WO2011135763A1 - 4-メチル-1-ペンテン系重合体からなる樹脂微粉末、およびそれを含む組成物、ならびにその製造方法 - Google Patents

4-メチル-1-ペンテン系重合体からなる樹脂微粉末、およびそれを含む組成物、ならびにその製造方法 Download PDF

Info

Publication number
WO2011135763A1
WO2011135763A1 PCT/JP2011/000699 JP2011000699W WO2011135763A1 WO 2011135763 A1 WO2011135763 A1 WO 2011135763A1 JP 2011000699 W JP2011000699 W JP 2011000699W WO 2011135763 A1 WO2011135763 A1 WO 2011135763A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
fine powder
resin fine
pentene polymer
powder
Prior art date
Application number
PCT/JP2011/000699
Other languages
English (en)
French (fr)
Inventor
川辺邦昭
伊藤俊幸
栗原舞
藤原和俊
関亮一
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to US13/643,866 priority Critical patent/US9260549B2/en
Priority to EP11774554.7A priority patent/EP2565210B1/en
Priority to JP2012512628A priority patent/JP5798113B2/ja
Priority to CN201180021016.5A priority patent/CN102869687B/zh
Publication of WO2011135763A1 publication Critical patent/WO2011135763A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C09D123/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08J2323/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a resin fine powder comprising a 4-methyl-1-pentene polymer and a composition containing the same.
  • An olefin polymer containing a structural unit derived from 4-methyl-1-pentene (hereinafter also referred to as 4-methyl-1-pentene polymer) is a catalyst comprising a transition metal compound and an organoaluminum compound, so-called Although it is generally produced using a Ziegler type catalyst (see Patent Document 2), it is also reported that it can be obtained using a metallocene catalyst (see Patent Document 1).
  • 4-Methyl-1-pentene polymer is a resin with excellent heat resistance as well as transparency, gas permeability, chemical resistance, and peelability. It is used in various fields such as medical instruments, heat resistant wires, heat resistant tableware, and stripping materials. It's being used. In particular, by utilizing the low surface tension of 4-methyl-1-pentene polymer, it is used as a release film or as a release wax (see Patent Document 1).
  • a bulk obtained by a polymerization reaction may be used. You may use the bulk obtained by the polymerization reaction by blending with other resin.
  • the bulk obtained by the polymerization reaction or a blend thereof may be pelletized as necessary or formed into a desired shape (for example, a film shape).
  • the bulk obtained by the polymerization reaction may be oligomerized by thermal decomposition. The oligomer may be blended with other resins or formed into a desired shape. Either method is preferable from the viewpoint of production cost.
  • a powdery resin having a high melting point and a low surface tension is required, for example, for mixing with a sinterable powder, more specifically for a porous sintered material composition or a metallurgical composition. ing.
  • a powdery resin to be added to the sinterable powder for example, an amide resin powder may be used.
  • An amide resin powder or the like may generate an odor due to thermal decomposition in the sintering process.
  • the present invention pays attention to the fact that a 4-methyl-1-pentene polymer has a high melting point, a low surface tension, and the generation of odor is suppressed even when thermally decomposed.
  • the use of 1-pentene polymer fine powder as an additive in the form of fine powder to various compositions was investigated. As a result, it was found that the 4-methyl-1-pentene polymer can be pulverized by pulverization by performing a specific pretreatment. Further, it has been found that a relatively low molecular weight 4-methyl-1-pentene polymer can be pulverized more efficiently and pulverized than other olefin polymers.
  • an object of the present invention is to provide a fine powder of 4-methyl-1-pentene polymer and to apply it as an additive for various compositions.
  • effective utilization of the facet is realized by using a facet for cutting the 4-methyl-1-pentene polymer as a raw material for the fine powder of 4-methyl-1-pentene type polymer.
  • the first of the present invention relates to the following resin fine powder.
  • the second aspect of the present invention relates to the following composition containing resin fine powder.
  • [5] (A) 0.1 to 150 parts by mass of the resin fine powder according to [1], and (B) 100 parts by mass of at least one sinterable powder selected from the group consisting of a metal and a ceramic powder;
  • a composition containing [6] The composition according to [5], wherein the composition further comprises (C) 5 to 200 parts by mass of a plasticizing binder.
  • a method for producing a porous sintered body comprising: a step of extruding and molding the composition according to [5] to obtain a formed body; and a step of sintering the formed body.
  • the manufacturing method according to [7] wherein the porous sintered body is a honeycomb filter.
  • 3rd of this invention is related with the method of manufacturing the resin fine powder shown below.
  • the bulk or coarsely pulverized product is a thermal decomposition product of a 4-methyl-1-pentene polymer.
  • the resin fine powder of the present invention comprises a 4-methyl-1-pentene polymer; the 4-methyl-1-pentene polymer has a high melting point, low surface tension, lubricity, lubricity, and thermal decomposition. May have a characteristic of not generating odor. Utilizing these characteristics, the resin fine powder of the present invention can be used in various applications. That is, the use as an additive of a metallurgical composition, an additive of a composition for ceramic sintered materials, an additive of a pressure-sensitive adhesive, an additive of rubber, etc. can be considered. In addition to the above properties, 4-methyl-1-pentene polymer has low density and transparency, so it is considered useful as an additive for inks and paints. There are various applications.
  • FIG. 2 is an electron microscope (SEM) photograph (magnification 2000 times) of TPX fine particles obtained in Example 1.
  • FIG. 4 is an electron microscope (SEM) photograph (magnification 2000 times) of TPX fine particles obtained in Example 2.
  • FIG. 4 is an electron microscope (SEM) photograph (magnification 1000 times) of TPX fine particles obtained in Example 3.
  • FIG. 2 is a graph showing the particle size distribution of the powder obtained in Example 1.
  • the X axis shows the particle size of the powder
  • the Y axis (right side) shows the number of powders corresponding to the particle size (see histogram)
  • the Y axis (left side) shows the cumulative number distribution of the powder (curve) reference).
  • 4 is a graph showing the particle size distribution of the powder obtained in Example 2.
  • the X axis shows the particle size of the powder
  • the Y axis (right side) shows the number of powders corresponding to the particle size (see histogram)
  • the Y axis (left side) shows the cumulative number distribution of the powder (curve) reference).
  • 6 is a graph showing the particle size distribution of the powder obtained in Example 3.
  • the X axis shows the particle size of the powder
  • the Y axis (right side) shows the number of powders corresponding to the particle size (see histogram)
  • the Y axis (left side) shows the cumulative number distribution of the powder (curve) reference).
  • 6 is a graph showing the particle size distribution of the powder obtained in Example 4.
  • the X axis shows the particle size of the powder
  • the Y axis (right side) shows the number of powders corresponding to the particle size (see histogram)
  • the Y axis (left side) shows the cumulative number distribution of the powder (curve) reference).
  • 6 is a graph showing the particle size distribution of the powder obtained in Example 5.
  • the X axis shows the particle size of the powder
  • the Y axis (right side) shows the number of powders corresponding to the particle size (see histogram)
  • the Y axis (left side) shows the cumulative number distribution of the powder (curve) reference).
  • the resin fine powder of the present invention contains a 4-methyl-1-pentene polymer.
  • the 4-methyl-1-pentene polymer is a polymer in which at least a part of the structural unit is a structural unit derived from 4-methyl-1-pentene.
  • the ratio of the structural unit derived from 4-methyl-1-pentene to the total structural unit of the 4-methyl-1-pentene polymer constituting the resin fine powder of the present invention is 50 to 100% by mass. It is preferably 60 to 100% by mass, more preferably 70 to 100% by mass, and particularly preferably 90 to 100% by mass.
  • the structural unit other than the structural unit derived from 4-methyl-1-pentene contained in the 4-methyl-1-pentene polymer is preferably a structural unit derived from an olefin having 2 to 20 carbon atoms. .
  • the total proportion of structural units derived from olefins having 2 to 20 carbon atoms other than 4-methyl-1-pentene relative to all structural units of the 4-methyl-1-pentene polymer is 0 to 50% by mass. It is preferably 0 to 40% by mass, more preferably 0 to 30% by mass, and particularly preferably 0 to 10% by mass.
  • olefins having 2 to 20 carbon atoms other than 4-methyl-1-pentene contained as constituent units in 4-methyl-1-pentene polymers include linear or branched ⁇ -olefins, cyclic Olefin, aromatic vinyl compounds, conjugated dienes, non-conjugated polyenes, functionalized vinyl compounds and the like are included.
  • linear or branched ⁇ -olefins contained as structural units in the 4-methyl-1-pentene polymer include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1 A linear ⁇ -olefin having 2 to 20 carbon atoms, preferably 2 to 10 carbon atoms, such as -octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene; 3 -Methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4,4-dimethyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene Preferably 5 to 20, more preferably 5 to 10 branched ⁇ -olefins such as 4-ethyl-1-hexene, 3-ethyl-1-hexene and
  • cyclic olefin contained as a structural unit in the 4-methyl-1-pentene polymer include carbon atoms such as cyclopentene, cycloheptene, norbornene, 5-methyl-2-norbornene, tetracyclododecene, and vinylcyclohexane. Included are cyclic olefins of 3 to 20, preferably 5 to 15.
  • aromatic vinyl compound contained as a structural unit in the 4-methyl-1-pentene polymer examples include styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o , mono- or polyalkyl styrenes such as p-dimethyl styrene, o-ethyl styrene, m-ethyl styrene, p-ethyl styrene.
  • conjugated dienes contained as constituent units in 4-methyl-1-pentene polymers include 1,3-butadiene, isoprene, chloroprene, 1,3-pentadiene, 2,3-dimethylbutadiene, 4-methyl- Conjugated dienes having 4 to 20 carbon atoms, preferably 4 to 10 carbon atoms, such as 1,3-pentadiene, 1,3-pentadiene, 1,3-hexadiene, and 1,3-octadiene are included.
  • non-conjugated polyene contained as a structural unit in the 4-methyl-1-pentene polymer include 1,4-pentadiene, 1,4-hexadiene, 1,5-hexadiene, 1,4-octadiene, 1, 1,5-octadiene, 1,6-octadiene, 1,7-octadiene, 2-methyl-1,5-hexadiene, 6-methyl-1,5-heptadiene, 7-methyl-1,6-octadiene, 4-ethylidene -8-methyl-1,7-nonadiene, 4,8-dimethyl-1,4,8-decatriene (DMDT), dicyclopentadiene, cyclohexadiene, dicyclooctadiene, methylene norbornene, 5-vinyl norbornene, 5- Ethylidene-2-norbornene, 5-methylene-2-norbornene, 5-isopropylidene-2-
  • Examples of the functionalized vinyl compound contained as a structural unit in the 4-methyl-1-pentene polymer include a hydroxyl group-containing olefin; a halogenated olefin; acrylic acid, propionic acid, 3-butenoic acid, 4-pentenoic acid, 5 Unsaturated carboxylic acids such as -hexenoic acid, 6-heptenoic acid, 7-octenoic acid, 8-nonenoic acid and 9-decenoic acid; unsaturated amines such as allylamine, 5-hexenamine and 6-heptenamine; 7-octadienyl) succinic anhydride, pentapropenyl succinic anhydride, and compounds exemplified as the above unsaturated carboxylic acids, unsaturated acid anhydrides such as compounds in which the carboxylic acid group is replaced with a carboxylic acid anhydride group; In the compounds exemplified as the unsaturated carboxylic acids, the unsatur
  • Boronic acid halides 4-epoxy-1-butene, 5-epoxy-1-pentene, 6-epoxy-1-hexene, 7-epoxy-1-heptene, 8-epoxy-1-octene, 9-epoxy-1 And unsaturated epoxy compounds such as -nonene, 10-epoxy-1-decene, and 11-epoxy-1-undecene.
  • the hydroxyl group-containing olefin contained in the 4-methyl-1-pentene polymer as a structural unit is not particularly limited as long as it is a hydroxyl group-containing olefin compound, and examples thereof include terminal hydroxylated olefin compounds.
  • terminal hydroxylated olefin compound examples include vinyl alcohol, allyl alcohol, hydroxylated 1-butene, hydroxylated 1-pentene, hydroxylated 1-hexene, hydroxylated 1-octene, and hydroxylated 1- Decene, hydroxyl-1-dodecene, hydroxyl-1-tetradecene, hydroxyl-1-hexadecene, hydroxyl-1-octadecene, hydroxyl-1-octadecene, hydroxyl-1-eicosene, etc.
  • halogenated olefins contained as a structural unit in the 4-methyl-1-pentene polymer include halogenated ⁇ -olefins having a group 17 atom of the periodic table such as chlorine, bromine and iodine, such as vinyl halide, Halogenated-1-butene, halogenated-1-pentene, halogenated-1-hexene, halogenated-1-octene, halogenated-1-decene, halogenated-1-dodecene, halogenated-1-tetradecene, halogen 1-hexadecene, halogenated-1-octadecene, halogenated-1-eicosene, etc., linear halogenated ⁇ -olefins having 2 to 20 carbon atoms, preferably 2 to 10 carbon atoms; halogenated-3- Methyl-1-butene, halogenated-4-methyl-1-pentene,
  • olefins contained as a structural unit together with 4-methyl-1-pentene include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, and 3-methyl- 1-pentene, 3-ethyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3- Examples include ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene, vinylcyclohexane, styrene and the like.
  • the 4-olefin-1-pentene polymer (B) may contain one olefin or a combination of two or more olefins as a constituent unit together
  • the distribution (Mw / Mn) is 1.0 to 20.0, may be 1.0 to 10.0, or may be 1.0 to 5.0.
  • a weight average molecular weight (Mw) and a number average molecular weight (Mn) are polystyrene conversion values measured by gel permeation chromatography (GPC), respectively.
  • the GPC measurement may be performed at a temperature of 140 ° C. and the developing solvent as orthodichlorobenzene.
  • the lower limit of the melting point (Tm) of the 4-methyl-1-pentene polymer measured by a differential scanning calorimeter is preferably 120 ° C, more preferably 160 ° C, and 180 ° C. Is more preferable, and 200 ° C. is particularly preferable.
  • the upper limit of the melting point (Tm) is preferably 245 ° C., more preferably 240 ° C., further preferably 235 ° C., and particularly preferably 230 ° C.
  • the 4-methyl-1-pentene polymer has a high melting point among polyolefin resins. This is presumably because the 4-methyl-1-pentene polymer has bulky side chains and the molecular chains are difficult to move.
  • the melting point is measured using a differential scanning calorimeter (Diamond DSC, manufactured by PerkinElmer). About 5 mg of a sample is packed in an aluminum pan and heated to 280 ° C. at 10 ° C./min; 280 ° C. for 5 minutes. Hold; cooled at 10 ° C./min to 30 ° C .; held at 30 ° C. for 5 min; endothermic peak when heated to 280 ° C. at 10 ° C./min is taken as the melting point.
  • a differential scanning calorimeter Diamond DSC, manufactured by PerkinElmer
  • the intrinsic viscosity [ ⁇ ] (dl / g) of the 4-methyl-1-pentene polymer measured at 135 ° C. in a decalin solvent is preferably 1 ⁇ 10 ⁇ 2 to 3.0.
