JP2008218425A - 非水系電解液及びそれを用いたリチウム二次電池 - Google Patents

非水系電解液及びそれを用いたリチウム二次電池 Download PDF

Info

Publication number
JP2008218425A
JP2008218425A JP2008116041A JP2008116041A JP2008218425A JP 2008218425 A JP2008218425 A JP 2008218425A JP 2008116041 A JP2008116041 A JP 2008116041A JP 2008116041 A JP2008116041 A JP 2008116041A JP 2008218425 A JP2008218425 A JP 2008218425A
Authority
JP
Japan
Prior art keywords
electrolyte solution
aqueous electrolyte
aqueous
weight
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008116041A
Other languages
English (en)
Inventor
Masamichi Onuki
正道 大貫
Hiroshi Machino
洋 町野
Katsuya Isada
克哉 諫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2008116041A priority Critical patent/JP2008218425A/ja
Publication of JP2008218425A publication Critical patent/JP2008218425A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

【課題】高容量で保存特性及び安全性に優れた二次電池を得ることのできる非水系電解液を提供する。
【解決手段】リチウム塩が非水系有機溶媒に溶解されてなる非水系電解液であって、該非水系有機溶媒が、(a)芳香族炭化水素又は芳香族エーテル、並びに(b)下記一般式(1)で表されるビス有機スルホネート化合物、を含有することを特徴とする非水系電解液。
Figure 2008218425

(式中、Xは炭素数2〜4のアルキレン基を表し、R1及びR2はそれぞれ独立して炭化水素基を表す)
【選択図】 なし

Description

本発明は、非水系電解液及びそれを用いたリチウム二次電池に関する。
リチウム二次電池はエネルギー密度が高く、しかも自己放電を起こしにくいという利点がある。そこで近年、携帯電話やノートパソコン、PDA等の民生用モバイル機器用の電源として広く利用されている。リチウム二次電池用の電解液は支持電解質であるリチウム塩と非水系の有機溶媒とから構成される。非水系の有機溶媒は、リチウム塩を解離させるために高い誘電率を有すること、広い温度領域で高いイオン伝導度を発現させること、電池中で安定であることが要求される。これらの要求を一つの溶媒で達成するのは困難であるので、通常はプロピレンカーボネート、エチレンカーボネート等に代表される高沸点溶媒とジメチルカーボネート、ジエチルカーボネート等の低沸点溶媒とを組み合わせて使用している。
また初期容量、レート特性、サイクル特性、高温保存特性、低温特性、トリクル充電特性等を改良するために種々の添加剤を電解液に添加する方法が数多く報告されてきた。例えばサイクル特性を向上させる方法として、1,4−ブタンジオールジメタンスルホネートなどのジスルホン酸エステル類を添加することが特開2000−133304号公報に開示されている。また過充電特性を向上させる方法として、シクロヘキシルベンゼン等のアルキルベンゼン類を添加することが特許第3113652号公報に開示されている。
しかしながら、近年、高性能化への要求はますます高く、上記の諸特性がバランス良く向上することが求められている。特に最近は過充電防止等の安全対策への要求が高くなっているため、特許第3113652号に例示されているシクロヘキシルベンゼン等の添加剤を電解液に加える場合があるが、その際、保存特性の大幅な悪化を招いてしまうことがある。過充電特性等を向上しつつ、良好な保存特性を与える電解液の開発が切望されていた。
本発明者等は、上記の課題を解決すべく鋭意検討を重ねた結果、非水系電解液に特定の化合物の組み合わせを含有させることによって、電池の保存特性が大幅に改善され、しかも過充電特性も向上することを見出して、本発明を完成するに至った。
即ち本発明の要旨は、リチウム塩が非水系有機溶媒に溶解されてなる非水系電解液であって、該非水系有機溶媒が、(a)芳香族炭化水素又は芳香族エーテル、並びに(b)下記一般式(1)で表されるビス有機スルホネート化合物、を含有することを特徴とする非水系電解液、に存する。
Figure 2008218425
(式中、Xは炭素数2〜4のアルキレン基を表し、R1及びR2はそれぞれ独立して炭化水素基を表す)
また本発明の他の要旨は、上記非水系電解液を用いたことを特徴とするリチウム二次電池、に存する。
芳香族炭化水素または芳香族エーテルを含有する電解液において、上記のビス有機スルホネート化合物を添加することで保存特性が向上する要因の詳細は不明であるが、それが正極上に吸着されて芳香族炭化水素または芳香族エーテルが酸化分解されるのを抑制しているものと思われる。芳香族炭化水素または芳香族エーテルは酸化されやすいので過充電防止効果がある反面、4.2V程度の通常使用電圧でも高温状態で保存すると酸化分解されて高抵抗被膜を形成するので保存特性が悪くなる。特開2000−133304号公報においては、1,4−ブタンジオールジアルカンスルホネート類がサイクル特性を向上させるための添加剤として開示されているが、その作用機構は初期充電時に還元されて負極上に保護被膜を形成することであるとされている。従って上記のビス有機スルホネート化合物が正極上に吸着されることによって吸着層を形成し、その結果として芳香族炭化水素または芳香族エーテルを含む電解液を用いた二次電池の高温保存特性が向上することとは予想できないことであった。本発明においてはこの正極上への吸着が保存特性改善のポイントであり、上記のビス有機スルホネート化合物を使用すると2つのスルホネート基がCo、Ni等の正極と相互作用するために吸着層がより強固なものとなり、保存特性が向上すると考えられる。また本発明では正極上に吸着層が形成されるので、過充電領域において芳香族炭化水素または芳香族エーテルの酸化分解は抑制されない。むしろカーボネート等の非水系溶媒の分解を促進させ、過充電時の初期において発生するガス量を増加させる。このため電池内圧を検知して電流遮断させる装置が備わっている電池においては、より安全な段階で電流遮断することが可能となり過充電防止効果が向上するのである。
本発明によれば、高い容量、優れたレート特性の二次電池が得られ、また保存特性、安全性に優れた二次電池を得ることができる。
以下、本発明の実施の形態について詳述する。
本発明の非水系電解液は、非水系有機溶媒にリチウム塩が溶解され、さらに芳香族炭化水素又は芳香族エーテル、並びに特定のビス有機スルホネート化合物、が含有されているものである。
本発明では下記一般式(1)で表されるビス有機スルホネート化合物を添加剤として使用する。
Figure 2008218425
(式中、Xは炭素数2〜4のアルキレン基を表し、R1及びR2はそれぞれ独立して炭化水素基を表す)
上記一般式(1)において、Xは炭素数2〜4のアルキレン基を表し、具体的にはエチレン基、トリメチレン基、テトラメチレン基等が挙げられる。またR1及びR2はそれぞれ独立して炭化水素基を表し、具体的にはメチル基、エチル基、プロピル基、ブチル基、ペンチル基等のアルキル基、フェニル基、トリル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等が挙げられる。
上記ビス有機スルホネート化合物としては、例えばエチレングリコールジメタンスルホネート、1,3−プロパンジオールジメタンスルホネート、1,4−ブタンジオールジメタンスルホネート、1,3−プロパンジオールジエタンスルホネート、1,4−ブタンジオールジエタンスルホネート、1,4−ブタンジオールジプロパンスルホネート等のビスアルカンスルホネート類、エチレングリコールジベンゼンスルホネート、1,3−プロパンジオールジベンゼンスルホネート、1,4−ブタンジオールジベンゼンスルホネート、1,4−ブタンジオールジ−p−トルエンスルホネート等のビスアレーンスルホネート類が挙げられるが、中でも1,4−ブタンジオールジメタンスルホネート、1,4−ブタンジオールジ−p−トルエンスルホネートは好適に用いられる。これらの添加剤は2種類以上を混合して使用してもよい。上記ビス有機スルホネート化合物の添加量は特に限定されないが、非水系電解液に対して通常0.1〜10重量%、好ましくは0.5〜5重量%である。添加量が多すぎるとイオン伝導度が低下してレート特性などの電池特性が低下する傾向にある。また添加量が少な過ぎる場合は、充分な添加効果が発現しない。
本発明で支持電解質として使用されるリチウム塩としては、特に制限はないが、例えばLiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C49SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO22NLi、(C25SO22NLiなどのリチウム塩が挙げられる。特に、溶媒に溶けやすくかつ高い解離度を示すLiPF6、LiBF4、CF3SO3Li及び(CF3SO22NLiからなる群から選ばれるリチウム塩は好適に用いられる。また非水系電解液中のリチウム塩の濃度は、非水系電解液に対して通常0.5〜2mol/Lの範囲で使用するのが好ましい。
本発明で用いる非水系有機溶媒としては、リチウム塩を溶解させることができる限り特に限定はされないが、なかでも高いイオン導電性を発現させる溶媒として、通常、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート、エチルプロピルカーボネート等の鎖状カーボネート類、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)等の環状カーボネート類、ビニレンカーボネート、ビニルエチレンカーボネート等の不飽和カーボネート類、1,2−ジメトキシエタン、テトラヒドロフランなどのエーテル類、γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類、ギ酸メチル、酢酸メチル、プロピオン酸メチル等の鎖状エステル類が好ましく用いられる。
これらの有機溶媒は、通常、適切な物性を達成するように混合して使用される。例えば一般に上記鎖状カーボネート類と上記環状カーボネート類とを併用するのが好ましい。また上記鎖状カーボネート類の中でも特にエチルメチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート等の非対称カーボネートを混合使用するのは好ましい。そのなかでもエチルメチルカーボネートは粘度が低いためリチウムの移動性を高めるだけでなく、沸点が比較的高いため揮散しにくくて取り扱いやすく、またLiとの反応も少ないので好適に用いられる。またビニレンカーボネート、ビニルエチレンカーボネート等の不飽和カーボネート類を混合使用すると、これらの不飽和カーボネート類は初期充電時に還元されやすく、安定な界面保護皮膜(SEI)を形成するのに寄与するので好ましい。
また本発明では溶媒中に芳香族炭化水素または芳香族エーテルを含有させる。
上記芳香族炭化水素としては、例えばベンゼン、トルエン、エチルベンゼン、ジエチルベンゼン、トリエチルベンゼン、イソプロピルベンゼン、t−ブチルベンゼン、シクロヘキシルベンゼン等のベンゼン類、ビフェニル、2−フェニルトルエン、3−フェニルトルエン、4−フェニルトルエン、3,3’−ジメチルビフェニル、4,4’−ジメチルビフェニル等のビフェニル類、ナフタレン、1−フェニルナフタレン等のナフタレン類、o−テルフェニル、m−テルフェニル、p−テルフェニル等のテルフェニル類、o−テルフェニル部分水素化物、m−テルフェニル部分水素化物、p−テルフェニル部分水素化物等のテルフェニル部分水素化物類、ジフェニルメタン等が挙げられる。
また上記芳香族エーテルとしては、例えばアニソール、エチルフェニルエーテル、1,2’−ジメトキシベンゼン、1,3’−ジメトキシベンゼン、1,4’−ジメトキシベンゼン等のアルコキシベンゼン類、2−メトキシビフェニル、4−メトキシビフェニル等のアルコキシビフェニル類、ジフェニルエーテル、3−フェノキシトルエン、1,3−ジフェノキシベンゼン等のフェノキシベンゼン類が挙げられる。
上記芳香族炭化水素または芳香族エーテルの内では、t−ブチルベンゼン、シクロヘキシルベンゼン、ビフェニル、2−フェニルトルエン、o−テルフェニル、m−テルフェニル、m−テルフェニル部分水素化物、ジフェニルメタン、ジフェニルエーテル、2−メトキシビフェニル、が好適である。
上記芳香族炭化水素または芳香族エーテルの添加量は特に限定されないが、非水系電解液に対して通常0.1〜10重量%、好ましくは0.5〜5重量%である。本発明の非水系電解液を調製するに際し、非水系電解液の各原料は、予め脱水しておくのが好ましい。水分量は通常50ppm以下、好ましくは30ppm以下とするのがよい。水が多量に存在すると、水の電気分解及びリチウム金属との反応、リチウム塩の加水分解などが起こる可能性があり、電池用の電解質として不適当な場合がある。脱水の手段に特に制限はないが、溶媒などの液体の場合はモレキュラーシーブ等を用いればよい。またリチウム塩などの固体の場合は分解が起きる温度以下で乾燥すればよい。
本発明の非水系電解液はリチウム二次電池用の電解液として有用である。以下、本発明のリチウム二次電池について説明する。
本発明の非水系電解液を適用しうるリチウム二次電池の基本的構成は、従来公知のリチウム二次電池と同様であり、正極と負極とが多孔膜及び本発明の非水系電解液を介してケースに収納されて構成される。本発明の二次電池に使用される正極及び負極は、電池の種類に応じて適宜選択すればよいが、少なくとも正極、負極に対応した活物質を含有する。また、活物質を固定するためのバインダーを含有してもよい。
本発明のリチウム二次電池に使用できる正極活物質としては、例えば、Fe、Co、Ni、Mn等の遷移金属を有する酸化物、リチウムとの複合酸化物、硫化物等の無機化合物が挙げられる。具体的には、MnO、V25、V613、TiO2等の遷移金属酸化物、ニッケル酸リチウム、コバルト酸リチウム、マンガン酸リチウムなどのリチウムと遷移金属との複合酸化物、TiS2、FeSなどの遷移金属硫化物が挙げられる。また、正極活物質として、例えばポリアニリン等の導電性ポリマー等の有機化合物を挙げることもできる。上記の活物質の複数種を混合して用いてもよい。活物質が粒状の場合の粒径は、レ−ト特性、サイクル特性等の電池特性が優れる点で通常1〜30μm、好ましくは1〜10μm程度である。
本発明のリチウム二次電池に使用できる負極活物質としては、リチウム金属、リチウム合金を使用することもできるが、サイクル特性及び安全性の点からリチウムイオンを吸蔵放出可能な化合物としてコークス,アセチレンブラック、メゾフェーズマイクロビーズ、グラファイト等の炭素質物質を使用するのが特に好ましい。粒状の負極活物質の粒径は、初期効率、レ−ト特性、サイクル特性等の電池特性が優れる点で、通常1〜50μm、好ましくは15〜30μm程度である。
また、上記炭素質物質を有機物等と混合・焼成した材料、あるいはCVD法等を用いて、少なくとも表面の一部に上記炭素質物に比べて非晶質の炭素を形成した材料もまた、炭素質物質として好適に使用することができる。
上記有機物としては、軟ピッチから硬ピッチまでのコールタールピッチ;乾留液化油等の石炭系重質油;常圧残油、減圧残油等の直留系重質油;原油、ナフサ等の熱分解時に副生する分解系重質油(例えばエチレンヘビーエンド)等の石油系重質油が挙げられる。また、これらの重質油を200〜400℃で蒸留して得られた固体状残渣物を、1〜100μmに粉砕したものも使用することができる。さらに塩化ビニル樹脂や、焼成によりフェノール樹脂やイミド樹脂となるこれらの樹脂前駆体も使用することができる。
正極又は負極に使用できるバインダーとしては、耐候性、耐薬品性、耐熱性、難燃性等の観点から各種の材料が挙げられる。具体的には、シリケート、ガラスのような無機化合物や、ポリエチレン、ポリプロピレン、ポリ−1,1−ジメチルエチレンなどのアルカン系ポリマー;ポリブタジエン、ポリイソプレンなどの不飽和系ポリマー;ポリスチレン、ポリメチルスチレン、ポリビニルピリジン、ポリ−N−ビニルピロリドンなどの環を有するポリマー;ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸ブチル、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリル酸、ポリメタクリル酸、ポリアクリルアミドなどのアクリル誘導体系ポリマー;ポリフッ化ビニル、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂;ポリアクリロニトリル、ポリビニリデンシアニドなどのCN基含有ポリマー;ポリ酢酸ビニル、ポリビニルアルコールなどのポリビニルアルコール系ポリマー;ポリ塩化ビニル、ポリ塩化ビニリデンなどのハロゲン含有ポリマー;ポリアニリンなどの導電性ポリマーなどが使用できる。また上記のポリマーなどの混合物、変成体、誘導体、ランダム共重合体、交互共重合体、グラフト共重合体、ブロック共重合体などであっても使用できる。これらの樹脂の重量平均分子量は、通常1万〜300万、好ましくは10万〜100万程度である。分子量が低すぎると電極の強度が低下する傾向にある。一方、分子量が高すぎると粘度が高くなり、電極の形成が困難になることがある。好ましいバインダー樹脂は、フッ素系樹脂、CN基含有ポリマーである。
バインダーの使用量は、活物質100重量部に対して通常0.1重量部以上、好ましくは1重量部以上であり、また通常30重量部以下、好ましくは20重量部以下である。バインダーの量が少なすぎると電極の強度が低下する傾向にあり、バインダーの量が多すぎるとイオン伝導度が低下する傾向にある。電極中には、電極の導電性や機械的強度を向上させるために、導電性材料、補強材など各種の機能を発現する添加剤、粉体、充填材などを含有させてもよい。導電性材料としては、上記活物質に適量混合して導電性を付与できるものであれば特に制限はないが、通常、アセチレンブラック、カーボンブラック、黒鉛などの炭素粉末や、各種の金属のファイバー、箔などが挙げられる。補強材としては各種の無機、有機の球状、繊維状フィラーなどが使用できる。
電極は、活物質やバインダー等の構成成分と溶剤とを含む塗料を塗布・乾燥することによって形成することができる。電極の厚さは、通常1μm以上、好ましくは10μm以上、さらに好ましくは20μm以上、最も好ましくは40μm以上であり、また通常200μm以下、好ましくは150μm以下、さらに好ましくは100μm以下である。薄すぎると塗布が困難になり均一性が確保しにくくなるだけでなく、電池の容量が小さくなりすぎることがある。一方、あまりに厚すぎるとレート特性が低下しすぎることがある。
正極及び負極の少なくとも一方の電極は、通常、集電体上に形成される。集電体としては、各種のものを使用することができるが、通常は金属や合金が用いられる。具体的には、正極の集電体としては、アルミニウムやニッケル、SUS等が挙げられ、負極の集電体としては、銅やニッケル、SUS等が挙げられる。好ましくは、正極の集電体としてアルミニウムを使用し、負極の集電体として銅を使用する。正負極層との結着効果を向上させるため、これら集電体の表面を予め粗面化処理しておくのが好ましい。表面の粗面化方法としては、ブラスト処理や粗面ロールにより圧延するなどの方法、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤ−ブラシなどで集電体表面を研磨する機械的研磨法、電解研磨法、化学研磨法などが挙げられる。
また、電池の重量を低減させる、即ち重量エネルギー密度を向上させるために、エキスパンドメタルやパンチングメタルのような穴あきタイプの集電体を使用することもできる。この場合、その開口率を変更することで重量も自在に変更可能となる。また、このような穴あけタイプの集電体の両面に活物質を存在させた場合、この穴を通しての塗膜のリベット効果により塗膜の剥離がさらに起こりにくくなる傾向にあるが、開口率があまりに高くなった場合には、塗膜と集電体との接触面積が小さくなるため、かえって接着強度は低くなることがある。
集電体の厚さは、通常1μm以上、好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下である。あまりに厚すぎると、電池全体の容量が低下しすぎることになり、逆に薄すぎると取り扱いが困難になることがある。
本発明の非水系電解液は、これを高分子によってゲル化して半固体状にしてもよい。半固体状電解質における上記非水系電解液の使用量は、半固体状電解質の総量に対して、通常30重量%以上、好ましくは50重量%以上、さらに好ましくは75重量%以上であり、また通常99.95重量%以下、好ましくは99重量%以下、さらに好ましくは98重量%以下とする。使用量が多すぎると、電解液の保持が困難となり液漏れが生じやすくなり、逆に少なすぎると充放電効率や容量の点で不十分となることがある。
正極と負極との間には、短絡を防止する上で、多孔性のスペーサが設けられているのが好ましい。即ち、この場合、電解液は、多孔性のスペーサに含浸されて使用される。スペーサの材料としては、ポリエチレンやポリプロピレン等のポリオレフィンや、ポリテトラフルオロエチレン、ポリエーテルスルホン等を用いることができるが、好ましくはポリオレフィンである。スペーサの厚さは、通常1μm以上、好ましくは5μm以上、さらに好ましくは10μm以上であり、また通常50μm以下、好ましくは40μm以下、さらに好ましくは30μm以下である。多孔膜が薄すぎると、絶縁性や機械的強度が悪化することがあり、厚すぎるとレート特性等の電池性能が悪化するばかりでなく、電池全体としてのエネルギー密度が低下することがある。スペーサの空孔率としては、通常20%以上、好ましくは35%以上、さらに好ましくは45%以上であり、また通常90%以下、好ましくは85%以下、さらに好ましくは75%以下である。空孔率が小さすぎると膜抵抗が大きくなりレート特性が悪化する傾向にある。また大きすぎると膜の機械的強度が低下し絶縁性が低下する傾向にある。スペーサの平均孔径は、通常0.5μm以下、好ましくは0.2μm以下であり、また通常0.05μm以上である。あまりに大きいと短絡が生じやすくなり、小さすぎると膜抵抗が大きくなりレート特性が悪化することがある。
以下、実施例を挙げて本発明の具体的態様を更に説明するが、本発明はその要旨を越えない限りこれらの実施例により限定されるものではない。
実施例1
[正極の製造]
コバルト酸リチウム(LiCoO2)90重量%とポリフッ化ビニリデン(PVdF)5重量%とアセチレンブラック5重量%とを混合し、N−メチルピロリドンを加えスラリー状にしたものをアルミニウムからなる集電体の片面に塗布・乾燥して正極を得た。
[負極の製造]
グラファイト粉末87.4重量%とPVdF9.7重量%とアセチレンブラック 2.9重量%とを混合し、N−メチルピロリドンを加えスラリー状にしたものを銅からなる集電体の両面に塗布・乾燥して負極を得た。
[電解液の調合]
LiPF6を1.25mol/Lの割合で含有するエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの混合溶媒(混合体積比2:3:3)100重量部にビニレンカーボネート2重量部とシクロヘキシルベンゼン2重量部を加えたものに、1,4−ブタンジオールジメタンスルホネート1重量部を加えて電解液とした。
[リチウム二次電池の製造]
上記正極、負極、及び膜厚16μm、空孔率45%、平均孔径0.05μmのポリエチレン製2軸延伸多孔膜フィルムに、それぞれ上記電解液を塗布・含浸させた後、負極、セパレータ、正極、セパレータ、負極の順に積層した。こうして得られた電池要素を、まずPETフィルムで挟んだ後、アルミニウム層の両面を樹脂層で被覆したラミネートフィルムに正極負極の端子を突設させつつ、真空封止してシート状のリチウム二次電池を作製した。さらに電極間の密着性を高めるためにシリコンゴム及びガラス板でシート状電池を挟んだ上で0.35kg/cm2で加圧した。図1に二次電池の概略断面図を示す。
[容量評価] コバルト酸リチウムの1時間当たりの放電量を138mAh/gとし、これと評価用リチウム二次電池の正極の活物質量とから放電速度1Cを求めてレート設定をした上で、0.2Cで4.2Vまで充電した後、0.2Cで3Vまで放電し初期のフォーメーションを行った。ついで0.5Cで4.2Vまで充電した後、0.2Cで3Vまで再度放電し、0.2C放電容量を求めた。結果を表−1に示す。なお充電時のカット電流は何れも0.05Cとした。
[保存特性評価]
容量評価の終了した電池を0.5Cで4.2Vまで充電した後、60℃の恒温槽に7日間保存した。その後、電池を取り出し、0.5Cで4.2Vまで充電した後0.2Cで放電し保存後の0.2C放電容量を求めた。また保存前後の0.2C放電容量から下記計算式により容量回復率を求めた。結果を表−1に示す。
Figure 2008218425
[過充電特性評価]
容量評価の終了した電池を0.5Cで4.2Vまで充電した後、2Cの電流値で過充電を開始した。21分後(SOC170%に相当)に通電を停止し、ガスの発生量をエタノール浴に電池を漬けて浮力を測定(アルキメデスの原理)して求めた。結果を表−1に示す。
実施例2
シクロヘキシルベンゼンの代わりにm−テルフェニルの部分水素化物(水添率40%)を用いたこと以外は実施例1と同様にしてリチウム二次電池を作製し、実施例1と同様の電池特性試験を実施した。結果を表−1に示す。
比較例1
1,4−ブタンジオールジメタンスルホネートを添加しない電解液を使用したこと以外は実施例1と同様にしてリチウム二次電池を作製し、実施例1と同様の電池特性試験を実施した。結果を表−1に示す。
比較例2
シクロヘキシルベンゼンの代わりにm−テルフェニルの部分水素化物(水添率40%)を用い、かつ1,4−ブタンジオールジメタンスルホネートを添加しない電解液を使用したこと以外は実施例1と同様にしてリチウム二次電池を作製し、実施例1と同様の電池特性試験を実施した。結果を表−1に示す。
Figure 2008218425
表−1から明らかなように、本発明の非水系電解液を用いれば容量が高くなり、高温度保存後の容量が向上し、なおかつ過充電初期の段階でガス発生量が多いので円筒電池等の電池内圧を感知して電流遮断する装置の備わった電池において過充電特性が向上する。
本発明を実施したリチウム二次電池の構造を示す概略断面図である。
符号の説明
1 正極
2 負極
3 セパレータ
4 PETフィルム
5 シリコンゴム
6 ガラス板
7 ラミネートフィルム
8 封止材付きリード

Claims (6)

  1. リチウム塩が非水系有機溶媒に溶解されてなる非水系電解液であって、該非水系有機溶媒が、(a)芳香族炭化水素又は芳香族エーテル、並びに(b)下記一般式(1)で表されるビス有機スルホネート化合物、を含有することを特徴とする非水系電解液。
    Figure 2008218425
    (式中、Xは炭素数2〜4のアルキレン基を表し、R1及びR2はそれぞれ独立して炭化水素基を表す)
  2. 上記芳香族炭化水素または芳香族エーテルの含有量が非水系電解液に対して0.1〜10重量%である、請求項1に記載の非水系電解液。
  3. 上記ビス有機スルホネート化合物の含有量が非水系電解液に対して0.1〜10重量%である、請求項1又は2に記載の非水系電解液。
  4. 非水系有機溶媒が、不飽和カーボネートを含有する、請求項1〜3のいずれかに記載の非水系電解液。
  5. 非水系有機溶媒が、非対称カーボネートを含有する、請求項1〜4のいずれかに記載の非水系電解液。
  6. 請求項1〜5のいずれかに記載の非水系電解液を用いたことを特徴とするリチウム二次電池。
JP2008116041A 2008-04-25 2008-04-25 非水系電解液及びそれを用いたリチウム二次電池 Pending JP2008218425A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008116041A JP2008218425A (ja) 2008-04-25 2008-04-25 非水系電解液及びそれを用いたリチウム二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008116041A JP2008218425A (ja) 2008-04-25 2008-04-25 非水系電解液及びそれを用いたリチウム二次電池

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002015808A Division JP4229615B2 (ja) 2002-01-24 2002-01-24 非水系電解液及びそれを用いたリチウム二次電池

Publications (1)

Publication Number Publication Date
JP2008218425A true JP2008218425A (ja) 2008-09-18

Family

ID=39838185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008116041A Pending JP2008218425A (ja) 2008-04-25 2008-04-25 非水系電解液及びそれを用いたリチウム二次電池

Country Status (1)

Country Link
JP (1) JP2008218425A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070964A1 (ja) * 2009-12-07 2011-06-16 ソニー株式会社 二次電池、電解液、電池パック、電子機器および電動車両
JP2011129420A (ja) * 2009-12-18 2011-06-30 Sony Corp 二次電池、二次電池用電解液、電動工具、電気自動車および電力貯蔵システム
WO2011152534A1 (ja) * 2010-06-04 2011-12-08 宇部興産株式会社 非水電解液及びそれを用いた電気化学素子
US20130130128A1 (en) * 2010-08-05 2013-05-23 Wako Pure Chemical Industries, Ltd. Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same
KR20130105811A (ko) 2010-08-05 2013-09-26 와코 쥰야꾸 고교 가부시키가이샤 비수계 전해액, 그 제조법, 및 당해 전해액을 사용한 비수계 전해액 전지

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302614A (ja) * 1994-03-07 1995-11-14 Sony Corp 非水電解液二次電池
JP2000133304A (ja) * 1998-10-26 2000-05-12 Ube Ind Ltd 非水電解液及びそれを用いたリチウム二次電池
JP3113652B1 (ja) * 1999-06-30 2000-12-04 三洋電機株式会社 リチウム二次電池
JP2001043895A (ja) * 1999-05-24 2001-02-16 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2001313071A (ja) * 2000-04-27 2001-11-09 Ube Ind Ltd 非水電解液及びそれを用いたリチウム二次電池
JP2001319685A (ja) * 1999-03-16 2001-11-16 Sumitomo Chem Co Ltd 非水電解液およびこれを用いたリチウム二次電池
JP2001357838A (ja) * 2000-04-11 2001-12-26 Matsushita Electric Ind Co Ltd 非水電解質二次電池およびその製造法
JP2002203594A (ja) * 2000-11-02 2002-07-19 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302614A (ja) * 1994-03-07 1995-11-14 Sony Corp 非水電解液二次電池
JP2000133304A (ja) * 1998-10-26 2000-05-12 Ube Ind Ltd 非水電解液及びそれを用いたリチウム二次電池
JP2001319685A (ja) * 1999-03-16 2001-11-16 Sumitomo Chem Co Ltd 非水電解液およびこれを用いたリチウム二次電池
JP2001043895A (ja) * 1999-05-24 2001-02-16 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP3113652B1 (ja) * 1999-06-30 2000-12-04 三洋電機株式会社 リチウム二次電池
JP2001357838A (ja) * 2000-04-11 2001-12-26 Matsushita Electric Ind Co Ltd 非水電解質二次電池およびその製造法
JP2001313071A (ja) * 2000-04-27 2001-11-09 Ube Ind Ltd 非水電解液及びそれを用いたリチウム二次電池
JP2002203594A (ja) * 2000-11-02 2002-07-19 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070964A1 (ja) * 2009-12-07 2011-06-16 ソニー株式会社 二次電池、電解液、電池パック、電子機器および電動車両
US9806377B2 (en) 2009-12-07 2017-10-31 Sony Corporation Secondary battery, electrolytic solution, battery pack, electronic device, and electrical vehicle
US11594758B2 (en) 2009-12-07 2023-02-28 Murata Manufacturing Co., Ltd. Secondary battery, electrolytic solution, battery pack, electronic device, and electrical vehicle
JP2011129420A (ja) * 2009-12-18 2011-06-30 Sony Corp 二次電池、二次電池用電解液、電動工具、電気自動車および電力貯蔵システム
WO2011152534A1 (ja) * 2010-06-04 2011-12-08 宇部興産株式会社 非水電解液及びそれを用いた電気化学素子
JP5807636B2 (ja) * 2010-06-04 2015-11-10 宇部興産株式会社 非水電解液及びそれを用いた電気化学素子
US9240614B2 (en) 2010-06-04 2016-01-19 Ube Industries, Ltd. Nonaqueous electrolyte solution and electrochemical element using same
US20130130128A1 (en) * 2010-08-05 2013-05-23 Wako Pure Chemical Industries, Ltd. Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same
KR20130105811A (ko) 2010-08-05 2013-09-26 와코 쥰야꾸 고교 가부시키가이샤 비수계 전해액, 그 제조법, 및 당해 전해액을 사용한 비수계 전해액 전지
US9190695B2 (en) 2010-08-05 2015-11-17 Wako Pure Chemical Industries, Ltd. Nonaqueous electrolyte solution, method for producing same, and nonaqueous electrolyte battery using the electrolyte solution
US9257720B2 (en) 2010-08-05 2016-02-09 Wako Pure Chemical Industries, Ltd. Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same
KR20180103187A (ko) 2010-08-05 2018-09-18 후지필름 와코 준야꾸 가부시키가이샤 비수계 전해액 및 그를 사용한 비수계 전해액 전지

Similar Documents

Publication Publication Date Title
JP4337324B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
JP4229615B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
JP5391944B2 (ja) 非水系電解液およびそれを用いた電池
JP5699465B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
JP5391938B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
WO2007043624A1 (ja) 非水電解液、それを用いたリチウム二次電池
JP4137452B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
JP2006351337A (ja) リチウム二次電池
JP4051947B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
JP2012064472A (ja) 非水系電解液及びそれを用いたリチウム二次電池
JP4283566B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
JP4283565B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
JP2008218425A (ja) 非水系電解液及びそれを用いたリチウム二次電池
JP4007011B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
JP4200677B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
JP5066788B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
JP4867208B2 (ja) リチウム二次電池
JP4089234B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
JP4465944B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
JP4089235B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
JP4127355B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
JP4013538B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
JP4179033B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
JP5532584B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
JP2003297417A (ja) 非水系電解液及びそれを用いたリチウム二次電池

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111213