JP5600344B2 - 磁気抵抗効果素子及び磁気メモリ - Google Patents

磁気抵抗効果素子及び磁気メモリ Download PDF

Info

Publication number
JP5600344B2
JP5600344B2 JP2012504375A JP2012504375A JP5600344B2 JP 5600344 B2 JP5600344 B2 JP 5600344B2 JP 2012504375 A JP2012504375 A JP 2012504375A JP 2012504375 A JP2012504375 A JP 2012504375A JP 5600344 B2 JP5600344 B2 JP 5600344B2
Authority
JP
Japan
Prior art keywords
layer
ferromagnetic
ferromagnetic layer
magnetoresistive effect
effect element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012504375A
Other languages
English (en)
Other versions
JPWO2011111473A1 (ja
Inventor
英男 大野
正二 池田
文▲礼▼ 松倉
将起 遠藤
駿 金井
勝哉 三浦
浩之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Hitachi Ltd
Original Assignee
Tohoku University NUC
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Hitachi Ltd filed Critical Tohoku University NUC
Priority to JP2012504375A priority Critical patent/JP5600344B2/ja
Publication of JPWO2011111473A1 publication Critical patent/JPWO2011111473A1/ja
Application granted granted Critical
Publication of JP5600344B2 publication Critical patent/JP5600344B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Thin Magnetic Films (AREA)

Description

本発明は、磁気抵抗効果素子及びその磁気抵抗効果素子をメモリセルとして備えた磁気メモリに関する。
図1に示すように、磁気ランダムアクセスメモリ(MRAM)のメモリセル100は、磁気抵抗効果素子101と選択トランジスタ102が直列に電気的に接続された構造となっている。選択トランジスタ102のソース電極はソース線103に、ドレイン電極は磁気抵抗効果素子101を介してビット線104に、ゲート電極はワード線105にそれぞれ電気的に接続されている。磁気抵抗効果素子101は、第1の強磁性層106と第2の強磁性層107の2つの強磁性層で非磁性層108を挟んだ3層構造を基本構造とする。図示した例では、第1の強磁性層106は磁化方向が固定されていて固定層となり、第2の強磁性層107は磁化方向が可変であって記録層となる。この磁気抵抗効果素子101は、第1の強磁性層106の磁化方向と第2の強磁性層107の磁化方向が互いに平行(P状態)のとき低抵抗に、反平行(AP状態)のとき高抵抗になる。MRAMでは、この抵抗変化をビット情報の「0」と「1」に対応させる。ビット情報は、磁気抵抗効果素子101を流れる電流によるスピントルク磁化反転によって書込む。電流が固定層から記録層に流れるとき、記録層の磁化は固定層の磁化に対して反平行になり、ビット情報は「1」となる。電流が記録層から固定層に流れるとき、記録層の磁化は固定層の磁化に対して平行になり、ビット情報は「0」となる。電流による磁化反転の速さは1ナノ秒程度であるため、MRAMは非常に高速な書込みが可能である。また、記録層の磁化の向きによってビット情報を記録するため、MRAMは不揮発性を有し、待機時電力消費を抑えることができる。このため、MRAMは次世代のメモリとして期待されている。
また、図1では磁気抵抗効果素子101の第1の強磁性層106が固定層、第2の強磁性層107が記録層の場合を示したが、磁気抵抗効果素子101の第1の強磁性層106を磁化方向が可変な記録層とし、第2の強磁性層107を磁化方向が固定されている固定層としても、同様にMRAMとして動作する。この場合でも、電流が固定層から記録層に流れるとき、記録層の磁化は固定層の磁化に対して反平行になり、ビット情報は「1」となる。電流が記録層から固定層に流れるとき、記録層の磁化は固定層の磁化に対して平行になり、ビット情報は「0」となる。
S. MANGIN, D. RAVELOSONA, J. A. KATINE, M. J. CAREY, B. D. TERRIS and ERIC E. FULLERTON, "Current-induced magnetization reversal in nanopillars with perpendicular anisotropy", Nature Mater. 5, 210 (2006).
MRAMを実現するためには課題があり、その主なものとして、記録素子である磁気抵抗効果素子の磁気抵抗変化率(MR比)、書込み電流密度、熱安定性定数の3つの特性が満たさなければならない条件がある。これらの条件は、MRAMの集積度、最小加工寸法、動作速度などによって異なる。例えば、読出しが高速になるほど磁気抵抗変化率は高い値が必要となる。MRAMを混載メモリとするか単体メモリとするかで異なるが、一般的には50%から100%以上の高い磁気抵抗変化率が必要とされる。また、書込みの高速化及び低消費電力化のため、2×106A/cm2以下の書込み電流密度が必要である。さらに、10年以上の記録保持時間及び誤書き込み防止のため80以上の熱安定性定数が必要とされる。
高い磁気抵抗変化率を得るために、第1の強磁性層106及び第2の強磁性層107に3d遷移金属元素を含む材料と、第1の非磁性層のMgOを用いた構成が知られている。この場合、3d遷移金属元素を含む材料が、熱処理を施すことによってbcc構造に結晶化するほうが望ましい。これは、3d遷移金属元素を含む材料がbcc構造の場合、MgOとのコヒーレントな伝導を実現するため磁気抵抗変化率が大きくなりやすいという利点があるからである。この場合、第1の強磁性層106及び第2の強磁性層107の磁化方向は、図1のように膜面に対して平行方向になる。一方、非特許文献1のように、CoとPt、NiとPtなどの多層膜や、FePt,TbTeCoなどの合金に代表される垂直磁気異方性材料を第1の強磁性層106及び第2の強磁性層107に用いた場合、低い書込み電流密度と高い熱安定性定数を実現できるとされている。これは、第1の強磁性層106及び第2の強磁性層107の磁化方向が膜面に対して垂直方向になることに起因する。しかし、これらの垂直磁気異方性材料とMgOの組合せの場合、磁気抵抗変化率が小さくなってしまう。このため、現状はMgOと垂直磁気異方性材料の間に、膜面に対して平行な磁化を持ちbcc構造である3d遷移金属元素を含む材料を挿入し、MR比を高くするなどの方法が試されている。しかし、この方法では構造は複雑になり、 3d遷移金属元素を含む材料の磁化方向の制御や磁気抵抗変化率が予想されるほど高くならないなどの課題が残っている。
上述の課題を解決するために、図1の磁気抵抗効果素子を構成する第1の強磁性層106及び第2の強磁性層107の少なくともどちらか一方に用いる材料を、Co,Feなどの3d遷移金属を少なくとも1種類含んだ材料、若しくはCo2MnSiなどに代表されるホイスラー合金のようなダンピング定数の小さい強磁性層で構成することで磁気抵抗変化率を制御することとした。通常、Co,Feなどの3d遷移金属を少なくとも1種類含み、且つ、bcc構造になる材料で磁気抵抗効果素子を作製した場合、強磁性層の磁化方向は膜面に対して平行な方向を向くが、本発明者らは、強磁性層の膜厚を3nm以下に制御して磁化方向を膜面に対して垂直にすることによって低い書き込み電流密度と高い熱安定性定数を実現する技術を開発した。
図2に示したのは、強磁性層にCoFeBを用いた例において、磁化方向が膜面に対して垂直になるために必要な膜厚を、製造工程に含まれる熱処理工程の温度に対して示したものである。ここで熱処理を行った時間は1時間であった。図中の白丸は膜厚の上限を、黒丸は下限を表している。図のように、熱処理温度に対応して、磁化方向が膜面に対して垂直になるCoFeBの膜厚範囲は変化する。また、この材料を用いた場合、図2からわかるように熱処理を施していない場合でも、磁化方向は膜面に対しても垂直になる。熱処理を施していない場合は、CoFeBは非晶質である。非晶質である場合は、後述のように抵抗変化率が小さくなる欠点があるが、磁化の大きさが小さいという利点がある。
図2の例はCoFeBに対するものであり、他の3d遷移金属を少なくとも1種類含んだ材料に対しては、磁化方向が膜面に対して垂直になるために必要な膜厚と熱処理温度の関係は図2と異なる場合があるが、材料に適した膜厚に制御することにより磁化方向を膜面に対して平行から垂直に変化させることが可能である。このように磁化方向が膜面に対して垂直になる原因は、CoFeBの界面における特殊な異方性の変化だと考えられる。CoFeBの膜厚を原子層レベルに制御して薄膜化することによって、CoFeB層の体積に対して界面の効果が及ぶ体積の割合を増大することができる。このため、界面の特殊な異方性の効果が顕著に現れ、磁化方向が膜面に対して垂直になる。特に、MgO,Al23,SiO2などに代表される酸素を含む化合物と、Co,Feなどの3d遷移金属を少なくとも1種類含む強磁性材料の界面にこのような効果が大きく表れ、磁化が膜面垂直方向に向き易くなる傾向があると考えられる。
一方、図3は、例として第1の強磁性層106と第2の強磁性層107にCoFeBを用いた場合の磁気抵抗効果素子の磁気抵抗変化率を、熱処理時の温度に対して示したものである。熱処理温度が大きくなるとともに、磁気抵抗変化率は大きくなる。従って、この例では、例えば70%の磁気抵抗変化率を得るためにはおよそ250℃で熱処理を行えばよいし、100%の磁気抵抗変化率を得るためには300℃で熱処理を行えばよい。このとき、熱処理温度を300℃として膜面に垂直な磁化方向を持つ磁気抵抗効果素子を得るには、図2を参照すると第1の強磁性層106及び第2の強磁性層107の膜厚を1.0nmから1.6nm程度に制御すればよい。
他の材料を用いた場合でも、熱処理温度と磁気抵抗変化率の関係を調査しておくことによって、所望の磁気抵抗変化率が得られ、且つ、磁化方向が膜面に対して垂直方向を向いている磁気抵抗効果素子を作製することが可能である。図4は第1の強磁性層106及び第2の強磁性層107の材料としてCoFeB、非磁性層108としてMgOを用いた場合の、膜面に対して垂直方向に印加した磁場に対する磁気抵抗効果素子の抵抗変化を示している。この例では、熱処理温度を300℃とした。実験結果から、磁化方向は膜面に対して垂直を向いていることがわかる。また、このときの磁気抵抗変化率は100%であった。
本発明を適用することによって、磁気抵抗変化率が大きく、且つ、膜面に対して垂直な磁化方向を持つ磁気抵抗効果素子を容易に作製することができる。また、磁気抵抗変化率を制御したい場合、熱処理温度を制御するとともに、非磁性層を挟んで形成される第1の強磁性層及び第2の強磁性層の膜厚を調整することにより膜面に対して垂直な磁化方向を維持した磁気抵抗効果素子を作製することができる。
磁気メモリのメモリセル基本構造を示す模式図。 第1の強磁性層及び第2の強磁性層にCoFeBを用いた場合の、熱処理工程の温度に対する、磁気抵抗効果素子の磁化方向が膜面に対して垂直になるために必要な膜厚の変化を示す図。 第1の強磁性層及び第2の強磁性層にCoFeBを用いた場合の、熱処理工程の温度に対する、磁気抵抗効果素子の磁気抵抗変化率の変化を示す図。 第1の強磁性層及び第2の強磁性層にCoFeBを用いた場合の、膜面垂直方向の磁場印加に対する磁気抵抗効果素子の抵抗変化を示す図。 本発明による磁気抵抗効果素子の例を示す断面模式図。 本発明による磁気抵抗効果素子の例を示す断面模式図。 本発明による磁気抵抗効果素子の例を示す断面模式図。 本発明による磁気抵抗効果素子の例を示す断面模式図。 本発明による磁気抵抗効果素子の例を示す断面模式図。 本発明による磁気抵抗効果素子の例を示す断面模式図。 本発明による磁気抵抗効果素子の例を示す断面模式図。 本発明による磁気抵抗効果素子の例を示す断面模式図。 本発明による磁気抵抗効果素子の例を示す断面模式図。 本発明による磁気メモリの例を示す概念図。
以下、本発明を適用した磁気メモリ及び磁気抵抗効果素子について、図面を参照して詳細に説明する。
<実施例1>
本発明の一観点によると、磁気抵抗効果素子101は、図5に示すように、磁化方向が固定されている第1の強磁性層106と、磁化方向が可変である第2の強磁性層107と、第1の強磁性層と第2の強磁性層の間に電気的に接続された非磁性層108を備える。第1の強磁性層106及び第2の強磁性層107の材料は、Co,Feなどの3d遷移金属元素を少なくとも1種類含む強磁性材料若しくはCo2MnSiなどに代表されるホイスラー合金が望ましく、非磁性層108の材料はMgO,Al23,SiO2などの酸素を含む化合物やCuなどの金属などが候補であり、磁気抵抗変化率が大きくなる材料が望ましい。実施例1では、第1の強磁性層106及び第2の強磁性層107の材料がCoFeBであり、非磁性層108がMgOである場合を例として説明する。
図2に示したように、第1の強磁性層106及び第2の強磁性層107の膜厚を1.0nmから1.6nm程度に制御することによって、熱処理温度が300℃のとき、第1の強磁性層106の磁化501及び第2の強磁性層107の磁化502は膜面に対して垂直になる。図3に示したように、このときの磁気抵抗変化率は100%以上を達成している。図5の例では、磁化方向が膜面に対して垂直になる範囲内で、第1の強磁性層106と第2の強磁性層107に膜厚差をつけることにより保磁力差をつけ、第1の強磁性層106を固定層とし、第2の強磁性層107を記録層とした。一例として、第1の強磁性層106は膜厚を1.0nmとし、第2の強磁性層107の膜厚は1.2nmとした。この例の場合には、膜厚の薄い方の強磁性層106が固定層として機能した。勿論、第1の強磁性層106を記録層とし、第2の強磁性層107を固定層とするように膜厚を調整してもよい。
また、図5の例では固定層である第1の強磁性層106の磁化方向は上向きであるが、下向きに固定されていてもよい。また、第1の強磁性層106及び第2の強磁性層107のうち少なくとも一方を、熱処理温度と膜厚を制御することで磁化方向が膜面に対して平行方向から垂直方向に変化する強磁性体によって構成し、他方はCoとPt、NiとPtなどの多層膜や、FePt,TbTeCo合金などの従来から知られている別の垂直磁気異方性材料で構成してもよい。
図6には、第1の強磁性層106に従来から知られた垂直異方性材料であるFePtを用いて固定層とし、第2の強磁性層107には、CoFeBを用いた場合の例を示した。この場合、記録層と固定層の材料が異なるので、容易に保磁力差をつけることができる。このときの熱処理温度は、CoFeBを用いた磁気抵抗効果素子の抵抗変化率を参考にすればよく、例えば100%の抵抗変化率を得たい場合には300℃とすればよい。さらに、CoFeBの場合は、300℃で熱処理を行う場合、膜厚を1.0nmから1.6nmとすることによって磁化方向を膜面に対して垂直な方向にすることができる。また、第1の強磁性層107と非磁性層108の間にCo,Feなどの3d遷移金属を少なくとも1種類含む強磁性体若しくはホイスラー合金を材料とした層を新たに挿入してもよい。
磁気抵抗効果素子101は、下地層503及びキャップ層504を備えた構造であってもよい。下地層503は、磁気抵抗効果素子101を作製する下地となる層であるため、表面粗さが小さいことが必要であり、例として、Ta,Ruを用いることができる。Ta/Ru/Taなどの多層構造であってもよい。また、下地層に配向制御層としての効果を持たせてもよい。特に、第1の強磁性層106に、上で述べたFePtなどの従来から知られている垂直異方性材料を用いる場合は、配向制御の必要性が高い。キャップ層504は磁気抵抗効果素子を保護する目的も備えており、例としてMgO,Ru,Taなどを用いることができる。キャップ層504も、Ta/Ruなどの多層構造であってもよい。
<実施例2>
本発明の別の観点によると、磁気抵抗効果素子は、記録層として作用する第2の強磁性層107の、非磁性層108と反対側の界面702に第2の非磁性層701を形成した構造であってもよい。図7に実施例2の磁気抵抗効果素子の断面模式図を示す。
実施例1の磁気抵抗効果素子では、第2の強磁性層107の磁化を膜面垂直方向にするための界面効果は、第2の強磁性層107と非磁性層108の界面703でのみ生じたが、実施例2の磁気抵抗効果素子101では、第2の強磁性層107と第2の非磁性層701の界面702でも界面効果が生じる。このため、実施例1の磁気抵抗効果素子と比べて、実施例2の磁気抵抗効果素子では、第2の強磁性層107の磁化方向が膜面垂直方向に強く向き、熱安定性定数を大きくすることができる。このとき、第2の強磁性層107の膜厚は、磁化が膜面垂直方向に向き、界面効果が最大になるよう制御されており、実施例1の構成における第2の強磁性層107の膜厚と異なっている場合がある。図7の例として、第1の強磁性層106及び第2の強磁性層107にCoFeB、非磁性層108及び非磁性層701にMgOを用いた。この場合の熱処理温度を300℃とした結果、100%を超える抵抗変化率が得られた。また、この例では第2の強磁性層107の膜厚は1.2nmとすることで、磁化方向は膜面に対して垂直になった。第2の非磁性層701の材料は、MgO,Al23,SiO2などの酸素を含む化合物やCuなどの金属などの候補があり、第2の強磁性層107の磁化方向を垂直に向かせるための界面効果が大きくなる材料を選択するのが望ましい。
<実施例3>
本発明のさらに別の観点によると、磁気抵抗効果素子の記録層は、非磁性層108と接する面から強磁性層と非磁性層を交互に積層させた構造であってもよい。記録層として強磁性層/非磁性層/強磁性層/非磁性層と4層を積層させた場合の断面模式図を例として図8に示した。ここで、実施例3の磁気抵抗効果素子において、記録層は3層以上の積層構造であればよい。
この構造を採用することによって、強磁性層と非磁性層の界面の数が増えるため記録層801の磁化方向が垂直に向くための界面効果が大きく生じ、実施例2の磁気抵抗効果素子と比べてより熱安定性定数を大きくすることができる。また、記録層801を構成する強磁性層部分の全体積が大きくなることも、熱安定性定数の増大に寄与する。記録層801を構成する強磁性層の材料はCo,Feなどの3d遷移金属元素を少なくとも1種類含む強磁性材料若しくはホイスラー合金が望ましく、記録層801を構成する非磁性層の材料にはMgO,Al23,SiO2などの酸素を含む化合物やCuなどの金属などの候補があり、記録層801の磁化方向を垂直に向かせるための界面効果が大きくなる材料を選択するのが望ましい。また、記録層801を構成する強磁性層の磁化が膜面垂直方向に向き、界面効果が最大になるよう制御される必要があり、実施例1若しくは実施例2の構成における第2の強磁性層107の膜厚と異なっている場合がある。
図8に示した例では、記録層801を構成する強磁性層802,804の材料をCoFeBとし、記録層801を構成する非磁性層803,805の材料をMgOとした。この例では、熱処理温度を300℃として100%の抵抗変化率を得ることができた。また、このときの記録層801を構成する強磁性層802,804の膜厚をそれぞれ1.2nmとすることで、磁化方向は膜面に対して垂直になった。さらに、記録層801を構成する強磁性層802と強磁性層804の磁化は、互いに平行若しくは反平行に配置することができ、間に介在する非磁性層803の膜厚を変更することでこの配置を制御する。また、記録層801を構成する非磁性層803の材料がRu,Rh,Vなどの元素を少なくとも1種類含む非磁性体であってもよい。この場合、強磁性層802と強磁性層804の間に交換結合が働くため、非磁性層803の膜厚を制御することによって、強磁性層802と強磁性層804の磁化方向を平行若しくは反平行に容易に変更することができる。
