WO2011138877A1 - 弾性表面波装置及びその製造方法 - Google Patents

弾性表面波装置及びその製造方法 Download PDF

Info

Publication number
WO2011138877A1
WO2011138877A1 PCT/JP2011/052369 JP2011052369W WO2011138877A1 WO 2011138877 A1 WO2011138877 A1 WO 2011138877A1 JP 2011052369 W JP2011052369 W JP 2011052369W WO 2011138877 A1 WO2011138877 A1 WO 2011138877A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic wave
surface acoustic
mounting
electrode
wave device
Prior art date
Application number
PCT/JP2011/052369
Other languages
English (en)
French (fr)
Inventor
坂野 究
秀 山田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN2011800218148A priority Critical patent/CN102870326A/zh
Publication of WO2011138877A1 publication Critical patent/WO2011138877A1/ja
Priority to US13/667,087 priority patent/US20130057361A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/315Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the encapsulation having a cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/058Holders; Supports for surface acoustic wave devices
    • H03H9/059Holders; Supports for surface acoustic wave devices consisting of mounting pads or bumps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1085Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a non-uniform sealing mass covering the non-active sides of the BAW device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49005Acoustic transducer

Definitions

  • the present invention relates to a surface acoustic wave device and a manufacturing method thereof.
  • the present invention relates to a CSP type surface acoustic wave device in which a surface acoustic wave element is flip-chip mounted on a mounting substrate, and a method for manufacturing the same.
  • a surface acoustic wave device is mounted on an RF (Radio Frequency) circuit in communication equipment such as a mobile phone.
  • RF Radio Frequency
  • communication devices have been improved in function, size, and weight, and surface acoustic wave devices mounted on RF circuits are also required to be reduced in size, weight, and thickness.
  • a CSP (Chip Size Package) type surface acoustic wave device has been put to practical use as a surface acoustic wave device that can satisfy such a demand.
  • the CSP type surface acoustic wave device includes a surface acoustic wave element and a mounting substrate.
  • the surface acoustic wave element includes a piezoelectric substrate, at least one IDT electrode, and a plurality of electrode pads connected to the at least one IDT electrode. At least one IDT electrode and a plurality of electrode pads are formed on the piezoelectric substrate.
  • a plurality of mounting electrodes are formed on the die attach surface of the mounting substrate.
  • the surface acoustic wave element is flip-chip mounted on a die attach surface of a mounting substrate by bonding a plurality of electrode pads to mounting electrodes by bumps.
  • the surface acoustic wave element is sealed with a sealing resin layer formed on the mounting substrate.
  • Patent Document 1 An example of such a CSP type surface acoustic wave device is described in Patent Document 1 below.
  • Patent Document 1 describes that bumps are formed of Au, a surface acoustic wave element is bump-bonded to a mounting substrate using ultrasonic waves, and a resin substrate is used as the mounting substrate.
  • the CSP type surface acoustic wave device described in Patent Document 1 has a problem that the bonding strength between the surface acoustic wave element and the mounting substrate cannot be sufficiently increased.
  • the present invention has been made in view of the above points, and an object of the present invention is a CSP type surface acoustic wave device in which a surface acoustic wave element is flip-chip mounted on a mounting substrate.
  • An object of the present invention is to provide a surface acoustic wave device having high bonding strength with a substrate.
  • the surface acoustic wave device includes a surface acoustic wave element and a mounting substrate.
  • the surface acoustic wave element has a plurality of electrode pads.
  • a surface acoustic wave element is flip-chip mounted on a die attach surface, which is one surface of the mounting substrate, by a bump made of Au.
  • the mounting board has at least one resin layer, a plurality of mounting electrodes, and a via-hole conductor.
  • a via hole is formed in the resin layer.
  • the mounting electrode is formed on the die attach surface of the mounting substrate.
  • the mounting electrode is joined to the electrode pad by a bump.
  • the via hole conductor is formed in the via hole.
  • At least one surface layer of the electrode pad and the mounting electrode is made of Au.
  • At least one of the via hole conductors is disposed below the bump. *
  • At least one of the via-hole conductors is disposed below the joint portion between the mounting electrode and the electrode pad.
  • At least one of the via-hole conductors when viewed from the mounting direction of the surface acoustic wave element on the mounting substrate, at least one of the via-hole conductors includes a bump, a mounting electrode, and an electrode pad. It is provided to overlap.
  • the mounting substrate has a plurality of terminal electrodes and wirings.
  • the terminal electrode is formed on the other surface of the mounting substrate.
  • the wiring connects the mounting electrode and the terminal electrode.
  • the via-hole conductor forms part of the wiring.
  • the resin layer is made of a resin composition containing a resin, and the glass transition temperature (Tg) of the resin is in the range of 100 ° C. to 300 ° C. is there.
  • Tg glass transition temperature
  • the resin layer is made of a glass epoxy resin layer made of glass epoxy obtained by impregnating a glass woven fabric with an epoxy resin.
  • the mounting electrode is made of Au, and is made of a laminate including an Au layer constituting a surface layer and a Ni layer made of Ni.
  • the rigidity of the mounting electrode can be increased. Accordingly, the bonding strength between the surface acoustic wave element and the mounting substrate can be further increased.
  • the laminate includes a plurality of plating layers including a Ni layer, and the Ni layer has the largest thickness among the plurality of plating layers.
  • the rigidity of the mounting electrode can be further increased. Therefore, the bonding strength between the surface acoustic wave element and the mounting substrate can be further increased.
  • the via-hole conductor is made of Cu.
  • the mounting board connects a plurality of terminal electrodes formed on the other surface of the mounting board, and the mounting electrodes and the terminal electrodes. Wiring.
  • the wiring is formed in a portion other than the region facing the piezoelectric substrate of the surface acoustic wave element on the die attach surface of the mounting substrate.
  • the surface acoustic wave device further includes a sealing resin layer formed on the mounting substrate and sealing the surface acoustic wave element. I have. In this configuration, the surface acoustic wave element can be protected.
  • the method for manufacturing a surface acoustic wave device according to the present invention relates to a method for manufacturing the surface acoustic wave device according to the present invention.
  • the bump and the mounting electrode, or the bump and the electrode pad are in contact with each other while the bump and the mounting electrode or the bump and the electrode pad are heated.
  • the surface acoustic wave element is flip-chip mounted on the mounting substrate by applying a load to the surface acoustic wave element in a direction in which the substrate and the surface acoustic wave element approach each other and applying an ultrasonic wave.
  • the bump and the mounting electrode, or the bump and the electrode pad are recrystallized from Au. Heat to above temperature.
  • At least one of the via-hole conductors is disposed below the bump. For this reason, the mounting electrode and the bump or the electrode pad and the bump can be firmly metal-bonded. As a result, a surface acoustic wave device having high bonding strength between the surface acoustic wave element and the mounting substrate can be obtained.
  • FIG. 1 is a schematic cross-sectional view of a surface acoustic wave device according to an embodiment of the present invention.
  • FIG. 2 is a schematic partial enlarged cross-sectional view in which a portion II in FIG. 1 is enlarged.
  • FIG. 3 is a schematic perspective plan view of the surface 12a1 of the first resin layer 12a of the mounting substrate 10 in the surface acoustic wave device according to the first embodiment of the present invention.
  • FIG. 4 is a schematic perspective plan view of the surface 12b1 of the second resin layer 12b of the mounting substrate 10 in the surface acoustic wave device according to the first embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a surface acoustic wave device according to an embodiment of the present invention.
  • FIG. 2 is a schematic partial enlarged cross-sectional view in which a portion II in FIG. 1 is enlarged.
  • FIG. 3 is a schematic perspective plan view of the surface 12a1 of the first resin layer 12a of
  • FIG. 5 is a schematic perspective plan view of the surface 12c1 of the third resin layer 12c of the mounting substrate 10 in the surface acoustic wave device according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic perspective plan view of the surface 12c2 of the third resin layer 12c of the mounting substrate 10 in the surface acoustic wave device according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic cross-sectional view of the surface acoustic wave device according to the first embodiment of the present invention taken along line VII-VII in FIG. 8 is a schematic perspective plan view of the surface 12a1 of the first resin layer 12a of the mounting substrate 10 in the surface acoustic wave device according to the comparative example 1.
  • FIG. 9 is a schematic perspective plan view of the surface 12 b 1 of the second resin layer 12 b of the mounting substrate 10 in the surface acoustic wave device according to the comparative example 1.
  • FIG. 10 is a schematic perspective plan view of the surface 12c1 of the third resin layer 12c of the mounting substrate 10 in the surface acoustic wave device according to the comparative example 1.
  • FIG. 11 is a schematic perspective plan view of the surface 12c2 of the third resin layer 12c of the mounting substrate 10 in the surface acoustic wave device according to the comparative example 1.
  • 12 is a schematic cross-sectional view of the surface acoustic wave device according to Comparative Example 1 taken along line XII-XII in FIG.
  • FIG. 10 is a schematic perspective plan view of the surface 12c1 of the third resin layer 12c of the mounting substrate 10 in the surface acoustic wave device according to the comparative example 1.
  • FIG. 11 is a schematic perspective plan view of the surface 12c2 of the third resin layer 12
  • FIG. 13 is a graph showing die shear strengths of the surface acoustic wave device according to Example 1 of the present invention and the surface acoustic wave device according to Comparative Example 1.
  • FIG. 14 is a graph showing the bump shear strengths of the surface acoustic wave device according to Example 1 of the present invention and the surface acoustic wave device according to Comparative Example 1.
  • FIG. 15 is a schematic cross-sectional view of a surface acoustic wave device according to a first modification of the present invention.
  • FIG. 16 is a schematic cross-sectional view of a surface acoustic wave device according to a second modification of the present invention.
  • FIG. 17 is a schematic cross-sectional view of a surface acoustic wave device according to a third modification of the present invention.
  • FIG. 18 is a schematic cross-sectional view of a surface acoustic wave device according to a fourth modification of the present invention.
  • FIG. 19 is a schematic cross-sectional view of a surface acoustic wave device according to a fifth modification of the present invention.
  • FIG. 20 is a schematic cross-sectional view of a surface acoustic wave device according to a sixth modification of the present invention.
  • FIG. 21 is a schematic cross-sectional view of a surface acoustic wave device according to a seventh modification of the present invention.
  • FIG. 18 is a schematic cross-sectional view of a surface acoustic wave device according to a fourth modification of the present invention.
  • FIG. 19 is a schematic cross-sectional view of a surface acoustic wave device according to a fifth modification of the present invention.
  • FIG. 22 is a schematic cross-sectional view of a surface acoustic wave device according to an eighth modification of the present invention.
  • FIG. 23 is a schematic cross-sectional view of a surface acoustic wave device according to a ninth modification of the present invention.
  • FIG. 24 is a schematic cross-sectional view of a surface acoustic wave device according to a tenth modification of the present invention.
  • FIG. 25 is a schematic plan view of the die attach surface 10a of the mounting substrate 10 in the surface acoustic wave device according to the second embodiment of the present invention.
  • FIG. 26 is a schematic plan view of the die attach surface 110a of the mounting substrate 110 in the surface acoustic wave device according to the reference example.
  • FIG. 27 is a schematic plan view of the die attach surface 10a of the mounting substrate 10 in the surface acoustic wave device according to the eleventh modification of the present invention.
  • FIG. 28 is a schematic plan view of a mother substrate 50 for producing the mounting substrate 10 in the surface acoustic wave device according to the second embodiment of the present invention.
  • FIG. 29 is a schematic plan view of a mother substrate 50 for manufacturing the mounting substrate 10 in the surface acoustic wave device according to the twelfth modification of the present invention.
  • the present invention is implemented by taking the surface acoustic wave device 1 shown in FIG. 1 as an example.
  • the surface acoustic wave device 1 is merely an example.
  • the surface acoustic wave device according to the present invention is not limited to the surface acoustic wave device 1.
  • FIG. 1 is a schematic cross-sectional view of a surface acoustic wave device 1 according to an embodiment of the present invention.
  • FIG. 2 is a schematic partial enlarged cross-sectional view in which a portion II in FIG. 1 is enlarged.
  • the surface acoustic wave device 1 is a CSP (Chip Size Package) type surface acoustic wave device.
  • the surface acoustic wave device 1 includes a mounting substrate 10 and a surface acoustic wave element 20 that is flip-chip mounted on a die attach surface 10 a of the mounting substrate 10.
  • the surface acoustic wave element 20 is sealed with a sealing resin layer 40 formed on the mounting substrate 10.
  • the sealing resin layer 40 can be formed of an appropriate resin such as an epoxy resin, for example.
  • the sealing resin layer 40 is not formed in a region where the surface acoustic wave element 20 and the mounting substrate 10 face each other, that is, a region where the surface acoustic wave propagates, and a space is secured.
  • the surface acoustic wave device 1 may be, for example, a surface acoustic wave resonator, a surface acoustic wave filter, or a surface acoustic wave duplexer.
  • the surface acoustic wave element 20 includes a piezoelectric substrate 21.
  • a substrate made of an appropriate piezoelectric material can be used.
  • the piezoelectric substrate 21 for example, a LiNbO 3 substrate, a LiTaO 3 substrate, a quartz substrate, or the like can be used.
  • At least one IDT electrode 22 and a plurality of electrode pads 23 are formed on the surface 21a of the piezoelectric substrate 21 on the mounting substrate 10 side.
  • the IDT electrode 22 has a pair of comb-like electrodes that are interleaved with each other.
  • the IDT electrode 22 is, for example, a metal selected from the group consisting of Pt, Au, Ag, Cu, Ni, W, Ta, Fe, Cr, Al, and Pd, or Pt, Au, Ag, Cu, Ni, W. , Ta, Fe, Cr, Al, and Pd can be used to form an alloy containing one or more metals selected from the group consisting of, for example.
  • the IDT electrode 22 can also be comprised by the laminated body of the some electrically conductive film which consists of said metal, an alloy, etc.
  • a plurality of electrode pads 23 are electrically connected to at least one IDT electrode 22.
  • the electrode pad 23 is, for example, a metal selected from the group consisting of Pt, Au, Ag, Cu, Ni, W, Ta, Fe, Cr, Al, and Pd, or Pt, Au. , Ag, Cu, Ni, W, Ta, Fe, Cr, Al, and an alloy containing one or more metals selected from the group consisting of Pd.
  • the electrode pad 23 can also be comprised by the laminated body of the some electrically conductive film which consists of said metal, an alloy, etc.
  • Bumps 30 are formed on each of the plurality of electrode pads 23.
  • the plurality of electrode pads 23 are joined to the mounting electrodes 11 provided on the die attach surface 10a of the mounting substrate 10 to be described later by the bumps 30, respectively.
  • the plurality of electrode pads 23 are electrically and mechanically connected to the mounting electrodes 11 provided on the die attach surface 10 a of the mounting substrate 10 by the bumps 30.
  • the surface acoustic wave element 20 is flip-chip mounted on the die attach surface 10 a of the mounting substrate 10.
  • the bump 30 is made of Au.
  • the mounting substrate 10 is a resin substrate provided with first to third resin layers 12a to 12c.
  • the mounting substrate 10 is a resin substrate configured by a laminated body of first to third resin layers 12a to 12c.
  • the first to third resin layers 12a to 12c can be formed of an appropriate resin, but are formed of a resin composition containing a resin having a glass transition temperature (Tg) in the range of 100 ° C. to 300 ° C. In this case, the effect of the present embodiment, which will be described later, is more strongly exhibited.
  • the first to third resin layers 12a to 12c can be constituted by, for example, glass epoxy resin layers made of glass epoxy obtained by impregnating a glass woven fabric with an epoxy resin.
  • the glass transition temperature (Tg) of this glass epoxy resin layer is about 230 ° C.
  • the glass transition temperature (Tg) is a value measured by DMA.
  • a plurality of mounting electrodes 11 are formed on the die attach surface 10 a of the mounting substrate 10. At least the surface layer of the mounting electrode 11 is made of Au. Specifically, in the present embodiment, as shown in FIG. 2, the mounting electrode 11 is made of Au, and includes an Au layer 11 d constituting the surface layer of the mounting electrode 11, and a Ni layer 11 b made of Ni. It consists of a laminate. Since the surface layer of the mounting electrode 11 is the Au layer 11d made of Au, the mounting electrode 11 is bonded to the bump 30 made of Au by Au—Au bonding (metal bonding).
  • the mounting electrode 11 is formed by stacking a Cu layer 11a made of Cu, a Ni layer 11b, a Pd layer 11c made of Pd, and an Au layer 11d in this order from the mounting substrate 10 side. It is composed of the body. Of these layers, the Ni layer 11b, the Pd layer 11c, and the Au layer 11d, excluding the Cu layer 11a, are composed of plating layers. More specifically, the Ni layer 11b, the Pd layer 11c, and the Au layer 11d are configured by electroless plating layers. In the present embodiment, the Ni layer 11b has the largest thickness among the Ni layer 11b, the Pd layer 11c, and the Au layer 11d configured by the electroless plating layer. A part of the Cu layer 11a may be composed of a plating layer.
  • the thickness of the Au layer 11d is preferably about 0.02 ⁇ m to 0.07 ⁇ m. If the Au layer 11d is too thin, the bonding strength between the mounting electrode 11 and the bump 30 may be lowered. On the other hand, if the Au layer 11d is too thick, AuSn 4 is likely to be formed when a surface acoustic wave device is mounted on a substrate constituting an RF circuit of a communication device using solder containing Sn. The bonding strength between the apparatus and the substrate may be deteriorated.
  • the Pd layer 11c functions as a diffusion preventing layer that prevents the electrode material from diffusing between the Au layer 11d and the Ni layer 11b.
  • the thickness of the Pd layer 11c may be a thickness that can sufficiently prevent diffusion of the electrode material between the Au layer 11d and the Ni layer 11b, and is preferably about 0.01 ⁇ m to 0.05 ⁇ m, for example. .
  • the thickness of the Ni layer 11b is preferably about 5 ⁇ m to 15 ⁇ m.
  • the Ni layer 11b has the highest hardness among the resin, Cu, Au, Pd, and Ni that are constituent materials of the first to third resin layers 12a to 12c and the mounting electrode 11. For this reason, the hardness of the mounting electrode 11 can be increased by forming the Ni layer 11b thick as in the present embodiment. Therefore, the bonding strength between the bump 30 and the mounting electrode 11 can be further increased. If the Ni layer 11b is too thin, the bonding strength between the bump 30 and the mounting electrode 11 may be lowered.
  • the Ni layer 11b is preferably composed of an electroless Ni plating layer as in this embodiment.
  • the bump 30 may be formed on the mounting electrode 11 instead of on the electrode pad 23.
  • at least the surface layer of the electrode pad 23 is made of Au. Since the surface layer of the electrode pad 23 is made of Au, the electrode pad 23 is Au—Au bonded (metal bonded) to the bump 30 made of Au.
  • a plurality of terminal electrodes 13 are formed on the other surface of the mounting substrate 10, that is, on the back surface 10 b of the mounting substrate 10.
  • the terminal electrode 13 is an electrode connected to an RF circuit of a communication device on which the surface acoustic wave device 1 is mounted.
  • the terminal electrode 13 can be formed of an appropriate conductive material.
  • the terminal electrode 13 has the same structure as the mounting electrode 11. More specifically, the terminal electrode 13 includes a Cu layer made of Cu, a Ni layer made of Ni, a Pd layer made of Pd, and an Au layer made of Au in this order from the mounting substrate 10 side. It is comprised by the laminated body.
  • a wiring 14 is formed on the mounting substrate 10.
  • the mounting electrode 11 and the terminal electrode 13 are electrically connected by the wiring 14.
  • the wiring 14 is formed on the die attach surface 10 a on which the mounting electrode 11 of the mounting substrate 10 is formed and the inside of the mounting substrate 10.
  • the wiring 14 can be formed of an appropriate conductive material. Specifically, the wiring 14 can be formed of, for example, Cu or an alloy containing Cu.
  • the wiring 14 includes via hole conductors 14a1 to 14a9 formed in a plurality of via holes 10e formed so as to penetrate the first to third resin layers 12a to 12c of the mounting substrate 10.
  • the via-hole conductors 14a1 to 14a9 constitute a part of the wiring 14.
  • the surface acoustic wave device 1 of this embodiment at least one of the via-hole conductors 14a1 to 14a9 is disposed below the bumps 30. In the surface acoustic wave device 1 according to this embodiment, at least one of the via-hole conductors 14a1 to 14a9 is disposed below the joint portion between the mounting electrode 11 and the electrode pad 23 with the bump 30.
  • the mounting direction z of the surface acoustic wave element 20 to the mounting substrate 10 (in this embodiment, the mounting direction z is a normal line of the die attach surface 10a of the mounting substrate 10). When viewed from the same direction, at least one of the via-hole conductors 14a1 to 14a9 is provided so as to overlap the bump 30, the mounting electrode 11, and the electrode pad 23.
  • bumps 30 are formed on each of the plurality of electrode pads 23 of the surface acoustic wave element 20.
  • the method for forming the bump 30 is not particularly limited.
  • the bump 30 can be formed by, for example, a stud bump method.
  • the surface acoustic wave element 20 is mounted by performing a bonding step of bonding the bumps 30 formed on each of the plurality of electrode pads 23 of the surface acoustic wave element 20 and the mounting electrodes 11 of the mounting substrate 10.
  • Flip chip mounting is performed on the die attach surface 10 a of the substrate 10.
  • the surface acoustic wave element 20 is sealed with the sealing resin layer 40 to complete the surface acoustic wave device 1.
  • the bump 30 and the mounting electrode 11 are in contact with the bump 30 formed on each of the plurality of electrode pads 23 of the surface acoustic wave element 20 and the mounting electrode 11 of the mounting substrate 10.
  • the bumps 30 While heating, a load is applied to the surface acoustic wave element 20 in the direction in which the mounting substrate 10 and the surface acoustic wave element 20 approach each other, and an ultrasonic wave is applied. As a result, the Au atoms of the Au layer 11d of the mounting electrode 11 and the Au atoms of the bumps 30 are forced to approach each other. As a result, the Au atoms of the Au layer 11d of the mounting electrode 11 and the Au atoms of the bump 30 are metal-bonded. That is, the bump 30 and the mounting electrode 11 are Au—Au bonded (metal bonded). Note that the bumps 30 may be formed on the mounting electrodes 11 instead of on the electrode pads 23.
  • a bonding process is performed in which the bumps 30 formed on the mounting electrodes 11 and the electrode pads 23 made of at least the surface layer are made of Au.
  • the element 20 is flip-chip mounted on the die attach surface 10 a of the mounting substrate 10. Specifically, the mounting substrate 10 and the surface acoustic wave element 20 are heated while the bump 30 and the electrode pad 23 are heated while the bump 30 formed on the mounting electrode 11 and the electrode pad 23 are in contact with each other. A load is applied to the surface acoustic wave element 20 in the direction in which they approach each other, and an ultrasonic wave is applied.
  • the Au atoms on the surface layer of the electrode pad 23 and the Au atoms of the bump 30 are forced to approach each other.
  • Au atoms in the surface layer of the electrode pad 23 and Au atoms in the bump 30 are metal-bonded. That is, the bump 30 and the electrode pad 23 are Au—Au bonded (metal bonded).
  • the load applied to the surface acoustic wave element 20 is large.
  • the Au atoms of the Au layer 11 d of the mounting electrode 11 or the surface layer of the electrode pad 23 and the Au atoms of the bump 30 can be brought closer to each other, so that metal bonding occurs. This is because it becomes easier.
  • the load applied to the surface acoustic wave element 20 is too large, the surface acoustic wave element 20 may be damaged.
  • the mounting electrode 11 or the electrode pad 23 and the bump 30 it is preferable to heat the mounting electrode 11 or the electrode pad 23 and the bump 30 to a temperature higher than the recrystallization temperature of Au. By doing so, Au atoms can move easily, and a stronger metal bond can be obtained.
  • the bonding step it is preferable to heat the mounting electrode 11 or the electrode pad 23 and the bump 30 to about 200 ° C. or higher.
  • the heating temperature of the mounting electrode 11 or electrode pad 23 and the bump 30 is preferably 300 ° C. or less.
  • a ceramic substrate such as an LTCC (Low Temperature Co-fired Ceramics) substrate or an HTCC (High Temperature Co-fired Ceramics) substrate is generally used as a mounting substrate.
  • LTCC Low Temperature Co-fired Ceramics
  • HTCC High Temperature Co-fired Ceramics
  • the mounting substrate 10 is a resin substrate constituted by a laminated body of first to third resin layers 12a to 12c. That is, the mounting substrate 10 is made of resin. Accordingly, the following effects (1) to (3) can be obtained.
  • an electrode is formed by firing a ceramic green sheet printed with a conductive paste. For this reason, it is difficult to form a fine electrode with high accuracy due to the printing accuracy of the conductive paste and the shrinkage accompanying baking.
  • the mounting substrate 10 which is a resin substrate an electrode can be formed by patterning a metal layer formed on the resin layer by etching or the like. For this reason, in the mounting board
  • the cross-sectional shape of the electrode formed on the ceramic substrate is a shape in which the edge portion is crushed.
  • an electrode can be formed by patterning a metal layer by etching or the like.
  • the cross-sectional shape of the electrode formed on the mounting substrate 10 that is a resin substrate is a trapezoidal shape or a shape close to a rectangle. Therefore, the electrode of the mounting substrate 10 that is a resin substrate has a smaller loss of high-frequency signals due to a reduction in conductor loss due to the edge effect. Also in this respect, excellent electrical characteristics can be obtained.
  • the mounting substrate 10 that is a resin substrate can use an electrode material having a higher electrical conductivity than the HTCC substrate.
  • an electrode is formed by firing a ceramic green sheet printed with a conductive paste at a high temperature of about 1600 ° C. Therefore, it is necessary to use a refractory metal such as W, Mo, or Ta as an electrode material. is there. However, all of these refractory metals have low electrical conductivity. For this reason, it is difficult to form an electrode with high electrical conductivity in the HTCC substrate.
  • the mounting substrate 10 which is a resin substrate does not require firing for forming electrodes, and therefore, a metal having high electrical conductivity such as Cu can be used as the electrode material. Therefore, in the mounting substrate 10 that is a resin substrate, an electrode having high electrical conductivity can be formed, and loss of a high-frequency signal in the electrode can be reduced. Also in this respect, excellent electrical characteristics can be obtained.
  • an electrode having an electrode density higher than that of the LTCC substrate can be formed. Since the LTCC substrate has a low firing temperature of about 850 ° C. to 900 ° C., a metal having high electrical conductivity such as Cu can be used as the electrode material. However, in the LTCC substrate, an electrode is formed by firing a ceramic green sheet printed with a conductive paste. Therefore, a gap is partially formed in the electrode due to firing, so that the electrode density is higher than that of the rough portion. The parts will be mixed.
  • the electrodes are formed by patterning the metal layer by etching or the like, so that an electrode having a uniform and high electrode density can be formed.
  • the mounting substrate 10 that is a resin substrate it is possible to reduce the loss of high-frequency signals in the electrodes. Also in this respect, excellent electrical characteristics can be obtained.
  • a piezoelectric substrate such as a LiTaO 3 substrate or a LiNbO 3 substrate is used as the piezoelectric substrate of the surface acoustic wave element.
  • the linear expansion coefficient in the surface direction of the LiTaO 3 substrate or the LiNbO 3 substrate is about 15 ppm / ° C. to 16 ppm / ° C.
  • the linear expansion coefficient in the plane direction of the ceramic substrate is about 7 ppm / ° C., which is about half of the linear expansion coefficient in the plane direction of the piezoelectric substrate.
  • the linear expansion coefficient in the surface direction of the mounting substrate 10 constituted by the laminated body of the first to third resin layers 12a to 12c made of glass epoxy or the like is about 13 ppm / ° C. to 16 ppm / ° C.
  • the linear expansion coefficient in the plane direction of the piezoelectric substrate is almost the same. Therefore, the stress generated at the joint portion between the surface acoustic wave element 20 and the mounting substrate 10 is reduced, and excellent thermal shock resistance can be obtained.
  • the ceramic substrate shrinks when sintered, so that the surface is likely to be distorted.
  • the mounting substrate 10 which is a resin substrate can be manufactured by pressing, a surface having high flatness (coplanarity) is easily obtained. That is, high flatness (coplanarity) on the die attach surface 10a of the mounting substrate 10 can be realized. As a result, the bonding strength between the surface acoustic wave element 20 and the mounting substrate 10 can be increased.
  • the resin substrate has a glass transition temperature (Tg) lower than the melting point of the ceramic substrate or the like.
  • Tg glass transition temperature
  • the glass transition temperature (Tg) of a resin such as glass epoxy is in the range of about 100 ° C. to about 300 ° C.
  • Au-Au bonding metal bonding
  • the resin substrate is softened.
  • the surface acoustic wave device 1 in the surface acoustic wave device 1 according to the present embodiment, at least one of the via-hole conductors 14a1 to 14a9 is disposed below the bump 30. In the surface acoustic wave device 1 according to this embodiment, at least one of the via-hole conductors 14a1 to 14a9 is disposed below the joint portion between the mounting electrode 11 and the electrode pad 23 with the bump 30. Further, in the surface acoustic wave device 1 according to the present embodiment, when viewed from the mounting direction z of the surface acoustic wave element 20 on the mounting substrate 10, at least one of the via-hole conductors 14a1 to 14a9 includes the bump 30 and the mounting electrode. 11 and the electrode pad 23.
  • the via-hole conductors 14a1 to 14a9 are made of a metal or an alloy, the via-hole conductors 14a1 to 14a9 are determined from the glass transition temperatures (Tg) of the resins constituting the first to third resin layers 12a to 12c of the mounting substrate 10 that is a resin substrate. Also has a high melting point. Accordingly, the bumps 30 formed on each of the plurality of electrode pads 23 of the surface acoustic wave element 20 and the mounting electrode 11 of the mounting substrate 10 are joined, or formed on the mounting electrode 11 of the mounting substrate 10. Even when the bump 30 and the plurality of electrode pads 23 of the surface acoustic wave element 20 are bonded to each other, even if the bump 30 is heated to 200 ° C.
  • the mounting electrode 11 or the electrode pad 23 and the bump 30 can be strongly Au-Au bonded (metal bonded).
  • the surface acoustic wave device 1 having high bonding strength between the surface acoustic wave element 20 and the mounting substrate 10 can be obtained.
  • Example 1 Hereinafter, the effect of this embodiment will be described more specifically based on Example 1 and Comparative Example 1 of the present invention.
  • Example 1 and Comparative Example 1 members having substantially the same functions as those of the present embodiment are referred to by common reference numerals, and description thereof is omitted.
  • FIG. 3 is a schematic perspective plan view of the surface 12a1 of the first resin layer 12a of the mounting substrate 10 in the surface acoustic wave device according to the first embodiment of the present invention.
  • FIG. 4 is a schematic perspective plan view of the surface 12b1 of the second resin layer 12b of the mounting substrate 10 in the surface acoustic wave device according to the first embodiment of the present invention.
  • FIG. 5 is a schematic perspective plan view of the surface 12c1 of the third resin layer 12c of the mounting substrate 10 in the surface acoustic wave device according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic perspective plan view of the surface 12b1 of the second resin layer 12b of the mounting substrate 10 in the surface acoustic wave device according to the first embodiment of the present invention.
  • FIG. 5 is a schematic perspective plan view of the surface 12c1 of the third resin layer 12c of the mounting substrate 10 in the surface acoustic wave device according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic perspective plan view of the surface 12c2 of the third resin layer 12c of the mounting substrate 10 in the surface acoustic wave device according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic cross-sectional view of the surface acoustic wave device according to the first embodiment of the present invention taken along line VII-VII in FIG.
  • the surface 12a1 of the first resin layer 12a of the mounting substrate 10 is a die attach surface 10a that is one surface of the mounting substrate 10.
  • the plurality of mounting electrodes are connected to each other by a part of the wiring 14.
  • Example 1 of the present invention a surface acoustic wave device having the configuration shown in FIGS. 3 to 7 was prepared.
  • the via-hole conductor 14 a 10 is disposed below the bump 30.
  • the via-hole conductor 14a10 is disposed below the joint portion between the mounting electrode 11 and the electrode pad 23 with the bump 30.
  • the via-hole conductor 14 a 10 overlaps the bump 30, the mounting electrode 11, and the electrode pad 23 when viewed from the mounting direction z of the surface acoustic wave element 20 on the mounting substrate 10. It is provided as follows.
  • two surface acoustic wave elements 20 were flip-chip mounted on the mounting substrate 10.
  • FIG. 8 is a schematic perspective plan view of the surface 12a1 of the first resin layer 12a of the mounting substrate 10 in the surface acoustic wave device according to Comparative Example 1.
  • FIG. FIG. 9 is a schematic perspective plan view of the surface 12 b 1 of the second resin layer 12 b of the mounting substrate 10 in the surface acoustic wave device according to the comparative example 1.
  • FIG. 10 is a schematic perspective plan view of the surface 12c1 of the third resin layer 12c of the mounting substrate 10 in the surface acoustic wave device according to the comparative example 1.
  • FIG. 11 is a schematic perspective plan view of the surface 12c2 of the third resin layer 12c of the mounting substrate 10 in the surface acoustic wave device according to the comparative example 1.
  • 12 is a schematic cross-sectional view of the surface acoustic wave device according to Comparative Example 1 taken along line XII-XII in FIG.
  • a surface acoustic wave device having the configuration shown in FIGS. 8 to 12 was prepared.
  • the surface acoustic wave device according to the first comparative example has no via-hole conductor disposed below the bump 30, and the mounting electrode 11 and the electrode pad 23 are joined to the bump 30.
  • the configuration is substantially the same as that of the surface acoustic wave device according to the first embodiment except that no via-hole conductor is disposed below the surface acoustic wave device.
  • FIG. 13 shows die shear strengths of the surface acoustic wave device according to Example 1 of the present invention and the surface acoustic wave device according to Comparative Example 1.
  • FIG. 14 shows bump shear strengths of the surface acoustic wave device according to Example 1 of the present invention and the surface acoustic wave device according to Comparative Example 1.
  • the die shear strength shown in FIG. 13 is an average value of 10 samples.
  • the bump shear strength shown in FIG. 14 is an average value of 60 bumps included in 10 samples.
  • the “die shear strength” is a bonding strength (shear strength) between the surface acoustic wave element 20 and the mounting substrate 10.
  • the die shear strength is measured when the surface acoustic wave element 20 is flip-chip mounted on the die attach surface 10a of the mounting substrate 10 (the surface acoustic wave element 20 is not sealed with the sealing resin layer 40). And measured.
  • the measurement with the strength tester was performed in accordance with the standards of MIL STD-883G, IEC 60749-19, EIAJ ED-4703. Specifically, first, in the strength tester, the tool attached to the load sensor descends to the die attach surface 10a of the mounting substrate 10, and the strength tester detects the die attach surface 10a of the mounting substrate 10 and stops descending. . Next, the tool was raised to the height set from the die attach surface 10a of the detected mounting board 10, and the joint between the surface acoustic wave element 20 and the mounting board 10 was pushed with the tool, and the load at the time of breaking was measured.
  • “Bump shear strength” is the bonding strength (shear strength) between one bump 30 and the mounting substrate 10. The bump shear strength was measured using the same strength tester as the die shear strength.
  • the surface acoustic wave device according to Example 1 has a higher die shear strength than the surface acoustic wave device according to Comparative Example 1.
  • the surface acoustic wave device according to Example 1 has a higher bump shear strength than the surface acoustic wave device according to Comparative Example 1. From these results, in the surface acoustic wave device according to Example 1 of the present invention, the bonding between the surface acoustic wave element 20 and the mounting substrate 10 is stronger than in the surface acoustic wave device according to Comparative Example 1. I understand.
  • the surface acoustic wave element 20 and the mounting substrate 10 are arranged by disposing the via hole conductor below the bump 30 and disposing the via hole conductor below the bonding portion of the mounting electrode 11 and the electrode pad 23 with the bump 30. It can be seen that the bonding with can be strengthened.
  • the via-hole conductor forms part of the wiring 14
  • the present invention is not limited to this configuration.
  • the via-hole conductor may be provided so as not to constitute a part of the wiring 14.
  • one end of the via-hole conductor is connected to the wiring 14, but the other end may not be connected to the wiring 14.
  • the via-hole conductor may be provided separately from the wiring 14.
  • FIG. 15 is a schematic cross-sectional view of a surface acoustic wave device according to a first modification of the present invention.
  • FIG. 16 is a schematic cross-sectional view of a surface acoustic wave device according to a second modification of the present invention.
  • FIG. 17 is a schematic cross-sectional view of a surface acoustic wave device according to a third modification of the present invention.
  • FIG. 18 is a schematic cross-sectional view of a surface acoustic wave device according to a fourth modification of the present invention.
  • FIG. 19 is a schematic cross-sectional view of a surface acoustic wave device according to a fifth modification of the present invention.
  • FIG. 16 is a schematic cross-sectional view of a surface acoustic wave device according to a second modification of the present invention.
  • FIG. 17 is a schematic cross-sectional view of a surface acoustic wave device according to a third modification of the present invention.
  • FIG. 20 is a schematic cross-sectional view of a surface acoustic wave device according to a sixth modification of the present invention.
  • FIG. 21 is a schematic cross-sectional view of a surface acoustic wave device according to a seventh modification of the present invention.
  • FIG. 22 is a schematic cross-sectional view of a surface acoustic wave device according to an eighth modification of the present invention.
  • the configuration of the wiring and the via hole conductor is not limited to the wiring and the via hole conductor in the first embodiment.
  • the via-hole conductor provided in at least one of the plurality of resin layers is disposed below the bumps and below the joint portions between the mounting electrodes and the electrode pads. Just do it.
  • via hole conductors provided in any of the plurality of resin layers are arranged below the bumps and below the bonding portions of the mounting electrodes and electrode pads with the bumps. Just do it. With such a configuration, the surface acoustic wave element and the mounting substrate can be firmly bonded regardless of the configuration of the via-hole conductor and the wiring.
  • the via-hole conductors 14a11 to 14a13 provided in the first resin layer 12a are disposed below the bumps 30 and on the mounting electrodes 11 and the electrode pads 23. It may be arranged below the joint part. Further, as shown in FIG. 15, when viewed from the mounting direction z of the surface acoustic wave element 20 on the mounting substrate 10, the via-hole conductors 14 a 11 to 14 a 13 overlap with the bumps 30, the mounting electrodes 11, and the electrode pads 23. It may be formed.
  • the via-hole conductors 14a14 to 14a16 provided in the second resin layer 12b are located below the bumps 30, with the bumps 30 in the mounting electrodes 11 and the electrode pads 23. You may arrange
  • the via-hole conductors 14a17 to 14a19 provided in the third resin layer 12c are located below the bump 30 and between the mounting electrode 11 and the bump 30 in the electrode pad 23. You may arrange
  • the via-hole conductors 14a17 to 14a19 overlap the bumps 30, the mounting electrodes 11, and the electrode pads 23. It may be formed.
  • via-hole conductors provided in two of the first to third resin layers 12a to 12c are formed below the bump 30.
  • the mounting electrode 11 and the electrode pad 23 may be disposed below the joint portion with the bump 30.
  • the surface acoustic wave element 20 when the surface acoustic wave element 20 is viewed from the mounting direction z on the mounting substrate 10, it is provided in two of the first to third resin layers 12a to 12c.
  • the formed via-hole conductor may be formed so as to overlap the bump 30, the mounting electrode 11, and the electrode pad 23. In this case, the surface acoustic wave element 20 and the mounting substrate 10 can be bonded more firmly.
  • the via-hole conductors 14a20, 14a22, 14a24 provided in the first resin layer 12a and the via-hole conductor provided in the second resin layer 12b. 14a21, 14a23, and 14a25 are arranged below the bump 30 and below the joint portion between the mounting electrode 11 and the electrode pad 23 with the bump 30.
  • the via-hole conductors 14a20 to 14a25 overlap the bumps 30, the mounting electrodes 11, and the electrode pads 23 when viewed from the mounting direction z of the surface acoustic wave element 20 on the mounting substrate 10. Is formed.
  • the via-hole conductors 14a26, 14a28, 14a30 provided in the first resin layer 12a and the via-hole conductors 14a27, 14a29, 14a31 provided in the third resin layer 12c. are disposed below the bumps 30 and below the joints between the mounting electrodes 11 and the electrode pads 23 with the bumps 30. Further, as shown in FIG. 19, the via-hole conductors 14 a 26 to 14 a 31 overlap with the bumps 30, the mounting electrodes 11, and the electrode pads 23 when viewed from the mounting direction z of the surface acoustic wave element 20 on the mounting substrate 10. Is formed.
  • the via-hole conductors 14a32, 14a34, 14a36 provided in the second resin layer 12b and the via-hole conductors 14a33, 14a35, 14a37 provided in the third resin layer 12c. are disposed below the bumps 30 and below the joints between the mounting electrodes 11 and the electrode pads 23 with the bumps 30.
  • the via-hole conductors 14 a 32 to 14 a 37 overlap with the bumps 30, the mounting electrodes 11, and the electrode pads 23. Is formed.
  • via-hole conductors 14a38 to 14a46 provided in the first to third resin layers 12a to 12c are provided below the bumps 30, on the mounting electrode 11 and the electrode, respectively. You may arrange
  • FIG. Further, as shown in FIG. 21, when viewed from the mounting direction z of the surface acoustic wave element 20 on the mounting substrate 10, the via-hole conductors 14 a 38 to 14 a 46 overlap with the bumps 30, the mounting electrodes 11, and the electrode pads 23. It may be formed. In this case, the surface acoustic wave element 20 and the mounting substrate 10 can be bonded more firmly.
  • via-hole conductors 14a11 to 14a13 provided in the first to third resin layers 12a to 12c, respectively. 14a47 to 14a49 may be disposed below the bump 30 and below the joint portion of the mounting electrode 11 and the electrode pad 23 with the bump 30.
  • FIG. 23 is a schematic cross-sectional view of a surface acoustic wave device according to a ninth modification of the present invention.
  • FIG. 24 is a schematic cross-sectional view of a surface acoustic wave device according to a tenth modification of the present invention.
  • the mounting substrate 10 may be a resin substrate constituted by one resin layer 12a.
  • the mounting substrate 10 may be a resin substrate constituted by a laminate of two resin layers 12a and 12b.
  • the mounting substrate 10 may be a resin substrate configured by a laminate of four or more resin layers.
  • the number of resin layers is the number corresponding to the number of electrode layers necessary to form these circuits. Become.
  • the number of resin layers in the mounting substrate 10 is not limited as long as the via-hole conductor is disposed below the bumps 30, that is, below the joint portions of the mounting electrodes 11 of the mounting substrate 10 with the bumps 30.
  • the wiring 14 is constituted by via-hole conductors formed in the mounting substrate 10 along the mounting direction z of the surface acoustic wave element 20 to the mounting substrate 10.
  • FIG. 25 is a schematic plan view of the die attach surface 10a of the mounting substrate 10 in the surface acoustic wave device according to the second embodiment of the present invention.
  • drawing of members other than the mounting electrode 11 formed on the die attach surface 10a is omitted, and only the mounting electrode 11 is drawn.
  • the surface acoustic wave device of the present embodiment has substantially the same configuration as the surface acoustic wave device 1 according to the first embodiment except for the electrode structure on the die attach surface 10a of the mounting substrate 10.
  • the wiring 14 is formed in a region of the die attach surface 10a of the mounting substrate 10 facing the piezoelectric substrate 21 of the surface acoustic wave element 20. Only the mounting electrode 11 is formed.
  • the wiring 14 is formed on a portion of the die attach surface 10 a of the mounting substrate 10 other than the region facing the piezoelectric substrate 21 of the surface acoustic wave element 20. Specifically, the wiring 14 is formed inside the mounting substrate 10.
  • FIG. 26 is a schematic plan view of the die attach surface 110a of the mounting substrate 110 in the surface acoustic wave device according to the reference example.
  • an inductance is formed together with the mounting electrode 111 in a region facing the piezoelectric substrate 121 of the surface acoustic wave element 120 on the die attach surface 110a of the mounting substrate 110.
  • a part of the wiring 114 may be formed.
  • the mounting substrate 110 that is a resin substrate may be deformed.
  • the mounting substrate 110 which is a resin substrate
  • a part of the wiring 114 formed in a region facing the piezoelectric substrate 121 of the surface acoustic wave element 120 on the die attach surface 110 a of the mounting substrate 110 is surface acoustic wave.
  • the IDT electrode or the like is damaged due to contact with the IDT electrode or the like of the element.
  • the wiring 14 is not formed in a region facing the piezoelectric substrate 21 of the surface acoustic wave element 20 on the die attach surface 10a of the mounting substrate 10. Only the mounting electrode 11 is formed on the die attach surface 10a. For this reason, it can suppress effectively that problems, such as the above-mentioned damage of an IDT electrode, generate
  • FIG. 27 is a schematic plan view of the die attach surface 10a of the mounting substrate 10 in the surface acoustic wave device according to the eleventh modification of the present invention.
  • the wiring 14 is formed in the region of the die attach surface 10 a of the mounting substrate 10 facing the piezoelectric substrate 21 of the surface acoustic wave element 20.
  • the mounting electrode 11 is formed, and a part of the wiring 14 may be formed in a region not facing the piezoelectric substrate 21 of the surface acoustic wave element 20.
  • the mounting substrate 10 is preferably manufactured by dividing a mother substrate 50 as shown in FIG.
  • FIG. 28 is a schematic plan view of a mother substrate 50 for manufacturing the mounting substrate 10 in the surface acoustic wave device according to the second embodiment of the present invention.
  • the plurality of mounting electrodes 11 are arranged symmetrically on the die attach surface 10a, and after the surface acoustic wave element 20 is flip-chip mounted, the mother substrate shown in FIG.
  • the surface acoustic wave element 20 is manufactured by being divided into a plurality of parts, it is difficult to identify the direction of the mounting substrate 10 when the surface acoustic wave element 20 is flip-chip mounted.
  • FIG. 29 is a schematic plan view of a mother substrate 50 for manufacturing the mounting substrate 10 in the surface acoustic wave device according to the twelfth modification of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 弾性表面波素子と実装基板との接合強度が高いCSP型の弾性表面波装置を提供する。 弾性表面波装置1は、複数の電極パッド23を有する弾性表面波素子20と、実装基板10とを備えている。実装基板10のダイアタッチ面10aには、弾性表面波素子20がAuからなるバンプ30によってフリップチップ実装されている。実装基板10は、ビアホール10eが形成されている少なくとも一つの樹脂層12a~12cと、実装基板10のダイアタッチ面10aの上に形成されている複数の実装電極11と、ビアホール導体14aとを有する。実装電極11は、バンプ30により電極パッド23と接合されている。ビアホール導体14aは、ビアホール10e内に形成されている。電極パッド23と実装電極11の少なくとも一方の表層がAuからなる。ビアホール導体14aのうちの少なくとも一つが、バンプ30の下方に配置されている。

Description

弾性表面波装置及びその製造方法
 本発明は、弾性表面波装置及びその製造方法に関する。特に、本発明は、弾性表面波素子が実装基板にフリップチップ実装されているCSP型の弾性表面波装置及びその製造方法に関する。
 従来、携帯電話機などの通信機器におけるRF(Radio Frequency)回路に、弾性表面波装置が搭載されている。近年、通信機器の高機能化、小型化、軽量化が進んでおり、RF回路に搭載される弾性表面波装置に対しても、小型化、軽量化、薄型化が求められている。このような要望を満足し得る弾性表面波装置として、CSP(Chip Size Package)型の弾性表面波装置が実用化されている。
 CSP型の弾性表面波装置は、弾性表面波素子と、実装基板とを備えている。弾性表面波素子は、圧電基板と、少なくとも一つのIDT電極と、その少なくとも一つのIDT電極に接続されている複数の電極パッドとを備えている。少なくとも一つのIDT電極と、複数の電極パッドとは、圧電基板の上に形成されている。実装基板のダイアタッチ面には、複数の実装電極が形成されている。弾性表面波素子は、複数の電極パッドがそれぞれバンプにより実装電極に接合されることにより、実装基板のダイアタッチ面にフリップチップ実装されている。弾性表面波素子は、実装基板上に形成された封止樹脂層により封止されている。
 このようなCSP型の弾性表面波装置の一例が、下記の特許文献1に記載されている。特許文献1には、バンプをAuにより形成すること、弾性表面波素子を実装基板に超音波を用いてバンプ接合すること、及び実装基板として樹脂基板を用いることが記載されている。
特開2006-128809号公報
 しかしながら、特許文献1に記載のCSP型の弾性表面波装置においては、弾性表面波素子と実装基板との接合強度を十分に高くすることができないという問題があった。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、弾性表面波素子が実装基板にフリップチップ実装されているCSP型の弾性表面波装置であって、弾性表面波素子と実装基板との接合強度が高い弾性表面波装置を提供することにある。
 本発明に係る弾性表面波装置は、弾性表面波素子と、実装基板とを備えている。弾性表面波素子は、複数の電極パッドを有する。実装基板の一方の表面であるダイアタッチ面には、弾性表面波素子がAuからなるバンプによってフリップチップ実装されている。実装基板は、少なくとも一つの樹脂層と、複数の実装電極と、ビアホール導体とを有する。樹脂層には、ビアホールが形成されている。実装電極は、実装基板のダイアタッチ面の上に形成されている。実装電極は、バンプにより電極パッドと接合されている。ビアホール導体は、ビアホール内に形成されている。電極パッドと実装電極の少なくとも一方の表層がAuからなる。ビアホール導体のうちの少なくとも一つが、バンプの下方に配置されている。 
 本発明に係る弾性表面波装置のある特定の局面では、ビアホール導体のうちの少なくとも一つが、実装電極及び電極パッドにおけるバンプとの接合部分の下方に配置されている。
 本発明に係る弾性表面波装置の他の特定の局面では、弾性表面波素子の実装基板への実装方向から視た際に、ビアホール導体のうちの少なくとも一つは、バンプ、実装電極及び電極パッドと重なるように設けられている。
 本発明に係る弾性表面波装置の別の特定の局面では、実装基板は、複数の端子電極と、配線とを有する。端子電極は、実装基板の他方の表面の上に形成されている。配線は、実装電極と端子電極とを接続している。ビアホール導体は、配線の一部を構成している。
 本発明に係る弾性表面波装置のさらに他の特定の局面では、樹脂層は、樹脂を含む樹脂組成物からなり、その樹脂のガラス転移温度(Tg)は、100℃~300℃の範囲内にある。この場合、本発明がより好適に適用される。
 本発明に係る弾性表面波装置のさらに別の特定の局面では、樹脂層は、ガラス織布にエポキシ系樹脂が含浸してなるガラスエポキシからなるガラスエポキシ樹脂層からなる。
 本発明に係る弾性表面波装置のさらにまた他の特定の局面では、実装電極は、Auからなり、表層を構成しているAu層と、NiからなるNi層とを含む積層体からなる。Ni層を設けることにより、実装電極の剛性を高めることができる。従って、弾性表面波素子と実装基板との接合強度をより高めることができる。
 本発明に係る弾性表面波装置のさらにまた別の特定の局面では、積層体には、Ni層を含む複数のめっき層が含まれており、複数のめっき層のうち、Ni層が最も大きな厚みを有する。この構成によれば、実装電極の剛性をさらに高めることができる。従って、弾性表面波素子と実装基板との接合強度をさらに高めることができる。
 本発明に係る弾性表面波装置のまたさらに他の特定の局面では、ビアホール導体は、Cuからなる。この構成では、フリップチップ実装により弾性表面波装置を作製する際におけるビアホール導体の変形をより効果的に抑制することができる。従って、弾性表面波素子と実装基板との接合強度をより高めることができる。
 本発明に係る弾性表面波装置のまたさらに別の特定の局面では、実装基板は、実装基板の他方の表面の上に形成されている複数の端子電極と、実装電極と端子電極とを接続している配線とを有する。配線は、実装基板のダイアタッチ面における、弾性表面波素子の圧電基板と対向している領域以外の部分に形成されている。この構成では、フリップチップ実装により弾性表面波装置を作製する際における弾性表面波素子の損傷を抑制することができる。従って、高い歩留まりで弾性表面波装置を製造することができる。
 本発明に係る弾性表面波装置のまたさらにまた他の特定の局面では、弾性表面波装置は、実装基板上に形成されており、弾性表面波素子を封止している封止樹脂層をさらに備えている。この構成では、弾性表面波素子を保護することができる。
 本発明に係る弾性表面波装置の製造方法は、上記本発明に係る弾性表面波装置を製造するための方法に関する。本発明に係る弾性表面波装置の製造方法では、バンプと実装電極、または、バンプと電極パッドとを接触させた状態で、バンプと実装電極、または、バンプと電極パッドとを加熱しながら、実装基板と弾性表面波素子とが互いに近づく方向に弾性表面波素子に荷重を加えると共に、超音波を印加することにより、弾性表面波素子を実装基板にフリップチップ実装する。
 本発明に係る弾性表面波装置の製造方法のある特定の局面では、弾性表面波素子を実装基板にフリップチップ実装する際に、バンプと実装電極、または、バンプと電極パッドとをAuの再結晶温度以上にまで加熱する。
 本発明では、ビアホール導体のうちの少なくとも一つが、バンプの下方に配置されている。このため、実装電極とバンプ、または、電極パッドとバンプとを強固に金属結合させることができる。その結果、弾性表面波素子と実装基板との接合強度が高い弾性表面波装置を得ることができる。
図1は、本発明を実施した一実施形態に係る弾性表面波装置の略図的断面図である。 図2は、図1のII部分を拡大した略図的部分拡大断面図である。 図3は、本発明の実施例1に係る弾性表面波装置における、実装基板10の第1の樹脂層12aの表面12a1の略図的透視平面図である。 図4は、本発明の実施例1に係る弾性表面波装置における、実装基板10の第2の樹脂層12bの表面12b1の略図的透視平面図である。 図5は、本発明の実施例1に係る弾性表面波装置における、実装基板10の第3の樹脂層12cの表面12c1の略図的透視平面図である。 図6は、本発明の実施例1に係る弾性表面波装置における、実装基板10の第3の樹脂層12cの表面12c2の略図的透視平面図である。 図7は、図3の線VII-VIIにおける、本発明の実施例1に係る弾性表面波装置の略図的断面図である。 図8は、比較例1に係る弾性表面波装置における、実装基板10の第1の樹脂層12aの表面12a1の略図的透視平面図である。 図9は、比較例1に係る弾性表面波装置における、実装基板10の第2の樹脂層12bの表面12b1の略図的透視平面図である。 図10は、比較例1に係る弾性表面波装置における、実装基板10の第3の樹脂層12cの表面12c1の略図的透視平面図である。 図11は、比較例1に係る弾性表面波装置における、実装基板10の第3の樹脂層12cの表面12c2の略図的透視平面図である。 図12は、図8の線XII-XIIにおける、比較例1に係る弾性表面波装置の略図的断面図である。 図13は、本発明の実施例1に係る弾性表面波装置と比較例1に係る弾性表面波装置のそれぞれのダイシェア強度を示すグラフである。 図14は、本発明の実施例1に係る弾性表面波装置と比較例1に係る弾性表面波装置のそれぞれのバンプシェア強度を示すグラフである。 図15は、本発明の第1の変形例に係る弾性表面波装置の略図的断面図である。 図16は、本発明の第2の変形例に係る弾性表面波装置の略図的断面図である。 図17は、本発明の第3の変形例に係る弾性表面波装置の略図的断面図である。 図18は、本発明の第4の変形例に係る弾性表面波装置の略図的断面図である。 図19は、本発明の第5の変形例に係る弾性表面波装置の略図的断面図である。 図20は、本発明の第6の変形例に係る弾性表面波装置の略図的断面図である。 図21は、本発明の第7の変形例に係る弾性表面波装置の略図的断面図である。 図22は、本発明の第8の変形例に係る弾性表面波装置の略図的断面図である。 図23は、本発明の第9の変形例に係る弾性表面波装置の略図的断面図である。 図24は、本発明の第10の変形例に係る弾性表面波装置の略図的断面図である。 図25は、本発明の第2の実施形態に係る弾性表面波装置における、実装基板10のダイアタッチ面10aの略図的平面図である。 図26は、参考例に係る弾性表面波装置における、実装基板110のダイアタッチ面110aの略図的平面図である。 図27は、本発明の第11の変形例に係る弾性表面波装置における、実装基板10のダイアタッチ面10aの略図的平面図である。 図28は、本発明の第2の実施形態に係る弾性表面波装置における、実装基板10作製用のマザー基板50の略図的平面図である。 図29は、本発明の第12の変形例に係る弾性表面波装置における、実装基板10作製用のマザー基板50の略図的平面図である。
 以下、本発明を実施した好ましい形態について、図1に示す弾性表面波装置1を例に挙げて説明する。但し、弾性表面波装置1は、単なる例示である。本発明に係る弾性表面波装置は、弾性表面波装置1に何ら限定されない。
 図1は、本発明を実施した一実施形態に係る弾性表面波装置1の略図的断面図である。図2は、図1のII部分を拡大した略図的部分拡大断面図である。
 本実施形態の弾性表面波装置1は、CSP(Chip Size Package)型の弾性表面波装置である。図1に示すように、弾性表面波装置1は、実装基板10と、実装基板10のダイアタッチ面10aにフリップチップ実装されている弾性表面波素子20とを備えている。弾性表面波素子20は、実装基板10の上に形成されている封止樹脂層40により封止されている。封止樹脂層40は、例えば、エポキシ樹脂などの適宜の樹脂により形成することができる。
 なお、弾性表面波素子20と実装基板10とが対向している領域、すなわち、弾性表面波が伝搬する領域には、封止樹脂層40が形成されておらず、空間が確保されている。
 弾性表面波装置1は、例えば、弾性表面波共振子であってもよいし、弾性表面波フィルタであってもよいし、弾性表面波分波器であってもよい。
 弾性表面波素子20は、圧電基板21を備えている。圧電基板21は、適宜の圧電材料からなる基板を用いることができる。具体的には、圧電基板21としては、例えば、LiNbO基板、LiTaO基板や水晶基板などを用いることができる。
 圧電基板21の実装基板10側の表面21aの上には、少なくとも一つのIDT電極22と、複数の電極パッド23とが形成されている。IDT電極22は、互いに間挿し合っている一対のくし歯状電極を有する。IDT電極22は、例えば、Pt,Au,Ag,Cu,Ni,W,Ta,Fe,Cr,Al及びPdからなる群から選ばれた金属、もしくは、Pt,Au,Ag,Cu,Ni,W,Ta,Fe,Cr,Al及びPdからなる群から選ばれた一種以上の金属を含む合金などにより形成することができる。また、IDT電極22は、上記金属や合金などからなる複数の導電膜の積層体により構成することもできる。
