-12-24 2017-01-26 エルジー・シルトロン・インコーポレーテッド ウェハー形状分析方法および装置
WO2015099251A1 (ko) * 2013-12-24 2015-07-02 주식회사 엘지실트론 웨이퍼의 형상 분석 방법 및 장치
KR20150077319A (ko) * 2013-12-27 2015-07-07 아사히 가라스 가부시키가이샤 유리 기판 및 유리 기판의 제조 방법
JP2015124128A (ja) * 2013-12-27 2015-07-06 旭硝子株式会社 ガラス基板及びガラス基板の製造方法
KR102240191B1 (ko) * 2013-12-27 2021-04-14 에이지씨 가부시키가이샤 유리 기판 및 유리 기판의 제조 방법
JP2015205364A (ja) * 2014-04-18 2015-11-19 旭硝子株式会社 板状体の製造方法、およびゴム砥石
WO2017030112A1 (ja) * 2015-08-19 2017-02-23 旭硝子株式会社 ガラス板
JPWO2017030112A1 (ja) * 2015-08-19 2017-12-21 旭硝子株式会社 ガラス板
JP2018052805A (ja) * 2016-09-21 2018-04-05 旭硝子株式会社 ガラス板
WO2021006116A1 (ja) * 2019-07-10 2021-01-14 Agc株式会社 ガラス基体およびその製造方法
JP2021060545A (ja) * 2019-10-09 2021-04-15 日本電波工業株式会社 光学ブランク部材
JP7258714B2 (ja) 2019-10-09 2023-04-17 日本電波工業株式会社 光学ブランク部材

Also Published As

Publication number Publication date
TWI490479B (zh) 2015-07-01
CN102985386A (zh) 2013-03-20
CN102985386B (zh) 2015-09-02
EP2592057A1 (en) 2013-05-15
TW201231959A (en) 2012-08-01
KR101811903B1 (ko) 2017-12-22
JP5757289B2 (ja) 2015-07-29
US20130122265A1 (en) 2013-05-16
KR20130100259A (ko) 2013-09-10
EP2592057A4 (en) 2013-10-30
JPWO2012005019A1 (ja) 2013-09-02

Similar Documents

Publication Publication Date Title
JP5757289B2 (ja) ガラス基板端面の加工装置及びガラス基板端面の加工方法並びにガラス基板
US9555516B2 (en) Method for processing an edge of a glass plate
TWI576204B (zh) glass plate
JP6071611B2 (ja) オリエンテーションフラット等切り欠き部を有する、結晶材料から成るウエハの周縁を、研磨テープを使用して研磨することにより円形ウエハを製造する方法
JP2016076290A5 (ja) ガラス基板、磁気ディスク用ガラス基板の製造方法、磁気ディスク用基板、磁気ディスク、磁気ディスクの製造方法
US20110189505A1 (en) Method for manufacturing glass substrate for magnetic recording medium
CN103158060A (zh) 研磨刷、玻璃基板的端面研磨方法、及玻璃基板的制造方法
US20110189506A1 (en) Glass substrate for magnetic recording medium, and method for manufacturing the same
WO2018123416A1 (ja) ガラス板、及びガラス板の製造方法
JP6410215B2 (ja) ガラス板の製造方法及びガラス板の製造装置並びにガラス板
JP6280355B2 (ja) 磁気ディスク用基板の製造方法及び研磨処理用キャリア
TWI488822B (zh) A manufacturing method of a glass plate, a method for manufacturing a glass substrate for a display, and a glass plate
US9202505B2 (en) Method for manufacturing glass substrate for magnetic recording medium
JP5534222B2 (ja) ガラス基板
JP2004079009A (ja) 情報記録媒体用ガラス基板及びその製造方法並びにその研削装置
CN111791092A (zh) 弧形盖板扫光方法
JP2002283206A (ja) 突起物研磨方法および研磨装置
JP6249142B2 (ja) ガラス板
JP6948988B2 (ja) フォトマスク用基板およびその製造方法
US20200270174A1 (en) Method for manufacturing disk-shaped glass substrate, method for manufacturing thin glass substrate, method for manufacturing light-guiding plate, and disk-shaped glass substrate
TW202126427A (zh) 玻璃板的製造方法以及玻璃板
TW201825420A (zh) 劃線輪
JP2008036736A (ja) 光学基板
JP2008180685A (ja) キャピラリ支持部材及びそれを用いたキャピラリ収容部材
TW201623163A (zh) 將玻璃倒角的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180033900.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803355

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012523774

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011803355

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137000467

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE