WO2011152400A1 - 磁気抵抗効果素子及び磁気メモリ - Google Patents

磁気抵抗効果素子及び磁気メモリ Download PDF

Info

Publication number
WO2011152400A1
WO2011152400A1 PCT/JP2011/062493 JP2011062493W WO2011152400A1 WO 2011152400 A1 WO2011152400 A1 WO 2011152400A1 JP 2011062493 W JP2011062493 W JP 2011062493W WO 2011152400 A1 WO2011152400 A1 WO 2011152400A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
fixed
nonmagnetic
ferromagnetic
magnetoresistive
Prior art date
Application number
PCT/JP2011/062493
Other languages
English (en)
French (fr)
Inventor
大野 英男
正二 池田
松倉 文▲礼▼
将起 遠藤
駿 金井
山本 浩之
勝哉 三浦
Original Assignee
株式会社日立製作所
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所, 国立大学法人東北大学 filed Critical 株式会社日立製作所
Priority to US13/701,846 priority Critical patent/US8917541B2/en
Publication of WO2011152400A1 publication Critical patent/WO2011152400A1/ja
Priority to US14/224,853 priority patent/US9564152B2/en
Priority to US15/392,556 priority patent/US10651369B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1107Magnetoresistive
    • Y10T428/1114Magnetoresistive having tunnel junction effect