 少なくとも一つのIDT電極22には、複数の電極パッド23が電気的に接続されている。電極パッド23も、上記IDT電極22と同様に、例えば、Pt,Au,Ag,Cu,Ni,W,Ta,Fe,Cr,Al及びPdからなる群から選ばれた金属、もしくは、Pt,Au,Ag,Cu,Ni,W,Ta,Fe,Cr,Al及びPdからなる群から選ばれた一種以上の金属を含む合金などにより形成することができる。また、電極パッド23は、上記金属や合金などからなる複数の導電膜の積層体により構成することもできる。
 複数の電極パッド23のそれぞれの上には、バンプ30が形成されている。複数の電極パッド23は、それぞれこのバンプ30により、後述する実装基板10のダイアタッチ面10aの上に設けられている実装電極11と接合されている。すなわち、複数の電極パッド23は、バンプ30により、実装基板10のダイアタッチ面10aの上に設けられている実装電極11と、電気的にも機械的にも接続されている。このようにして、弾性表面波素子20は、実装基板10のダイアタッチ面10aにフリップチップ実装されている。本実施形態においては、バンプ30は、Auからなる。
 実装基板10は、第1~第3の樹脂層12a~12cを備えている樹脂基板である。具体的には、本実施形態では、実装基板10は、第1~第3の樹脂層12a~12cの積層体により構成されている樹脂基板である。第1~第3の樹脂層12a~12cは、適宜の樹脂により形成することができるが、ガラス転移温度(Tg)が100℃~300℃の範囲内にある樹脂を含む樹脂組成物により形成した場合に、後述する本実施形態の効果がより強く奏される。具体的には、第1~第3の樹脂層12a~12cは、例えば、ガラス織布にエポキシ系樹脂が含浸してなるガラスエポキシからなるガラスエポキシ樹脂層により構成することができる。このガラスエポキシ樹脂層のガラス転移温度(Tg)は、約230℃程度である。
 なお、本発明において、ガラス転移温度(Tg)は、DMAにより測定した値をいうものとする。
 実装基板10のダイアタッチ面10aの上には、複数の実装電極11が形成されている。実装電極11の少なくとも表層は、Auからなる。具体的には、本実施形態では、図2に示すように、実装電極11は、Auからなり、実装電極11の表層を構成しているAu層11dと、NiからなるNi層11bとを含む積層体からなる。実装電極11の表層がAuからなるAu層11dであるため、実装電極11は、Auからなるバンプ30とAu-Au接合(金属結合)されている。
 より具体的には、実装電極11は、実装基板10側から、CuからなるCu層11aと、Ni層11bと、PdからなるPd層11cと、Au層11dとがこの順番で積層された積層体により構成されている。これらの層のうち、Cu層11aを除く、Ni層11b、Pd層11c及びAu層11dは、めっき層により構成されている。より具体的には、Ni層11b、Pd層11c及びAu層11dは、無電解めっき層により構成されている。本実施形態では、無電解めっき層により構成されているNi層11b、Pd層11c及びAu層11dのうち、Ni層11bが最も大きな厚みを有する。Cu層11aは、一部がめっき層により構成されていてもよい。
 Au層11dの厚みは、0.02μm~0.07μm程度であることが好ましい。Au層11dが薄すぎると、実装電極11とバンプ30との接合強度が低くなることがある。一方、Au層11dが厚すぎると、Snを含むはんだを用いて、通信機器のRF回路を構成する基板に、弾性表面波装置を実装する際に、AuSnが形成されやすくなり、弾性表面波装置と基板との接合強度が劣化する場合がある。
 Pd層11cは、Au層11dとNi層11bとの間の電極材料の拡散を防止する拡散防止層としての機能を有する。Pd層11cの厚みは、Au層11dとNi層11bとの間の電極材料の拡散を十分に防止できる程度の厚みであればよく、例えば、0.01μm~0.05μm程度であることが好ましい。
 Ni層11bの厚みは、5μm~15μm程度であることが好ましい。このNi層11bは、第1~第3の樹脂層12a~12c及び実装電極11の構成材料である、樹脂、Cu、Au、Pd、Niの中で最も高い硬度を有する。このため、本実施形態のように、Ni層11bを厚く形成することにより、実装電極11の硬度を高くすることができる。従って、バンプ30と実装電極11との接合強度をより高めることができる。Ni層11bが薄すぎると、バンプ30と実装電極11との接合強度が低くなることがある。
 また、Ni層11bは、本実施形態のように、無電解Niめっき層からなることが好ましい。この場合、Ni層11bの硬度をさらに高めることができるため、バンプ30と実装電極11との接合強度をさらに高めることができる。なお、バンプ30は、電極パッド23の上ではなく、実装電極11の上に形成されていてもよい。この場合、電極パッド23の少なくとも表層は、Auからなる。電極パッド23の表層がAuからなるため、電極パッド23は、Auからなるバンプ30とAu-Au接合(金属結合)される。
 図1に示すように、実装基板10の他方の表面、すなわち、実装基板10の裏面10bの上には、複数の端子電極13が形成されている。端子電極13は、弾性表面波装置1が搭載される通信機器のRF回路と接続される電極である。端子電極13は、適宜の導電材料により形成することができる。具体的には、端子電極13は、実装電極11と同じ構造を有する。より具体的には、端子電極13は、実装基板10側から、CuからなるCu層と、NiからなるNi層と、PdからなるPd層と、AuからなるAu層とがこの順番で積層された積層体により構成されている。
 実装基板10には、配線14が形成されている。この配線14により、実装電極11と端子電極13とが電気的に接続されている。配線14は、実装基板10の実装電極11が形成されているダイアタッチ面10aと実装基板10の内部とに形成されている。
 配線14は、適宜の導電材料により形成することができる。具体的には、配線14は、例えば、Cuや、Cuを含む合金により形成することができる。
 配線14は、実装基板10の第1~第3の樹脂層12a~12cを貫通するように形成されている複数のビアホール10e内に形成されているビアホール導体14a1~14a9を含む。換言すれば、ビアホール導体14a1~14a9は、配線14の一部を構成している。
 本実施形態の弾性表面波装置1では、ビアホール導体14a1~14a9のうちの少なくとも一つが、バンプ30の下方に配置されている。そして、本実施形態の弾性表面波装置1では、ビアホール導体14a1~14a9のうちの少なくとも一つが、実装電極11及び電極パッド23におけるバンプ30との接合部分の下方に配置されている。また、本実施形態の弾性表面波装置1では、弾性表面波素子20の実装基板10への実装方向z(本実施形態においては、実装方向zは、実装基板10のダイアタッチ面10aの法線方向と等しい。)から視た際に、ビアホール導体14a1~14a9のうちの少なくとも一つは、バンプ30、実装電極11及び電極パッド23と重なるように設けられている。
 (弾性表面波装置1の製造方法)
 次に、本実施形態に係る弾性表面波装置1の製造方法の一例について説明する。
 まず、弾性表面波素子20の複数の電極パッド23のそれぞれの上に、バンプ30を形成する。バンプ30の形成方法は、特に限定されない。バンプ30は、例えば、スタッドバンプ法により形成することができる。
 そして、弾性表面波素子20の複数の電極パッド23のそれぞれの上に形成されたバンプ30と、実装基板10の実装電極11とを接合する接合工程を行うことにより、弾性表面波素子20を実装基板10のダイアタッチ面10aにフリップチップ実装する。そして、弾性表面波素子20を封止樹脂層40により封止し、弾性表面波装置1を完成させる。具体的には、弾性表面波素子20の複数の電極パッド23のそれぞれの上に形成されたバンプ30と、実装基板10の実装電極11とを接触させた状態で、バンプ30と実装電極11とを加熱しながら、実装基板10と弾性表面波素子20とが互いに近づく方向に弾性表面波素子20に荷重を加えると共に、超音波を印加する。これにより、実装電極11のAu層11dのAu原子と、バンプ30のAu原子とが強制的に近づけられる。その結果、実装電極11のAu層11dのAu原子と、バンプ30のAu原子とが、金属結合する。すなわち、バンプ30と実装電極11とが、Au-Au接合(金属結合)する。なお、電極パッド23の上ではなく、実装電極11の上にバンプ30を形成してもよい。この場合、実装電極11の上にバンプ30を形成した後に、実装電極11の上に形成されたバンプ30と、少なくとも表層がAuからなる電極パッド23とを接合する接合工程を行い、弾性表面波素子20を実装基板10のダイアタッチ面10aにフリップチップ実装する。具体的には、実装電極11の上に形成されたバンプ30と、電極パッド23とを接触させた状態で、バンプ30と電極パッド23とを加熱しながら、実装基板10と弾性表面波素子20とが互いに近づく方向に弾性表面波素子20に荷重を加えると共に、超音波を印加する。これにより、電極パッド23の表層のAu原子と、バンプ30のAu原子とが強制的に近づけられる。その結果、電極パッド23の表層のAu原子と、バンプ30のAu原子とが、金属結合する。すなわち、バンプ30と電極パッド23とが、Au-Au接合(金属結合)する。
 Au-Au接合(金属結合)を好適に形成する観点からは、弾性表面波素子20に加える荷重は、大きい方が好ましい。弾性表面波素子20に加える荷重を大きくすることで、実装電極11のAu層11dまたは電極パッド23の表層のAu原子と、バンプ30のAu原子とをより近づけることができるため、金属結合が生じやすくなるからである。但し、弾性表面波素子20に加える荷重が大きすぎると、弾性表面波素子20が損傷してしまう場合がある。
 上記接合工程において、実装電極11または電極パッド23と、バンプ30とを、Auの再結晶温度以上にまで加熱することが好ましい。そうすることにより、Au原子が動きやすくなるため、より強い金属結合が得られる。具体的には、接合工程において、実装電極11または電極パッド23と、バンプ30とを約200℃以上にまで加熱することが好ましい。但し、実装電極11または電極パッド23と、バンプ30とを高温にまで加熱しすぎると、実装基板10や弾性表面波素子20が損傷してしまう場合がある。従って、実装電極11または電極パッド23と、バンプ30との加熱温度は、300℃以下であることが好ましい。
 ところで、従来、CSP型の弾性表面波装置においては、実装基板として、LTCC(Low Temperature Co-fired Ceramics)基板やHTCC(High Temperature Co-fired Ceramics)基板などのセラミック基板が一般的に用いられている。
 それに対して、本実施形態では、実装基板10が第1~第3の樹脂層12a~12cの積層体により構成されている樹脂基板である。すなわち、実装基板10は、樹脂製である。従って、以下のような効果(1)~(3)が得られる。
 (1)優れた電気的特性が得られる。
 セラミック基板では、セラミックグリーンシートに導電性ペーストを印刷したものを焼成することにより電極が形成される。このため、導電性ペーストの印刷精度や焼成に伴う収縮により、微細な電極を高精度に形成することが困難である。
 一方、樹脂基板である実装基板10では、樹脂層の上に形成された金属層をエッチングなどによりパターニングすることで電極を形成することができる。このため、樹脂基板である実装基板10では、微細な電極を高精度に形成することができる。よって、樹脂基板である実装基板10では、単位面積当たりに形成できる電極やビアホールの数がセラミック基板よりも多くなる。従って、設計の自由度が高まると共に、優れた電気特性を得ることができる。
 また、上述のように、セラミック基板の場合は、焼成により電極を形成する。このため、セラミック基板に形成された電極の断面形状は、縁端部が潰れた形状となる。それに対して、樹脂基板である実装基板10の場合は、金属層をエッチングなどによりパターニングすることで電極を形成できる。このため、樹脂基板である実装基板10に形成された電極の断面形状は、台形もしくは長方形に近い形状となる。よって、樹脂基板である実装基板10の電極の方が、縁端効果による導体損失の低減により、高周波信号の損失が小さくなる。この点においても、優れた電気特性を得ることができる。
