WO2011152281A1 - 磁気抵抗効果素子及び磁気メモリ - Google Patents

磁気抵抗効果素子及び磁気メモリ Download PDF

Info

Publication number
WO2011152281A1
WO2011152281A1 PCT/JP2011/062119 JP2011062119W WO2011152281A1 WO 2011152281 A1 WO2011152281 A1 WO 2011152281A1 JP 2011062119 W JP2011062119 W JP 2011062119W WO 2011152281 A1 WO2011152281 A1 WO 2011152281A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetization
layer
effect element
magnetoresistive effect
fixed
Prior art date
Application number
PCT/JP2011/062119
Other languages
English (en)
French (fr)
Inventor
大野 英男
正二 池田
松倉 文▲礼▼
将起 遠藤
駿 金井
勝哉 三浦
山本 浩之
Original Assignee
株式会社日立製作所
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所, 国立大学法人東北大学 filed Critical 株式会社日立製作所
Priority to JP2012518356A priority Critical patent/JP5618103B2/ja
Priority to US13/701,257 priority patent/US9135973B2/en
Publication of WO2011152281A1 publication Critical patent/WO2011152281A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type

Definitions

  • the present invention relates to a magnetoresistive effect element and a magnetic memory (MRAM: Magnetic Random Access Memory) provided with the magnetoresistive effect element as a memory cell, and more particularly to an MRAM that employs a domain wall motion method in a write operation.
  • MRAM Magnetic Random Access Memory
  • MRAM is a non-volatile memory that is promising as a candidate for universal memory from the viewpoint of high integration and high-speed operation.
  • a magnetoresistive effect element such as a GMR (Giant magnetoresistance) element or a TMR (Tunnel magnetoresistance) element is used as a memory element in the memory cell of the MRAM.
  • the basic structure of these elements is a three-layer structure in which a nonmagnetic layer is sandwiched between two ferromagnetic layers, a first ferromagnetic layer and a second ferromagnetic layer. One of the two ferromagnetic layers is a fixed layer whose magnetization direction is fixed, and the other is a recording layer whose magnetization direction is reversible.
  • the first ferromagnetic layer is a fixed layer and the second ferromagnetic layer is a recording layer will be described as an example.
  • the resistance of the element is low when the magnetization direction of the fixed layer and the magnetization direction of the recording layer are parallel to each other (P state), and high when it is antiparallel (AP state).
  • this resistance change rate exceeds 600% at room temperature in the case of a TMR element using MgO for the nonmagnetic layer. This is remarkably increased when coherent tunnel conduction via the ⁇ 1 band realized when a combination of a ferromagnetic material containing at least one 3d transition metal element such as Co and Fe and MgO is used. It has been known.
  • this resistance change is made to correspond to “0” and “1” of the bit information.
  • a magnetization reversal method by spin injection has been proposed as described in Non-Patent Document 2 and the like. This method uses a phenomenon in which the magnetization direction changes due to the spin transfer torque caused by passing a current through the magnetoresistive element.
  • the magnetizations of the fixed layer and the recording layer are antiparallel and the bit information becomes “1”.
  • the magnetizations of the fixed layer and the recording layer become parallel and the bit information becomes “0”.
  • a domain wall motion type MRAM using domain wall motion (Domain wall motion) by a spin transfer effect is disclosed in Patent Document 1 and the like.
  • the domain wall is a region having a finite volume at the boundary between a plurality of regions in which the magnetization directions in the ferromagnetic material called magnetic domains are aligned.
  • the domain wall at the boundary is called a 180-degree domain wall.
  • the magnetoresistive effect element of the memory cell in the domain wall motion type MRAM described in Patent Document 1 includes a fixed layer with fixed magnetization, a nonmagnetic layer stacked on the fixed layer, and a magnetic layer stacked on the nonmagnetic layer. And a recording layer.
  • FIG. 1 shows a basic structure of a magnetoresistive effect element 100 of a memory cell in a domain wall motion type MRAM disclosed in Patent Document 1 and the like.
  • 1A is a plan view
  • FIG. 1B is a cross-sectional view.
  • the magnetoresistive effect element 100 includes a fixed layer 101 made of a ferromagnetic material whose magnetization is fixed, a nonmagnetic layer 102 stacked on the fixed layer, and a ferromagnetic magnetic recording layer 103 stacked on the nonmagnetic layer.
  • the magnetic recording layer 103 has a fine line shape.
  • the magnetic recording layer 103 is adjacent to the magnetization switching region 104, and a magnetization switching region 104 in which a region where a domain wall having a finite width can move is added to a portion overlapping the fixed layer 101 and the nonmagnetic layer 102.
  • a pair of magnetization fixed regions 105 and 106 formed in this manner.
  • the magnetization fixed regions 105 and 106 are given fixed magnetizations in opposite directions.
  • Current supply terminals 107 and 108 are joined to the magnetization fixed regions 105 and 106, respectively. Further, the current supply terminal 109 is also bonded to the fixed layer 101.
  • a write current is passed through the magnetization switching region 104 and the magnetization fixed regions 105 and 106 of the magnetic recording layer 103 using the current supply terminals 107 and 108.
  • a domain wall 110 is introduced into the magnetization switching region 104, and the magnetization direction of the magnetization switching region 104 is antiparallel with the domain wall 110 as a boundary. Since the domain wall 110 moves when the write current flows, the magnetization direction of the region immediately above the fixed layer 101 and the nonmagnetic layer 102 in the magnetization switching region 104 changes. In the example of FIG.
  • the advantage of this method is that since no current flows through the nonmagnetic layer 102 during writing, even when an insulating film typified by MgO is used for the nonmagnetic layer, the withstand voltage of the insulating film does not need to be considered, The point is that it has a highly structured structure.
  • the current supply terminal 107 and the current supply terminal 109, or the current supply terminal 108 and the current supply terminal 109 are used to penetrate the fixed layer 101, the nonmagnetic layer 102, and the magnetic recording layer 103 and write current.
  • the current flow path has the same structure as that of GMR or TMR, and resistance change can be read as bit information.
  • the absolute value of the write current may be relatively large.
  • the threshold current density in the vicinity of 1 ⁇ 10 8 A / cm 2 is generally required for domain wall motion. In this case, for example, even when the width of the magnetic recording layer in which the domain wall motion occurs is 100 nm and the film thickness is 10 nm, the write current is 1 mA.
  • a threshold current density of 10 6 A / cm 2 is observed in a magnetoresistive element using a perpendicular magnetic anisotropy material whose magnetic anisotropy is perpendicular to the substrate surface as the fixed layer and the magnetic recording layer.
  • a perpendicular magnetic anisotropy material whose magnetic anisotropy is perpendicular to the substrate surface as the fixed layer and the magnetic recording layer.
  • the perpendicular magnetic anisotropic material has a large thermal stability, there is an advantage that the recording holding time becomes long because the position of the domain wall is stabilized.
  • a conventionally known perpendicular magnetic anisotropy material such as FePt, CoFe / Pd multilayer film, TbFeCo is used for the fixed layer and the magnetic recording layer 103, a TMR structure using MgO for the nonmagnetic layer is formed.
  • the resistance change rate is small. Since the resistance change rate needs to be 70% or more for a high-speed read operation, the bit information read speed decreases.
  • These materials are known to have a large damping constant ⁇ . For this reason, there is a possibility that the moving speed of the domain wall is slowed down, and the writing speed is lowered.
  • An object of the present invention is to write bit information to a magnetic recording layer by domain wall movement, wherein the magnetic anisotropy of the magnetic recording layer is in the vertical direction, and the resistance change rate is large and the domain wall movement speed is high. And providing a magnetic random access memory.
  • the material used for at least one of the fixed layer and the magnetic recording layer constituting the domain wall motion type magnetoresistive effect element includes at least one kind of 3d transition metal such as Co and Fe.
  • the magnetoresistive change rate was controlled by using a Heusler alloy made of a material or a half metal having a spin polarizability of 100% typified by Co 2 MnSi.
  • a magnetoresistive element is made of a material that includes at least one 3d transition metal such as Co and Fe and realizes coherent tunnel conduction by ⁇ 1 band or a Heusler alloy
  • the magnetization direction of the ferromagnetic layer Is oriented in a direction parallel to the film surface, but the inventors have determined that the write current density is low by controlling the film thickness of the ferromagnetic layer at the atomic layer level so that the magnetization direction is perpendicular to the film surface. And developed a technology that achieves a high thermal stability constant.
  • FIG. 2 shows an example in which CoFeB is used for the ferromagnetic layer, and shows the film thickness necessary for the magnetization direction to be perpendicular to the film surface with respect to the temperature of the heat treatment process included in the manufacturing process. It is shown.
  • CoFeB is one of materials that realize coherent tunnel conduction by the ⁇ 1 band in combination with MgO.
  • the heat treatment time was 1 hour.
  • the white circles in the figure represent the upper limit of the film thickness, and the black circles represent the lower limit.
  • the film thickness range of CoFeB in which the magnetization direction is perpendicular to the film surface changes corresponding to the heat treatment temperature.
  • the example of FIG. 2 is for CoFeB.
  • the film thickness and heat treatment necessary for the magnetization direction to be perpendicular to the film surface are for CoFeB.
  • the temperature relationship may differ from that in FIG. 2
  • the magnetization direction can be changed from parallel to perpendicular to the film surface by controlling the film thickness to be suitable for the material.
  • the film thickness required for the magnetization direction to be perpendicular to the film surface varies depending on the material, but is generally 3 nm or less. The reason why the magnetization direction becomes perpendicular to the film surface in this way is considered to be a special anisotropy change at the CoFeB interface in the example of FIG.
  • FIG. 3 shows an example in which CoFeB is used for the fixed layer and the magnetic recording layer, and MgO is used for the nonmagnetic layer.
  • FIG. 3 shows an example in which CoFeB is used for the fixed layer and the magnetic recording layer, and MgO is used for the nonmagnetic layer.
  • FIG. 3 shows an example in which CoFeB is used for the fixed layer and the magnetic recording layer, and MgO is used for the nonmagnetic layer.
  • the film thickness of the fixed layer and the magnetic recording layer is about 1.0 nm to 1.6 nm. It may be controlled to.
  • FIG. 4 shows the resistance change of the magnetoresistive element with respect to the magnetic field applied in the direction perpendicular to the film surface when CoFeB is used as the material of the fixed layer and the magnetic recording layer and MgO is used as the nonmagnetic layer.
  • the peak on the plus side of the magnetic field value in FIG. 4 is a peak that appears when the magnetic field is swept from the minus direction to the plus direction, and the peak on the minus side of the magnetic field value has been swept from the plus direction to the minus direction. It is a peak that sometimes appears.
  • the heat treatment temperature was 300 ° C. From the experimental results, it can be seen that the magnetization direction is perpendicular to the film surface. Further, the magnetoresistance change rate at this time was 100%.
  • a magnetoresistive effect element made of such a material has the advantage that the reading speed does not decrease, and since it has perpendicular magnetic anisotropy, it has high thermal stability and a long record retention time.
  • FIG. 5 shows the CoFeB film thickness dependence of the CoFeB damping constant ⁇ .
  • the damping constant ⁇ in the range in which the anisotropy is perpendicular to the film surface is smaller than the damping constant ⁇ of the conventionally known vertical anisotropic material is about 0.1. For this reason, it is possible to suppress a decrease in the domain wall moving speed, and there is an advantage that the writing speed is sufficiently high.
  • Heusler alloy M.Oogane, T.Wakita, S.Yakata, R.Yilgin, Y.Ando, A.Sakuma, T.Miyazaki, Jpn. J. Appl. Phys., 45, 3889 (2006 )
  • the damping constant ⁇ is sufficiently small, and similar advantages can be obtained.
  • a magnetoresistive effect element of a domain wall motion type MRAM having a large magnetoresistance change rate and a magnetization direction perpendicular to the film surface can be easily manufactured.
  • the direction of magnetization perpendicular to the film surface is controlled by controlling the heat treatment temperature and adjusting the film thickness of the fixed layer and magnetic recording layer formed with the nonmagnetic layer interposed therebetween. Can be produced.
  • the magnetic anisotropy can be easily controlled by controlling the film thickness of the fixed layer and the magnetic recording layer.
  • the rate of change in magnetoresistance is high and the damping constant ⁇ is low, high speed operation is possible for both reading and writing.
  • the top view (a) and sectional drawing (b) of the magnetoresistive effect element used as a recording element in the memory cell of a domain wall motion type MRAM The figure which shows the change of the film thickness required in order for the magnetization direction of a magnetoresistive effect element to become perpendicular
  • the cross-sectional schematic diagram which shows the example of the magnetoresistive effect element by this invention The cross-sectional schematic diagram which shows the example of the magnetoresistive effect element by this invention.
  • the cross-sectional schematic diagram which shows the example of the magnetoresistive effect element by this invention The cross-sectional schematic diagram which shows the example of the magnetoresistive effect element by this invention.
  • the cross-sectional schematic diagram which shows the example of the magnetoresistive effect element by this invention. The cross-sectional schematic diagram which shows the example of the magnetoresistive effect element by this invention.
  • the plane schematic diagram and cross-sectional schematic diagram which show the example of the magnetoresistive effect element by this invention The plane schematic diagram and cross-sectional schematic diagram which show the example of the magnetoresistive effect element by this invention.
  • the cross-sectional schematic diagram which shows the example of the magnetoresistive effect element by this invention The cross-sectional schematic diagram which shows the example of the magnetoresistive effect element by this invention.
  • FIG. 6 is a schematic diagram showing an example of a magnetoresistive effect element according to the present invention, in which (a) is a schematic plan view and (b) is a schematic sectional view.
  • the magnetoresistive element 600 includes a fixed layer 601 that is a ferromagnetic material and has fixed magnetization, a nonmagnetic layer 602 that is stacked on the fixed layer, A ferromagnetic magnetic recording layer 603 stacked on the nonmagnetic layer 602 is provided, and the nonmagnetic layer 602 and the magnetic recording layer 603 have a thin line shape.
  • the material of the fixed layer 601 and the magnetic recording layer 603 is preferably a ferromagnetic material containing at least one 3d transition metal element such as Co or Fe, or a Heusler alloy typified by Co 2 MnSi, and the material of the nonmagnetic layer 602 is Compounds that contain oxygen such as MgO, Al 2 O 3 , SiO 2 , metals such as Cu, and the like are candidates, and materials that increase the magnetoresistance change rate are desirable.
  • the material of the fixed layer 601 and the magnetic recording layer 603 is CoFeB and the nonmagnetic layer 602 is MgO will be described as an example.
  • the magnetization and magnetic recording of the fixed layer 601 when the heat treatment temperature is 300 ° C.
  • the magnetization of the layer 603 is perpendicular to the film surface.
  • the rate of change in magnetoresistance at this time is 100% or more.
  • the planar shape of the fixed layer 601 is circular and the diameter is 40 nm.
  • the planar shape of the fixed layer 601 may be a square, a rectangle, an ellipse, or the like, but a circle having no magnetic anisotropy in a direction parallel to the film surface is desirable.
  • the fine line of the magnetic recording layer 603 has a line width of 40 nm.
  • the length of the fine line of the magnetization switching region 604 was 150 nm. This is because the domain wall 610 can move in a wider range than the region immediately above the fixed layer 601 and the nonmagnetic layer 602. This is because, if the domain wall 610 stops in the region immediately above the fixed layer 601 and the nonmagnetic layer 602, there arises a problem that the bit information cannot be read correctly at the time of reading. Therefore, it is necessary to satisfy the condition that the thin wire length of the magnetization switching region 604 is larger than ⁇ (diameter of the fixed layer 601) + 2 ⁇ (domain wall width) ⁇ .
  • the thin wire lengths of the magnetization fixed regions 605 and 606 were 150 nm, respectively.
  • the magnetization fixed regions 605 and 606 are strongly fixed magnetizations in opposite directions. For this reason, the magnetization is surely reversed at least once in the magnetization switching region 604. Therefore, at least one 180-degree domain wall always exists in the magnetization switching region 604.
  • Current supply terminals 607 and 608 are joined to the magnetization fixed regions 605 and 606, respectively.
  • a write current flows through the current supply terminals 607 and 608 so as to penetrate the magnetization switching region 604 and the magnetization fixed regions 605 and 606 of the magnetic recording layer 603.
  • a write current is passed through the magnetization switching region 604 and the magnetization fixed regions 605 and 606, and a plurality of domain walls are connected to one end of the magnetization switching region 604.
  • the plurality of domain walls disappear, and one domain wall always exists in the magnetization switching region 604.
  • the nonmagnetic layer 602 is designed to have the same width and length as the magnetic recording layer 603.
  • the current supply terminal 607 and the current supply terminal 609, or the current supply terminal 607 and the current supply terminal 609 are used to penetrate the fixed layer 601, the nonmagnetic layer 602, and the magnetic recording layer 603 to write current.
  • the path through which the current flows has a structure similar to that of GMR and TMR, and resistance changes can be read as bit information.
  • the fixed layer 601, the nonmagnetic layer 602, and the magnetic recording layer 603 are stacked in this order, but as shown in the schematic cross-sectional view of FIG. 7, the magnetic recording layer 603, the nonmagnetic layer 602, and the fixed layer 601 are stacked. You may laminate in order.
  • the magnetization direction of the fixed layer 601 is downward, the magnetization of the magnetization fixed region 605 is upward, and the magnetization of the magnetization fixed region 606 is downward.
  • the magnetization fixed region 605 and the magnetization fixed region 606 are If the magnetization direction is antiparallel, there is no other limitation on the magnetization direction, and the magnetization may be fixed in a direction that allows easy production.
  • the material of the fixed layer 601 may be a conventionally known perpendicular magnetic anisotropic material such as FePt, and the material of the magnetic recording layer 603 may be CoFeB.
  • a conventionally known perpendicular magnetic anisotropic material such as FePt cannot realize coherent tunnel conduction via the ⁇ 1 band, the magnetoresistance change rate is reduced, but writing and reading operations are possible. is there.
  • the magnetic anisotropy of the fixed layer 601 can be largely controlled as compared with the magnetic recording layer 603.
  • the material of the fixed layer 601 may be CoFeB, and the material of the magnetic recording layer 603 may be a conventionally known perpendicular magnetic anisotropic material such as FePt. Even with this configuration, write and read operations are possible.
  • the film thickness of the magnetization fixed regions 605 and 606 may be changed from the film thickness of the magnetization switching region 604 in order to strongly fix the magnetization of the magnetization fixed regions 605 and 606.
  • FIG. 8 shows an example of a cross-sectional view when the film thickness of the magnetization fixed regions 605 and 606 is made thinner than the film thickness of the magnetization switching region 604.
  • a material containing at least one kind of 3d transition metals such as Co and Fe applied to the fixed layer 601 and the magnetic recording layer 603 in the present invention, or a Heusler alloy typified by Co 2 MnSi, is magnetized by controlling the film thickness. It is possible to change the direction from a direction parallel to the film surface to a direction perpendicular to the film surface. Further, the magnetic anisotropy in the vertical direction can be easily controlled by changing the film thickness.
  • the perpendicular magnetic anisotropy of the magnetization fixed regions 605 and 606 is controlled to be larger than the perpendicular magnetic anisotropy of the magnetization switching region 604, and the magnetization direction of the magnetization fixed regions 605 and 606 is strongly fixed. Is done. For this reason, the domain wall 610 does not enter the magnetization fixed regions 605 and 606 and can be easily stopped in the magnetization switching region 604. Further, in the example of FIG. 8, the film thickness of the magnetization fixed regions 605 and 606 is controlled to be smaller than the film thickness of the magnetization switching region 604. In this case, as can be seen from FIG.
  • the damping constant ⁇ of the magnetization fixed regions 605 and 606 is larger than that of the magnetization switching region 604. Therefore, the domain wall moving speed in the magnetization fixed regions 605 and 606 is smaller than that of the magnetization switching region 604. For this reason, even when the domain wall 610 enters the magnetization fixed regions 605 and 606, the moving speed of the domain wall 610 is slow, so that it is easy to stop near the interface between the magnetization switching region 604 and the magnetization fixed regions 605 and 606.
  • the film thickness of the fixed layer 601 and the magnetization switching region 604 is 1.3 nm, and the film thickness of the magnetization fixed regions 605 and 606 is 1.0 nm.
  • the planar shape of the fixed layer 601 was circular, and the diameter was 40 nm.
  • the fine line of the magnetic recording layer 603 has a line width of 40 nm.
  • the length of the fine line of the magnetization switching region 604 was 150 nm.
  • the thin wire lengths of the magnetization fixed regions 605 and 606 were 150 nm, respectively.
  • a material containing at least one 3d transition metal such as Co or Fe or a Heusler alloy typified by Co 2 MnSi or the like is applied to the magnetization switching region 604 in the magnetic recording layer 603, and magnetization is performed.
  • the fixed regions 605 and 606 may be configured by applying another conventionally known perpendicular magnetic anisotropic material such as a multilayer film of Co and Pt, Ni and Pt, or an FePt or TbTeCo alloy.
  • FIG. 9 is a schematic cross-sectional view of a magnetoresistive element 600 for realizing this viewpoint.
  • the perpendicular magnetic anisotropy of multilayer films such as Co and Pt, Ni and Pt, and other conventionally known perpendicular magnetic anisotropy materials such as FePt and TbTeCo alloys is effective for 3d transition metals such as Co and Fe.
  • the perpendicular magnetic anisotropy of the material including at least one kind or the Heusler alloy represented by Co 2 MnSi or the like is larger than that, the perpendicular magnetic anisotropy of the magnetization fixed regions 605 and 606 can be obtained. Can be made larger than the perpendicular magnetic anisotropy of the magnetization switching region 604.
  • FePt is used as the material of the magnetization fixed regions 605 and 606, and the film thickness is 10 nm.
  • the planar shape of the fixed layer 601 was circular, and the diameter was 40 nm.
  • the fine line of the magnetic recording layer 603 has a line width of 40 nm.
  • the length of the fine line of the magnetization switching region 604 was 150 nm.
  • the thin wire lengths of the magnetization fixed regions 605 and 606 were 150 nm, respectively.
  • the ferromagnetic layers 1001 and 1002 to which another conventionally known perpendicular magnetic anisotropic material is applied may be manufactured.
  • FIG. 10 shows a schematic cross-sectional view of a magnetoresistive effect element 600 for realizing this viewpoint.
  • the perpendicular magnetic anisotropy of the magnetization fixed regions 605 and 606 is ferromagnetically coupled to the ferromagnetic layers 1001 and 1002, so that the perpendicular magnetic anisotropy of the magnetization fixed regions 605 and 606 is increased. be able to.