<実施例4>
本発明の別の観点によると、磁気抵抗効果素子は、固定層として作用する第1の強磁性層106の、非磁性層108と反対側の界面903に第2の非磁性層901を形成した構造であってもよい。図9に実施例4の磁気抵抗効果素子の断面模式図を示す。
実施例1の磁気抵抗効果素子では、第1の強磁性層106の磁化を膜面垂直方向にするための界面効果は、第1の強磁性層106と非磁性層108の界面902でのみ生じたが、実施例4の磁気抵抗効果素子では第1の強磁性層106と第2の非磁性層901の界面903でも界面効果が生じる。このため、実施例1の磁気抵抗効果素子と比べて、実施例4の磁気抵抗効果素子では、第1の強磁性層106の磁化方向が膜面垂直方向に強く向き、熱安定性定数を大きくすることができる。このとき、第1の強磁性層106の膜厚は、磁化が膜面垂直方向に向き、界面効果が最大になるよう制御されており、実施例1の構成における第1の強磁性層106の膜厚と異なっている場合がある。
図9の構造の例として、第1の強磁性層106及び第2の強磁性層107にCoFeB、非磁性層108及び非磁性層901にMgOを用いた。熱処理温度を300℃とした結果、100%を超える抵抗変化率が得られた。また、この例では第1の強磁性層106の膜厚は1.0nmとすることで、磁化方向は膜面に対して垂直になった。第2の非磁性層901の材料には、MgO,Al23,SiO2などの酸素を含む化合物やCuなどの金属などの候補があり、第1の強磁性層106の磁化方向を垂直に向かせるための界面効果が大きくなる材料を選択するのが望ましい。
<実施例5>
本発明の別の観点によると、磁気抵抗効果素子の固定層1001は、非磁性層108と接する面から強磁性層と非磁性層を交互に積層させた構造であってもよい。固定層1001として強磁性層/非磁性層/強磁性層/非磁性層と4層を積層させた場合の断面図を例として図10に示した。ここで、実施例5の磁気抵抗効果素子において、固定層は3層以上の積層構造であればよい。
この構造を採用することによって、強磁性層と非磁性層の界面の数が増えるため固定層1001の磁化方向が垂直に向くための界面効果が大きく生じ、固定層1001を構成する強磁性層部分の全体積が大きくなるため、磁化方向は膜面に対して垂直方向に安定化する。固定層1001を構成する強磁性層1002,1004の材料は、Co,Feなどの3d遷移金属元素を少なくとも1種類含む強磁性材料若しくはホイスラー合金が望ましく、固定層1001を構成する非磁性層1003,1005の材料には、MgO,Al23,SiO2などの酸素を含む化合物やCuなどの金属などの候補があり、固定層1001の磁化方向を垂直に向かせるための界面効果が大きくなる材料を選択するのが望ましい。また、固定層1001を構成する強磁性層の磁化が膜面垂直方向に向き、界面効果が最大になるよう制御される必要があり、実施例1若しくは実施例4の構成における第1の強磁性層106の膜厚と異なっている場合がある。
図10に示した構成の例では、固定層1001を構成する強磁性層1002,1004の材料をCoFeBとし、固定層1001を構成する非磁性層1003,1005の材料をMgOとした。この例では、熱処理温度を300℃として100%の抵抗変化率を得ることができた。また、このときの固定層1001を構成する強磁性層1002,1004の膜厚は、それぞれ1.0nmとすることで、磁化方向は膜面に対して垂直になった。さらに、固定層1001を構成する強磁性層1002と強磁性層1004の磁化は、互いに平行若しくは反平行に配置することができ、間に介在する非磁性層1003の膜厚を変更することでこの配置を制御する。また、固定層1001を構成する非磁性層1003の材料がRu,Rh,Vなどの元素を少なくとも1種類含む非磁性体であってもよい。この場合、強磁性層1002と強磁性層1004の磁化の間に交換結合が働くため、非磁性層1003の膜厚を制御することによって、強磁性層1002と強磁性層1004の磁化方向を平行若しくは反平行に容易に変更することができる。
<実施例6>
本発明の別の観点によると、磁気抵抗効果素子は、固定層1101として第1の強磁性層106の非磁性層108と反対側の界面に形成された非磁性層1103を備え、且つ、記録層1102として第2の強磁性層107の非磁性層108と反対側の界面に形成された非磁性層1104を備えた構造であってもよい。図11に実施例6の磁気抵抗効果素子の断面模式図を示す。この構成を採用することにより、固定層及び記録層がともに膜面に対して垂直方向に安定化する。
<実施例7>
本発明の別の観点によると、磁気抵抗効果素子は、固定層1201として、非磁性層108と接する面から強磁性層と非磁性層を交互に積層した構造を備え、且つ、記録層1202として、非磁性層108と接する面から強磁性層と非磁性層を交互に積層した構造を備えた構成としてもよい。固定層1201として、非磁性層108側から順に強磁性層1203/非磁性層1204/強磁性層1205/非磁性層1206と4層を積層し、記録層1202として非磁性層108側から順に強磁性層1210/非磁性層1209/強磁性層1208/非磁性層1207と4層を積層した場合の断面模式図を例として図12に示した。この構成を採用することにより、固定層及び記録層がともに膜面に対して垂直方向に安定化する。
<実施例8>
本発明の別の観点によると、磁気抵抗効果素子において、図3の断面模式図に示すように、固定層106の非磁性層108と反対側の界面に反強磁性層1301を形成した構成としてもよい。この構成を採用すると、固定層106の磁化方向が膜面に対して垂直方向に安定化する。
<実施例9>
本発明の別の観点によると、実施例1〜8の磁気抵抗効果素子を記録素子として採用することでMRAMを実現することができる。本発明のMRAMは、図14に示すように、互いに平行に配置された複数のビット線104と、ビット線104と平行に配置され、且つ、互いに平行に配置された複数のソース線103と、ビット線104と垂直に配置され、且つ、互いに平行な複数のワード線105を備え、ビット線104とワード線105の各交点にはメモリセル100が配置される。メモリセル100は、実施例1〜8の磁気抵抗効果素子101と選択トランジスタ102を備えている。これら複数のメモリセル100がメモリアレイ1401を構成している。ビット線104は、磁気抵抗効果素子101を介して選択トランジスタ102のドレイン電極に電気的に接続されており、ソース線103は配線層を介して選択トランジスタ102のソース電極に電気的に接続されている。また、ワード線105は選択トランジスタ102のゲート電極に電気的に接続されている。ソース線103とビット線104の一端は、電圧印加のためのライトドライバ1402とセンス増幅器1403に電気的に接続されている。ワード線105の一端はワードドライバ1404に電気的に接続されている。
「0」書込み動作では、ライトドライバ1402からビット線104に電圧を印加するとともに、ワードドライバ1404からワード線105に電圧を印加することによって、ビット線104から磁気抵抗効果素子101を介してソース線103に電流を流す。このとき、磁気抵抗効果素子101の構成が図6のように、第1の強磁性層106が固定層であり第2の強磁性層107が記録層である場合、磁気抵抗効果素子101は低抵抗になり磁気抵抗効果素子101が保持する情報は「0」になる。一方、「1」書込み動作では、ライトドライバ1402にからソース線103に電圧を印加するとともに、ワードドライバ1404からワード線105に電圧を印加することによって、ソース線103から磁気抵抗効果素子101を介してビット線104に電流を流す。このとき、磁気抵抗効果素子101は高抵抗になり磁気抵抗効果素子101が保持する情報は「1」になる。読出し時は、センス増幅器1403を用いて抵抗変化による信号の違いを読取る。このような構成のメモリアレイを採用することで、磁気抵抗変化率が大きく、書込み電流密度が小さく、熱安定性定数が大きくなり、MRAMは不揮発なメモリとして動作することができる。
100 磁気メモリのメモリセル
101 磁気抵抗効果素子
102 選択トランジスタ
103 ソース線
104 ビット線
105 ワード線
106 第1の強磁性層
107 第2の強磁性層
108 非磁性層
501 磁化
502 磁化
503 下地層
504 キャップ層
701 第2の非磁性層
801 記録層
802 強磁性層
803 非磁性層
804 強磁性層
805 非磁性層
901 非磁性層
1001 固定層
1002 強磁性層
1003 非磁性層
1004 強磁性層
1005 非磁性層
1101 固定層
1102 非磁性層
1103 記録層
1104 非磁性層
1201 固定層
1202 記録層
1203 強磁性層
1204 非磁性層
1205 強磁性層
1206 非磁性層
1207 非磁性層
1208 強磁性層
1209 非磁性層
1210 強磁性層
1301 反強磁性層
1401 メモリアレイ
1402 ライトドライバ
1403 センス増幅器
1404 ワードドライバ