 また、樹脂基板である実装基板10では、HTCC基板よりも電気伝導率の高い電極材料を用いることができる。HTCC基板では、セラミックグリーンシートに導電性ペーストを印刷したものを約1600℃の高温で焼成することにより電極を形成するため、電極材料として、W、Mo、Taなどの高融点金属を用いる必要がある。しかしながら、これらの高融点金属はいずれも電気伝導率が低い。このため、HTCC基板では、電気伝導率が高い電極を形成することが困難である。一方、樹脂基板である実装基板10では、電極の形成に焼成が不要であるため、電極材料として、Cuなどの電気伝導率が高い金属を用いることができる。従って、樹脂基板である実装基板10では、電気伝導率が高い電極を形成することができ、電極における高周波信号の損失を小さくすることができる。この点においても、優れた電気特性を得ることができる。
 また、樹脂基板である実装基板10では、LTCC基板よりも電極密度の高い電極を形成することができる。LTCC基板では、焼成温度が約850℃~900℃と低いため、電極材料として、Cuなどの電気伝導率が高い金属を用いることができる。しかしながら、LTCC基板では、セラミックグリーンシートに導電性ペーストを印刷したものを焼成することにより電極を形成するため、焼成により、電極に部分的に隙間が生じて、電極密度が粗な部分と密な部分が混在することになる。一方、樹脂基板である実装基板10では、金属層をエッチングなどによりパターニングすることで電極を形成するため、均一かつ高い電極密度の電極を形成することができる。この結果、樹脂基板である実装基板10では、電極における高周波信号の損失を小さくすることができる。この点においても、優れた電気特性を得ることができる。
 (2)優れた熱衝撃耐性が得られる。
 上述のように、弾性表面波素子の圧電基板としては、LiTaO基板やLiNbO基板などの圧電基板が使用される。LiTaO基板やLiNbO基板の面方向における線膨脹係数は、約15ppm/℃~16ppm/℃である。それに対して、セラミック基板の面方向における線膨脹係数は、約7ppm/℃であり、圧電基板の面方向における線膨脹係数の半分程度である。このため、セラミック基板を実装基板として用いたCSP型の弾性表面波装置では、温度サイクル負荷がかかった場合、弾性表面波素子の圧電基板と実装基板であるセラミック基板との膨張量、収縮量の違いから、弾性表面波素子と実装基板との接合部分に応力が発生する。その結果、接合部分における接合強度が低下するという問題が生じる。すなわち、十分に高い熱衝撃耐性が得難い。この問題は、バンプがAuからなる場合に顕著である。
 それに対して、ガラスエポキシなどからなる第1~第3の樹脂層12a~12cの積層体により構成されている実装基板10の面方向における線膨脹係数は、約13ppm/℃~16ppm/℃であり、圧電基板の面方向における線膨脹係数と、ほぼ同じである。そのため、弾性表面波素子20と実装基板10との接合部分に発生する応力が小さくなり、優れた熱衝撃耐性を得ることができる。
 (3)実装基板10のダイアタッチ面10aの平坦度(コプラナリティ)を高めることができる。
 セラミック基板は、焼結する際に収縮するため、表面に歪みが生じやすい。それに対して、樹脂基板である実装基板10は、プレスにより製造できるため、高い平坦度(コプラナリティ)を有する表面が得やすい。すなわち、実装基板10のダイアタッチ面10aにおける高い平坦度(コプラナリティ)を実現することができる。その結果、弾性表面波素子20と実装基板10との接合強度を高くすることができる。
 しかしながら、樹脂基板は、セラミック基板などの融点よりも低いガラス転移温度(Tg)を有する。例えば、ガラスエポキシなどの樹脂のガラス転移温度(Tg)は、約100℃~約300℃の範囲にある。このため、樹脂基板を実装基板として用いたCSP型の弾性表面波装置では、表層がAuからなる実装電極または電極パッドとAuからなるバンプとをAu-Au接合(金属結合)させるために、Auの再結晶温度以上の温度である200℃以上にまで加熱すると、樹脂基板が軟化してしまう。樹脂基板が軟化すると、荷重や超音波振動の力が、実装電極とバンプとに加わることなく、逃げてしまう。このため、実装電極または電極パッドのAu原子とバンプのAu原子とが金属結合が形成されるまで近づきにくくなる。従って、実装電極または電極パッドとバンプとにおいて、強固なAu-Au接合(金属結合)を得ることが出来ず、弾性表面波素子と実装基板との接合が不十分になる場合がある。
 それに対して、本実施形態の弾性表面波装置1では、ビアホール導体14a1~14a9のうちの少なくとも一つが、バンプ30の下方に配置されている。そして、本実施形態の弾性表面波装置1では、ビアホール導体14a1~14a9のうちの少なくとも一つが、実装電極11及び電極パッド23におけるバンプ30との接合部分の下方に配置されている。また、本実施形態の弾性表面波装置1では、弾性表面波素子20の実装基板10への実装方向zから視た際に、ビアホール導体14a1~14a9のうちの少なくとも一つが、バンプ30、実装電極11及び電極パッド23と重なるように設けられている。ここで、ビアホール導体14a1~14a9は、金属や合金からなるため、樹脂基板である実装基板10の第1~第3の樹脂層12a~12cを構成している樹脂のガラス転移温度(Tg)よりも高い融点を有する。従って、弾性表面波素子20の複数の電極パッド23のそれぞれの上に形成されたバンプ30と、実装基板10の実装電極11とを接合する、または、実装基板10の実装電極11の上に形成されたバンプ30と、弾性表面波素子20の複数の電極パッド23とを接合する接合工程において、Auの再結晶温度以上の温度である200℃以上にまで加熱した場合であっても、ビアホール導体14a1~14a9は軟化しにくい。特に、Cuの融点は1084.4℃であるため、ビアホール導体14a1~14a9がCuからなる場合は、ビアホール導体14a1~14a9はより軟化しにくい。よって、ビアホール導体14a1~14a9が支持部材としての機能を担うため、樹脂基板である実装基板10が軟化した場合であっても、実装電極11または電極パッド23とバンプ30との間に荷重や超音波振動の力が適切に加わる。その結果、実装電極11または電極パッド23とバンプ30とを強固にAu-Au接合(金属結合)させることができる。その結果、弾性表面波素子20と実装基板10との接合強度が高い弾性表面波装置1を得ることができる。
 (実施例1)
 以下、上記本実施形態の効果について、本発明の実施例1及び比較例1に基づいて、より具体的に説明する。なお、実施例1及び比較例1の説明において、上記本実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。
 図3は、本発明の実施例1に係る弾性表面波装置における、実装基板10の第1の樹脂層12aの表面12a1の略図的透視平面図である。図4は、本発明の実施例1に係る弾性表面波装置における、実装基板10の第2の樹脂層12bの表面12b1の略図的透視平面図である。図5は、本発明の実施例1に係る弾性表面波装置における、実装基板10の第3の樹脂層12cの表面12c1の略図的透視平面図である。図6は、本発明の実施例1に係る弾性表面波装置における、実装基板10の第3の樹脂層12cの表面12c2の略図的透視平面図である。図7は、図3の線VII-VIIにおける、本発明の実施例1に係る弾性表面波装置の略図的断面図である。なお、実装基板10の第1の樹脂層12aの表面12a1は、実装基板10の一方の表面であるダイアタッチ面10aとなる。実装基板10の第1の樹脂層12aの表面12a1には、複数の実装電極11と配線14の一部とが形成されている。複数の実装電極は、配線14の一部により、互いに接続されている。
 本発明の実施例1として、図3~図7に示す構成の弾性表面波装置を用意した。図3及び図7に示すように、この実施例1に係る弾性表面波装置では、ビアホール導体14a10が、バンプ30の下方に配置されている。そして、実施例1に係る弾性表面波装置では、ビアホール導体14a10が、実装電極11及び電極パッド23におけるバンプ30との接合部分の下方に配置されている。また、実施例1に係る弾性表面波装置では、弾性表面波素子20の実装基板10への実装方向zから視た際に、ビアホール導体14a10が、バンプ30、実装電極11及び電極パッド23と重なるように設けられている。なお、実施例1に係る弾性表面波装置では、2つの弾性表面波素子20を実装基板10にフリップチップ実装した。
 図8は、比較例1に係る弾性表面波装置における、実装基板10の第1の樹脂層12aの表面12a1の略図的透視平面図である。図9は、比較例1に係る弾性表面波装置における、実装基板10の第2の樹脂層12bの表面12b1の略図的透視平面図である。図10は、比較例1に係る弾性表面波装置における、実装基板10の第3の樹脂層12cの表面12c1の略図的透視平面図である。図11は、比較例1に係る弾性表面波装置における、実装基板10の第3の樹脂層12cの表面12c2の略図的透視平面図である。図12は、図8の線XII-XIIにおける、比較例1に係る弾性表面波装置の略図的断面図である。
 比較例1として、図8~図12に示す構成の弾性表面波装置を用意した。図8及び図12に示すように、この比較例1に係る弾性表面波装置は、バンプ30の下方にビアホール導体が配置されていないこと、実装電極11及び電極パッド23におけるバンプ30との接合部分の下方にビアホール導体が配置されていないこと以外は、上記実施例1に係る弾性表面波装置と実質的に同様の構成を有する。
 図13に、本発明の実施例1に係る弾性表面波装置と比較例1に係る弾性表面波装置のそれぞれのダイシェア強度を示す。図14に、本発明の実施例1に係る弾性表面波装置と比較例1に係る弾性表面波装置のそれぞれのバンプシェア強度を示す。なお、図13に示すダイシェア強度は、サンプル10個の平均値である。図14に示すバンプシェア強度は、10個のサンプルに含まれる60個のバンプにおける平均値である。
 ここで、「ダイシェア強度」とは、弾性表面波素子20と実装基板10との接合強度(せん断強度)である。ダイシェア強度は、弾性表面波素子20を実装基板10のダイアタッチ面10aにフリップチップ実装した状態(弾性表面波素子20が封止樹脂層40により封止されていない状態)で、強度試験機を用いて測定した。強度試験機による測定は、MIL STD-883G、IEC 60749-19、EIAJ ED-4703の規格に準拠して行った。詳細には、まず、強度試験機において、荷重センサに取り付けられたツールが実装基板10のダイアタッチ面10aまで下降し、強度試験機が実装基板10のダイアタッチ面10aを検出し下降を停止した。次に、検出した実装基板10のダイアタッチ面10aより設定された高さまでツールを上昇させ、ツールで弾性表面波素子20と実装基板10との接合部分を押し、破壊時の荷重を計測した。
 「バンプシェア強度」とは、一つのバンプ30と実装基板10との接合強度(せん断強度)である。バンプシェア強度は、ダイシェア強度と同じ強度試験機を用いて測定した。
 図13から明らかなように、実施例1に係る弾性表面波装置では、比較例1に係る弾性表面波装置よりも高いダイシェア強度が得られた。また、図14から明らかなように、実施例1に係る弾性表面波装置では、比較例1に係る弾性表面波装置よりも高いバンプシェア強度が得られた。これらの結果から、本発明の実施例1に係る弾性表面波装置では、比較例1に係る弾性表面波装置よりも、弾性表面波素子20と実装基板10との接合が強固になっていることが分かる。換言すれば、バンプ30の下方にビアホール導体を配置すること、実装電極11及び電極パッド23におけるバンプ30との接合部分の下方にビアホール導体を配置することにより、弾性表面波素子20と実装基板10との接合を強固にすることができることが分かる。
 なお、上記第1の実施形態では、ビアホール導体が配線14の一部を構成している例について説明した。但し、本発明は、この構成に限定されない。ビアホール導体は、例えば配線14の一部を構成しないように設けられていてもよい。具体的には、例えば、ビアホール導体の一端が配線14に接続されているものの、他端は配線14に接続されていなくてもよい。また、ビアホール導体は、配線14とは別個に設けられていてもよい。
 以下、上記第1の実施形態の変形例や他の実施形態について説明する。なお、以下の変形例及び実施形態の説明において、上記第1の実施形態と実質的に同様の機能を有する部材を同様の符号で参照し、説明を省略する。
 (第1~第8の変形例)