Definitions

  • the present invention relates to a magnetoresistive effect element and a magnetic memory including the magnetoresistive effect element as a memory cell.
  • a memory cell 100 of a magnetic random access memory has a structure in which a magnetoresistive effect element 101 and a selection transistor 102 are electrically connected in series.
  • the source electrode of the selection transistor 102 is electrically connected to the source line 103
  • the drain electrode is electrically connected to the bit line 104 via the magnetoresistive effect element 101
  • the gate electrode is electrically connected to the word line 105.
  • the magnetoresistive effect element 101 has a basic structure of a three-layer structure in which a nonmagnetic layer 108 is sandwiched between two ferromagnetic layers of a first ferromagnetic layer 106 and a second ferromagnetic layer 107.
  • the first ferromagnetic layer 106 has a fixed magnetization direction and becomes a fixed layer
  • the second ferromagnetic layer 107 has a variable magnetization direction and becomes a recording layer.
  • the magnetoresistive element 101 has a low resistance when the magnetization direction of the first ferromagnetic layer 106 and the magnetization direction of the second ferromagnetic layer 107 are parallel to each other (P state), and anti-parallel (AP state). High resistance. In the MRAM, this resistance change is made to correspond to “0” and “1” of the bit information. Bit information is written by spin torque magnetization reversal caused by a current flowing through the magnetoresistive element 101.
  • the magnetization of the recording layer When a current flows from the fixed layer to the recording layer, the magnetization of the recording layer is antiparallel to the magnetization of the fixed layer, and the bit information becomes “1”. When a current flows from the recording layer to the fixed layer, the magnetization of the recording layer becomes parallel to the magnetization of the fixed layer, and the bit information becomes “0”. Since the speed of magnetization reversal by current is about 1 nanosecond, the MRAM can be written at a very high speed. Further, since the bit information is recorded according to the magnetization direction of the recording layer, the MRAM has a non-volatility and can suppress standby power consumption. For this reason, MRAM is expected as a next-generation memory.
  • FIG. 1 shows the case where the first ferromagnetic layer 106 of the magnetoresistive effect element 101 is a fixed layer and the second ferromagnetic layer 107 is a recording layer.
  • the layer 106 is a recording layer having a variable magnetization direction and the second ferromagnetic layer 107 is a fixed layer whose magnetization direction is fixed, it operates as an MRAM.
  • the bit information becomes “1”.
  • the magnetization of the recording layer becomes parallel to the magnetization of the fixed layer, and the bit information becomes “0”.
  • the main characteristics are that the three characteristics of the magnetoresistive effect element (MR ratio), the write current density, and the thermal stability constant of the magnetoresistive element must be satisfied.
  • MR ratio magnetoresistive effect element
  • the thermal stability constant of the magnetoresistive element There are conditions that must be met. These conditions differ depending on the degree of integration of the MRAM, the minimum processing size, the operation speed, and the like. For example, the higher the reading speed, the higher the magnetoresistance change rate is required, and generally a high magnetoresistance change rate of 70% to 100% or more is required.
  • the write current density needs to be 2 ⁇ 10 6 A / cm 2 or less in order to increase the writing speed and reduce the power consumption.
  • a thermal stability constant of 80 or more is required for a recording retention time of 10 years or more and prevention of erroneous writing.
  • a structure using a material containing a 3d transition metal element for the first ferromagnetic layer and the second ferromagnetic layer and using MgO for the nonmagnetic layer is known.
  • the material containing the 3d transition metal element has a bcc structure. This is because, when the material containing the 3d transition metal element has a bcc structure, coherent conduction with MgO is realized, so that there is an advantage that the rate of change in magnetoresistance tends to increase.
  • the magnetization directions of the first and second ferromagnetic layers are parallel to the film surface as shown in FIG.
  • Non-Patent Document 1 a perpendicular magnetic anisotropic material typified by a multilayer film such as Co and Pt, Ni and Pt, or an alloy such as FePt and TbFeCo is used as the first ferromagnetic layer and the second layer.
  • a perpendicular magnetic anisotropic material typified by a multilayer film such as Co and Pt, Ni and Pt, or an alloy such as FePt and TbFeCo is used as the first ferromagnetic layer and the second layer.
  • a low write current density and a high thermal stability constant can be realized. This is because the magnetization directions of the first ferromagnetic layer and the second ferromagnetic layer are perpendicular to the film surface.
  • the magnetoresistance change rate becomes small.
  • the material used for at least one of the first ferromagnetic layer and the second ferromagnetic layer constituting the magnetoresistive element is CoFe, CoFeB, or the like containing at least one 3d transition metal such as Co or Fe. materials, or Co 2 MnSi, it was decided to control the magnetic resistance change rate be composed of Co 2 FeAl, Heusler alloys typified by Co 2 CrAl. When these materials are used, coherent tunnel conduction of electrons by the MgO barrier layer and the ⁇ 1 band can be realized. Thereby, a high MR ratio can be realized.
  • Heusler alloy is a half-metal material and has a high spin polarizability (about 100%), and is therefore effective in realizing a higher MR ratio than a normal ferromagnetic material such as CoFe.
  • the damping constant ⁇ is small, and it is an effective material for reducing the write current density J c0 .
  • a magnetoresistive effect element is made of a material such as CoFe or CoFeB
  • the magnetization direction of the ferromagnetic layer is parallel to the film surface.
  • FIG. 2 shows an example in which CoFeB is used for the ferromagnetic layer, and shows the film thickness necessary for the magnetization direction to be perpendicular to the film surface with respect to the temperature of the heat treatment process included in the manufacturing process. It is shown.
  • the heat treatment time was 1 hour.
  • the white circles in the figure represent the upper limit of the film thickness, and the black circles represent the lower limit.
  • the film thickness range of CoFeB in which the magnetization direction is perpendicular to the film surface changes corresponding to the heat treatment temperature.
  • the example of FIG. 2 is for CoFeB, and for a material containing at least one other 3d transition metal, such as CoFe or Fe, the film thickness necessary for the magnetization direction to be perpendicular to the film surface.
  • the magnetization direction can be changed from parallel to perpendicular to the film surface by controlling the film thickness to be suitable for the material.
  • the reason why the magnetization direction becomes perpendicular to the film surface in this way is considered to be a special change in anisotropy at the interface such as CoFeB.
  • By controlling the film thickness of CoFeB to the atomic layer level and reducing the film thickness it is possible to increase the ratio of the volume at which the interface effect exerts on the volume of the CoFeB layer.
  • FIG. 3 shows the magnetoresistance change rate of the magnetoresistive element when CoFeB is used for the first and second ferromagnetic layers as an example with respect to the temperature during the heat treatment. is there.
  • the nonmagnetic layer is MgO.
  • heat treatment may be performed at about 250 ° C. to obtain a magnetoresistance change rate of 70%, and heat treatment may be performed at 300 ° C. to obtain a magnetoresistance change rate of 100%.
  • heat treatment may be performed at 300 ° C. to obtain a magnetoresistance change rate of 100%.
  • FIG. 3 shows the magnetoresistance change rate of the magnetoresistive element when CoFeB is used for the first and second ferromagnetic layers as an example with respect to the temperature during the heat treatment. is there.
  • the nonmagnetic layer is MgO.
  • heat treatment may be performed at about 250 ° C. to obtain a magnetoresistance change rate of 70%, and heat treatment may be performed at 300 ° C. to obtain a magnet
  • the film thicknesses of the first and second ferromagnetic layers are set to 1. It may be controlled from about 0.0 nm to about 1.6 nm.
  • the magnetoresistive element of the present invention can achieve a magnetoresistance change rate of 70% or more necessary for high-speed reading.
  • FIG. 4 shows the resistance of the magnetoresistive element with respect to a magnetic field applied in a direction perpendicular to the film surface when CoFeB is used as the material of the first ferromagnetic layer and the second ferromagnetic layer and MgO is used as the nonmagnetic layer. It shows a change.
  • the heat treatment temperature was 300 ° C.
  • the magnetization direction of the recording layer and the fixed layer is perpendicular to the film surface, and the resistance of the element changes corresponding to the magnetization reversal of the recording layer and the fixed layer due to the change of the applied magnetic field. I understand that. Further, the magnetoresistance change rate at this time was 100%.
  • the present invention it is possible to easily produce a magnetoresistive element having a large magnetoresistance change rate and a magnetization direction perpendicular to the film surface.
  • the film surface is controlled by controlling the heat treatment temperature and adjusting the film thicknesses of the first and second ferromagnetic layers formed with the nonmagnetic layer interposed therebetween.
  • a magnetoresistive effect element that maintains a magnetization direction perpendicular to.
  • CoFeB When CoFeB is used for the first ferromagnetic layer and the second ferromagnetic layer, the film thickness required for the magnetization direction of the magnetoresistive element to be perpendicular to the film surface with respect to the temperature of the heat treatment step
  • the figure which shows a change The figure which shows the change of the magnetoresistive change rate of a magnetoresistive effect element with respect to the temperature of a heat processing process at the time of using CoFeB for the 1st ferromagnetic layer and the 2nd ferromagnetic layer.
  • the structure of the magnetoresistive effect element of Example 1 is schematically shown in FIG.
  • the magnetoresistive effect element 101 includes a first ferromagnetic layer 106 whose magnetization direction is fixed, a second ferromagnetic layer 107 whose magnetization direction is variable, a first ferromagnetic layer, and a second ferromagnetic layer.
  • a nonmagnetic layer is electrically connected between the layers.
  • the material of the first ferromagnetic layer 106 and the second ferromagnetic layer 107 was Co 20 Fe 60 B 20
  • the nonmagnetic layer 108 was made of MgO having a thickness of 1 nm.
  • the film thickness of the first ferromagnetic layer 106 was 1.0 nm, and the film thickness of the second ferromagnetic layer was 1.2 nm. Further, Ta with a thickness of 5 nm was used for the base layer 503 and the cap layer 504.
  • the laminated thin film having the structure shown in FIG. 5 is produced by sputtering in an ultrahigh vacuum, and then, at 300 ° C. for crystallization of the first ferromagnetic layer, the second ferromagnetic layer, and the nonmagnetic layer. Heat treatment was performed.
  • the CoFeB layer constituting the first ferromagnetic layer 106 and the second ferromagnetic layer 107 has a thickness of about 1.0 nm to 1.6 nm when the heat treatment temperature is 300 ° C. By controlling so, the easy axis of magnetization becomes perpendicular to the film surface.
  • the first ferromagnetic layer 106 has a thickness of 1.0 nm
  • the second ferromagnetic layer 107 has a thickness of 1.2 nm.
  • the magnetization 501 of the first ferromagnetic layer and the magnetization 502 of the second ferromagnetic layer are oriented vertically as shown in FIG.
  • the ease of magnetization reversal between the fixed layer and the recording layer can be controlled.
  • the relationship between the film thickness of CoFeB and the ease of magnetization reversal between the recording layer and the fixed layer (in other words, the difference in current density J c0 necessary for magnetization reversal) will be described in more detail.
  • the current density J c0 required for the magnetization reversal of the magnetic layer can be expressed by the following equation.
  • is Gilbert's damping constant
  • t is the thickness of the magnetic layer
  • K eff is the perpendicular magnetic anisotropy energy density of the magnetic layer.
  • ⁇ and K eff vary depending on the film thickness of Co 20 Fe 60 B 20 .
  • 6A and 6B show the Co 20 Fe 60 B 20 film thickness dependence of ⁇ and K eff ⁇ t (product of K eff and t).
  • ⁇ and K eff ⁇ t increase as the Co 20 Fe 60 B 20 film thickness decreases. From these characteristics and equation (1), it can be seen that the write current density J c0 increases as the Co 20 Fe 60 B 20 film thickness decreases.
  • the fixed layer 1.0 nm
  • the fixed layer is less likely to reverse the magnetization than the recording layer (1.2 nm)
  • the fixed layer can be fixed even if a current is supplied to rewrite information on the recording layer.
  • the magnetization direction of the layer can be stably maintained.
  • FIG. 7 shows the calculation result of the magnetization reversal probability of the recording layer and the fixed layer in the element of this example.
  • the applied voltage is positive
  • a current flows through the magnetoresistive element from the bottom (fixed layer 106) to the top (recording layer 107).
  • the magnetization of the recording layer 107 is reversed (change A in the figure).
  • the magnetization direction of the fixed layer 106 is still maintained.
  • the ease of magnetization reversal is controlled by providing a difference in film thickness between the recording layer and the fixed layer, and is fixed during information rewriting (magnetization reversal) of the recording layer.
  • An operation of stably maintaining the magnetization direction of the layer can be realized.
  • the first ferromagnetic layer 106 is used as a fixed layer and the second ferromagnetic layer 107 is used as a recording layer.
  • a configuration in which the upper and lower positions of both layers are switched may be used.
  • the thickness of the ferromagnetic layer on the upper side of the nonmagnetic layer 108 is made thinner than that of the ferromagnetic layer on the lower side of the nonmagnetic layer 108.
  • the ferromagnetic layer on the upper side of the nonmagnetic layer 108 becomes a fixed layer.
  • CoFeB is used as the material of the first ferromagnetic layer 106 and the second ferromagnetic layer 107.
  • at least one kind of 3d transition metal element is used, for example, CoFe, Alternatively, Fe or the like may be used.
  • Co 2 MnSi, Co 2 FeAl may be used Heusler alloy typified by Co 2 CrAl. Since the Heusler alloy is a half-metal material, the spin polarizability is high and the MR ratio can be further improved. Further, the Heusler alloy has a smaller damping constant ⁇ as compared with a normal ferromagnetic material.
  • materials considered as perpendicular magnetization materials generally have a large damping constant, for example, about 0.1 in a Co / Pt multilayer film.
  • the damping constant of CoFeB used in this example is as low as 0.03 or less (depending on the film thickness), but a Heusler alloy such as Co 2 FeMnSi has a lower damping constant lower than 0.01.
  • a Heusler alloy having a small damping constant ⁇ is applied to the recording layer, an effect of further reducing the write current density J c0 can be obtained.
  • MgO is used as the material of the nonmagnetic layer 108, but other materials include compounds containing oxygen such as Al 2 O 3 and SiO 2 , semiconductors such as ZnO, and metals such as Cu. Etc. may be used.
  • an amorphous insulator such as Al 2 O 3 or SiO 2 is used as a barrier layer, the MR ratio is lower than when MgO is used, but the first ferromagnetic layer 106 and the second ferromagnetic layer 107 Since it has the effect of perpendicularizing the magnetization, it can function as a magnetoresistive element with perpendicular magnetization.
  • Example 2 proposes a magnetoresistive effect element in which layers having different crystal structures are applied to the fixed layer and the recording layer.
  • Example 2 uses Co 20 Fe 60 B 20 (film thickness: 1 nm) crystallized for the first ferromagnetic layer 106 to be the fixed layer, and uses the second ferromagnetic layer 106 to be the recording layer.
  • the ferromagnetic layer 107 was made of amorphous Co 20 Fe 60 B 20 (film thickness: 1.2 nm).
  • the magnetic anisotropy energy K eff is higher in the crystalline state than in the amorphous state.
  • the write current density J c0 necessary for the magnetization reversal of the magnetic layer depends on K eff , so that the fixed layer is less likely to be reversed in magnetization than the recording layer by adopting the above configuration. That is, it is possible to realize an operation in which the magnetization direction of the fixed layer is stably maintained during the write operation of the recording layer.
  • a method for manufacturing a laminated film constituting the element of Example 2 will be described with reference to FIG.
  • the base layer 503, the first ferromagnetic layer 106, and the nonmagnetic layer 108 are stacked at room temperature in an ultrahigh vacuum at room temperature, and heat-treated at 350 ° C. once as they are.
  • Co 20 Fe 60 B 20 which is the first ferromagnetic layer 106 is in an amorphous state when formed at room temperature, but is crystallized by a subsequent heat treatment.
  • the second magnetic layer 107 and the cap layer 504 are stacked.
  • the second ferromagnetic layer 107 is generally in an amorphous state, but crystallization progresses only at the interface of the nonmagnetic layer 108 and the MR ratio is improved.
  • Example 2 As a result of fabricating and evaluating an element having the configuration of Example 2, a resistance change due to magnetization reversal in the vertical direction and an MR ratio of 100% or more were confirmed. In addition, it was confirmed that the magnetization of the fixed layer was stably maintained when the recording layer was rewritten.
  • CoFe which is a crystalline material may be used for the ferromagnetic layer constituting the fixed layer, and amorphous CoFeB may be used for the ferromagnetic layer constituting the recording layer.
  • MgO is used as the material of the nonmagnetic layer 108, but other materials include compounds containing oxygen such as Al 2 O 3 and SiO 2 , semiconductors such as ZnO, and metals such as Cu. Etc. may be used.
  • an amorphous insulator such as Al 2 O 3 or SiO 2 is used as a barrier layer, the MR ratio is lower than when MgO is used, but the first ferromagnetic layer 106 and the second ferromagnetic layer 107 Since it has the effect of perpendicularizing the magnetization, it can function as a magnetoresistive element with perpendicular magnetization.
  • the film thickness of the first ferromagnetic layer 106 and the film thickness of the second ferromagnetic layer 107 are different from each other. Operation is possible. Even in this case, there is a difference in the perpendicular magnetic anisotropy between the first ferromagnetic layer 106 and the second ferromagnetic layer 107 due to the difference in crystal structure between the first ferromagnetic layer 106 and the second ferromagnetic layer 107. Is less susceptible to magnetization reversal than the second ferromagnetic layer 107 serving as a recording layer. Thereby, although the stability of the magnetization of the fixed layer is lower than that of the configuration of the above embodiment, the magnetization direction of the fixed layer can be fixed when the recording layer is rewritten.
  • Example 3 proposes a magnetoresistive effect element in which the magnetization of the fixed layer is stabilized by a nonmagnetic layer in contact with the fixed layer.
  • the basic structure of the magnetoresistive effect element of Example 3 and the film thickness of each layer are the same as those of Example 1 shown in FIG.
  • the first ferromagnetic layer 106 has Co 20 Fe 60 B 20 (film thickness: 1 nm)
  • the second ferromagnetic layer 107 has Co 20 Fe 60 B 20 (film thickness: 1.2 nm)
  • the nonmagnetic layer 108 MgO (film thickness: 1 nm) was used.
  • Pt film thickness: 5 nm
  • Ta film thickness: 5 nm
  • Example 3 As a result of fabricating and evaluating an element having the configuration of Example 3, a resistance change due to magnetization reversal in the vertical direction and an MR ratio of 100% or more were confirmed. In addition, it was confirmed that the magnetization of the fixed layer was stably maintained when the recording layer was rewritten.
  • the first ferromagnetic layer 106 is used as a fixed layer and the second ferromagnetic layer 107 is used as a recording layer.
  • a configuration in which the upper and lower positions of both layers are switched may be used. In that case, the thickness of the ferromagnetic layer on the upper side of the nonmagnetic layer 108 is made thinner than that of the ferromagnetic layer on the lower side of the first nonmagnetic layer 108. As a result, the ferromagnetic layer on the upper side of the nonmagnetic layer 108 becomes a fixed layer.
  • Pt is used for the nonmagnetic layer (cap layer 504) in contact with the ferromagnetic layer on the upper side of the nonmagnetic layer 108, and nonmagnetic layer (underlayer) in contact with the ferromagnetic layer on the lower side of the nonmagnetic layer 108. 503) may be Ta.
  • CoFeB is used as the material of the first ferromagnetic layer 106 and the second ferromagnetic layer 107.
  • at least one kind of 3d transition metal element is used, for example, CoFe, Alternatively, Fe or the like may be used.
  • Co 2 MnSi, Co 2 FeAl may be used Heusler alloy typified by Co 2 CrAl. Since the Heusler alloy is a half-metal material, the spin polarizability is high and the MR ratio can be further improved. Further, the Heusler alloy has a smaller damping constant ⁇ as compared with a normal ferromagnetic material.
  • materials considered as perpendicular magnetization materials generally have a large damping constant, for example, about 0.1 in a Co / Pt multilayer film.
  • the damping constant of CoFeB used in this example is as low as 0.03 or less (depending on the film thickness), but a Heusler alloy such as Co 2 FeMnSi has a lower damping constant lower than 0.01.
  • a Heusler alloy having a small damping constant ⁇ is applied to the recording layer, an effect of further reducing the write current density J c0 can be obtained.
  • Pt is used for the nonmagnetic layer 503 (underlayer) in contact with the first ferromagnetic layer 106 serving as the fixed layer, but another material having a strong spin orbit interaction, such as Pd, is used. May be.
  • MgO is used as the material of the nonmagnetic layer 108.
  • a compound containing oxygen such as Al 2 O 3 and SiO 2 or a semiconductor such as ZnO may be used.
  • an amorphous insulator such as Al 2 O 3 or SiO 2 is used as a barrier layer, the MR ratio is lower than when MgO is used, but the first ferromagnetic layer 106 and the second ferromagnetic layer 107 Since it has the effect of perpendicularizing the magnetization, it can function as a magnetoresistive element with perpendicular magnetization.
  • the film thickness of the first ferromagnetic layer 106 and the film thickness of the second ferromagnetic layer 107 are different from each other. Operation is possible. Even in this case, since the damping constant ⁇ of the first ferromagnetic layer 106 and the second ferromagnetic layer 107 changes due to the effects of the underlayer 503 and the cap layer 504, the first ferromagnetic layer 106 serving as the fixed layer is recorded. It is more difficult to reverse the magnetization than the second ferromagnetic layer 107 serving as a layer. Thereby, although the stability of the magnetization of the fixed layer is lower than that of the configuration of the above embodiment, the magnetization direction of the fixed layer can be fixed when the recording layer is rewritten.
  • Example 4 proposes a magnetoresistive effect element in which the magnetization of the fixed layer is stabilized by a nonmagnetic layer in contact with the fixed layer, as in Example 3.
  • the basic structure of the magnetoresistive effect element of Example 4 and the film thickness of each layer are the same as those of Example 1 shown in FIG.
  • the first ferromagnetic layer 106 has Co 20 Fe 60 B 20 (film thickness: 1 nm)
  • the second ferromagnetic layer 107 has Co 20 Fe 60 B 20 (film thickness: 1.2 nm)
  • the nonmagnetic layer 108 MgO (film thickness: 1 nm) was used.
  • MgO film thickness: 1 nm
  • Ta film thickness: 5 nm
  • the magnetization of CoFeB constituting the first ferromagnetic layer 106 and the second ferromagnetic layer 107 has anisotropy at the interface with the MgO of the nonmagnetic layer 108 in contact therewith. Orients vertically due to changes in This effect is prominent when an oxygen-containing compound such as MgO is adjacent.
  • the base layer 503 made of MgO was connected to the first ferromagnetic layer 106 serving as the fixed layer. This stabilizes the magnetization of the fixed layer in the vertical direction. That is, K eff shown in the equation (1) increases.
  • the current density J c0 required for the magnetization reversal increases. Due to this effect, the magnetization of the fixed layer is stably maintained even when a current is passed through the element for rewriting information in the recording layer.
  • Example 4 As a result of producing and evaluating an element having the configuration of Example 4, a resistance change due to magnetization reversal in the vertical direction and an MR ratio of 100% or more were confirmed. In addition, it was confirmed that the magnetization of the fixed layer was stably maintained when the recording layer was rewritten.
  • the first ferromagnetic layer 106 is used as a fixed layer and the second ferromagnetic layer 107 is used as a recording layer.
  • a configuration in which the upper and lower positions of both layers are switched may be used.
  • the thickness of the ferromagnetic layer on the upper side of the nonmagnetic layer 108 is made thinner than that of the ferromagnetic layer on the lower side of the nonmagnetic layer 108.
  • the ferromagnetic layer on the upper side of the nonmagnetic layer 108 becomes a fixed layer.
  • MgO is used for the nonmagnetic layer (cap layer 504) in contact with the ferromagnetic layer on the upper side of the nonmagnetic layer 108, and the nonmagnetic layer (lower layer in contact with the ferromagnetic layer on the lower side of the nonmagnetic layer 108).
  • Ta is used for the formation 503).
  • CoFeB is used as the material of the first ferromagnetic layer 106 and the second ferromagnetic layer 107.
  • at least one kind of 3d transition metal element is used, for example, CoFe, Alternatively, Fe or the like may be used.
  • Co 2 MnSi, Co 2 FeAl may be used Heusler alloy typified by Co 2 CrAl. Since the Heusler alloy is a half-metal material, the spin polarizability is high and the MR ratio can be further improved. Further, the Heusler alloy has a smaller damping constant ⁇ as compared with a normal ferromagnetic material.
  • materials considered as perpendicular magnetization materials generally have a large damping constant, for example, about 0.1 in a Co / Pt multilayer film.
  • the damping constant of CoFeB used in this example is as low as 0.03 or less (depending on the film thickness), but a Heusler alloy such as Co 2 FeMnSi has a lower damping constant lower than 0.01.
  • a Heusler alloy having a small damping constant ⁇ is applied to the recording layer, an effect of further reducing the write current density J c0 can be obtained.
  • MgO is used for the nonmagnetic layer (underlayer 503) in contact with the first ferromagnetic layer 106 serving as the fixed layer.
  • other compounds containing oxygen such as Al 2 O 3 or SiO 2, are used. Etc. may be used.
  • MgO is used as the material of the nonmagnetic layer 108.
  • a compound containing oxygen such as Al 2 O 3 and SiO 2 or a semiconductor such as ZnO may be used.
  • an amorphous insulator such as Al 2 O 3 or SiO 2 is used as a barrier layer, the MR ratio is lower than when MgO is used, but the first ferromagnetic layer 106 and the second ferromagnetic layer 107 Since it has the effect of perpendicularizing the magnetization, it can function as a magnetoresistive element with perpendicular magnetization.
  • the film thickness of the first ferromagnetic layer 106 and the film thickness of the second ferromagnetic layer 107 are different from each other. Operation is possible. Even in this case, since the damping constant ⁇ of the first ferromagnetic layer 106 and the second ferromagnetic layer 107 changes due to the effects of the underlayer 503 and the cap layer 504, the first ferromagnetic layer 106 serving as the fixed layer is recorded. It is more difficult to reverse the magnetization than the second ferromagnetic layer 107 serving as a layer. Thereby, although the stability of the magnetization of the fixed layer is lower than that of the configuration of the above embodiment, the magnetization direction of the fixed layer can be fixed when the recording layer is rewritten.
  • Example 5 proposes an element having a structure in which materials having the same material system and different composition ratios are applied to the fixed layer and the recording layer.
  • Example 5 The basic structure of the magnetoresistive effect element of Example 5 and the film thickness of each layer are the same as those of Example 1 shown in FIG. However, in Example 5, the first ferromagnetic layer 106 has Co 20 Fe 60 B 20 (film thickness: 1 nm), and the second ferromagnetic layer 107 has Co 40 Fe 40 B 20 (film thickness: 1. nm). 2 nm) and materials having different compositions were applied to the respective magnetic layers.
  • the perpendicular magnetic anisotropy energy density K eff is higher in Co 20 Fe 60 B 20 having a higher Fe composition ratio than Co 40 Fe 40 B 20 .
  • the fixed layer Since the write current density J c0 necessary for the magnetization reversal of the magnetic layer depends on K eff , with the above configuration, the fixed layer is less likely to reverse the magnetization than the recording layer. That is, the magnetization direction of the fixed layer is stably maintained during the write operation of the recording layer, and a highly reliable operation can be realized.
  • Example 5 As a result of producing and evaluating an element having the configuration of Example 5, a resistance change due to magnetization reversal in the vertical direction and an MR ratio of 100% or more were confirmed. In addition, it was confirmed that the magnetization of the fixed layer was stably maintained when the recording layer was rewritten.
  • CoFeB is used as the material of the first ferromagnetic layer 106 and the second ferromagnetic layer 107.
  • at least one kind of 3d transition metal element is used, for example, CoFe, Alternatively, Fe or the like may be used.
  • Co 40 Fe 40 B 20 crystallized in the first ferromagnetic layer 106 serving as the fixed layer is used, and Co 20 Fe in an amorphous state is used as the second ferromagnetic layer 107 serving as the recording layer. It is clear that the same effects as in this embodiment can be obtained even when 60 B 20 is applied.
  • Ta is used for the underlayer 503.
  • a metal having a large spin-orbit interaction such as Pt and Pd, as in the third and fourth embodiments.
  • it is effective to use a compound containing oxygen such as MgO.
  • MgO is used as the material of the nonmagnetic layer 108.
  • a compound containing oxygen such as Al 2 O 3 and SiO 2 or a semiconductor such as ZnO may be used.
  • an amorphous insulator such as Al 2 O 3 or SiO 2 is used as a barrier layer, the MR ratio is lower than when MgO is used, but the first ferromagnetic layer 106 and the second ferromagnetic layer 107 Since it has the effect of perpendicularizing the magnetization, it can function as a magnetoresistive element with perpendicular magnetization.
  • Example 6 proposes a magnetoresistive element in which the magnetization of the fixed layer is further stabilized by connecting the antiferromagnetic layer to the fixed layer.
  • FIG. 8 shows a schematic cross-sectional view of the laminated film constituting the element of Example 6.
  • the basic structure of the element of Example 6 and the film thickness of each layer are the same as those of Example 1 shown in FIG.
  • the first ferromagnetic layer 106 has Co 20 Fe 60 B 20 (film thickness: 1 nm)
  • the second ferromagnetic layer 107 has Co 20 Fe 60 B 20 (film thickness: 1.2 nm)
  • the nonmagnetic layer 108 MgO (film thickness: 1 nm) was used.
  • Ta film thickness: 5 nm was used for the cap layer 504.
  • Example 6 NiFe (film thickness: 3 nm) was used for the underlayer 503, and MnIr (film thickness: 8 nm) was stacked thereon as the antiferromagnetic layer 1301. After producing this laminated film, heat treatment at 300 ° C. was performed.
  • the antiferromagnetic layer 1301 as an underlayer for the first ferromagnetic layer 106 serving as a fixed layer, the magnetization of the fixed layer is further stabilized, and the magnetization of the fixed layer is reversed by a current that flows when information is written to the recording layer. Malfunction can be suppressed.
  • Example 6 As a result of fabricating and evaluating an element having the configuration of Example 6, a resistance change due to magnetization reversal in the vertical direction and an MR ratio of 100% or more were confirmed. In addition, it was confirmed that the magnetization of the fixed layer was stably maintained when the recording layer was rewritten.
  • CoFeB is used as the material of the first ferromagnetic layer 106 and the second ferromagnetic layer 107.
  • at least one kind of 3d transition metal element is used, for example, CoFe, Alternatively, Fe or the like may be used.
  • amorphous CoFeB may be used for the second ferromagnetic layer 107 constituting the recording layer.
  • Co 2 MnSi, Co 2 FeAl may be used Heusler alloy typified by Co 2 CrAl. Since the Heusler alloy is a half-metal material, the spin polarizability is high and the MR ratio can be further improved.
  • the Heusler alloy has a smaller damping constant ⁇ as compared with a normal ferromagnetic material. So far, materials considered as perpendicular magnetization materials generally have a large damping constant, for example, about 0.1 in a Co / Pt multilayer film. In comparison, the damping constant of CoFeB used in this example is as low as 0.03 or less (depending on the film thickness), but a Heusler alloy such as Co 2 FeMnSi has a lower damping constant lower than 0.01. Have Therefore, if a Heusler alloy having a small damping constant ⁇ is applied to the recording layer, an effect of further reducing the write current density J c0 can be obtained.
  • MgO is used as the material of the nonmagnetic layer 108.
  • a compound containing oxygen such as Al 2 O 3 and SiO 2 or a semiconductor such as ZnO may be used.
  • an amorphous insulator such as Al 2 O 3 or SiO 2 is used as a barrier layer, the MR ratio is lower than when MgO is used, but the first ferromagnetic layer 106 and the second ferromagnetic layer 107 Since it has the effect of perpendicularizing the magnetization, it can function as a magnetoresistive element with perpendicular magnetization.
  • Example 7 proposes a magnetoresistive effect element that further stabilizes the magnetization of the fixed layer by applying a fixed layer having a structure in which ferromagnetic layers and nonmagnetic layers are alternately stacked.
  • FIG. 9 shows a schematic cross-sectional view of the laminated film constituting the element of Example 7.
  • the fixed layer 1001 is formed by a laminated structure of the nonmagnetic layer 1005 / the ferromagnetic layer 1004 / the nonmagnetic layer 1003 / the ferromagnetic layer 1002.
  • MgO film thickness: 0.4 nm
  • Co 20 Fe 60 B 20 film thickness: 1 nm
  • the number of interfaces between the ferromagnetic layer and the nonmagnetic layer is increased, so that an interface effect for making the magnetization direction of the fixed layer 1001 perpendicular is generated. Furthermore, since the total volume of the ferromagnetic layer portion constituting the fixed layer 1001 increases, the magnetization direction is stabilized in a direction perpendicular to the film surface. With the effects described above, it is possible to further suppress malfunctions in which the magnetization of the fixed layer is reversed due to a current that flows when information is written to the recording layer.
  • MgO film thickness: 1 nm
  • Ta film thickness: 5 nm
  • the ferromagnetic layer 107 constituting the recording layer is used for the ferromagnetic layer 107.
  • Co 20 Fe 60 B 20 (film thickness: 1.2 nm) was used.
  • Example 7 As a result of fabricating and evaluating an element having the configuration of Example 7, a resistance change due to magnetization reversal in the vertical direction and an MR ratio of 100% or more were confirmed. In addition, it was confirmed that the magnetization of the fixed layer was stably maintained when the recording layer was rewritten.
  • the stacked structure of the fixed layer may be stacked more times.
  • MgO is used for the nonmagnetic layer 1003 inserted between the ferromagnetic layer 1002 and the ferromagnetic layer 1004 constituting the fixed layer 1001, but Al 2 O containing oxygen is used as another material. 3 or SiO 2 may be used.
  • metals such as Ru, Rh, V, Ir, Os, and Re may be used.
  • CoFeB is used as the material of the plurality of ferromagnetic layers and the second ferromagnetic layer 107 constituting the fixed layer of the laminated structure, but at least one 3d transition metal element is used as the other material.
  • CoFe or Fe may be used.
  • Co 2 MnSi, Co 2 FeAl may be used Heusler alloy typified by Co 2 CrAl.
  • the Heusler alloy is a half-metal material, the spin polarizability is high and the MR ratio can be further improved. Further, the Heusler alloy has a smaller damping constant ⁇ as compared with a normal ferromagnetic material. So far, materials considered as perpendicular magnetization materials generally have a large damping constant, for example, about 0.1 in a Co / Pt multilayer film. In comparison, the damping constant of CoFeB used in this example is as low as 0.03 or less (depending on the film thickness), but a Heusler alloy such as Co 2 FeMnSi has a lower damping constant lower than 0.01. Have Therefore, if a Heusler alloy having a small damping constant ⁇ is applied to the recording layer, an effect of further reducing the write current density J c0 can be obtained.
  • MgO is used as the material of the nonmagnetic layer 108.
  • a compound containing oxygen such as Al 2 O 3 and SiO 2 or a semiconductor such as ZnO may be used.
  • an amorphous insulator such as Al 2 O 3 or SiO 2 is used as a barrier layer, the MR ratio is lower than when MgO is used, but the magnetization of the first ferromagnetic layer 106 and the second ferromagnetic layer 107 is reduced. Can be made to function as a perpendicular magnetization magnetoresistive element.
  • an MRAM can be realized by employing the magnetoresistive effect elements of Examples 1 to 7 as recording elements.
  • the MRAM of the present invention includes a plurality of bit lines 104 arranged in parallel to each other, a plurality of source lines 103 arranged in parallel to the bit lines 104, and arranged in parallel to each other, A plurality of word lines 105 arranged perpendicular to the bit line 104 and parallel to each other are provided, and a memory cell 100 is arranged at each intersection of the bit line 104 and the word line 105.
  • the memory cell 100 includes the magnetoresistive effect element 101 and the selection transistor 102 according to the first to seventh embodiments.
  • the plurality of memory cells 100 constitute a memory array 1401.
  • the bit line 104 is electrically connected to the drain electrode of the selection transistor 102 via the magnetoresistive effect element 101, and the source line 103 is electrically connected to the source electrode of the selection transistor 102 via the wiring layer. Yes. Further, the word line 105 is electrically connected to the gate electrode of the selection transistor 102. One ends of the source line 103 and the bit line 104 are electrically connected to a write driver 1402 for applying a voltage and a sense amplifier 1403. One end of the word line 105 is electrically connected to the word driver 1404.
  • a voltage is applied from the write driver 1402 to the bit line 104 and a voltage is applied from the word driver 1404 to the word line 105, thereby causing the magnetoresistive effect element 101 selected from the bit line 104 to pass through.
  • Current is passed through the source line 103.
  • the configuration of the magnetoresistive effect element 101 is as shown in FIG. 5, the first ferromagnetic layer 106 is a fixed layer and the second ferromagnetic layer 107 is a recording layer. The information becomes low and the information held by the magnetoresistive element 101 is “0”.
  • a voltage is applied from the write driver 1402 to the source line 103, and a voltage is applied from the word driver 1404 to the word line 105, thereby selecting the magnetoresistive effect element selected from the source line 103.
  • a current is passed through the bit line 104 via 101.
  • the magnetoresistive effect element 101 has a high resistance, and the information held by the magnetoresistive effect element 101 is “1”.
  • a difference in signal due to resistance change is read using the sense amplifier 1403.

Abstract

 磁化方向が膜面垂直方向に安定であり、磁気抵抗変化率が制御された磁気抵抗効果素子及びその磁気抵抗効果素子を用いた磁気メモリを提供する。 磁気抵抗効果素子を構成する強磁性層106,107の材料を、3d遷移金属を少なくとも1種類含んだ強磁性材料で構成することで、磁気抵抗変化率を制御し、且つ、強磁性層の膜厚を原子層レベルで制御することで磁化方向を膜面内方向から膜面垂直方向に変化させた。

Description

磁気抵抗効果素子及び磁気メモリ
 本発明は、磁気抵抗効果素子及びその磁気抵抗効果素子をメモリセルとして備えた磁気メモリに関する。
 図1に示すように、磁気ランダムアクセスメモリ(MRAM)のメモリセル100は、磁気抵抗効果素子101と選択トランジスタ102が電気的に直列に接続された構造となっている。選択トランジスタ102のソース電極はソース線103に、ドレイン電極は磁気抵抗効果素子101を介してビット線104に、ゲート電極はワード線105にそれぞれ電気的に接続されている。磁気抵抗効果素子101は、第1の強磁性層106と第2の強磁性層107の2つの強磁性層で非磁性層108を挟んだ3層構造を基本構造とする。図示した例では、第1の強磁性層106は磁化方向が固定されていて固定層となり、第2の強磁性層107は磁化方向が可変であって記録層となる。この磁気抵抗効果素子101は、第1の強磁性層106の磁化方向と第2の強磁性層107の磁化方向が互いに平行(P状態)のとき低抵抗に、反平行(AP状態)のとき高抵抗になる。MRAMでは、この抵抗変化をビット情報の「0」と「1」に対応させる。ビット情報は、磁気抵抗効果素子101を流れる電流によるスピントルク磁化反転によって書込む。電流が固定層から記録層に流れるとき、記録層の磁化は固定層の磁化に対して反平行になり、ビット情報は「1」となる。電流が記録層から固定層に流れるとき、記録層の磁化は固定層の磁化に対して平行になり、ビット情報は「0」となる。電流による磁化反転の速さは1ナノ秒程度であるため、MRAMは非常に高速な書込みが可能である。また、記録層の磁化の向きによってビット情報を記録するため、MRAMは不揮発性を有し、待機時電力消費を抑えることができる。このため、MRAMは次世代のメモリとして期待されている。
 また、図1では磁気抵抗効果素子101の第1の強磁性層106が固定層、第2の強磁性層107が記録層の場合を示したが、磁気抵抗効果素子101の第1の強磁性層106を磁化方向が可変な記録層とし、第2の強磁性層107を磁化方向が固定されている固定層としても、同様にMRAMとして動作する。この場合でも、電流が固定層から記録層に流れるとき、記録層の磁化は固定層の磁化に対して反平行になり、ビット情報は「1」となる。電流が記録層から固定層に流れるとき、記録層の磁化は固定層の磁化に対して平行になり、ビット情報は「0」となる。
S. MANGIN, D. RAVELOSONA, J. A. KATINE, M. J. CAREY, B. D. TERRIS and ERIC E. FULLERTON, "Current-induced magnetization reversal in nanopillars with perpendicular anisotropy", Nature Mater., 5, 210 (2006)
 MRAMを実現するためには課題があり、その主なものとして、記録素子である磁気抵抗効果素子の磁気抵抗変化率(MR比)、書込み電流密度、熱安定性定数の3つの特性が満たさなければならない条件がある。これらの条件は、MRAMの集積度、最小加工寸法、動作速度などによって異なる。例えば、読出しが高速になるほど磁気抵抗変化率は高い値が必要となり、一般的には70%から100%以上の高い磁気抵抗変化率が必要とされる。また、書込みの高速化及び低消費電力化のため、書込み電流密度を2×106A/cm2以下にする必要がある。さらに、10年以上の記録保持時間及び誤書き込み防止のため、80以上の熱安定性定数が必要とされる。
 高い磁気抵抗変化率を得るために、第1の強磁性層及び第2の強磁性層に3d遷移金属元素を含む材料を用い、非磁性層にMgOを用いた構成が知られている。この場合、3d遷移金属元素を含む材料がbcc構造であったほうが望ましい。これは、3d遷移金属元素を含む材料がbcc構造の場合、MgOとのコヒーレントな伝導が実現されるため、磁気抵抗変化率が大きくなりやすいという利点があるからである。この場合、第1の強磁性層及び第2の強磁性層の磁化方向は、図1のように膜面に対して平行方向になる。一方、非特許文献1のように、CoとPt、NiとPtなどの多層膜や、FePt,TbFeCoなどの合金に代表される垂直磁気異方性材料を第1の強磁性層及び第2の強磁性層に用いた場合、低い書込み電流密度と高い熱安定性定数を実現できるとされている。これは、第1の強磁性層及び第2の強磁性層の磁化方向が膜面に対して垂直方向になることに起因する。しかし、これらの垂直磁気異方性材料とMgOの組合せの場合、磁気抵抗変化率が小さくなってしまう。このため、現状はMgOと垂直磁気異方性材料の間に、膜面に対して平行な磁化を持ちbcc構造である3d遷移金属元素を含む材料を挿入し、MR比を高くするなどの方法が試されている。しかし、この方法では構造は複雑になり、 3d遷移金属元素を含む材料の磁化方向の制御や磁気抵抗変化率が予想されるほど高くならないなどの課題が残っている。
 本発明では、磁気抵抗効果素子を構成する第1の強磁性層及び第2の強磁性層の少なくとも一方に用いる材料を、Co,Feなどの3d遷移金属を少なくとも1種類含んだCoFe,CoFeBなどの材料、若しくはCo2MnSi,Co2FeAl,Co2CrAlなどに代表されるホイスラー合金で構成することで磁気抵抗変化率を制御することとした。これらの材料を用いると、MgOバリア層とΔ1バンドによる電子のコヒーレントなトンネル伝導が実現できる。それにより、高いMR比を実現できる。また、ホイスラー合金はハーフメタル材料であり、高いスピン分極率(約100%)を有するため、CoFeなどの通常の強磁性体よりもさらに高いMR比の実現に有効である。また、ダンピング定数αが小さく書き込み電流密度Jc0の低減にも有効な材料である。通常、これらCoFeやCoFeBなどの材料で磁気抵抗効果素子を作製した場合、強磁性層の磁化方向は膜面に対して平行な方向を向くが、本発明者らは、強磁性層の膜厚を原子層レベルで制御して磁化方向を膜面に対して垂直にすることによって、低い書き込み電流密度と高い熱安定性定数を実現する技術を開発した。
 図2に示したのは、強磁性層にCoFeBを用いた例において、磁化方向が膜面に対して垂直になるために必要な膜厚を、製造工程に含まれる熱処理工程の温度に対して示したものである。ここで熱処理を行った時間は1時間であった。図中の白丸は膜厚の上限を、黒丸は下限を表している。図のように、熱処理温度に対応して、磁化方向が膜面に対して垂直になるCoFeBの膜厚範囲は変化する。
 図2の例はCoFeBに対するものであり、他の3d遷移金属を少なくとも1種類含んだ材料、例えばCoFeやFeに対しては、磁化方向が膜面に対して垂直になるために必要な膜厚と熱処理温度の関係は図2と異なる場合があるが、材料に適した膜厚に制御することにより磁化方向を膜面に対して平行から垂直に変化させることが可能である。このように磁化方向が膜面に対して垂直になる原因は、CoFeB等の界面における特殊な異方性の変化だと考えられる。CoFeBの膜厚を原子層レベルに制御して薄膜化することによって、CoFeB層の体積に対して界面の効果が及ぶ体積の割合を増大することができる。このため、界面の特殊な異方性の効果が顕著に現れ、磁化方向が膜面に対して垂直になる。特に、MgO,Al23,SiO2などに代表される酸素を含む化合物と、Co,Feなどの3d遷移金属を少なくとも1種類含む強磁性材料の界面にこのような効果が大きく表れ、磁化が膜面垂直方向に向き易くなる傾向があると考えられる。
 一方、図3は、例として第1の強磁性層と第2の強磁性層にCoFeBを用いた場合の磁気抵抗効果素子の磁気抵抗変化率を、熱処理時の温度に対して示したものである。非磁性層はMgOである。熱処理温度が大きくなるとともに、磁気抵抗変化率は大きくなる。従って、この例では、例えば70%の磁気抵抗変化率を得るためにはおよそ250℃で熱処理を行えばよいし、100%の磁気抵抗変化率を得るためには300℃で熱処理を行えばよい。このとき、熱処理温度を300℃として膜面に垂直な磁化方向を持つ磁気抵抗効果素子を得るには、図2を参照すると第1の強磁性層及び第2の強磁性層の膜厚を1.0nmから1.6nm程度に制御すればよい。こうして、本発明の磁気抵抗効果素子は、高速読出しに必要な70%以上の磁気抵抗変化率を達成することができる。
 他の材料を用いた場合でも、熱処理温度と磁気抵抗変化率の関係を調査しておくことによって、所望の磁気抵抗変化率が得られ、且つ、磁化方向が膜面に対して垂直方向を向いている磁気抵抗効果素子を作製することが可能である。図4は第1の強磁性層及び第2の強磁性層の材料としてCoFeB、非磁性層としてMgOを用いた場合の、膜面に対して垂直方向に印加した磁場に対する磁気抵抗効果素子の抵抗変化を示している。この例では、熱処理温度を300℃とした。実験結果から、記録層、固定層の磁化方向は膜面に対して垂直を向いており、印加磁場の変化による記録層、固定層の磁化反転に対応して、素子の抵抗が変化していることがわかる。また、このときの磁気抵抗変化率は100%であった。
 本発明を適用することによって、磁気抵抗変化率が大きく、且つ、膜面に対して垂直な磁化方向を持つ磁気抵抗効果素子を容易に作製することができる。また、磁気抵抗変化率を制御したい場合、熱処理温度を制御するとともに、非磁性層を挟んで形成される第1の強磁性層及び第2の強磁性層の膜厚を調整することにより膜面に対して垂直な磁化方向を維持した磁気抵抗効果素子を作製することができる。
磁気メモリのメモリセル基本構造を示す模式図。 第1の強磁性層及び第2の強磁性層にCoFeBを用いた場合の、熱処理工程の温度に対する、磁気抵抗効果素子の磁化方向が膜面に対して垂直になるために必要な膜厚の変化を示す図。 第1の強磁性層及び第2の強磁性層にCoFeBを用いた場合の、熱処理工程の温度に対する、磁気抵抗効果素子の磁気抵抗変化率の変化を示す図。 第1の強磁性層及び第2の強磁性層にCoFeBを用いた場合の、膜面垂直方向の磁場印加に対する磁気抵抗効果素子の抵抗変化を示す図。 本発明による磁気抵抗効果素子の例を示す断面模式図。 強磁性体CoFeBのダンピング定数αのCoFeB膜厚依存性を示す図。 eff・tのCoFeB膜厚依存性を示す図。 本発明による磁気抵抗効果素子の記録層及び固定層における磁化反転確率を示す図。 本発明による磁気抵抗効果素子の例を示す断面模式図。 本発明による磁気抵抗効果素子の例を示す断面模式図。 本発明による磁気メモリの例を示す概念図。
 以下、本発明を適用した磁気メモリ及び磁気抵抗効果素子について、図面を参照して詳細に説明する。
<実施例1>
 実施例1の磁気抵抗効果素子の構造を図5に模式的に示す。磁気抵抗効果素子101は、磁化方向が固定されている第1の強磁性層106と、磁化方向が可変である第2の強磁性層107と、第1の強磁性層と第2の強磁性層の間に電気的に接続された非磁性層108を備える。第1の強磁性層106及び第2の強磁性層107の材料はCo20Fe6020であり、非磁性層108は厚さ1nmのMgOで構成した。第1の強磁性層106の膜厚は1.0nmとし、第2の強磁性層の膜厚は、1.2nmとした。また、下地層503とキャップ層504には厚さ5nmのTaを用いた。図5の構成をもつ積層薄膜は超高真空中でのスパッタリングを用いて作製し、その後、第1の強磁性層、第2の強磁性層、非磁性層の結晶化のため300℃での熱処理を行った。
 図2に示したように、第1の強磁性層106及び第2の強磁性層107を構成するCoFeB層は、熱処理温度が300℃のとき、その膜厚を1.0nmから1.6nm程度に制御することによって、磁化容易軸は膜面に対して垂直方向となる。本実施例では、第1の強磁性層106は膜厚を1.0nmとし、第2の強磁性層107の膜厚は1.2nmとした。これらの膜厚を適用することで、第1の強磁性層の磁化501及び、第2の強磁性層の磁化502は図5に示したように垂直方向を向く。また、第1の強磁性層106と、第2の強磁性層107に膜厚差をつけることで、固定層と記録層の磁化反転のしやすさを制御することがでる。
 CoFeBの膜厚と、記録層と固定層における磁化反転のしやすさ(言い換えると磁化反転に必要な電流密度Jc0の差)の関係について、より詳細に説明する。磁性層の磁化反転に要する電流密度Jc0は、以下の式で表すことができる。
   Jc0∝α・Keff・t   (1)
ここで、αはギルバートのダンピング定数、tは磁性層の膜厚、Keffは磁性層の垂直磁気異方性エネルギー密度である。
 αやKeffの値はCo20Fe6020の膜厚に依存して変化する。図6A及び図6Bに、α及びKeff・t(Keffとtの積)の、Co20Fe6020膜厚依存性を示す。図6A及び図6Bに示すように、α及びKeff・tはCo20Fe6020膜厚の低下に伴い増大する。これらの特性と式(1)から、書込み電流密度Jc0はCo20Fe6020膜厚の低下に伴い増大することがわかる。以上の理由から、実施例1の構成では、記録層(1.2nm)に比べて固定層(1.0nm)は磁化反転しにくく、記録層の情報書き換えのために電流を流しても、固定層の磁化方向を安定して保持できる。
 図7に、本実施例の素子における、記録層及び固定層の磁化反転確率の計算結果を示す。図示したように、印加電圧を正とした場合、磁気抵抗効果素子には下(固定層106)から上(記録層107)に向かって電流が流れる。正方向に電圧を印加し、ある一定以上の電流が素子に流れると記録層107の磁化が反転する(図中Aの変化)。このとき、固定層106の磁化方向は依然として保持される。さらに正の電圧を増大させて電流を流していくと最終的には固定層106の磁化も反転するが(図中Bの変化)、固定層106の磁化反転に必要な電圧(電流)は、記録層107の反転に必要な値に比べて大幅に大きい。一方、負の電圧を印加した場合には電流は素子の上(記録層107)から下(固定層106)に向かって流れる。この場合も、正の電圧印加のときと同様、記録層107の磁化反転(図中Cの変化)に対して、固定層106の磁化反転(図中Dの変化)に必要な電圧(電流)は大幅に大きい。したがって、上述したように、本実施例の構成では、記録層と固定層の膜厚差をつけることで磁化反転のしやすさを制御し、記録層の情報書き換え(磁化反転)の際に固定層の磁化方向を安定して保持する動作を実現できる。
 実施例1の構成の素子を作製、評価した結果、垂直方向の磁化反転による抵抗変化と、100%以上のMR比を確認した。また、図7に示した計算結果と同様、記録層の書き換え時に固定層の磁化は安定して保持できていることを確認した。
 本実施例では、第1の強磁性層106を固定層として、第2の強磁性層107を記録層として用いたが、両者の上下位置を入れ替えた構成を用いてもよい。その場合、非磁性層108の上側にある強磁性層の膜厚を、非磁性層108の下側にある強磁性層に比べて薄くする。これにより、非磁性層108の上側にある強磁性層が固定層となる。
 また、本実施例では、第1の強磁性層106及び第2の強磁性層107の材料にCoFeBを用いたが、その他の材料として、3d遷移金属元素を少なくとも1種類含む、例えば、CoFe、あるいはFeなどを用いてもよい。また、Co2MnSi,Co2FeAl,Co2CrAlなどに代表されるホイスラー合金を用いてもよい。ホイスラー合金はハーフメタル材料のためスピン分極率が高く、よりMR比を向上できる。また、ホイスラー合金は、通常の強磁性体と比べてダンピング定数αが小さい。これまで、垂直磁化材料として検討されている材料は一般的にダンピング定数が大きく、例えば、Co/Pt多層膜では0.1程度である。それと比較して、本実施例で用いたCoFeBのダンピング定数は0.03以下と低いが(膜厚に依存)、例えばCo2FeMnSiなどのホイスラー合金は、さらに低い0.01を下回る低いダンピング定数を有する。よって、ダンピング定数αが小さいホイスラー合金を記録層に適用すれば、書込み電流密度Jc0をより低減できる効果が得られる。
 また、本実施例では、非磁性層108の材料にMgOを用いたが、その他の材料として、Al23,SiO2などの酸素を含む化合物、あるいはZnOなどの半導体、あるいはCuなどの金属などを用いてもよい。Al23やSiO2などアモルファスの絶縁体をバリア層として用いる場合、MR比はMgOを用いる場合と比較して低下するが、第1の強磁性層106、第2の強磁性層107の磁化を垂直にする効果があるため、垂直磁化の磁気抵抗効果素子として機能させることは可能である。非磁性層108にCuなどの金属を用いる場合は、第1の強磁性層106、第2の強磁性層107の磁化を垂直に立たせるために、下地層503とキャップ層504には酸素を含む化合物を用いるとよい。
<実施例2>
 実施例2は、固定層と記録層に異なる結晶構造の層を適用した磁気抵抗効果素子を提案するものである。
 実施例2の磁気抵抗効果素子の基本構造・各層の膜厚は、図5で示した実施例1と同様であり、非磁性層108にはMgO(膜厚:1nm)を用い、下地層503とキャップ層504にはTa(膜厚:5nm)を用いた。実施例1と異なる点として、実施例2では、固定層となる第1の強磁性層106に結晶化したCo20Fe6020(膜厚:1nm)を用い、記録層となる第2の強磁性層107にアモルファス状態のCo20Fe6020(膜厚:1.2nm)を用いた。磁気異方性エネルギーKeffはアモルファス状態より結晶状態の方が高い。実施例1で説明したように、磁性層の磁化反転に必要な書込み電流密度Jc0はKeffに依存するため、上記の構成とすることで記録層に比べ固定層は磁化反転しにくくなる。すなわち、記録層の書込み動作時に固定層の磁化方向が安定して保持される動作が実現できる。
 実施例2の素子を構成する積層膜の作製方法を、図5を参照して説明する。超高真空中で室温において、スパッタリングを用い、下地層503、第1の強磁性層106、非磁性層108まで積層し、そのまま一度350℃にて熱処理する。このとき、第1の強磁性層106であるCo20Fe6020は、室温での成膜時にはアモルファス状態であるが、その後の熱処理によって結晶化する。続いて再び室温に戻した後、第2の磁性層107とキャップ層504を積層する。このような作製方法により、第2の強磁性層107はアモルファス状態、第1の強磁性層106は結晶化した構造の積層膜を実現できる。CoFeBはアモルファスの状態であっても膜厚を制御することで磁化方向を垂直とすることができる。
 また、上記の方法で作製した素子においてより高いMR比を得るためには、積層膜を作製後、200℃程度の温度で熱処理することが望ましい。これにより第2の強磁性層107はおおむねアモルファス状態であるが、非磁性層108の界面でのみ結晶化が進みMR比は向上する。
 実施例2の構成の素子を作製、評価した結果、垂直方向の磁化反転による抵抗変化と、100%以上のMR比を確認した。また、記録層の書き換え時に固定層の磁化は安定して保持できていることを確認した。
 また、別の方法として、固定層を構成する強磁性層に結晶の材料であるCoFeを用い、記録層を構成する強磁性層にアモルファスのCoFeBを用いてもよい。
 また、本実施例では、非磁性層108の材料にMgOを用いたが、その他の材料として、Al23,SiO2などの酸素を含む化合物、あるいはZnOなどの半導体、あるいはCuなどの金属などを用いてもよい。Al23やSiO2などアモルファスの絶縁体をバリア層として用いる場合、MR比はMgOを用いる場合と比較して低下するが、第1の強磁性層106、第2の強磁性層107の磁化を垂直にする効果があるため、垂直磁化の磁気抵抗効果素子として機能させることは可能である。非磁性層108にCuなどの金属を用いる場合は、第1の強磁性層106、第2の強磁性層107の磁化を垂直に立たせるために、下地層503とキャップ層504には酸素を含む化合物を用いるとよい。
 また、上記実施例では第1の強磁性層106の膜厚と第2強磁性層107の膜厚に差をつけたが、両者が同じ膜厚であっても垂直磁化の磁気抵抗効果素子として動作は可能である。この場合でも、第1の強磁性層106と、第2強磁性層107の結晶構造の違いによって、両者の垂直磁気異方性に差があるため、固定層となる第1の強磁性層106は記録層となる第2の強磁性層107よりも磁化反転しにくい。これにより、上記実施例の構成と比べると固定層の磁化の安定性は低下するもの、記録層の書き換え時に固定層の磁化方向を固定しておくことが可能である。
<実施例3>
 実施例3は、固定層に接する非磁性層によって、固定層の磁化を安定化させる磁気抵抗効果素子を提案するものである。
 実施例3の磁気抵抗効果素子の基本構造・各層の膜厚は、図5で示した実施例1と同様である。第1の強磁性層106にはCo20Fe6020(膜厚:1nm)、第2の強磁性層107にはCo20Fe6020(膜厚:1.2nm)、非磁性層108にはMgO(膜厚:1nm)を用いた。実施例1と異なる点として、実施例3では、下地層503にはPt(膜厚:5nm)を、キャップ層504にはTa(膜厚:5nm)を用いた。この積層膜を作製した後、300℃での熱処理を行った。
 実施例3の下地層503に適用したPtなどスピン軌道相互作用の強い材料を磁性層に接続すると、磁性層のダンピング定数αが増大する。実施例1において式(1)で説明したように、αの増大によって書込み電流密度Jc0は増大する。一方、記録層側に接続するキャップ層504には、スピン軌道相互作用が弱い非磁性材料、すなわち隣接する磁性層のダンピング定数αが小さくなる材料として、例えば本実施例で用いたTaをはじめCu,Mgなどを適用するのが望ましい。これらの組み合わせにより、αが小さい記録層に比べ、αが大きい固定層のJc0は大きくなる。その結果、記録層の情報書き換えの際、流す電流によって誤って固定層の磁化が反転する誤動作を抑制でき、安定した動作を実現できる。
 実施例3の構成の素子を作製、評価した結果、垂直方向の磁化反転による抵抗変化と、100%以上のMR比を確認した。また、記録層の書き換え時に固定層の磁化は安定して保持できていることを確認した。
 本実施例では、第1の強磁性層106を固定層として、第2の強磁性層107を記録層として用いたが、両者の上下位置を入れ替えた構成を用いてもよい。その場合、非磁性層108の上側にある強磁性層の膜厚を、第1の非磁性層108の下側にある強磁性層に比べて薄くする。これにより、非磁性層108の上側にある強磁性層が固定層となる。またその場合、非磁性層108の上側にある強磁性層と接する非磁性層(キャップ層504)にはPtを、非磁性層108の下側にある強磁性層と接する非磁性層(下地層503)にはTaを用いるとよい。
 また、本実施例では、第1の強磁性層106及び第2の強磁性層107の材料にCoFeBを用いたが、その他の材料として、3d遷移金属元素を少なくとも1種類含む、例えば、CoFe、あるいはFeなどを用いてもよい。また、Co2MnSi,Co2FeAl,Co2CrAlなどに代表されるホイスラー合金を用いてもよい。ホイスラー合金はハーフメタル材料のためスピン分極率が高く、よりMR比を向上できる。また、ホイスラー合金は、通常の強磁性体と比べてダンピング定数αが小さい。これまで、垂直磁化材料として検討されている材料は一般的にダンピング定数が大きく、例えば、Co/Pt多層膜では0.1程度である。それと比較して、本実施例で用いたCoFeBのダンピング定数は0.03以下と低いが(膜厚に依存)、例えばCo2FeMnSiなどのホイスラー合金は、さらに低い0.01を下回る低いダンピング定数を有する。よって、ダンピング定数αが小さいホイスラー合金を記録層に適用すれば、より書込み電流密度Jc0を低減できる効果が得られる。
 また、本実施例では、固定層となる第1の強磁性層106に接する非磁性層503(下地層)にPtを用いたが、スピン軌道相互作用の強い他の材料、例えばPdなどを用いてもよい。
 また、本実施例では、非磁性層108の材料にMgOを用いたが、その他の材料として、Al23,SiO2などの酸素を含む化合物、あるいはZnOなどの半導体を用いてもよい。Al23やSiO2などアモルファスの絶縁体をバリア層として用いる場合、MR比はMgOを用いる場合と比較して低下するが、第1の強磁性層106、第2の強磁性層107の磁化を垂直にする効果があるため、垂直磁化の磁気抵抗効果素子として機能させることは可能である。
 また、上記実施例では第1の強磁性層106の膜厚と第2強磁性層107の膜厚に差をつけたが、両者が同じ膜厚であっても垂直磁化の磁気抵抗効果素子として動作は可能である。この場合でも、下地層503とキャップ層504の効果により、第1の強磁性層106と第2強磁性層107のダンピング定数αが変わるため、固定層となる第1の強磁性層106は記録層となる第2の強磁性層107よりも磁化反転しにくい。これにより、上記実施例の構成と比べると固定層の磁化の安定性は低下するもの、記録層の書き換え時に固定層の磁化方向を固定しておくことが可能である。
<実施例4>
 実施例4は、実施例3と同様、固定層に接する非磁性層によって、固定層の磁化を安定化させる磁気抵抗効果素子を提案するものである。
 実施例4の磁気抵抗効果素子の基本構造・各層の膜厚は、図5で示した実施例1と同様である。第1の強磁性層106にはCo20Fe6020(膜厚:1nm)、第2の強磁性層107にはCo20Fe6020(膜厚:1.2nm)、非磁性層108にはMgO(膜厚:1nm)を用いた。実施例1と異なる点として、実施例4では、下地層503にはMgO(膜厚:1nm)を、キャップ層504にはTa(膜厚:5nm)を用いた。この積層膜を作製した後、300℃での熱処理を行った。
 実施例1でも説明したように、第1の強磁性層106及び第2の強磁性層107を構成するCoFeBの磁化は、それぞれが接している非磁性層108のMgOとの界面における異方性の変化によって垂直方向に向く。この効果は、MgOなど酸素を含む化合物が隣接する場合に顕著に現れる。実施例4では、固定層となる第1の強磁性層106にMgOからなる下地層503を接続した。これにより、固定層の磁化がより垂直方向に安定化する。つまり、式(1)で示したKeffが増大することになる。その結果、式(1)からも明らかなように、磁化反転に要する電流密度Jc0が増大する。この効果により、記録層の情報書き換えのために素子に電流を流しても固定層の磁化は安定して保持される。
 実施例4の構成の素子を作製、評価した結果、垂直方向の磁化反転による抵抗変化と、100%以上のMR比を確認した。また、記録層の書き換え時に固定層の磁化は安定して保持できていることを確認した。
 本実施例では、第1の強磁性層106を固定層として、第2の強磁性層107を記録層として用いたが、両者の上下位置を入れ替えた構成を用いてもよい。その場合、非磁性層108の上側にある強磁性層の膜厚を、非磁性層108の下側にある強磁性層に比べて薄くする。これにより、非磁性層108の上側にある強磁性層が固定層となる。また、その場合、非磁性層108の上側にある強磁性層と接する非磁性層(キャップ層504)にはMgOを、非磁性層108の下側にある強磁性層と接する非磁性層(下地層503)にはTaを用いる。
 また、本実施例では、第1の強磁性層106及び第2の強磁性層107の材料にCoFeBを用いたが、その他の材料として、3d遷移金属元素を少なくとも1種類含む、例えば、CoFe、あるいはFeなどを用いてもよい。また、Co2MnSi,Co2FeAl,Co2CrAlなどに代表されるホイスラー合金を用いてもよい。ホイスラー合金はハーフメタル材料のためスピン分極率が高く、よりMR比を向上できる。また、ホイスラー合金は、通常の強磁性体と比べてダンピング定数αが小さい。これまで、垂直磁化材料として検討されている材料は一般的にダンピング定数が大きく、例えば、Co/Pt多層膜では0.1程度である。それと比較して、本実施例で用いたCoFeBのダンピング定数は0.03以下と低いが(膜厚に依存)、例えばCo2FeMnSiなどのホイスラー合金は、さらに低い0.01を下回る低いダンピング定数を有する。よって、ダンピング定数αが小さいホイスラー合金を記録層に適用すれば、書込み電流密度Jc0をより低減できる効果が得られる。
 また、本実施例では、固定層となる第1の強磁性層106に接する非磁性層(下地層503)にMgOを用いたが、酸素を含む他の化合物、例えばAl23やSiO2などを用いてもよい。
 また、本実施例では、非磁性層108の材料にMgOを用いたが、その他の材料として、Al23,SiO2などの酸素を含む化合物、あるいはZnOなどの半導体を用いてもよい。Al23やSiO2などアモルファスの絶縁体をバリア層として用いる場合、MR比はMgOを用いる場合と比較して低下するが、第1の強磁性層106、第2の強磁性層107の磁化を垂直にする効果があるため、垂直磁化の磁気抵抗効果素子として機能させることは可能である。
 また、上記実施例では第1の強磁性層106の膜厚と第2強磁性層107の膜厚に差をつけたが、両者が同じ膜厚であっても垂直磁化の磁気抵抗効果素子として動作は可能である。この場合でも、下地層503とキャップ層504の効果により、第1の強磁性層106と第2強磁性層107のダンピング定数αが変わるため、固定層となる第1の強磁性層106は記録層となる第2の強磁性層107よりも磁化反転しにくい。これにより、上記実施例の構成と比べると固定層の磁化の安定性は低下するもの、記録層の書き換え時に固定層の磁化方向を固定しておくことが可能である。
<実施例5>
 実施例5は、固定層と記録層に、同じ材料系でかつ異なる組成比をもつ材料を適用した構造の素子を提案するものである。
 実施例5の磁気抵抗効果素子の基本構造・各層の膜厚は、図5で示した実施例1と同様である。ただし、実施例5では、第1の強磁性層106にはCo20Fe6020(膜厚:1nm)、第2の強磁性層107にはCo40Fe4020(膜厚:1.2nm)と、それぞれの磁性層に組成の異なる材料を適用した。垂直磁気異方性エネルギー密度Keffは、Feの組成比が高いCo20Fe6020の方がCo40Fe4020よりも高い。磁性層の磁化反転に必要な書込み電流密度Jc0はKeffに依存するため、上記の構成とすることで記録層に比べ固定層の方が磁化反転しにくくなる。すなわち、記録層の書込み動作時に固定層の磁化方向が安定して保持され、信頼性の高い動作を実現できる。
 実施例5の構成の素子を作製、評価した結果、垂直方向の磁化反転による抵抗変化と、100%以上のMR比を確認した。また、記録層の書き換え時に固定層の磁化は安定して保持できていることを確認した。
 また、本実施例では、第1の強磁性層106及び第2の強磁性層107の材料にCoFeBを用いたが、その他の材料として、3d遷移金属元素を少なくとも1種類含む、例えば、CoFe、あるいはFeなどを用いてもよい。また、実施例2のように、固定層となる第1の強磁性層106に結晶化したCo40Fe4020を、記録層となる第2の強磁性層107にアモルファス状態のCo20Fe6020を適用しても本実施例と同様の効果が得られることは明らかである。
 また、本実施例では、下地層503にTaを用いたが、より固定層の磁化を安定化させるには実施例3や実施例4と同様に、PtやPdなどスピン軌道相互作用の大きい金属、あるいはMgOなど酸素を含む化合物を用いるのが効果的である。
 また、本実施例では、非磁性層108の材料にMgOを用いたが、その他の材料として、Al23,SiO2などの酸素を含む化合物、あるいはZnOなどの半導体を用いてもよい。Al23やSiO2などアモルファスの絶縁体をバリア層として用いる場合、MR比はMgOを用いる場合と比較して低下するが、第1の強磁性層106、第2の強磁性層107の磁化を垂直にする効果があるため、垂直磁化の磁気抵抗効果素子として機能させることは可能である。
<実施例6>
 実施例6は、反強磁性体の層を固定層に接続することで、固定層の磁化をより安定化させる磁気抵抗効果素子を提案するものである。
 実施例6の素子を構成する積層膜の断面模式図を図8に示す。実施例6の素子の基本構造・各層の膜厚は図5で示した実施例1と同様である。第1の強磁性層106にはCo20Fe6020(膜厚:1nm)、第2の強磁性層107にはCo20Fe6020(膜厚:1.2nm)、非磁性層108にはMgO(膜厚:1nm)を用いた。また、キャップ層504にはTa(膜厚:5nm)を用いた。実施例1と異なる点として、実施例6では、下地層503にはNiFe(膜厚:3nm)を用い、その上に反強磁性層1301としてMnIr(膜厚:8nm)を積層した。この積層膜を作製した後、300℃での熱処理を行った。
 反強磁性層1301を固定層となる第1の強磁性層106の下地に用いることで、固定層の磁化はより安定化し、記録層の情報書込みの際に流す電流によって固定層の磁化が反転する誤動作を抑制できる。
 実施例6の構成の素子を作製、評価した結果、垂直方向の磁化反転による抵抗変化と、100%以上のMR比を確認した。また、記録層の書き換え時に固定層の磁化は安定して保持できていることを確認した。
 また、本実施例では、第1の強磁性層106及び第2の強磁性層107の材料にCoFeBを用いたが、その他の材料として、3d遷移金属元素を少なくとも1種類含む、例えば、CoFe、あるいはFeなどを用いてもよい。また、実施例2と同様に、記録層を構成する第2の強磁性層107にアモルファスのCoFeBを用いてもよい。また、Co2MnSi,Co2FeAl,Co2CrAlなどに代表されるホイスラー合金を用いてもよい。ホイスラー合金はハーフメタル材料のためスピン分極率が高く、よりMR比を向上できる。また、ホイスラー合金は、通常の強磁性体と比べてダンピング定数αが小さい。これまで、垂直磁化材料として検討されている材料は一般的にダンピング定数が大きく、例えば、Co/Pt多層膜では0.1程度である。それと比較して、本実施例で用いたCoFeBのダンピング定数は0.03以下と低いが(膜厚に依存)、例えばCo2FeMnSiなどのホイスラー合金は、さらに低い0.01を下回る低いダンピング定数を有する。よって、ダンピング定数αが小さいホイスラー合金を記録層に適用すれば、書込み電流密度Jc0をより低減できる効果が得られる。
 また、本実施例では、非磁性層108の材料にMgOを用いたが、その他の材料として、Al23,SiO2などの酸素を含む化合物、あるいはZnOなどの半導体を用いてもよい。Al23やSiO2などアモルファスの絶縁体をバリア層として用いる場合、MR比はMgOを用いる場合と比較して低下するが、第1の強磁性層106、第2の強磁性層107の磁化を垂直にする効果があるため、垂直磁化の磁気抵抗効果素子として機能させることは可能である。
<実施例7>
 実施例7は、強磁性層と非磁性層を交互に積層した構造の固定層を適用することで、固定層の磁化をより安定化させる磁気抵抗効果素子を提案するものである。
 実施例7の素子を構成する積層膜の断面模式図を図9に示す。実施例7では、非磁性層1005/強磁性層1004/非磁性層1003/強磁性層1002の積層構造により、固定層1001を構成する。非磁性層1003と非磁性層1005にはMgO(膜厚:0.4nm)を用い、強磁性層1002と強磁性層1004には、Co20Fe6020(膜厚:1nm)を用いた。この積層構造を採用することによって、強磁性層と非磁性層の界面の数が増えるため固定層1001の磁化方向が垂直に向くための界面効果が大きく生じる。さらに、固定層1001を構成する強磁性層部分の全体積が増大するため、磁化方向は膜面に対して垂直方向により安定化する。以上の効果で、記録層の情報書込みの際に流す電流によって固定層の磁化が反転する誤動作をより抑制できる。また、実施例7の非磁性層108にはMgO(膜厚:1nm)を、下地層503とキャップ層504にはTa(膜厚:5nm)を、記録層を構成する強磁性層107にはCo20Fe6020(膜厚:1.2nm)を用いた。
 実施例7の構成の素子を作製、評価した結果、垂直方向の磁化反転による抵抗変化と、100%以上のMR比を確認した。また、記録層の書き換え時に固定層の磁化は安定して保持できていることを確認した。
 また、固定層の磁化を安定化させるために、固定層の積層構造はより多くの回数を積層してもよい。また、本実施例では、固定層1001を構成する強磁性層1002と強磁性層1004の間に挿入する非磁性層1003にはMgOを用いたが、これ以外の材料として酸素を含むAl23やSiO2などを用いてもよい。さらには、Ru,Rh,V,Ir,Os,Reなどの金属を用いてもよい。この場合、強磁性層1002と強磁性層1004の磁化の間に交換結合が働くため、非磁性層1003の膜厚を制御することによって、強磁性層1002と強磁性層1004の磁化方向を平行若しくは反平行に容易に変更することができる。 
 また、本実施例では、積層構造の固定層を構成する複数の強磁性層及び第2の強磁性層107の材料にCoFeBを用いたが、その他の材料として、3d遷移金属元素を少なくとも1種類含む、例えば、CoFe、あるいはFeなどを用いてもよい。また、Co2MnSi,Co2FeAl,Co2CrAlなどに代表されるホイスラー合金を用いてもよい。ホイスラー合金はハーフメタル材料のためスピン分極率が高く、よりMR比を向上できる。また、ホイスラー合金は、通常の強磁性体と比べてダンピング定数αが小さい。これまで、垂直磁化材料として検討されている材料は一般的にダンピング定数が大きく、例えば、Co/Pt多層膜では0.1程度である。それと比較して、本実施例で用いたCoFeBのダンピング定数は0.03以下と低いが(膜厚に依存)、例えばCo2FeMnSiなどのホイスラー合金は、さらに低い0.01を下回る低いダンピング定数を有する。よって、ダンピング定数αが小さいホイスラー合金を記録層に適用すれば、書込み電流密度Jc0をより低減できる効果が得られる。
 また、本実施例では、非磁性層108の材料にMgOを用いたが、その他の材料として、Al23,SiO2などの酸素を含む化合物、あるいはZnOなどの半導体を用いてもよい。Al23やSiO2などアモルファスの絶縁体をバリア層として用いる場合、MR比はMgOを用いると比較して低下するが、第1の強磁性層106、第2の強磁性層107の磁化を垂直にする効果があるため、垂直磁化の磁気抵抗効果素子として機能させることは可能である。 
<実施例8>
 本発明の別の観点によると、実施例1~7の磁気抵抗効果素子を記録素子として採用することでMRAMを実現することができる。
 本発明のMRAMは、図10に示すように、互いに平行に配置された複数のビット線104と、ビット線104と平行に配置され、且つ、互いに平行に配置された複数のソース線103と、ビット線104と垂直に配置され、且つ、互いに平行な複数のワード線105を備え、ビット線104とワード線105の各交点にはメモリセル100が配置される。メモリセル100は、実施例1~7の磁気抵抗効果素子101と選択トランジスタ102を備えている。これら複数のメモリセル100がメモリアレイ1401を構成している。ビット線104は、磁気抵抗効果素子101を介して選択トランジスタ102のドレイン電極に電気的に接続されており、ソース線103は配線層を介して選択トランジスタ102のソース電極に電気的に接続されている。また、ワード線105は選択トランジスタ102のゲート電極に電気的に接続されている。ソース線103とビット線104の一端は、電圧印加のためのライトドライバ1402とセンス増幅器1403に電気的に接続されている。ワード線105の一端はワードドライバ1404に電気的に接続されている。
 「0」書込み動作では、ライトドライバ1402からビット線104に電圧を印加するとともに、ワードドライバ1404からワード線105に電圧を印加することによって、ビット線104から選択された磁気抵抗効果素子101を介してソース線103に電流を流す。このとき、磁気抵抗効果素子101の構成が図5のように、第1の強磁性層106が固定層であり、第2の強磁性層107が記録層である場合、磁気抵抗効果素子101は低抵抗になり、磁気抵抗効果素子101が保持する情報は「0」になる。一方、「1」書込み動作では、ライトドライバ1402にからソース線103に電圧を印加するとともに、ワードドライバ1404からワード線105に電圧を印加することによって、ソース線103から選択された磁気抵抗効果素子101を介してビット線104に電流を流す。このとき、磁気抵抗効果素子101は高抵抗になり、磁気抵抗効果素子101が保持する情報は「1」になる。読出し時は、センス増幅器1403を用いて抵抗変化による信号の違いを読取る。このような構成のメモリアレイを採用することで、磁気抵抗変化率が大きく、書込み電流密度が小さく、熱安定性定数が大きくなり、MRAMは不揮発なメモリとして動作することができる。
100 磁気メモリのメモリセル
101 磁気抵抗効果素子
102 選択トランジスタ
103 ソース線
104 ビット線
105 ワード線
106 第1の強磁性層
107 第2の強磁性層
108 非磁性層
501 磁化
502 磁化
503 下地層
504 キャップ層
1001 固定層
1002 強磁性層
1003 非磁性層
1004 強磁性層
1005 非磁性層
1301 反強磁性層
1401 メモリアレイ
1402 ライトドライバ
1403 センス増幅器
1404 ワードドライバ

Claims (19)

  1.  磁化方向が固定されている固定層と、磁化方向が可変である記録層と、前記固定層と前記記録層の間に配置された第1の非磁性層とを備える磁気抵抗効果素子において、
     前記固定層と前記記録層のいずれか一方は、3d遷移金属を少なくとも1種類含み、膜厚の制御によって磁化方向が膜面に対して平行方向から垂直方向になる強磁性体によって構成され、膜厚制御によって磁化方向が膜面に対して垂直方向を向いており、前記固定層の膜厚は前記記録層の膜厚より薄いことを特徴とする磁気抵抗効果素子。
  2.  磁化方向が固定されている固定層と、磁化方向が可変である記録層と、前記固定層と前記記録層の間に配置された第1の非磁性層とを備える磁気抵抗効果素子において、
     前記固定層と前記記録層のいずれか一方は、3d遷移金属を少なくとも1種類含み、膜厚の制御によって磁化方向が膜面に対して平行方向から垂直方向になる強磁性体によって構成され、膜厚制御によって磁化方向が膜面に対して垂直方向を向いており、前記固定層は結晶化しており、前記記録層はアモルファス状態であることを特徴とする磁気抵抗効果素子。
  3.  磁化方向が固定されている固定層と、磁化方向が可変である記録層と、前記固定層と前記記録層の間に配置された第1の非磁性層とを備える磁気抵抗効果素子において、
     前記固定層と前記記録層のいずれか一方は、3d遷移金属を少なくとも1種類含み、膜厚の制御によって磁化方向が膜面に対して平行方向から垂直方向になる強磁性体によって構成され、膜厚制御によって磁化方向が膜面に対して垂直方向を向いており、
     前記固定層の、前記第1の非磁性層と反対側の面に第2の非磁性層を備え、
     前記記録層の、前記第1の非磁性層と反対側の面に第3の非磁性層を備え、
     前記第2の非磁性層は前記第3の非磁性層に比べてスピン軌道相互作用が大きい材料であることを特徴とする磁気抵抗効果素子。
  4.  磁化方向が固定されている固定層と、磁化方向が可変である記録層と、前記固定層と前記記録層の間に配置された第1の非磁性層とを備える磁気抵抗効果素子において、
     前記固定層と前記記録層のいずれか一方は、3d遷移金属を少なくとも1種類含み、膜厚の制御によって磁化方向が膜面に対して平行方向から垂直方向になる強磁性体によって構成され、膜厚制御によって磁化方向が膜面に対して垂直方向を向いており、
     前記固定層の、前記第1の非磁性層と反対側の面に第2の非磁性層を備え、前記第2の非磁性層は酸素を含む材料であることを特徴とする磁気抵抗効果素子。
  5.  請求項1~4に記載の磁気抵抗効果素子において、前記3d遷移金属はCo,Feのうち少なくとも一つであることを特徴とする磁気抵抗効果素子。
  6.  請求項1~5に記載の磁気抵抗効果素子において、前記固定層及び前記記録層はFe、CoFe又はCoFeBであることを特徴とする磁気抵抗効果素子。
  7.  請求項1~5に記載の磁気抵抗効果素子において、前記固定層及び前記記録層はCoFe又はCoFeBであり、
     CoとFeの組成比において、前記固定層は前記記録層に比べてFeの含有比が高いことを特徴とする磁気抵抗効果素子。
  8.  請求項1、3、4又は5に記載の磁気抵抗効果素子において、前記記録層はダンピング定数αが0.01以下のホイスラー合金であることを特徴とする磁気抵抗効果素子。
  9.  請求項1又は2に記載の磁気抵抗効果素子において、前記固定層の前記第1の非磁性層と反対側の面に反強磁性層が形成されていることを特徴とする磁気抵抗効果素子。
  10.  請求項1~4のいずれか1項に記載の磁気抵抗効果素子において、前記固定層は、前記第1の非磁性層と接する面から順に強磁性層と非磁性層を交互に3層以上積層した積層構造を有し、前記積層構造を構成する複数の強磁性層の磁化は、磁化方向が互いに平行若しくは反平行に結合していることを特徴とする磁気抵抗効果素子。
  11.  請求項10記載の磁気抵抗効果素子において、前記強磁性層と交互に積層された非磁性層が酸素を含む絶縁体であることを特徴とする磁気抵抗効果素子。
  12.  請求項10記載の磁気抵抗効果素子において、前記強磁性層と交互に積層された非磁性層が酸化マグネシウムであることを特徴とする磁気抵抗効果素子。
  13.  請求項10記載の磁気抵抗効果素子において、前記強磁性層と交互に積層された非磁性層が、Ru,Rh,V,Ir,Os,Reのうち少なくとも1つを含むことを特徴とする磁気抵抗効果素子。
  14.  請求項1~13のいずれか1項記載の磁気抵抗効果素子において、前記第1の非磁性層は酸素を含む絶縁体であることを特徴とする磁気抵抗効果素子。
  15.  請求項1~13のいずれか1項記載の磁気抵抗効果素子において、前記第1の非磁性層は酸化マグネシウムであることを特徴とする磁気抵抗効果素子。
  16.  請求項1~15のいずれか1項記載の磁気抵抗効果素子において、磁気抵抗変化率が70%以上に制御されていることを特徴とする磁気抵抗効果素子。
  17.  請求項3記載の磁気抵抗効果素子において、前記第2の非磁性層はPtあるいはPdであることを特徴とする磁気抵抗効果素子。
  18.  請求項4記載の磁気抵抗効果素子において、前記第2の非磁性層は酸化マグネシウムであることを特徴とする磁気抵抗効果素子。
  19.  相互に平行に配置された複数のビット線と、
     前記ビット線と平行な方向に、互いに平行に配置された複数のソース線と、
     前記ビット線と交差する方向に、互いに平行に配置された複数のワード線と、
     前記ビット線と前記ワード線とが交差する部分に配置された磁気抵抗効果素子とを備え、
     前記ビット線は前記磁気抵抗効果素子の一端に電気的に接続され、
     前記磁気抵抗効果素子の他端は選択トランジスタのドレイン電極に電気的に接続され、
     前記ソース線は前記選択トランジスタのソース電極に電気的に接続され、
     前記ワード線は前記選択トランジスタのゲート電極に電気的に接続され、
     前記磁気抵抗効果素子の膜面垂直方向に電流を印加する機構を備え、
     前記磁気抵抗効果素子は請求項1~18のいずれか1項記載の磁気抵抗効果素子であることを特徴とする磁気メモリ。
PCT/JP2011/062493 2010-06-04 2011-05-31 磁気抵抗効果素子及び磁気メモリ WO2011152400A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/701,846 US8917541B2 (en) 2010-06-04 2011-05-31 Magnetoresistance effect element and magnetic memory
US14/224,853 US9564152B2 (en) 2010-06-04 2014-03-25 Magnetoresistance effect element and magnetic memory
US15/392,556 US10651369B2 (en) 2010-06-04 2016-12-28 Magnetoresistive element and magnetic memory

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010129086A JP5725735B2 (ja) 2010-06-04 2010-06-04 磁気抵抗効果素子及び磁気メモリ
JP2010-129086 2010-06-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/701,846 A-371-Of-International US8917541B2 (en) 2010-06-04 2011-05-31 Magnetoresistance effect element and magnetic memory
US14/224,853 Division US9564152B2 (en) 2010-06-04 2014-03-25 Magnetoresistance effect element and magnetic memory

Publications (1)

Publication Number Publication Date
WO2011152400A1 true WO2011152400A1 (ja) 2011-12-08

Family

ID=45066764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062493 WO2011152400A1 (ja) 2010-06-04 2011-05-31 磁気抵抗効果素子及び磁気メモリ

Country Status (3)

Country Link
US (3) US8917541B2 (ja)
JP (1) JP5725735B2 (ja)
WO (1) WO2011152400A1 (ja)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111473A1 (ja) 2010-03-10 2011-09-15 株式会社日立製作所 磁気抵抗効果素子及び磁気メモリ
JP5725735B2 (ja) 2010-06-04 2015-05-27 株式会社日立製作所 磁気抵抗効果素子及び磁気メモリ
US8324697B2 (en) * 2010-06-15 2012-12-04 International Business Machines Corporation Seed layer and free magnetic layer for perpendicular anisotropy in a spin-torque magnetic random access memory
JP5742142B2 (ja) * 2010-09-08 2015-07-01 ソニー株式会社 記憶素子、メモリ装置
JP2012059906A (ja) 2010-09-09 2012-03-22 Sony Corp 記憶素子、メモリ装置
JP2012064623A (ja) * 2010-09-14 2012-03-29 Sony Corp 記憶素子、メモリ装置
JP2012160681A (ja) * 2011-02-03 2012-08-23 Sony Corp 記憶素子、メモリ装置
JP5722137B2 (ja) 2011-06-30 2015-05-20 株式会社東芝 磁気抵抗素子及び磁気メモリ
JP5895610B2 (ja) * 2012-03-07 2016-03-30 富士通株式会社 磁気抵抗メモリおよび磁気抵抗メモリの製造方法
US9202545B2 (en) 2012-04-09 2015-12-01 Tohoku University Magnetoresistance effect element and magnetic memory
US9368176B2 (en) * 2012-04-20 2016-06-14 Alexander Mikhailovich Shukh Scalable magnetoresistive element
US9058872B2 (en) * 2013-01-31 2015-06-16 Taiwan Semiconductor Manufacturing Company, Ltd. Resistance-based random access memory
JP6385355B2 (ja) 2013-10-22 2018-09-12 国立大学法人東北大学 磁気抵抗効果素子および磁気メモリ
KR102255436B1 (ko) * 2014-05-27 2021-05-24 한양대학교 산학협력단 자기터널접합 소자 및 그 제조방법
JP6107864B2 (ja) 2015-03-26 2017-04-05 Tdk株式会社 磁気センサ及び磁気式エンコーダ
JP6948706B2 (ja) 2015-07-16 2021-10-13 国立大学法人東北大学 磁気抵抗効果素子および磁気メモリ
CN114361329A (zh) * 2015-11-27 2022-04-15 Tdk株式会社 磁阻效应元件、磁存储器、磁化反转方法及自旋流磁化反转元件
US9643385B1 (en) * 2015-12-02 2017-05-09 The Board Of Trustees Of The University Of Alabama Layered heusler alloys and methods for the fabrication and use thereof
US9899071B2 (en) * 2016-01-20 2018-02-20 The Johns Hopkins University Heavy metal multilayers for switching of magnetic unit via electrical current without magnetic field, method and applications
JP2017139399A (ja) * 2016-02-05 2017-08-10 Tdk株式会社 磁気メモリ
JP2017174972A (ja) 2016-03-24 2017-09-28 Tdk株式会社 磁気抵抗効果素子
JP2017188179A (ja) * 2016-04-06 2017-10-12 株式会社東芝 磁気記録再生装置および磁気記録再生方法
US11081641B2 (en) 2017-01-18 2021-08-03 Tohoku University Magnetoresistance effect element, magnetic memory, and method for manufacturing magnetoresistance effect element
WO2018155562A1 (ja) 2017-02-24 2018-08-30 Tdk株式会社 磁化反転素子、磁気抵抗効果素子及びメモリデバイス
JP7055303B2 (ja) 2017-03-31 2022-04-18 国立大学法人東北大学 磁気抵抗効果素子及び磁気メモリ
JP6450811B2 (ja) * 2017-07-04 2019-01-09 株式会社東芝 歪検知素子、圧力センサ、マイクロフォン、血圧センサ及びタッチパネル
JP7023637B2 (ja) 2017-08-08 2022-02-22 株式会社日立ハイテク 磁気トンネル接合素子の製造方法
KR20200136903A (ko) * 2018-03-30 2020-12-08 고쿠리츠다이가쿠호진 도호쿠다이가쿠 자기 저항 효과 소자 및 자기 메모리
CN111492491B (zh) 2018-05-31 2024-04-09 Tdk株式会社 自旋轨道转矩型磁化旋转元件、自旋轨道转矩型磁阻效应元件以及磁存储器
JP6985220B2 (ja) 2018-07-19 2021-12-22 株式会社日立ハイテク 磁気トンネル接合素子、それを用いた磁気メモリおよび磁気トンネル接合素子の製造方法
JP6551594B1 (ja) * 2018-09-28 2019-07-31 Tdk株式会社 スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
CN113054096B (zh) * 2021-03-03 2024-03-19 南京大学 一种调控磁性薄膜本征阻尼因子的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142364A (ja) * 2005-10-19 2007-06-07 Toshiba Corp 磁気抵抗効果素子、磁気ランダムアクセスメモリ、電子カード及び電子装置
JP2009081315A (ja) * 2007-09-26 2009-04-16 Toshiba Corp 磁気抵抗素子及び磁気メモリ

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE28500E (en) * 1970-12-14 1975-07-29 Low noise field effect transistor with channel having subsurface portion of high conductivity
JP3729159B2 (ja) 2002-06-26 2005-12-21 ソニー株式会社 磁気メモリ装置
JP2004253739A (ja) 2003-02-21 2004-09-09 Sony Corp 磁気記憶素子及びその記録方法、並びに磁気記憶装置
JP2005116923A (ja) 2003-10-10 2005-04-28 Hitachi Ltd スピントルクを用いた不揮発性磁気メモリセルおよびこれを用いた磁気ランダムアクセスメモリ
JP4189395B2 (ja) 2004-07-28 2008-12-03 シャープ株式会社 不揮発性半導体記憶装置及び読み出し方法
JP4877575B2 (ja) 2005-05-19 2012-02-15 日本電気株式会社 磁気ランダムアクセスメモリ
JP5040105B2 (ja) 2005-12-01 2012-10-03 ソニー株式会社 記憶素子、メモリ
JP2007266498A (ja) * 2006-03-29 2007-10-11 Toshiba Corp 磁気記録素子及び磁気メモリ
FR2904724B1 (fr) 2006-08-03 2011-03-04 Commissariat Energie Atomique Dispositif magnetique en couches minces a forte polarisation en spin perpendiculaire au plan des couches, jonction tunnel magnetique et vanne de spin mettant en oeuvre un tel dispositif
JP2008098515A (ja) * 2006-10-13 2008-04-24 Toshiba Corp 磁気ランダムアクセスメモリ及びその製造方法
US8374025B1 (en) 2007-02-12 2013-02-12 Avalanche Technology, Inc. Spin-transfer torque magnetic random access memory (STTMRAM) with laminated free layer
FR2910716B1 (fr) * 2006-12-26 2010-03-26 Commissariat Energie Atomique Dispositif magnetique multicouches, procede pour sa realisation, capteur de champ magnetique, memoire magnetique et porte logique mettant en oeuvre un tel dispositif
US8623452B2 (en) * 2010-12-10 2014-01-07 Avalanche Technology, Inc. Magnetic random access memory (MRAM) with enhanced magnetic stiffness and method of making same
US8593862B2 (en) * 2007-02-12 2013-11-26 Avalanche Technology, Inc. Spin-transfer torque magnetic random access memory having magnetic tunnel junction with perpendicular magnetic anisotropy
JP4625936B2 (ja) * 2007-06-12 2011-02-02 独立行政法人産業技術総合研究所 乱数発生器
US8120127B2 (en) * 2007-08-03 2012-02-21 Nec Corporation Magnetic random access memory and method of manufacturing the same
JP2009094104A (ja) 2007-10-03 2009-04-30 Toshiba Corp 磁気抵抗素子
US8154913B2 (en) * 2007-10-25 2012-04-10 Nec Corporation Magnetoresistance effect element and magnetic random access memory
WO2009093387A1 (ja) 2008-01-25 2009-07-30 Nec Corporation 磁気ランダムアクセスメモリ及びその初期化方法
US8274820B2 (en) 2008-02-08 2012-09-25 Fuji Electric Co., Ltd. Magnetic memory element, method of driving same, and nonvolatile storage device
JP5283922B2 (ja) 2008-02-14 2013-09-04 株式会社東芝 磁気メモリ
US20110049659A1 (en) 2008-05-02 2011-03-03 Yoshishige Suzuki Magnetization control method, information storage method, information storage element, and magnetic function element
US8144509B2 (en) 2008-06-27 2012-03-27 Qualcomm Incorporated Write operation for spin transfer torque magnetoresistive random access memory with reduced bit cell size
US8223533B2 (en) * 2008-09-26 2012-07-17 Kabushiki Kaisha Toshiba Magnetoresistive effect device and magnetic memory
US7978505B2 (en) 2009-01-29 2011-07-12 Headway Technologies, Inc. Heat assisted switching and separated read-write MRAM
KR101683135B1 (ko) 2009-03-13 2016-12-06 시게이트 테크놀로지 엘엘씨 수직자기기록매체
JP4745414B2 (ja) * 2009-03-30 2011-08-10 株式会社東芝 磁気抵抗素子及び磁気メモリ
JP2009194398A (ja) * 2009-05-25 2009-08-27 Toshiba Corp 磁気抵抗効果素子、及び磁気抵抗効果素子を備えた磁気記憶装置
US8913350B2 (en) * 2009-08-10 2014-12-16 Grandis, Inc. Method and system for providing magnetic tunneling junction elements having improved performance through capping layer induced perpendicular anisotropy and memories using such magnetic elements
KR101115039B1 (ko) * 2009-08-21 2012-03-07 한국과학기술연구원 자기터널접합 디바이스 및 그 제조 방법
US8072800B2 (en) * 2009-09-15 2011-12-06 Grandis Inc. Magnetic element having perpendicular anisotropy with enhanced efficiency
TWI398973B (zh) * 2009-12-31 2013-06-11 Ind Tech Res Inst 垂直式磁性磁阻元件結構
US8283741B2 (en) * 2010-01-08 2012-10-09 International Business Machines Corporation Optimized free layer for spin torque magnetic random access memory
US9093163B2 (en) 2010-01-14 2015-07-28 Hitachi, Ltd. Magnetoresistive device
JP4903277B2 (ja) 2010-01-26 2012-03-28 株式会社日立製作所 磁気抵抗効果素子、それを用いた磁気メモリセル及びランダムアクセスメモリ
WO2011111473A1 (ja) * 2010-03-10 2011-09-15 株式会社日立製作所 磁気抵抗効果素子及び磁気メモリ
WO2011152281A1 (ja) * 2010-06-03 2011-12-08 株式会社日立製作所 磁気抵抗効果素子及び磁気メモリ
JP5725735B2 (ja) * 2010-06-04 2015-05-27 株式会社日立製作所 磁気抵抗効果素子及び磁気メモリ
US8546896B2 (en) * 2010-07-16 2013-10-01 Grandis, Inc. Magnetic tunneling junction elements having magnetic substructures(s) with a perpendicular anisotropy and memories using such magnetic elements
FR2963153B1 (fr) * 2010-07-26 2013-04-26 Centre Nat Rech Scient Element magnetique inscriptible
FR2963152B1 (fr) * 2010-07-26 2013-03-29 Centre Nat Rech Scient Element de memoire magnetique
JP2012043967A (ja) * 2010-08-19 2012-03-01 Sony Corp 磁気メモリ素子
JP5740878B2 (ja) 2010-09-14 2015-07-01 ソニー株式会社 記憶素子、メモリ装置
US8492859B2 (en) * 2011-02-15 2013-07-23 International Business Machines Corporation Magnetic tunnel junction with spacer layer for spin torque switched MRAM
US8790798B2 (en) * 2011-04-18 2014-07-29 Alexander Mikhailovich Shukh Magnetoresistive element and method of manufacturing the same
US8758909B2 (en) * 2011-04-20 2014-06-24 Alexander Mikhailovich Shukh Scalable magnetoresistive element
US8592927B2 (en) * 2011-05-04 2013-11-26 Magic Technologies, Inc. Multilayers having reduced perpendicular demagnetizing field using moment dilution for spintronic applications
JP2012235015A (ja) 2011-05-06 2012-11-29 Sony Corp 記憶素子及び記憶装置
JP5796349B2 (ja) * 2011-05-23 2015-10-21 ソニー株式会社 記憶素子の製造方法
WO2013069091A1 (ja) * 2011-11-08 2013-05-16 国立大学法人東北大学 トンネル磁気抵抗効果素子及びそれを用いたランダムアクセスメモリ
US20140306303A1 (en) * 2013-04-16 2014-10-16 Headway Technologies, Inc. Seed Layer for Perpendicular Magnetic Anisotropy (PMA) Thin Film
WO2015033464A1 (ja) * 2013-09-09 2015-03-12 株式会社日立製作所 磁気センサ素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142364A (ja) * 2005-10-19 2007-06-07 Toshiba Corp 磁気抵抗効果素子、磁気ランダムアクセスメモリ、電子カード及び電子装置
JP2009081315A (ja) * 2007-09-26 2009-04-16 Toshiba Corp 磁気抵抗素子及び磁気メモリ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M.ENDO ET AL.: "Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co4oFe4oB2o/Ta structures", APPLIED PHYSICS LETTERS, vol. 96, 27 May 2010 (2010-05-27), pages 212503-1 - 212503-3 *

Also Published As

Publication number Publication date
US9564152B2 (en) 2017-02-07
US10651369B2 (en) 2020-05-12
US20140205862A1 (en) 2014-07-24
US8917541B2 (en) 2014-12-23
JP2011258596A (ja) 2011-12-22
JP5725735B2 (ja) 2015-05-27
US20130094284A1 (en) 2013-04-18
US20170110654A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP5725735B2 (ja) 磁気抵抗効果素子及び磁気メモリ
US10804457B2 (en) Magnetoresistive element and magnetic memory
US8072800B2 (en) Magnetic element having perpendicular anisotropy with enhanced efficiency
TWI556233B (zh) 以改良的切換來提供混合磁性穿隧接面元件的方法及其系統
JP5096702B2 (ja) 磁気抵抗効果素子及びそれを搭載した不揮発性磁気メモリ
US10953319B2 (en) Spin transfer MRAM element having a voltage bias control
JP5816867B2 (ja) トンネル磁気抵抗効果素子及びそれを用いたランダムアクセスメモリ
US8704319B2 (en) Method and system for providing magnetic layers having insertion layers for use in spin transfer torque memories
KR102188529B1 (ko) 스핀 전달 토크 자기 램의 응용 분야에서 사용될 수 있는 수직 자기 접합의 벌크 수직 자기 이방성 자유 층을 제공하는 방법 및 시스템
JP2012142578A (ja) スピントランスファトルクメモリ用の挿入層を有する磁性層を提供するための方法及びシステム
WO2011036795A1 (ja) 磁気抵抗効果素子および磁気メモリ
CN107221596A (zh) 一种用于实现自旋扭矩传递切换的磁性元件、制备方法及磁存储器件
KR101636492B1 (ko) 메모리 소자
US10559745B2 (en) Magnetic tunnel junction (MTJ) structure with perpendicular magnetic anisotropy (PMA) having an oxide-based PMA-inducing layer and magnetic element including the same
KR102300702B1 (ko) 스핀 전달 토크 어플리케이션에서 사용 가능한 낮은 모멘트 자유층 자기 접합부 및 그것을 제공하기 위한 방법
KR102486320B1 (ko) 기판 상에 배치되고 자기 소자에 사용할 수 있는 자기 접합 및 이를 포함하는 자기 메모리 및 이를 제공하는 방법
JP5777124B6 (ja) 磁気抵抗効果素子、磁性膜、及び、磁性膜の製造方法
JP5591888B2 (ja) 磁気抵抗効果素子及びそれを搭載した不揮発性磁気メモリ
KR102176797B1 (ko) 스핀 전달 토크 메모리에 사용되는 삽입층들을 갖는 자성층들을 제공하는 방법 및 시스템
CN112652704A (zh) 具有超薄合成反铁磁层的磁性隧道结单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13701846

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11789803

Country of ref document: EP

Kind code of ref document: A1