Claims (10)

  1. 磁化方向が固定されている第1の強磁性層と、
    磁化方向が可変である第2の強磁性層と、
    前記第1の強磁性層と前記第2の強磁性層の間に電気的に接続された第1の非磁性層とを備え、
    前記第1の強磁性層は固定層として作用し、前記第2の強磁性層は記録層として作用する磁気抵抗効果素子であって、
    前記第1の非磁性層は酸素を含む絶縁体であり、
    前記第1の強磁性層及び前記第2の強磁性層は、3d遷移金属を少なくとも1種類含む強磁性材料で構成され、膜厚を3nm以下に調整することによって前記第1の非磁性層との界面における磁気異方性によって磁化方向が膜面に対して垂直方向に制御されていることを特徴とする磁気抵抗効果素子。
  2. 請求項1記載の磁気抵抗効果素子において、
    前記第1の強磁性層及び前記第2の強磁性層は、膜厚が1.0nmから1.6nmであることを特徴とする磁気抵抗効果素子。
  3. 請求項1記載の磁気抵抗効果素子において、
    前記第1の強磁性層と前記第2の強磁性層は熱処理を施さず非晶質であることを特徴とする磁気抵抗効果素子。
  4. 請求項1〜3のいずれか1項記載の磁気抵抗効果素子において、
    前記固定層と前記記録層のうち少なくとも一方は、Co,Feのうち少なくとも一つを含む強磁性材料であり、
    前記第1の非磁性層が酸化マグネシウムであり、
    磁気抵抗変化率が50%以上であることを特徴とする磁気抵抗効果素子。
  5. 請求項1〜のいずれか1項記載の磁気抵抗効果素子において、
    前記第2の強磁性層の、前記第1の非磁性層と反対側の面に第2の非磁性層を備え、
    前記第2の非磁性層は前記第2の強磁性層の磁化方向を制御するための制御層として作用していることを特徴とする磁気抵抗効果素子。
  6. 請求項1〜のいずれか1項記載の磁気抵抗効果素子において、
    前記第1の強磁性層の、前記第1の非磁性層と反対側の面に第3の非磁性層を備え、
    前記第3の非磁性層は前記第1の強磁性層の磁化方向を制御するための制御層として作用していることを特徴とする磁気抵抗効果素子。
  7. 請求項1〜のいずれか1項記載の磁気抵抗効果素子において、
    前記固定層の前記第1の非磁性層と反対側の面に反強磁性層が形成されていることを特徴とする磁気抵抗効果素子。
  8. 磁化方向が固定されている第1の強磁性層と、
    磁化方向が可変である第2の強磁性層と、
    前記第1の強磁性層と前記第2の強磁性層の間に電気的に接続された第1の非磁性層とを備え、
    前記第1の強磁性層は固定層として作用し、前記第2の強磁性層は記録層として作用する磁気抵抗効果素子であって、
    前記第1の非磁性層は酸素を含む絶縁体であり、
    前記第1の強磁性層及び前記第2の強磁性層は、3d遷移金属を少なくとも1種類含む強磁性材料で構成され、膜厚を3nm以下に調整することによって磁化方向が膜面に対して垂直方向に制御されていることを特徴とする磁気抵抗効果素子であって、
    前記記録層は、前記第1の非磁性層と接する面から順に強磁性層と非磁性層を交互に3層以上積層した積層構造を有し、前記第1の非磁性層と接する強磁性層は、前記第2の強磁性層であり、
    前記記録層を構成する複数の強磁性層の磁化は、磁化方向が互いに平行若しくは反平行に結合しており、
    前記強磁性層と交互に積層された非磁性層が酸素を含む絶縁体、または、酸化マグネシウムである、ことを特徴とする磁気抵抗効果素子。
  9. 磁化方向が固定されている第1の強磁性層と、
    磁化方向が可変である第2の強磁性層と、
    前記第1の強磁性層と前記第2の強磁性層の間に電気的に接続された第1の非磁性層とを備え、
    前記第1の強磁性層は固定層として作用し、前記第2の強磁性層は記録層として作用する磁気抵抗効果素子であって、
    前記第1の非磁性層は酸素を含む絶縁体であり、
    前記第1の強磁性層及び前記第2の強磁性層は、3d遷移金属を少なくとも1種類含む強磁性材料で構成され、膜厚を3nm以下に調整することによって磁化方向が膜面に対して垂直方向に制御されていることを特徴とする磁気抵抗効果素子であって、
    前記固定層は、前記第1の非磁性層と接する面から順に強磁性層と非磁性層を交互に3層以上積層した積層構造を有し、前記第1の非磁性層と接する強磁性層は、前記第1の強磁性層であり、
    前記固定層を構成する複数の強磁性層の磁化は、磁化方向が互いに平行若しくは反平行に結合しており、
    前記強磁性層と交互に積層された非磁性層が酸素を含む絶縁体、または、酸化マグネシウムである、ことを特徴とする磁気抵抗効果素子。
  10. 相互に平行に配置された複数のビット線と、前記ビット線と平行な方向に、互いに平行に配置された複数のソース線と、前記ビット線と交差する方向に、互いに平行に配置された複数のワード線と、前記ビット線と前記ワード線とが交差する部分に配置された磁気抵抗効果素子とを備え、
    前記ビット線は前記磁気抵抗効果素子の一端に電気的に接続され、前記磁気抵抗効果素子の他端は選択トランジスタのドレイン電極に電気的に接続され、前記ソース線は前記選択トランジスタのソース電極に電気的に接続され、前記ワード線は前記選択トランジスタのゲート電極に電気的に接続され、
    前記磁気抵抗効果素子の膜面垂直方向に電流を印加する機構を備えている磁気メモリにおいて、
    前記磁気抵抗効果素子は請求項1〜のいずれか1項記載の磁気抵抗効果素子であることを特徴とする磁気メモリ。
JP2012504375A 2010-03-10 2011-02-14 磁気抵抗効果素子及び磁気メモリ Active JP5600344B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012504375A JP5600344B2 (ja) 2010-03-10 2011-02-14 磁気抵抗効果素子及び磁気メモリ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010053226 2010-03-10
JP2010053226 2010-03-10
JP2012504375A JP5600344B2 (ja) 2010-03-10 2011-02-14 磁気抵抗効果素子及び磁気メモリ
PCT/JP2011/052999 WO2011111473A1 (ja) 2010-03-10 2011-02-14 磁気抵抗効果素子及び磁気メモリ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014125474A Division JP5777124B6 (ja) 2010-03-10 2014-06-18 磁気抵抗効果素子、磁性膜、及び、磁性膜の製造方法

Publications (2)

Publication Number Publication Date
JPWO2011111473A1 JPWO2011111473A1 (ja) 2013-06-27
JP5600344B2 true JP5600344B2 (ja) 2014-10-01

Family

ID=44563299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012504375A Active JP5600344B2 (ja) 2010-03-10 2011-02-14 磁気抵抗効果素子及び磁気メモリ

Country Status (3)

Country Link
US (2) US9450177B2 (ja)
JP (1) JP5600344B2 (ja)
WO (1) WO2011111473A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9450177B2 (en) * 2010-03-10 2016-09-20 Tohoku University Magnetoresistive element and magnetic memory
JP5725735B2 (ja) * 2010-06-04 2015-05-27 株式会社日立製作所 磁気抵抗効果素子及び磁気メモリ
JP2012059906A (ja) 2010-09-09 2012-03-22 Sony Corp 記憶素子、メモリ装置
JP5740878B2 (ja) 2010-09-14 2015-07-01 ソニー株式会社 記憶素子、メモリ装置
US9006704B2 (en) * 2011-02-11 2015-04-14 Headway Technologies, Inc. Magnetic element with improved out-of-plane anisotropy for spintronic applications
KR101831931B1 (ko) * 2011-08-10 2018-02-26 삼성전자주식회사 외인성 수직 자화 구조를 구비하는 자기 메모리 장치
US8724376B2 (en) * 2011-09-15 2014-05-13 International Business Machines Corporation Antiferromagnetic storage device
US9245608B2 (en) * 2011-09-22 2016-01-26 Qualcomm Incorporated Thermally tolerant perpendicular magnetic anisotropy coupled elements for spin-transfer torque switching device
JP5982794B2 (ja) * 2011-11-30 2016-08-31 ソニー株式会社 記憶素子、記憶装置
JP5982795B2 (ja) 2011-11-30 2016-08-31 ソニー株式会社 記憶素子、記憶装置
JP2013115400A (ja) * 2011-12-01 2013-06-10 Sony Corp 記憶素子、記憶装置
JP5867030B2 (ja) * 2011-12-01 2016-02-24 ソニー株式会社 記憶素子、記憶装置
JP5480321B2 (ja) * 2012-03-21 2014-04-23 株式会社東芝 磁気メモリ及びその製造方法
US8796797B2 (en) * 2012-12-21 2014-08-05 Intel Corporation Perpendicular spin transfer torque memory (STTM) device with enhanced stability and method to form same
US9130155B2 (en) * 2013-03-15 2015-09-08 Samsung Electronics Co., Ltd. Magnetic junctions having insertion layers and magnetic memories using the magnetic junctions
US20180351084A1 (en) * 2015-11-27 2018-12-06 Tdk Corporation Spin current magnetization reversal-type magnetoresistive effect element and method for producing spin current magnetization reversal-type magnetoresistive effect element
KR101874171B1 (ko) * 2016-03-24 2018-08-03 한양대학교 산학협력단 수직자기이방성을 갖는 mtj 구조 및 이를 포함하는 자성소자
US10418545B2 (en) 2016-07-29 2019-09-17 Tdk Corporation Spin current magnetization reversal element, element assembly, and method for producing spin current magnetization reversal element
US10749107B2 (en) 2016-07-29 2020-08-18 Tohoku University Method of manufacturing magnetic tunnel coupling element
JP7002134B2 (ja) 2016-08-29 2022-01-25 国立大学法人東北大学 磁気トンネル接合素子およびその製造方法
US10439130B2 (en) 2016-10-27 2019-10-08 Tdk Corporation Spin-orbit torque type magnetoresistance effect element, and method for producing spin-orbit torque type magnetoresistance effect element
US10205088B2 (en) 2016-10-27 2019-02-12 Tdk Corporation Magnetic memory
US10319901B2 (en) 2016-10-27 2019-06-11 Tdk Corporation Spin-orbit torque type magnetization reversal element, magnetic memory, and high frequency magnetic device
US11276815B2 (en) 2016-10-27 2022-03-15 Tdk Corporation Spin-orbit torque type magnetization reversal element, magnetic memory, and high frequency magnetic device
JP6881148B2 (ja) * 2017-08-10 2021-06-02 Tdk株式会社 磁気メモリ
CN117479817A (zh) 2017-10-16 2024-01-30 Tdk株式会社 隧道磁阻效应元件、磁存储器及内置型存储器
US10424357B2 (en) * 2017-12-29 2019-09-24 Spin Memory, Inc. Magnetic tunnel junction (MTJ) memory device having a composite free magnetic layer
JP7398770B2 (ja) * 2019-04-11 2023-12-15 国立大学法人東北大学 磁気抵抗効果素子及び磁気メモリ
JP2022096258A (ja) * 2020-12-17 2022-06-29 キオクシア株式会社 磁気記憶装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253739A (ja) * 2003-02-21 2004-09-09 Sony Corp 磁気記憶素子及びその記録方法、並びに磁気記憶装置
JP2005529486A (ja) * 2002-06-07 2005-09-29 シーゲイト テクノロジー エルエルシー 垂直交換バイアスを有する膜デバイス
JP2007142364A (ja) * 2005-10-19 2007-06-07 Toshiba Corp 磁気抵抗効果素子、磁気ランダムアクセスメモリ、電子カード及び電子装置
WO2009019949A1 (ja) * 2007-08-03 2009-02-12 Nec Corporation 磁気ランダムアクセスメモリ及びその製造方法
JP2009081315A (ja) * 2007-09-26 2009-04-16 Toshiba Corp 磁気抵抗素子及び磁気メモリ
WO2009098796A1 (ja) * 2008-02-08 2009-08-13 Fuji Electric Holdings Co., Ltd. 磁気メモリー素子、その駆動方法及び不揮発性記憶装置
JP2010010720A (ja) * 2009-10-13 2010-01-14 Toshiba Corp 磁気抵抗効果素子およびそれを用いた磁気ランダムアクセスメモリ

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE28500E (en) 1970-12-14 1975-07-29 Low noise field effect transistor with channel having subsurface portion of high conductivity
FR2648941B1 (fr) * 1989-06-27 1991-09-06 Thomson Csf Tete de lecture magnetique a effet hall
US5374472A (en) * 1992-11-03 1994-12-20 The Regents, University Of California Ferromagnetic thin films
JP2003007980A (ja) * 2001-06-20 2003-01-10 Sony Corp 磁気特性の変調方法および磁気機能装置
JP3729159B2 (ja) * 2002-06-26 2005-12-21 ソニー株式会社 磁気メモリ装置
JP2005116923A (ja) 2003-10-10 2005-04-28 Hitachi Ltd スピントルクを用いた不揮発性磁気メモリセルおよびこれを用いた磁気ランダムアクセスメモリ
US7602000B2 (en) * 2003-11-19 2009-10-13 International Business Machines Corporation Spin-current switched magnetic memory element suitable for circuit integration and method of fabricating the memory element
US6967863B2 (en) * 2004-02-25 2005-11-22 Grandis, Inc. Perpendicular magnetization magnetic element utilizing spin transfer
JP4651665B2 (ja) * 2004-07-22 2011-03-16 ユニベルジテート コンスタンツ 情報記憶媒体
JP4189395B2 (ja) * 2004-07-28 2008-12-03 シャープ株式会社 不揮発性半導体記憶装置及び読み出し方法
US7313013B2 (en) * 2004-11-18 2007-12-25 International Business Machines Corporation Spin-current switchable magnetic memory element and method of fabricating the memory element
JP4877575B2 (ja) 2005-05-19 2012-02-15 日本電気株式会社 磁気ランダムアクセスメモリ
JP5040105B2 (ja) 2005-12-01 2012-10-03 ソニー株式会社 記憶素子、メモリ
JP2007266498A (ja) 2006-03-29 2007-10-11 Toshiba Corp 磁気記録素子及び磁気メモリ
FR2904724B1 (fr) * 2006-08-03 2011-03-04 Commissariat Energie Atomique Dispositif magnetique en couches minces a forte polarisation en spin perpendiculaire au plan des couches, jonction tunnel magnetique et vanne de spin mettant en oeuvre un tel dispositif
JP2008098515A (ja) 2006-10-13 2008-04-24 Toshiba Corp 磁気ランダムアクセスメモリ及びその製造方法
JP2008098523A (ja) * 2006-10-13 2008-04-24 Toshiba Corp 磁気抵抗効果素子および磁気メモリ
US8374025B1 (en) * 2007-02-12 2013-02-12 Avalanche Technology, Inc. Spin-transfer torque magnetic random access memory (STTMRAM) with laminated free layer
FR2910716B1 (fr) 2006-12-26 2010-03-26 Commissariat Energie Atomique Dispositif magnetique multicouches, procede pour sa realisation, capteur de champ magnetique, memoire magnetique et porte logique mettant en oeuvre un tel dispositif
JP2008252018A (ja) * 2007-03-30 2008-10-16 Toshiba Corp 磁気抵抗効果素子およびそれを用いた磁気ランダムアクセスメモリ
JP2009094104A (ja) 2007-10-03 2009-04-30 Toshiba Corp 磁気抵抗素子
JP5360599B2 (ja) 2007-10-25 2013-12-04 日本電気株式会社 磁気抵抗効果素子及び磁気ランダムアクセスメモリ
WO2009093387A1 (ja) 2008-01-25 2009-07-30 Nec Corporation 磁気ランダムアクセスメモリ及びその初期化方法
WO2009098769A1 (ja) 2008-02-07 2009-08-13 Pioneer Corporation ナビゲーション装置及びナビゲーション方法、並びにナビゲーション用プログラム
JP5283922B2 (ja) * 2008-02-14 2013-09-04 株式会社東芝 磁気メモリ
US20110049659A1 (en) 2008-05-02 2011-03-03 Yoshishige Suzuki Magnetization control method, information storage method, information storage element, and magnetic function element
US8144509B2 (en) * 2008-06-27 2012-03-27 Qualcomm Incorporated Write operation for spin transfer torque magnetoresistive random access memory with reduced bit cell size
WO2010080542A1 (en) 2008-12-17 2010-07-15 Yadav Technology, Inc. Spin-transfer torque magnetic random access memory having magnetic tunnel junction with perpendicular magnetic anisotropy
US7978505B2 (en) 2009-01-29 2011-07-12 Headway Technologies, Inc. Heat assisted switching and separated read-write MRAM
KR101683135B1 (ko) 2009-03-13 2016-12-06 시게이트 테크놀로지 엘엘씨 수직자기기록매체
US8072800B2 (en) 2009-09-15 2011-12-06 Grandis Inc. Magnetic element having perpendicular anisotropy with enhanced efficiency
US9093163B2 (en) 2010-01-14 2015-07-28 Hitachi, Ltd. Magnetoresistive device
JP4903277B2 (ja) 2010-01-26 2012-03-28 株式会社日立製作所 磁気抵抗効果素子、それを用いた磁気メモリセル及びランダムアクセスメモリ
US9450177B2 (en) * 2010-03-10 2016-09-20 Tohoku University Magnetoresistive element and magnetic memory
JP5618103B2 (ja) 2010-06-03 2014-11-05 株式会社日立製作所 磁気抵抗効果素子及び磁気メモリ
JP5725735B2 (ja) 2010-06-04 2015-05-27 株式会社日立製作所 磁気抵抗効果素子及び磁気メモリ
US8546896B2 (en) * 2010-07-16 2013-10-01 Grandis, Inc. Magnetic tunneling junction elements having magnetic substructures(s) with a perpendicular anisotropy and memories using such magnetic elements
FR2963152B1 (fr) 2010-07-26 2013-03-29 Centre Nat Rech Scient Element de memoire magnetique
FR2963153B1 (fr) 2010-07-26 2013-04-26 Centre Nat Rech Scient Element magnetique inscriptible
JP2012043967A (ja) 2010-08-19 2012-03-01 Sony Corp 磁気メモリ素子
JP5740878B2 (ja) 2010-09-14 2015-07-01 ソニー株式会社 記憶素子、メモリ装置
CN103250263B (zh) * 2010-12-22 2015-07-01 株式会社爱发科 穿隧磁阻元件的制造方法
US9006704B2 (en) * 2011-02-11 2015-04-14 Headway Technologies, Inc. Magnetic element with improved out-of-plane anisotropy for spintronic applications
US8790798B2 (en) 2011-04-18 2014-07-29 Alexander Mikhailovich Shukh Magnetoresistive element and method of manufacturing the same
US8592927B2 (en) 2011-05-04 2013-11-26 Magic Technologies, Inc. Multilayers having reduced perpendicular demagnetizing field using moment dilution for spintronic applications
JP2012235015A (ja) 2011-05-06 2012-11-29 Sony Corp 記憶素子及び記憶装置
JP5796349B2 (ja) 2011-05-23 2015-10-21 ソニー株式会社 記憶素子の製造方法
KR20130015928A (ko) * 2011-08-05 2013-02-14 에스케이하이닉스 주식회사 자기 메모리 소자 및 그 제조 방법
US9153306B2 (en) * 2011-11-08 2015-10-06 Tohoku University Tunnel magnetoresistive effect element and random access memory using same
US20130270661A1 (en) * 2012-04-16 2013-10-17 Ge Yi Magnetoresistive random access memory cell design