 図15は、本発明の第1の変形例に係る弾性表面波装置の略図的断面図である。図16は、本発明の第2の変形例に係る弾性表面波装置の略図的断面図である。図17は、本発明の第3の変形例に係る弾性表面波装置の略図的断面図である。図18は、本発明の第4の変形例に係る弾性表面波装置の略図的断面図である。図19は、本発明の第5の変形例に係る弾性表面波装置の略図的断面図である。図20は、本発明の第6の変形例に係る弾性表面波装置の略図的断面図である。図21は、本発明の第7の変形例に係る弾性表面波装置の略図的断面図である。図22は、本発明の第8の変形例に係る弾性表面波装置の略図的断面図である。
 上記第1の実施形態において、配線14の構成の一例について説明した。但し、本発明において、配線やビアホール導体の構成は、上記第1の実施形態における配線やビアホール導体に何ら限定されない。例えば、実装基板が複数の樹脂層を有する場合、複数の樹脂層の少なくとも一つに設けられたビアホール導体が、バンプの下方、実装電極及び電極パッドにおけるバンプとの接合部分の下方に配置されていればよい。また、実装基板が複数の樹脂層を有する場合、バンプの下方、実装電極及び電極パッドにおけるバンプとの接合部分の下方に、複数の樹脂層のいずれかに設けられたビアホール導体が、配置されていればよい。このような構成であれば、ビアホール導体や配線がどのような構成であっても、弾性表面波素子と実装基板とを強固に接合することができる。
 例えば、図15に示す本発明の第1の変形例のように、第1の樹脂層12aに設けられたビアホール導体14a11~14a13が、バンプ30の下方、実装電極11及び電極パッド23におけるバンプ30との接合部分の下方に配置されていてもよい。また、図15に示すように、弾性表面波素子20の実装基板10への実装方向zから視た際に、ビアホール導体14a11~14a13が、バンプ30、実装電極11及び電極パッド23と重なるように形成されていてもよい。
 図16に示す本発明の第2の変形例のように、第2の樹脂層12bに設けられたビアホール導体14a14~14a16が、バンプ30の下方、実装電極11及び電極パッド23におけるバンプ30との接合部分の下方に配置されていてもよい。また、図16に示すように、弾性表面波素子20の実装基板10への実装方向zから視た際に、ビアホール導体14a14~14a16が、バンプ30、実装電極11及び電極パッド23と重なるように形成されていてもよい。
 図17に示す本発明の第3の変形例のように、第3の樹脂層12cに設けられたビアホール導体14a17~14a19が、バンプ30の下方、実装電極11及び電極パッド23におけるバンプ30との接合部分の下方に配置されていてもよい。また、図17に示すように、弾性表面波素子20の実装基板10への実装方向zから視た際に、ビアホール導体14a17~14a19が、バンプ30、実装電極11及び電極パッド23と重なるように形成されていてもよい。
 図18~図20に示す本発明の第4~第6の変形例のように、第1~第3の樹脂層12a~12cのうちの2層に設けられたビアホール導体が、バンプ30の下方、実装電極11及び電極パッド23におけるバンプ30との接合部分の下方に配置されていてもよい。また、図18~図20に示すように、弾性表面波素子20の実装基板10への実装方向zから視た際に、第1~第3の樹脂層12a~12cのうちの2層に設けられたビアホール導体が、バンプ30、実装電極11及び電極パッド23と重なるように形成されていてもよい。この場合は、弾性表面波素子20と実装基板10とをより強固に接合することができる。
 具体的には、図18に示す本発明の第4の変形例では、第1の樹脂層12aに設けられたビアホール導体14a20,14a22,14a24と、第2の樹脂層12bに設けられたビアホール導体14a21,14a23,14a25とが、バンプ30の下方、実装電極11及び電極パッド23におけるバンプ30との接合部分の下方に配置されている。また、図18に示すように、弾性表面波素子20の実装基板10への実装方向zから視た際に、ビアホール導体14a20~14a25が、バンプ30、実装電極11及び電極パッド23と重なるように形成されている。
 図19に示す本発明の第5の変形例では、第1の樹脂層12aに設けられたビアホール導体14a26,14a28,14a30と、第3の樹脂層12cに設けられたビアホール導体14a27,14a29,14a31とが、バンプ30の下方、実装電極11及び電極パッド23におけるバンプ30との接合部分の下方に配置されている。また、図19に示すように、弾性表面波素子20の実装基板10への実装方向zから視た際に、ビアホール導体14a26~14a31が、バンプ30、実装電極11及び電極パッド23と重なるように形成されている。
 図20に示す本発明の第6の変形例では、第2の樹脂層12bに設けられたビアホール導体14a32,14a34,14a36と、第3の樹脂層12cに設けられたビアホール導体14a33,14a35,14a37とが、バンプ30の下方、実装電極11及び電極パッド23におけるバンプ30との接合部分の下方に配置されている。また、図20に示すように、弾性表面波素子20の実装基板10への実装方向zから視た際に、ビアホール導体14a32~14a37が、バンプ30、実装電極11及び電極パッド23と重なるように形成されている。
 図21に示す本発明の第7の変形例のように、第1~第3の樹脂層12a~12cのそれぞれに設けられたビアホール導体14a38~14a46が、バンプ30の下方、実装電極11及び電極パッド23におけるバンプ30との接合部分の下方に配置されていてもよい。また、図21に示すように、弾性表面波素子20の実装基板10への実装方向zから視た際に、ビアホール導体14a38~14a46が、バンプ30、実装電極11及び電極パッド23と重なるように形成されていてもよい。この場合は、弾性表面波素子20と実装基板10とをさらに強固に接合することができる。
 また、図22に示す、第1の変形例のさらなる変形例である第8の変形例のように、第1~第3の樹脂層12a~12cのそれぞれに設けられたビアホール導体14a11~14a13,14a47~14a49が、バンプ30の下方、実装電極11及び電極パッド23におけるバンプ30との接合部分の下方に配置されていてもよい。
 (第9及び第10の変形例)
 図23は、本発明の第9の変形例に係る弾性表面波装置の略図的断面図である。図24は、本発明の第10の変形例に係る弾性表面波装置の略図的断面図である。上記第1の実施形態では、実装基板10が3つの樹脂層からなる場合について説明した。但し、本発明は、この構成に限定されない。例えば、図23に示す本発明の第9の変形例のように、実装基板10は、一つの樹脂層12aにより構成されている樹脂基板であってもよい。また、図24に示す本発明の第10の変形例のように、実装基板10は、2つの樹脂層12a,12bの積層体により構成されている樹脂基板であってもよい。実装基板10は、4層以上の樹脂層の積層体により構成されている樹脂基板であってもよい。整合回路、LC共振回路、ESD(Electrostatic Discharge)保護回路を実装基板10に内蔵する場合には、樹脂層の数は、これらの回路を形成するために必要な電極層の数に対応する数となる。バンプ30の下方、すなわち、実装基板10の実装電極11におけるバンプ30との接合部分の下に、ビアホール導体が配置されている限りにおいて、実装基板10における樹脂層の数は何ら限定されない。
 なお、図23に示す変形例では、実装基板10の内部に、弾性表面波素子20の実装基板10への実装方向zに沿って形成されたビアホール導体により配線14が構成されている。
 (第2の実施形態)
 図25は、本発明の第2の実施形態に係る弾性表面波装置における、実装基板10のダイアタッチ面10aの略図的平面図である。なお、図25においては、説明の便宜上、ダイアタッチ面10a上に形成されている実装電極11以外の部材の描画は省略されており、実装電極11のみが描画されている。
 本実施形態の弾性表面波装置は、実装基板10のダイアタッチ面10aにおける電極構造を除いては、上記第1の実施形態に係る弾性表面波装置1と実質的に同様の構成を有する。
 図25に示すように、本実施形態の弾性表面波装置では、実装基板10のダイアタッチ面10aにおける、弾性表面波素子20の圧電基板21と対向している領域には、配線14は形成されておらず、実装電極11のみが形成されている。そして、本実施形態の弾性表面波装置では、配線14は、実装基板10のダイアタッチ面10aにおける、弾性表面波素子20の圧電基板21と対向している領域以外の部分に形成されている。具体的には、配線14は、実装基板10の内部に形成されている。
 図26は、参考例に係る弾性表面波装置における、実装基板110のダイアタッチ面110aの略図的平面図である。例えば、図26に示す参考例のように、実装基板110のダイアタッチ面110aにおける、弾性表面波素子120の圧電基板121と対向している領域に、実装電極111と共に、例えばインダクタンスを形成することなどを目的として、配線114の一部を形成することも考えられる。しかしながら、配線114の一部を実装基板110のダイアタッチ面110aにおける、弾性表面波素子120の圧電基板121と対向している領域に形成した場合、弾性表面波装置に対して外部から加わる力、弾性表面波素子を実装基板にフリップチップ実装する際の温度による樹脂基板である実装基板の熱膨張、弾性表面波素子を実装基板にフリップチップ実装する際に弾性表面波素子に加える荷重などによって、樹脂基板である実装基板110が変形してしまう場合がある。樹脂基板である実装基板110が変形した場合、実装基板110のダイアタッチ面110aにおける、弾性表面波素子120の圧電基板121と対向している領域に形成された配線114の一部が弾性表面波素子のIDT電極などと接触し、IDT電極などに傷が付くという問題が生じることがある。
 それに対して、本実施形態の弾性表面波装置では、配線14は、実装基板10のダイアタッチ面10aにおける、弾性表面波素子20の圧電基板21と対向している領域に形成されていない。そして、ダイアタッチ面10aには、実装電極11のみが形成されている。このため、上述のようなIDT電極等の損傷といった問題が発生することを効果的に抑制することができる。
 図27は、本発明の第11の変形例に係る弾性表面波装置における、実装基板10のダイアタッチ面10aの略図的平面図である。図27に示す本発明の第11の変形例のように、実装基板10のダイアタッチ面10aにおける、弾性表面波素子20の圧電基板21と対向している領域には、配線14は形成されておらず、実装電極11のみが形成されており、弾性表面波素子20の圧電基板21と対向していない領域に、配線14の一部が形成されていてもよい。
 ところで、実装基板10は、例えば、図28に示すようなマザー基板50を、ダイシングラインLで複数に分断することにより作製することが好ましい。図28に、本発明の第2の実施形態に係る弾性表面波装置における、実装基板10作製用のマザー基板50の略図的平面図を示す。特に、弾性表面波素子20をフリップチップ実装した後に、マザー基板50をダイシングラインLで複数に分断することにより実装基板10を作製することが好ましい。このようにすることで、多数の弾性表面波装置を効率的に作製できるためである。しかしながら、本実施形態の弾性表面波装置のように、複数の実装電極11がダイアタッチ面10aに対称に配置されており、弾性表面波素子20をフリップチップ実装した後に、図28に示すマザー基板50を複数に分断することで作製するような場合、弾性表面波素子20をフリップチップ実装する際の実装基板10の方向識別が困難となる。このため、例えば、図29に示すマザー基板50のように、複数の実装電極11のうちの少なくとも一つを、非対称形に形成しておくことが好ましい。図29に、本発明の第12の変形例に係る弾性表面波装置における、実装基板10作製用のマザー基板50の略図的平面図を示す。このような構成にすることにより、弾性表面波素子20をフリップチップ実装する際の実装基板10の方向識別性を高めることができる。従って、弾性表面波素子20の実装が容易となる。
1…弾性表面波装置
10…実装基板
10a…実装基板のダイアタッチ面
10b…実装基板の裏面
10e…ビアホール
11…実装電極
11a…Cu層
11b…Ni層
11c…Pd層
11d…Au層
12a…第1の樹脂層
12b…第2の樹脂層
12c…第3の樹脂層
13…端子電極
14…配線
14a…ビアホール導体
20…弾性表面波素子
21…圧電基板
21a…圧電基板の表面
22…IDT電極
23…電極パッド
30…バンプ
40…封止樹脂層
50…マザー基板