  • the ferromagnetic layers 1001 and 1002 are formed on the magnetization fixed regions 605 and 606, but the magnetic recording layer 603, the nonmagnetic layer 602, and the fixed layer are formed on the ferromagnetic layers 1001 and 1002 as shown in FIG. A structure in which the layers 601 are stacked may be employed.
  • the current supply terminals 607 and 608 are connected to the magnetization fixed regions 605 and 606, but may be connected to the ferromagnetic layers 1001 and 1002.
  • FePt is used as the material of the ferromagnetic layers 1001 and 1002, and the film thickness is 20 nm.
  • the planar shape of the fixed layer 601 was circular, and the diameter was 40 nm.
  • the fine line of the magnetic recording layer 603 has a line width of 40 nm.
  • the length of the fine line of the magnetization switching region 604 was 150 nm.
  • the thin wire lengths of the magnetization fixed regions 605 and 606 were 150 nm, respectively.
  • a second ferromagnetic layer made of a material having a damping constant larger than that of the magnetization fixed region may be provided at the interface opposite to the nonmagnetic layer of the magnetization fixed region.
  • the damping constant of the magnetization fixed region can be increased by contacting the second ferromagnetic layer.
  • oxides such as MgO, Al 2 O 3 , and SiO 2 are applied to the interface of the magnetization fixed regions 605 and 606 in the magnetic recording layer 603 on the side opposite to the nonmagnetic layer 602.
  • Two nonmagnetic layers 1201 and 1202 may be formed.
  • FIG. 12 shows a schematic cross-sectional view of a magnetoresistive effect element 600 for realizing this viewpoint.
  • a material containing at least one kind of 3d transition metal such as Co or Fe or a Heusler alloy typified by Co 2 MnSi changes the magnetic anisotropy from the film surface parallel direction to the vertical direction by controlling the film thickness.
  • the cause is a special anisotropy at the interface, and this special interface anisotropy is considered to be prominent particularly at the interface with oxides such as MgO, Al 2 O 3 and SiO 2 . Therefore, with such a configuration, the perpendicular magnetic anisotropy of the magnetization fixed regions 605 and 606 can be increased.
  • the film thickness when MgO is used for the second nonmagnetic layers 1201 and 1202 is 0.4 nm.
  • a material having a large spin orbit interaction represented by Pt and Pd may be applied to the second nonmagnetic layers 1201 and 1202.
  • the film thickness when Pt is used for the second nonmagnetic layer is 2 nm.
  • the planar shape of the fixed layer 601 was circular, and the diameter was 40 nm.
  • the fine line of the magnetic recording layer 603 has a line width of 40 nm. Further, the length of the fine line of the magnetization switching region 604 was 150 nm.
  • the thin wire lengths of the magnetization fixed regions 605 and 606 were 150 nm, respectively.
  • the second nonmagnetic layers 1201 and 1202 are formed on the magnetization fixed regions 605 and 606, but the magnetic recording layer 603 is formed on the second nonmagnetic layers 1201 and 1202 as shown in FIG.
  • the nonmagnetic layer 602 and the fixed layer 601 may be stacked in this order.
  • the current supply terminals 607 and 608 are connected to the magnetization fixed regions 605 and 606.
  • the current supply terminals 607 and 608 are connected to the magnetization fixed regions 605 and 606 via the second nonmagnetic layers 1201 and 1202, respectively. It may be connected.
  • the antiferromagnetic layers 1401 and 1402 may be formed on the interface of the magnetization fixed regions 605 and 606 in the magnetic recording layer 603 on the side opposite to the nonmagnetic layer 602.
  • FIG. 14 is a schematic cross-sectional view of a magnetoresistive element 600 for realizing this viewpoint.
  • the magnetization of the magnetization fixed regions 605 and 606 can be strongly fixed due to exchange coupling of the antiferromagnetic layers 1401 and 1402.
  • the film thickness when IrMn is used for the antiferromagnetic layers 1401 and 1402 is 5 nm.
  • the planar shape of the fixed layer 601 was circular, and the diameter was 40 nm.
  • the fine line of the magnetic recording layer 603 has a line width of 40 nm. Further, the length of the fine line of the magnetization switching region 604 was 150 nm. The thin wire lengths of the magnetization fixed regions 605 and 606 were 150 nm, respectively.
  • the antiferromagnetic layers 1401 and 1402 are formed on the magnetization fixed regions 605 and 606, but the magnetic recording layer 603 and the nonmagnetic layer 602 are formed on the antiferromagnetic layers 1401 and 1402 as shown in FIG.
  • a structure in which the fixed layer 601 is stacked in this order may be employed.
  • the current supply terminals 607 and 608 are connected to the magnetization fixed regions 605 and 606, but are connected to the magnetization fixed regions 605 and 606 via the antiferromagnetic layers 1401 and 1402. It may be.
  • a constriction may be formed at the boundary between the magnetization switching region 604 and the magnetization fixed regions 605 and 606 in the magnetic recording layer 603.
  • a magnetoresistive effect element 600 for realizing this viewpoint is shown in FIG. 16A is a schematic plan view, and FIG. 16B is a schematic cross-sectional view.
  • the domain wall 610 is strongly pinned by the constriction and does not enter the magnetization fixed regions 605 and 606.
  • the thickness of the fixed layer 601 and the magnetic recording layer was 1.3 nm, and the thickness of the constricted portion was 1.0 nm.
  • the planar shape of the fixed layer 601 was circular, and the diameter was 40 nm.
  • the fine line of the magnetic recording layer 603 has a line width of 40 nm.
  • the length of the fine line of the magnetization switching region 604 was 150 nm.
  • the line width of the constricted portion was 38 nm.
  • the magnetoresistive element 600 may be configured such that the nonmagnetic layer 602 is in contact with only the magnetization switching region 604 in the magnetic recording layer 603.
  • a magnetoresistive effect element 600 for realizing this viewpoint is shown in FIG.
  • the nonmagnetic layer 602 is not in contact with the magnetization fixed regions 605 and 606.
  • a material containing at least one 3d transition metal such as Co, Fe or a Heusler alloy represented by Co 2 MnSi Is considered to be a special anisotropy at the interface.
  • this special anisotropy appears remarkably at the interface between these ferromagnetic materials and oxides typified by MgO. Therefore, in the magnetoresistive effect element 600 of this embodiment, only the magnetization switching region 604 has perpendicular magnetic anisotropy, and the magnetization fixed regions 605 and 606 can have in-plane magnetic anisotropy. With this configuration, a 90-degree domain wall is introduced between the magnetization fixed regions 605 and 606 and the magnetization switching region 604. When the domain wall 610 in the magnetization switching region 604 is present at the end of the magnetization switching region 604, the electron spin that gives the spin transfer torque to the magnetization of the magnetization switching region 604 is in a direction inclined by 90 degrees. May go down. Also in this configuration, the domain wall 610 remains in the magnetization switching region 604 and does not enter the magnetization fixed regions 605 and 606.
  • Example 2 According to another aspect of the present invention, in the magnetoresistive element 600 of Example 1, in order to increase the perpendicular magnetic anisotropy of the fixed layer 610 and strongly fix it, the side of the fixed layer 601 opposite to the nonmagnetic layer 602. Even if a multilayered film of Co and Pt, Ni and Pt, or another conventionally known perpendicular magnetic anisotropy material such as an FePt or TbFeCo alloy is laminated on the interface, a magnetization pinned layer 1801 is produced. Good. A magnetoresistive effect element 600 for realizing this viewpoint is shown in FIG.
  • the fixed layer 601 can be ferromagnetically coupled to the perpendicular magnetic anisotropic material, and the perpendicular magnetic anisotropy can be increased.
  • the film thickness when FePt was used for the magnetization fixed layer 1801 was 20 nm.
  • an antiferromagnetic layer may be laminated on the interface of the fixed layer 601 opposite to the nonmagnetic layer 602.
  • the pinned layer 601 exchange-couples with the antiferromagnetic layer, so that the perpendicular magnetic anisotropy of the pinned layer 601 increases.
  • the film thickness when IrMn was used for the magnetization fixed layer 1801 was 5 nm.
  • an oxide layer such as MgO, Al 2 O 3 , or SiO 2 may be stacked on the interface of the fixed layer 601 opposite to the nonmagnetic layer 602.
  • the perpendicular magnetic anisotropy increases due to the special anisotropy acting at the interface with the fixed layer 601.
  • the film thickness when MgO is used for the magnetization fixed layer 1801 was 0.4 nm.
  • a material having a large spin orbit interaction represented by Pt and Pd may be stacked on the interface of the fixed layer 601 opposite to the nonmagnetic layer 602.
  • the damping constant ⁇ of the pinned layer 601 increases, the perpendicular magnetic anisotropy does not change, but the magnetization reversal of the pinned layer 601 due to an electric current hardly occurs. Therefore, it is possible to reduce the possibility that the magnetization of the fixed layer 601 is erroneously reversed by the read current.
  • the film thickness when Pt was used for the magnetization fixed layer 1801 was 2 nm.
  • a domain wall motion type MRAM can be realized by employing the magnetoresistive effect element 600 of the first and second embodiments as a memory element.
  • the domain wall motion type MRAM of the present invention is configured to include two selection transistors for one magnetoresistive effect element 600 as shown in FIG.
  • the first word line 1904, the bit line 1901, the first source line 1902, the first source line 1902, the first source line 1902, and the first word line 1904 that are arranged in parallel to each other.
  • the second word line 1905 is provided so as to be perpendicular to the source line 1902 and the second source line 1903, to be parallel to the first word line 1904, and to be parallel to each other.
  • a first selection transistor 1906 is disposed at each intersection of the first source line 1902 and the first word line 1904, and the first source line 1902 is electrically connected to the source electrode of the first selection transistor 1906.
  • the first word line 1904 is electrically connected to the gate electrode of the first selection transistor 1906.
  • the drain electrode of the first selection transistor 1906 is electrically connected to the current supply terminal 607 of the magnetoresistive effect element 600.
  • a second selection transistor 1907 is disposed at each intersection of the second source line 1903 and the second word line 1905, and the second source line 1903 is electrically connected to the source electrode of the second selection transistor 1907.
  • the second word line 1905 is electrically connected to the gate electrode of the second selection transistor 1907.
  • the drain electrode of the second selection transistor 1907 is electrically connected to the current supply terminal 608 of the magnetoresistive effect element 600. Further, the bit line 1901 is electrically connected to the fixed layer 601 of the magnetoresistive effect element 600. Further, selection circuits 1908 and 1909, current application circuits 1910, 1911, and 1912 are connected. With such a configuration, a domain wall motion type MRAM memory cell can be obtained.
  • the first word line 1902 and the second source line 1903 of the selected memory cell are applied with a voltage applied to the first word line.
  • a voltage is applied to the line 1904 and the second word line 1905.
  • the first selection transistor 1906 and the second selection transistor 1907 of the selected memory cell are turned on, so that one of the first source line 1902 and the second source line 1903 to which voltage is applied is applied.
  • a current flows through the magnetoresistive element 600 to the other side.
  • the domain wall 610 can move in one direction.
  • the domain wall 610 can move in the opposite direction.
  • a voltage is applied to the first source line 1902
  • a current flows from the first source line 1902 to the second source line 1903.
  • the magnetoresistive effect element shown in FIG. 6 is adopted as the magnetoresistive effect element 600, electrons move from the right to the left of the magnetization switching region 604 in FIG. 6, and thus the domain wall 610 also moves from the right to the left.
  • writing to the “1” state may be performed by applying a voltage to the second source line 1903.
  • a voltage is applied to the first word line 1904 in a state where a voltage smaller than that at the time of writing is applied to the first source line 1902.
  • the first selection transistor 1906 is turned on, and a current flows from the first source line 1902 to the bit line 1901. Therefore, the resistance value of the magnetoresistive element 600 can be read.
  • reading may be performed by applying a voltage to the second source line 1903 and the second word line 1905.

Abstract

 磁化方向が膜面垂直方向に安定であり、磁気抵抗変化率が制御され、磁壁移動によって書込み可能な磁気抵抗効果素子及び、その磁気抵抗効果素子を用いた磁気メモリを提供する。 磁気抵抗効果素子を構成する強磁性層の材料を、3d遷移金属を少なくとも1種類含んだ強磁性材料若しくはホイスラー合金で構成することで、磁気抵抗変化率を制御し、且つ、強磁性層の膜厚を原子層レベルで制御することで磁化方向を膜面内方向から膜面垂直方向に変化させた。

Description

磁気抵抗効果素子及び磁気メモリ
 本発明は、磁気抵抗効果素子及びその磁気抵抗効果素子をメモリセルとして備えた磁気メモリ(MRAM:Magnetic Random Access Memory)に関しており、特に、書込み動作において磁壁移動方式を採用するMRAMに関する。
 MRAMは、高集積・高速動作などの観点からユニバーサルメモリの候補として有望な不揮発性メモリである。MRAMのメモリセルには、記憶素子としてGMR(Giant magnetoresistance)素子、TMR(Tunnel magnetoresistance)素子などの磁気抵抗効果素子が用いられる。これらの素子の基本構造は、第1の強磁性層と第2の強磁性層の2つの強磁性層で非磁性層を挟んだ3層構造である。2層の強磁性層の一方は、磁化の向きが固定された固定層であり、他方は、磁化の向きが反転可能な記録層である。以下では、第1の強磁性層を固定層とし、第2の強磁性層を記録層とした場合を例として説明する。素子の抵抗は、固定層の磁化方向と記録層の磁化方向が互いに平行(P状態)のとき低抵抗になり、反平行(AP状態)のとき高抵抗になる。この抵抗変化率は非特許文献1などにあるように、非磁性層にMgOを用いたTMR素子の場合、室温で600%を超える。これは、Co,Feなどの3d遷移金属元素を少なくとも1つ含む強磁性材料とMgOとの組合せのときに実現するΔ1バンドを介したコヒーレントなトンネル伝導を用いた場合に顕著に大きくなることが知られている。MRAMでは、この抵抗変化をビット情報の「0」と「1」に対応させる。ビット情報の書込み方法は、非特許文献2などにあるようにスピン注入による磁化反転方式が提案されている。この方式は、磁気抵抗効果素子に電流を流すことによるスピントランスファートルクによって、磁化方向が変化する現象を利用する。固定層から記録層に電流を流した場合、固定層と記録層の磁化は反平行になりビット情報は「1」になる。一方、記録層から固定層に電流を流した場合、固定層と記録層の磁化は平行になりビット情報は「0」になる。
 しかしながら、この方式では書込みの際に磁気抵抗効果素子自身に大きな電流を流す必要がある。このため、非磁性層に絶縁膜を用いたTMR素子の場合、絶縁層の耐電圧が問題になる。また、読出しが高速になるほど磁気抵抗変化率は高い値が必要となり、一般的には70%から100%以上の高い磁気抵抗変化率が必要とされる。非磁性層に絶縁層を用いないGMR素子の場合には、抵抗変化率が小さいため読出しに時間がかかるという問題がある。
 一方、スピントランスファー効果による磁壁移動(Domain wall motion)を利用した磁壁移動型のMRAMが、特許文献1などに開示されている。磁壁は、磁区と呼ばれる強磁性体中の磁化方向が揃った複数の領域の境界で有限の体積を持った領域である。特に、隣り合った2つの磁区の磁化方向が反平行な場合、その境界にある磁壁を180度磁壁と呼ぶ。特許文献1に記載された磁壁移動型MRAMにおけるメモリセルの磁気抵抗効果素子は、磁化が固定された固定層と、固定層上に積層された非磁性層と、非磁性層に積層された磁気記録層とを備える。
 図1は、特許文献1などに開示された磁壁移動型MRAMにおけるメモリセルの磁気抵抗効果素子100の基本構造を示している。図1(a)は平面図を、図1(b)は断面図を示している。磁気抵抗効果素子100は、強磁性体であり磁化が固定された固定層101と、固定層上に積層された非磁性層102と、非磁性層に積層された強磁性の磁気記録層103を備え、磁気記録層103は細線形状を有している。具体的には、磁気記録層103は、固定層101及び非磁性層102と重なる部分に有限の幅を持った磁壁が移動できる領域を加えた磁化反転領域104と、磁化反転領域104に隣接して形成された一対の磁化固定領域105,106を有する。磁化固定領域105,106には、互いに反対向きの固定磁化が付与されている。
 磁化固定領域105,106には、それぞれ、電流供給端子107,108が接合されている。さらに、固定層101にも電流供給端子109が接合されている。書込みの際は、電流供給端子107,108を用いて、磁気記録層103の磁化反転領域104、及び磁化固定領域105,106を貫通するように書込み電流が流れされる。磁化反転領域104には磁壁110が導入されており、磁化反転領域104の磁化方向は磁壁110を境界として反平行である。書込み電流が流れると磁壁110が移動するため、磁化反転領域104中の固定層101及び非磁性層102の直上の領域の磁化方向が変化する。図1の例では、電流供給端子107から電流供給端子108に電流を流すと、磁壁110は磁化固定層105に向かって移動して、磁化反転領域104中の固定層101及び非磁性層102の直上の領域の磁化方向は固定層の磁化に対して平行になる。電流供給端子108から電流供給端子109に電流を流すと、磁壁110は磁化固定層106に向かって移動して、磁化反転領域104中の固定層101及び非磁性層102の直上の領域の磁化方向は固定層の磁化に対して反平行になる。
 この方式の利点は、書込みの際に非磁性層102に電流が流れないため、非磁性層にMgOに代表される絶縁膜を用いた場合でも絶縁膜の耐電圧を考慮する必要がなく、信頼性が高い構造になる点である。読出しの際は、電流供給端子107と電流供給端子109、若しくは、電流供給端子108と電流供給端子109を用いて、固定層101、非磁性層102及び磁気記録層103を貫通して、書込み電流より小さく磁壁110が移動しない程度の読出し電流を流すことにより、電流が流れる経路がGMRあるいはTMRと同様の構造になり、抵抗変化をビット情報として読出すことができる。
特開2009-099625号公報
S.Ikeda, J.Hayakawa, Y.Ashizawa, Y.M.Lee, K.Miura, H.hasegawa, M.Tsunoda, F.Matsukura, H.Ohno, Appl. Phys. Lett., 93, 082508 (2008) J.C.Slonczewski, J. Magn. Magn. Mater., 159, L1-L7 (1996)
 磁壁移動を利用したMRAMでは、書込み電流の絶対値が比較的大きくなってしまう可能性がある。非特許文献2の他にも、磁壁移動の観測は数多く報告されているが、概ね磁壁移動には1×108A/cm2付近の閾値電流密度を要している。この場合、例えば磁壁移動の起こる磁気記録層の幅を100nm、膜厚を10nmとした場合でも書込み電流は1mAとなる。
 一方、固定層及び磁気記録層として磁気異方性が基板面に垂直である垂直磁気異方性材料を用いた磁気抵抗効果素子においては、106A/cm2台の閾値電流密度が観測されている(例えば、S.Mangin, D.Ravelosona, J.A.Katine, M.J.Carey, B.D.Terris and Eric E.Fullerton, Nature Mater., 5, 210 (2006)参照)。磁壁移動を利用したMRAMにおいては、磁気記録層として垂直磁気異方性材料を用いることにより、書込み電流を低減できることが期待される。また、垂直磁気異方性材料は熱安定性が大きいことから、磁壁の位置が安定するため記録保持時間が長くなるという利点がある。しかしながら、従来から知られているFePt,CoFe/Pd多層膜、TbFeCoなどの垂直磁気異方性材料を固定層及び磁気記録層103に用いた場合、非磁性層にMgOを用いたTMR構造とした場合でも、Δ1バンドを介したコヒーレントなトンネル伝導を実現できないため抵抗変化率が小さい。高速な読出し動作には抵抗変化率が70%以上である必要があるとされるため、ビット情報の読出し速度が低下する。また、これらの材料はダンピング定数αが大きいことが知られている。このため磁壁の移動速度が遅くなってしまう可能性があり、書込み速度が低下する。
 本発明の目的は、磁壁移動によって磁気記録層へのビット情報の書込みを行い、磁気記録層の磁気異方性が垂直方向であり、且つ抵抗変化率が大きく磁壁移動速度が速い磁気抵抗効果素子及び磁気ランダムアクセスメモリを提供することにある。
 上述の課題を解決するために、磁壁移動型の磁気抵抗効果素子を構成する固定層及び磁気記録層の少なくともどちらか一方に用いる材料を、Co,Feなどの3d遷移金属を少なくとも1種類含んだ材料、若しくは、Co2MnSiなどに代表されるスピン分極率が100%のハーフメタルとされるホイスラー合金で構成することで磁気抵抗変化率を制御することとした。通常、Co,Feなどの3d遷移金属を少なくとも1種類含み、且つ、Δ1バンドによるコヒーレントトンネル伝導を実現する材料、若しくは、ホイスラー合金で磁気抵抗効果素子を作製した場合、強磁性層の磁化方向は膜面に対して平行な方向を向くが、本発明者らは、強磁性層の膜厚を原子層レベルで制御して磁化方向を膜面に対して垂直にすることによって低い書込み電流密度と高い熱安定性定数を実現する技術を開発した。
 図2に示したのは、強磁性層にCoFeBを用いた例において、磁化方向が膜面に対して垂直になるために必要な膜厚を、製造工程に含まれる熱処理工程の温度に対して示したものである。CoFeBは、MgOとの組合せでΔ1バンドによるコヒーレントトンネル伝導を実現する材料の1つである。ここで、熱処理を行った時間は1時間であった。図中の白丸は膜厚の上限を、黒丸は下限を表している。図のように、熱処理温度に対応して、磁化方向が膜面に対して垂直になるCoFeBの膜厚範囲は変化する。
 図2の例はCoFeBに対するものであり、他の3d遷移金属を少なくとも1種類含んだ材料やホイスラー合金に対しては、磁化方向が膜面に対して垂直になるために必要な膜厚と熱処理温度の関係は図2と異なる場合があるが、材料に適した膜厚に制御することにより磁化方向を膜面に対して平行から垂直に変化させることが可能である。磁化方向が膜面に対して垂直になるために必要な膜厚は、材料によって異なるが、概ね3nm以下である。このように磁化方向が膜面に対して垂直になる原因は、図2の例の場合、CoFeBの界面における特殊な異方性の変化だと考えられる。CoFeBの膜厚を原子層レベルに制御して薄膜化することによって、CoFeB層の体積に対して界面の効果が及ぶ体積の割合を増大することができる。このため、界面の特殊な異方性の効果が顕著に現れ、磁化方向が膜面に対して垂直になる。特に、MgO,Al23,SiO2などに代表される酸素を含む化合物と、Co,Feなどの3d遷移金属を少なくとも1種類含む強磁性材料の界面にこのような効果が大きく表れ、磁化が膜面垂直方向に向き易くなる傾向があると考えられる。
 一方、図3は、例として固定層と磁気記録層にCoFeB、非磁性層としてMgOを用いた場合において、固定層、非磁性層及び磁気記録層を貫通して読出し電流を流したときの磁気抵抗効果素子の磁気抵抗変化率を、熱処理時の温度に対して示したものである。熱処理温度が大きくなるとともに、磁気抵抗変化率は大きくなり、300℃では100%を超える。これは、CoFeBとMgOの組合せでは、異方性が垂直方向に変わってもΔ1バンドを介したコヒーレントなトンネル伝導が実現されるためである。従って、この例では、例えば70%の磁気抵抗変化率を得るためにはおよそ250℃で熱処理を行えばよいし、100%の磁気抵抗変化率を得るためには300℃で熱処理を行えばよい。このとき、熱処理温度を300℃として膜面に垂直な磁化方向を持つ磁気抵抗効果素子を得るには、図2を参照すると固定層及び磁気記録層の膜厚を1.0nmから1.6nm程度に制御すればよい。
 他の3d遷移金属を少なくとも1種類含んだ材料を用いた場合でも、Δ1バンドを介したコヒーレントな伝導が実現されていれば、熱処理温度と磁気抵抗変化率の関係を調査しておくことによって、所望の磁気抵抗変化率が得られ、且つ、磁化方向が膜面に対して垂直方向を向いている磁気抵抗効果素子を作製することが可能である。一方、ホイスラー合金を用いた場合、元々のスピン分極率が100%であるため、高い磁気抵抗変化率が得られ、且つ、磁化方向が膜面に対して垂直方向を向いている磁気抵抗効果素子を作製することが可能である。
 図4は、固定層及び磁気記録層の材料としてCoFeB、非磁性層としてMgOを用いた場合の、膜面に対して垂直方向に印加した磁場に対する磁気抵抗効果素子の抵抗変化を示している。図4の磁場の値がプラス側のピークは、磁場をマイナス方向からプラス方向に掃引したときに現れるピークであり、磁場の値がマイナス側のピークは、磁場をプラス方向からマイナス方向に掃引したときに現れるピークである。この例では、熱処理温度を300℃とした。実験結果から、磁化方向は膜面に対して垂直を向いていることがわかる。また、このときの磁気抵抗変化率は100%であった。このような材料で構成した場合の磁気抵抗効果素子は読出し速度の低下は起こらず、且つ、垂直磁気異方性を持つため熱安定性が高く記録保持時間が長いという利点を持つ。
 図5は、CoFeBのダンピング定数αのCoFeB膜厚依存性を示している。図からわかるように、異方性が膜面垂直になる範囲のダンピング定数αは、従来から知られている垂直異方性材料のダンピング定数α=0.1程度より小さい。このため、磁壁の移動速度低下を抑えることができ、書込み速度が十分に速いという利点を持つ。ホイスラー合金を用いた場合は、M.Oogane, T.Wakita, S.Yakata, R.Yilgin, Y.Ando, A.Sakuma, T.Miyazaki, Jpn. J. Appl. Phys., 45, 3889 (2006)にあるように、ダンピング定数αは十分に小さく、同様の利点が得られる。
 本発明を適用することによって、磁気抵抗変化率が大きく、且つ、膜面に対して垂直な磁化方向を持つ、磁壁移動型MRAMの磁気抵抗効果素子を容易に作製することができる。また、磁気抵抗変化率を制御したい場合、熱処理温度を制御するとともに、非磁性層を挟んで形成される固定層及び磁気記録層の膜厚を調整することにより膜面に対して垂直な磁化方向を維持した磁気抵抗効果素子を作製することができる。更に、本発明を適用した場合、固定層及び磁気記録層の膜厚を制御することによって磁気異方性を容易に制御できる。また、磁気抵抗変化率が高くダンピング定数αが低いという利点があるため、読出し書込み共に高速な動作が可能である。
磁壁移動型MRAMのメモリセルにおいて、記録素子として用いられる磁気抵抗効果素子の平面図(a)と断面図(b)。 固定層及び磁気記録層にCoFeBを用いた場合の、熱処理工程の温度に対する、磁気抵抗効果素子の磁化方向が膜面に対して垂直になるために必要な膜厚の変化を示す図。 固定層及び磁気記録層にCoFeBを用いた場合の、熱処理工程の温度に対する、磁気抵抗効果素子の磁気抵抗変化率の変化を示す図。 固定層及び磁気記録層にCoFeBを用いた場合の、膜面垂直方向の磁場印加に対する磁気抵抗効果素子の抵抗変化を示す図。 固定層及び磁気記録層にCoFeBを用いた場合の、CoFeB膜厚に対するダンピングファクターαを示した図。 本発明による磁気抵抗効果素子の例を示す平面模式図と断面模式図。 本発明による磁気抵抗効果素子の例を示す断面模式図。 本発明による磁気抵抗効果素子の例を示す断面模式図。 本発明による磁気抵抗効果素子の例を示す断面模式図。 本発明による磁気抵抗効果素子の例を示す断面模式図。 本発明による磁気抵抗効果素子の例を示す断面模式図。 本発明による磁気抵抗効果素子の例を示す断面模式図。 本発明による磁気抵抗効果素子の例を示す断面模式図。 本発明による磁気抵抗効果素子の例を示す断面模式図。 本発明による磁気抵抗効果素子の例を示す断面模式図。 本発明による磁気抵抗効果素子の例を示す平面模式図と断面模式図。 本発明による磁気抵抗効果素子の例を示す断面模式図。 本発明による磁気抵抗効果素子の例を示す断面模式図。 本発明による磁壁移動型MRAMの例を示す概念図。
 以下、本発明を適用した磁壁移動型MRAM及び磁壁移動型MRAMのメモリセルにおいて記録素子として用いられる磁気抵抗効果素子について、図面を参照して詳細に説明する。
<実施例1>
 図6は、本発明による磁気抵抗効果素子の例を示す模式図であり、(a)は平面模式図、(b)は断面模式図である。
 本発明の一観点によると、磁気抵抗効果素子600は、図6に示すように、強磁性体であり磁化が固定された固定層601と、固定層上に積層された非磁性層602と、非磁性層602に積層された強磁性の磁気記録層603とを備え、非磁性層602と磁気記録層603は細線形状を有している。固定層601及び磁気記録層603の材料は、Co,Feなどの3d遷移金属元素を少なくとも1種類含む強磁性材料若しくはCo2MnSiなどに代表されるホイスラー合金が望ましく、非磁性層602の材料はMgO,Al23,SiO2などの酸素を含む化合物やCuなどの金属などが候補であり、磁気抵抗変化率が大きくなる材料が望ましい。ここでは、固定層601及び磁気記録層603の材料がCoFeBであり、非磁性層602がMgOである場合を例として説明する。
 図2に示したように、固定層601及び磁気記録層603の膜厚を1.0nmから1.6nm程度に制御することによって、熱処理温度が300℃のとき、固定層601の磁化及び磁気記録層603の磁化は膜面に対して垂直になる。図3に示したように、このときの磁気抵抗変化率は100%以上を達成している。図6の例では、固定層601の平面形状は円形とし、直径は40nmとした。固定層601の平面形状は正方形、長方形、楕円形などが考えられるが、膜面に対して平行方向の磁気異方性がない円形が望ましい。磁気記録層603の細線は、線幅を40nmとした。また磁化反転領域604の細線長さは150nmとした。これは、磁壁610が固定層601及び非磁性層602の直上領域より広い範囲で動けるようにするためである。仮に磁壁610が固定層601及び非磁性層602の直上領域に止まると、読出しの際にビット情報を正しく読出せないという問題が生じるためである。従って、磁化反転領域604の細線長さは、{(固定層601の直径)+2×(磁壁幅)}より大きくするという条件を満たす必要がある。磁化固定領域605,606の細線長さはそれぞれ150nmとした。磁化固定領域605,606には、互いに反対向きの強く固定された磁化が付与されている。このため、磁化反転領域604中で必ず磁化は1回以上反転する。従って、磁化反転領域604には必ず1つ以上の180度磁壁が存在する。
 磁化固定領域605,606には、それぞれ、電流供給端子607,608が接合されている。この電流供給端子607,608を介して、磁気記録層603の磁化反転領域604、及び磁化固定領域605,606を貫通するように書込み電流が流れる。また、磁化反転領域604中に磁壁が2つ以上存在する場合、磁化反転領域604、及び磁化固定領域605,606を貫通するように書込み電流を流し、複数の磁壁を磁化反転領域604の一端に移動させると、複数の磁壁は消失し、必ず1つ磁壁が磁化反転領域604に存在することになる。このように、この方法を用いることで、磁化反転領域604に磁壁610を1つだけ導入することが可能である。また、非磁性層602は、磁気記録層603と同じ幅、長さになるように設計した。
 書込みに関しては、図6の例では、電流供給端子607から電流供給端子608に電流を流すと、磁壁610は磁化固定層605に向かって移動して、磁化反転領域604中の固定層601及び非磁性層602の直上の領域の磁化方向は固定層の磁化に対して平行になる。電流供給端子608から電流供給端子609に電流を流すと、磁壁610は磁化固定層606に向かって移動して、磁化反転領域604中の固定層601及び非磁性層602の直上の領域の磁化方向は固定層に対して反平行になる。
 読出しに関しては、電流供給端子607及び電流供給端子609、若しくは、電流供給端子607及び電流供給端子609を用いて、固定層601、非磁性層602、及び磁気記録層603を貫通して、書込み電流より小さく磁壁610が移動しない程度の読出し電流を流すことにより、電流が流れる経路がGMR及びTMRと同様の構造になり抵抗変化をビット情報として読出すことができる。
 図6の例では、固定層601、非磁性層602、磁気記録層603の順に積層したが、図7の断面模式図に示すように、磁気記録層603、非磁性層602、固定層601の順に積層してもよい。また、図6の例では固定層601の磁化方向が下向き、磁化固定領域605の磁化が上向き、磁化固定領域606の磁化が下向きの場合を例としているが、磁化固定領域605と磁化固定領域606の磁化方向が反平行であれば、他に磁化方向の制限はなく作製が容易にできる方向に磁化を固定すればよい。
 また、固定層601の材料が例えばFePtなどの従来から知られた垂直磁気異方性材料であり、磁気記録層603の材料がCoFeBであっても良い。この場合は、FePtなどの従来から知られた垂直磁気異方性材料はΔバンドを介したコヒーレントなトンネル伝導を実現できないため、磁気抵抗変化率は小さくなるが、書込み及び読出し動作は可能である。さらにこの構成の利点として、固定層601の磁気異方性を磁気記録層603と比べて大きく制御することができる。また、固定層601の材料がCoFeBであり、磁気記録層603の材料が例えばFePtなどの従来から知られた垂直磁気異方性材料であっても良い。この構成であっても同様に書込み及び読出し動作は可能である。
 一方、固定層601及び磁気記録層603にホイスラー合金Co2MnSiを用いた場合、スピン分極率が高いため70%程度の抵抗変化率を得ることができた。この値は固定層601及び磁気記録層603にCoFeBを用いた場合より低い。この理由は、Co2MnSiを用いた場合、Δ1バンドを介したコヒーレントな伝導が顕著に現れないためである。しかし、読出しに必要な抵抗変化率は実現可能であった。また、ダンピング定数が低いという利点があるために、磁壁の移動速度が固定層601及び磁気記録層603にCoFeBを用いた場合より速いため、高速な書込み動作を実現できた。
 本発明の別の観点によると、磁化固定領域605,606の磁化を強く固定するために、磁化固定領域605,606の膜厚を、磁化反転領域604の膜厚から変化させてもよい。図8は、磁化固定領域605,606の膜厚を、磁化反転領域604の膜厚より薄くした場合の断面図を例として示している。本発明で固定層601及び磁気記録層603に適用したCo,Feなどの3d遷移金属を少なくとも1種類含んだ材料若しくはCo2MnSiなどに代表されるホイスラー合金は、膜厚を制御することによって磁化方向を膜面に平行方向から垂直方向まで変化することが可能である。さらに、垂直方向の磁気異方性も膜厚を変化させることで制御することが容易に可能である。
 図8の例では、磁化固定領域605,606の垂直磁気異方性が磁化反転領域604の垂直磁気異方性より大きくなるよう制御されており、磁化固定領域605,606の磁化方向は強く固定される。このため、磁壁610は磁化固定領域605,606に侵入せず、磁化反転領域604に止めることが容易に可能である。さらに、図8の例では、磁化固定領域605,606の膜厚は、磁化反転領域604の膜厚より小さく制御されている。この場合、図5からわかるように磁化固定領域605,606のダンピング定数αは、磁化反転領域604よりも大きい。従って、磁化固定領域605,606中の磁壁移動速度は磁化反転領域604よりも小さい。このため、磁壁610が磁化固定領域605,606に侵入した場合でも、磁壁610の移動速度が遅いため、磁化反転領域604と磁化固定領域605,606の界面付近で止めることが容易になる。
 図8の例では、固定層601及び磁化反転領域604の膜厚を1.3nm、磁化固定領域605,606の膜厚を1.0nmとした。固定層601の平面形状は円形とし、直径は40nmとした。磁気記録層603の細線は、線幅を40nmとした。また磁化反転領域604の細線長さは150nmとした。磁化固定領域605,606の細線長さはそれぞれ150nmとした。
 本発明の別の観点によると、磁気記録層603における磁化反転領域604にCo,Feなどの3d遷移金属を少なくとも1種類含んだ材料若しくはCo2MnSiなどに代表されるホイスラー合金を適用し、磁化固定領域605,606にCoとPt、NiとPtなどの多層膜や、FePt,TbTeCo合金などの従来から知られている別の垂直磁気異方性材料を適用して構成してもよい。図9には、この観点を実現するための磁気抵抗効果素子600の断面模式図を示した。CoとPt、NiとPtなどの多層膜や、FePt,TbTeCo合金などの従来から知られている別の垂直磁気異方性材料の垂直磁気異方性が、Co,Feなどの3d遷移金属を少なくとも1種類含んだ材料若しくはCo2MnSiなどに代表されるホイスラー合金の垂直磁気異方性より大きい場合には、このような構成とすることで、磁化固定領域605,606の垂直磁気異方性を磁化反転領域604の垂直磁気異方性より大きくすることができる。図9の例では、磁化固定領域605,606の材料としてFePtを用い、膜厚を10nmとした。固定層601の平面形状は円形とし、直径は40nmとした。磁気記録層603の細線は、線幅を40nmとした。また磁化反転領域604の細線長さは150nmとした。磁化固定領域605,606の細線長さはそれぞれ150nmとした。
 本発明の別の観点によると、磁気記録層603における磁化固定領域605,606の、非磁性層602と反対側の界面にCoとPt、NiとPtなどの多層膜や、FePt,TbTeCo合金などの従来から知られている別の垂直磁気異方性材料を適用した強磁性層1001,1002を作製してもよい。図10に、この観点を実現するための磁気抵抗効果素子600の断面模式図を示した。このような構成とすることで、磁化固定領域605,606の垂直磁気異方性は強磁性層1001,1002と強磁性結合するため、磁化固定領域605,606の垂直磁気異方性を大きくすることができる。図10の例では、磁化固定領域605,606の上に強磁性層1001,1002を作製したが、図11のように強磁性層1001,1002上に磁気記録層603、非磁性層602、固定層601の順に積層した構造であってもよい。また、図10及び図11の例では電流供給端子607,608は、磁化固定領域605,606に接続されているが、強磁性層1001,1002に接続されていてもよい。図10及び図11の例では、強磁性層1001,1002の材料としてFePtを用い、膜厚を20nmとした。固定層601の平面形状は円形とし、直径は40nmとした。磁気記録層603の細線は、線幅を40nmとした。また磁化反転領域604の細線長さは150nmとした。磁化固定領域605,606の細線長さはそれぞれ150nmとした。磁化固定領域の非磁性層と反対側の界面に、磁化固定領域よりダンピング定数が大きい材料からなる第2の強磁性層を備えてもよい。第2の強磁性層が接することで磁化固定領域のダンピング定数を大きくすることができる。
 本発明の別の観点によると、磁気記録層603における磁化固定領域605,606の、非磁性層602と反対側の界面に、MgO,Al23,SiO2などの酸化物を適用した第2の非磁性層1201,1202を作製してもよい。図12にこの観点を実現するための磁気抵抗効果素子600の断面模式図を示した。Co,Feなどの3d遷移金属を少なくとも1種類含んだ材料若しくはCo2MnSiなどに代表されるホイスラー合金が、膜厚を制御することによって磁気異方性が膜面平行方向から垂直方向に変化する原因は界面での特殊な異方性であり、この特殊な界面異方性は特にMgO,Al23,SiO2などの酸化物との界面において顕著に表れると考えられる。従って、このような構成とすることで、磁化固定領域605,606の垂直磁気異方性を大きくすることができる。例えば、第2の非磁性層1201,1202にMgOを用いた場合の膜厚は0.4nmとした。また、第2の非磁性層1201,1202には、Pt,Pdに代表されるスピン軌道相互作用の大きい材料を適用してもよい。このような構成を用いることで、磁化固定領域605,606のダンピング定数を図5に示した値より大きくすることができる。ダンピング定数が大きくなると、磁化固定領域605,606に磁壁610が侵入した場合でも、磁壁610の移動速度が急激に減少するため、磁壁610を磁化反転領域604と磁化固定領域605,606の境界に止めることができる。例えば、第2の非磁性層にPtを用いた場合の膜厚は2nmとした。固定層601の平面形状は円形とし、直径は40nmとした。磁気記録層603の細線は、線幅を40nmとした。また、磁化反転領域604の細線長さは150nmとした。磁化固定領域605,606の細線長さはそれぞれ150nmとした。
 図12の例では、磁化固定領域605,606の上に第2の非磁性層1201,1202を作製したが、図13のように第2の非磁性層1201,1202上に磁気記録層603、非磁性層602、固定層601の順に積層した構造であってもよい。また、図12及び図13の例では電流供給端子607,608は、磁化固定領域605,606に接続されているが、第2の非磁性層1201,1202を介して磁化固定領域605,606に接続されていてもよい。
 本発明の別の観点によると、磁気記録層603における磁化固定領域605,606の、非磁性層602と反対側の界面に、反強磁性層1401,1402を作製してもよい。図14に、この観点を実現するための磁気抵抗効果素子600の断面模式図を示した。このような構成を用いることで、反強磁性層1401,1402の交換結合のために磁化固定領域605,606の磁化を強く固着することができる。例えば、反強磁性層1401,1402にIrMnを用いた場合の膜厚は5nmとした。固定層601の平面形状は円形とし、直径は40nmとした。磁気記録層603の細線は、線幅を40nmとした。また、磁化反転領域604の細線長さは150nmとした。磁化固定領域605,606の細線長さはそれぞれ150nmとした。
 図14の例では、磁化固定領域605,606の上に反強磁性層1401,1402を作製したが、図15のように反強磁性層1401,1402上に磁気記録層603、非磁性層602、固定層601の順に積層した構造であってもよい。また、図14及び図15の例では電流供給端子607,608は、磁化固定領域605,606に接続されているが、反強磁性層1401,1402を介して磁化固定領域605,606に接続されていてもよい。
 本発明の別の観点によると、磁気記録層603における磁化反転領域604と磁化固定領域605,606の境界に、くびれを入れる構造であってもよい。この観点を実現するための磁気抵抗効果素子600を図16に示した。図16(a)は平面模式図、図16(b)は断面模式図である。この構成を適用することによって、磁壁610はくびれに強くピニングされ、磁化固定領域605,606に侵入しない。図16の例では、固定層601,磁気記録層の膜厚は1.3nmとし、くびれ部分の膜厚は1.0nmとした。固定層601の平面形状は円形とし、直径は40nmとした。磁気記録層603の細線は、線幅を40nmとした。また磁化反転領域604の細線長さは150nmとした。また、くびれ部分の線幅は、38nmとした。
 本発明の別の観点によると、非磁性層602は、磁気記録層603における磁化反転領域604のみに接するように磁気抵抗効果素子600を構成してもよい。この観点を実現するための磁気抵抗効果素子600を図17に示した。この場合、非磁性層602は磁化固定領域605,606とは接していない。Co,Feなどの3d遷移金属を少なくとも1種類含んだ材料若しくはCo2MnSiなどに代表されるホイスラー合金が膜厚を制御することによって異方性が膜面に対して平行から垂直に変化する原因は、界面における特殊な異方性と考えられる。特に、これらの強磁性体とMgOに代表される酸化物の界面においてこの特殊な異方性が顕著に表れる。従って、本実施例の磁気抵抗効果素子600は、磁化反転領域604のみ垂直磁気異方性を持ち、磁化固定領域605,606は面内磁気異方性とすることができる。この構成とすることで、磁化固定領域605,606と磁化反転領域604の間には90度磁壁が導入させる。磁化反転領域604中の磁壁610が磁化反転領域604の端に存在するとき、磁化反転領域604の磁化にスピントランスファートルクを与える電子スピンは90度傾いた方向になるため、トルクは大きくなり書込み電流が下がる可能性がある。また、この構成の場合も、磁壁610は磁化反転領域604中に止まり、磁化固定領域605,606に侵入しない。
<実施例2>
 本発明の別の観点によると、実施例1の磁気抵抗効果素子600において、固定層610の垂直磁気異方性を大きくして強く固定するために、固定層601における非磁性層602と反対側の界面に、CoとPt、NiとPtなどの多層膜や、FePt,TbFeCo合金などの従来から知られている別の垂直磁気異方性材料を積層して磁化固着層1801を作製してもよい。この観点を実現するための磁気抵抗効果素子600を図18に示す。このような構成とすることで、固定層601は垂直磁気異方性材料と強磁性結合し、垂直磁気異方性を大きくすることができる。磁化固定層1801にFePtを用いた場合の膜厚は20nmとした。また、同様の目的で、固定層601における非磁性層602と反対側の界面に、反強磁性層を積層してもよい。この場合、固定層601は反強磁性層と交換結合することにより、固定層601の垂直磁気異方性は大きくなる。磁化固定層1801にIrMnを用いた場合の膜厚は5nmとした。さらに、固定層601における非磁性層602と反対側の界面に、MgO,Al23,SiO2などの酸化物層を積層してもよい。この場合、固定層601との界面において特殊な異方性が働くことにより垂直磁気異方性が大きくなる。磁化固定層1801にMgOを用いた場合の膜厚は0.4nmとした。固定層601における非磁性層602と反対側の界面に、Pt,Pdに代表されるスピン軌道相互作用の大きい材料を積層してもよい。この場合、固定層601のダンピング定数αが大きくなるため、垂直磁気異方性は変わらないが、電流による固定層601の磁化反転が起き難くなる。従って、読出し電流によって誤って固定層601の磁化を反転する可能性を低減することが出来る。磁化固定層1801にPtを用いた場合の膜厚は2nmとした。
<実施例3>
 本発明の別の観点によると、実施例1,2の磁気抵抗効果素子600を記憶素子として採用することで磁壁移動型MRAMを実現できる。
 本発明の磁壁移動型MRAMは、図19に示すように、1つの磁気抵抗効果素子600に対して、2つの選択トランジスタを備える構成とする。互いに平行に配置された複数のビット線1901と、ビット線1901に平行に配置され、且つ、互いに平行に配置された複数の第1のソース線1902と、ビット線1901及び第1のソース線1902に平行に配置され、且つ、互いに平行に配置された複数の第2のソース線1903を備えている。また、ビット線1901、第1のソース線1902及び第2のソース線1903と垂直に配置され、且つ、互いに平行になるように配置された第1のワード線1904と、ビット線1901、第1のソース線1902及び第2のソース線1903と垂直に配置され、第1のワード線1904と平行に配置され、且つ、互いに平行になるように配置された第2のワード線1905を備える。
 第1のソース線1902と第1のワード線1904の各交点には、第1の選択トランジスタ1906が配置され、第1のソース線1902は第1の選択トランジスタ1906のソース電極と電気的に接続されている。また、第1のワード線1904は第1の選択トランジスタ1906のゲート電極に電気的に接続されている。第1の選択トランジスタ1906のドレイン電極は、磁気抵抗効果素子600の電流供給端子607に電気的に接続されている。第2のソース線1903と第2のワード線1905の各交点には、第2の選択トランジスタ1907が配置され、第2のソース線1903は第2の選択トランジスタ1907のソース電極と電気的に接続されている。また、第2のワード線1905は第2の選択トランジスタ1907のゲート電極に電気的に接続されている。第2の選択トランジスタ1907のドレイン電極は、磁気抵抗効果素子600の電流供給端子608に電気的に接続されている。さらにビット線1901は磁気抵抗効果素子600の固定層601に電気的に接続されている。また、選択回路1908,1909、電流印加回路1910,1911,1912などが接続されている。このような構成とすることで、磁壁移動型MRAMのメモリセルとすることができる。
 このメモリセルの書込み動作について説明する。ある特定の1つのメモリセルを選択して書込むには、選択されたメモリセルの第1のソース線1902及び第2のソース線1903のどちらかに電圧を印加した状態で、第1のワード線1904及び第2のワード線1905に電圧を印加する。このとき、選択されたメモリセルの第1の選択トランジスタ1906及び第2の選択トランジスタ1907はオン状態になるので、第1のソース線1902及び第2のソース線1903のうち電圧印加された一方から、他方へ磁気抵抗効果素子600を介して電流が流れる。このとき、磁気抵抗効果素子中の磁化反転領域604に電流が流れるため磁壁610は1方向に移動することができる。また、異なる情報を書込む場合は、第1のソース線1902及び第2のソース線1903のうち電圧印加するソース線を逆にすることで、磁化反転領域604に流れる電流を逆向きにすることができるため、磁壁610は逆方向に移動することができる。例えば、第1のソース線1902に電圧を印加した場合、第1のソース線1902から第2のソース線1903に電流が流れる。磁気抵抗効果素子600として図6に示した磁気抵抗効果素子を採用した場合、電子は図6の磁化反転領域604の右から左に移動するため、磁壁610も右から左に移動する。このとき、磁化反転領域604中の固定層601の直上の領域の磁化の向きは固定層601の磁化の向きと平行になるため、「0」状態の情報を書込むことができる。一方、「1」状態への書込みは、第2のソース線1903に電圧を印加して書込めばよい。読出し動作については、第1のソース線1902に書込み時より小さい電圧を印加した状態で、第1のワード線1904に電圧を印加する。このとき第1の選択トランジスタ1906がオン状態になり、第1のソース線1902からビット線1901に電流が流れるため、磁気抵抗効果素子600の抵抗値を読取ることができる。また、第2のソース線1903及び第2のワード線1905に電圧を印加して読出しを行ってもよい。
100 磁気抵抗効果素子
101 固定層
102 非磁性層
103 磁気記録層
104 磁化反転領域
105,106 磁化固定領域
107~109 電流供給端子
110 磁壁
600 磁気抵抗効果素子
601 固定層
602 非磁性層
603 磁気記録層
604 磁化反転領域
605,606 磁化固定領域
607~609 電流供給端子
610 磁壁
1001,1002 強磁性層
1201,1202 第2の強磁性層
1401,1402 反磁性層
1801 磁化固着層
1901 ビット線
1902 第1のソース線
1903 第2のソース線
1904 第1のワード線
1905 第2のワード線
1906 第1の選択トランジスタ
1907 第2の選択トランジスタ
1908,1909 選択回路
1910~1912 電流印加回路

Claims (19)

  1.  磁化方向が固定されている強磁性体からなる固定層と、
     細線形状の強磁性体からなり、磁化方向が可変の領域を有する磁気記録層と、
     前記固定層と前記磁気記録層の間に形成された細線形状の非磁性層とを備え、
     前記磁気記録層は両端の磁化固定領域とその間の磁化反転領域の3つの領域を有し、前記固定層及び前記磁化固定領域は電流供給端子を備え、
     前記固定層と前記磁気記録層のうち少なくとも一方は、膜厚を3nm以下に制御することによって磁化方向が膜面に対して平行方向から垂直方向になる強磁性体によって構成され、磁気抵抗変化率が制御され、且つ、膜厚の制御によって磁化方向が膜面に対して垂直方向を向いていることを特徴とする磁気抵抗効果素子。
  2.  請求項1記載の磁気抵抗効果素子において、前記非磁性層は前記磁気記録層の前記3つの領域と接していることを特徴とする磁気抵抗効果素子。
  3.  請求項1記載の磁気抵抗効果素子において、前記磁化固定領域の垂直磁気異方性が前記磁化反転領域の垂直磁気異方性より大きくなるように前記磁化固定領域と前記磁化反転領域の膜厚が制御されていることを特徴とする磁気抵抗効果素子。
  4.  請求項1記載の磁気抵抗効果素子において、前記磁化固定領域の垂直磁気異方性が前記磁化反転領域の垂直磁気異方性より大きくなるように前記磁化固定領域と前記磁化反転領域の材料が選択されていることを特徴とする磁気抵抗効果素子。
  5.  請求項1記載の磁気抵抗効果素子において、前記磁化固定領域の前記非磁性層と反対側の界面に、前記磁化固定領域より垂直磁気異方性が大きい材料からなる強磁性層を備え、前記磁化固定領域の磁化と前記強磁性層の磁化が強磁性結合していることを特徴とする磁気抵抗効果素子。
  6.  請求項1記載の磁気抵抗効果素子において、前記磁化固定領域の前記非磁性層と反対側の界面に第2の非磁性層を備え、前記磁化固定領域の垂直磁気異方性が前記磁化反転領域の垂直磁気異方性より大きいことを特徴とする磁気抵抗効果素子。
  7.  請求項1記載の磁気抵抗効果素子において、前記磁化固定領域の前記非磁性層と反対側の界面に第2の強磁性層を備え、前記第2の強磁性層は前記磁化固定領域よりダンピング定数が大きい材料であり、前記第2の強磁性層が接することで前記磁化固定領域のダンピング定数を大きくすることを特徴とする磁気抵抗効果素子。
  8.  請求項1記載の磁気抵抗効果素子において、前記磁化固定領域の前記非磁性層と反対側の界面に反強磁性層を備え、前記磁化固定領域の磁化と前記反強磁性層の磁化が交換結合していることを特徴とする磁気抵抗効果素子。
  9.  請求項1記載の磁気抵抗効果素子において、前記非磁性層は前記磁化反転領域と同じ長さを有して前記磁化反転領域に接し、前記磁化固定領域の磁化が膜面平行方向であることを特徴とする磁気抵抗効果素子。
  10.  請求項1記載の磁気抵抗効果素子において、前記磁化固定領域と前記磁化反転領域の境界にくびれの構造を持つことを特徴とする磁気抵抗効果素子。
  11.  請求項1記載の磁気抵抗効果素子において、前記固定層の前記非磁性層と反対側の界面に前記固定層の磁化を強く固着するための反強磁性、強磁性、非磁性のいずれかからなる層を備えることを特徴とする磁気抵抗効果素子。
  12.  請求項1記載の磁気抵抗効果素子において、前記非磁性層は酸化マグネシウムであることを特徴とする磁気抵抗効果素子。
  13.  請求項1~12のいずれか1項記載の磁気抵抗効果素子において、
     前記固定層と前記磁気記録層のうち少なくとも一方を構成する強磁性体が、3d遷移金属を少なくとも1種類含む強磁性材料で構成されており、
     磁気抵抗変化率が70%以上であることを特徴とする磁気抵抗効果素子。
  14.  請求項13記載の磁気抵抗効果素子において、前記3d遷移金属はCo,Feのうち少なくとも一つであることを特徴とする磁気抵抗効果素子。
  15.  請求項1記載の磁気抵抗効果素子において、前記固定層と前記磁気記録層のうち少なくとも一方を構成する強磁性体が、ダンピング定数が0.1より小さい強磁性材料で構成されていることを特徴とする磁気抵抗効果素子。
  16.  請求項15記載の磁気抵抗効果素子において、前記ダンピング定数が小さい強磁性材料はホイスラー合金であることを特徴とする磁気抵抗効果素子。
  17.  請求項1記載の磁気抵抗効果素子において、磁気抵抗変化率が70%以上に制御されていることを特徴とする磁気抵抗効果素子。
  18.  相互に平行に配置された複数のビット線と、
     前記ビット線と平行な方向に、互いに平行に配置された複数の第1のソース線と、
     前記ビット線と平行な方向に、互いに平行に配置された複数の第2のソース線と、
     前記ビット線と交差する方向に、互いに平行に配置された複数の第1のワード線と、
     前記ビット線と交差する方向に、互いに平行に配置された複数の第2のワード線と、
     前記第1のソース線と前記第1のワード線の交差する部分に配置された第1の選択トランジスタと、
     前記第2のソース線と前記第2のワード線の交差する部分に配置された第2の選択トランジスタと、
     前記第1の選択トランジスタと前記第2の選択トランジスタの間に配置された磁気抵抗効果素子とを備え、
     前記磁気抵抗効果素子は、磁化方向が固定されている強磁性体からなる固定層と、細線形状の強磁性体からなり、磁化方向が可変の領域を有する磁気記録層と、前記固定層と前記磁気記録層の間に形成された細線形状の非磁性層とを備え、
     前記磁気記録層は両端の磁化固定領域とその間の磁化反転領域の3つの領域を有し、前記磁化固定領域は電流供給端子を備え、
     前記固定層と前記磁気記録層のうち少なくとも一方は、膜厚の制御によって磁化方向が膜面に対して平行方向から垂直方向になる強磁性体によって構成され、膜厚の制御によって磁気抵抗変化率が制御され、且つ、磁化方向が膜面に対して垂直方向を向いており、
     前記ビット線は前記磁気抵抗効果素子の前記固定層に電気的に接続され、
     前記磁気抵抗効果素子の前記電流供給端子の一方は前記第1の選択トランジスタのドレイン電極に電気的に接続され、
     前記磁気抵抗効果素子の前記電流供給端子の他方は前記第2の選択トランジスタのドレイン電極に電気的に接続され、
     前記第1のソース線は前記第1の選択トランジスタのソース電極に電気的に接続され、
     前記第2のソース線は前記第2の選択トランジスタのソース電極に電気的に接続され、
     前記第1のワード線は前記第1の選択トランジスタのゲート電極に電気的に接続され、
     前記第2のワード線は前記第2の選択トランジスタのゲート電極に電気的に接続され、前記ビット線、前記第1のソース線、前記第2のソース線、前記第1のワード線、及び、前記第2のワード線に電圧を印加する機構を備える
     ことを特徴とする磁気メモリ。
  19.  請求項18記載の磁気メモリにおいて、前記非磁性層は前記磁気記録層の前記3つの領域と接していることを特徴とする磁気メモリ。
PCT/JP2011/062119 2010-06-03 2011-05-26 磁気抵抗効果素子及び磁気メモリ WO2011152281A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012518356A JP5618103B2 (ja) 2010-06-03 2011-05-26 磁気抵抗効果素子及び磁気メモリ
US13/701,257 US9135973B2 (en) 2010-06-03 2011-05-26 Magnetoresistance effect element and magnetic memory

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010128051 2010-06-03
JP2010-128051 2010-06-03

Publications (1)

Publication Number Publication Date
WO2011152281A1 true WO2011152281A1 (ja) 2011-12-08

Family

ID=45066656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062119 WO2011152281A1 (ja) 2010-06-03 2011-05-26 磁気抵抗効果素子及び磁気メモリ

Country Status (3)

Country Link
US (1) US9135973B2 (ja)
JP (1) JP5618103B2 (ja)
WO (1) WO2011152281A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258596A (ja) * 2010-06-04 2011-12-22 Hitachi Ltd 磁気抵抗効果素子及び磁気メモリ
WO2016182085A1 (ja) * 2015-05-14 2016-11-17 国立大学法人東北大学 磁気抵抗効果素子及び磁気メモリ装置
CN108604573A (zh) * 2016-04-21 2018-09-28 Tdk株式会社 磁壁利用型模拟存储元件以及磁壁利用型模拟存储器
KR102254252B1 (ko) * 2019-11-20 2021-05-20 서울대학교산학협력단 자구벽 이동 소자

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111473A1 (ja) 2010-03-10 2011-09-15 株式会社日立製作所 磁気抵抗効果素子及び磁気メモリ
US9368176B2 (en) * 2012-04-20 2016-06-14 Alexander Mikhailovich Shukh Scalable magnetoresistive element
CN108055872B (zh) 2015-09-09 2022-05-13 英特尔公司 具有自旋霍尔电极和电荷互连的自旋逻辑
WO2019005146A1 (en) * 2017-06-30 2019-01-03 Intel Corporation SEMI-INSULATING MAGNETOELECTRIC SPIN-ORBIT LOGIC
US10141333B1 (en) 2017-11-09 2018-11-27 International Business Machines Corporation Domain wall control in ferroelectric devices
US10109336B1 (en) 2017-11-09 2018-10-23 International Business Machines Corporation Domain wall control in ferroelectric devices
US10468432B1 (en) 2018-05-30 2019-11-05 International Business Machines Corporation BEOL cross-bar array ferroelectric synapse units for domain wall movement
US11502188B2 (en) 2018-06-14 2022-11-15 Intel Corporation Apparatus and method for boosting signal in magnetoelectric spin orbit logic
US11387404B2 (en) 2018-09-13 2022-07-12 Intel Corporation Magnetoelectric spin orbit logic based minority gate
JP7419729B2 (ja) * 2019-10-01 2024-01-23 Tdk株式会社 磁壁移動素子及び磁気記録アレイ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001706A1 (ja) * 2007-06-25 2008-12-31 Nec Corporation 磁気抵抗効果素子、および磁気ランダムアクセスメモリ
WO2009019949A1 (ja) * 2007-08-03 2009-02-12 Nec Corporation 磁気ランダムアクセスメモリ及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080029819A (ko) 2006-09-29 2008-04-03 가부시끼가이샤 도시바 자기저항 효과 소자 및 이를 이용한 자기 랜덤 액세스메모리
JP2008109118A (ja) 2006-09-29 2008-05-08 Toshiba Corp 磁気抵抗効果素子およびそれを用いた磁気ランダムアクセスメモリ
JP4649457B2 (ja) * 2007-09-26 2011-03-09 株式会社東芝 磁気抵抗素子及び磁気メモリ
JP5257831B2 (ja) 2007-10-12 2013-08-07 日本電気株式会社 磁気ランダムアクセスメモリ、及びその初期化方法
US8379429B2 (en) * 2008-02-13 2013-02-19 Nec Corporation Domain wall motion element and magnetic random access memory
US20110049659A1 (en) 2008-05-02 2011-03-03 Yoshishige Suzuki Magnetization control method, information storage method, information storage element, and magnetic function element
KR101598833B1 (ko) * 2009-12-21 2016-03-03 삼성전자주식회사 자기 메모리 소자 및 그 동작방법
US8541855B2 (en) * 2011-05-10 2013-09-24 Magic Technologies, Inc. Co/Ni multilayers with improved out-of-plane anisotropy for magnetic device applications
JP5836163B2 (ja) * 2012-03-08 2015-12-24 ルネサスエレクトロニクス株式会社 磁気メモリセル、磁気メモリセルの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001706A1 (ja) * 2007-06-25 2008-12-31 Nec Corporation 磁気抵抗効果素子、および磁気ランダムアクセスメモリ
WO2009019949A1 (ja) * 2007-08-03 2009-02-12 Nec Corporation 磁気ランダムアクセスメモリ及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M.ENDO ET AL.: "Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co40Fe40B20/Ta structures", APPLIED PHYSICS LETTERS, vol. 96, no. 1-3, 27 May 2010 (2010-05-27), pages 212503 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258596A (ja) * 2010-06-04 2011-12-22 Hitachi Ltd 磁気抵抗効果素子及び磁気メモリ
WO2016182085A1 (ja) * 2015-05-14 2016-11-17 国立大学法人東北大学 磁気抵抗効果素子及び磁気メモリ装置
JPWO2016182085A1 (ja) * 2015-05-14 2018-04-12 国立大学法人東北大学 磁気抵抗効果素子及び磁気メモリ装置
US10410703B2 (en) 2015-05-14 2019-09-10 Tohoku University Magnetoresistance effect element and magnetic memory device
CN108604573A (zh) * 2016-04-21 2018-09-28 Tdk株式会社 磁壁利用型模拟存储元件以及磁壁利用型模拟存储器
KR102254252B1 (ko) * 2019-11-20 2021-05-20 서울대학교산학협력단 자구벽 이동 소자

Also Published As

Publication number Publication date
US20130141966A1 (en) 2013-06-06
JPWO2011152281A1 (ja) 2013-07-25
JP5618103B2 (ja) 2014-11-05
US9135973B2 (en) 2015-09-15

Similar Documents

Publication Publication Date Title
JP5618103B2 (ja) 磁気抵抗効果素子及び磁気メモリ
JP5321991B2 (ja) 磁気メモリー素子及びその駆動方法
JP5600344B2 (ja) 磁気抵抗効果素子及び磁気メモリ
KR102024410B1 (ko) 자기저항 효과 소자 및 자기 메모리
JP4874884B2 (ja) 磁気記録素子及び磁気記録装置
JP6290487B1 (ja) 磁気メモリ
JP5146836B2 (ja) 磁気ランダムアクセスメモリ及びその製造方法
JP3863536B2 (ja) 磁気ランダムアクセスメモリ及びその磁気ランダムアクセスメモリのデータ書き込み方法
JP2007273495A (ja) 磁気メモリ装置及びその駆動方法
JP2005191032A (ja) 磁気記憶装置及び磁気情報の書込み方法
JP5545213B2 (ja) 磁気ランダムアクセスメモリ及びその初期化方法
JPWO2007119446A1 (ja) Mram、及びmramのデータ読み書き方法
WO2011108359A1 (ja) 磁気メモリセル及び磁気ランダムアクセスメモリ
TW201532040A (zh) 儲存元件、儲存裝置及磁頭
CN102592658A (zh) 存储元件和存储装置
WO2014050380A1 (ja) 記憶素子、記憶装置、磁気ヘッド
JP2014072393A (ja) 記憶素子、記憶装置、磁気ヘッド
KR101958420B1 (ko) 자기 메모리소자 및 그 동작방법
JP2013115301A (ja) 記憶素子、記憶装置
WO2010047276A1 (ja) 磁気抵抗素子、mram及び磁気抵抗素子の初期化方法
TWI422083B (zh) Magnetic memory lattice and magnetic random access memory
KR20110098899A (ko) 자기 메모리 소자 및 불휘발성 기억장치
JP2007317733A (ja) メモリ
JP2004296858A (ja) 磁気記憶素子及び磁気記憶装置
WO2010071174A1 (ja) 磁気抵抗素子の初期化方法、及び磁気抵抗素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789690

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012518356

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13701257

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11789690

Country of ref document: EP

Kind code of ref document: A1