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005529486A (ja) * 2002-06-07 2005-09-29 シーゲイト テクノロジー エルエルシー 垂直交換バイアスを有する膜デバイス
JP2004253739A (ja) * 2003-02-21 2004-09-09 Sony Corp 磁気記憶素子及びその記録方法、並びに磁気記憶装置
JP2007142364A (ja) * 2005-10-19 2007-06-07 Toshiba Corp 磁気抵抗効果素子、磁気ランダムアクセスメモリ、電子カード及び電子装置
WO2009019949A1 (ja) * 2007-08-03 2009-02-12 Nec Corporation 磁気ランダムアクセスメモリ及びその製造方法
JP2009081315A (ja) * 2007-09-26 2009-04-16 Toshiba Corp 磁気抵抗素子及び磁気メモリ
WO2009098796A1 (ja) * 2008-02-08 2009-08-13 Fuji Electric Holdings Co., Ltd. 磁気メモリー素子、その駆動方法及び不揮発性記憶装置
JP2010010720A (ja) * 2009-10-13 2010-01-14 Toshiba Corp 磁気抵抗効果素子およびそれを用いた磁気ランダムアクセスメモリ

Also Published As

Publication number Publication date
US20170025600A1 (en) 2017-01-26
JPWO2011111473A1 (ja) 2013-06-27
US10804457B2 (en) 2020-10-13
US20120320666A1 (en) 2012-12-20
JP2014207469A (ja) 2014-10-30
WO2011111473A1 (ja) 2011-09-15
JP5777124B2 (ja) 2015-09-09
US9450177B2 (en) 2016-09-20

Similar Documents

Publication Publication Date Title
JP5600344B2 (ja) 磁気抵抗効果素子及び磁気メモリ
US10651369B2 (en) Magnetoresistive element and magnetic memory
KR102024410B1 (ko) 자기저항 효과 소자 및 자기 메모리
JP5867030B2 (ja) 記憶素子、記憶装置
JP5096702B2 (ja) 磁気抵抗効果素子及びそれを搭載した不揮発性磁気メモリ
TWI556233B (zh) 以改良的切換來提供混合磁性穿隧接面元件的方法及其系統
JP5321991B2 (ja) 磁気メモリー素子及びその駆動方法
TWI397069B (zh) Memory components and memory
JP6194752B2 (ja) 記憶素子、記憶装置、磁気ヘッド
WO2014050379A1 (ja) 記憶素子、記憶装置、磁気ヘッド
JP5987613B2 (ja) 記憶素子、記憶装置、磁気ヘッド
WO2012004883A1 (ja) 磁気抵抗効果素子及びそれを用いたランダムアクセスメモリ
JP2007080952A (ja) 多値記録スピン注入磁化反転素子およびこれを用いた装置
WO2013080436A1 (ja) 記憶素子、記憶装置
KR20110098899A (ko) 자기 메모리 소자 및 불휘발성 기억장치
JP5777124B6 (ja) 磁気抵抗効果素子、磁性膜、及び、磁性膜の製造方法
JP2013016820A (ja) トンネル磁気抵抗効果素子、それを用いた磁気メモリセル及びランダムアクセスメモリ
JP2017212464A (ja) 記憶素子、記憶装置、磁気ヘッド
JPWO2010125641A1 (ja) トンネル磁気抵抗効果素子、それを用いた磁気メモリセル及びランダムアクセスメモリ
WO2013080437A1 (ja) 記憶素子、記憶装置
JP5591888B2 (ja) 磁気抵抗効果素子及びそれを搭載した不揮発性磁気メモリ
JP2012248878A (ja) 記憶素子及びメモリ

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140318

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140516

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140613

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140815

R150 Certificate of patent or registration of utility model

Ref document number: 5600344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250