Claims (13)

  1.  複数の電極パッドを有する弾性表面波素子と、
     一方の表面であるダイアタッチ面に前記弾性表面波素子がAuからなるバンプによってフリップチップ実装されている実装基板とを備える弾性表面波装置であって、
     前記実装基板は、
     ビアホールが形成されている少なくとも一つの樹脂層と、
     前記実装基板のダイアタッチ面の上に形成されており、前記バンプにより前記電極パッドと接合されている複数の実装電極と、
     前記ビアホール内に形成されているビアホール導体とを有し、
     前記電極パッドと前記実装電極の少なくとも一方の表層がAuからなり、前記ビアホール導体のうちの少なくとも一つが、前記バンプの下方に配置されている、弾性表面波装置。
  2.  前記ビアホール導体のうちの少なくとも一つが、前記実装電極及び前記電極パッドにおける前記バンプとの接合部分の下方に配置されている、請求項1に記載の弾性表面波装置。
  3.  前記弾性表面波素子の前記実装基板への実装方向から視た際に、前記ビアホール導体のうちの少なくとも一つは、前記バンプ、前記実装電極及び前記電極パッドと重なるように設けられている、請求項1または2に記載の弾性表面波装置。
  4.  前記実装基板は、前記実装基板の他方の表面の上に形成されている複数の端子電極と、前記実装電極と前記端子電極とを接続している配線とを有し、
     前記ビアホール導体は、前記配線の一部を構成している、請求項1~3のいずれか一項に記載の弾性表面波装置。
  5.  前記樹脂層は、樹脂を含む樹脂組成物からなり、前記樹脂のガラス転移温度(Tg)は、100℃~300℃の範囲内にある、請求項1~4のいずれか一項に記載の弾性表面波装置。
  6.  前記樹脂層は、ガラス織布にエポキシ系樹脂が含浸してなるガラスエポキシからなるガラスエポキシ樹脂層からなる、請求項1~5のいずれか一項に記載の弾性表面波装置。
  7.  前記実装電極は、Auからなり、表層を構成しているAu層と、NiからなるNi層とを含む積層体からなる、請求項1~6のいずれか一項に記載の弾性表面波装置。
  8.  前記積層体には、前記Ni層を含む複数のめっき層が含まれており、前記複数のめっき層のうち、前記Ni層が最も大きな厚みを有する、請求項7に記載の弾性表面波装置。
  9.  前記ビアホール導体は、Cuからなる、請求項1~8のいずれか一項に記載の弾性表面波装置。
  10.  前記実装基板は、前記実装基板の他方の表面の上に形成されている複数の端子電極と、前記実装電極と前記端子電極とを接続している配線とを有し、
     前記配線は、前記実装基板の前記ダイアタッチ面における、弾性表面波素子の圧電基板と対向している領域以外の部分に形成されている、請求項1~9のいずれか一項に記載の弾性表面波装置。
  11.  前記実装基板上に形成されており、前記弾性表面波素子を封止している封止樹脂層をさらに備える、請求項1~10のいずれか一項に記載の弾性表面波装置。
  12.  請求項1~11のいずれか一項に記載の弾性表面波装置の製造方法であって、
     前記バンプと前記実装電極、または、前記バンプと前記電極パッドとを接触させた状態で、前記バンプと前記実装電極、または、前記バンプと前記電極パッドとを加熱しながら、前記実装基板と前記弾性表面波素子とが互いに近づく方向に前記弾性表面波素子に荷重を加えると共に、
     超音波を印加することにより、前記弾性表面波素子を前記実装基板にフリップチップ実装する、弾性表面波装置の製造方法。
  13.  前記弾性表面波素子を前記実装基板にフリップチップ実装する際に、前記バンプと前記実装電極、または、前記バンプと前記電極パッドとをAuの再結晶温度以上にまで加熱する、請求項12に記載の弾性表面波装置の製造方法。
PCT/JP2011/052369 2010-05-07 2011-02-04 弾性表面波装置及びその製造方法 WO2011138877A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800218148A CN102870326A (zh) 2010-05-07 2011-02-04 弹性表面波装置以及其制造方法
US13/667,087 US20130057361A1 (en) 2010-05-07 2012-11-02 Surface acoustic wave device and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010107360A JP2013145932A (ja) 2010-05-07 2010-05-07 弾性表面波装置及びその製造方法
JP2010-107360 2010-05-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/667,087 Continuation US20130057361A1 (en) 2010-05-07 2012-11-02 Surface acoustic wave device and production method therefor

Publications (1)

Publication Number Publication Date
WO2011138877A1 true WO2011138877A1 (ja) 2011-11-10

Family

ID=44903729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052369 WO2011138877A1 (ja) 2010-05-07 2011-02-04 弾性表面波装置及びその製造方法

Country Status (4)

Country Link
US (1) US20130057361A1 (ja)
JP (1) JP2013145932A (ja)
CN (1) CN102870326A (ja)
WO (1) WO2011138877A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017073529A (ja) * 2015-10-09 2017-04-13 三菱電機株式会社 半導体装置
JP2018085705A (ja) * 2016-11-25 2018-05-31 太陽誘電株式会社 電子部品およびその製造方法
US10439586B2 (en) 2017-07-19 2019-10-08 Murata Manufacturing Co., Ltd. Electronic module having a filler in a sealing resin

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151698A (ja) * 2011-01-19 2012-08-09 Taiyo Yuden Co Ltd 弾性波デバイス
WO2014045828A1 (ja) * 2012-09-24 2014-03-27 独立行政法人産業技術総合研究所 半導体装置の製造方法、及び半導体製造装置
JP6284717B2 (ja) * 2013-05-16 2018-02-28 太陽誘電株式会社 電子部品、及び電子部品の製造方法
JP5907195B2 (ja) * 2014-02-27 2016-04-26 株式会社村田製作所 電子部品及び電子部品の製造方法
CN106464231B (zh) 2014-05-20 2019-02-22 株式会社村田制作所 弹性波器件及其制造方法
US9331667B2 (en) * 2014-07-21 2016-05-03 Triquint Semiconductor, Inc. Methods, systems, and apparatuses for temperature compensated surface acoustic wave device
WO2017094283A1 (ja) * 2015-11-30 2017-06-08 株式会社村田製作所 パッケージ基板、マザー基板、電子部品及び弾性波装置
WO2017110639A1 (ja) * 2015-12-25 2017-06-29 株式会社村田製作所 高周波モジュール
CN106449554B (zh) * 2016-12-06 2019-12-17 苏州源戍微电子科技有限公司 带有封闭空腔的芯片嵌入式封装结构及其制作方法
CN109087990B (zh) * 2018-08-10 2024-03-22 浙江熔城半导体有限公司 带有双围堰、金属柱及焊锡的芯片封装结构及其制作方法
CN109244231B (zh) * 2018-11-09 2024-03-12 江阴长电先进封装有限公司 一种声表面滤波芯片的封装结构及其封装方法
CN109473539B (zh) * 2018-12-14 2024-04-12 苏州科阳半导体有限公司 一种滤波器芯片模组及其制备方法
JP7229135B2 (ja) * 2019-09-26 2023-02-27 京セラ株式会社 電子デバイス
JP7435150B2 (ja) * 2020-03-27 2024-02-21 株式会社大真空 圧電発振器
US11296022B2 (en) * 2020-08-25 2022-04-05 Qualcomm Incorporated Package and substrate comprising interconnects with semi-circular planar shape and/or trapezoid planar shape

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004192907A (ja) * 2002-12-10 2004-07-08 Shin Etsu Polymer Co Ltd 圧接型コネクタ及び電気音響部品
JP2004194290A (ja) * 2002-11-26 2004-07-08 Murata Mfg Co Ltd 電子部品の製造方法
WO2005002049A1 (ja) * 2003-06-26 2005-01-06 Murata Manufacturing Co., Ltd. 弾性表面波素子
JP2006211613A (ja) * 2005-01-31 2006-08-10 Sony Corp Sawデバイス、通信モジュール及びsawデバイスの製造方法
JP2008042430A (ja) * 2006-08-04 2008-02-21 Epson Toyocom Corp Sawデバイス、及びその製造方法
JP2008130636A (ja) * 2006-11-17 2008-06-05 Shintex Japan Corp 超音波フリップチップ実装の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3652488B2 (ja) * 1997-12-18 2005-05-25 Tdk株式会社 樹脂パッケージの製造方法
TW569424B (en) * 2000-03-17 2004-01-01 Matsushita Electric Ind Co Ltd Module with embedded electric elements and the manufacturing method thereof
JP3376994B2 (ja) * 2000-06-27 2003-02-17 株式会社村田製作所 弾性表面波装置及びその製造方法
JP3405329B2 (ja) * 2000-07-19 2003-05-12 株式会社村田製作所 表面波装置
JP3520414B2 (ja) * 2001-04-10 2004-04-19 株式会社村田製作所 弾性表面波装置およびその製造方法、通信装置
EP1296454B1 (en) * 2001-09-25 2013-05-22 TDK Corporation SAW element and SAW device
US20030137039A1 (en) * 2001-11-16 2003-07-24 Tdk Corporation Packaging substrate and manufacturing method thereof, integrated circuit device and manufacturing method thereof, and saw device
JP2003249840A (ja) * 2001-12-18 2003-09-05 Murata Mfg Co Ltd 弾性表面波装置
US7266869B2 (en) * 2003-07-30 2007-09-11 Kyocera Corporation Method for manufacturing a piezoelectric oscillator
JP2005151287A (ja) * 2003-11-18 2005-06-09 Tdk Corp 電子部品
JP2005223641A (ja) * 2004-02-05 2005-08-18 Toyo Commun Equip Co Ltd 表面実装型sawデバイス
US7332986B2 (en) * 2004-06-28 2008-02-19 Kyocera Corporation Surface acoustic wave apparatus and communications equipment
JP4744213B2 (ja) * 2005-07-11 2011-08-10 日本電波工業株式会社 電子部品の製造方法
EP1947764B1 (en) * 2005-09-20 2011-04-06 Kyocera Corporation Acoustic surface wave element and acoustic surface wave device
JP4636179B2 (ja) * 2006-04-24 2011-02-23 株式会社村田製作所 弾性表面波装置
JP4735717B2 (ja) * 2006-06-21 2011-07-27 株式会社村田製作所 弾性波フィルタ装置及びデュプレクサ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004194290A (ja) * 2002-11-26 2004-07-08 Murata Mfg Co Ltd 電子部品の製造方法
JP2004192907A (ja) * 2002-12-10 2004-07-08 Shin Etsu Polymer Co Ltd 圧接型コネクタ及び電気音響部品
WO2005002049A1 (ja) * 2003-06-26 2005-01-06 Murata Manufacturing Co., Ltd. 弾性表面波素子
JP2006211613A (ja) * 2005-01-31 2006-08-10 Sony Corp Sawデバイス、通信モジュール及びsawデバイスの製造方法
JP2008042430A (ja) * 2006-08-04 2008-02-21 Epson Toyocom Corp Sawデバイス、及びその製造方法
JP2008130636A (ja) * 2006-11-17 2008-06-05 Shintex Japan Corp 超音波フリップチップ実装の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017073529A (ja) * 2015-10-09 2017-04-13 三菱電機株式会社 半導体装置
JP2018085705A (ja) * 2016-11-25 2018-05-31 太陽誘電株式会社 電子部品およびその製造方法
US10439586B2 (en) 2017-07-19 2019-10-08 Murata Manufacturing Co., Ltd. Electronic module having a filler in a sealing resin

Also Published As

Publication number Publication date
CN102870326A (zh) 2013-01-09
US20130057361A1 (en) 2013-03-07
JP2013145932A (ja) 2013-07-25

Similar Documents

Publication Publication Date Title
WO2011138877A1 (ja) 弾性表面波装置及びその製造方法
US10917069B2 (en) Electronic component
US9293446B2 (en) Low profile semiconductor module with metal film support
EP1744453B1 (en) Surface acoustic wave device
JP6311724B2 (ja) 電子部品モジュール
JP4377500B2 (ja) 弾性表面波装置及び弾性表面波装置の製造方法
US11444596B2 (en) Acoustic wave device
JP5206377B2 (ja) 電子部品モジュール
JP5797356B2 (ja) 弾性波装置および弾性波モジュール
KR102172630B1 (ko) 반도체 소자 패키지 및 그 제조방법
JP6284717B2 (ja) 電子部品、及び電子部品の製造方法
EP1881603A2 (en) Surface acoustic wave device
US9941461B2 (en) Electronic component element and composite module including the same
JP4496652B2 (ja) 弾性表面波装置とその製造方法
JP4066952B2 (ja) 電子部品素子、電子部品、及び通信機
CN107113967B (zh) 基板、基板的制造方法以及弹性波装置
JP4722204B2 (ja) 弾性表面波装置及び弾性表面波装置の製造方法
KR102295454B1 (ko) 전자 부품 및 그것을 구비하는 모듈
JP4234088B2 (ja) 電子部品及びその製造方法
CN210041774U (zh) 弹性波装置
JP2017130827A (ja) 圧電デバイス及びその製造方法
JP2010212379A (ja) 電子部品モジュール及びその製造方法
JP2016181759A (ja) 電子デバイス
JP4910953B2 (ja) 電子部品パッケージ構造
JP2004253567A (ja) 電波吸収蓋部材およびこれを用いた高周波装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180021814.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11777396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11777396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP