WO2011152534A1 - 非水電解液及びそれを用いた電気化学素子 - Google Patents

非水電解液及びそれを用いた電気化学素子 Download PDF

Info

Publication number
WO2011152534A1
WO2011152534A1 PCT/JP2011/062841 JP2011062841W WO2011152534A1 WO 2011152534 A1 WO2011152534 A1 WO 2011152534A1 JP 2011062841 W JP2011062841 W JP 2011062841W WO 2011152534 A1 WO2011152534 A1 WO 2011152534A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
diyl
alkyl group
sulfonate
Prior art date
Application number
PCT/JP2011/062841
Other languages
English (en)
French (fr)
Inventor
安部 浩司
三好 和弘
敷田 庄司
圭 島本
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2012518472A priority Critical patent/JP5807636B2/ja
Priority to CN201180027595.4A priority patent/CN102934275B/zh
Priority to EP11789935.1A priority patent/EP2579377B1/en
Priority to CA2801288A priority patent/CA2801288A1/en
Priority to ES11789935.1T priority patent/ES2521023T3/es
Priority to US13/701,193 priority patent/US9240614B2/en
Priority to BR112012030882A priority patent/BR112012030882A2/pt
Priority to KR1020127031604A priority patent/KR20130119842A/ko
Publication of WO2011152534A1 publication Critical patent/WO2011152534A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a nonaqueous electrolytic solution capable of improving electrochemical characteristics in a wide temperature range and an electrochemical element using the same.
  • electrochemical devices particularly lithium secondary batteries
  • small electronic devices such as mobile phones and laptop computers, power sources for electric vehicles, and power storage.
  • these electronic devices and automobiles may be used in a wide temperature range such as a high temperature in midsummer or a low temperature of extremely cold, it is required to improve electrochemical characteristics in a wide range of temperatures.
  • power storage devices composed of electrochemical elements such as lithium secondary batteries and capacitors, hybrid electricity Early spread of automobiles (HEV), plug-in hybrid electric vehicles (PHEV), and battery electric vehicles (BEV) is required.
  • a lithium secondary battery is mainly composed of a positive electrode and a negative electrode containing a material capable of occluding and releasing lithium, and a non-aqueous electrolyte composed of a lithium salt and a non-aqueous solvent.
  • the non-aqueous solvent include ethylene carbonate (EC) and propylene. Carbonates such as carbonate (PC) are used.
  • lithium secondary battery As the negative electrode, metal lithium, metal compounds that can occlude and release lithium (metal simple substance, oxide, alloy with lithium, etc.) and carbon materials are known, and in particular, lithium can be occluded and released. Lithium secondary batteries using carbon materials such as coke, artificial graphite and natural graphite have been widely put into practical use. Note that in this specification, the term lithium secondary battery is used as a concept including a so-called lithium ion secondary battery.
  • a lithium secondary battery using a highly crystallized carbon material such as natural graphite or artificial graphite as a negative electrode material is a decomposition product generated by reductive decomposition of a solvent in a nonaqueous electrolyte solution on the negative electrode surface during charging, It has been found that the gas causes a decrease in cycle characteristics because it inhibits the desired electrochemical reaction of the battery. Moreover, when the decomposition product of the nonaqueous solvent accumulates, it becomes impossible to smoothly occlude and release lithium into the negative electrode, and the electrochemical characteristics in a wide temperature range are liable to deteriorate.
  • lithium secondary batteries using lithium metal, alloys thereof, simple metals such as tin or silicon, and oxides as negative electrode materials have a high initial capacity, but are finely pulverized during the cycle.
  • reductive decomposition of a non-aqueous solvent occurs at an accelerated rate, and battery performance such as battery capacity and cycle characteristics is greatly reduced.
  • these anode materials are pulverized or a decomposition product of a nonaqueous solvent accumulates, lithium cannot be smoothly inserted into and released from the anode, and electrochemical characteristics in a wide temperature range are likely to be deteriorated.
  • a lithium secondary battery using, for example, LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiFePO 4, or the like as the positive electrode has a non-aqueous solvent in the non-aqueous electrolyte charged and a positive electrode material and a non-aqueous electrolyte. It has been found that degradation products and gas generated by partial oxidative decomposition at the interface of the battery interfere with the desired electrochemical reaction of the battery, resulting in degradation of electrochemical characteristics over a wide temperature range. Yes.
  • the battery performance has been deteriorated due to the movement of lithium ions or the expansion of the battery due to the decomposition product or gas when the nonaqueous electrolyte is decomposed on the positive electrode or the negative electrode.
  • electronic devices equipped with lithium secondary batteries are becoming more and more multifunctional and power consumption is increasing.
  • the capacity of lithium secondary batteries has been increasing, and the volume occupied by the non-aqueous electrolyte in the battery has become smaller, such as increasing the electrode density and reducing the wasted space in the battery. . Therefore, the electrochemical characteristics in a wide temperature range are likely to be degraded by a slight decomposition of the non-aqueous electrolyte.
  • Patent Document 1 shows that when a sulfonate ester typified by iso-propyl methanesulfonate is added to a non-aqueous electrolyte, the cycle characteristics at room temperature are excellent.
  • Patent Document 2 shows that when a sulfonic acid ester typified by methyl methanesulfonate is added to a non-aqueous electrolyte, the cycle characteristics at room temperature are excellent.
  • Patent Document 3 when a disulfonate compound having two sulfonate groups represented by propylene glycol dimethanesulfonate and having a side chain as a main chain is added to a non-aqueous electrolyte, cycle characteristics at 20 ° C. are obtained.
  • Patent Document 4 when a disulfonate compound having two sulfonate groups represented by 1,4-butanediol dimethanesulfonate and having a main chain of a linear alkylene chain is added to the non-aqueous electrolyte, It is shown that the cycle characteristics are excellent when charging is performed such that the open circuit voltage at the time of full charge is higher than 4.2V.
  • Patent Document 5 proposes a non-aqueous electrolytic solution containing a silicon compound such as 1,2-bis (3,5-difluorophenyl) -1,1,2,2-tetramethyldisilane, which has a temperature of 60 ° C. It is suggested to improve cycle characteristics and low temperature characteristics.
  • Patent Document 6 proposes a nonaqueous electrolytic solution containing a silicon compound having an alkyl sulfonate group such as trimethylsilylmethane sulfonate, and suggests improvement in cycle characteristics at 25 ° C. and trickle charge characteristics. .
  • JP 2007-95380 A Japanese Patent Laid-Open No. 9-245834 JP 2001-313071 A JP 2007-095380 A JP 2007-12595 JP 2004-134232 A
  • An object of the present invention is to provide a nonaqueous electrolytic solution capable of improving electrochemical characteristics in a wide temperature range and an electrochemical element using the same.
  • the present inventors have examined in detail the performance of the above-described prior art non-aqueous electrolyte.
  • the non-aqueous electrolyte of the above-mentioned patent document is sufficiently satisfied with respect to the problem of improving the electrochemical characteristics in a wide temperature range, although it is effective for the cycle characteristics at room temperature.
  • the reality is that it cannot be said. Therefore, the present inventors have made extensive studies to solve the above problems, and include a sulfonic acid ester compound having a specific structure in a nonaqueous electrolytic solution in which an electrolyte salt is dissolved in a nonaqueous solvent.
  • the inventors have found that the electrochemical characteristics can be improved over a wide temperature range.
  • the inventors have (I) a sulfonic acid ester compound having a methine proton (RSO 3 —CHR′R ′) on the carbon to which the sulfonyloxy group is bonded, (II) a sulfonic acid ester compound having a methine proton (RSO 3 —CHR′R′—) on the carbon of the cycloalkyl group to which the sulfonyloxy group is bonded, (III) at least one selected from a sulfonate compound having a methine proton (RSO 3 —CHR′—) on a carbon to which two sulfonyloxy groups are bonded, and (IV) a sulfonate compound having a specific silicon atom.
  • a sulfonic acid ester compound having a methine proton (RSO 3 —CHR′R ′) on the carbon to which the sulfonyloxy group is bonded (I)
  • the present invention provides the following (1) and (2).
  • the non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, contains 0.001 to 5% by mass of a sulfonic acid ester compound represented by the following general formula (I)
  • a non-aqueous electrolyte characterized by:
  • R represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms
  • A represents a> CH group or> SiZ group (Z represents an alkyl group having 1 to 6 carbon atoms)
  • X represents an aryl group having 6 to 12 carbon atoms, and X represents an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, or an aryl group having 6 to 12 carbon atoms, Y represents a cycloalkyl group having 3 to 8 carbon atoms, —L 1 CHR a OSO 2 R b group, or —Si (R c ) (R d ) OSO 2 R b group, and W represents 1 or 2 .
  • R a represents an alkyl group having 1 to 6 carbon atoms
  • R b, R c and R d represents an alkyl group, or an aryl group having 6 to 12 carbon atoms having 1 to 6 carbon atoms
  • L 1 Is an alkylene group having 1 to 6 carbon atoms in which at least one hydrogen atom may be substituted with —OSO 2 R e (R e has the same meaning as R), and 2 to 2 carbon atoms containing at least one ether bond.
  • 6 represents a divalent linking group or a single bond. However, X and Y may combine to form a ring.
  • W is 2
  • R represents an alkylene group having 1 to 6 carbon atoms.
  • the non-aqueous electrolyte is the non-aqueous electrolyte of (1) above. Electrochemical element.
  • the present invention provides the following (I-1) to (V).
  • (I-1) The nonaqueous electrolytic solution according to (1) above, wherein the sulfonic acid ester compound is represented by the following general formula (II) (hereinafter referred to as “the I-1 invention”).
  • m represents an integer of 1 or 2.
  • R 1 represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms
  • R 2 represents the number of carbon atoms
  • R 2 represents an alkyl group having 2 to 6 carbon atoms, or a cycloalkyl group having 3 to 8 carbon atoms
  • R 3 represents an alkyl group having 1 to 6 carbon atoms or a cycloalkyl group having 3 to 8 carbon atoms.
  • R 1 represents an alkylene group having 1 to 6 carbon atoms, and R 2 and R 3 have the same meanings as in the case where m is 1.
  • the alkyl group having 1 to 6 carbon atoms and the 6 to 12 carbon atoms are as defined above.
  • the aryl group and the alkylene group having 1 to 6 carbon atoms may have at least one hydrogen atom substituted with a halogen atom.
  • a hydrocarbon group having 1 to 6 carbon atoms is a tertiary carbon atom or a quaternary carbon atom in the nonaqueous electrolytic solution.
  • a non-aqueous electrolytic solution containing 0.001 to 5% by mass of a sulfonic acid ester compound having a branched structure represented (hereinafter referred to as “the I-2 invention”).
  • n represents an integer of 1 or 2.
  • R 4 represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • R 4 represents an alkylene group having 1 to 6 carbon atoms, provided that the alkyl group having 1 to 6 carbon atoms, the aryl group having 6 to 12 carbon atoms, and the alkylene group having 1 to 6 carbon atoms are And at least one hydrogen atom may be substituted with a halogen atom.
  • t is the .t represents an integer of 1 or 2 of 1
  • R 5 and R 6 represents an alkyl group, or an aryl group having 6 to 12 carbon atoms having 1 to 6 carbon atoms
  • R 7 Represents an alkyl group having 1 to 6 carbon atoms
  • R 7 may combine with a carbon atom on the cyclo ring to form a ring
  • r represents an integer of 0 to 10
  • p and q are each independently And represents an integer of 0 to 3.
  • R 5 represents an alkylene group having 1 to 6 carbon atoms
  • R 6 , R 7 , r, p, and q have the same meaning as when t is 1.
  • at least one hydrogen atom thereof may be substituted with a halogen atom.
  • R 11 and R 12 each independently represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and R 13 and R 14 each independently represents 1 carbon atom
  • an alkyl group of ⁇ 6 L 1 is at least one hydrogen atom is alkylene of -OSO 2 R 15 (R 15 is R 11 or R 12 as synonymous) ⁇ carbon atoms 1 be replaced with 6 A divalent linking group having 2 to 6 carbon atoms or a single bond containing at least one ether bond, wherein the alkyl group having 1 to 6 carbon atoms and the aryl group having 6 to 12 carbon atoms are at least one of them.
  • One hydrogen atom may be substituted with a halogen atom.
  • III-2 The nonaqueous electrolytic solution according to (III-1) (hereinafter referred to as “III-1”) further containing 0.001 to 5% by mass of a sulfonic acid ester compound represented by the following general formula (VI): "Invention III-2").
  • L 2 represents an alkylene group having 1 to 6 carbon atoms in which at least one hydrogen atom may be substituted with —OSO 2 R 19 (R 19 has the same meaning as R 16 or R 17 ), A divalent linking group or a single bond having 2 to 6 carbon atoms including one ether bond, wherein the alkyl group having 1 to 6 carbon atoms and the aryl group having 6 to 12 carbon atoms are represented by at least one hydrogen atom thereof; May be substituted with a halogen atom.
  • III invention III-1 invention and III-2 invention will be collectively referred to as “III invention” hereinafter.
  • R 21 to R 26 may be the same or different and each represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms. In the alkyl group and the aryl group having 6 to 12 carbon atoms, at least one hydrogen atom thereof may be substituted with a halogen atom.
  • V In an electrochemical device comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, the non-aqueous electrolyte is any one of the first to fourth inventions There is an electrochemical element.
  • non-aqueous electrolyte capable of improving battery characteristics in a wide temperature range, particularly low-temperature characteristics after high-temperature storage, and an electrochemical element such as a lithium battery using the non-aqueous electrolyte.
  • the present invention relates to a non-aqueous electrolyte and an electrochemical device using the same.
  • the non-aqueous electrolyte solution of the present invention is a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a non-aqueous solvent. It is characterized by containing 001 to 5% by mass.
  • R represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms
  • A represents a> CH group or> SiZ group (Z represents an alkyl group having 1 to 6 carbon atoms)
  • X represents an aryl group having 6 to 12 carbon atoms), and X represents an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, or an aryl group having 6 to 12 carbon atoms, and
  • Y represents a cycloalkyl group having 3 to 8 carbon atoms, —L 1 CHR a OSO 2 R b group, or —Si (R c ) (R d ) OSO 2 R b group, and W represents 1 or 2.
  • R a represents an alkyl group having 1 to 6 carbon atoms
  • R b, R c and R d represents an alkyl group, or an aryl group having 6 to 12 carbon atoms having 1 to 6 carbon atoms
  • L 1 Is an alkylene group having 1 to 6 carbon atoms in which at least one hydrogen atom may be substituted with —OSO 2 R e (R e has the same meaning as R), and 2 to 2 carbon atoms containing at least one ether bond.
  • 6 represents a divalent linking group or a single bond. However, X and Y may combine to form a ring.
  • W is 2
  • R represents an alkylene group having 1 to 6 carbon atoms.
  • the non-aqueous electrolyte of the invention I-1 of the present invention is a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, and the sulfone represented by the following general formula (II) It contains 0.001 to 5% by mass of an acid ester compound.
  • m represents an integer of 1 or 2.
  • R 1 represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms
  • R 2 represents the number of carbon atoms
  • R 2 represents an alkyl group having 2 to 6 carbon atoms, or a cycloalkyl group having 3 to 8 carbon atoms
  • R 3 represents an alkyl group having 1 to 6 carbon atoms or a cycloalkyl group having 3 to 8 carbon atoms.
  • R 1 represents an alkylene group having 1 to 6 carbon atoms, and R 2 and R 3 have the same meanings as in the case where m is 1.
  • alkyl group having 1 to 6 carbon atoms and the 6 to 12 carbon atoms are as defined above.
  • aryl group and the alkylene group having 1 to 6 carbon atoms may have at least one hydrogen atom substituted with a halogen atom.
  • the non-aqueous electrolyte solution according to the invention I-2 of the present invention is a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a non-aqueous solvent, wherein the hydrocarbon group having 1 to 6 carbon atoms is contained in the non-aqueous electrolyte solution.
  • the sulfonic acid ester compound having a branched structure represented by the following general formula (III) is contained in an amount of 0.001 to 5% by mass.
  • n represents an integer of 1 or 2.
  • R 4 represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • R 4 represents an alkylene group having 1 to 6 carbon atoms, provided that the alkyl group having 1 to 6 carbon atoms, the aryl group having 6 to 12 carbon atoms, and the alkylene group having 1 to 6 carbon atoms are And at least one hydrogen atom may be substituted with a halogen atom.
  • the reason why the non-aqueous electrolyte of the invention I can greatly improve the electrochemical characteristics in a wide temperature range is not necessarily clear, but is considered as follows.
  • the sulfonic acid ester compound represented by the general formula (II) contained in the nonaqueous electrolytic solution of the first invention has a methine group (RSO 3 —CHR′R ′) to which a sulfonyloxy group is bonded.
  • the acidity of the methine proton on the carbon to which the electron-withdrawing sulfonyloxy group is bonded is considered to be lower than that of the methylene proton (RSO 3 —CH 2 —R ′) due to the electron donating effect of R ′.
  • the effect is greater when the number of carbon atoms of at least one of the two R ′ is 2 or more. Therefore, in the sulfonate compound represented by the general formula (II), the methine group reacts slowly on the negative electrode during the first charge, and a good protective film is formed without being excessively densified on the active material surface. it is conceivable that. For this reason, it was found that the electrochemical characteristics in a wide temperature range from low temperature to high temperature are significantly improved.
  • the above effect is weak when the compound represented by the general formula (III) in which two R's in the general formula (II) are both methyl groups (carbon number 1), but the general formula (III A benzene compound in which a hydrocarbon group having 1 to 6 carbon atoms is bonded to a benzene ring via a tertiary carbon atom or a quaternary carbon atom, and In addition, by further including an S ⁇ O group-containing compound having a cyclic structure or an unsaturated group, it is possible to bring about a specific effect that the electrochemical characteristics in a wide temperature range from a low temperature to a high temperature are remarkably improved as described above. I understood.
  • the hydrocarbon group having 1 to 6 carbon atoms has a benzene compound in which a benzene ring is bonded via a tertiary carbon atom or a quaternary carbon atom, and / or a cyclic structure or an unsaturated group. This is considered to prevent the S ⁇ O group-containing compound from excessively densifying the protective film derived from the compound represented by the general formula (III).
  • R 1 is a linear or branched alkyl group having 1 to 6 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom, or at least An aryl group having 6 to 12 carbon atoms in which one hydrogen atom may be substituted with a halogen atom, preferably a linear or branched alkyl group having 1 to 6 carbon atoms, or at least one hydrogen atom;
  • R 1 in the general formula (II) include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, fluoromethyl group, trifluoromethyl group, 2 , 2,2-trifluoroethyl group, iso-propyl group, sec-butyl group, tert-butyl group, tert-amyl group, phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group 4-tert-butylphenyl group, 2,4,6-trimethylphenyl group, 4-fluorophenyl group, 4-chlorophenyl group, 4-trifluoromethylphenyl group, and the like. Group, 4-methylphenyl group is more preferable, and methyl group and 4-methylphenyl group are still more preferable.
  • R 1 is a linear or branched alkylene group having 1 to 6 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom, Preferably, it is a linear or branched alkylene group having 1 to 4 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom, and more preferably, at least one hydrogen atom is substituted with a halogen atom.
  • a straight-chain or branched alkylene group having 1 to 3 carbon atoms may be used, and a straight-chain alkylene group having 1 or 2 carbon atoms is particularly preferable.
  • R 1 is an alkylene group
  • R 1 is an alkylene group
  • R 1 is an alkylene group
  • R 1 is an alkylene group
  • a methylene group, an ethane-1,2-diyl group, and a propane-1,3-diyl group are more preferable, and a methylene group and an ethane-1,2-diyl group are still more preferable.
  • R 2 in the general formula (II) is a linear or branched alkyl group having 2 to 6 carbon atoms or a cycloalkyl group having 3 to 8 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom. More preferably a linear or branched alkyl group having 2 to 5 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, still more preferably a branched alkyl group having 3 to 5 carbon atoms, 3 to 5 cycloalkyl groups.
  • R 2 examples include ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, 2,2,2-trifluoroethyl, iso-propyl, sec- Examples thereof include a butyl group, an iso-butyl group, a tert-butyl group, a tert-amyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
  • An ethyl group, an n-propyl group, an n- A butyl group, an iso-propyl group, a sec-butyl group, a tert-butyl group, a tert-amyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group are more preferable, and an iso-propyl group, a sec-butyl group, a tert group -Butyl, tert-amyl, cyclopropyl, cyclobutyl, cyclopentyl Preferred.
  • R 3 in the general formula (II) is a linear or branched alkyl group having 1 to 6 carbon atoms or a cycloalkyl group having 3 to 8 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom. More preferably a linear or branched alkyl group having 2 to 5 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, still more preferably a branched alkyl group having 3 to 5 carbon atoms, A cycloalkyl group having 3 to 5 carbon atoms.
  • R 3 examples include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, 2,2,2-trifluoroethyl group, iso-propyl group.
  • Sec-butyl group iso-butyl group, tert-butyl group, tert-amyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, etc., but ethyl group, n-propyl group N-butyl group, iso-propyl group, sec-butyl group, tert-butyl group, tert-amyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group and cyclohexyl group are more preferable, iso-propyl group, sec-butyl group Group, tert-butyl group, tert-amyl group, cyclopropyl group, cyclobutyl group, cyclopent Le group are more preferable.
  • the range of the above substituent is preferable because electrochemical characteristics in a wide temperature range can be
  • sulfonate compound represented by the general formula (II) include butan-2-yl methanesulfonate, butan-2-yl ethanesulfonate, butan-2-yl benzenesulfonate, butan-2-yl 4- Methylbenzenesulfonate, bis (butan-2-yl) methane disulfonate, bis (butan-2-yl) ethane-1,2-disulfonate, pentan-2-yl methanesulfonate, pentane-2-yl ethanesulfonate, pentane -2-yl benzenesulfonate, pentan-2-yl 4-methylbenzenesulfonate, bis (pentan-2-yl) methane disulfonate, bis (pentan-2-yl) ethane-1,2-disulfonate, pentane-3 -Il methane
  • sulfonate compound represented by the general formula (II) include butan-2-yl methanesulfonate, butan-2-yl ethanesulfonate, butan-2-yl benzenesulfonate, and butane-2.
  • sulfonate compound represented by the general formula (II) include 3-methylbutan-2-yl methanesulfonate, 3-methylbutan-2-yl 4-methylbenzenesulfonate, bis (3- Methylbutan-2-yl) methane disulfonate, bis (3-methylbutan-2-yl) ethane-1,2-disulfonate, 3,3-dimethylbutane-2-yl methanesulfonate, 3,3-dimethylbutane-2 -Yl 4-methylbenzenesulfonate, bis (3,3-dimethylbutan-2-yl) methane disulfonate, bis (3,3-dimethylbutan-2-yl) ethane-1,2-disulfonate, 2-methyl Pentan-3-yl methanesulfonate, 2-methylpentan-3-yl 4-methyl Sulfonate, bis (2-methylpentan-3-
  • the sulfonic acid ester compound represented by the general formula (II) may have an optical isomer.
  • optical isomers R-form and S-form can exist, and in the invention 1-1, both have the effects of the present invention.
  • the optical isomers can also be used as a mixture in an arbitrary ratio. When one of the optical isomers is present in excess (optically active substance) or when the optical isomers are present in the same amount (racemic substance) In either case, the effects of the present invention are obtained. Further, when diastereomers can exist, the chemical or electrochemical properties of diastereomers are not necessarily the same. Therefore, the degree of effect of the present invention varies depending on the abundance ratio of diastereomers. However, even when any of these optical isomers is used alone or in a mixture, the effects of the present invention are obtained.
  • n represents an integer of 1 or 2.
  • R 4 represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • R 4 represents an alkylene group having 1 to 6 carbon atoms, provided that the alkyl group having 1 to 6 carbon atoms, the aryl group having 6 to 12 carbon atoms, and the alkylene group having 1 to 6 carbon atoms are And at least one hydrogen atom may be substituted with a halogen atom.
  • N in the general formula (III) is an integer of 1 or 2, but is preferably 2.
  • R 4 is a linear or branched alkyl group having 1 to 6 carbon atoms, and 1 to 6 carbon atoms in which at least one hydrogen atom is substituted with a halogen atom.
  • R 4 in the general formula (III) include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, fluoromethyl group, trifluoromethyl group, 2 , 2,2-trifluoroethyl group, iso-propyl group, sec-butyl group, tert-butyl group, tert-amyl group, phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group 4-tert-butylphenyl group, 2,4,6-trimethylphenyl group, 4-fluorophenyl group, 4-chlorophenyl group, 4-trifluoromethylphenyl group, and the like. Group, 4-methylphenyl group is more preferred, and methyl group and 4-methylphenyl group are still more preferred.
  • R 4 is a linear or branched alkylene group having 1 to 6 carbon atoms in which a hydrogen atom may be substituted with a halogen atom, preferably A straight or branched alkylene group having 1 to 4 carbon atoms in which a hydrogen atom may be substituted with a halogen atom, and more preferably 1 to 3 carbon atoms in which a hydrogen atom may be substituted with a halogen atom Or a straight-chain or branched-chain alkylene group, particularly preferably a straight-chain alkylene group having 1 or 2 carbon atoms.
  • R 4 is an alkylene group
  • R 4 is an alkylene group
  • R 4 is an alkylene group
  • a methylene group and the like can be mentioned, and a methylene group, an ethane-1,2-diyl group and a propane-1,3-diyl group are more preferable, and a methylene group and an ethane-1,2-diyl group are still more preferable.
  • sulfonate compound represented by the general formula (III) examples include propan-2-yl methanesulfonate, propan-2-yl ethanesulfonate, propan-2-yl benzenesulfonate, propan-2-yl 4- Methylbenzenesulfonate, bis (propan-2-yl) methanedisulfonate, bis (propan-2-yl) ethane-1,2-disulfonate, bis (propan-2-yl) propane-1,3-disulfonate Among them, propan-2-yl methanesulfonate, propan-2-yl 4-methylbenzenesulfonate, bis (propan-2-yl) methane disulfonate, bis (propan-2-yl) ethane- 1,2-disulfonate is more preferred.
  • the content of the sulfonate compound represented by the general formula (II) or (III) contained in the non-aqueous electrolyte is 0.001 to 5 mass% is preferable.
  • the content is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, further preferably 0.1% by mass or more, and the upper limit thereof is preferably 5% by mass or less in the non-aqueous electrolyte.
  • the sulfonic acid ester compound represented by the general formula (II) and the hydrocarbon group having 1 to 6 carbon atoms are bonded via a tertiary carbon atom or a quaternary carbon atom.
  • the non-aqueous electrolyte solution of the second invention of the present invention is a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a non-aqueous solvent, and the cycloalkane skeleton represented by the following general formula (IV) It is characterized by containing 0.001 to 5% by mass of a sulfonic acid ester compound having
  • t is the .t represents an integer of 1 or 2 of 1
  • R 5 and R 6 represents an alkyl group, or an aryl group having 6 to 12 carbon atoms having 1 to 6 carbon atoms
  • R 7 Represents an alkyl group having 1 to 6 carbon atoms
  • R 7 may be bonded to a carbon atom on the cyclo ring to form a ring
  • r represents an integer of 0 to 10
  • p and q are each independently And an integer of 0 to 3.
  • R 5 represents an alkylene group having 1 to 6 carbon atoms
  • R 6 , R 7 , r, p, and q have the same meanings as when t is 1.
  • at least one hydrogen atom thereof may be substituted with a halogen atom.
  • the sulfonic acid ester compound represented by the general formula (IV) contained in the nonaqueous electrolytic solution according to the second aspect of the invention has a methine group (RSO 3 —CHR′R ′) to which a sulfonyloxy group is bonded.
  • the acidity of the methine proton on the carbon to which the electron-withdrawing sulfonyloxy group is attached is thought to be lower than that of the methylene proton (RSO 3 —CH 2 —) due to the electron donating effect of R ′.
  • the alkyl group has a moderate bulk.
  • the methine group reacts gently on the negative electrode at the first charge, and the active material surface is excessively densified due to the moderate bulkiness of the cycloalkyl group. It is thought that a good protective film is formed without this. For this reason, it was found that the electrochemical characteristics in a wide temperature range from low temperature to high temperature are significantly improved.
  • T in the general formula (IV) is an integer of 1 or 2, and is preferably 2.
  • R 5 is a linear or branched alkyl group having 1 to 6 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom, or at least An aryl group having 6 to 12 carbon atoms in which one hydrogen atom may be substituted with a halogen atom, preferably a linear or branched alkyl group having 1 to 6 carbon atoms, or at least one hydrogen atom Is an aryl group having 6 to 12 carbon atoms which may be substituted with a halogen atom, more preferably a linear or branched alkyl group having 1 to 3 carbon atoms, or at least one hydrogen atom is a halogen atom Is an aryl group having 6 to 10 carbon atoms which may be substituted with, particularly preferably a linear alkyl group having 1 or 2 carbon atoms or an aryl group having 6 to
  • R 5 in the general formula (IV) include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, fluoromethyl group, trifluoromethyl group, 2 , 2,2-trifluoroethyl group, iso-propyl group, sec-butyl group, tert-butyl group, tert-amyl group, phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group 4-tert-butylphenyl group, 2,4,6-trimethylphenyl group, 4-fluorophenyl group, 4-chlorophenyl group, 4-trifluoromethylphenyl group, and the like. Group, 4-methylphenyl group is more preferable, and methyl group and 4-methylphenyl group are still more preferable.
  • R 5 is a linear or branched alkylene group having 1 to 6 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom.
  • it is a linear or branched alkylene group having 1 to 4 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom, and more preferably at least one hydrogen atom is substituted with a halogen atom.
  • R 5 is an alkylene group
  • R 5 is an alkylene group
  • examples when R 5 is an alkylene group include methylene group, ethane-1,2-diyl group, propane-1,3-diyl group, butane-1,4-diyl group, pentanedi-1,5- Yl, hexane-1,6-diyl, ethane-1,1-diyl, propane-1,2-diyl, 2,2-dimethylpropane-1,3-diyl, fluoromethylene, difluoro
  • Examples include a methylene group, among which a methylene group, an ethane-1,2-diyl group, and a propane-1,3-diyl group are more preferable, and a methylene group and an ethane-1,2-diyl group are still more preferable.
  • R 6 in the general formula (IV) is a linear or branched alkyl group having 1 to 6 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom, or at least one hydrogen atom is a halogen atom
  • An aryl group having 6 to 12 carbon atoms which may be substituted with an atom, preferably a linear or branched alkyl group having 1 to 6 carbon atoms, or at least one hydrogen atom is substituted with a halogen atom
  • R 6 include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, fluoromethyl group, trifluoromethyl group, 2,2,2- Trifluoroethyl group, iso-propyl group, sec-butyl group, tert-butyl group, tert-amyl group, phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 4-tert- Examples include butylphenyl group, 2,4,6-trimethylphenyl group, 4-fluorophenyl group, 4-chlorophenyl group, 4-trifluoromethylphenyl group, etc., but methyl group, ethyl group
  • R 7 in the general formula (IV) is a linear or branched alkyl group having 1 to 6 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom, and more preferably 1 to 6 carbon atoms. 3 linear or branched alkyl groups, and more preferably a linear alkyl group having 1 or 2 carbon atoms.
  • R 7 examples include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, fluoromethyl group, trifluoromethyl group, 2,2,2- Examples thereof include a trifluoroethyl group, an iso-propyl group, a sec-butyl group, a tert-butyl group, a tert-amyl group, and the like, but a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an iso-propyl group. Are more preferable, and a methyl group and an ethyl group are still more preferable.
  • R in the general formula (IV) is an integer of 0 to 10, preferably 0 to 6, more preferably an integer of 0 to 5, further preferably an integer of 1 to 4, and most preferably 2 or 3.
  • P and q in the general formula (I) are each independently an integer of 0 to 3, preferably 0 or 1.
  • the range of the above substituent is preferable because electrochemical characteristics in a wide temperature range can be greatly improved.
  • sulfonate compound represented by the general formula (IV) (I) cyclopropyl methanesulfonate, cyclopropyl ethanesulfonate, cyclopropyl benzenesulfonate, cyclopropyl 4-methylbenzenesulfonate, dicyclopropyl methanedisulfonate, dicyclopropylethane-1,2-disulfonate; cyclobutyl methanesulfonate, cyclobutyl Ethane sulfonate, cyclobutyl benzene sulfonate, cyclobutyl 4-methylbenzene sulfonate, dicyclobutyl methane disulfonate, dicyclobutyl ethane-1,2-disulfonate; cyclopentyl methane sulfonate, cyclopentyl ethane sulfonate, cyclopent
  • the sulfonic acid ester compound represented by the general formula (IV) may have an optical isomer.
  • optical isomers R-form and S-form can exist, and both of them have the effect of the present invention in the II invention.
  • the optical isomers can also be used as a mixture in an arbitrary ratio. When one of the optical isomers is present in excess (optically active substance) or when the optical isomers are present in the same amount (racemic substance) In either case, the effects of the present invention are obtained. Further, when diastereomers can exist, the chemical or electrochemical properties of diastereomers are not necessarily the same. Therefore, the degree of effect of the present invention varies depending on the abundance ratio of diastereomers. However, even when any one of these optical isomers is used alone or in a mixture, the effects of the present invention are obtained.
  • the content of the sulfonate compound represented by the general formula (IV) contained in the non-aqueous electrolyte is 0.001 to 5% by mass in the non-aqueous electrolyte. preferable.
  • the content is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, further preferably 0.1% by mass or more, and the upper limit thereof is preferably 5% by mass or less in the non-aqueous electrolyte.
  • the addition of the sulfonic acid ester compound represented by the general formula (IV) improves the electrochemical characteristics in a wide temperature range, but the nonaqueous solvent and electrolyte salt described below.
  • the nonaqueous solvent and electrolyte salt described below improves the electrochemical characteristics in a wide temperature range, but the nonaqueous solvent and electrolyte salt described below.
  • a unique effect of synergistically improving electrochemical characteristics in a wide temperature range is exhibited. The reason is not clear, but it is considered that a mixed film having high ion conductivity containing these non-aqueous solvent, electrolyte salt, and other additive constituent elements is formed.
  • the non-aqueous electrolyte of the invention III-1 is a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, and the sulfone represented by the following general formula (V) It contains 0.001 to 5% by mass of an acid ester compound.
  • R 11 and R 12 each independently represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and R 13 and R 14 each independently represents 1 carbon atom
  • an alkyl group of ⁇ 6 L 1 is at least one hydrogen atom is alkylene of -OSO 2 R 15 (R 15 is R 11 or R 12 as synonymous) ⁇ carbon atoms 1 be replaced with 6
  • R 15 is R 11 or R 12 as synonymous
  • ⁇ carbon atoms 1 be replaced with 6
  • One hydrogen atom may be substituted with a halogen atom.
  • the non-aqueous electrolyte of invention III-2 of the present invention is a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, and the sulfone represented by the general formula (V) is contained in the non-aqueous electrolyte. It is characterized by containing 0.001 to 5% by mass of an acid ester compound and 0.001 to 5% by mass of a sulfonic acid ester compound represented by the following general formula (VI).
  • L 2 represents an alkylene group having 1 to 6 carbon atoms in which at least one hydrogen atom may be substituted with —OSO 2 R 19 (R 19 has the same meaning as R 16 or R 17 ), A divalent linking group or a single bond having 2 to 6 carbon atoms including one ether bond, wherein the alkyl group having 1 to 6 carbon atoms and the aryl group having 6 to 12 carbon atoms are represented by at least one hydrogen atom thereof; May be substituted with a halogen atom.
  • the reason why the nonaqueous electrolytic solution of the third invention can greatly improve the electrochemical characteristics in a wide temperature range is not necessarily clear, but is considered as follows.
  • the sulfonic acid ester compound represented by the general formula (V) contained in the nonaqueous electrolytic solution of the third invention has a methine group (RSO 3 —CHR′—) to which two sulfonyloxy groups are bonded.
  • the acidity of the methine proton on the carbon to which the electron-withdrawing sulfonyloxy group is bonded is considered to be lower than that of the methylene proton (RSO 3 —CH 2 —) due to the electron donating effect of R ′.
  • the sulfonic acid ester compound represented by the general formula (V) forms a strong coating without excessive densification because the methine groups present in two locations react slowly on the negative electrode during the initial charge. It is thought that it is done. For this reason, it was found that the electrochemical characteristics in a wide temperature range from low temperature to high temperature are significantly improved.
  • R 11 and R 12 in the general formula (V) are each a straight chain or branched alkyl group having 1 to 6 carbon atoms, a straight chain having 1 to 6 carbon atoms in which at least one hydrogen atom is substituted with a halogen atom, or A branched-chain halogenated alkyl group or an aryl group having 6 to 12 carbon atoms in which a hydrogen atom may be substituted with a halogen atom is shown.
  • R 11 and R 12 are preferably a linear or branched alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms in which a hydrogen atom may be substituted with a halogen atom, and more Preferably, it is a linear or branched alkyl group having 1 to 3 carbon atoms, or an aryl group having 6 to 10 carbon atoms in which a hydrogen atom may be substituted with a halogen atom, and particularly preferably 1 or 2 carbon atoms.
  • R 11 and R 12 include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, fluoromethyl group, trifluoromethyl group, 2,2, 2-trifluoroethyl group, iso-propyl group, sec-butyl group, tert-butyl group, tert-amyl group, phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 4- Examples thereof include tert-butylphenyl group, 2,4,6-trimethylphenyl group, 4-fluorophenyl group, 4-chlorophenyl group, 4-trifluoromethylphenyl group, and the like, but methyl group, ethyl group, phenyl group, 4 A -methylphenyl group is more preferred, and a methyl group and a 4-methylphenyl group are still more preferred.
  • R 13 and R 14 in the general formula (V) are each independently a linear or branched alkyl group having 1 to 6 carbon atoms, or a carbon number of 1 to 1 in which at least one hydrogen atom is substituted with a halogen atom. 6 straight-chain or branched alkyl halide groups.
  • R 3 and R 4 are preferably a linear or branched alkyl group having 1 to 4 carbon atoms, and more preferably a linear alkyl group having 1 or 2 carbon atoms.
  • R 13 and R 14 include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, fluoromethyl group, trifluoromethyl group, 2,2, Examples include 2-trifluoroethyl group, iso-propyl group, sec-butyl group, tert-butyl group, tert-amyl group, and the like, but methyl group, ethyl group, n-propyl group, n-butyl group, iso- A propyl group is more preferable, and a methyl group and an ethyl group are still more preferable.
  • R 13 and R 14 are preferably different from each other, more preferably R 13 is a methyl group, and R 14 is a linear or branched alkyl group having 2 to 6 carbon atoms. More preferably, 13 is a methyl group and R 14 is a linear or branched alkyl group having 2 to 4 carbon atoms.
  • R 11 and R 12 are linear or branched alkyl groups having 1 to 6 carbon atoms, and R 13 and R 14 are linear or branched alkyl groups having 1 to 4 carbon atoms that are different from each other. Is a new substance.
  • L 1 in the general formula (V) is a straight chain having 1 to 6 carbon atoms in which at least one hydrogen atom may be substituted with —OSO 2 R 15 (R 15 has the same meaning as R 11 or R 12 )
  • R 15 has the same meaning as R 11 or R 12
  • a branched alkylene group, a divalent linking group having 2 to 6 carbon atoms including at least one ether bond, or a single bond (that is, —CHR 13 and —CHR 14 are directly bonded) is shown.
  • L 1 is preferably a linear or branched alkylene group having 1 to 6 carbon atoms in which at least one hydrogen atom may be substituted with —OSO 2 R 15 , or a single bond (ie, —CHR 13 — and —CHR 14 — is directly bonded), more preferably a linear or branched alkylene group having 1 to 6 carbon atoms or a single bond, and still more preferably a methylene group, an ethylene group, or a single bond And particularly preferably a methylene group or a single bond.
  • L 1 is a single bond, that is, when general formula (V) is represented by the following general formula (V-2), low temperature characteristics after high temperature storage, particularly discharge characteristics at ⁇ 30 ° C. or lower Is further improved, and the electrochemical characteristics over a wide temperature range can be greatly improved.
  • each of R 11 to R 14 represents a methyl group or an ethyl group.
  • the compound represented by the general formula (V) include butane-2,3-diyl dimethanesulfonate, butane-2,3-diyl diethanesulfonate, butane-2,3-diyl bis (propane- 1-sulfonate), butane-2,3-diyl bis (butane-1-sulfonate), butane-2,3-diyl bis (pentane-1-sulfonate), butane-2,3-diyl bis (hexane-1- Sulfonate), butane-2,3-diyl bistrifluoromethanesulfonate, butane-2,3-diyl bis (2,2,2-trifluoroethanesulfonate), butane-2,3-diyl bis (propane-2-sulfonate) ), Butane-2,3-diyl bis (butane-2-sulfonate
  • a diastereomer may exist in the sulfonic acid ester compound represented by the general formula (V). Since diastereomers do not necessarily have the same chemical or electrochemical properties, the degree of effect of the present invention may vary depending on the abundance ratio of diastereomers. Even when used alone or in a mixture, the effects of the present invention are obtained.
  • a diastereomer is present (when both the carbon to which the substituent R 13 is bonded and the carbon to which the substituent R 4 is bonded are asymmetric carbons), the carbon to which the substituent R 13 is bonded and the substituent R 14 are There are four combinations of (R, S), (S, R), (R, R), and (S, S) as combinations of steric configurations of carbons to be bonded.
  • (R, S) and (S, R) will be referred to as Anti bodies, and (R, R) and (S, S) will be referred to as Syn bodies.
  • (R, S) and (S, R) represent the same structure.
  • the Anti isomer and the Syn isomer have different reduction potentials, and the Anti isomer is more preferable because of its high electrochemical characteristics in a wide temperature range. It is preferable that both the Syn isomer and the Anti isomer are included because the effect is further enhanced.
  • the mixing ratio of the Anti isomer and the Syn isomer [Anti isomer: Syn isomer] (mass ratio) is preferably 5:95 to 99: 1, more preferably 51:49 to 95: 5, still more preferably 55:45 to 90:10.
  • the content of the sulfonate ester compound represented by the general formula (V) contained in the non-aqueous electrolyte is 0.001 to 5 mass in the non-aqueous electrolyte. % Is preferred.
  • the content is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, further preferably 0.1% by mass or more, and the upper limit thereof is preferably 5% by mass or less in the non-aqueous electrolyte. 3 mass% or less is more preferable, and 1 mass% or less is still more preferable.
  • the nonaqueous electrolytic solution of the invention III-2 further comprises two sulfonate groups represented by the following general formula (VI) in a linear or branched form.
  • a sulfonic acid ester compound linked by an alkylene chain having one branch is preferable because the electrochemical characteristics in a wider temperature range are further improved.
  • R 16 and R 17 are each independently a straight-chain or branched alkyl group having 1 to 6 carbon atoms, 1 to carbon atoms in which at least one hydrogen atom is substituted with a halogen atom.
  • 6 a straight-chain or branched-chain halogenated alkyl group, or an aryl group having 6 to 12 carbon atoms in which a hydrogen atom may be substituted with a halogen atom.
  • R 16 to R 17 in the general formula (VI) are respectively synonymous with R 11 to R 12 , and preferred substituents are also synonymous with R 11 to R 12 .
  • R 18 in the general formula (VI) is a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, or a linear chain having 1 to 6 carbon atoms in which at least one hydrogen atom is substituted with a halogen atom.
  • a branched-chain halogenated alkyl group preferably a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, more preferably a hydrogen atom, a linear chain having 1 or 2 carbon atoms. It is an alkyl group.
  • R 18 include a hydrogen atom, methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, fluoromethyl group, trifluoromethyl group, 2,2, Examples include 2-trifluoroethyl group, iso-propyl group, sec-butyl group, tert-butyl group, tert-amyl group, etc.
  • L 2 in the general formula (VI) is a straight chain having 1 to 6 carbon atoms in which at least one hydrogen atom may be substituted with —OSO 2 R 19 (R 19 is the same as R 16 or R 17 ).
  • R 19 is the same as R 16 or R 17 .
  • a branched alkylene group, a divalent linking group having 2 to 6 carbon atoms including at least one ether bond, or a single bond (that is, —CHR 18 — and —CH 2 — are directly bonded) is shown.
  • L 2 in the general formula (VI) has the same meaning as L 1 .
  • the sulfonic acid ester compound represented by the general formula (VI) contained in the non-aqueous electrolyte of the III-2 invention is represented by the general formula (V) on the carbon to which at least one sulfonyloxy group is bonded. It has a methylene proton (RSO 3 —CH 2 —) having a higher acidity than the methine proton of the sulfonate ester. Therefore, on the negative electrode during the initial charge, the reaction with the compound represented by the general formula (V) proceeds with the reaction of the methylene group of the sulfonate compound represented by the general formula (VI) as a trigger.
  • R 18 in the general formula (VI) is a hydrogen atom (when two methylene groups to which a sulfonyloxy group is bonded), since the compound is more easily complexed with the compound represented by the general formula (V).
  • the melting point of the sulfonic acid ester represented by the general formula (VI) is preferably 100 ° C. or less, more preferably 50 ° C. or less, and further preferably 40 ° C. or less.
  • the sulfonic acid ester represented by the general formula (VI) has a melting point in the above range, it is preferable because the low temperature characteristics after high temperature storage are further improved. The reason why the above effect is obtained is not necessarily clear, but the lower the melting point of the sulfonate ester represented by the general formula (VI), the higher the solubility in a non-aqueous solvent, and the lower the lithium ion concentration at low temperatures. This is thought to be due to smooth movement.
  • the melting point of the sulfonate compound is L 2 Is a single bond (2 main chain carbon atoms) 44 to 45 ° C.
  • a methylene group (main chain carbon number 3) is 41 to 42 ° C.
  • an ethylene group (main chain carbon number 4) is 117 ° C.
  • trimethylene group (main chain carbon number 5) 35-36 ° C.
  • tetramethylene group (main chain carbon number 6) 58-59 ° C.
  • pentamethylene group (main chain carbon number 7) In the case of 53 ° C.
  • Preferable examples of —CHR 18 —L 2 —CH 2 — in the general formula (VI) include linear alkylene groups such as ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, and propane. -1,2-diyl group, butane-1,2-diyl group, butane-1,3-diyl group, pentane-1,4-diyl group, hexane-1,5-diyl group, 2-methylpropane-1 , 3-diyl group, branched 2-chain alkylene group such as 2,2-dimethylpropane-1,3-diyl group.
  • linear alkylene groups such as ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, and propane.
  • straight chain alkylene groups such as ethylene group, trimethylene group and pentamethylene group, and branched chain alkylene groups such as propane-1,2-diyl group are more preferable, trimethylene group and pentamethylene group.
  • a linear alkylene group such as is particularly preferred.
  • the electrochemical characteristics in a wider temperature range are further improved, which is preferable.
  • sulfonate compound represented by the general formula (VI) include ethane-1,2-diyl dimethanesulfonate, ethane-1,2-diyl diethanesulfonate, and ethane-1,2-diyl bistri.
  • Fluoromethanesulfonate ethane-1,2-diyl dibenzenesulfonate, ethane-1,2-diyl bis (4-methylbenzenesulfonate), propane-1,3-diyl dimethanesulfonate, propane-1,3-diyl di Ethanesulfonate, propane-1,3-diyl bistrifluoromethanesulfonate, propane-1,3-diyl dibenzenesulfonate, propane-1,3-diylbis (4-methylbenzenesulfonate), butane-1,2-diyl di Methanesulfonate, butane-1, -Diyl diethanesulfonate, butane-1,2-diyl bistrifluoromethanesulfonate, butane-1,2-diyl dibenzenesulfonate, butane-1,2-diylbis (4-methylbenz
  • ethane-1,2-diyl dimethanesulfonate ethane-1,2-diyl bis (4-methylbenzenesulfonate
  • propane-1,3-diyl dimethanesulfonate propane-1,3-diyl bis (4-methylbenzenesulfonate
  • pentane-1,5-diyl dimethanesulfonate pentane-1,5-diyl bis (4-methylbenzenesulfonate
  • propane-1,2-diyl dimethanesulfonate propane-1,2-diyl dimethanesulfonate, propane-1, 2-diyl bis (4-methylbenzenesulfonate
  • propane-1,2-diyl dimethanesulfonate propane-1,3-diyl dimethanesulfonate
  • pentane-1,5-diyl dimethanesulfonate propane-1 , 2-D
  • the sulfonic acid ester compound represented by the general formula (VI) may have an optical isomer.
  • R-form and S-form may exist, and in the III-2 invention, any of them exhibits the effect of the present invention.
  • the optical isomers can also be used as a mixture in an arbitrary ratio. When one of the optical isomers is present in excess (optically active substance) or when the optical isomers are present in the same amount (racemic substance) In either case, the effects of the present invention are obtained. Further, when a diastereomer is present, the chemical or electrochemical properties of the diastereomer are not necessarily the same. Therefore, the degree of the effect of the present invention may vary depending on the abundance ratio of the diastereomer. However, even when any one of these optical isomers is used alone or in a mixture, the effects of the present invention are obtained.
  • the content of the sulfonic acid ester compound represented by the general formula (VI) contained in the non-aqueous electrolyte is 0.001 to 5 in the non-aqueous electrolyte. Mass% is preferred. When the content is 5% by mass or less, there is little possibility that a coating film is excessively formed on the electrode and the low-temperature characteristics are deteriorated. The effect of improving the characteristics is increased.
  • the content is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, further preferably 0.1% by mass or more, and the upper limit thereof is preferably 5% by mass or less in the non-aqueous electrolyte. 3 mass% or less is more preferable, and 1 mass% or less is still more preferable.
  • the sulfonic acid represented by the general formula (V) is not particularly limited.
  • the mass ratio of the ester compound: the sulfonic acid ester compound represented by the general formula (VI)] is preferably 49:51 to 1:99, from the viewpoint of improving electrochemical characteristics in a wide temperature range, and 40:60 to 10:90 is more preferable.
  • the addition of the sulfonic acid ester compound represented by the general formula (V) improves the electrochemical characteristics in a wide temperature range.
  • the nonaqueous electrolytic solution according to the fourth aspect of the present invention is a nonaqueous electrolytic solution in which an electrolyte salt is dissolved in a nonaqueous solvent.
  • the nonaqueous electrolytic solution contains a compound represented by the following general formula (VII) as 0. It is characterized by containing 0.001 to 5% by mass.
  • R 21 to R 26 may be the same or different and each represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms. In the alkyl group and the aryl group having 6 to 12 carbon atoms, at least one hydrogen atom thereof may be substituted with a halogen atom.
  • R 21 to R 24 in the general formula (VII) may be the same or different, and are alkyl groups having 1 to 6 carbon atoms, and those having 1 to 6 carbon atoms in which at least one hydrogen atom is substituted with a halogen atom.
  • R 25 and R 26 may be the same or different and are an alkyl group having 1 to 6 carbon atoms, a halogenated alkyl group having 1 to 6 carbon atoms in which at least one hydrogen atom is substituted with a halogen atom, or A hydrogen atom is an aryl group having 6 to 12 carbon atoms that may be substituted with a halogen atom, a straight-chain alkyl group having 1 to 4 carbon atoms or a branched alkyl group having 3 to 4 carbon atoms, and at least one A straight-chain halogenated alkyl group having 1 to 4 carbon atoms in which a hydrogen atom is substituted with a halogen atom or an aryl group having 6 to 8 carbon atoms is more preferable, and a straight-chain alkyl group having 1 to 2 carbon atoms, at least 1 A straight-chain halogenated alkyl group having 1 to 2 carbon atoms in which one hydrogen atom is substituted with a halogen atom
  • R 21 to R 24 include a straight chain alkyl group such as a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, and an n-hexyl group, an iso-propyl group, Some of the hydrogen atoms such as branched alkyl groups such as sec-butyl group, tert-butyl group, tert-amyl group, fluoromethyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group Alkyl group substituted by fluorine atom, phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 4-tert-butylphenyl group, 2,4,6-trimethylphenyl group, 2- Fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2,4-difluorophenyl group, 2,6-
  • methyl group, ethyl group, n-propyl group, n-butyl group are preferable.
  • Tert-butyl group and tert-amyl group are preferable, and methyl group, ethyl group and tert-butyl group are more preferable.
  • R 25 and R 26 include methyl groups, ethyl groups, n-propyl groups, n-butyl groups, n-pentyl groups, n-hexyl groups and other linear alkyl groups, iso-propyl groups, Some of the hydrogen atoms such as branched alkyl groups such as sec-butyl group, tert-butyl group, tert-amyl group, fluoromethyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group Alkyl group substituted by fluorine atom, phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 4-tert-butylphenyl group, 2,4,6-trimethylphenyl group, 2- Fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2,4-difluorophenyl group, 2,6-difluorophenyl group, 3,4
  • methyl group, ethyl group, n-propyl group, n-butyl Group, tert-butyl group, 4-methylphenyl group, trifluoromethyl group and 2,2,2-trifluoroethyl group are preferable, and methyl group and 4-methylphenyl group are more preferable.
  • sulfonate compound having a silicon atom represented by the general formula (VII) include 1,1,2,2-tetramethyldisilane-1,2-diyl dimethanesulfonate, 1,1,2,2 -Tetraethyldisilane-1,2-diyl dimethanesulfonate, 1,1,2,2-tetrapropyldisilane-1,2-diyl dimethanesulfonate, 1,1,2,2-tetra (iso-propyl) disilane- 1,2-diyl dimethanesulfonate, 1,1,2,2-tetrabutyldisilane-1,2-diyl dimethanesulfonate, 1,1,2,2-tetra (tert-butyl) disilane-1,2- Diyl dimethanesulfonate, 1,1,2,2-tetra (tert-amyl) disilane-1,2-diyl dimethanesulfonate
  • the content of the sulfonate compound having a silicon atom represented by the general formula (VII) contained in the nonaqueous electrolytic solution is 0.001 to 5 mass in the nonaqueous electrolytic solution. % Is preferred.
  • the content is preferably 0.008% by mass or more, and more preferably 0.02% by mass or more in the nonaqueous electrolytic solution.
  • the upper limit is preferably 3% by mass or less, and more preferably 1% by mass or less.
  • a sulfonate compound having a silicon atom represented by the general formula (VII) is combined with a non-aqueous solvent, an electrolyte salt, and other additives described below in a wide temperature range. It exhibits a unique effect of synergistically improving the electrochemical properties.
  • Nonaqueous solvent examples include cyclic carbonates, chain esters, lactones, ethers, amides, phosphate esters, sulfones, nitriles, and S ⁇ O bond-containing compounds.
  • Cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 4-fluoro-1,3-dioxolan-2-one (FEC), trans or Preferred examples include cis-4,5-difluoro-1,3-dioxolan-2-one (hereinafter collectively referred to as “DFEC”), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), and the like.
  • DFEC cis-4,5-difluoro-1,3-dioxolan-2-one
  • VC vinylene carbonate
  • VEC vinyl ethylene carbonate
  • the use of at least one cyclic carbonate having a carbon-carbon double bond or a fluorine atom is preferable because cycle characteristics over a wide temperature range are further improved, and the cyclic carbonate having a carbon-carbon double bond and fluorine are preferred. It is particularly preferred to include both cyclic carbonates having atoms. As the cyclic carbonate having a carbon-carbon double bond, VC and VEC are more preferable, and as the cyclic carbonate having a fluorine atom, FEC and DFEC are more preferable.
  • the content of the cyclic carbonate having a carbon-carbon double bond is preferably 0.001% by volume or more, more preferably 0.03% by volume or more, and still more preferably 0.2% by volume with respect to the total volume of the nonaqueous solvent.
  • the above general formula (I), (II), (III) is preferably at least 10% by volume, more preferably at most 6% by volume, even more preferably at most 4% by volume.
  • (IV), (V), (VI), or (VII) is formed on the electrode with a film bonded to the sulfonic acid ester compound, thus further improving the electrochemical characteristics over a wide temperature range. Therefore, it is preferable.
  • the content of the cyclic carbonate having a carbon-carbon double bond in the non-aqueous electrolyte is preferably 0.001 to 10% by mass, more preferably 0.03% by mass with respect to the total volume of the non-aqueous solvent. % Or more, more preferably 0.2% by mass or more, and the upper limit thereof is preferably 10% by mass or less, more preferably 6% by mass or less, and further preferably 4% by mass or less.
  • the content of the cyclic carbonate having a fluorine atom is preferably 0.01% by volume or more, more preferably 0.03% by volume or more, and further preferably 0.3% by volume or more with respect to the total volume of the nonaqueous solvent.
  • the upper limit thereof is preferably 35% by volume or less, more preferably 25% by volume or less, and still more preferably 15% by volume or less, and the sulfonate compound represented by the general formula (I) is bonded to each other. Since the coated film is formed on the electrode, the electrochemical characteristics in a wider temperature range are improved, which is preferable.
  • the content of the cyclic carbonate containing fluorine atoms in the non-aqueous electrolyte is 0.01 to 35% by mass, preferably 0.01% by mass or more, more preferably 0.03% by mass or more, More preferably, it is 0.3% by mass or more, and the upper limit thereof is preferably 35% by mass or less, more preferably 30% by mass or less, more preferably 25% by mass or less, and further preferably 15% by mass or less.
  • the volume ratio of the cyclic carbonate having a carbon-carbon double bond to the content of the cyclic carbonate having a fluorine atom Is preferably 0.005 or more, more preferably 0.01 or more, and the upper limit thereof is preferably 10 or less, more preferably 5 or less, and still more preferably 2 or less.
  • the above composition ratio is preferable because electrochemical characteristics in a wider temperature range are improved.
  • the nonaqueous solvent contains ethylene carbonate and / or propylene carbonate
  • the resistance of the film formed on the electrode is reduced, and the content of ethylene carbonate and / or propylene carbonate is preferably equal to the total volume of the nonaqueous solvent.
  • it is preferably 3% by volume or more, more preferably 5% by volume or more, still more preferably 7% by volume or more, and the upper limit thereof is preferably 45% by volume or less, more preferably 35% by volume or less, Preferably it is 25 volume% or less.
  • cyclic carbonates may be used singly, and when two or more types are used in combination, the electrochemical properties in a wide temperature range are further improved, and three or more types are particularly preferable.
  • Preferred combinations of these cyclic carbonates include EC and PC, EC and VC, PC and VC, VC and FEC, EC and FEC, PC and FEC, FEC and DFEC, EC and DFEC, PC and DFEC, VC and DFEC , VEC and DFEC, EC and PC and VC, EC and PC and FEC, EC and VC and FEC, EC and VC and VEC, PC and VC and FEC, EC and VC and DFEC, PC and VC and DFEC, EC and PC And VC and FEC, EC, PC, VC and DFEC are preferred.
  • the two types of combinations are preferably EC and VC, EC and FEC, PC and FEC, etc., and three or more types of combinations are EC and PC and VC, EC and PC and FEC, Combinations of EC, VC, FEC, PC, VC, FEC, EC, PC, VC, FEC, and the like are preferable.
  • the content of the cyclic carbonate is not particularly limited, but it is preferably used in the range of 10 to 40% by volume with respect to the total volume of the nonaqueous solvent. If the content is 10% by volume or more, the conductivity of the non-aqueous electrolyte is reduced and the electrochemical characteristics in a wide temperature range are less likely to be reduced. If the content is 40% by volume or less, the viscosity of the non-aqueous electrolyte is low. The above range is preferable because there is little possibility that the electrochemical characteristics in a wide temperature range are lowered due to being too high.
  • chain esters examples include asymmetric chain carbonates such as methyl ethyl carbonate (MEC), methyl propyl carbonate (MPC), methyl isopropyl carbonate (MIPC), methyl butyl carbonate, and ethyl propyl carbonate, dimethyl carbonate (DMC), and diethyl carbonate ( DEC), symmetric chain carbonates such as dipropyl carbonate and dibutyl carbonate, and chain carboxylic acid esters such as methyl propionate, ethyl propionate, methyl acetate, and ethyl acetate.
  • MEC methyl ethyl carbonate
  • MPC methyl propyl carbonate
  • MIPC methyl isopropyl carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • chain carboxylic acid esters such as methyl propionate, ethyl propionate, methyl acetate, and ethyl acetate.
  • the content of the chain ester is not particularly limited, but it is preferably used in the range of 60 to 90% by volume with respect to the total volume of the nonaqueous solvent. If the content is 60% by volume or more, the viscosity of the non-aqueous electrolyte does not become too high, and if it is 90% by volume or less, the electrical conductivity of the non-aqueous electrolyte is lowered and electrochemical characteristics in a wide temperature range. The above range is preferable because there is little fear of decreasing.
  • chain esters dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), methyl propyl carbonate (MPC), methyl isopropyl carbonate (MIPC), methyl butyl carbonate, methyl propionate, methyl acetate and ethyl acetate are selected.
  • DMC dimethyl carbonate
  • MEC methyl ethyl carbonate
  • MPC methyl propyl carbonate
  • MIPC methyl isopropyl carbonate
  • methyl butyl carbonate methyl butyl carbonate
  • methyl propionate methyl acetate and ethyl acetate
  • a chain ester containing a methyl group is preferable, and a chain carbonate having a methyl group is particularly preferable.
  • chain carbonate it is preferable to use 2 or more types, more preferably both symmetric chain carbonate and asymmetric chain carbonate are included, and the content of symmetric chain carbonate is asymmetric chain carbonate. It is still more preferable
  • the proportion of the volume occupied by the symmetrical linear carbonate in the linear carbonate is 50% by volume or more, and more preferably 55% by volume or more. As an upper limit, 95 volume% or less is more preferable, and it is still more preferable in it being 85 volume% or less. It is particularly preferable that symmetric carbonates include dimethyl carbonate (DMC) and diethyl carbonate (DEC).
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • the content of diethyl carbonate (DEC) in the nonaqueous solvent is preferably 1% by volume or more, more preferably 2% by volume or more, and the upper limit thereof is preferably 10% by volume or less, more preferably 6% by volume or less.
  • the asymmetric chain carbonate preferably has a methyl group, and methyl ethyl carbonate (MEC) is particularly preferable.
  • MEC methyl ethyl carbonate
  • the above case is preferable because electrochemical characteristics in a wider temperature range are improved.
  • the ratio between the cyclic carbonate and the chain ester is preferably 10:90 to 45:55, and 15:85 to 40:55 in terms of the cyclic carbonate: chain ester (volume ratio) from the viewpoint of improving electrochemical characteristics in a wide temperature range. 60 is more preferable, and 20:80 to 35:65 is particularly preferable.
  • a benzene in which an aliphatic hydrocarbon group having 1 to 6 carbon atoms is bonded to a benzene ring through a tertiary carbon atom or a quaternary carbon atom in the non-aqueous electrolyte is bonded to a benzene ring through a tertiary carbon atom or a quaternary carbon atom in the non-aqueous electrolyte.
  • Including a compound (second additive) is preferable because electrochemical characteristics in a wider temperature range are further improved. The reason is not necessarily clear, but since the benzene ring is adsorbed on the negative electrode and further has a branched alkyl group on the benzene ring, it is derived from a sulfonate compound having a silicon atom represented by the general formula (VII) It is considered that the heat resistance is improved without excessively densifying the coating.
  • the content of the benzene compound in which the aliphatic hydrocarbon group having 1 to 6 carbon atoms contained in the non-aqueous electrolyte is bonded to the benzene ring via a tertiary carbon atom or a quaternary carbon atom is 0. 1 to 10% by mass is preferred.
  • the mass is preferably 1 to 50 times the mass of the sulfonate compound containing a silicon atom represented by the general formula (VII).
  • the content is 50 times or less with respect to the mass of the sulfonate compound having a silicon atom represented by the general formula (VII), there is little possibility that the low-temperature characteristics are deteriorated due to excessive adsorption on the negative electrode.
  • Examples of a benzene compound in which an aliphatic hydrocarbon group having 1 to 6 carbon atoms is bonded to a benzene ring through a tertiary carbon atom or a quaternary carbon atom include cyclohexylbenzene, fluorocyclohexylbenzene (1-fluoro-2 -Cyclohexylbenzene, 1-fluoro-3-cyclohexylbenzene, 1-fluoro-4-cyclohexylbenzene), tert-butylbenzene, 1,3-di-tert-butylbenzene, tert-amylbenzene, 1-fluoro-4-
  • Preferable examples include tert-butylbenzene, cyclohexylbenzene, tert-butylbenzene, and tert-amylbenzene are more preferable, and tert-butylbenzene and tert-amyl
  • nonaqueous solvents used in the present invention include tertiary carboxylic acid esters such as methyl pivalate, butyl pivalate, hexyl pivalate, octyl pivalate, dimethyl oxalate, ethyl methyl oxalate, diethyl oxalate, etc.
  • Oxalic acid esters tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 1,3-dioxane, 1,4-dioxane and other cyclic ethers, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1 , 2-dibutoxyethane and other chain ethers, dimethylformamide and other amides, trimethyl phosphate, tributyl phosphate and phosphate esters such as trioctyl phosphate, sulfolane and other sulfones, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -Lactones such as Angelica Lactone, Acetonitrile , Nitriles such as propionitrile, succinonitrile, glutaronitrile, adiponitrile, pimelonitrile, ethylene sulfite, hexahydrobenzo [1,3,2] dio
  • Chain carboxylic anhydrides such as acetic anhydride, propionic anhydride, cyclic acid anhydrides such as succinic anhydride, maleic anhydride, glutaric anhydride, itaconic anhydride, 3-sulfo-propionic anhydride, Cyclic phosphazenes such as methoxypentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene, phenoxypentafluorocyclotriphosphazene, ethoxyheptafluorocyclotetraphosphazene, cyclohexylbenzene, fluorocyclohexylbenzene (1-fluoro-2-cyclohexane) Branched chain alkyl groups such as xylbenzene, 1-fluoro-3-cyclohexylbenzene, 1-fluoro-4-cyclohexylbenzene), tert-but
  • Benzene compounds, diphenyl ethers, fluorobenzenes, difluorobenzenes (o-, m-, p-isomers) with aromatic rings such as benzene compounds, biphenyls, terphenyls (o-, m-, p-isomers) bonded to benzene rings
  • aromatic compounds such as anisole, 2,4-difluoroanisole, and partial hydrides of terphenyl (1,2-dicyclohexylbenzene, 2-phenylbicyclohexyl, 1,2-diphenylcyclohexane, o-cyclohexylbiphenyl)
  • terphenyl 1,2-dicyclohexylbenzene, 2-phenylbicyclohexyl, 1,2-diphenylcyclohexane, o-cyclohexylbiphenyl
  • nitrile and / or an aromatic compound because battery characteristics in a wider temperature range are further improved.
  • nitriles dinitriles are preferable, and those in which two cyano groups are linked by an aliphatic hydrocarbon group having 2 to 6 carbon atoms are more preferable, and succinonitrile, glutaronitrile, adiponitrile, and pimelonitrile are more preferable.
  • Adiponitrile and pimelonitrile are particularly preferred.
  • an aromatic ring is bonded to a benzene ring or an aliphatic hydrocarbon group having 1 to 6 carbon atoms is bonded to a benzene ring via a tertiary carbon atom or a quaternary carbon atom.
  • a benzene compound is preferable, and a benzene compound in which an aliphatic hydrocarbon group having 1 to 6 carbon atoms is bonded to a benzene ring via a tertiary carbon atom or a quaternary carbon atom is more preferable.
  • the content of nitrile and / or aromatic compound is preferably 0.001 to 5% by mass in the non-aqueous electrolyte. When the content is 5% by mass or less, there is little possibility that a coating film is excessively formed on the electrode and the low-temperature characteristics are deteriorated. The effect of improving the characteristics is increased.
  • the content is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, still more preferably 0.03% by mass or more, and the upper limit is preferably 3% by mass or less in the non-aqueous electrolyte. 1 mass% or less is more preferable, and 0.4 mass% or less is still more preferable.
  • an S O group-containing compound having a cyclic structure or unsaturated group selected from cyclic sulfite, cyclic structure or unsaturated group, or vinyl sulfone is included, electrochemical characteristics in a wider temperature range can be obtained. Since it improves, it is preferable.
  • Drobenzo [1,3,2] dioxathiolane-2-oxide, 5-vinyl-hexahydro-1,3,2-benzodioxathiol-2-oxide, 4- (methylsulfonylmethyl) -1,3,2-dioxathiolane -2-oxide is particularly preferred.
  • the content of the S ⁇ O group-containing compound having a cyclic structure or an unsaturated group is preferably 0.001 to 5% by mass in the non-aqueous electrolyte. When the content is 5% by mass or less, there is little possibility that a coating film is excessively formed on the electrode and the low-temperature characteristics are deteriorated. The effect of improving the characteristics is increased.
  • the content is preferably 0.005% by mass or more in the non-aqueous electrolyte, more preferably 0.01% by mass or more, further preferably 0.03% by mass or more, and the upper limit is preferably 3% by mass or less. 1 mass% or less is more preferable, and 0.4 mass% or less is still more preferable.
  • the above non-aqueous solvents are usually used as a mixture in order to achieve appropriate physical properties.
  • the combination includes, for example, a combination of a chain ester such as a cyclic carbonate and a chain carbonate, a combination of a cyclic carbonate, a chain ester and a lactone, a combination of a cyclic carbonate, a chain ester and an ether, and a cyclic carbonate and a chain ester.
  • the combination with a nitrile etc. are mentioned suitably.
  • Electrolyte salt Preferred examples of the electrolyte salt used in the present invention include the following lithium salts and onium salts.
  • Examples of the lithium salt include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ).
  • LiPF 4 (CF 3 ) 2 LiPF 3 (C 2 F 5 ) 3 , LiPF 3 (CF 3 ) 3 , LiPF 3 (iso-C 3 F 7 ) 3 , LiPF 5 (iso-C 3 F 7 ) and other lithium salts containing a chain-like fluorinated alkyl group, (CF 2 ) 2 (SO 2 ) 2 NLi, (CF 2 ) 3 (SO 2 ) lithium salts containing cyclic fluorinated alkylene chain, such as 2 NLi, and bis [oxalate -O, O '] lithium borate and difluoro [oxalate -O, O'] anion oxalate complexes of lithium borate Preferred examples include lithium salts The Among these, at least one selected from LiPF 6 , LiBF 4 , LiN (SO 2 CF 3 ) 2 and LiN (SO 2 C 2 F
  • onium salt As an onium salt, the various salts which combined the onium cation and anion shown below are mentioned suitably.
  • Specific examples of onium cations include tetramethylammonium cation, ethyltrimethylammonium cation, diethyldimethylammonium cation, triethylmethylammonium cation, tetraethylammonium cation, N, N-dimethylpyrrolidinium cation, N-ethyl-N-methylpyrrole.
  • N, N-diethylpyrrolidinium cation Dinium cation, N, N-diethylpyrrolidinium cation, spiro- (N, N ′)-bipyrrolidinium cation, N, N′-dimethylimidazolinium cation, N-ethyl-N′-methylimidazoli
  • Preferable examples include nium cation, N, N′-diethylimidazolinium cation, N, N′-dimethylimidazolium cation, N-ethyl-N′-methylimidazolium cation, and N, N′-diethylimidazolium cation.
  • anions include PF 6 anion, BF 4 anion, ClO 4 anion, AsF 6 anion, CF 3 SO 3 anion, N (CF 3 SO 2 ) 2 anion, N (C 2 F 5 SO 2 ) 2 anion. N (SO 2 F) 2 anion and the like are preferable.
  • These electrolyte salts can be used singly or in combination of two or more.
  • the concentration used by dissolving all the electrolyte salts is usually preferably 0.3 M or more, more preferably 0.7 M or more, and even more preferably 1.1 M or more with respect to the non-aqueous solvent.
  • the upper limit is preferably 2.5 M or less, more preferably 2.0 M or less, and even more preferably 1.5 M or less.
  • non-aqueous electrolyte for example, the non-aqueous solvent is mixed, and the sulfonate compound represented by the general formula (I) is dissolved in the electrolyte salt and the non-aqueous electrolyte. Can be obtained.
  • the compound added to the non-aqueous solvent and the non-aqueous electrolyte to be used is purified in advance within a range in which the productivity is not significantly reduced and has as few impurities as possible.
  • the nonaqueous electrolytic solution of the present invention can be used in the following first to fourth electrochemical elements, and as the nonaqueous electrolyte, not only a liquid but also a gelled one can be used. Furthermore, the non-aqueous electrolyte of the present invention can be used for a solid polymer electrolyte. In particular, it is preferably used for a first electrochemical element (ie, for a lithium battery) or a fourth electrochemical element (ie, for a lithium ion capacitor) using a lithium salt as an electrolyte salt, and is used for a lithium battery. More preferably, it is most suitable to use for a lithium secondary battery.
  • the lithium battery of the present invention is a generic term for a lithium primary battery and a lithium secondary battery.
  • the term lithium secondary battery is used as a concept including a so-called lithium ion secondary battery.
  • the lithium battery of the present invention comprises the nonaqueous electrolyte solution in which an electrolyte salt is dissolved in a positive electrode, a negative electrode, and a nonaqueous solvent.
  • Components other than the non-aqueous electrolyte, such as a positive electrode and a negative electrode can be used without particular limitation.
  • a positive electrode active material for a lithium secondary battery a composite metal oxide with lithium containing at least one of cobalt, manganese, and nickel is used.
  • lithium composite metal oxides include LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiCo 1-x Ni x O 2 (0.01 ⁇ x ⁇ 1), LiCo 1/3 Ni 1/3. Examples thereof include Mn 1/3 O 2 , LiNi 1/2 Mn 3/2 O 4 , LiCo 0.98 Mg 0.02 O 2 and the like. Further, LiCoO 2 and LiMn 2 O 4 , LiCoO 2 and LiNiO 2 , LiMn 2 O 4 and LiNiO 2 may be used in combination.
  • a part of the lithium composite metal oxide may be substituted with another element.
  • a part of cobalt, manganese, nickel is replaced with at least one element such as Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, Cu, Bi, Mo, La, etc.
  • a part of O may be substituted with S or F, or a compound containing these other elements may be coated.
  • lithium composite metal oxides such as LiCoO 2 , LiMn 2 O 4 , and LiNiO 2 that can be used at a charged potential of the positive electrode in a fully charged state of 4.3 V or more on the basis of Li are preferable, and LiCo 1-x M x O 2 (where M is at least one element represented by Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, Cu, 0.001 ⁇ x ⁇ 0.05) ), LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 1/2 Mn 3/2 O 4 , Li 2 MnO 3 and LiMO 2 (M is a transition metal such as Co, Ni, Mn, Fe, etc.) Lithium composite metal oxide that can be used at 4.4 V or higher, such as a solid solution.
  • M is at least one element represented by Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, Cu, 0.001 ⁇ x ⁇ 0.05
  • the electrochemical characteristics in a wide temperature range are likely to be deteriorated due to a reaction with the electrolyte during charging, but in the lithium secondary battery according to the present invention, these A decrease in electrochemical characteristics can be suppressed.
  • the resistance of the battery tends to increase with the elution of Mn ions from the positive electrode, so that the electrochemical characteristics in a wide temperature range tend to be lowered.
  • Lithium secondary batteries are preferred because they can suppress a decrease in these electrochemical characteristics.
  • lithium-containing olivine-type phosphate can also be used as the positive electrode active material.
  • a lithium-containing olivine-type phosphate containing at least one selected from iron, cobalt, nickel and manganese is preferable. Specific examples thereof include LiFePO 4 , LiCoPO 4 , LiNiPO 4 , LiMnPO 4 and the like. Some of these lithium-containing olivine-type phosphates may be substituted with other elements, and some of iron, cobalt, nickel, and manganese are replaced with Co, Mn, Ni, Mg, Al, B, Ti, V, and Nb.
  • Cu, Zn, Mo, Ca, Sr, W and Zr can be substituted with one or more elements selected from these, or can be coated with a compound or carbon material containing these other elements.
  • LiFePO 4 or LiMnPO 4 is preferable.
  • mold phosphate can also be mixed and used, for example with the said positive electrode active material.
  • the positive electrode for lithium primary battery CuO, Cu 2 O, Ag 2 O, Ag 2 CrO 4, CuS, CuSO 4, TiO 2, TiS 2, SiO 2, SnO, V 2 O 5, V 6 O 12 , VO x , Nb 2 O 5 , Bi 2 O 3 , Bi 2 Pb 2 O 5 , Sb 2 O 3 , CrO 3 , Cr 2 O 3 , MoO 3 , WO 3 , SeO 2 , MnO 2 , Mn 2 O 3 , Fe 2 O 3 , FeO, Fe 3 O 4 , Ni 2 O 3 , NiO, CoO 3 , CoO and other oxides of one or more metal elements or chalcogen compounds, sulfur such as SO 2 and SOCl 2 Examples thereof include compounds, and fluorocarbons (fluorinated graphite) represented by the general formula (CF x ) n . Of these, MnO 2 , V 2 O 5 , graphite fluoride and the like are preferable.
  • the conductive agent for the positive electrode is not particularly limited as long as it is an electron conductive material that does not cause a chemical change with respect to the electrolytic solution.
  • Examples thereof include graphite such as natural graphite (flaky graphite etc.) and artificial graphite, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black. Further, graphite and carbon black may be appropriately mixed and used.
  • the addition amount of the conductive agent to the positive electrode mixture is preferably 1 to 10% by mass, and particularly preferably 2 to 5% by mass.
  • the positive electrode is composed of a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), acrylonitrile and butadiene.
  • a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), acrylonitrile and butadiene.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • SBR styrene and butadiene
  • SBR styrene and butadiene
  • acrylonitrile and butadiene acrylonitrile and butadiene.
  • binder such as copolymer (NBR), carb
  • this positive electrode mixture was applied to a current collector aluminum foil, a stainless steel lath plate, etc., dried and pressure-molded, and then subjected to vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours. It can be manufactured by heat treatment.
  • the density of the part except the collector of the positive electrode is usually at 1.5 g / cm 3 or more, to further enhance the capacity of the battery, is preferably 2 g / cm 3 or more, more preferably, 3 g / cm 3 It is above, More preferably, it is 3.6 g / cm 3 or more. In addition, as an upper limit, 4 g / cm ⁇ 3 > or less is preferable.
  • Examples of the negative electrode active material for a lithium secondary battery include lithium metal, lithium alloy, and a carbon material capable of occluding and releasing lithium (e.g., graphitizable carbon, and (002) plane spacing of 0.37 nm or more.
  • Non-graphitizable carbon, graphite with (002) plane spacing of 0.34 nm or less, etc.] tin (single), tin compound, silicon (single), silicon compound, lithium titanate such as Li 4 Ti 5 O 12 A compound etc. can be used individually by 1 type or in combination of 2 or more types.
  • a highly crystalline carbon material such as artificial graphite and natural graphite
  • the lattice spacing (002) of the lattice plane ( 002 ) is 0.00. It is particularly preferable to use a carbon material having a graphite type crystal structure of 340 nm (nanometer) or less, particularly 0.335 to 0.337 nm.
  • the density of the portion excluding the current collector of the negative electrode can be obtained from the X-ray diffraction measurement of the negative electrode sheet when pressure-molded to a density of 1.5 g / cm 3 or more.
  • the temperature increases in a wider temperature range. It is preferable because electrochemical characteristics are improved, more preferably 0.05 or more, and still more preferably 0.1 or more. Moreover, since it may process too much and crystallinity may fall and the discharge capacity of a battery may fall, 0.5 or less is preferable and 0.3 or less is more preferable. In addition, it is preferable that the highly crystalline carbon material (core material) is coated with a carbon material having lower crystallinity than the carbon material (core material) because electrochemical characteristics in a wide temperature range are improved. .
  • the crystallinity of the carbon material of the coating can be confirmed by TEM.
  • a highly crystalline carbon material reacts with the non-aqueous electrolyte during charging and tends to lower the electrochemical properties at low or high temperatures due to an increase in interfacial resistance, but in the lithium secondary battery according to the present invention, Excellent electrochemical characteristics over a wide temperature range.
  • Examples of the metal compound capable of inserting and extracting lithium as the negative electrode active material include Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, and Cu. , Zn, Ag, Mg, Sr, Ba and other compounds containing at least one metal element. These metal compounds may be used in any form such as a simple substance, an alloy, an oxide, a nitride, a sulfide, a boride, and an alloy with lithium, but any of a simple substance, an alloy, an oxide, and an alloy with lithium. Is preferable because the capacity can be increased.
  • the negative electrode is kneaded using the same conductive agent, binder, and high-boiling solvent as in the preparation of the positive electrode described above to form a negative electrode mixture, and then this negative electrode mixture is applied to the copper foil of the current collector. After being dried and pressure-molded, it can be produced by heat treatment under vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours.
  • the density of the portion excluding the current collector of the negative electrode is usually 1.1 g / cm 3 or more, and is preferably 1.5 g / cm 3 or more, particularly preferably 1.7 g in order to further increase the capacity of the battery. / Cm 3 or more. In addition, as an upper limit, 2 g / cm ⁇ 3 > or less is preferable.
  • examples of the negative electrode active material for a lithium primary battery include lithium metal and lithium alloy.
  • the structure of the lithium battery is not particularly limited, and a coin-type battery, a cylindrical battery, a square battery, a laminated battery, or the like having a single-layer or multi-layer separator can be applied. Although it does not restrict
  • the lithium secondary battery in the present invention is excellent in electrochemical characteristics in a wide temperature range even when the end-of-charge voltage is 4.2 V or higher, particularly 4.3 V or higher, and also has good characteristics even at 4.4 V or higher. is there.
  • the end-of-discharge voltage is usually 2.8 V or more, and further 2.5 V or more, but the lithium secondary battery in the present invention can be 2.0 V or more.
  • the current value is not particularly limited, but is usually used in the range of 0.1 to 30C.
  • the lithium battery in the present invention can be charged / discharged at ⁇ 40 to 100 ° C., preferably ⁇ 10 to 80 ° C.
  • a method of providing a safety valve on the battery lid or cutting a member such as a battery can or a gasket can be employed as a safety measure for preventing overcharge.
  • a current interruption mechanism that senses the internal pressure of the battery and interrupts the current can be provided on the battery lid.
  • Electrode (electric double layer capacitor) It is an electrochemical element that stores energy by using the electric double layer capacity at the electrolyte / electrode interface.
  • An example of the present invention is an electric double layer capacitor.
  • the most typical electrode active material used in this electrochemical device is activated carbon. Double layer capacity increases roughly in proportion to surface area.
  • the positive electrode include those using an electric double layer between an activated carbon electrode and an electrolytic solution and those using a ⁇ -conjugated polymer electrode doping / dedoping reaction.
  • the electrolyte contains at least a lithium salt such as LiPF 6 .
  • the sulfonate ester compound represented by general formula (I) or (II) is compoundable by the following method, it is not limited to this manufacturing method.
  • a method for synthesizing a sulfonic acid ester compound for example, an alcohol described in Journal of the Chemical Society, Perkin Transactions 2 No. 8, pages 1201-1208, 1991 is reacted with a sulfonyl halide in a solvent in the presence of a base. Can be applied.
  • Examples of the electrolytic solution using the sulfonic acid ester compound of the present invention are shown below, but the present invention is not limited to these examples.
  • the evaluation of the low temperature characteristics after storage at high temperature and the evaluation of the low temperature cycle characteristics were performed by the following methods.
  • Examples I-1 to I-21 (Invention I), Comparative Examples I-1 to I-3 [Production of lithium ion secondary battery] LiCoO 2 ; 94% by mass, acetylene black (conducting agent); 3% by mass was mixed, and a solution in which 3% by mass of polyvinylidene fluoride (binder) was previously dissolved in 1-methyl-2-pyrrolidone was added. In addition, the mixture was mixed to prepare a positive electrode mixture paste. This positive electrode mixture paste was applied to one side of an aluminum foil (current collector), dried and pressurized, punched out to a predetermined size, and a positive electrode sheet was produced. The density of the portion excluding the current collector of the positive electrode was 3.6 g / cm 3 .
  • a negative electrode mixture paste was prepared by adding to and mixing with the solution thus prepared. This negative electrode mixture paste was applied to one side of a copper foil (current collector), dried and pressurized, and punched into a predetermined size to produce a negative electrode sheet. The density of the portion excluding the current collector of the negative electrode was 1.5 g / cm 3 .
  • Examples I-22, I-23 (Invention I), Comparative Example I-4 In place of the negative electrode active material used in Example I-2 and Comparative Example I-1, a negative electrode sheet was prepared using silicon (single element) (negative electrode active material). Silicon (simple substance): 80% by mass, acetylene black (conductive agent); 15% by mass were mixed, and polyvinylidene fluoride (binder); 5% by mass was previously dissolved in 1-methyl-2-pyrrolidone. In addition to the solution, mixing was performed to prepare a negative electrode mixture paste.
  • Examples I-24, I-25 (Invention I), Comparative Example I-5 A positive electrode sheet was prepared using LiFePO 4 (positive electrode active material) coated with amorphous carbon instead of the positive electrode active material used in Example I-2 and Comparative Example I-1.
  • the positive electrode mixture paste was prepared by adding to and mixing with the solution previously dissolved in the mixture. This positive electrode mixture paste was applied onto an aluminum foil (current collector), dried and pressurized, punched out to a predetermined size, and a positive electrode sheet was produced.
  • a coin battery was fabricated and evaluated in the same manner as in Example I-2 and Comparative Example I-1, except that the voltage was 6 V and the discharge end voltage was 2.0 V. The results are shown in Table I-4.
  • the effect of the present invention is not an effect dependent on a specific positive electrode or negative electrode. Furthermore, the nonaqueous electrolytic solution of the above-mentioned invention I has an effect of improving the discharge characteristics in a wide temperature range of the lithium primary battery.
  • Examples II-1 to II-12 (Invention II), Comparative Examples II-1 to II-2 [Production of lithium ion secondary battery] LiCoO 2 ; 94% by mass, acetylene black (conducting agent); 3% by mass was mixed, and a solution in which 3% by mass of polyvinylidene fluoride (binder) was previously dissolved in 1-methyl-2-pyrrolidone was added. In addition, the mixture was mixed to prepare a positive electrode mixture paste. This positive electrode mixture paste was applied to one side of an aluminum foil (current collector), dried and pressurized, punched out to a predetermined size, and a positive electrode sheet was produced. The density of the portion excluding the current collector of the positive electrode was 3.6 g / cm 3 .
  • a negative electrode mixture paste was prepared by adding to and mixing with the solution thus prepared. This negative electrode mixture paste was applied to one side of a copper foil (current collector), dried and pressurized, and punched into a predetermined size to produce a negative electrode sheet. The density of the portion excluding the current collector of the negative electrode was 1.5 g / cm 3 .
  • Ms represents a methanesulfonyl group
  • Tos represents (4-methylbenzenesulfonyl group (also referred to as p-toluenesulfonyl group).
  • Example II-13 (Invention II), Comparative Example II-3
  • a negative electrode sheet was prepared using silicon (single element) (negative electrode active material). Silicon (simple substance): 80% by mass, acetylene black (conductive agent); 15% by mass were mixed, and polyvinylidene fluoride (binder); 5% by mass was previously dissolved in 1-methyl-2-pyrrolidone.
  • mixing was performed to prepare a negative electrode mixture paste.
  • a coin battery was prepared in the same manner as II-1, and the battery was evaluated. The results are shown in Table II-3.
  • Example II-14 (Invention II), Comparative Example II-4
  • a positive electrode sheet was produced using LiFePO 4 (positive electrode active material) coated with amorphous carbon instead of the positive electrode active material used in Example 2 and Comparative Example 1.
  • the positive electrode mixture paste was prepared by adding to and mixing with the solution previously dissolved in the mixture. This positive electrode mixture paste was applied onto an aluminum foil (current collector), dried and pressurized, punched out to a predetermined size, and a positive electrode sheet was produced.
  • a coin battery was fabricated and evaluated in the same manner as in Example II-2 and Comparative Example II-1, except that the voltage was 6 V and the discharge end voltage was 2.0 V. The results are shown in Table II-4.
  • Lithium secondary batteries containing nitriles and aromatic compounds as other additives in Examples II-10 to II-12 are all stored at a high temperature charge in comparison with Example II-4 which does not contain other additives. Later low temperature characteristics are improved.
  • cyclopentyl methanesulfonate is used as the sulfonic acid ester compound, but the same effect is obtained when other sulfonic acid ester compounds represented by the general formula (I) are used.
  • Si was used for the negative electrode, or lithium-containing olivine iron phosphate salt for the positive electrode The same effect can be seen when using.
  • the effect of the present invention is not an effect dependent on a specific positive electrode or negative electrode.
  • the non-aqueous electrolyte of the above-mentioned II invention has an effect of improving the discharge characteristics in a wide temperature range of the lithium primary battery.
  • synthesis examples of the sulfonic acid ester compounds of the III invention and examples of electrolytic solutions using the same are shown.
  • the alcohol compound used as the raw material of the sulfonic acid ester compound represented by general formula (V) can be obtained as a commercial item, it can also be synthesize
  • the method described in Tetrahedoron Asymmetry, Vol. 4, No. 5, 925-930 Hages, 1993 can be applied.
  • As a method for synthesizing a sulfonic acid ester compound for example, an alcohol described in Journal of the Chemical Society, Perkin Transactions 2, No. 8, 1201-1208, 1991, in a solvent in the presence of a base and a sulfonyl halide can be used.
  • a reaction method can be applied.
  • Examples III-1 to III-13 (Invention III), Comparative Examples III-1 to III-2 [Production of lithium ion secondary battery] 94% by mass of LiNi 1/3 Mn 1/3 Co 1/3 O 2 and 3% by mass of acetylene black (conductive agent) are mixed, and 3% by mass of polyvinylidene fluoride (binder) is preliminarily added to 1-methyl-2-
  • a positive electrode mixture paste was prepared by adding to and mixing with the solution dissolved in pyrrolidone. This positive electrode mixture paste was applied to one side of an aluminum foil (current collector), dried and pressurized, punched out to a predetermined size, and a positive electrode sheet was produced. The density of the portion excluding the current collector of the positive electrode was 3.6 g / cm 3 .
  • a negative electrode mixture paste was prepared by adding to and mixing with the placed solution. This negative electrode mixture paste was applied to one side of a copper foil (current collector), dried and pressurized, and punched into a predetermined size to produce a negative electrode sheet. The density of the portion excluding the current collector of the negative electrode was 1.5 g / cm 3 .
  • Ms represents a methanesulfonyl group
  • Tos represents (4-methylbenzenesulfonyl group (also referred to as p-toluenesulfonyl group).
  • Example III-14 (Invention III), Comparative Example III-3
  • a negative electrode sheet was prepared using silicon (single element) (negative electrode active material). 80% by mass of silicon (elemental) and 15% by mass of acetylene black (conductive agent) are mixed and added to a solution in which 5% by mass of polyvinylidene fluoride (binder) is previously dissolved in 1-methyl-2-pyrrolidone. And mixed to prepare a negative electrode mixture paste.
  • Example III-2, Comparative Example except that this negative electrode mixture paste was applied onto a copper foil (current collector), dried and pressed, punched out to a predetermined size, and a negative electrode sheet was produced.
  • a coin battery was prepared in the same manner as III-1, and the battery was evaluated. The results are shown in Table III-2.
  • Example III-15 (Invention III), Comparative Example III-4
  • a positive electrode sheet was produced using LiFePO 4 (positive electrode active material) coated with amorphous carbon instead of the positive electrode active material used in Example III-2 and Comparative Example 1.
  • 90% by mass of LiFePO 4 coated with amorphous carbon and 5% by mass of acetylene black (conductive agent) are mixed, and 5% by mass of polyvinylidene fluoride (binder) is previously dissolved in 1-methyl-2-pyrrolidone.
  • the positive electrode mixture paste was prepared by adding to and mixing with the previously-prepared solution.
  • This positive electrode mixture paste was applied onto an aluminum foil (current collector), dried, pressurized and punched to a predetermined size to produce a positive electrode sheet, and the end-of-charge voltage during battery evaluation was 3.
  • a coin battery was fabricated and evaluated in the same manner as in Example III-2 and Comparative Example III-1, except that the voltage was 6 V and the discharge end voltage was 2.0 V. The results are shown in Table III-3.
  • Examples III-16 to III-20 (Invention III), Comparative Example III-5
  • a positive electrode sheet was produced using LiMn 2 O 4 (positive electrode active material) instead of the positive electrode active material used in Example III-2 and Comparative Example III-1. 88% by mass of LiMn 2 O 4 and 6% by mass of acetylene black (conductive agent) are mixed and added to a solution in which 6% by mass of polyvinylidene fluoride (binder) is previously dissolved in 1-methyl-2-pyrrolidone. And mixed to prepare a positive electrode mixture paste.
  • LiMn 2 O 4 positive electrode active material
  • acetylene black conductive agent
  • This positive electrode mixture paste was applied onto an aluminum foil (current collector), dried, pressurized and punched to a predetermined size to produce a positive electrode sheet, butane-2 contained in a non-aqueous electrolyte,
  • the mass ratio of Anti- and Syn-forms of 3-diyl dimethanesulfonate was changed as shown in Table III-4.
  • the mass ratio of the Anti-form and the Syn-form of butane-2,3-diyldimethanesulfonate contained in the non-aqueous electrolyte is synthesized by using the corresponding Anti-form and Syn-form diol raw materials.
  • Anti- and Syn-forms of butane-2,3-diyldimethanesulfonate each having a content of 100% were synthesized and mixed and used at a mass ratio shown in Table III-4. Further, as a result of analyzing the non-aqueous electrolyte adjusted at the ratio shown in Table III-4 using HPLC, it was confirmed that the non-aqueous electrolyte was present in the composition according to the added ratio.
  • any of the lithium secondary batteries of Examples III-1 to III-13 described above is Comparative Example III-1 in which no additive is added, 1,2-having a methine proton only on carbon to which one sulfonyloxy group is bonded.
  • Comparative Example III-2 to which propanediol dimethanesulfonate was added, the low temperature characteristics after high temperature charge storage were significantly improved. From the above, it has been found that the effect of the III invention is an effect peculiar to a sulfonate compound having a methine proton on the carbon to which two sulfonyloxy groups are bonded.
  • Example III-14 and Comparative Example III-3 when Si was used for the negative electrode, or lithium-containing olivine iron phosphate salt for the positive electrode The same effect can be seen when using. Therefore, it is clear that the effect of the invention III is not an effect dependent on a specific positive electrode or negative electrode.
  • the compound represented by the general formula (V) is slightly more preferable to the Anti isomer than the Syn isomer, and the effect is further enhanced when the mixture is an Anti isomer and a Syn isomer. It turned out to be preferable.
  • the nonaqueous electrolytic solution of the III invention also has an effect of improving discharge characteristics in a wide temperature range of the lithium primary battery.
  • Examples IV-1 to IV-4 (Invention IV), Comparative Examples IV-1 to IV-3 [Production of lithium ion secondary battery] LiCoO 2 ; 94% by mass, acetylene black (conducting agent); 3% by mass was mixed, and a solution in which 3% by mass of polyvinylidene fluoride (binder) was previously dissolved in 1-methyl-2-pyrrolidone was added. In addition, the mixture was mixed to prepare a positive electrode mixture paste. This positive electrode mixture paste was applied to one side of an aluminum foil (current collector), dried and pressurized, punched out to a predetermined size, and a positive electrode sheet was produced. The density of the portion excluding the current collector of the positive electrode was 3.6 g / cm 3 .
  • Example IV-5 (Invention IV), Comparative Example IV-4
  • a negative electrode sheet was prepared using silicon (single element) (negative electrode active material). Silicon (simple substance): 80% by mass, acetylene black (conductive agent); 15% by mass were mixed, and polyvinylidene fluoride (binder); 5% by mass was previously dissolved in 1-methyl-2-pyrrolidone.
  • mixing was performed to prepare a negative electrode mixture paste.
  • a coin battery was prepared in the same manner as IV-1, and the battery was evaluated. The results are shown in Table IV-2.
  • Example IV-6 (Invention IV), Comparative Example IV-5
  • a positive electrode sheet was produced using LiFePO 4 (positive electrode active material) coated with amorphous carbon instead of the positive electrode active material used in Example IV-2 and Comparative Example IV-1.
  • LiFePO 4 coated with amorphous carbon 90% by mass, acetylene black (conducting agent); 5% by mass are mixed in advance and polyvinylidene fluoride (binder); 5% by mass is 1-methyl-2-pyrrolidone
  • the positive electrode mixture paste was prepared by adding to and mixing with the solution previously dissolved in the mixture.
  • This positive electrode mixture paste was applied onto an aluminum foil (current collector), dried, pressurized and punched to a predetermined size to produce a positive electrode sheet, and the end-of-charge voltage during battery evaluation was 3.
  • a coin battery was fabricated and evaluated in the same manner as in Example IV-2 and Comparative Example IV-1, except that the voltage was 6 V and the discharge end voltage was 2.0 V. The results are shown in Table IV-3.
  • the effect of the IV invention is that when the non-aqueous electrolytic solution in which the electrolyte salt is dissolved in the non-aqueous solvent contains 0.001 to 5% by mass of the sulfonate compound having a specific silicon atom of the present invention. It turned out to be a peculiar effect. Further, from the comparison between Example IV-5 and Comparative Example IV-4, and the comparison between Example IV-6 and Comparative Example IV-5, the case of using silicon (elemental) Si for the negative electrode or the lithium-containing olivine type for the positive electrode The same effect can be seen when iron phosphate is used. Therefore, it is clear that the effect of the IV invention is not dependent on the specific positive electrode or negative electrode. Further, the non-aqueous electrolyte of the invention IV has an effect of improving the discharge characteristics in a wide temperature range of the lithium primary battery.
  • the nonaqueous electrolytic solution of the present invention is used, an electrochemical element having excellent electrochemical characteristics in a wide temperature range can be obtained. Especially when used as a non-aqueous electrolyte for an electrochemical element mounted on a hybrid electric vehicle, a plug-in hybrid electric vehicle, a battery electric vehicle, etc., the electrochemical element hardly deteriorates in electrochemical characteristics in a wide temperature range. Can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)

Abstract

 本発明は、広い温度範囲での電気化学特性を向上できる非水電解液、それを用いた電気化学素子及びそれに用いられる分枝鎖構造を有するスルホン酸エステル化合物を提供する。 本発明は、非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に、下記一般式(I)で表されるスルホン酸エステル化合物を0.001~5質量%含有する非水電解液である。 (式中、Rは、アルキル基又はアリール基を示し、Aは、>CH基又は>SiZ基(Zはアルキル基又はアリール基を示す)を示し、Xは、アルキル基、シクロアルキル基又はアリール基を示し、Yは、シクロアルキル基、-L1CHRaOSO2b基又は-Si(Rc)(Rd)OSO2b基を示し、Wは1又は2を示す。 また、Raは、アルキル基を示し、Rb、Rc及びRdは、アルキル基又はアリール基を示し、L1は、少なくとも1つの水素原子が-OSO2e(ReはRと同義である)で置換されていてもよいアルキレン基、少なくとも1つのエーテル結合を含む2価の連結基又は単結合を示す。)

Description

非水電解液及びそれを用いた電気化学素子
 本発明は、広い温度範囲での電気化学特性を向上できる非水電解液及びそれを用いた電気化学素子に関する。
 近年、電気化学素子、特にリチウム二次電池は、携帯電話やノート型パソコン等の小型電子機器、電気自動車の電源用や電力貯蔵用として広く使用されている。これらの電子機器や自動車は、真夏の高温下や極寒の低温下等広い温度範囲で使用される可能性があるため、広い温度範囲でバランス良く電気化学特性を向上させることが求められている。
 特に、地球温暖化防止のため、CO2排出量を削減することが急務となっており、リチウム二次電池やキャパシタ等の電気化学素子からなる蓄電装置を搭載した環境対応車の中でも、ハイブリッド電気自動車(HEV)、プラグインハイブリッド電気自動車(PHEV)、バッテリー電気自動車(BEV)の早期普及が求められている。しかしながら、自動車は移動距離が長いため、熱帯の非常に暑い地域から極寒の地域まで幅広い温度範囲の地域で使用される可能性がある。従って、これらの車載用の電気化学素子は、高温から低温まで幅広い温度範囲で使用しても電気化学特性が劣化しないことが要求されている。
 リチウム二次電池は、主にリチウムを吸蔵放出可能な材料を含む正極及び負極、リチウム塩と非水溶媒からなる非水電解液から構成され、非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等のカーボネートが使用されている。
 また、負極としては、金属リチウム、リチウムを吸蔵及び放出可能な金属化合物(金属単体、酸化物、リチウムとの合金等)や炭素材料が知られており、特にリチウムを吸蔵及び放出することが可能なコークス、人造黒鉛、天然黒鉛等の炭素材料を用いたリチウム二次電池が広く実用化されている。
 なお、本明細書において、リチウム二次電池という用語は、いわゆるリチウムイオン二次電池も含む概念として用いる。
 例えば、天然黒鉛や人造黒鉛等の高結晶化した炭素材料を負極材料として用いたリチウム二次電池は、非水電解液中の溶媒が充電時に負極表面で還元分解することにより発生した分解物やガスが電池の望ましい電気化学的反応を阻害するため、サイクル特性の低下を生じることが分かっている。また、非水溶媒の分解物が蓄積すると、負極へのリチウムの吸蔵及び放出がスムーズにできなくなり、広い温度範囲での電気化学特性が低下しやすくなる。
 更に、リチウム金属やその合金、スズ又はケイ素等の金属単体や酸化物を負極材料として用いたリチウム二次電池は、初期の容量は高いもののサイクル中に微粉化が進むため、炭素材料の負極に比べて非水溶媒の還元分解が加速的に起こり、電池容量やサイクル特性のような電池性能が大きく低下することが知られている。また、これらの負極材料の微粉化や非水溶媒の分解物が蓄積すると、負極へのリチウムの吸蔵及び放出がスムーズにできなくなり、広い温度範囲での電気化学特性が低下しやすくなる。
 一方、正極として、例えばLiCoO2、LiMn24、LiNiO2、LiFePO4等を用いたリチウム二次電池は、非水電解液中の非水溶媒が充電状態で正極材料と非水電解液との界面において、局部的に一部酸化分解することにより発生した分解物やガスが電池の望ましい電気化学的反応を阻害するため、やはり広い温度範囲での電気化学特性の低下を生じることが分かっている。
 以上のように、正極上や負極上で非水電解液が分解するときの分解物やガスにより、リチウムイオンの移動が阻害されたり、電池が膨れたりすることで電池性能が低下していた。そのような状況にも関わらず、リチウム二次電池が搭載されている電子機器の多機能化はますます進み、電力消費量が増大する流れにある。そのため、リチウム二次電池の高容量化はますます進んでおり、電極の密度を高めたり、電池内の無駄な空間容積を減らす等、電池内の非水電解液の占める体積が小さくなっている。従って、少しの非水電解液の分解で、広い温度範囲での電気化学特性が低下しやすい状況にある。
 特許文献1には、iso-プロピル メタンスルホネートに代表されるスルホン酸エステルを非水電解液に添加すると、室温でのサイクル特性に優れることが示されている。
 特許文献2には、メチルメタンスルホネートに代表されるスルホン酸エステルを非水電解液に添加すると、室温でのサイクル特性に優れることが示されている。
 特許文献3には、プロピレングリコールジメタンスルホネートに代表される2つのスルホネート基を有し、主鎖が必ず側鎖を有するジスルホン酸エステル化合物を非水電解液に添加すると、20℃におけるサイクル特性に優れることが示されている。
 特許文献4には、1,4-ブタンジオールジメタンスルホネートに代表される2つのスルホネート基を有し、主鎖が直鎖のアルキレン鎖であるジスルホン酸エステル化合物を非水電解液に添加すると、完全充電時における開回路電圧が4.2Vより高くなるようにして充電した場合のサイクル特性に優れることが示されている。
 特許文献5には、1,2-ビス(3,5-ジフルオロフェニル)-1,1,2,2-テトラメチルジシラン等のケイ素化合物を含有する非水電解液が提案されており、60℃でのサイクル特性、低温特性の向上が示唆されている。
 また、特許文献6には、トリメチルシリルメタンスルホネート等のアルキルスルホネート基を持つケイ素化合物を含有する非水電解液が提案されており、25℃でのサイクル特性、トリクル充電特性の向上が示唆されている。
特開2007-95380号 特開平9-245834号 特開2001-313071号 特開2007-095380号 特開2007-12595号 特開2004-134232号
 本発明は、広い温度範囲での電気化学特性を向上できる非水電解液及びそれを用いた電気化学素子を提供することを目的とする。
 本発明者らは、上記従来技術の非水電解液の性能について詳細に検討した。その結果、前記特許文献の非水電解液では、室温でのサイクル特性に対しては効果が発揮されるものの、広い温度範囲での電気化学特性を向上させるという課題に対しては、十分に満足できるとは言えないのが実情であった。
 そこで、本発明者らは、上記課題を解決するために鋭意研究を重ね、非水溶媒に電解質塩が溶解されている非水電解液に、特定の構造を有するスルホン酸エステル化合物を含有させることで、広い温度範囲での電気化学特性を改善できることを見出した。
 より具体的には、本発明者らは、
(I)スルホニルオキシ基が結合する炭素上にメチンプロトン(RSO3-CHR’R’)を有するスルホン酸エステル化合物、
(II)スルホニルオキシ基が結合するシクロアルキル基の炭素上にメチンプロトン(RSO3-CHR’R’-)を有するスルホン酸エステル化合物、
(III)2つのスルホニルオキシ基がそれぞれ結合する炭素上にメチンプロトン(RSO3-CHR’-)を有するスルホン酸エステル化合物、及び
(IV)特定のケイ素原子を有するスルホネート化合物
から選ばれる少なくとも1種を含有させることで、広い温度範囲での電気化学特性を改善できることを見出し、本発明を完成した。
 すなわち、本発明は、次の(1)及び(2)を提供するものである。
(1)非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に、下記一般式(I)で表されるスルホン酸エステル化合物を0.001~5質量%含有することを特徴とする非水電解液。
Figure JPOXMLDOC01-appb-C000008
(式中、Rは、炭素数1~6のアルキル基、又は炭素数6~12のアリール基を示し、Aは、>CH基又は>SiZ基(Zは、炭素数1~6のアルキル基又は炭素数6~12のアリール基を示す)を示し、Xは、炭素数1~6のアルキル基、炭素数3~8のシクロアルキル基、又は炭素数6~12のアリール基を示し、
Yは、炭素数3~8のシクロアルキル基、-L1CHRaOSO2b基、又は-Si(Rc)(Rd)OSO2b基を示し、Wは1又は2を示す。
 また、Raは、炭素数1~6のアルキル基を示し、Rb、Rc及びRdは、炭素数1~6のアルキル基、又は炭素数6~12のアリール基を示し、L1は、少なくとも1つの水素原子が-OSO2e(ReはRと同義である)で置換されていてもよい炭素数1~6のアルキレン基、少なくとも1つのエーテル結合を含む炭素数2~6の2価の連結基又は単結合を示す。
 ただし、XとYは結合して環を形成してもよく、Wが2の場合は、Rは炭素数1~6のアルキレン基を示す。また、前記の炭素数1~6のアルキル基、炭素数6~12のアリール基、及び炭素数1~6のアルキレン基は、その少なくとも1つの水素原子がハロゲン原子で置換されていてもよい。)
(2)正極、負極及び非水溶媒に電解質塩が溶解されている非水電解液からなる電気化学素子において、該非水電解液が前記(1)の非水電解液であることを特徴とする電気化学素子。
 より具体的には、本発明は、下記の(I-1)~(V)を提供するものである。
(I-1)スルホン酸エステル化合物が下記一般式(II)で表されるものである前記(1)の非水電解液(以下、「第I-1発明」という)。
Figure JPOXMLDOC01-appb-C000009
(式中、mは1又は2の整数を示す。mが1の場合は、R1は炭素数1~6のアルキル基、又は炭素数6~12のアリール基を示し、R2は炭素数2~6のアルキル基、又は炭素数3~8のシクロアルキル基を示し、R3は炭素数1~6のアルキル基、又は炭素数3~8のシクロアルキル基を示す。mが2の場合は、R1は炭素数1~6のアルキレン基を示し、R2及びR3はmが1の場合と同義である。ただし、前記の炭素数1~6のアルキル基、炭素数6~12のアリール基、及び炭素数1~6のアルキレン基は、その少なくとも1つの水素原子がハロゲン原子で置換されていてもよい。)
(I-2)非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に、炭素数1~6の炭化水素基が第3級炭素原子又は第4級炭素原子を介してベンゼン環に結合しているベンゼン化合物、及び/又は環状構造若しくは不飽和基を有するS=O基含有化合物を0.001~5質量%含有し、更に、下記一般式(III)で表される分枝構造を有するスルホン酸エステル化合物を0.001~5質量%を含有することを特徴とする非水電解液(以下、「第I-2発明」という)。
Figure JPOXMLDOC01-appb-C000010
(式中、nは1又は2の整数を示す。nが1の場合は、R4は炭素数1~6のアルキル基、又は炭素数6~12のアリール基を示す。nが2の場合は、R4は炭素数1~6のアルキレン基を示す。ただし、前記の炭素数1~6のアルキル基、炭素数6~12のアリール基、及び炭素数1~6のアルキレン基は、それらの少なくとも1つの水素原子がハロゲン原子で置換されていてもよい。)
 上記第I-1発明及び第I-2発明を合わせて、以下、「第I発明」という。
(II)スルホン酸エステル化合物が、下記一般式(IV)で表されるシクロアルカン骨格を有するスルホン酸エステル化合物である前記(1)の非水電解液(以下、「第II発明」という)。
Figure JPOXMLDOC01-appb-C000011
(式中、tは1又は2の整数を示す。tが1の場合は、R5及びR6は炭素数1~6のアルキル基、又は炭素数6~12のアリール基を示し、R7は炭素数1~6のアルキル基を示し、R7はシクロ環上の炭素原子と結合して環を形成してもよく、rは0~10の整数を示し、p及びqはそれぞれ独立して0~3の整数を示す。tが2の場合は、R5は炭素数1~6のアルキレン基を示し、R6、R7、r、p及びqはtが1の場合と同義である。ただし、前記の炭素数1~6のアルキル基、及び炭素数6~12のアリール基は、それらの少なくとも1つの水素原子がハロゲン原子で置換されていてもよい。)
(III-1)スルホン酸エステル化合物が下記一般式(V)で表されるスルホン酸エステル化合物である前記(1)の非水電解液(以下、「第III-1発明」という)。
Figure JPOXMLDOC01-appb-C000012
(式中、R11及びR12は、それぞれ独立に、炭素数1~6のアルキル基、又は炭素数6~12のアリール基を示し、R13及びR14は、それぞれ独立に、炭素数1~6のアルキル基を示し、L1は、少なくとも1つの水素原子が-OSO215(R15はR11又はR12と同義である)で置換されてもよい炭素数1~6のアルキレン基、少なくとも一つのエーテル結合を含む炭素数2~6の2価の連結基又は単結合を示す。前記の炭素数1~6のアルキル基及び炭素数6~12のアリール基は、それらの少なくとも1つの水素原子がハロゲン原子で置換されていてもよい。)
(III-2)非水電解液中に、さらに下記一般式(VI)で表されるスルホン酸エステル化合物を0.001~5質量%含有する前記(III-1)の非水電解液(以下、「第III-2発明」という)。
Figure JPOXMLDOC01-appb-C000013
(式中、R16及びR17は、それぞれ独立に、炭素数1~6のアルキル基、又は炭素数6~12のアリール基を示し、R18は、水素原子、炭素数1~6のアルキル基を示し、L2は、少なくとも1つの水素原子が-OSO219(R19はR16又はR17と同義である)で置換されてもよい炭素数1~6のアルキレン基、少なくとも一つのエーテル結合を含む炭素数2~6の2価の連結基又は単結合を示す。前記の炭素数1~6のアルキル基及び炭素数6~12のアリール基は、それらの少なくとも1つの水素原子がハロゲン原子で置換されていてもよい。)
 上記第III-1発明及び第III-2発明を合わせて、以下、「第III発明」という。
(IV)スルホン酸エステル化合物が下記一般式(VII)で表される化合物である前記(1)の非水電解液(以下、「第IV発明」という)。
Figure JPOXMLDOC01-appb-C000014
(式中、R21~R26は同一であっても異なっていてもよく、炭素数1~6のアルキル基、又は炭素数6~12のアリール基を示す。前記の炭素数1~6のアルキル基及び炭素数6~12のアリール基は、それらの少なくとも1つの水素原子がハロゲン原子で置換されていてもよい。)
(V)正極、負極及び非水溶媒に電解質塩が溶解されている非水電解液からなる電気化学素子において、該非水電解液が第I発明~第IV発明のいずれかの非水電解液であることを特徴とする電気化学素子。
 本発明によれば、広い温度範囲での電池特性、特に高温保存後の低温特性を向上できる非水電解液及びそれを用いたリチウム電池等の電気化学素子を提供することができる。
 本発明は、非水電解液及びそれを用いた電気化学素子に関する。
〔非水電解液〕
 本発明の非水電解液は、非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に、下記一般式(I)で表されるスルホン酸エステル化合物を0.001~5質量%含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000015
(式中、Rは、炭素数1~6のアルキル基、又は炭素数6~12のアリール基を示し、Aは、>CH基又は>SiZ基(Zは、炭素数1~6のアルキル基又は炭素数6~12のアリール基を示す)を示し、Xは、炭素数1~6のアルキル基、炭素数3~8のシクロアルキル基、又は炭素数6~12のアリール基を示し、Yは、炭素数3~8のシクロアルキル基、-L1CHRaOSO2b基、又は-Si(Rc)(Rd)OSO2b基を示し、Wは1又は2を示す。
 また、Raは、炭素数1~6のアルキル基を示し、Rb、Rc及びRdは、炭素数1~6のアルキル基、又は炭素数6~12のアリール基を示し、L1は、少なくとも1つの水素原子が-OSO2e(ReはRと同義である)で置換されていてもよい炭素数1~6のアルキレン基、少なくとも1つのエーテル結合を含む炭素数2~6の2価の連結基又は単結合を示す。
 ただし、XとYは結合して環を形成してもよく、Wが2の場合は、Rは炭素数1~6のアルキレン基を示す。また、前記の炭素数1~6のアルキル基、炭素数6~12のアリール基、及び炭素数1~6のアルキレン基は、その少なくとも1つの水素原子がハロゲン原子で置換されていてもよい。)
 本発明は、より具体的には、以下の第I発明~第IV発明として説明される。
<第I発明>
 本発明の第I-1発明の非水電解液は、非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に、下記一般式(II)で表されるスルホン酸エステル化合物を0.001~5質量%含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000016
(式中、mは1又は2の整数を示す。mが1の場合は、R1は炭素数1~6のアルキル基、又は炭素数6~12のアリール基を示し、R2は炭素数2~6のアルキル基、又は炭素数3~8のシクロアルキル基を示し、R3は炭素数1~6のアルキル基、又は炭素数3~8のシクロアルキル基を示す。mが2の場合は、R1は炭素数1~6のアルキレン基を示し、R2及びR3はmが1の場合と同義である。ただし、前記の炭素数1~6のアルキル基、炭素数6~12のアリール基、及び炭素数1~6のアルキレン基は、その少なくとも1つの水素原子がハロゲン原子で置換されていてもよい。)
 本発明の第I-2発明の非水電解液は、非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に、炭素数1~6の炭化水素基が第3級炭素原子又は第4級炭素原子を介してベンゼン環に結合しているベンゼン化合物、及び/又は環状構造若しくは不飽和基を有するS=O基含有化合物を0.001~5質量%含有し、更に、下記一般式(III)で表される分枝構造を有するスルホン酸エステル化合物を0.001~5質量%を含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000017
(式中、nは1又は2の整数を示す。nが1の場合は、R4は炭素数1~6のアルキル基、又は炭素数6~12のアリール基を示す。nが2の場合は、R4は炭素数1~6のアルキレン基を示す。ただし、前記の炭素数1~6のアルキル基、炭素数6~12のアリール基、及び炭素数1~6のアルキレン基は、それらの少なくとも1つの水素原子がハロゲン原子で置換されていてもよい。)
 第I発明の非水電解液が、広い温度範囲での電気化学特性を大幅に改善できる理由は必ずしも明確ではないが、以下のように考えられる。
 第I発明の非水電解液が含有する一般式(II)で表されるスルホン酸エステル化合物は、スルホニルオキシ基が結合するメチン基(RSO3-CHR’R’)を有する。電子吸引性のスルホニルオキシ基が結合する炭素上のメチンプロトンの酸性度は、R’の電子供与性効果により、メチレンプロトン(RSO3-CH2-R’)よりも低いと考えられる。その効果は、2つのR’のうちの少なくとも一方の炭素数が2以上であるとより大きい。従って、一般式(II)で表されるスルホン酸エステル化合物は、メチン基が初回充電時に負極上で緩やかに反応し、活物質表面に過度に緻密化することなく良好な保護被膜が形成されると考えられる。そのため低温から高温まで広い温度範囲での電気化学特性が著しく向上する特異的な効果をもたらすことが分かった。
 上記の効果は、一般式(II)の2つのR’がともにメチル基(炭素数1)である前記一般式(III)で表される化合物を含有する場合には弱いが、一般式(III)で表される化合物を含有する場合であっても、炭素数1~6の炭化水素基が第3級炭素原子又は第4級炭素原子を介してベンゼン環に結合しているベンゼン化合物、及び/又は環状構造若しくは不飽和基を有するS=O基含有化合物を更に含むことにより、上記と同様に、低温から高温まで広い温度範囲での電気化学特性が著しく向上する特異的な効果をもたらすことが分かった。この場合においても、炭素数1~6の炭化水素基が第3級炭素原子又は第4級炭素原子を介してベンゼン環に結合しているベンゼン化合物、及び/又は環状構造若しくは不飽和基を有するS=O基含有化合物が一般式(III)で表される化合物に由来する保護被膜を過度に緻密化するのを防ぐためと考えられる。
 前記一般式(II)において、mは1又は2の整数であるが、好ましくはmは2である。
 一般式(II)のmが1の場合は、R1は少なくとも1つの水素原子がハロゲン原子で置換されていてもよい炭素数1~6の直鎖若しくは分枝鎖のアルキル基、又は、少なくとも1つの水素原子がハロゲン原子で置換されていてもよい炭素数6~12のアリール基であり、好ましくは炭素数1~6の直鎖若しくは分枝鎖のアルキル基、又は少なくとも1つの水素原子がハロゲン原子で置換されていてもよい炭素数6~12のアリール基であり、より好ましくは炭素数1~3の直鎖若しくは分枝鎖のアルキル基、又は、少なくとも1つの水素原子がハロゲン原子で置換されていてもよい炭素数6~10のアリール基であり、特に好ましくは炭素数1又は2の直鎖のアルキル基、又は炭素数6~8のアリール基である。
 一般式(II)におけるR1の好適例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、フルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、iso-プロピル基、sec-ブチル基、tert-ブチル基、tert-アミル基、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-tert-ブチルフェニル基、2,4,6-トリメチルフェニル基、4-フルオロフェニル基、4-クロロフェニル基、4-トリフルオロメチルフェニル基等が挙げられるが、メチル基、エチル基、フェニル基、4-メチルフェニル基がより好ましく、メチル基、4-メチルフェニル基が更に好ましい。
 一般式(II)のmが2の場合は、R1は、少なくとも1つの水素原子がハロゲン原子で置換されていてもよい炭素数1~6の直鎖若しくは分枝鎖のアルキレン基であり、好ましくは少なくとも1つの水素原子がハロゲン原子で置換されていてもよい炭素数1~4の直鎖若しくは分枝鎖のアルキレン基であり、より好ましくは少なくとも1つの水素原子がハロゲン原子で置換されていてもよい炭素数1~3の直鎖若しくは分枝鎖のアルキレン基であり、特に好ましくは炭素数1又は2の直鎖のアルキレン基である。
 R1がアルキレン基である場合の好適例としては、メチレン基、エタン-1,2-ジイル基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、エタン-1,1-ジイル基、プロパン-1,2-ジイル基、2,2-ジメチルプロパン1,3-ジイル基、フルオロメチレン基、ジルフルオロメチレン基等が挙げられるが、メチレン基、エタン-1,2-ジイル基、プロパン-1,3-ジイル基がより好ましく、メチレン基、エタン-1,2-ジイル基が更に好ましい。
 一般式(II)のR2は、少なくとも1つの水素原子がハロゲン原子で置換されていてもよい炭素数2~6の直鎖若しくは分枝鎖のアルキル基、炭素数3~8のシクロアルキル基であり、より好ましくは炭素数2~5の直鎖若しくは分枝鎖のアルキル基、炭素数3~6のシクロアルキル基であり、更に好ましくは炭素数3~5の分岐のアルキル基、炭素数3~5のシクロアルキル基である。
 前記R2の好適例としては、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、2,2,2-トリフルオロエチル基、iso-プロピル基、sec-ブチル基、iso-ブチル基、tert-ブチル基、tert-アミル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等が挙げられるが、エチル基、n-プロピル基、n-ブチル基、iso-プロピル基、sec-ブチル基、tert-ブチル基、tert-アミル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基がより好ましく、iso-プロピル基、sec-ブチル基、tert-ブチル基、tert-アミル基、シクロプロピル基、シクロブチル基、シクロペンチル基が更に好ましい。
 一般式(II)のR3は、少なくとも1つの水素原子がハロゲン原子で置換されていてもよい炭素数1~6の直鎖若しくは分枝鎖のアルキル基、炭素数3~8のシクロアルキル基であり、より好ましくは炭素数2~5の直鎖若しくは分枝鎖のアルキル基、炭素数3~6のシクロアルキル基であり、更に好ましくは炭素数3~5の分枝鎖のアルキル基、炭素数3~5のシクロアルキル基である。
 前記R3の好適例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、2,2,2-トリフルオロエチル基、iso-プロピル基、sec-ブチル基、iso-ブチル基、tert-ブチル基、tert-アミル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等が挙げられるが、エチル基、n-プロピル基、n-ブチル基、iso-プロピル基、sec-ブチル基、tert-ブチル基、tert-アミル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基がより好ましく、iso-プロピル基、sec-ブチル基、tert-ブチル基、tert-アミル基、シクロプロピル基、シクロブチル基、シクロペンチル基が更に好ましい。
 上記の置換基の範囲の場合に、広い温度範囲での電気化学特性を大幅に改善できるので好ましい。
 一般式(II)で表されるスルホン酸エステル化合物の具体例としては、ブタン-2-イル メタンスルホネート、ブタン-2-イル エタンスルホネート、ブタン-2-イル ベンゼンスルホネート、ブタン-2-イル 4-メチルベンゼンスルホネート、ビス(ブタン-2-イル) メタンジスルホネート、ビス(ブタン-2-イル) エタン-1,2-ジスルホネート、ペンタン-2-イル メタンスルホネート、ペンタン-2-イル エタンスルホネート、ペンタン-2-イル ベンゼンスルホネート、ペンタン-2-イル 4-メチルベンゼンスルホネート、ビス(ペンタン-2-イル) メタンジスルホネート、ビス(ペンタン-2-イル) エタン-1,2-ジスルホネート、ペンタン-3-イル メタンスルホネート、ペンタン-3-イル エタンスルホネート、ペンタン-3-イル ベンゼンスルホネート、ペンタン-3-イル 4-メチルベンゼンスルホネート、ビス(ペンタン-3-イル) メタンジスルホネート、ビス(ペンタン-3-イル) エタン-1,2-ジスルホネート、ヘキサン-2-イル メタンスルホネート、ヘキサン-2-イル エタンスルホネート、ヘキサン-2-イル ベンゼンスルホネート、ヘキサン-2-イル 4-メチルベンゼンスルホネート、ビス(ヘキサン-2-イル) メタンジスルホネート、ビス(ヘキサン-2-イル) エタン-1,2-ジスルホネート、ヘキサン-3-イル メタンスルホネート、ヘキサン-3-イル エタンスルホネート、ヘキサン-3-イル ベンゼンスルホネート、ヘキサン-3-イル 4-メチルベンゼンスルホネート、ビス(ヘキサン-3-イル) メタンジスルホネート、ビス(ヘキサン-3-イル) エタン-1,2-ジスルホネート、ヘプタン-2-イル メタンスルホネート、ヘプタン-2-イル エタンスルホネート、ヘプタン-2-イル ベンゼンスルホネート、ヘプタン-2-イル 4-メチルベンゼンスルホネート、ビス(ヘプタン-2-イル) メタンジスルホネート、ビス(ヘプタン-2-イル) エタン-1,2-ジスルホネート、ヘプタン-3-イル メタンスルホネート、ヘプタン-3-イル エタンスルホネート、ヘプタン-3-イル ベンゼンスルホネート、ヘプタン-3-イル 4-メチルベンゼンスルホネート、ビス(ヘプタン-3-イル) メタンジスルホネート、ビス(ヘプタン-3-イル) エタン-1,2-ジスルホネート、ヘプタン-4-イル メタンスルホネート、ヘプタン-4-イル エタンスルホネート、ヘプタン-4-イル ベンゼンスルホネート、ヘプタン-4-イル 4-メチルベンゼンスルホネート、ビス(ヘプタン-4-イル) メタンジスルホネート、ビス(ヘプタン-4-イル) エタン-1,2-ジスルホネート、オクタン-2-イル メタンスルホネート、オクタン-2-イル エタンスルホネート、オクタン-2-イル ベンゼンスルホネート、オクタン-2-イル 4-メチルベンゼンスルホネート、ビス(オクタン-2-イル) メタンジスルホネート、ビス(オクタン-2-イル) エタン-1,2-ジスルホネート、ノナン-3-イル メタンスルホネート、ノナン-3-イル エタンスルホネート、ノナン-3-イル ベンゼンスルホネート、ノナン-3-イル 4-メチルベンゼンスルホネート、ビス(ノナン-3-イル) メタンジスルホネート、ビス(ノナン-3-イル) エタン-1,2-ジスルホネート、3-メチルブタン-2-イル メタンスルホネート、3-メチルブタン-2-イル エタンスルホネート、3-メチルブタン-2-イル プロパン-1-スルホネート、3-メチルブタン-2-イル ブタン-1-スルホネート、3-メチルブタン-2-イル ペンタン-1-スルホネート、3-メチルブタン-2-イル ヘキサン-1-スルホネート、3-メチルブタン-2-イル トリフルオロメタンスルホネート、3-メチルブタン-2-イル 2,2,2-トリフルオロエタンスルホネート、3-メチルブタン-2-イル プロパン-2-スルホネート、3-メチルブタン-2-イル ブタン-2-スルホネート、3-メチルブタン-2-イル 2-メチルプロパン-2-スルホネート、3-メチルブタン-2-イル 2-メチルブタン-2-スルホネート、3-メチルブタン-2-イル ベンゼンスルホネート、3-メチルブタン-2-イル 2-メチルベンゼンスルホネート、3-メチルブタン-2-イル 3-メチルベンゼンスルホネート、3-メチルブタン-2-イル 4-メチルベンゼンスルホネート、3-メチルブタン-2-イル 4-tert-ブチルベンゼンスルホネート、3-メチルブタン-2-イル 2,4,6-トリメチルベンゼンスルホネート、3-メチルブタン-2-イル 4-フルオロベンゼンスルホネート、3-メチルブタン-2-イル 4-クロロベンゼンスルホネート、3-メチルブタン-2-イル 4-トリフルオロメチルベンゼンスルホネート、ビス(3-メチルブタン-2-イル) メタンジスルホネート、ビス(3-メチルブタン-2-イル) エタン-1,2-ジスルホネート、ビス(3-メチルブタン-2-イル) プロパン-1,3-ジスルホネート、3,3-ジメチルブタン-2-イル メタンスルホネート、3,3-ジメチルブタン-2-イル エタンスルホネート、3,3-ジメチルブタン-2-イル ベンゼンスルホネート、3,3-ジメチルブタン-2-イル 4-メチルベンゼンスルホネート、ビス(3,3-ジメチルブタン-2-イル) メタンジスルホネート、ビス(3,3-ジメチルブタン-2-イル) エタン-1,2-ジスルホネート、4-メチルペンタン-2-イル メタンスルホネート、4-メチルペンタン-2-イル エタンスルホネート、4-メチルペンタン-2-イル ベンゼンスルホネート、4-メチルペンタン-2-イル 4-メチルベンゼンスルホネート、ビス(4-メチルペンタン-2-イル) メタンジスルホネート、ビス(4-メチルペンタン-2-イル) エタン-1,2-ジスルホネート、2-メチルペンタン-3-イル メタンスルホネート、2-メチルペンタン-3-イル エタンスルホネート、2-メチルペンタン-3-イル ベンゼンスルホネート、2-メチルペンタン-3-イル 4-メチルベンゼンスルホネート、ビス(2-メチルペンタン-3-イル) メタンジスルホネート、ビス(2-メチルペンタン-3-イル) エタン-1,2-ジスルホネート、2,4-ジメチルペンタン-3-イル メタンスルホネート、2,4-ジメチルペンタン-3-イル エタンスルホネート、2,4-ジメチルペンタン-3-イル ベンゼンスルホネート、2,4-ジメチルペンタン-3-イル 4-メチルベンゼンスルホネート、ビス(2,4-ジメチルペンタン-3-イル) メタンジスルホネート、ビス(2,4-ジメチルペンタン-3-イル) エタン-1,2-ジスルホネート、2,2-ジメチルペンタン-3-イル メタンスルホネート、2,2-ジメチルペンタン-3-イル エタンスルホネート、2,2-ジメチルペンタン-3-イル ベンゼンスルホネート、2,2-ジメチルペンタン-3-イル 4-メチルベンゼンスルホネート、ビス(2,2-ジメチルペンタン-3-イル) メタンジスルホネート、ビス(2,2-ジメチルペンタン-3-イル) エタン-1,2-ジスルホネート、2,2,4-トリメチルペンタン-3-イル メタンスルホネート、2,2,4-トリメチルペンタン-3-イル エタンスルホネート、2,2,4-トリメチルペンタン-3-イル ベンゼンスルホネート、2,2,4-トリメチルペンタン-3-イル 4-メチルベンゼンスルホネート、ビス(2,2,4-トリメチルペンタン-3-イル) メタンジスルホネート、ビス(2,2,4-トリメチルペンタン-3-イル) エタン-1,2-ジスルホネート、2,2,4,4-テトラメチルペンタン-3-イル メタンスルホネート、2,2,4,4-テトラメチルペンタン-3-イル エタンスルホネート、2,2,4,4-テトラメチルペンタン-3-イル ベンゼンスルホネート、2,2,4,4-テトラメチルペンタン-3-イル 4-メチルベンゼンスルホネート、ビス(2,2,4,4-テトラメチルペンタン-3-イル) メタンジスルホネート、ビス(2,2,4,4-テトラメチルペンタン-3-イル) エタン-1,2-ジスルホネート、2-メチルヘキサン-3-イル メタンスルホネート、2-メチルヘキサン-3-イル エタンスルホネート、2-メチルヘキサン-3-イル ベンゼンスルホネート、2-メチルヘキサン-3-イル 4-メチルベンゼンスルホネート、ビス(2-メチルヘキサン-3-イル) メタンジスルホネート、ビス(2-メチルヘキサン-3-イル) エタン-1,2-ジスルホネート、2,2-ジメチルヘキサン-3-イル メタンスルホネート、2,2-ジメチルヘキサン-3-イル エタンスルホネート、2,2-ジメチルヘキサン-3-イル ベンゼンスルホネート、2,2-ジメチルヘキサン-3-イル 4-メチルベンゼンスルホネート、ビス(2,2-ジメチルヘキサン-3-イル) メタンジスルホネート、ビス(2,2-ジメチルヘキサン-3-イル) エタン-1,2-ジスルホネート、1-シクロプロピルエチル メタンスルホネート、1-シクロプロピルエチル エタンスルホネート、1-シクロプロピルエチル ベンゼンスルホネート、1-シクロプロピルエチル 4-メチルベンゼンスルホネート、ビス(1-シクロプロピルエチル) メタンジスルホネート、ビス(1-シクロプロピルエチル) エタン-1,2-ジスルホネート、1-シクロブチルエチル メタンスルホネート、1-シクロブチルエチル エタンスルホネート、1-シクロブチルエチル ベンゼンスルホネート、1-シクロブチルエチル 4-メチルベンゼンスルホネート、ビス(1-シクロブチルエチル) メタンジスルホネート、ビス(1-シクロブチルエチル) エタン-1,2-ジスルホネート、1-シクロペンチルエチル メタンスルホネート、1-シクロペンチルエチル エタンスルホネート、1-シクロペンチルエチル ベンゼンスルホネート、1-シクロペンチルエチル 4-メチルベンゼンスルホネート、ビス(1-シクロペンチルエチル) メタンジスルホネート、ビス(1-シクロペンチルエチル) エタン-1,2-ジスルホネート、1-シクロヘキシルエチル メタンスルホネート、1-シクロヘキシルエチル エタンスルホネート、1-シクロヘキシルエチル ベンゼンスルホネート、1-シクロヘキシルエチル 4-メチルベンゼンスルホネート、ビス(1-シクロヘキシルエチル) メタンジスルホネート、ビス(1-シクロヘキシルエチル) エタン-1,2-ジスルホネート等が好適に挙げられる。
 これらの中でも、一般式(II)で表されるスルホン酸エステル化合物のより好ましい例は、ブタン-2-イル メタンスルホネート、ブタン-2-イル エタンスルホネート、ブタン-2-イル ベンゼンスルホネート、ブタン-2-イル 4-メチルベンゼンスルホネート、ビス(ブタン-2-イル) メタンジスルホネート、ビス(ブタン-2-イル) エタン-1,2-ジスルホネート、ペンタン-2-イル メタンスルホネート、ペンタン-2-イル エタンスルホネート、ペンタン-2-イル ベンゼンスルホネート、ペンタン-2-イル 4-メチルベンゼンスルホネート、ビス(ペンタン-2-イル) メタンジスルホネート、ビス(ペンタン-2-イル) エタン-1,2-ジスルホネート、ペンタン-3-イル メタンスルホネート、ペンタン-3-イル エタンスルホネート、ペンタン-3-イル ベンゼンスルホネート、ペンタン-3-イル 4-メチルベンゼンスルホネート、ビス(ペンタン-3-イル) メタンジスルホネート、ビス(ペンタン-3-イル) エタン-1,2-ジスルホネート、3-メチルブタン-2-イル メタンスルホネート、3-メチルブタン-2-イル エタンスルホネート、3-メチルブタン-2-イル ベンゼンスルホネート、3-メチルブタン-2-イル 4-メチルベンゼンスルホネート、ビス(3-メチルブタン-2-イル) メタンジスルホネート、ビス(3-メチルブタン-2-イル) エタン-1,2-ジスルホネート、3,3-ジメチルブタン-2-イル メタンスルホネート、3,3-ジメチルブタン-2-イル エタンスルホネート、3,3-ジメチルブタン-2-イル ベンゼンスルホネート、3,3-ジメチルブタン-2-イル 4-メチルベンゼンスルホネート、ビス(3,3-ジメチルブタン-2-イル) メタンジスルホネート、ビス(3,3-ジメチルブタン-2-イル) エタン-1,2-ジスルホネート、4-メチルペンタン-2-イル メタンスルホネート、4-メチルペンタン-2-イル エタンスルホネート、4-メチルペンタン-2-イル ベンゼンスルホネート、4-メチルペンタン-2-イル 4-メチルベンゼンスルホネート、ビス(4-メチルペンタン-2-イル) メタンジスルホネート、ビス(4-メチルペンタン-2-イル) エタン-1,2-ジスルホネート、2-メチルペンタン-3-イル メタンスルホネート、2-メチルペンタン-3-イル エタンスルホネート、2-メチルペンタン-3-イル ベンゼンスルホネート、2-メチルペンタン-3-イル 4-メチルベンゼンスルホネート、ビス(2-メチルペンタン-3-イル) メタンジスルホネート、ビス(2-メチルペンタン-3-イル) エタン-1,2-ジスルホネート、2,4-ジメチルペンタン-3-イル メタンスルホネート、2,4-ジメチルペンタン-3-イル エタンスルホネート、2,4-ジメチルペンタン-3-イル ベンゼンスルホネート、2,4-ジメチルペンタン-3-イル 4-メチルベンゼンスルホネート、ビス(2,4-ジメチルペンタン-3-イル) メタンジスルホネート、ビス(2,4-ジメチルペンタン-3-イル) エタン-1,2-ジスルホネート、1-シクロプロピルエチル メタンスルホネート、1-シクロプロピルエチル エタンスルホネート、1-シクロプロピルエチル ベンゼンスルホネート、1-シクロプロピルエチル 4-メチルベンゼンスルホネート、ビス(1-シクロプロピルエチル) メタンジスルホネート、ビス(1-シクロプロピルエチル) エタン-1,2-ジスルホネート、1-シクロブチルエチル メタンスルホネート、1-シクロブチルエチル エタンスルホネート、1-シクロブチルエチル ベンゼンスルホネート、1-シクロブチルエチル 4-メチルベンゼンスルホネート、ビス(1-シクロブチルエチル) メタンジスルホネート、ビス(1-シクロブチルエチル) エタン-1,2-ジスルホネート、1-シクロペンチルエチル メタンスルホネート、1-シクロペンチルエチル エタンスルホネート、1-シクロペンチルエチル ベンゼンスルホネート、1-シクロペンチルエチル 4-メチルベンゼンスルホネート、ビス(1-シクロペンチルエチル) メタンジスルホネート、ビス(1-シクロペンチルエチル) エタン-1,2-ジスルホネート、1-シクロヘキシルエチル メタンスルホネート、1-シクロヘキシルエチル エタンスルホネート、1-シクロヘキシルエチル ベンゼンスルホネート、1-シクロヘキシルエチル 4-メチルベンゼンスルホネート、ビス(1-シクロヘキシルエチル) メタンジスルホネート、ビス(1-シクロヘキシルエチル) エタン-1,2-ジスルホネートである。
 これらの中でも、一般式(II)で表されるスルホン酸エステル化合物の更に好ましい例は、3-メチルブタン-2-イル メタンスルホネート、3-メチルブタン-2-イル 4-メチルベンゼンスルホネート、ビス(3-メチルブタン-2-イル) メタンジスルホネート、ビス(3-メチルブタン-2-イル) エタン-1,2-ジスルホネート、3,3-ジメチルブタン-2-イル メタンスルホネート、3,3-ジメチルブタン-2-イル 4-メチルベンゼンスルホネート、ビス(3,3-ジメチルブタン-2-イル) メタンジスルホネート、ビス(3,3-ジメチルブタン-2-イル) エタン-1,2-ジスルホネート、2-メチルペンタン-3-イル メタンスルホネート、2-メチルペンタン-3-イル 4-メチルベンゼンスルホネート、ビス(2-メチルペンタン-3-イル) メタンジスルホネート、ビス(2-メチルペンタン-3-イル) エタン-1,2-ジスルホネート、1-シクロプロピルエチル メタンスルホネート、1-シクロプロピルエチル 4-メチルベンゼンスルホネート、ビス(1-シクロプロピルエチル) メタンジスルホネート、ビス(1-シクロプロピルエチル) エタン-1,2-ジスルホネート、1-シクロブチルエチル メタンスルホネート、1-シクロブチルエチル 4-メチルベンゼンスルホネート、ビス(1-シクロブチルエチル) メタンジスルホネート、ビス(1-シクロブチルエチル) エタン-1,2-ジスルホネート、1-シクロペンチルエチル メタンスルホネート、1-シクロペンチルエチル 4-メチルベンゼンスルホネート、ビス(1-シクロペンチルエチル) メタンジスルホネート、ビス(1-シクロペンチルエチル) エタン-1,2-ジスルホネートである。
 一般式(II)で表されるスルホン酸エステル化合物は、光学異性体を有する場合がある。光学異性体については、R体、S体が存在し得るが、第I-1発明においてはそのいずれも本発明の効果を奏する。また、前記光学異性体は任意の比率の混合物として用いることもでき、光学異性体の一方が過剰に存在する場合(光学活性体)あるいは光学異性体が同量で存在する場合(ラセミ体)のいずれの場合も本発明の効果を有する。さらにジアステレオマーが存在し得る場合、ジアステレオマーについては、その化学的、あるいは電気化学的性質は必ずしも同一ではないことから、ジアステレオマーの存在比によって、本発明の効果の程度が異なる場合があるが、それら光学異性体のいずれかを単独又は複数の混合物で用いた場合においても本発明の効果を有する。
Figure JPOXMLDOC01-appb-C000018
(式中、nは1又は2の整数を示す。nが1の場合は、R4は炭素数1~6のアルキル基、又は炭素数6~12のアリール基を示す。nが2の場合は、R4は炭素数1~6のアルキレン基を示す。ただし、前記の炭素数1~6のアルキル基、炭素数6~12のアリール基、及び炭素数1~6のアルキレン基は、それらの少なくとも1つの水素原子がハロゲン原子で置換されていてもよい。)
 一般式(III)のnは1又は2の整数であるが、好ましくは2である。
 一般式(III)のnが1の場合は、R4は、炭素数1~6の直鎖若しくは分枝鎖のアルキル基、少なくとも1つの水素原子がハロゲン原子で置換された炭素数1~6の直鎖若しくは分枝鎖のハロゲン化アルキル基、又は、水素原子がハロゲン原子で置換されていてもよい炭素数6~12のアリール基であり、好ましくは炭素数1~6の直鎖若しくは分枝鎖のアルキル基、又は、水素原子がハロゲン原子で置換されていてもよい炭素数6~12のアリール基であり、より好ましくは炭素数1~3の直鎖若しくは分枝鎖のアルキル基、又は、水素原子がハロゲン原子で置換されていてもよい炭素数6~10のアリール基であり、特に好ましくは炭素数1又は2の直鎖のアルキル基、又は炭素数6~8のアリール基である。
 一般式(III)におけるR4の好適例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、フルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、iso-プロピル基、sec-ブチル基、tert-ブチル基、tert-アミル基、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-tert-ブチルフェニル基、2,4,6-トリメチルフェニル基、4-フルオロフェニル基、4-クロロフェニル基、4-トリフルオロメチルフェニル基等が挙げられるが、メチル基、エチル基、フェニル基、4-メチルフェニル基がより好ましく、メチル基、4-メチルフェニル基が更に好ましい。
 前記一般式(III)のnが2の場合は、R4は、水素原子がハロゲン原子で置換されていてもよい炭素数1~6の直鎖若しくは分枝鎖のアルキレン基であり、好ましくは水素原子がハロゲン原子で置換されていてもよい炭素数1~4の直鎖若しくは分枝鎖のアルキレン基であり、より好ましくは水素原子がハロゲン原子で置換されていてもよい炭素数1~3の直鎖若しくは分枝鎖のアルキレン基であり、特に好ましくは炭素数1若しくは2の直鎖のアルキレン基である。
 R4がアルキレン基である場合の好適例としては、メチレン基、エタン-1,2-ジイル基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタンジ-1,5-イル基、ヘキサン-1,6-ジイル基、エタン-1,1-ジイル基、プロパン-1,2-ジイル基、2,2-ジメチルプロパン-1,3-ジイル基、フルオロメチレン基、ジルフルオロメチレン基等が挙げられるが、メチレン基、エタン-1,2-ジイル基、プロパン-1,3-ジイル基がより好ましく、メチレン基、エタン-1,2-ジイル基が更に好ましい。
 一般式(III)で表されるスルホン酸エステル化合物の具体例としては、プロパン-2-イル メタンスルホネート、プロパン-2-イル エタンスルホネート、プロパン-2-イル ベンゼンスルホネート、プロパン-2-イル 4-メチルベンゼンスルホネート、ビス(プロパン-2-イル) メタンジスルホネート、ビス(プロパン-2-イル) エタン-1,2-ジスルホネート、ビス(プロパン-2-イル) プロパン-1,3-ジスルホネートが好適に挙げられるが、これらの中でもプロパン-2-イル メタンスルホネート、プロパン-2-イル 4-メチルベンゼンスルホネート、ビス(プロパン-2-イル) メタンジスルホネート、ビス(プロパン-2-イル) エタン-1,2-ジスルホネートがより好ましい。
 第I発明の非水電解液において、非水電解液に含有される一般式(II)又は(III)で表されるスルホン酸エステル化合物の含有量は、非水電解液中に0.001~5質量%が好ましい。該含有量が5質量%以下であれば、電極上に過度に被膜が形成され低温特性が低下するおそれが少なく、また0.001質量%以上であれば被膜の形成が十分であり、高温保存特性の改善効果が高まる。該含有量は、非水電解液中に0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、その上限は、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましい。
 第I発明の非水電解液において、一般式(II)で表されるスルホン酸エステル化合物及び炭素数1~6の炭化水素基が第3級炭素原子又は第4級炭素原子を介してベンゼン環に結合しているベンゼン化合物、及び/又は、環状構造若しくは不飽和基を有するS=O基含有化合物を組み合わせた前記一般式(III)で表されるスルホン酸エステル化合物を添加することにより広い温度範囲での電気化学特性は向上するが、以下に述べる非水溶媒、電解質塩、更にその他の添加剤を組み合わせることにより、広い温度範囲での電気化学特性が相乗的に向上するという特異な効果を発現する。その理由は明らかではないが、これらの非水溶媒、電解質塩、さらにその他の添加剤の構成元素を含有するイオン伝導性の高い混合被膜が形成されるためと考えられる。
<第II発明>
 本発明の第II発明の非水電解液は、非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に、下記一般式(IV)で表されるシクロアルカン骨格を有するスルホン酸エステル化合物を0.001~5質量%含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000019
(式中、tは1又は2の整数を示す。tが1の場合は、R5及びR6は炭素数1~6のアルキル基、又は炭素数6~12のアリール基を示し、R7は炭素数1~6のアルキル基を示し、R7はシクロ環上の炭素原子と結合して環を形成してもよく、rは0~10の整数を示し、p及びqはそれぞれ独立して0~3の整数を示す。t=2の場合は、R5は炭素数1~6のアルキレン基を示し、R6、R7、r、p及びqはtが1の場合と同義である。ただし、前記の炭素数1~6のアルキル基、及び炭素数6~12のアリール基は、それらの少なくとも1つの水素原子がハロゲン原子で置換されていてもよい。)
 第II発明の非水電解液が、広い温度範囲での電気化学特性を大幅に改善できる理由は必ずしも明確ではないが、以下のように考えられる。
 第II発明の非水電解液が含有する前記一般式(IV)で表されるスルホン酸エステル化合物は、スルホニルオキシ基が結合するメチン基(RSO3-CHR’R’)を有する。電子吸引性のスルホニルオキシ基が結合する炭素上のメチンプロトンの酸性度は、R’の電子供与性効果により、メチレンプロトン(RSO3-CH2-)よりも低いと考えられることに加え、シクロアルキル基が適度な嵩高さを有している。従って、前記一般式(IV)で表されるスルホン酸エステル化合物は、メチン基が初回充電時に負極上で緩やかに反応し、かつシクロアルキル基の適度な嵩高さから活物質表面に過度に緻密化することなく良好な保護被膜が形成されると考えられる。そのため低温から高温まで広い温度範囲での電気化学特性が著しく向上する特異的な効果をもたらすことが分かった。
 一般式(IV)のtは、1又は2の整数であり、好ましくは2である。
 一般式(IV)のtが1の場合は、R5は少なくとも1つの水素原子がハロゲン原子で置換されていてもよい炭素数1~6の直鎖若しくは分枝鎖のアルキル基、又は、少なくとも1つの水素原子がハロゲン原子で置換されていてもよい炭素数6~12のアリール基であり、好ましくは炭素数1~6の直鎖若しくは分枝鎖のアルキル基、又は、少なくとも1つの水素原子がハロゲン原子で置換されていてもよい炭素数6~12のアリール基であり、より好ましくは炭素数1~3の直鎖若しくは分枝鎖のアルキル基、又は、少なくとも1つの水素原子がハロゲン原子で置換されていてもよい炭素数6~10のアリール基であり、特に好ましくは炭素数1若しくは2の直鎖のアルキル基、又は、炭素数6~8のアリール基である。
 一般式(IV)におけるR5の好適例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、フルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、iso-プロピル基、sec-ブチル基、tert-ブチル基、tert-アミル基、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-tert-ブチルフェニル基、2,4,6-トリメチルフェニル基、4-フルオロフェニル基、4-クロロフェニル基、4-トリフルオロメチルフェニル基等が挙げられるが、メチル基、エチル基、フェニル基、4-メチルフェニル基がより好ましく、メチル基、4-メチルフェニル基が更に好ましい。
 前記一般式(IV)のtが2の場合は、R5は、少なくとも1つの水素原子がハロゲン原子で置換されていてもよい炭素数1~6の直鎖若しくは分枝鎖のアルキレン基であり、好ましくは少なくとも1つの水素原子がハロゲン原子で置換されていてもよい炭素数1~4の直鎖若しくは分枝鎖のアルキレン基であり、より好ましくは少なくとも1つの水素原子がハロゲン原子で置換されていてもよい炭素数1~3の直鎖若しくは分枝鎖のアルキレン基であり、特に好ましくは炭素数1若しくは2の直鎖のアルキレン基である。
 R5がアルキレン基である場合の好適例としては、メチレン基、エタン-1,2-ジイル基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタンジ-1,5-イル基、ヘキサン-1,6-ジイル基、エタン-1,1-ジイル基、プロパン-1,2-ジイル基、2,2-ジメチルプロパン-1,3-ジイル基、フルオロメチレン基、ジルフルオロメチレン基等が挙げられ、中でも、メチレン基、エタン-1,2-ジイル基、プロパン-1,3-ジイル基がより好ましく、メチレン基、エタン-1,2-ジイル基が更に好ましい。
 一般式(IV)のR6は、少なくとも1つの水素原子がハロゲン原子で置換されていてもよい炭素数1~6の直鎖若しくは分枝鎖のアルキル基、又は、少なくとも1つの水素原子がハロゲン原子で置換されていてもよい炭素数6~12のアリール基であり、好ましくは炭素数1~6の直鎖若しくは分枝鎖のアルキル基、又は、少なくとも1つの水素原子がハロゲン原子で置換されていてもよい炭素数6~12のアリール基であり、より好ましくは炭素数1~3の直鎖若しくは分枝鎖のアルキル基、又は、少なくとも1つの水素原子がハロゲン原子で置換されていてもよい炭素数6~10のアリール基であり、特に好ましくは炭素数1若しくは2の直鎖のアルキル基、又は、炭素数6~8のアリール基である。
 前記R6の好適例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、フルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、iso-プロピル基、sec-ブチル基、tert-ブチル基、tert-アミル基、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-tert-ブチルフェニル基、2,4,6-トリメチルフェニル基、4-フルオロフェニル基、4-クロロフェニル基、4-トリフルオロメチルフェニル基等が挙げられるが、メチル基、エチル基、フェニル基、4-メチルフェニル基がより好ましく、メチル基、4-メチルフェニル基が更に好ましい。
 一般式(IV)のR7は、少なくとも1つの水素原子がハロゲン原子で置換されていてもよい炭素数1~6の直鎖若しくは分枝鎖のアルキル基であり、より好ましくは炭素数1~3の直鎖若しくは分枝鎖のアルキル基であり、更に好ましくは炭素数1若しくは2の直鎖のアルキル基である。
 前記R7の好適例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、フルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、iso-プロピル基、sec-ブチル基、tert-ブチル基、tert-アミル基等が挙げられるが、メチル基、エチル基、n-プロピル基、n-ブチル基、iso-プロピル基がより好ましく、メチル基、エチル基が更に好ましい。
 一般式(IV)のrは、0~10の整数であるが、0~6が好ましく、0~5の整数がより好ましく、1~4の整数が更に好ましく、2又は3が最も好ましい。
 前記一般式(I)のp及びqは、それぞれ独立して0から3の整数であるが、0又は1が好ましい。
 上記の置換基の範囲の場合に、広い温度範囲での電気化学特性を大幅に改善できるので好ましい。
 一般式(IV)で表されるスルホン酸エステル化合物の具体例としては、
(i)シクロプロピル メタンスルホネート、シクロプロピル エタンスルホネート、シクロプロピル ベンゼンスルホネート、シクロプロピル 4-メチルベンゼンスルホネート、ジシクロプロピル メタンジスルホネート、ジシクロプロピル エタン-1,2-ジスルホネート; シクロブチル メタンスルホネート、シクロブチル エタンスルホネート、シクロブチル ベンゼンスルホネート、シクロブチル 4-メチルベンゼンスルホネート、ジシクロブチル メタンジスルホネート、ジシクロブチル エタン-1,2-ジスルホネート; シクロペンチル メタンスルホネート、シクロペンチル エタンスルホネート、シクロペンチル プロパン-1-スルホネート、シクロペンチル ブタン-1-スルホネート、シクロペンチル ペンタン-1-スルホネート、シクロペンチル ヘキサン-1-スルホネート、シクロペンチル トリフルオロメタンスルホネート、シクロペンチル 2,2,2-トリフルオロエタンスルホネート、シクロペンチル プロパン-2-スルホネート、シクロペンチル ブタン-2-スルホネート、シクロペンチル 2-メチルプロパン-2-スルホネート、シクロペンチル 2-メチルブタン-2-スルホネート、シクロペンチル ベンゼンスルホネート、シクロペンチル 2-メチルベンゼンスルホネート、シクロペンチル 3-メチルベンゼンスルホネート、シクロペンチル 4-メチルベンゼンスルホネート、シクロペンチル 4-tert-ブチルベンゼンスルホネート、シクロペンチル 2,4,6-トリメチルベンゼンスルホネート、シクロペンチル 4-フルオロベンゼンスルホネート、シクロペンチル 4-クロロベンゼンスルホネート、シクロペンチル 4-トリフルオロメチルベンゼンスルホネート、ジシクロペンチル メタンジスルホネート、ジシクロペンチル エタン-1,2-ジスルホネート、ジシクロペンチル プロパン-1,3-ジスルホネート、
(ii)2-メチルシクロペンチル メタンスルホネート、2-メチルシクロペンチル エタンスルホネート、2-メチルシクロペンチル ベンゼンスルホネート、2-メチルシクロペンチル 4-メチルベンゼンスルホネート、ビス(2-メチルシクロペンチル) メタンジスルホネート、ビス(2-メチルシクロペンチル) エタン-1,2-ジスルホネート、
(iii)シクロヘキシル メタンスルホネート、シクロヘキシル エタンスルホネート、シクロヘキシル プロパン-1-スルホネート、シクロヘキシル ブタン-1-スルホネート、シクロヘキシル ペンタン-1-スルホネート、シクロヘキシル ヘキサン-1-スルホネート、シクロヘキシル トリフルオロメタンスルホネート、シクロヘキシル 2,2,2-トリフルオロエタンスルホネート、シクロヘキシル プロパン-2-スルホネート、シクロヘキシル ブタン-2-スルホネート、シクロヘキシル 2-メチルプロパン-2-スルホネート、シクロヘキシル 2-メチルブタン-2-スルホネート、シクロヘキシル ベンゼンスルホネート、シクロヘキシル 2-メチルベンゼンスルホネート、シクロヘキシル 3-メチルベンゼンスルホネート、シクロヘキシル 4-メチルベンゼンスルホネート、シクロヘキシル 4-tert-ブチルベンゼンスルホネート、シクロヘキシル 2,4,6-トリメチルベンゼンスルホネート、シクロヘキシル 4-フルオロベンゼンスルホネート、シクロヘキシル 4-クロロベンゼンスルホネート、シクロヘキシル 4-トリフルオロメチルベンゼンスルホネート、ジシクロヘキシル メタンジスルホネート、ジシクロヘキシル エタン-1,2-ジスルホネート、ジシクロヘキシル プロパン-1,3-ジスルホネート、
(iv)2-メチルシクロヘキシル メタンスルホネート、2-メチルシクロヘキシル エタンスルホネート、2-メチルシクロヘキシル ベンゼンスルホネート、2-メチルシクロヘキシル 4-メチルベンゼンスルホネート、ビス(2-メチルシクロヘキシル) メタンジスルホネート、ビス(2-メチルシクロヘキシル) エタン-1,2-ジスルホネート; 2-エチルシクロヘキシル メタンスルホネート、2-エチルシクロヘキシル エタンスルホネート、2-エチルシクロヘキシル ベンゼンスルホネート、2-エチルシクロヘキシル 4-メチルベンゼンスルホネート、ビス(2-エチルシクロヘキシル) メタンジスルホネート、ビス(2-エチルシクロヘキシル) エタン-1,2-ジスルホネート; 2,6-ジメチルシクロヘキシル メタンスルホネート、2,6-ジメチルシクロヘキシル エタンスルホネート、2,6-ジメチルシクロヘキシル ベンゼンスルホネート、2、6-ジメチルシクロヘキシル 4-メチルベンゼンスルホネート、ビス(2,6-ジメチルシクロヘキシル) メタンジスルホネート、
(v)シクロヘプチル メタンスルホネート、シクロヘプチル エタンスルホネート、シクロヘプチル ベンゼンスルホネート、シクロヘプチル 4-メチルベンゼンスルホネート、ジシクロヘプチル メタンジスルホネート、ジシクロヘプチル エタン-1,2-ジスルホネート; シクロオクチル メタンスルホネート、シクロオクチル エタンスルホネート、シクロオクチル ベンゼンスルホネート、シクロオクチル 4-メチルベンゼンスルホネート、ジシクロオクチル メタンジスルホネート; シクロノニル メタンスルホネート、シクロノニル エタンスルホネート、シクロノニル ベンゼンスルホネート、シクロノニル 4-メチルベンゼンスルホネート、ジシクロノニル メタンジスルホネート; シクロデシル メタンスルホネート、シクロデシル エタンスルホネート、シクロデシル ベンゼンスルホネート、シクロデシル 4-メチルベンゼンスルホネート、ジシクロデシル メタンジスルホネート; シクロウンデシル メタンスルホネート、シクロウンデシル エタンスルホネート、シクロウンデシル ベンゼンスルホネート、シクロウンデシル 4-メチルベンゼンスルホネート、ジシクロウンデシル メタンジスルホネート; シクロドデシル メタンスルホネート、シクロドデシル エタンスルホネート、シクロドデシル ベンゼンスルホネート、シクロドデシル 4-メチルベンゼンスルホネート、ジシクロドデシル メタンジスルホネート、
(vi)デカヒドラナフタレン-1-イル メタンスルホネート、デカヒドラナフタレン-1-イル エタンスルホネート、デカヒドラナフタレン-1-イル ベンゼンスルホネート、デカヒドラナフタレン-1-イル 4-メチルベンゼンスルホネート、ビス(デカヒドロナフタレン-1-イル) メタンジスルホネート、デカヒドラナフタレン-2-イル メタンスルホネート、デカヒドラナフタレン-2-イル エタンスルホネート、デカヒドラナフタレン-2-イル ベンゼンスルホネート、デカヒドラナフタレン-2-イル 4-メチルベンゼンスルホネート、ビス(デカヒドロナフタレン-2-イル) メタンジスルホネート、
(vii)ビシクロ[2,2,1]ヘプタン-2-イル メタンスルホネート、ビシクロ[2,2,1]ヘプタン-2-イル エタンスルホネート、ビシクロ[2,2,1]ヘプタン-2-イル ベンゼンスルホネート、ビシクロ[2,2,1]ヘプタン-2-イル 4-メチルベンゼンスルホネート、ビス(ビシクロ[2,2,1]ヘプタン-2-イル) メタンジスルホネート、ビス(ビシクロ[2,2,1]ヘプタン-2-イル) エタン-1,2-ジスルホネート、
(viii)シクロブタン-1,2-ジイル ジメタンスルホネート、シクロブタン-1,2-ジイル ジエタンスルホネート、シクロブタン-1,2-ジイル ジベンゼンスルホネート、シクロブタン-1,2-ジイル ビス(4-メチルベンゼンスルホネート); シクロブタン-1,3-ジイル ジメタンスルホネート、シクロブタン-1,3-ジイル ジエタンスルホネート、シクロブタン-1,3-ジイル ジベンゼンスルホネート、シクロブタン-1,3-ジイル ビス(4-メチルベンゼンスルホネート); シクロペンタン-1,2-ジイル ジメタンスルホネート、シクロペンタン-1,2-ジイル ジエタンスルホネート、シクロペンタン-1,2-ジイル ジベンゼンスルホネート、シクロペンタン-1,2-ジイル ビス(4-メチルベンゼンスルホネート); シクロペンタン-1,3-ジイル ジメタンスルホネート、シクロペンタン-1,3-ジイル ジエタンスルホネート、シクロペンタン-1,3-ジイル ジベンゼンスルホネート、シクロペンタン-1,3-ジイル ビス(4-メチルベンゼンスルホネート); シクロペンタン-1,2,4-トリイル トリメタンスルホネート、シクロペンタン-1,2,4-トリイル トリエタンスルホネート、シクロペンタン-1,2,4-トリイル トリベンゼンスルホネート、シクロペンタン-1,2,4-トリイル トリス(4-メチルベンゼンスルホネート); シクロヘキサン-1,2-ジイル ジメタンスルホネート、シクロヘキサン-1,2-ジイル ジエタンスルホネート、シクロヘキサン-1,2-ジイル ジベンゼンスルホネート、シクロヘキサン-1,2-ジイル ビス(4-メチルベンゼンスルホネート); シクロヘキサン-1,3-ジイル ジメタンスルホネート、シクロヘキサン-1,3-ジイル ジエタンスルホネート、シクロヘキサン-1,3-ジイル ジベンゼンスルホネート、シクロヘキサン-1,3-ジイル ビス(4-メチルベンゼンスルホネート); シクロヘキサン-1,4-ジイル ジメタンスルホネート、シクロヘキサン-1,4-ジイル ジエタンスルホネート、シクロヘキサン-1,4-ジイル ジベンゼンスルホネート、シクロヘキサン-1,4-ジイル ビス(4-メチルベンゼンスルホネート); シクロヘキサン-1,3,5-トリイル トリメタンスルホネート、シクロヘキサン-1,3,5-トリイル トリエタンスルホネート、シクロヘキサン-1,3,5-トリイル トリベンゼンスルホネート、シクロヘキサン-1,3,5-トリイル トリス(4-メチルベンゼンスルホネート)が好適に挙げられる。
 これらの中でも、(i)シクロブチル メタンスルホネート、シクロブチル エタンスルホネート、シクロブチル ベンゼンスルホネート、シクロブチル 4-メチルベンゼンスルホネート、ジシクロブチル メタンジスルホネート、ジシクロブチル エタン-1,2-ジスルホネート、シクロペンチル メタンスルホネート、シクロペンチル エタンスルホネート、シクロペンチル ベンゼンスルホネート、シクロペンチル 4-メチルベンゼンスルホネート、ジシクロペンチル メタンジスルホネート、ジシクロペンチル エタン-1,2-ジスルホネート、(ii)2-メチルシクロペンチル メタンスルホネート、2-メチルシクロペンチル エタンスルホネート、2-メチルシクロペンチル ベンゼンスルホネート、2-メチルシクロペンチル 4-メチルベンゼンスルホネート、ビス(2-メチルシクロペンチル) メタンジスルホネート、ビス(2-メチルシクロペンチル) エタン-1,2-ジスルホネート、(iii)シクロヘキシル メタンスルホネート、シクロヘキシル エタンスルホネート、シクロヘキシル ベンゼンスルホネート、シクロヘキシル 4-メチルベンゼンスルホネート、ジシクロヘキシル メタンジスルホネート、ジシクロヘキシル エタン-1,2-ジスルホネート、(iv)2-メチルシクロヘキシル メタンスルホネート、2-メチルシクロヘキシル エタンスルホネート、2-メチルシクロヘキシル ベンゼンスルホネート、2-メチルシクロヘキシル 4-メチルベンゼンスルホネート、ビス(2-メチルシクロヘキシル) メタンジスルホネート、ビス(2-メチルシクロヘキシル エタン-1,2-ジスルホネート、2-エチルシクロヘキシル メタンスルホネート、2-エチルシクロヘキシル エタンスルホネート、2-エチルシクロヘキシル ベンゼンスルホネート、2-エチルシクロヘキシル 4-メチルベンゼンスルホネート、ビス(2-エチルシクロヘキシル) メタンジスルホネート、ビス(2-エチルシクロヘキシル) エタン-1,2-ジスルホネート、(v)シクロヘプチル メタンスルホネート、シクロヘプチル エタンスルホネート、シクロヘプチル ベンゼンスルホネート、シクロヘプチル 4-メチルベンゼンスルホネート、ジシクロヘプチル メタンジスルホネート、ジシクロヘプチル エタン-1,2-ジスルホネート、(vii)ビシクロ[2,2,1]ヘプタン-2-イル メタンスルホネート、ビシクロ[2,2,1]ヘプタン-2-イル エタンスルホネート、ビシクロ[2,2,1]ヘプタン-2-イル ベンゼンスルホネート、ビシクロ[2,2,1]ヘプタン-2-イル 4-メチルベンゼンスルホネート、ビス(ビシクロ[2,2,1]ヘプタン-2-イル) メタンジスルホネート、ビス(ビシクロ[2,2,1]ヘプタン-2-イル) エタン-1,2-ジスルホネート、(viii)シクロペンタン-1,2-ジイル ジメタンスルホネート、シクロペンタン-1,2-ジイル ジエタンスルホネート、シクロペンタン-1,2-ジイル ジベンゼンスルホネート、シクロペンタン-1,2-ジイル ビス(4-メチルベンゼンスルホネート)、シクロヘキサン-1,2-ジイル ジメタンスルホネート、シクロヘキサン-1,2-ジイル ジエタンスルホネート、シクロヘキサン-1,2-ジイル ジベンゼンスルホネート、シクロヘキサン-1,2-ジイル ビス(4-メチルベンゼンスルホネート)がより好ましい。
 また、(i)シクロペンチル メタンスルホネート、シクロペンチル ベンゼンスルホネート、シクロペンチル 4-メチルベンゼンスルホネート、ジシクロペンチル メタンジスルホネート、ジシクロペンチル エタン-1,2-ジスルホネート、(iii)シクロヘキシル メタンスルホネート、シクロヘキシル ベンゼンスルホネート、シクロヘキシル 4-メチルベンゼンスルホネート、ジシクロヘキシル メタンジスルホネート、ジシクロヘキシル エタン-1,2-ジスルホネート、(vii)ビシクロ[2,2,1]ヘプタン-2-イル メタンスルホネート、ビシクロ[2,2,1]ヘプタン-2-イル ベンゼンスルホネート、ビシクロ[2,2,1]ヘプタン-2-イル 4-メチルベンゼンスルホネート、ビス(ビシクロ[2,2,1]ヘプタン-2-イル) メタンジスルホネート、ビス(ビシクロ[2,2,1]ヘプタン-2-イル) エタン-1,2-ジスルホネート、(viii)シクロペンタン-1,2-ジイル ジメタンスルホネート、シクロペンタン-1,2-ジイル ビス(ベンゼンスルホネート)、シクロペンタン-1,2-ジイル ビス(4-メチルベンゼンスルホネート)が更に好ましい。
 一般式(IV)で表されるスルホン酸エステル化合物は、光学異性体を有する場合がある。光学異性体については、R体、S体が存在し得るが、第II発明においてはそのいずれも本発明の効果を奏する。また、前記光学異性体は任意の比率の混合物として用いることもでき、光学異性体の一方が過剰に存在する場合(光学活性体)あるいは光学異性体が同量で存在する場合(ラセミ体)のいずれの場合も本発明の効果を有する。さらにジアステレオマーが存在し得る場合、ジアステレオマーについては、その化学的、あるいは電気化学的性質は必ずしも同一ではないことから、ジアステレオマーの存在比によって、本発明の効果の程度が異なる場合があるが、それら光学異性体のいずれかを単独あるいは複数の混合物で用いた場合においても本発明の効果を有する。
 第II発明の非水電解液において、非水電解液に含有される一般式(IV)で表されるスルホン酸エステル化合物の含有量は、非水電解液中に0.001~5質量%が好ましい。該含有量が5質量%以下であれば、電極上に過度に被膜が形成され低温特性が低下するおそれが少なく、また0.001質量%以上であれば被膜の形成が十分であり、高温保存特性の改善効果が高まる。該含有量は、非水電解液中に0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、その上限は、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましい。
 第II発明の非水電解液において、一般式(IV)で表されるスルホン酸エステル化合物を添加することにより広い温度範囲での電気化学特性は向上するが、以下に述べる非水溶媒、電解質塩、更にその他の添加剤を組み合わせることにより、広い温度範囲での電気化学特性が相乗的に向上するという特異な効果を発現する。その理由は明らかではないが、これらの非水溶媒、電解質塩、さらにその他の添加剤の構成元素を含有するイオン伝導性の高い混合被膜が形成されるためと考えられる。
<第III発明>
 本発明の第III-1発明の非水電解液は、非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に、下記一般式(V)で表されるスルホン酸エステル化合物を0.001~5質量%含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000020
(式中、R11及びR12は、それぞれ独立に、炭素数1~6のアルキル基、又は炭素数6~12のアリール基を示し、R13及びR14は、それぞれ独立に、炭素数1~6のアルキル基を示し、L1は、少なくとも1つの水素原子が-OSO215(R15はR11又はR12と同義である)で置換されてもよい炭素数1~6のアルキレン基、少なくとも一つのエーテル結合を含む炭素数2~6の2価の連結基又は単結合を示す。前記の炭素数1~6のアルキル基及び炭素数6~12のアリール基は、それら少なくとも1つの水素原子がハロゲン原子で置換されていてもよい。)
 本発明の第III-2発明の非水電解液は、非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に、前記一般式(V)で表されるスルホン酸エステル化合物0.001~5質量%と、さらに下記一般式一般式(VI)で表されるスルホン酸エステル化合物を0.001~5質量%含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000021
(式中、R16及びR17は、それぞれ独立に、炭素数1~6のアルキル基、又は炭素数6~12のアリール基を示し、R18は、水素原子、炭素数1~6のアルキル基を示し、L2は、少なくとも1つの水素原子が-OSO219(R19はR16又はR17と同義である)で置換されてもよい炭素数1~6のアルキレン基、少なくとも一つのエーテル結合を含む炭素数2~6の2価の連結基又は単結合を示す。前記の炭素数1~6のアルキル基及び炭素数6~12のアリール基は、それらの少なくとも1つの水素原子がハロゲン原子で置換されていてもよい。)
 第III発明の非水電解液が、広い温度範囲での電気化学特性を大幅に改善できる理由は必ずしも明確ではないが、以下のように考えられる。
 第III発明の非水電解液が含有する前記一般式(V)で表されるスルホン酸エステル化合物は、2つのスルホニルオキシ基がそれぞれ結合するメチン基(RSO3-CHR'-)を有する。電子吸引性のスルホニルオキシ基が結合する炭素上のメチンプロトンの酸性度は、R'の電子供与性効果により、メチレンプロトン(RSO3-CH2-)よりも低いと考えられる。従って、前記一般式(V)で表されるスルホン酸エステル化合物は、2箇所存在するメチン基が初回充電時に負極上で緩やかに反応するため、過度に緻密化することなく強度の強い被膜が形成されると考えられる。そのため低温から高温まで広い温度範囲での電気化学特性が著しく向上する特異的な効果をもたらすことが分かった。
 一般式(V)のR11及びR12は、炭素数1~6の直鎖若しくは分枝鎖のアルキル基、少なくとも1つの水素原子がハロゲン原子で置換された炭素数1~6の直鎖若しくは分枝鎖のハロゲン化アルキル基、又は水素原子がハロゲン原子で置換されていてもよい炭素数6~12のアリール基を示す。
 R11及びR12は、好ましくは炭素数1~6の直鎖若しくは分枝鎖のアルキル基、又は水素原子がハロゲン原子で置換されていてもよい炭素数6~12のアリール基であり、より好ましくは炭素数1~3の直鎖若しくは分枝鎖のアルキル基、又は水素原子がハロゲン原子で置換されていてもよい炭素数6~10のアリール基であり、特に好ましくは炭素数1又は2の直鎖のアルキル基、又は炭素数6~8のアリール基である。
 R11及びR12の好適例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、フルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、iso-プロピル基、sec-ブチル基、tert-ブチル基、tert-アミル基、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-tert-ブチルフェニル基、2,4,6-トリメチルフェニル基、4-フルオロフェニル基、4-クロロフェニル基、4-トリフルオロメチルフェニル基等が挙げられるが、メチル基、エチル基、フェニル基、4-メチルフェニル基がより好ましく、メチル基、4-メチルフェニル基が更に好ましい。
 一般式(V)のR13及びR14は、それぞれ独立に、炭素数1~6の直鎖若しくは分枝鎖のアルキル基、又は少なくとも1つの水素原子がハロゲン原子で置換された炭素数1~6の直鎖若しくは分枝鎖のハロゲン化アルキル基を示す。
 R3及びR4は、好ましくは炭素数1~4の直鎖若しくは分枝鎖のアルキル基であり、より好ましくは炭素数1又は2の直鎖のアルキル基である。
 R13及びR14の好適例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、フルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、iso-プロピル基、sec-ブチル基、tert-ブチル基、tert-アミル基等が挙げられるが、メチル基、エチル基、n-プロピル基、n-ブチル基、iso-プロピル基がより好ましく、メチル基、エチル基が更に好ましい。
 R13及びR14は、互いに異なる置換基であると好ましく、R13がメチル基であり、R14が炭素数2~6の直鎖若しくは分枝鎖のアルキル基である場合がより好ましく、R13がメチル基であり、R14が炭素数2~4の直鎖若しくは分枝鎖のアルキル基である場合が更に好ましい。R11及びR12が炭素数1~6の直鎖若しくは分枝鎖のアルキル基であり、R13及びR14が互いに異なる炭素数1~4の直鎖若しくは分枝鎖のアルキル基である場合は新規物質である。
 一般式(V)のL1は、少なくとも1つの水素原子が-OSO215(R15はR11又はR12と同義である)で置換されてもよい炭素数1~6の直鎖若しくは分枝鎖のアルキレン基、少なくとも一つのエーテル結合を含む炭素数2~6の2価の連結基、又は単結合(すなわち-CHR13と-CHR14が直接接合する)を示す。
 L1は、好ましくは、少なくとも1つの水素原子が-OSO215で置換されてもよい炭素数1~6の直鎖若しくは分枝鎖のアルキレン基、又は単結合(すなわち-CHR13-と-CHR14-が直接結合する)であり、より好ましくは、炭素数1~6の直鎖若しくは分枝鎖のアルキレン基又は単結合であり、更に好ましくは、メチレン基、エチレン基、又は単結合であり、特に好ましくは、メチレン基又は単結合である。
 特に、L1が単結合である場合、即ち、一般式(V)が下記の一般式(V-2)で表される場合、高温保存後の低温特性、特に-30℃以下での放電特性が一段と向上し、広い温度範囲での電気化学特性を大幅に改善できるので好ましい。ここで、R11~R14はいずれもメチル基又はエチル基を示す。
Figure JPOXMLDOC01-appb-C000022
 前記一般式(V)で表される化合物の具体例としては、ブタン-2,3-ジイル ジメタンスルホネート、ブタン-2,3-ジイル ジエタンスルホネート、ブタン-2,3-ジイル ビス(プロパン-1-スルホネート)、ブタン-2,3-ジイル ビス(ブタン-1-スルホネート)、ブタン-2,3-ジイル ビス(ペンタン-1-スルホネート)、ブタン-2,3-ジイル ビス(ヘキサン-1-スルホネート)、ブタン-2,3-ジイル ビストリフルオロメタンスルホネート、ブタン-2,3-ジイル ビス(2,2,2-トリフルオロエタンスルホネート)、ブタン-2,3-ジイル ビス(プロパン-2-スルホネート)、ブタン-2,3-ジイル ビス(ブタン-2-スルホネート)、ブタン-2,3-ジイル ビス(2-メチルプロパン-2-スルホネート)、ブタン-2,3-ジイル ビス(2-メチルブタン-2-スルホネート)、ブタン-2,3-ジイル ジベンゼンスルホネート、ブタン-2,3-ジイル ビス(2-メチルベンゼンスルホネート)、ブタン-2,3-ジイル ビス(3-メチルベンゼンスルホネート)、ブタン-2,3-ジイル ビス(4-メチルベンゼンスルホネート)、ブタン-2,3-ジイル ビス(4-tert-ブチルベンゼンスルホネート)、ブタン-2,3-ジイル ビス(2、4、6-トリメチルベンゼンスルホネート)、ブタン-2,3-ジイル ビス(4-フルオロベンゼンスルホネート)、ブタン-2,3-ジイル ビス(4-クロロベンゼンスルホネート)、ブタン-2,3-ジイル ビス(4-トリフルオロメチルベンゼンスルホネート)、ペンタン-2,3-ジイル ジメタンスルホネート、ペンタン-2,3-ジイル ジエタンスルホネート、ペンタン-2,3-ジイル ビス(プロパン-1-スルホネート、ペンタン-2,3-ジイル ジブタン-1-スルホネート、ペンタン-2,3-ジイル ビス(ペンタン-1-スルホネート)、ペンタン-2,3-ジイル ビス(ヘキサン-1-スルホネート)、ペンタン-2,3-ジイル ビストリフルオロメタンスルホネート、ペンタン-2,3-ジイル ビス(2,2,2-トリフルオロエタンスルホネート)、ペンタン-2,3-ジイル ビス(プロパン-2-スルホネート)、ペンタン-2,3-ジイル ビス(ブタン-2-スルホネート)、ペンタン-2,3-ジイル ビス(2-メチルプロパン-2-スルホネート)、ペンタン-2,3-ジイル ビス(2-メチルブタン-2-スルホネート)、ペンタン-2,3-ジイル ジベンゼンスルホネート、ペンタン-2,3-ジイル ビス(2-メチルベンゼンスルホネート)、ペンタン-2,3-ジイル ビス(3-メチルベンゼンスルホネート)、ペンタン-2,3-ジイル ビス(4-メチルベンゼンスルホネート)、ペンタン-2,3-ジイル ビス(4-tert-ブチルベンゼンスルホネート)、ペンタン-2,3-ジイル ビス(2、4、6-トリメチルベンゼンスルホネート)、ペンタン-2,3-ジイル ビス(4-フルオロベンゼンスルホネート)、ペンタン-2,3-ジイル ビス(4-クロロベンゼンスルホネート)、ペンタン-2,3-ジイル ビス(4-トリフルオロメチルベンゼンスルホネート)、ヘキサン-2,3-ジイル ジメタンスルホネート、ヘキサン-2,3-ジイル ジエタンスルホネート、ヘキサン-2,3-ジイル ビストリフルオロメタンスルホネート、ヘキサン-2,3-ジイル ジベンゼンスルホネート、ヘキサン-2,3-ジイル ビス(4-メチルベンゼンスルホネート)、ヘキサン-3,4-ジイル ジメタンスルホネート、ヘキサン-3,4-ジイル ジエタンスルホネート、ヘキサン-3,4-ジイル ビストリフルオロメタンスルホネート、ヘキサン-3,4-ジイル ジベンゼンスルホネート、ヘキサン-3,4-ジイル ビス(4-メチルベンゼンスルホネート)、ヘプタン-2,3-ジイル ジメタンスルホネート、ヘプタン-2,3-ジイル ジエタンスルホネート、ヘプタン-2,3-ジイル ビストリフルオロメタンスルホネート、ヘプタン-2,3-ジイル ジベンゼンスルホネート、ヘプタン-2,3-ジイル ビス(4-メチルベンゼンスルホネート)、オクタン-2,3-ジイル ジメタンスルホネート、オクタン-2,3-ジイル ジエタンスルホネート、オクタン-2,3-ジイル ビストリフルオロメタンスルホネート、オクタン-2,3-ジイル ジベンゼンスルホネート、オクタン-2,3-ジイル ビス(4-メチルベンゼンスルホネート)、オクタン-4,5-ジイル ジメタンスルホネート、オクタン-4,5-ジイル ジエタンスルホネート、オクタン-4,5-ジイル ビストリフルオロメタンスルホネート、オクタン-4,5-ジイル ジベンゼンスルホネート、オクタン-4,5-ジイル ビス(4-メチルベンゼンスルホネート)、ノナン-2,3-ジイル ジメタンスルホネート、ノナン-2,3-ジイル ジエタンスルホネート、ノナン-2,3-ジイル ビストリフルオロメタンスルホネート、ノナン-2,3-ジイル ジベンゼンスルホネート、ノナン-2,3-ジイル ビス(4-メチルベンゼンスルホネート)、1,4-ジフルオロブタン-2,3-ジイル ジメタンスルホネート、1,4-ジフルオロブタン-2,3-ジイル ジエタンスルホネート、1,4-ジフルオロブタン-2,3-ジイル ビストリフルオロメタンスルホネート、1,4-ジフルオロブタン-2,3-ジイル ジベンゼンスルホネート、1,4-ジフルオロブタン-2,3-ジイル ビス(4-メチルベンゼンスルホネート)、1,1,1,4,4,4-ヘキサフルオロブタン-2,3-ジイル ジメタンスルホネート、1,1,1,4,4,4-ヘキサフルオロブタン-2,3-ジイル ジエタンスルホネート、1,1,1,4,4,4-ヘキサフルオロブタン-2,3-ジイル ビストリフルオロメタンスルホネート、1,1,1,4,4,4-ヘキサフルオロブタン-2,3-ジイル ジベンゼンスルホネート、1,1,1,4,4,4-ヘキサフルオロブタン-2,3-ジイル ビス(4-メチルベンゼンスルホネート)、4-メチルペンタン-2,3-ジイル ジメタンスルホネート、4-メチルペンタン-2,3-ジイル ジエタンスルホネート、4-メチルペンタン-2,3-ジイル ビストリフルオロメタンスルホネート、4-メチルペンタン-2,3-ジイル ジベンゼンスルホネート、4-メチルペンタン-2,3-ジイル ビス(4-メチルベンゼンスルホネート)、4-メチルヘキサン-2,3-ジイル ジメタンスルホネート、4-メチルヘキサン-2,3-ジイル ジエタンスルホネート、4-メチルヘキサン-2,3-ジイル ビストリフルオロメタンスルホネート、4-メチルヘキサン-2,3-ジイル ジベンゼンスルホネート、4-メチルヘキサン-2,3-ジイル ビス(4-メチルベンゼンスルホネート)、4,4-ジメチルペンタン-2,3-ジイル ジメタンスルホネート、4,4-ジメチルペンタン-2,3-ジイル ジエタンスルホネート、4,4-ジメチルペンタン-2,3-ジイル ビストリフルオロメタンスルホネート、4,4-ジメチルペンタン-2,3-ジイル ジベンゼンスルホネート、4,4-ジメチルペンタン-2,3-ジイル ビス(4-メチルベンゼンスルホネート)、4,4-ジメチルヘキサン-2,3-ジイル ジメタンスルホネート、4,4-ジメチルヘキサン-2,3-ジイル ジエタンスルホネート、4,4-ジメチルヘキサン-2,3-ジイル ビストリフルオロメタンスルホネート、4,4-ジメチルヘキサン-2,3-ジイル ジベンゼンスルホネート、4,4-ジメチルヘキサン-2,3-ジイル ビス(4-メチルベンゼンスルホネート)、ペンタン-2,4-ジイル ジメタンスルホネート、ペンタン-2,4-ジイル ジエタンスルホネート、ペンタン-2,4-ジイル ビス(プロパン-1-スルホネート)、ペンタン-2,4-ジイル ビス(ブタン-1-スルホネート)、ペンタン-2,4-ジイル ビス(ペンタン-1-スルホネート)、ペンタン-2,4-ジイル ビス(ヘキサン-1-スルホネート)、ペンタン-2,4-ジイル ビストリフルオロメタンスルホネート、ペンタン-2,4-ジイル ビス(2,2,2-トリフルオロエタンスルホネート)、ペンタン-2,4-ジイル ジプロパン-2-スルホネート、ペンタン-2,4-ジイル ジブタン-2-スルホネート、ペンタン-2,4-ジイル ビス(2-メチルプロパン-2-スルホネート)、ペンタン-2,4-ジイル ビス(2-メチルブタン-2-スルホネート)、ペンタン-2,4-ジイル ジベンゼンスルホネート、ペンタン-2,4-ジイル ビス(2-メチルベンゼンスルホネート)、ペンタン-2,4-ジイル ビス(3-メチルベンゼンスルホネート)、ペンタン-2,4-ジイル ビス(4-メチルベンゼンスルホネート)、ペンタン-2,4-ジイル ビス(4-tert-ブチルベンゼンスルホネート)、ペンタン-2,4-ジイル ビス(2、4、6-トリメチルベンゼンスルホネート)、ペンタン-2,4-ジイル ビス(4-フルオロベンゼンスルホネート)、ペンタン-2,4-ジイル ビス(4-クロロベンゼンスルホネート)、ペンタン-2,4-ジイル ビス(4-トリフルオロメチルベンゼンスルホネート)、ヘキサン-2,5-ジイル ジメタンスルホネート、ヘキサン-2,5-ジイル ジエタンスルホネート、ヘキサン-2,5-ジイル ビストリフルオロメタンスルホネート、ヘキサン-2,5-ジイル ジベンゼンスルホネート、ヘキサン-2,5-ジイル ビス(4-メチルベンゼンスルホネート)、ヘプタン-2,6-ジイル ジメタンスルホネート、ヘプタン-2,6-ジイル ジエタンスルホネート、ヘプタン-2,6-ジイル ビストリフルオロメタンスルホネート、ヘプタン-2,6-ジイル ジベンゼンスルホネート、ヘプタン-2,6-ジイル ビス(4-メチルベンゼンスルホネート)、オクタン-2,7-ジイル ジメタンスルホネート、オクタン-2,7-ジイル ジエタンスルホネート、オクタン-2,7-ジイル ビストリフルオロメタンスルホネート、オクタン-2,7-ジイル ジベンゼンスルホネート、オクタン-2,7-ジイル ビス(4-メチルベンゼンスルホネート)、ノナン-2,8-ジイル ジメタンスルホネート、ノナン-2,8-ジイル ジエタンスルホネート、ノナン-2,8-ジイル ビストリフルオロメタンスルホネート、ノナン-2,8-ジイル ジベンゼンスルホネート、ノナン-2,8-ジイル ビス(4-メチルベンゼンスルホネート)、デカン-2,9-ジイル ジメタンスルホネート、デカン-2,9-ジイル ジエタンスルホネート、デカン-2,9-ジイル ビストリフルオロメタンスルホネート、デカン-2,9-ジイル ジベンゼンスルホネート、デカン-2,9-ジイル ビス(4-メチルベンゼンスルホネート)、3-メチルペンタン-2,4-ジイル ジメタンスルホネート、3-メチルペンタン-2,4-ジイル ジエタンスルホネート、3-メチルペンタン-2,4-ジイル ビストリフルオロメタンスルホネート、3-メチルペンタン-2,4-ジイル ジベンゼンスルホネート、3-メチルペンタン-2,4-ジイル ビス(4-メチルベンゼンスルホネート)、ペンタン-2,3,4-トリイル トリメタンスルホネート、ペンタン-2,3,4-トリイル トリエタンスルホネート、ペンタン-2,3,4-トリイル トリス(トリフルオロメタンスルホネート)、ペンタン-2,3,4-トリイル トリベンゼンスルホネート、ペンタン-2,3,4-トリイル トリス(4-メチルベンゼンスルホネート)、1,1’-オキシビス(プロパン-2,1-ジイル)  ジメタンスルホネート、1,1’-オキシビス(プロパン-2,1-ジイル)  ジエタンスルホネート、1,1’-オキシビス(プロパン-2,1-ジイル)  ビストリフルオロメタンスルホネート、1,1’-オキシビス(プロパン-2,1-ジイル)  ジベンゼンスルホネート、1,1’-オキシビス(プロパン-2,1-ジイル)  ビス(4-メチルベンゼンスルホネート)が好適
に挙げられる。
 これらの中でも、ブタン-2,3-ジイル ジメタンスルホネート、ブタン-2,3-ジイル ジエタンスルホネート、ブタン-2,3-ジイル ビストリフルオロメタンスルホネート、ブタン-2,3-ジイル ビス(2,2,2-トリフルオロエタンスルホネート)、ブタン-2,3-ジイル ジベンゼンスルホネート、ブタン-2,3-ジイル ビス(4-メチルベンゼンスルホネート)、ペンタン-2,3-ジイル ジメタンスルホネート、ペンタン-2,3-ジイル ジエタンスルホネート、ペンタン-2,3-ジイル ビストリフルオロメタンスルホネート、ペンタン-2,3-ジイル ビス(2,2,2-トリフルオロエタンスルホネート)、ペンタン-2,3-ジイル ジベンゼンスルホネート、ペンタン-2,3-ジイル ビス(4-メチルベンゼンスルホネート)、ヘキサン-2,3-ジイル ジメタンスルホネート、ヘキサン-2,3-ジイル ジエタンスルホネート、ヘキサン-2,3-ジイル ビストリフルオロメタンスルホネート、ヘキサン-2,3-ジイル ビス(2,2,2-トリフルオロエタンスルホネート)、ヘキサン-2,3-ジイル ジベンゼンスルホネート、ヘキサン-2,3-ジイル ビス(4-メチルベンゼンスルホネート)、ペンタン-2,4-ジイル ジメタンスルホネート、ペンタン-2,4-ジイル ジエタンスルホネート、ペンタン-2,4-ジイル ビストリフルオロメタンスルホネート、ペンタン-2,4-ジイル ビス(2,2,2-トリフルオロエタンスルホネート)、ペンタン-2,4-ジイル ジベンゼンスルホネート、ペンタン-2,4-ジイル ビス(4-メチルベンゼンスルホネート)がより好ましく、ブタン-2,3-ジイル ジメタンスルホネート、ブタン-2,3-ジイル ビス(4-メチルベンゼンスルホネート)、ペンタン-2,3-ジイル ジメタンスルホネート、ペンタン-2,3-ジイル ビス(4-メチルベンゼンスルホネート)、ヘキサン-2,3-ジイル ジメタンスルホネート、ヘキサン-2,3-ジイル ビス(4-メチルベンゼンスルホネート)、ペンタン-2,4-ジイル ジメタンスルホネート、ペンタン-2,4-ジイル ビス(4-メチルベンゼンスルホネート)が更に好ましく、ブタン-2,3-ジイル ジメタンスルホネート、ペンタン-2,3-ジイル ジメタンスルホネート、ペンタン-2,4-ジイル ジメタンスルホネートが特に好ましい。
 一般式(V)で表されるスルホン酸エステル化合物には、ジアステレオマーが存在し得る。ジアステレオマーについては、その化学的又は電気化学的性質は必ずしも同一ではないことから、ジアステレオマーの存在比によって、本発明の効果の程度が異なる場合があるが、それら光学異性体のいずれかを単独又は複数の混合物で用いた場合においても本発明の効果を有する。
 ジアステレオマーが存在する場合(置換基R13が結合する炭素と置換基R4が結合する炭素の両方が不斉炭素となる場合)、置換基R13が結合する炭素と置換基R14が結合する炭素のそれぞれの立体配置の組み合わせとしては、(R,S)、(S,R)、(R,R)、(S,S)の4つの組み合わせが存在する。以下、(R,S)、(S,R)をAnti体、(R,R)、(S,S)をSyn体と呼ぶこととする。置換基R1とR2、R3とR4がそれぞれ同一である場合、(R,S)と(S,R)は全く同じ構造を表す。Syn体とAnti体は互いにジアステレオマーの関係にあるため、電気化学的な性質が少し異なる。Anti体とSyn体は還元電位が異なり、Anti体の方が広い温度範囲での電気化学特性が高いのでより好ましい。Syn体とAnti体の両方が含まれていると一段と前記効果が高まるので好ましい。Anti体とSyn体との混合比〔Anti体:Syn体〕(質量比)は、好ましくは5:95~99:1、より好ましくは51:49~95:5、更に好ましくは55:45~90:10である。
 第III-1発明の非水電解液において、非水電解液に含有される一般式(V)で表されるスルホン酸エステル化合物の含有量は、非水電解液中に0.001~5質量%が好ましい。該含有量が5質量%以下であれば、電極上に過度に被膜が形成され低温特性が低下するおそれが少なく、また0.001質量%以上であれば被膜の形成が十分であり、高温保存特性の改善効果が高まる。該含有量は、非水電解液中に0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、その上限は、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましい。
 第III-2発明の非水電解液は、一般式(V)で表されるスルホン酸エステル化合物に加えて、更に下記一般式(VI)で表される、2つのスルホネート基を直鎖又は分枝鎖を1つ有するアルキレン鎖で連結したスルホン酸エステル化合物を含有すると、一段と広い温度範囲での電気化学特性が向上するので好ましい。
Figure JPOXMLDOC01-appb-C000023
 一般式(VI)中、R16及びR17は、それぞれ独立に、炭素数1~6の直鎖若しくは分枝鎖のアルキル基、少なくとも1つの水素原子がハロゲン原子で置換された炭素数1~6の直鎖若しくは分枝鎖のハロゲン化アルキル基、又は水素原子がハロゲン原子で置換されていてもよい炭素数6~12のアリール基を示す。
 一般式(VI)のR16~R17は、それぞれ前記R11~R12と同義であり、好ましい置換基も前記R11~R12と同義である。
 一般式(VI)のR18は、水素原子、炭素数1~6の直鎖若しくは分枝鎖のアルキル基、又は少なくとも1つの水素原子がハロゲン原子で置換された炭素数1~6の直鎖若しくは分枝鎖のハロゲン化アルキル基を示し、好ましくは水素原子、炭素数1~4の直鎖若しくは分枝鎖のアルキル基であり、より好ましくは水素原子、炭素数1又は2の直鎖のアルキル基である。
 R18の好適例としては、水素原子、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、フルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、iso-プロピル基、sec-ブチル基、tert-ブチル基、tert-アミル基等が挙げられ、中でも、水素原子、メチル基、エチル基、n-プロピル基、n-ブチル基、iso-プロピル基がより好ましく、水素原子、メチル基、エチル基が特に好ましい。
 一般式(VI)のL2は、少なくとも1つの水素原子が-OSO219(R19はR16又はR17と同じである)で置換されてもよい炭素数1~6の直鎖若しくは分枝鎖のアルキレン基、又は少なくとも一つのエーテル結合を含む炭素数2~6の2価の連結基、又は単結合(すなわち-CHR18-と-CH2-が直接結合する)を示す。
 前記一般式(VI)のL2はL1と同義である。
 第III-2発明において、上記の効果が得られる理由は必ずしも明確ではないが、以下のように考えられる。
 第III-2発明の非水電解液が含有する一般式(VI)で表されるスルホン酸エステル化合物は、少なくとも1つのスルホニルオキシ基が結合する炭素上に、一般式(V)で表されるスルホン酸エステルが有するメチンプロトンよりも酸性度が高いメチレンプロトン(RSO3-CH2-)を有する。従って、初回充電時に負極上で、一般式(VI)で表されるスルホン酸エステル化合物のメチレン基の反応をトリガーとして、一般式(V)で表される化合物との複合化が進行し、一般式(V)で表される化合物のみを使用した場合よりも高温保存に強い被膜が形成されるためと考えられる。一般式(VI)のR18が水素原子である場合(スルホニルオキシ基が結合するメチレン基を2つ有する場合)、一般式(V)で表される化合物と更に複合化しやすくなるのでより好ましい。
 一般式(VI)で表されるスルホン酸エステルの融点は100℃以下であることが好ましく、50℃以下であることがより好ましく、40℃以下であることが更に好ましい。一般式(VI)で表されるスルホン酸エステルが上記の範囲の融点を有する場合に一段と高温保存後の低温特性が向上するため好ましい。
 上記の効果が得られる理由は必ずしも明確ではないが、一般式(VI)で表されるスルホン酸エステルの融点が低いものほど、非水溶媒への溶解性が高くなり、低温でのリチウムイオンの移動がスムーズになるためと考えられる。
 例えば、一般式(VI)においてR16及びR17が共にメチル基であり、L2が単結合若しくは炭素数1~5の直鎖のアルキレン鎖の場合のスルホン酸エステル化合物の融点は、L2が単結合(主鎖の炭素数2)の場合44~45℃、メチレン基(主鎖の炭素数3)の場合41~42℃、エチレン基(主鎖の炭素数4)の場合117℃~118℃、トリメチレン基(主鎖の炭素数5)の場合35-36℃、テトラメチレン基(主鎖の炭素数6)の場合58~59℃、ペンタメチレン基(主鎖の炭素数7)の場合53℃である。
 一般式(VI)中の-CHR18-L2-CH2-の好適例としては、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等の直鎖のアルキレン基や、プロパン-1,2-ジイル基、ブタン-1,2-ジイル基、ブタン-1,3-ジイル基、ペンタン-1,4-ジイル基、ヘキサン-1,5-ジイル基、2-メチルプロパン-1,3-ジイル基、2,2-ジメチルプロパン-1,3-ジイル基等の分枝鎖のアルキレン基が挙げられる。
 これらの基の中でも、エチレン基、トリメチレン基、ペンタメチレン基等の直鎖のアルキレン基や、プロパン-1,2-ジイル基等の分枝鎖のアルキレン基がより好ましく、トリメチレン基、ペンタメチレン基等の直鎖のアルキレン基が特に好ましい。
 上記の置換基の場合に一段と広い温度範囲での電気化学特性が向上するので好ましい。
 前記一般式(VI)で表されるスルホン酸エステル化合物の具体例としては、エタン-1,2-ジイル ジメタンスルホネート、エタン-1,2-ジイル ジエタンスルホネート、エタン-1,2-ジイル ビストリフルオロメタンスルホネート、エタン-1,2-ジイル ジベンゼンスルホネート、エタン-1,2-ジイル ビス(4-メチルベンゼンスルホネート)、プロパン-1,3-ジイル ジメタンスルホネート、プロパン-1,3-ジイル ジエタンスルホネート、プロパン-1,3-ジイル ビストリフルオロメタンスルホネート、プロパン-1,3-ジイル ジベンゼンスルホネート、プロパン-1,3-ジイル ビス(4-メチルベンゼンスルホネート)、ブタン-1,2-ジイル ジメタンスルホネート、ブタン-1,2-ジイル ジエタンスルホネート、ブタン-1,2-ジイル ビストリフルオロメタンスルホネート、ブタン-1,2-ジイル ジベンゼンスルホネート、ブタン-1,2-ジイル ビス(4-メチルベンゼンスルホネート)、ブタン-1,4-ジイル ジメタンスルホネート、ブタン-1,4-ジイル ジエタンスルホネート、ブタン-1,4-ジイル ビストリフルオロメタンスルホネート、ブタン-1,4-ジイル ジベンゼンスルホネート、ブタン-1,4-ジイル ビス(4-メチルベンゼンスルホネート)、ペンタン-1,5-ジイル ジメタンスルホネート、ペンタン-1,5-ジイル ジエタンスルホネート、ペンタン-1,5-ジイル ビストリフルオロメタンスルホネート、ペンタン-1,5-ジイル ジベンゼンスルホネート、ペンタン-1,5-ジイル ビス(4-メチルベンゼンスルホネート)、ヘキサン-1,6-ジイル ジメタンスルホネート、ヘキサン-1,6-ジイル ジエタンスルホネート、ヘキサン-1,6-ジイル ビストリフルオロメタンスルホネート、ヘキサン-1,6-ジイル ジベンゼンスルホネート、ヘキサン-1,6-ジイル ビス(4-メチルベンゼンスルホネート)、プロパン-1,2-ジイル ジメタンスルホネート、プロパン-1,2-ジイル ジエタンスルホネート、プロパン-1,2-ジイル ビストリフルオロメタンスルホネート、プロパン-1,2-ジイル ジベンゼンスルホネート、プロパン-1,2-ジイル ビス(4-メチルベンゼンスルホネート)、ブタン-1,3-ジイル ジメタンスルホネート、ブタン-1,3-ジイル ジエタンスルホネート、ブタン-1,3-ジイル ビストリフルオロメタンスルホネート、ブタン-1,3-ジイル ジベンゼンスルホネート、ブタン-1,3-ジイル ビス(4-メチルベンゼンスルホネート)、ペンタン-1,4-ジイル ジメタンスルホネート、ペンタン-1,4-ジイル ジエタンスルホネート、ペンタン-1,4-ジイル ビストリフルオロメタンスルホネート、ペンタン-1,4-ジイル ジベンゼンスルホネート、ペンタン-1,4-ジイル ビス(4-メチルベンゼンスルホネート)、ヘキサン-1,5-ジイル ジメタンスルホネート、ヘキサン-1,5-ジイル ジエタンスルホネート、ヘキサン-1,5-ジイル ビストリフルオロメタンスルホネート、ヘキサン-1,5-ジイル ジベンゼンスルホネート、ヘキサン-1,5-ジイル ビス(4-メチルベンゼンスルホネート)、2-メチルプロパン-1,3-ジイル ジメタンスルホネート、2-メチルプロパン-1,3-ジイル ジエタンスルホネート、2-メチルプロパン-1,3-ジイル ビストリフルオロメタンスルホネート、2-メチルプロパン-1,3-ジイル ジベンゼンスルホネート、2-メチルプロパン-1,3-ジイル ビス(4-メチルベンゼンスルホネート)、2,2-ジメチルプロパン-1,3-ジイル ジメタンスルホネート、2,2-ジメチルプロパン-1,3-ジイル ジエタンスルホネート、2,2-ジメチルプロパン-1,3-ジイル ビストリフルオロメタンスルホネート、2,2-ジメチルプロパン-1,3-ジイル ジベンゼンスルホネート、2,2-ジメチルプロパン-1,3-ジイル ビス(4-メチルベンゼンスルホネート)、プロパン-1,2,3-トリイル トリメタンスルホネート、プロパン-1,2,3-トリイル トリエタンスルホネート、プロパン-1,2,3-トリイル トリス(ビストリフルオロメタンスルホネート)、プロパン-1,2,3-トリイル トリベンゼンスルホネート、プロパン-1,2,3-トリイル トリス(4-メチルベンゼンスルホネート)、ブタン-1,2,4-トリイル トリメタンスルホネート、ブタン-1,2,4-トリイル トリエタンスルホネート、ブタン-1,2,4-トリイル トリス(ビストリフルオロメタンスルホネート)、ブタン-1,2,4-トリイル トリベンゼンスルホネート、ブタン-1,2,4-トリイル トリス(4-メチルベンゼンスルホネート)、2,2’-オキシビス(エタン-2,1-ジイル) ジメタンスルホネート、2,2’-オキシビス(エタン-2,1-ジイル) ジエタンスルホネート、2,2’-オキシビス(エタン-2,1-ジイル) ビストリフルオロメタンスルホネート、2,2’-オキシビス(エタン-2,1-ジイル) ジベンゼンスルホネート、2,2’-オキシビス(エタン-2,1-ジイル) ビス(4-メチルベンゼンスルホネート)、1-(2-(メタンスルホニルオキシ)エトキシ)プロパン-2-イル メタンスルホネート、1-(2-(エタンスルホニルオキシ)エトキシ)プロパン-2-イル エタンスルホネート、1-(2-(トリフルオロメタンスルホニルオキシ)エトキシ)プロパン-2-イル トリフルオロメタンスルホネート、1-(2-(ベンゼンスルホニルオキシ)エトキシ)プロパン-2-イル ベンゼンスルホネート、1-(2-(4-メチルベンゼンスルホニルオキシ)エトキシ)プロパン-2-イル 4-メチルベンゼンスルホネート等が挙げられる。
 これらの中でも、エタン-1,2-ジイル ジメタンスルホネート、エタン-1,2-ジイル ビス(4-メチルベンゼンスルホネート)、プロパン-1,3-ジイル ジメタンスルホネート、プロパン-1,3-ジイル ビス(4-メチルベンゼンスルホネート)、ペンタン-1,5-ジイル ジメタンスルホネート、ペンタン-1,5-ジイル ビス(4-メチルベンゼンスルホネート)、プロパン-1,2-ジイル ジメタンスルホネート、プロパン-1,2-ジイル ビス(4-メチルベンゼンスルホネート)が好ましく、エタン-1,2-ジイル ジメタンスルホネート、プロパン-1,3-ジイル ジメタンスルホネート、ペンタン-1,5-ジイル ジメタンスルホネート、プロパン-1,2-ジイル ジメタンスルホネートが更に好ましく、プロパン-1,3-ジイル ジメタンスルホネート、ペンタン-1,5-ジイル ジメタンスルホネートが特に好ましい。
 一般式(VI)で表されるスルホン酸エステル化合物は、光学異性体を有する場合がある。光学異性体については、R体、S体が存在し得るが、第III-2発明においてはそのいずれも本発明の効果を奏する。また、前記光学異性体は任意の比率の混合物として用いることもでき、光学異性体の一方が過剰に存在する場合(光学活性体)又は光学異性体が同量で存在する場合(ラセミ体)のいずれの場合も本発明の効果を有する。さらにジアステレオマーが存在する場合、ジアステレオマーについては、その化学的、又は電気化学的性質は必ずしも同一ではないことから、ジアステレオマーの存在比によって、本発明の効果の程度が異なる場合があるが、それら光学異性体のいずれかを単独又は複数の混合物で用いた場合においても本発明の効果を有する。
 第III-2発明の非水電解液において、非水電解液に含有される前記一般式(VI)で表されるスルホン酸エステル化合物の含有量は、非水電解液中に0.001~5質量%が好ましい。該含有量が5質量%以下であれば、電極上に過度に被膜が形成され低温特性が低下するおそれが少なく、また0.001質量%以上であれば被膜の形成が十分であり、高温保存特性の改善効果が高まる。該含有量は、非水電解液中に0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、その上限は、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましい。
 前記一般式(V)で表されるスルホン酸エステル化合物と一般式(VI)で表されるスルホン酸エステル化合物を併用する場合、特に制限されないが、〔一般式(V)で表されるスルホン酸エステル化合物:一般式(VI)で表されるスルホン酸エステル化合物〕の質量比は、広い温度範囲での電気化学特性を向上させる観点から、49:51~1:99が好ましく、40:60~10:90がより好ましい。
 第III発明の非水電解液において、前記一般式(V)で表されるスルホン酸エステル化合物を添加することにより広い温度範囲での電気化学特性は向上するが、以下に述べる非水溶媒、電解質塩、更にその他の添加剤を組み合わせることにより、広い温度範囲での電気化学特性が相乗的に向上するという特異な効果を発現する。その理由は明らかではないが、これらの非水溶媒、電解質塩、さらにその他の添加剤の構成元素を含有するイオン伝導性の高い混合被膜が形成されるためと考えられる。
<第IV発明>
 本発明の第IV発明の非水電解液は、非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に、下記一般式(VII)で表される化合物を0.001~5質量%含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000024
(式中、R21~R26は同一であっても異なっていてもよく、炭素数1~6のアルキル基、又は炭素数6~12のアリール基を示す。前記の炭素数1~6のアルキル基及び炭素数6~12のアリール基は、それらの少なくとも1つの水素原子がハロゲン原子で置換されていてもよい。)
 一般式(VII)のR21~R24は同一であっても異なっていてもよく、炭素数1~6のアルキル基、少なくとも1つの水素原子がハロゲン原子で置換された炭素数1~6のハロゲン化アルキル基、又は、水素原子がハロゲン原子で置換されてもよい炭素数6~12のアリール基を示し、炭素数1~4の直鎖もしくは分枝鎖のアルキル基、又は炭素数6~8のアリール基がより好ましく、炭素数1~2の直鎖もしくは炭素数3~4の分枝鎖のアルキル基が更に好ましい。
 R25及びR26は同一であっても異なっていてもよく、炭素数1~6のアルキル基、少なくとも1つの水素原子がハロゲン原子で置換された炭素数1~6のハロゲン化アルキル基、又は水素原子がハロゲン原子で置換されてもよい炭素数6~12のアリール基を示し、炭素数1~4の直鎖のアルキル基もしくは炭素数3~4の分枝鎖のアルキル基、少なくとも1つの水素原子がハロゲン原子で置換された炭素数1~4の直鎖のハロゲン化アルキル基、又は炭素数6~8のアリール基がより好ましく、炭素数1~2の直鎖のアルキル基、少なくとも1つの水素原子がハロゲン原子で置換された炭素数1~2の直鎖のハロゲン化アルキル基、又は炭素数6~7のアリール基が更に好ましい。
 前記R21~R24の具体例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基等の直鎖のアルキル基、iso-プロピル基、sec-ブチル基、tert-ブチル基、tert-アミル基等の分枝鎖のアルキル基、フルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基等の水素原子の一部がフッ素原子で置換されたアルキル基、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-tert-ブチルフェニル基、2,4,6-トリメチルフェニル基、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2,4-ジフルオロフェニル基、2,6-ジフルオロフェニル基、3,4-ジフルオロフェニル基、2,4,6-トリフルオロフェニル基、ペンタフルオロフェニル基、4-トリフルオロメチルフェニル基等のアリール基等が好適に挙げられ、中でも、メチル基、エチル基、n-プロピル基、n-ブチル基、tert-ブチル基、tert-アミル基が好ましく、メチル基、エチル基、tert-ブチル基が更に好ましい。
 前記R25及びR26の具体例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基等の直鎖のアルキル基、iso-プロピル基、sec-ブチル基、tert-ブチル基、tert-アミル基等の分枝鎖のアルキル基、フルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基等の水素原子の一部がフッ素原子で置換されたアルキル基、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-tert-ブチルフェニル基、2,4,6-トリメチルフェニル基、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2,4-ジフルオロフェニル基、2,6-ジフルオロフェニル基、3,4-ジフルオロフェニル基、2,4,6-トリフルオロフェニル基、ペンタフルオロフェニル基、4-トリフルオロメチルフェニル基等のアリール基等が好適に挙げられ、中でも、メチル基、エチル基、n-プロピル基、n-ブチル基、tert-ブチル基、4-メチルフェニル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基が好ましく、メチル基、4-メチルフェニル基が更に好ましい。
 一般式(VII)で表されるケイ素原子を有するスルホネート化合物としては、具体的に、1,1,2,2-テトラメチルジシラン-1,2-ジイル ジメタンスルホネート、1,1,2,2-テトラエチルジシラン-1,2-ジイル ジメタンスルホネート、1,1,2,2-テトラプロピルジシラン-1,2-ジイル ジメタンスルホネート、1,1,2,2-テトラ(iso-プロピル)ジシラン-1,2-ジイル ジメタンスルホネート、1,1,2,2-テトラブチルジシラン-1,2-ジイル ジメタンスルホネート、1,1,2,2-テトラ(tert-ブチル)ジシラン-1,2-ジイル ジメタンスルホネート、1,1,2,2-テトラ(tert-アミル)ジシラン-1,2-ジイル ジメタンスルホネート、1,1,2,2-テトラ(トリフルオロメチル)ジシラン-1,2-ジイル ジメタンスルホネート、1,1,2,2-テトラフェニルジシラン-1,2-ジイル ジメタンスルホネート、1,1,2,2-テトラ(4-フルオロフェニル)ジシラン-1,2-ジイル ジメタンスルホネート、1,2-ジメチル-1,2-ジフェニルジシラン-1,2-ジイル ジメタンスルホネート、1,1,2,2-テトラメチルジシラン-1,2-ジイル ジエタンスルホネート、1,1,2,2-テトラメチルジシラン-1,2-ジイル ビス(プロパン-1-スルホネート)、1,1,2,2-テトラメチルジシラン-1,2-ジイル ビス(ブタン-1-スルホネート)、1,1,2,2-テトラメチルジシラン-1,2-ジイル ビス(2-メチルプロパン-2-スルホネート)、1,1,2,2-テトラメチルジシラン-1,2-ジイル ジベンゼンスルホネート、1,1,2,2-テトラメチルジシラン-1,2-ジイル ビス(4-メチルベンゼンスルホネート)、1,1,2,2-テトラメチルジシラン-1,2-ジイル ビス(トリフルオロメタンスルホネート)、1,1,2,2-テトラメチルジシラン-1,2-ジイル ビス(2,2,2-トリフルオロエタンスルホネート)、1,1,2,2-テトラエチルジシラン-1,2-ジイル ビス(4-メチルベンゼンスルホネート)、1,1,2,2-テトラプロピルジシラン-1,2-ジイル ビス(4-メチルベンゼンスルホネート)、1,1,2,2-テトラ(tert-ブチル)ジシラン-1,2-ジイル ビス(4-メチルベンゼンスルホネート)、1,1,2,2-テトラフェニルジシラン-1,2-ジイル ビス(4-メチルベンゼンスルホネート)が好適に挙げられる。
 これらの中でも、1,1,2,2-テトラメチルジシラン-1,2-ジイル ジメタンスルホネート、1,1,2,2-テトラエチルジシラン-1,2-ジイル ジメタンスルホネート、1,1,2,2-テトラプロピルジシラン-1,2-ジイル ジメタンスルホネート、1,1,2,2-テトラ(iso-プロピル)ジシラン-1,2-ジイル ジメタンスルホネート、1,1,2,2-テトラブチルジシラン-1,2-ジイル ジメタンスルホネート、1,1,2,2-テトラ(tert-ブチル)ジシラン-1,2-ジイル ジメタンスルホネート、1,1,2,2-テトラ(tert-アミル)ジシラン-1,2-ジイル ジメタンスルホネート、1,1,2,2-テトラ(4-フルオロフェニル)ジシラン-1,2-ジイル ジメタンスルホネート、1,1,2,2-テトラメチルジシラン-1,2-ジイル ジエタンスルホネート、1,1,2,2-テトラメチルジシラン-1,2-ジイル ビス(プロパン-1-スルホネート)、1,1,2,2-テトラメチルジシラン-1,2-ジイル ビス(ブタン-1-スルホネート)、1,1,2,2-テトラメチルジシラン-1,2-ジイル ビス(2-メチルプロパン-2-スルホネート)、1,1,2,2-テトラメチルジシラン-1,2-ジイル ビス(4-メチルベンゼンスルホネート)、1,1,2,2-テトラエチルジシラン-1,2-ジイル ビス(4-メチルベンゼンスルホネート)、1,1,2,2-テトラプロピルジシラン-1,2-ジイル ビス(4-メチルベンゼンスルホネート)、1,1,2,2-テトラ(tert-ブチル)ジシラン-1,2-ジイル ビス(4-メチルベンゼンスルホネート)、1,1,2,2-テトラフェニルジシラン-1,2-ジイル ビス(4-メチルベンゼンスルホネート)、1,1,2,2-テトラメチルジシラン-1,2-ジイル ビス(トリフルオロメチル)スルホネート、1,1,2,2-テトラメチルジシラン-1,2-ジイル ビス(2,2,2-トリフルオロエタンスルホネート)がより好ましく、1,1,2,2-テトラメチルジシラン-1,2-ジイル ジメタンスルホネート、1,1,2,2-テトラエチルジシラン-1,2-ジイル ジメタンスルホネート、1,1,2,2-テトラメチルジシラン-1,2-ジイル ビス(4-メチルベンゼンスルホネート)が更に好ましい。
 上記の置換基の範囲の場合に、広い温度範囲での電気化学特性を大幅に改善できるので好ましい。
 第IV発明の非水電解液において、非水電解液に含有される一般式(VII)で表されるケイ素原子を有するスルホネート化合物の含有量は、非水電解液中に0.001~5質量%が好ましい。該含有量が5質量%以下であれば、電極上に過度に被膜が形成され低温特性が低下するおそれが少なく、また0.001質量%以上であれば被膜の形成が十分であり、高温保存特性の改善効果が高まる。該含有量は、非水電解液中に0.008質量%以上が好ましく、0.02質量%以上がより好ましい。また、その上限は、3質量%以下が好ましく、1質量%以下がより好ましい。
 第IV発明の非水電解液において、一般式(VII)で表されるケイ素原子を有するスルホネート化合物を以下に述べる非水溶媒、電解質塩、更にその他の添加剤を組み合わせることにより、広い温度範囲での電気化学特性が相乗的に向上するという特異な効果を発現する。
〔非水溶媒〕
 本発明の非水電解液に使用される非水溶媒としては、環状カーボネート、鎖状エステル、ラクトン、エーテル、アミド、リン酸エステル、スルホン、ニトリル、S=O結合含有化合物等が挙げられる。
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、トランス又はシス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン(以下、両者を総称して「DFEC」という)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)等が好適に挙げられる。
 これらの中でも、炭素-炭素二重結合又はフッ素原子を有する環状カーボネートを少なくとも1種を使用すると広い温度範囲でのサイクル特性が一段と向上するので好ましく、炭素-炭素二重結合を有する環状カーボネートとフッ素原子を有する環状カーボネートを両方含むことが特に好ましい。炭素-炭素二重結合を有する環状カーボネートとしては、VC、VECがより好ましく、フッ素原子を有する環状カーボネートとしては、FEC、DFECがより好ましい。
 炭素-炭素二重結合を有する環状カーボネートの含有量は、非水溶媒の総体積に対して、好ましくは0.001体積%以上、より好ましくは0.03体積%以上、更に好ましくは0.2体積%以上、また、その上限は、好ましくは10体積%以下、より好ましくは6体積%以下、更に好ましくは4体積%以下であると、前記一般式(I)、(II)、(III)、(IV)、(V)、(VI)、又は(VII)で表されるスルホン酸エステル化合物と互いに結合した被膜を電極上に形成するため、一段と広い温度範囲での電気化学特性が向上するので好ましい。なお、以下において、特に明記しない限り、「一般式(I)」は、一般式(II)~(VII)を含む概念として使用する。
 また、炭素-炭素二重結合を有する環状カーボネートの非水電解液中の含有量は、非水溶媒の総体積に対して、好ましくは0.001~10質量%、より好ましくは0.03質量%以上、更に好ましくは0.2質量%以上であり、また、その上限は、好ましくは10質量%以下、より好ましくは6質量%以下、更に好ましくは4質量%以下である。
 フッ素原子を有する環状カーボネートの含有量は、非水溶媒の総体積に対して、好ましくは0.01体積%以上、より好ましくは0.03体積%以上、更に好ましくは0.3体積%以上であり、また、その上限は、好ましくは35体積%以下、より好ましくは25体積%以下、更に好ましくは15体積%以下であると、一般式(I)で表されるスルホン酸エステル化合物と互いに結合した被膜を電極上に形成するため、一段と広い温度範囲での電気化学特性が向上するので好ましい。
 また、フッ素原子を含有する環状カーボネートの非水電解液中の含有量としては、0.01~35質量%であり、好ましくは0.01質量%以上、より好ましくは0.03質量%以上、更に好ましくは0.3質量%以上、また、その上限は、好ましくは35質量%以下、より好ましくは30質量%以下、より好ましくは25質量%以下、更に好ましくは15質量%以下である。
 非水溶媒が炭素-炭素二重結合を有する環状カーボネートとフッ素原子を有する環状カーボネートの両方を含む場合、フッ素原子を有する環状カーボネートの含有量に対する炭素-炭素二重結合を有する環状カーボネートの体積比率は、好ましくは0.005以上、より好ましくは0.01以上であり、その上限は、好ましくは10以下、より好ましくは5以下、更に好ましくは2以下である。前記の組成比の場合に一段と広い温度範囲での電気化学特性が向上するので好ましい。
 また、非水溶媒がエチレンカーボネート及び/又はプロピレンカーボネートを含むと電極上に形成される被膜の抵抗が小さくなるので好ましく、エチレンカーボネート及び/又はプロピレンカーボネートの含有量は、非水溶媒の総体積に対して、好ましくは3体積%以上、より好ましくは5体積%以上、更に好ましくは7体積%以上であり、また、その上限は、好ましくは45体積%以下、より好ましくは35体積%以下、更に好ましくは25体積%以下である。
 これらの環状カーボネートは1種類で使用してもよく、また2種類以上を組み合わせて使用した場合は、広い温度範囲での電気化学特性が更に向上するので好ましく、3種類以上が特に好ましい。これらの環状カーボネートの好適な組合せとしては、ECとPC、ECとVC、PCとVC、VCとFEC、ECとFEC、PCとFEC、FECとDFEC、ECとDFEC、PCとDFEC、VCとDFEC、VECとDFEC、ECとPCとVC、ECとPCとFEC、ECとVCとFEC、ECとVCとVEC、PCとVCとFEC、ECとVCとDFEC、PCとVCとDFEC、ECとPCとVCとFEC、ECとPCとVCとDFEC等が好ましい。前記の組合せのうち、2種類の組み合わせとしては、ECとVC、ECとFEC、PCとFEC等の組み合わせが好ましく、3種類以上の組み合わせとしては、ECとPCとVC、ECとPCとFEC、ECとVCとFEC、PCとVCとFEC、ECとPCとVCとFEC等の組合せが好ましい。
 環状カーボネートの含有量は、特に制限はされないが、非水溶媒の総体積に対して、10~40体積%の範囲で用いるのが好ましい。含有量が10体積%以上であれば非水電解液の伝導度が低下して広い温度範囲での電気化学特性が低下するおそれが少なく、40体積%以下であれば非水電解液の粘性が高くなりすぎて広い温度範囲での電気化学特性が低下するおそれが少ないので上記範囲であることが好ましい。
 鎖状エステルとしては、メチルエチルカーボネート(MEC)、メチルプロピルカーボネート(MPC)、メチルイソプロピルカーボネート(MIPC)、メチルブチルカーボネート、エチルプロピルカーボネート等の非対称鎖状カーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート、ジブチルカーボネート等の対称鎖状カーボネート、プロピオン酸メチル、プロピオン酸エチル、酢酸メチル、酢酸エチル等の鎖状カルボン酸エステルが好適に挙げられる。
 鎖状エステルの含有量は、特に制限されないが、非水溶媒の総体積に対して、60~90体積%の範囲で用いるのが好ましい。該含有量が60体積%以上であれば非水電解液の粘度が高くなりすぎず、90体積%以下であれば非水電解液の電気伝導度が低下して広い温度範囲での電気化学特性が低下するおそれが少ないので上記範囲であることが好ましい。
 前記鎖状エステルの中でも、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、メチルプロピルカーボネート(MPC)、メチルイソプロピルカーボネート(MIPC)、メチルブチルカーボネート、プロピオン酸メチル、酢酸メチル及び酢酸エチルから選ばれるメチル基を含む鎖状エステルが好ましく、特にメチル基を有する鎖状カーボネートが好ましい。
 また、鎖状カーボネートを用いる場合には、2種以上を用いることが好ましく、対称鎖状カーボネートと非対称鎖状カーボネートの両方が含まれるとより好ましく、対称鎖状カーボネートの含有量が非対称鎖状カーボネートより多く含まれると更に好ましい。
 鎖状カーボネート中に対称鎖状カーボネートが占める体積の割合は、50体積%以上であり、55体積%以上がより好ましい。上限としては、95体積%以下がより好ましく、85体積%以下であると更に好ましい。対称鎖状カーボネートにジメチルカーボネート(DMC)及びジエチルカーボネート(DEC)が含まれると特に好ましい。非水溶媒中のジエチルカーボネート(DEC)の含有量は、1体積%以上が好ましく、2体積%以上がより好ましく、その上限は、10体積%以下が好ましく、6体積%以下がより好ましい。
 非対称鎖状カーボネートはメチル基を有するとより好ましく、メチルエチルカーボネート(MEC)が特に好ましい。
 上記の場合に一段と広い温度範囲での電気化学特性が向上するので好ましい。
 環状カーボネートと鎖状エステルの割合は、広い温度範囲での電気化学特性向上の観点から、環状カーボネート:鎖状エステル(体積比)が10:90~45:55が好ましく、15:85~40:60がより好ましく、20:80~35:65が特に好ましい。
 なお、第IV発明においては、非水電解液中に、さらに炭素数1~6の脂肪族炭化水素基が第3級炭素原子又は第4級炭素原子を介してベンゼン環に結合しているベンゼン化合物(第2の添加剤)を含むと、一段と広い温度範囲での電気化学特性が向上するので好ましい。理由は必ずしも明らかではないが、ベンゼン環が負極に吸着し、さらにベンゼン環に分枝鎖のアルキル基を有しているので、一般式(VII)で表されるケイ素原子を有するスルホネート化合物由来の被膜が過度に緻密化することなく耐熱性が向上するためであると考えられる。
 非水電解液に含有される炭素数1~6の脂肪族炭化水素基が第3級炭素原子又は第4級炭素原子を介してベンゼン環に結合しているベンゼン化合物の含有量は、0.1~10質量%が好適である。一般式(VII)で表されるケイ素原子を含むスルホネート化合物の質量に対して1~50倍の質量であることが好ましい。該含有量が一般式(VII)で表されるケイ素原子を有するスルホネート化合物の質量に対して50倍以下であれば、負極上に過度に吸着して低温特性が低下するおそれが少なく、また1倍以上であれば負極への吸着の効果が十分得られる。従って、1倍以上が好ましく、4倍以上がより好ましく、10倍以上が更に好ましい。上限としては、50倍以下が好ましく、40倍以下がより好ましく、30倍以下が更に好ましい。
 炭素数1~6の脂肪族炭化水素基が第3級炭素原子又は第4級炭素原子を介してベンゼン環に結合しているベンゼン化合物としては、シクロヘキシルベンゼン、フルオロシクロヘキシルベンゼン(1-フルオロ-2-シクロヘキシルベンゼン、1-フルオロ-3-シクロヘキシルベンゼン、1-フルオロ-4-シクロヘキシルベンゼン)、tert-ブチルベンゼン、1,3-ジ-tert-ブチルベンゼン、tert-アミルベンゼン、1-フルオロ-4-tert-ブチルベンゼンが好適に挙げられ、シクロヘキシルベンゼン、tert-ブチルベンゼン、tert-アミルベンゼンがより好ましく、tert-ブチルベンゼン、tert-アミルベンゼンが更に好ましい。
 本発明に用いられるその他の非水溶媒としては、ピバリン酸メチル、ピバリン酸ブチル、ピバリン酸ヘキシル、ピバリン酸オクチル等の第3級カルボン酸エステル、シュウ酸ジメチル、シュウ酸エチルメチル、シュウ酸ジエチル等のシュウ酸エステル、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、1,3-ジオキサン、1,4-ジオキサン等の環状エーテル、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタン等の鎖状エーテル、ジメチルホルムアミド等のアミド、リン酸トリメチル、リン酸トリブチル、リン酸トリオクチル等のリン酸エステル、スルホラン等のスルホン、γ-ブチロラクトン、γ-バレロラクトン、α-アンゲリカラクトン等のラクトン、アセトニトリル、プロピオニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル等のニトリル、エチレンサルファイト、ヘキサヒドロベンゾ[1,3,2]ジオキサチオラン-2-オキシド(1,2-シクロヘキサンジオールサイクリックサルファイトともいう)、5-ビニル-ヘキサヒドロ1,3,2-ベンゾジオキサチオール-2-オキシド等の環状サルファイト、1,3-プロパンスルトン、1,3-ブタンスルトン、1,4-ブタンスルトン、メタンスルホン酸2-プロピニル、ブタン-1,4-ジイル ジメタンスルホネート、ペンタン-1,5-ジイル ジメタンスルホネート、プロパン-1,2-ジイル ジメタンスルホネート、ブタン-2,3-ジイル ジメタンスルホネート、メチレンメタンジスルホネート等の環状構造若しくは不飽和基を有するスルホン酸エステル、ジビニルスルホン、1,2-ビス(ビニルスルホニル)エタン、ビス(2-ビニルスルホニルエチル)エーテル等のビニルスルホン等から選ばれるS=O結合含有化合物、無水酢酸、無水プロピオン酸等の鎖状のカルボン酸無水物、無水コハク酸、無水マレイン酸、無水グルタル酸、無水イタコン酸、3-スルホ-プロピオン酸無水物等の環状酸無水物、メトキシペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン、フェノキシペンタフルオロシクロトリホスファゼン、エトキシヘプタフルオロシクロテトラホスファゼン等の環状ホスファゼン、シクロヘキシルベンゼン、フルオロシクロヘキシルベンゼン(1-フルオロ-2-シクロヘキシルベンゼン、1-フルオロ-3-シクロヘキシルベンゼン、1-フルオロ-4-シクロヘキシルベンゼン)、tert-ブチルベンゼン、tert-アミルベンゼン、1-フルオロ-4-tert-ブチルベンゼン等の分枝鎖アルキル基を有するベンゼン化合物、ビフェニル、ターフェニル(o-、m-、p-体)等の芳香環がベンゼン環に結合したベンゼン化合物、ジフェニルエーテル、フルオロベンゼン、ジフルオロベンゼン(o-、m-、p-体)、アニソール、2,4-ジフルオロアニソール、ターフェニルの部分水素化物(1,2-ジシクロヘキシルベンゼン、2-フェニルビシクロヘキシル、1,2-ジフェニルシクロヘキサン、o-シクロヘキシルビフェニル)等のその他の芳香族化合物が好適に挙げられる。
 上記の中でも、ニトリル及び/又は芳香族化合物を含むと一段と広い温度範囲での電池特性が向上するので好ましい。ニトリルの中では、ジニトリルが好ましく、中でも2つのシアノ基が炭素数2~6の脂肪族炭化水素基で連結されたものがより好ましく、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリルが更に好ましく、アジポニトリル、ピメロニトリルが特に好ましい。
 また、芳香族化合物の中では、芳香環がベンゼン環に結合若しくは炭素数1~6の脂肪族炭化水素基が第3級炭素原子又は第4級炭素原子を介してベンゼン環に結合しているベンゼン化合物が好ましく、炭素数1~6の脂肪族炭化水素基が第3級炭素原子又は第4級炭素原子を介してベンゼン環に結合しているベンゼン化合物がより好ましく、これらの中でも、ビフェニル、シクロヘキシルベンゼン、tert-ブチルベンゼン、tert-アミルベンゼンが更に好ましく、tert-ブチルベンゼン、tert-アミルベンゼンが特に好ましい。
 ニトリル及び/又は芳香族化合物の含有量は、非水電解液中に0.001~5質量%が好ましい。該含有量が5質量%以下であれば、電極上に過度に被膜が形成され低温特性が低下するおそれが少なく、また0.001質量%以上であれば被膜の形成が十分であり、高温保存特性の改善効果が高まる。該含有量は、非水電解液中に0.005質量%以上が好ましく、0.01質量%以上がより好ましく、0.03質量%以上が更に好ましく、その上限は、3質量%以下が好ましく、1質量%以下がより好ましく、0.4質量%以下が更に好ましい。
 また、環状サルファイト、環状構造若しくは不飽和基を有するスルホン酸エステル、ビニルスルホンから選ばれる環状構造若しくは不飽和基を有するS=O基含有化合物を含むと一段と広い温度範囲での電気化学特性が向上するので好ましい。中でも、1,3-プロパンスルトン、エチレンサルファイト、ヘキサヒドロベンゾ[1,3,2]ジオキサチオラン-2-オキシド、5-ビニル-ヘキサヒドロ-1,3,2-ベンゾジオキサチオール-2-オキシド、4-(メチルスルホニルメチル)-1,3,2-ジオキサチオラン-2-オキシド、ジビニルスルホン、ビス(2-ビニルスルホニルエチル)エーテルが好ましく、ヘキサヒドロベンゾ[1,3,2]ジオキサチオラン-2-オキシド、5-ビニル-ヘキサヒドロ-1,3,2-ベンゾジオキサチオール-2-オキシド、4-(メチルスルホニルメチル)-1,3,2-ジオキサチオラン-2-オキシド、ビス(2-ビニルスルホニルエチル)エーテルが更に好ましく、分枝した構造を有する環状サルファイトであるヘキサヒドロベンゾ[1,3,2]ジオキサチオラン-2-オキシド、5-ビニル-ヘキサヒドロ-1,3,2-ベンゾジオキサチオール-2-オキシド、4-(メチルスルホニルメチル)-1,3,2-ジオキサチオラン-2-オキシドが特に好ましい。環状構造若しくは不飽和基を有するS=O基含有化合物の含有量は、非水電解液中に0.001~5質量%が好ましい。該含有量が5質量%以下であれば、電極上に過度に被膜が形成され低温特性が低下するおそれが少なく、また0.001質量%以上であれば被膜の形成が十分であり、高温保存特性の改善効果が高まる。該含有量は、非水電解液中に0.005質量%以上が好ましく、0.01質量%以上がより好ましく、0.03質量%以上が更に好ましく、その上限は、3質量%以下が好ましく、1質量%以下がより好ましく、0.4質量%以下が更に好ましい。
 上記の非水溶媒は通常、適切な物性を達成するために、混合して使用される。その組合せは、例えば、環状カーボネートと鎖状カーボネート等の鎖状エステルの組合せ、環状カーボネートと鎖状エステルとラクトンとの組合せ、環状カーボネートと鎖状エステルとエーテルの組合せ、環状カーボネートと鎖状エステルとニトリルとの組み合わせ等が好適に挙げられる。
 また、非水電解液中には、二酸化炭素を0.01~0.5質量%含有させると広い温度範囲での電気化学特性が一段と向上するため好ましい。
〔電解質塩〕
 本発明に使用される電解質塩としては、下記のリチウム塩、オニウム塩が好適に挙げられる。
(リチウム塩)
 リチウム塩としては、LiPF6、LiPO22、LiBF4、LiClO4、LiN(SO2F)2等の無機リチウム塩、LiN(SO2CF32、LiN(SO2252、LiCF3SO3、LiC(SO2CF33、LiPF4(CF32、LiPF3(C253、LiPF3(CF33、LiPF3(iso-C373、LiPF5(iso-C37)等の鎖状のフッ化アルキル基を含有するリチウム塩や、(CF22(SO22NLi、(CF23(SO22NLi等の環状のフッ化アルキレン鎖を含有するリチウム塩、ビス[オキサレート-O,O’]ホウ酸リチウムやジフルオロ[オキサレート-O,O’]ホウ酸リチウム等のオキサレート錯体をアニオンとするリチウム塩が好適に挙げられる。これらの中でも、LiPF6、LiBF4、LiN(SO2CF32及びLiN(SO2252から選ばれる少なくとも1種が好ましく、LiPF6、LiBF4及びLiN(SO2CF32から選ばれる少なくとも1種がより好ましい。
(オニウム塩)
 また、オニウム塩としては、下記に示すオニウムカチオンとアニオンを組み合わせた各種塩が好適に挙げられる。
 オニウムカチオンの具体例としては、テトラメチルアンモニウムカチオン、エチルトリメチルアンモニウムカチオン、ジエチルジメチルアンモニウムカチオン、トリエチルメチルアンモニウムカチオン、テトラエチルアンモニウムカチオン、N,N-ジメチルピロリジニウムカチオン、N-エチル-N-メチルピロリジニウムカチオン、N,N-ジエチルピロリジニウムカチオン、スピロ-(N,N')-ビピロリジニウムカチオン、N,N'-ジメチルイミダゾリニウムカチオン、N-エチル-N'-メチルイミダゾリニウムカチオン、N,N'-ジエチルイミダゾリニウムカチオン、N,N'-ジメチルイミダゾリウムカチオン、N-エチル-N'-メチルイミダゾリウムカチオン、N,N'-ジエチルイミダゾリウムカチオン等が好適に挙げられる。
 アニオンの具体例としては、PF6アニオン、BF4アニオン、ClO4アニオン、AsF6アニオン、CF3SO3アニオン、N(CF3SO22アニオン、N(C25SO22アニオン、N(SO2F)2アニオン等が好適に挙げられる。
 これらの電解質塩は、1種単独で又は2種以上を組み合わせて使用することができる。
 これら全電解質塩が溶解されて使用される濃度は、前記の非水溶媒に対して、通常0.3M以上が好ましく、0.7M以上がより好ましく、1.1M以上が更に好ましい。またその上限は、2.5M以下が好ましく、2.0M以下がより好ましく、1.5M以下が更に好ましい。
〔非水電解液の製造〕
 本発明の非水電解液は、例えば、前記の非水溶媒を混合し、これに前記の電解質塩及び該非水電解液に対して一般式(I)で表されるスルホン酸エステル化合物を溶解することにより得ることができる。
 この際、用いる非水溶媒及び非水電解液に加える化合物は、生産性を著しく低下させない範囲内で、予め精製して、不純物が極力少ないものを用いることが好ましい。
 本発明の非水電解液は、下記の第1~第4の電気化学素子に使用することができ、非水電解質として、液体状のものだけでなくゲル化されているものも使用し得る。更に本発明の非水電解液は固体高分子電解質用としても使用できる。中でも電解質塩にリチウム塩を使用する第1の電気化学素子用(即ち、リチウム電池用)又は第4の電気化学素子用(即ち、リチウムイオンキャパシタ用)として用いることが好ましく、リチウム電池用として用いることが更に好ましく、リチウム二次電池用として用いることが最も適している。
〔第1の電気化学素子(リチウム電池)〕
 本発明のリチウム電池は、リチウム一次電池及びリチウム二次電池を総称する。また、本明細書において、リチウム二次電池という用語は、いわゆるリチウムイオン二次電池も含む概念として用いる。本発明のリチウム電池は、正極、負極及び非水溶媒に電解質塩が溶解されている前記非水電解液からなる。非水電解液以外の正極、負極等の構成部材は特に制限なく使用できる。
 例えば、リチウム二次電池用正極活物質としては、コバルト、マンガン、及びニッケルから1種以上を含有するリチウムとの複合金属酸化物が使用される。これらの正極活物質は、1種単独又は2種以上を組み合わせて用いることができる。
 このようなリチウム複合金属酸化物としては、例えば、LiCoO2、LiMn24、LiNiO2、LiCo1-xNix2(0.01<x<1)、LiCo1/3Ni1/3Mn1/32、LiNi1/2Mn3/24、LiCo0.98Mg0.022等が挙げられる。また、LiCoO2とLiMn24、LiCoO2とLiNiO2、LiMn24とLiNiO2のように併用してもよい。
 また、過充電時の安全性やサイクル特性を向上したり、4.3V以上の充電電位での使用を可能にするために、リチウム複合金属酸化物の一部は他元素で置換してもよい。例えば、コバルト、マンガン、ニッケルの一部をSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、Cu、Bi、Mo、La等の少なくとも1種以上の元素で置換したり、Oの一部をSやFで置換したり、又はこれらの他元素を含有する化合物を被覆することもできる。
 これらの中では、LiCoO2、LiMn24、LiNiO2のような満充電状態における正極の充電電位がLi基準で4.3V以上で使用可能なリチウム複合金属酸化物が好ましく、LiCo1-xx2(但し、MはSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、Cuから表される少なくとも1種類以上の元素、0.001≦x≦0.05)、LiCo1/3Ni1/3Mn1/32、LiNi1/2Mn3/24、Li2MnO3とLiMO2(Mは、Co、Ni、Mn、Fe等の遷移金属)との固溶体のような4.4V以上で使用可能なリチウム複合金属酸化物がより好ましい。高充電電圧で動作するリチウム複合金属酸化物を使用すると、充電時における電解液との反応により特に広い温度範囲での電気化学特性が低下しやすいが、本発明に係るリチウム二次電池ではこれらの電気化学特性の低下を抑制することができる。
 特にMnを含む正極の場合に正極からのMnイオンの溶出に伴い電池の抵抗が増加しやすい傾向にあるため、広い温度範囲での電気化学特性が低下しやすい傾向にあるが、本発明に係るリチウム二次電池ではこれらの電気化学特性の低下を抑制することができるので好ましい。
 更に、正極活物質として、リチウム含有オリビン型リン酸塩を用いることもできる。特に鉄、コバルト、ニッケル及びマンガンから選ばれる少なくとも1種以上含むリチウム含有オリビン型リン酸塩が好ましい。その具体例としては、LiFePO4、LiCoPO4、LiNiPO4、LiMnPO4等が挙げられる。
 これらのリチウム含有オリビン型リン酸塩の一部は他元素で置換してもよく、鉄、コバルト、ニッケル、マンガンの一部をCo、Mn、Ni、Mg、Al、B、Ti、V、Nb、Cu、Zn、Mo、Ca、Sr、W及びZr等から選ばれる1種以上の元素で置換したり、又はこれらの他元素を含有する化合物や炭素材料で被覆することもできる。これらの中では、LiFePO4又はLiMnPO4が好ましい。
 また、リチウム含有オリビン型リン酸塩は、例えば前記の正極活物質と混合して用いることもできる。
 また、リチウム一次電池用正極としては、CuO、Cu2O、Ag2O、Ag2CrO4、CuS、CuSO4、TiO2、TiS2、SiO2、SnO、V25、V612、VOx、Nb25、Bi23、Bi2Pb25,Sb23、CrO3、Cr23、MoO3、WO3、SeO2、MnO2、Mn23、Fe23、FeO、Fe34、Ni23、NiO、CoO3、CoO等の、一種若しくは二種以上の金属元素の酸化物又はカルコゲン化合物、SO2、SOCl2等の硫黄化合物、一般式(CFxnで表されるフッ化炭素(フッ化黒鉛)等が挙げられる。中でも、MnO2、V25、フッ化黒鉛等が好ましい。
 正極の導電剤は、電解液に対して化学変化を起こさない電子伝導材料であれば特に制限はない。例えば、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等のグラファイト、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック等が挙げられる。また、グラファイトとカーボンブラックを適宜混合して用いてもよい。導電剤の正極合剤への添加量は、1~10質量%が好ましく、特に2~5質量%が好ましい。
 正極は、前記の正極活物質をアセチレンブラック、カーボンブラック等の導電剤、及びポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)、エチレンプロピレンジエンターポリマー等の結着剤と混合し、これに1-メチル-2-ピロリドン等の高沸点溶剤を加えて混練して正極合剤とした後、この正極合剤を集電体のアルミニウム箔やステンレス製のラス板等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で2時間程度真空下で加熱処理することにより作製することができる。
 正極の集電体を除く部分の密度は、通常は1.5g/cm3以上であり、電池の容量を更に高めるため、好ましくは2g/cm3以上であり、より好ましくは、3g/cm3以上であり、更に好ましくは、3.6g/cm3以上である。なお、上限としては、4g/cm3以下が好ましい。
 リチウム二次電池用負極活物質としては、リチウム金属やリチウム合金、及びリチウムを吸蔵及び放出することが可能な炭素材料〔易黒鉛化炭素や、(002)面の面間隔が0.37nm以上の難黒鉛化炭素や、(002)面の面間隔が0.34nm以下の黒鉛等〕、スズ(単体)、スズ化合物、ケイ素(単体)、ケイ素化合物、Li4Ti512等のチタン酸リチウム化合物等を1種単独又は2種以上を組み合わせて用いることができる。
 これらの中では、リチウムイオンの吸蔵及び放出能力において、人造黒鉛や天然黒鉛等の高結晶性の炭素材料を使用することが更に好ましく、格子面(002)の面間隔(d002)が0.340nm(ナノメータ)以下、特に0.335~0.337nmである黒鉛型結晶構造を有する炭素材料を使用することが特に好ましい。
 複数の扁平状の黒鉛質微粒子が互いに非平行に集合或いは結合した塊状構造を有する人造黒鉛粒子や、例えば鱗片状天然黒鉛粒子に圧縮力、摩擦力、剪断力等の機械的作用を繰り返し与え、球形化処理を施した黒鉛粒子を用いることにより、負極の集電体を除く部分の密度を1.5g/cm3以上の密度に加圧成形したときの負極シートのX線回折測定から得られる黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比I(110)/I(004)が0.01以上となると一段と広い温度範囲での電気化学特性が向上するので好ましく、0.05以上となることがより好ましく、0.1以上となることが更に好ましい。また、過度に処理し過ぎて結晶性が低下し電池の放電容量が低下する場合があるので、上限は0.5以下が好ましく、0.3以下がより好ましい。
 また、高結晶性の炭素材料(コア材)は、該炭素材料(コア材)よりも低結晶性の炭素材料によって被膜されていると、広い温度範囲での電気化学特性が良好となるので好ましい。被覆の炭素材料の結晶性は、TEMにより確認することができる。
 高結晶性の炭素材料を使用すると、充電時において非水電解液と反応し、界面抵抗の増加によって低温又は高温における電気化学特性を低下させる傾向があるが、本発明に係るリチウム二次電池では広い温度範囲での電気化学特性が良好となる。
 また、負極活物質としてのリチウムを吸蔵及び放出可能な金属化合物としては、Si、Ge、Sn、Pb、P、Sb、Bi、Al、Ga、In、Ti、Mn、Fe、Co、Ni、Cu、Zn、Ag、Mg、Sr、Ba等の金属元素を少なくとも1種含有する化合物が挙げられる。これらの金属化合物は単体、合金、酸化物、窒化物、硫化物、硼化物、リチウムとの合金等、何れの形態で用いてもよいが、単体、合金、酸化物、リチウムとの合金の何れかが高容量化できるので好ましい。中でも、Si、Ge及びSnから選ばれる少なくとも1種の元素を含有するものが好ましく、Si及びSnから選ばれる少なくとも1種の元素を含むものが電池を高容量化できるので特に好ましい。
 負極は、上記の正極の作製と同様な導電剤、結着剤、高沸点溶剤を用いて混練して負極合剤とした後、この負極合剤を集電体の銅箔等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で2時間程度真空下で加熱処理することにより作製することができる。
 負極の集電体を除く部分の密度は、通常は1.1g/cm3以上であり、電池の容量を更に高めるため、好ましくは1.5g/cm3以上であり、特に好ましくは1.7g/cm3以上である。なお、上限としては、2g/cm3以下が好ましい。
 また、リチウム一次電池用の負極活物質としては、リチウム金属又はリチウム合金が挙げられる。
 リチウム電池の構造には特に限定はなく、単層又は複層のセパレータを有するコイン型電池、円筒型電池、角型電池、ラミネート電池等を適用できる。
 電池用セパレータのとしては、特に制限はされないが、ポリプロピレン、ポリエチレン等のポリオレフィンの単層又は積層の微多孔性フィルム、織布、不織布等を使用できる。
 本発明におけるリチウム二次電池は、充電終止電圧が4.2V以上、特に4.3V以上の場合にも広い温度範囲での電気化学特性に優れ、更に、4.4V以上においても特性は良好である。放電終止電圧は、通常2.8V以上、更には2.5V以上とすることが出来るが、本願発明におけるリチウム二次電池は、2.0V以上とすることが出来る。電流値については特に限定されないが、通常0.1~30Cの範囲で使用される。また、本発明におけるリチウム電池は、-40~100℃、好ましくは-10~80℃で充放電することができる。
 本発明においては、リチウム電池の内圧上昇の対策として、電池蓋に安全弁を設けたり、電池缶やガスケット等の部材に切り込みを入れる方法も採用することができる。また、過充電防止の安全対策として、電池の内圧を感知して電流を遮断する電流遮断機構を電池蓋に設けることができる。
〔第2の電気化学素子(電気二重層キャパシタ)〕
 電解液と電極界面の電気二重層容量を利用してエネルギーを貯蔵する電気化学素子である。本発明の一例は、電気二重層キャパシタである。この電気化学素子に用いられる最も典型的な電極活物質は、活性炭である。二重層容量は概ね表面積に比例して増加する。
〔第3の電気化学素子〕
 電極のドープ/脱ドープ反応を利用してエネルギーを貯蔵する電気化学素子である。この電気化学素子に用いられる電極活物質として、酸化ルテニウム、酸化イリジウム、酸化タングステン、酸化モリブデン、酸化銅等の金属酸化物や、ポリアセン、ポリチオフェン誘導体等のπ共役高分子が挙げられる。これらの電極活物質を用いたキャパシタは、電極のドープ/脱ドープ反応にともなうエネルギー貯蔵が可能である。
〔第4の電気化学素子(リチウムイオンキャパシタ)〕
 負極であるグラファイト等の炭素材料へのリチウムイオンのインターカレーションを利用してエネルギーを貯蔵する電気化学素子である。リチウムイオンキャパシタ(LIC)と呼ばれる。正極は、例えば活性炭電極と電解液との間の電気二重層を利用したものや、π共役高分子電極のドープ/脱ドープ反応を利用したもの等が挙げられる。電解液には少なくともLiPF6等のリチウム塩が含まれる。
 なお、一般式(I)又は(II)で表されるスルホン酸エステル化合物は、下記の方法により合成することができるが、本製法に限定されるものではない。
 スルホン酸エステル化合物の合成法としては、例えば、Journal of the Chemical Society,Perkin Transactions2 No.8, 1201-1208ページ,1991年に記載されているアルコールを溶媒中で、塩基存在下、スルホニルハライドと反応させる方法が適用できる。
 以下、本発明のスルホン酸エステル化合物を用いた電解液の実施例を示すが、本発明は、これらの実施例に限定されるものではない。
 なお、高温充電保存後の低温特性の評価、及び低温サイクル特性の評価は以下の方法により行った。
〔高温充電保存後の低温特性の評価〕
(初期の放電容量)
 上記の方法で作製したコイン電池を用いて、25℃の恒温槽中、1Cの定電流及び定電圧で、終止電圧4.2Vまで3時間充電し、0℃に恒温槽の温度を下げ、1Cの定電流下終止電圧2.75Vまで放電して、初期の0℃の放電容量を求めた。
(高温充電保存試験)
 次に、このコイン電池を85℃の恒温槽中、1Cの定電流及び定電圧で終止電圧4.2Vまで3時間充電し、4.2Vに保持した状態で3日間保存を行った。その後、25℃の恒温槽に入れ、一旦1Cの定電流下終止電圧2.75Vまで放電した。
(高温充電保存後の放電容量)
 更にその後、初期の放電容量の測定と同様にして、高温充電保存後の0℃の放電容量を求めた。
(高温充電保存後の低温特性)
 高温充電保存後の低温特性を下記の0℃放電容量の維持率より求めた。
 高温充電保存後の0℃放電容量維持率(%)=(高温充電保存後の0℃の放電容量/初期の0℃の放電容量)×100
〔低温サイクル特性の評価〕
 上記の方法で作製したコイン電池を用いて25℃の恒温槽中、1Cの定電流及び定電圧で終止電圧4.2Vまで3時間充電し、次に1Cの定電流下終止電圧2.75Vまで放電することでプレサイクルを行った。次に、0℃の恒温槽中、1Cの定電流及び定電圧で終止電圧4.2Vまで3時間充電し、次に1Cの定電流下終止電圧2.75Vまで放電した。これを50サイクルに達するまで繰り返した。そして、以下の式により0℃での50サイクル後の放電容量維持率(%)を求めた。
 0℃、50サイクル後の放電容量維持率(%)=(0℃、50サイクル目の放電容量/0℃、1サイクル目の放電容量)×100
実施例I-1~I-21(第I発明)、比較例I-1~I-3
〔リチウムイオン二次電池の作製〕
 LiCoO2;94質量%、アセチレンブラック(導電剤);3質量%を混合し、予めポリフッ化ビニリデン(結着剤);3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製した。正極の集電体を除く部分の密度は3.6g/cm3であった。また、非晶質炭素で被覆した人造黒鉛(d002=0.335nm、負極活物質)95質量%を、予めポリフッ化ビニリデン(結着剤)5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き負極シートを作製した。負極の集電体を除く部分の密度は1.5g/cm3であった。また、この電極シートを用いてX線回折測定した結果、黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比〔I(110)/I(004)〕は0.1であった。そして、正極シート、微多孔性ポリエチレンフィルム製セパレータ、負極シートの順に積層し、表I-1及び表I-2に記載の組成の非水電解液を加えて、2032型コイン電池を作製した。
 電池の作製条件及び評価結果を表I-1及び表I-2に示す。
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
実施例I-22、I-23(第I発明)、比較例I-4
 実施例I-2、比較例I-1で用いた負極活物質に変えて、ケイ素(単体)(負極活物質)を用いて、負極シートを作製した。ケイ素(単体);80質量%、アセチレンブラック(導電剤);15質量%を混合し、予めポリフッ化ビニリデン(結着剤);5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、負極シートを作製したことの他は、実施例I-2、比較例I-1と同様にコイン電池を作製し、電池評価を行った。結果を表I-3に示す。
Figure JPOXMLDOC01-appb-T000027
実施例I-24、I-25(第I発明)、比較例I-5
 実施例I-2、比較例I-1で用いた正極活物質に変えて、非晶質炭素で被覆されたLiFePO4(正極活物質)を用いて、正極シートを作製した。非晶質炭素で被覆されたLiFePO4;90質量%、アセチレンブラック(導電剤);5質量%を混合し、予めポリフッ化ビニリデン(結着剤);5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製したこと、電池評価の際の充電終止電圧を3.6V、放電終止電圧を2.0Vとしたことの他は、実施例I-2、比較例I-1と同様にコイン電池を作製し、電池評価を行った。結果を表I-4に示す。
Figure JPOXMLDOC01-appb-T000028
 上記実施例I-1~I-10のリチウム二次電池は何れも、添加剤を添加しない比較例1、スルホニルオキシ基が結合する炭素上にメチンプロトンがないメチルメタンスルホネートを添加した比較例2のリチウム二次電池に比べ、高温充電保存後の低温特性が顕著に向上している。以上より、本発明の効果は、スルホニルオキシ基が結合する炭素上にメチンプロトンを有するスルホン酸エステル化合物に特有の効果であることが判明した。
 実施例I-13~I-21のその他の添加剤として炭素数1~6の炭化水素基が第3級炭素原子又は第4級炭素原子を介してベンゼン環に結合しているベンゼン化合物、及び/又は、環状構造若しくは不飽和基を有するS=O基含有化合物を含むリチウム二次電池は、その他の添加剤を含まない比較例I-3との対比から、何れも高温充電保存後の低温特性が向上している。
 また、実施例I-22、I-23と比較例I-4の対比、実施例I-24、I-25と比較例I-5の対比から、負極にSiを用いた場合や、正極にリチウム含有オリビン型リン酸鉄塩を用いた場合にも同様な効果がみられる。従って、本発明の効果は、特定の正極や負極に依存した効果でないことは明らかである。
 更に、上記第I発明の非水電解液は、リチウム一次電池の広い温度範囲での放電特性を改善する効果も有する。
実施例II-1~II-12(第II発明)、比較例II-1~2
〔リチウムイオン二次電池の作製〕
 LiCoO2;94質量%、アセチレンブラック(導電剤);3質量%を混合し、予めポリフッ化ビニリデン(結着剤);3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製した。正極の集電体を除く部分の密度は3.6g/cm3であった。また、非晶質炭素で被覆した人造黒鉛(d002=0.335nm、負極活物質)95質量%を、予めポリフッ化ビニリデン(結着剤)5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き負極シートを作製した。負極の集電体を除く部分の密度は1.5g/cm3であった。また、この電極シートを用いてX線回折測定した結果、黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比〔I(110)/I(004)〕は0.1であった。そして、正極シート、微多孔性ポリエチレンフィルム製セパレータ、負極シートの順に積層し、表II-1及び表II-2に記載の組成の非水電解液を加えて、2032型コイン電池を作製した。
 電池の作製条件及び評価結果を表II-1及び表II-2に示す。
 なお、表II-1~表II-4において、実施例及び比較例で用いた一般式(IV)で表されるスルホン酸エステル化合物の化合物番号と構造を下記に示す。なお、下式中のMsはメタンスルホニル基を表し、Tosは(4-メチルベンゼンスルホニル基(p-トルエンスルホニル基ともいう)を表す。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
実施例II-13(第II発明)、比較例II-3
 実施例II-2、比較例II-1で用いた負極活物質に変えて、ケイ素(単体)(負極活物質)を用いて、負極シートを作製した。ケイ素(単体);80質量%、アセチレンブラック(導電剤);15質量%を混合し、予めポリフッ化ビニリデン(結着剤);5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、負極シートを作製したことの他は、実施例II-2、比較例II-1と同様にコイン電池を作製し、電池評価を行った。結果を表II-3に示す。
Figure JPOXMLDOC01-appb-T000032
実施例II-14(第II発明)、比較例II-4
 実施例2、比較例1で用いた正極活物質に変えて、非晶質炭素で被覆されたLiFePO4(正極活物質)を用いて、正極シートを作製した。非晶質炭素で被覆されたLiFePO4;90質量%、アセチレンブラック(導電剤);5質量%を混合し、予めポリフッ化ビニリデン(結着剤);5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製したこと、電池評価の際の充電終止電圧を3.6V、放電終止電圧を2.0Vとしたことの他は、実施例II-2、比較例II-1と同様にコイン電池を作製し、電池評価を行った。結果を表II-4に示す。
Figure JPOXMLDOC01-appb-T000033
 上記実施例II-1~II-9のリチウム二次電池は何れも、添加剤を添加しない比較例1、スルホニルオキシ基が結合する炭素上にメチンプロトンがないメチルメタンスルホネートを添加した比較例II-2のリチウム二次電池に比べ、高温充電保存後の低温特性が顕著に向上している。以上より、本発明の効果は、スルホニルオキシ基が結合するシクロアルキル基の炭素上にメチンプロトンを有するスルホン酸エステル化合物に特有の効果であることが判明した。
 実施例II-10~II-12のその他の添加剤としてニトリル、芳香族化合物を含むリチウム二次電池は、その他の添加剤を含まない実施例II-4との対比から、何れも高温充電保存後の低温特性が向上している。実施例ではスルホン酸エステル化合物としてシクロペンチル メタンスルホネートを用いているが、その他の一般式(I)で表されるスルホン酸エステル化合物を用いた場合にも同様の効果を有する。
 また、実施例II-13と比較例II-3の対比、実施例II-14と比較例II-4の対比から、負極にSiを用いた場合や、正極にリチウム含有オリビン型リン酸鉄塩を用いた場合にも同様な効果がみられる。従って、本発明の効果は、特定の正極や負極に依存した効果でないことは明らかである。
 更に、上記第II発明の非水電解液は、リチウム一次電池の広い温度範囲での放電特性を改善する効果も有する。
 次に、第III発明のスルホン酸エステル化合物の合成例、及びそれを用いた電解液の実施例を示す。
 なお、一般式(V)で表されるスルホン酸エステル化合物の原料となるアルコール化合物は市販品として入手できるが、既存の汎用的手法により合成することもできる。合成例としてはTetrahedoron Asymmetry, Vol.4, No.5, 925-930ヘ゜ーシ゛, 1993年に記載されている方法が適用できる。
 スルホン酸エステル化合物の合成法としては、例えばJournal of the Chemical Society, Perkin Transactions 2, No.8, 1201-1208ヘ゜ーシ゛, 1991年に記載されているアルコールを溶媒中で、塩基存在下、スルホニルハライドと反応させる方法が適用できる。
合成例III-1〔ペンタン-2,3-ジイル ジメタンスルホネートの合成〕
 ペンタン-2,3-ジオール1.04g(10.0mol)とトリエリチルアミン2.23g(22.0mmol)を塩化メチレン40mLに溶解させ、0℃から5℃の範囲でメタンスルホニルクロリド2.52g(22.0mol)を滴下し、0℃で30分撹拌した。ガスクロマトグラフィー分析で原料の消失を確認した後、有機層を水20ml、次いで飽和食塩水20mlで洗浄した。有機層を硫酸マグネシウムで乾燥し、減圧濃縮した。残渣をカラムクロマトグラフィー(ワコーゲルC-200、ヘキサン/酢酸エチル=2/1溶出)精製し、目的物であるペンタン-2,3-ジイル ジメタンスルホネート(淡橙色液体;新規化合物)2.24gを得た(収率86%)。
 得られたペンタン-2,3-ジイル ジメタンスルホネートについて、1H-NMRの測定を行い、その構造を確認した。
1H-NMR(300MHz,CDCl3):δ=4.95-4.78(m,1H),4.73-4.57(m,1H),3.11-3.07(m,6H),1.96-1.65(m, 2H), 1.43-1.37(m,  3H),1.03-0.98(m,3H)
実施例III-1~III-13(第III発明)、比較例III-1~III-2
〔リチウムイオン二次電池の作製〕
 LiNi1/3Mn1/3Co1/32 94質量%、アセチレンブラック(導電剤)3質量%を混合し、予めポリフッ化ビニリデン(結着剤)3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製した。正極の集電体を除く部分の密度は3.6g/cm3であった。
 また、非晶質炭素で被覆した人造黒鉛(d002=0.335nm、負極活物質)95質量%、予めポリフッ化ビニリデン(結着剤)5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き負極シートを作製した。負極の集電体を除く部分の密度は1.5g/cm3であった。また、この電極シートを用いてX線回折測定した結果、黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比〔I(110)/I(004)〕は0.1であった。そして、正極シート、微多孔性ポリエチレンフィルム製セパレータ、負極シートの順に積層し、表III-1に記載の組成の非水電解液を加えて、2032型コイン電池を作製した。
 電池の作製条件及び評価結果を表III-1に示す。
 なお、実施例及び比較例で用いた一般式(V)又は(VI)で表される化合物の詳細を以下に示す。なお、下式中のMsはメタンスルホニル基を表し、Tosは(4-メチルベンゼンスルホニル基(p-トルエンスルホニル基ともいう)を表す。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-T000035
実施例III-14(第III発明)、比較例III-3
 実施例III-2、比較例III-1で用いた負極活物質に変えて、ケイ素(単体)(負極活物質)を用いて、負極シートを作製した。ケイ素(単体)80質量%、アセチレンブラック(導電剤)15質量%を混合し、予めポリフッ化ビニリデン(結着剤)5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、負極シートを作製したことの他は、実施例III-2、比較例III-1と同様にコイン電池を作製し、電池評価を行った。結果を表III-2に示す。
Figure JPOXMLDOC01-appb-T000036
実施例III-15(第III発明)、比較例III-4
 実施例III-2、比較例1で用いた正極活物質に変えて、非晶質炭素で被覆されたLiFePO4(正極活物質)を用いて、正極シートを作製した。非晶質炭素で被覆されたLiFePO4 90質量%、アセチレンブラック(導電剤)5質量%を混合し、予めポリフッ化ビニリデン(結着剤)5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製したこと、電池評価の際の充電終止電圧を3.6V、放電終止電圧を2.0Vとしたことの他は、実施例III-2、比較例III-1と同様にコイン電池を作製し、電池評価を行った。結果を表III-3に示す。
Figure JPOXMLDOC01-appb-T000037
実施例III-16~III-20(第III発明)、比較例III-5
 実施例III-2、比較例III-1で用いた正極活物質に変えて、LiMn24(正極活物質)を用いて、正極シートを作製した。LiMn24 88質量%、アセチレンブラック(導電剤)6質量%を混合し、予めポリフッ化ビニリデン(結着剤)6質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製したこと、非水電解液に含有させるブタン-2,3-ジイル ジメタンスルホネートのAnti体とSyn体の質量比を、表III-4に示すように変化させたこと、電池評価の際の初期の放電容量、高温充電保存後の低温特性をともに-30℃で測定し、下記の式にて高温充電保存後の-30℃放電容量維持率(%)を求めたことの他は、実施例III-2、比較例III-1と同様にコイン電池を作製し、電池評価を行った。結果を表III-4に示す。
 高温充電保存後の-30℃放電容量維持率(%)=(高温充電保存後の-30℃の放電容量/初期の-30℃の放電容量)×100
Figure JPOXMLDOC01-appb-T000038
 上記の非水電解液に含有させたブタン-2,3-ジイル ジメタンスルホネートのAnti体とSyn体の質量比については、対応するAnti体とSyn体のジオール原料を使用して合成することにより、それぞれ100%の含有率のブタン-2,3-ジイル ジメタンスルホネートのAnti体とSyn体を合成し、これらを表III-4に示す質量比で混合して用いた。
 また、表III-4に示す割合で調整した非水電解液をHPLCを用いて分析した結果、添加した割合どおりの組成で存在していることが確認できた。
 上記実施例III-1~III-13のリチウム二次電池は何れも、添加剤を添加しない比較例III-1、1つのスルホニルオキシ基が結合する炭素上にのみメチンプロトンを有する1,2-プロパンジオールジメタンスルホネートを添加した比較例III-2のリチウム二次電池に比べ、高温充電保存後の低温特性が顕著に向上している。以上より、第III発明の効果は、2つのスルホニルオキシ基がそれぞれ結合する炭素上にメチンプロトンを有するスルホン酸エステル化合物に特有の効果であることが判明した。
 また、実施例III-14と比較例III-3の対比、実施例III-15と比較例III-4の対比から、負極にSiを用いた場合や、正極にリチウム含有オリビン型リン酸鉄塩を用いた場合にも同様な効果がみられる。従って、第III発明の効果は、特定の正極や負極に依存した効果でないことは明らかである。
 また、実施例III-16~III-20より、一般式(V)で表される化合物はSyn体よりもAnti体の方がやや好ましく、Anti体とSyn体の混合物であると一段と効果が高まるので好ましいことが判明した。
 更に、第III発明の非水電解液は、リチウム一次電池の広い温度範囲での放電特性を改善する効果も有する。
 次に、第IV発明のケイ素原子を有するスルホネート化合物を用いた電解液の実施例を示す。
実施例IV-1~IV-4(第IV発明)、比較例IV-1~IV-3
〔リチウムイオン二次電池の作製〕
 LiCoO2;94質量%、アセチレンブラック(導電剤);3質量%を混合し、予めポリフッ化ビニリデン(結着剤);3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製した。正極の集電体を除く部分の密度は3.6g/cm3であった。また、人造黒鉛(d002=0.335nm、負極活物質)95質量%を、予めポリフッ化ビニリデン(結着剤)5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き負極シートを作製した。負極の集電体を除く部分の密度は1.5g/cm3であった。また、この電極シートを用いてX線回折測定した結果、黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比〔I(110)/I(004)〕は0.1であった。そして、正極シート、微多孔性ポリエチレンフィルム製セパレータ、負極シートの順に積層し、表IV-1に記載の組成の非水電解液を加えて、2032型コイン電池を作製した。
 電池の作製条件及び電池特性を表IV-1に示す。
Figure JPOXMLDOC01-appb-T000039
実施例IV-5(第IV発明)、比較例IV-4
 実施例IV-2、比較例IV-1で用いた負極活物質に変えて、ケイ素(単体)(負極活物質)を用いて、負極シートを作製した。ケイ素(単体);80質量%、アセチレンブラック(導電剤);15質量%を混合し、予めポリフッ化ビニリデン(結着剤);5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、負極シートを作製したことの他は、実施例IV-2、比較例IV-1と同様にコイン電池を作製し、電池評価を行った。結果を表IV-2に示す。
Figure JPOXMLDOC01-appb-T000040
実施例IV-6(第IV発明)、比較例IV-5
 実施例IV-2、比較例IV-1で用いた正極活物質に変えて、非晶質炭素で被覆されたLiFePO4(正極活物質)を用いて、正極シートを作製した。非晶質炭素で被覆されたLiFePO4;90質量%、アセチレンブラック(導電剤);5質量%を混合し、予めポリフッ化ビニリデン(結着剤);5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製したこと、電池評価の際の充電終止電圧を3.6V、放電終止電圧を2.0Vとしたことの他は、実施例IV-2、比較例IV-1と同様にコイン電池を作製し、電池評価を行った。結果を表IV-3に示す。
Figure JPOXMLDOC01-appb-T000041
 上記実施例IV-1~IV-4のリチウム二次電池は何れも、ケイ素原子を有するスルホネート化合物を添加しない場合の比較例IV-1、特許文献5に記載されている1,2-ビス(3,5-ジフルオロフェニル)-1,1,2,2-テトラメチルジシランを添加した非水電解液である比較例IV-2のリチウム二次電池や特許文献6に記載されているトリメチルシリルメタンスルホネートを添加した非水電解液である比較例IV-3のリチウム二次電池に比べ、広い温度範囲での電気化学特性が顕著に向上している。以上より、第IV発明の効果は、非水溶媒に電解質塩が溶解されている非水電解液において、本願発明の特定のケイ素原子を有するスルホネート化合物を0.001~5質量%含有させた場合に特有の効果であることが判明した。
 また、実施例IV-5と比較例IV-4の対比、実施例IV-6と比較例IV-5の対比から、負極にケイ素(単体)Siを用いた場合や、正極にリチウム含有オリビン型リン酸鉄塩を用いた場合にも同様な効果がみられる。従って、第IV発明の効果は、特定の正極や負極に依存した効果でないことは明らかである。
 更に、第IV発明の非水電解液は、リチウム一次電池の広い温度範囲での放電特性を改善する効果も有する。
 本発明の非水電解液を使用すれば、広い温度範囲での電気化学特性に優れた電気化学素子を得ることができる。特にハイブリッド電気自動車、プラグインハイブリッド電気自動車、バッテリー電気自動車等に搭載される電気化学素子用の非水電解液として使用される場合、広い温度範囲での電気化学特性が低下しにくいに電気化学素子を得ることができる。

Claims (11)

  1.  非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に、下記一般式(I)で表されるスルホン酸エステル化合物を0.001~5質量%含有することを特徴とする非水電解液。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、炭素数1~6のアルキル基、又は炭素数6~12のアリール基を示し、Aは、>CH基又は>SiZ基(Zは、炭素数1~6のアルキル基又は炭素数6~12のアリール基を示す)を示し、Xは、炭素数1~6のアルキル基、炭素数3~8のシクロアルキル基、又は炭素数6~12のアリール基を示し、
    Yは、炭素数3~8のシクロアルキル基、-L1CHRaOSO2b基、又は-Si(Rc)(Rd)OSO2b基を示し、Wは1又は2を示す。
     また、Raは、炭素数1~6のアルキル基を示し、Rb、Rc及びRdは、炭素数1~6のアルキル基、又は炭素数6~12のアリール基を示し、L1は、少なくとも1つの水素原子が-OSO2e(ReはRと同義である)で置換されていてもよい炭素数1~6のアルキレン基、少なくとも1つのエーテル結合を含む炭素数2~6の2価の連結基又は単結合を示す。
     ただし、XとYは結合して環を形成してもよく、Wが2の場合は、Rは炭素数1~6のアルキレン基を示す。また、前記の炭素数1~6のアルキル基、炭素数6~12のアリール基、及び炭素数1~6のアルキレン基は、その少なくとも1つの水素原子がハロゲン原子で置換されていてもよい。)
  2.  スルホン酸エステル化合物が下記一般式(II)で表されるものである請求項1に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000002
    (式中、mは1又は2の整数を示す。mが1の場合は、R1は炭素数1~6のアルキル基、又は炭素数6~12のアリール基を示し、R2は炭素数2~6のアルキル基、又は炭素数3~8のシクロアルキル基を示し、R3は炭素数1~6のアルキル基、又は炭素数3~8のシクロアルキル基を示す。mが2の場合は、R1は炭素数1~6のアルキレン基を示し、R2及びR3はmが1の場合と同義である。ただし、前記の炭素数1~6のアルキル基、炭素数6~12のアリール基、及び炭素数1~6のアルキレン基は、その少なくとも1つの水素原子がハロゲン原子で置換されていてもよい。)
  3.  非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に、炭素数1~6の炭化水素基が第3級炭素原子又は第4級炭素原子を介してベンゼン環に結合しているベンゼン化合物、及び/又は環状構造若しくは不飽和基を有するS=O基含有化合物を0.001~5質量%含有し、更に、下記一般式(III)で表される分枝構造を有するスルホン酸エステル化合物を0.001~5質量%を含有することを特徴とする非水電解液。
    Figure JPOXMLDOC01-appb-C000003
    (式中、nは1又は2の整数を示す。nが1の場合は、R4は炭素数1~6のアルキル基、又は炭素数6~12のアリール基を示す。nが2の場合は、R4は炭素数1~6のアルキレン基を示す。ただし、前記の炭素数1~6のアルキル基、炭素数6~12のアリール基、及び炭素数1~6のアルキレン基は、それらの少なくとも1つの水素原子がハロゲン原子で置換されていてもよい。)
  4.  スルホン酸エステル化合物が、下記一般式(IV)で表されるシクロアルカン骨格を有するスルホン酸エステル化合物である請求項1に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000004
    (式中、tは1又は2の整数を示す。tが1の場合は、R5及びR6は炭素数1~6のアルキル基、又は炭素数6~12のアリール基を示し、R7は炭素数1~6のアルキル基を示し、R7はシクロ環上の炭素原子と結合して環を形成してもよく、rは0~10の整数を示し、p及びqはそれぞれ独立して0~3の整数を示す。tが2の場合は、R5は炭素数1~6のアルキレン基を示し、R6、R7、r、p及びqはtが1の場合と同義である。ただし、前記の炭素数1~6のアルキル基、及び炭素数6~12のアリール基は、それらの少なくとも1つの水素原子がハロゲン原子で置換されていてもよい。)
  5.  スルホン酸エステル化合物が下記一般式(V)で表されるスルホン酸エステル化合物である請求項1に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000005
    (式中、R11及びR12は、それぞれ独立に、炭素数1~6のアルキル基、又は炭素数6~12のアリール基を示し、R13及びR14は、それぞれ独立に、炭素数1~6のアルキル基を示し、L1は、少なくとも1つの水素原子が-OSO215(R15はR11又はR12と同義である)で置換されてもよい炭素数1~6のアルキレン基、少なくとも一つのエーテル結合を含む炭素数2~6の2価の連結基又は単結合を示す。前記の炭素数1~6のアルキル基及び炭素数6~12のアリール基は、それらの少なくとも1つの水素原子がハロゲン原子で置換されていてもよい。)
  6.  非水電解液中に、さらに下記一般式(VI)で表されるスルホン酸エステル化合物を0.001~5質量%含有する請求項5に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000006
    (式中、R16及びR17は、それぞれ独立に、炭素数1~6のアルキル基、又は炭素数6~12のアリール基を示し、R18は、水素原子、炭素数1~6のアルキル基を示し、L2は、少なくとも1つの水素原子が-OSO219(R19はR16又はR17と同義である)で置換されてもよい炭素数1~6のアルキレン基、少なくとも一つのエーテル結合を含む炭素数2~6の2価の連結基又は単結合を示す。前記の炭素数1~6のアルキル基及び炭素数6~12のアリール基は、それらの少なくとも1つの水素原子がハロゲン原子で置換されていてもよい。)
  7.  スルホン酸エステル化合物が下記一般式(VII)で表される化合物である請求項1に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000007
    (式中、R21~R26は同一であっても異なっていてもよく、炭素数1~6のアルキル基、又は炭素数6~12のアリール基を示す。前記の炭素数1~6のアルキル基及び炭素数6~12のアリール基は、それらの少なくとも1つの水素原子がハロゲン原子で置換されていてもよい。)
  8.  非水電解液中に、さらに炭素数1~6の炭化水素基が第3級炭素原子又は第4級炭素原子を介してベンゼン環に結合しているベンゼン化合物、及び/又は環状構造若しくは不飽和基を有するS=O基含有化合物を0.001~5質量%含有する請求項1に記載の非水電解液。
  9.  非水電解液中に、炭素-炭素二重結合を有する環状カーボネートを0.001~5体積%及び/又はフッ素原子を含有する環状カーボネートを0.01~35体積%含有する請求項1~8のいずれかに記載の非水電解液。
  10.  非水電解液中に、さらに炭素数1~6の炭化水素基が第3級炭素原子又は第4級炭素原子を介してベンゼン環に結合しているベンゼン化合物、及び/又は、環状構造若しくは不飽和基を有するS=O基含有化合物を0.001~5質量%含有する請求項1~8のいずれかに記載の非水電解液。
  11.  正極、負極及び非水溶媒に電解質塩が溶解されている非水電解液からなる電気化学素子において、該非水電解液が請求項1~10のいずれかに記載の非水電解液であることを特徴とする電気化学素子。
PCT/JP2011/062841 2010-06-04 2011-06-03 非水電解液及びそれを用いた電気化学素子 WO2011152534A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2012518472A JP5807636B2 (ja) 2010-06-04 2011-06-03 非水電解液及びそれを用いた電気化学素子
CN201180027595.4A CN102934275B (zh) 2010-06-04 2011-06-03 非水电解液及使用了该非水电解液的电化学元件
EP11789935.1A EP2579377B1 (en) 2010-06-04 2011-06-03 Nonaqueous electrolyte solution and electrochemical element using same
CA2801288A CA2801288A1 (en) 2010-06-04 2011-06-03 Nonaqueous electrolyte solution and electrochemical element using same
ES11789935.1T ES2521023T3 (es) 2010-06-04 2011-06-03 Solución de electrolito no acuosa y elemento electroquímico que usa la misma
US13/701,193 US9240614B2 (en) 2010-06-04 2011-06-03 Nonaqueous electrolyte solution and electrochemical element using same
BR112012030882A BR112012030882A2 (pt) 2010-06-04 2011-06-03 solução eletrolítica não aquosa e elemento eletroquímico que usa a mesma
KR1020127031604A KR20130119842A (ko) 2010-06-04 2011-06-03 비수 전해액 및 그것을 이용한 전기 화학 소자

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2010129361 2010-06-04
JP2010-129361 2010-06-04
JP2010-165374 2010-07-22
JP2010165374 2010-07-22
JP2010-166444 2010-07-23
JP2010166444 2010-07-23
JP2010-224710 2010-10-04
JP2010224710 2010-10-04
JP2010272966 2010-12-07
JP2010-272966 2010-12-07
JP2011037759 2011-02-24
JP2011037751 2011-02-24
JP2011-037751 2011-02-24
JP2011-037759 2011-02-24

Publications (1)

Publication Number Publication Date
WO2011152534A1 true WO2011152534A1 (ja) 2011-12-08

Family

ID=45066889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062841 WO2011152534A1 (ja) 2010-06-04 2011-06-03 非水電解液及びそれを用いた電気化学素子

Country Status (9)

Country Link
US (1) US9240614B2 (ja)
EP (1) EP2579377B1 (ja)
JP (1) JP5807636B2 (ja)
KR (1) KR20130119842A (ja)
CN (1) CN102934275B (ja)
BR (1) BR112012030882A2 (ja)
CA (1) CA2801288A1 (ja)
ES (1) ES2521023T3 (ja)
WO (1) WO2011152534A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178340A (ja) * 2011-01-31 2012-09-13 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
JP2012182114A (ja) * 2011-02-08 2012-09-20 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
WO2013137351A1 (ja) * 2012-03-13 2013-09-19 Necエナジーデバイス株式会社 二次電池用電解液およびそれを用いた二次電池
JP2013211223A (ja) * 2012-03-30 2013-10-10 Mitsubishi Chemicals Corp 非水系電解液、それを用いた電池
WO2013184881A1 (en) * 2012-06-06 2013-12-12 Johnson Controls Technology Corporation Electrolyte formulation for high voltage and wide temperature lithium-ion cells
JP2014026972A (ja) * 2012-06-22 2014-02-06 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液電池
WO2014157534A1 (ja) * 2013-03-28 2014-10-02 富士フイルム株式会社 非水二次電池用電解液、非水二次電池及び非水電解液用添加剤
WO2014163055A1 (ja) * 2013-04-01 2014-10-09 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
JP2014532287A (ja) * 2012-09-21 2014-12-04 エルジー・ケム・リミテッド リチウム二次電池用電解液及びこれを含むリチウム二次電池
US20150188193A1 (en) * 2012-09-20 2015-07-02 Fujifilm Corporation Non-aqueous liquid electrolyte for secondary battery and secondary battery
WO2016060038A1 (ja) * 2014-10-16 2016-04-21 株式会社Adeka 非水電解液及び非水電解液二次電池
WO2017047554A1 (ja) * 2015-09-15 2017-03-23 宇部興産株式会社 蓄電デバイス用非水電解液及びそれを用いた蓄電デバイス
US9806375B2 (en) 2011-01-31 2017-10-31 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101867807B1 (ko) * 2010-08-05 2018-06-18 와코 쥰야꾸 고교 가부시키가이샤 비수계 전해액, 그 제조법, 및 당해 전해액을 사용한 비수계 전해액 전지
EP2650958A4 (en) 2010-12-06 2015-03-18 Ube Industries NON-AQUEOUS ELECTROLYTE AND ELECTROCHEMICAL ELEMENT THEREWITH
JP6245476B2 (ja) * 2014-08-20 2017-12-13 トヨタ自動車株式会社 二次電池
CN105712909B (zh) * 2014-12-05 2018-07-13 中国石油天然气股份有限公司 用于制备烯烃聚合催化剂的二元磺酸酯化合物
CN104496865A (zh) * 2014-12-05 2015-04-08 中国石油天然气股份有限公司 一种二元醇磺酸酯化合物及其制备方法与应用
WO2016086837A1 (zh) * 2014-12-05 2016-06-09 中国石油天然气股份有限公司 一种二元磺酸酯化合物及其应用与烯烃聚合催化剂组分和烯烃聚合催化剂
US10707526B2 (en) 2015-03-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
EP3571736A1 (en) * 2017-01-18 2019-11-27 Basf Se Trifunctional additives for electrolyte composition for lithium batteries
CN108933277B (zh) * 2017-05-22 2022-03-18 微宏动力系统(湖州)有限公司 一种锂离子二次电池
CN108336408B (zh) * 2018-03-15 2021-12-10 桑顿新能源科技(长沙)有限公司 一种锂离子电池用非水电解液
KR102259216B1 (ko) * 2018-05-23 2021-05-31 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR102287332B1 (ko) * 2018-08-07 2021-08-06 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
US12100838B2 (en) * 2018-09-11 2024-09-24 Gs Yuasa International Ltd. Energy storage device and method for manufacturing energy storage device
JP6818723B2 (ja) * 2018-09-25 2021-01-20 太陽誘電株式会社 電気化学デバイス用電解液および電気化学デバイス
CN112349958B (zh) * 2019-08-06 2022-02-11 珠海冠宇电池股份有限公司 一种电解液及其制备方法和锂离子电池
KR102463257B1 (ko) * 2020-07-06 2022-11-04 주식회사 테크늄 리튬 이차전지용 전해질 첨가제 및 이를 포함하는 리튬이차전지
CN113381073B (zh) * 2021-07-27 2022-03-01 中节能万润股份有限公司 一种磺酸硅酯类非水电解液添加剂及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245834A (ja) 1996-03-13 1997-09-19 Mitsubishi Chem Corp リチウム二次電池用電解液
JP2001313071A (ja) 2000-04-27 2001-11-09 Ube Ind Ltd 非水電解液及びそれを用いたリチウム二次電池
JP2004134232A (ja) 2002-10-10 2004-04-30 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いたリチウム二次電池
JP2007012595A (ja) 2005-05-30 2007-01-18 Denso Corp 非水電解液及び該電解液を用いた非水電解液二次電池
JP2007080620A (ja) * 2005-09-13 2007-03-29 Sony Corp 電解液および電池
JP2007095380A (ja) 2005-09-27 2007-04-12 Sony Corp 電池
JP2008146929A (ja) * 2006-12-07 2008-06-26 Sony Corp 電解液および電池
JP2008218425A (ja) * 2008-04-25 2008-09-18 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いたリチウム二次電池
JP2009140919A (ja) * 2007-11-16 2009-06-25 Sanyo Electric Co Ltd 非水電解質二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3815087B2 (ja) * 1998-10-26 2006-08-30 宇部興産株式会社 非水電解液及びそれを用いたリチウム二次電池
EP1276165A1 (en) 2001-07-12 2003-01-15 Japan Storage Battery Co., Ltd. Nonaqueous secondary cell
JP4517730B2 (ja) * 2004-05-28 2010-08-04 宇部興産株式会社 非水電解液およびそれを用いたリチウム二次電池
KR101508788B1 (ko) * 2006-06-02 2015-04-06 미쓰비시 가가꾸 가부시키가이샤 비수계 전해액 및 비수계 전해액 전지
JP5604105B2 (ja) * 2006-09-20 2014-10-08 エルジー・ケム・リミテッド 非水電解液添加剤及びこれを用いた二次電池
KR100873270B1 (ko) * 2006-10-25 2008-12-11 주식회사 엘지화학 비수 전해액 및 이를 포함하는 전기화학소자
JP5169400B2 (ja) * 2008-04-07 2013-03-27 Necエナジーデバイス株式会社 非水電解液およびそれを用いた非水電解液二次電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245834A (ja) 1996-03-13 1997-09-19 Mitsubishi Chem Corp リチウム二次電池用電解液
JP2001313071A (ja) 2000-04-27 2001-11-09 Ube Ind Ltd 非水電解液及びそれを用いたリチウム二次電池
JP2004134232A (ja) 2002-10-10 2004-04-30 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いたリチウム二次電池
JP2007012595A (ja) 2005-05-30 2007-01-18 Denso Corp 非水電解液及び該電解液を用いた非水電解液二次電池
JP2007080620A (ja) * 2005-09-13 2007-03-29 Sony Corp 電解液および電池
JP2007095380A (ja) 2005-09-27 2007-04-12 Sony Corp 電池
JP2008146929A (ja) * 2006-12-07 2008-06-26 Sony Corp 電解液および電池
JP2009140919A (ja) * 2007-11-16 2009-06-25 Sanyo Electric Co Ltd 非水電解質二次電池
JP2008218425A (ja) * 2008-04-25 2008-09-18 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いたリチウム二次電池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS, vol. 2, no. 8, 1991, pages 1201 - 1208
See also references of EP2579377A4 *
TETRAHEDRON ASYMMETRY, vol. 4, no. 5, 1993, pages 925 - 930

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11688881B2 (en) 2011-01-31 2023-06-27 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same
US9806375B2 (en) 2011-01-31 2017-10-31 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same
JP2012178340A (ja) * 2011-01-31 2012-09-13 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
JP2012182114A (ja) * 2011-02-08 2012-09-20 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
WO2013137351A1 (ja) * 2012-03-13 2013-09-19 Necエナジーデバイス株式会社 二次電池用電解液およびそれを用いた二次電池
JPWO2013137351A1 (ja) * 2012-03-13 2015-08-03 Necエナジーデバイス株式会社 二次電池用電解液およびそれを用いた二次電池
JP2013211223A (ja) * 2012-03-30 2013-10-10 Mitsubishi Chemicals Corp 非水系電解液、それを用いた電池
WO2013184881A1 (en) * 2012-06-06 2013-12-12 Johnson Controls Technology Corporation Electrolyte formulation for high voltage and wide temperature lithium-ion cells
US20130337342A1 (en) * 2012-06-06 2013-12-19 Peter B. Hallac Electrolyte Formulation for High Voltage and Wide Temperature Lithium-Ion Cells
CN104662716A (zh) * 2012-06-06 2015-05-27 约翰逊控制技术公司 用于高电压和宽温度锂离子电池单元的电解质配制液
JP2014026972A (ja) * 2012-06-22 2014-02-06 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液電池
US20150188193A1 (en) * 2012-09-20 2015-07-02 Fujifilm Corporation Non-aqueous liquid electrolyte for secondary battery and secondary battery
JP2014532287A (ja) * 2012-09-21 2014-12-04 エルジー・ケム・リミテッド リチウム二次電池用電解液及びこれを含むリチウム二次電池
JP2014192153A (ja) * 2013-03-28 2014-10-06 Fujifilm Corp 非水二次電池用電解液、非水二次電池及び非水電解液用添加剤
WO2014157534A1 (ja) * 2013-03-28 2014-10-02 富士フイルム株式会社 非水二次電池用電解液、非水二次電池及び非水電解液用添加剤
JP5729525B2 (ja) * 2013-04-01 2015-06-03 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
WO2014163055A1 (ja) * 2013-04-01 2014-10-09 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
JPWO2014163055A1 (ja) * 2013-04-01 2017-02-16 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
US9934911B2 (en) 2013-04-01 2018-04-03 Ube Industries, Ltd. Nonaqueous electrolyte solution and electricity storage device using same
WO2016060038A1 (ja) * 2014-10-16 2016-04-21 株式会社Adeka 非水電解液及び非水電解液二次電池
WO2017047554A1 (ja) * 2015-09-15 2017-03-23 宇部興産株式会社 蓄電デバイス用非水電解液及びそれを用いた蓄電デバイス
JPWO2017047554A1 (ja) * 2015-09-15 2018-08-09 宇部興産株式会社 蓄電デバイス用非水電解液及びそれを用いた蓄電デバイス

Also Published As

Publication number Publication date
CN102934275A (zh) 2013-02-13
JP5807636B2 (ja) 2015-11-10
BR112012030882A2 (pt) 2016-11-08
ES2521023T3 (es) 2014-11-12
EP2579377B1 (en) 2014-09-03
US9240614B2 (en) 2016-01-19
KR20130119842A (ko) 2013-11-01
CA2801288A1 (en) 2011-12-08
JPWO2011152534A1 (ja) 2013-08-01
EP2579377A1 (en) 2013-04-10
CN102934275B (zh) 2015-06-17
EP2579377A4 (en) 2014-01-01
US20130071733A1 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5807636B2 (ja) 非水電解液及びそれを用いた電気化学素子
JP6070543B2 (ja) 非水電解液、それを用いた蓄電デバイス、及びトリフルオロメチルベンゼン化合物
JP5979150B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP6024670B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP6176112B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP5692219B2 (ja) 非水電解液、それを用いた電気化学素子、及びそれに用いられる1,2−ジオキシプロパン化合物
JP6035684B2 (ja) 非水電解液及びそれを用いた電気化学素子
JP6583267B2 (ja) 非水電解液、それを用いた蓄電デバイス、及びそれに用いるリチウム塩
JP5561163B2 (ja) リチウム電池用非水電解液、それを用いたリチウム電池、及びそれに用いられるホルミルオキシ基含有化合物
KR20120084709A (ko) 비수 전해액 및 그것을 이용한 전기 화학 소자
KR20150018513A (ko) 비수 전해액 및 그것을 이용한 축전 디바이스
JPWO2012077623A1 (ja) 非水電解液及びそれを用いた電気化学素子
JP5822070B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP5589796B2 (ja) 非水電解液、それを用いた電気化学素子、及びそれに用いられるトリアルキルシリルオキシ基含有化合物
JP6015673B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JPWO2012011586A1 (ja) 非水電解液及びそれを用いた電気化学素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180027595.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789935

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012518472

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011789935

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 9980/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2801288

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13701193

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127031604

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012030882

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012030882

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121204