  • the 4-methyl-1-pentene polymer may be broadly classified into two types depending on the intrinsic viscosity [ ⁇ ]. The first is a polymer having an intrinsic viscosity [ ⁇ ] in the range of 5 ⁇ 10 ⁇ 1 to 3.0, and is a relatively high molecular weight 4-methyl-1-pentene polymer. The second is a polymer having an intrinsic viscosity [ ⁇ ] in the range of 1 ⁇ 10 ⁇ 2 to 5 ⁇ 10 ⁇ 1 and a 4-methyl-1-pentene polymer having a relatively low molecular weight.
  • the critical surface tension of the 4-methyl-1-pentene polymer is preferably 22 to 28 mN / m, more preferably 23 to 27.5 mN / m, still more preferably 23.5 to 27.5 mN / m, and particularly preferably Is 24.0-27.5 mN / m.
  • the critical surface tension depends on the 4-methyl-1-pentene unit in the 4-methyl-1-pentene polymer.
  • the content of the 4-methyl-1-pentene constituent unit is 50 to 100% by weight, preferably 60 to 100% by weight, more preferably 70 to 100% by weight, Particularly preferred is 80 to 100% by weight.
  • the resin fine powder of 4-methyl-1-pentene polymer having a critical surface tension in this range can enhance the fluidity of the powder composition containing the resin fine powder.
  • the 4-methyl-1-pentene polymer can be obtained by directly polymerizing olefins.
  • the polymerization catalyst used for the polymerization include JP-A-57-63310, JP-A-58-83006, JP-A-3-706, JP-A-3476793, JP-A-4-218508, Magnesium-supported titanium catalysts described in JP 2003-105022 A, etc .; WO 01/53369, WO 01/27124, JP 3-19396 A, or JP 2-41303 A
  • the metallocene catalysts described in the above are preferably used.
  • a catalyst containing a polyether as an electron donor component is particularly preferable because a polymer having a relatively narrow molecular weight distribution tends to be obtained.
  • the 4-methyl-1-pentene polymer contained in the composition of the present invention can be produced using a metallocene catalyst.
  • a metallocene catalyst an olefin polymerization catalyst using a metallocene compound represented by the following general formula (1) or (2) is preferably used.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 is selected from hydrogen, a hydrocarbon group, and a silicon-containing hydrocarbon group, and may be the same or different.
  • R 1 to R 4 adjacent to each other may be bonded to each other to form a ring;
  • R 5 to R 12 adjacent to each other may be bonded to each other to form a ring.
  • a in the general formula (2) is a divalent hydrocarbon group having 2 to 20 carbon atoms which may partially contain an unsaturated bond and / or an aromatic ring.
  • A may contain two or more ring structures including a ring formed with Y.
  • M in the general formula (1) or (2) is a metal selected from Group 4 of the periodic table.
  • Y may be carbon or silicon
  • Q may be selected from halogen, hydrocarbon group, anionic ligand or neutral ligand capable of coordinating with a lone pair, in the same or different combination
  • j is 1 to 4 It is an integer.
  • Preferred examples of the hydrocarbon group represented by R 1 to R 14 in the general formula (1) or (2) include an alkyl group having 1 to 20 carbon atoms, an arylalkyl group having 7 to 20 carbon atoms, An aryl group having 6 to 20 carbon atoms or an alkylaryl group having 7 to 20 carbon atoms is included, and may contain one or more ring structures. Specific examples thereof include methyl, ethyl, n-propyl, isopropyl, 2-methylpropyl, 1,1-dimethylpropyl, 2,2-dimethylpropyl, 1,1-diethylpropyl, 1-ethyl-1-methyl.
  • Preferred examples of the silicon-containing hydrocarbon group represented by R 1 to R 14 in the general formula (1) or (2) include alkylsilyl groups having 1 to 4 silicon atoms and 3 to 20 carbon atoms, or An arylsilyl group is included. Specific examples thereof include trimethylsilyl, tert-butyldimethylsilyl, triphenylsilyl and the like.
  • R 1 and R 3 are preferably hydrogen, and R 2 is preferably a hydrocarbon group or a silicon-containing hydrocarbon group.
  • R 2 is more preferably a sterically bulky substituent, and R 2 is particularly preferably a substituent having 4 or more carbon atoms.
  • the adjacent substituents may be bonded to each other to form a ring. That is, the substituted fluorenyl group in the general formula (1) or (2) may be benzofluorenyl, dibenzofluorenyl, octahydrodibenzofluorenyl, octamethyloctahydrodibenzofluorenyl, or the like.
  • R 13 and R 14 in the general formula (1) are selected from hydrogen and a hydrocarbon group, and may be the same or different from each other.
  • Specific examples of preferred hydrocarbon groups include the same hydrocarbon groups represented by R 1 to R 14 .
  • Y in the general formula (1) is carbon or silicon, and is bonded to R 13 and R 14 to form a substituted methylene group or a substituted silylene group as a bridging portion.
  • substituted methylene groups include methylene, dimethylmethylene, diisopropylmethylene, methyl tert-butylmethylene, dicyclohexylmethylene, methylcyclohexylmethylene, methylphenylmethylene, diphenylmethylene, methylnaphthylmethylene, dinaphthylmethylene;
  • Specific examples of the silylene group include dimethylsilylene, diisopropylsilylene, methyl tert-butylsilylene, dicyclohexylsilylene, methylcyclohexylsilylene, methylphenylsilylene, diphenylsilylene, methylnaphthylsilylene, dinaphthylsilylene and the like.
  • Y in the general formula (2) is carbon or silicon, and is bonded to a divalent hydrocarbon group A having 2 to 20 carbon atoms, which may contain an unsaturated bond and / or an aromatic ring, to form a cycloalkylidene group Alternatively, it constitutes a cyclomethylenesilylene group or the like.
  • preferred cycloalkylidene groups include cyclopropylidene, cyclobutylidene, cyclopentylidene, cyclohexylidene, cycloheptylidene, bicyclo [3.3.1] nonylidene, norbornylidene, adamantylidene, tetrahydronaphthylidene
  • preferred cyclomethylenesilylene groups include cyclodimethylenesilylene, cyclotrimethylenesilylene, cyclotetramethylenesilylene, cyclopentamethylenesilylene, cyclohexamethylenesilylene, cycloheptamethylenesilylene. Etc. are included.
  • M in the general formulas (1) and (2) is a metal element selected from Group 4 of the periodic table, and may be titanium, zirconium, hafnium, or the like.
  • Q in the general formulas (1) and (2) is the same or different from halogen, a hydrocarbon group having 1 to 20 carbon atoms, an anionic ligand, or a neutral ligand capable of coordinating with a lone pair of electrons.
  • halogen include fluorine, chlorine, bromine and iodine.
  • hydrocarbon group include the same hydrocarbon groups represented by R 1 to R 14 .
  • anionic ligand include alkoxy groups such as methoxy, tert-butoxy and phenoxy; carboxylate groups such as acetate and benzoate; sulfonate groups such as mesylate and tosylate.
  • organophosphorus compounds such as trimethylphosphine, triethylphosphine, triphenylphosphine, diphenylmethylphosphine; or tetrahydrofuran, diethyl ether, dioxane, 1,2- Ethers such as dimethoxyethane are included.
  • Q may be the same or different combinations, but at least one is preferably a halogen or an alkyl group.
  • the metallocene compound in the present invention include compounds exemplified in WO01 / 27124, but the scope of the present invention is not particularly limited thereby.
  • the metallocene compound represented by the general formula (1) is preferable from the viewpoint of molecular weight distribution and terminal structure.
  • the 4-methyl-1-pentene polymer (B) contained in the resin composition of the present invention can be produced using a metallocene catalyst.
  • the catalyst composition contains the following components. It is preferable.
  • the polymerization for obtaining a 4-methyl-1-pentene polymer using a metallocene catalyst may be either a liquid phase polymerization method such as a solution polymerization method or a suspension polymerization method, or a gas phase polymerization method.
  • a liquid phase polymerization method such as a solution polymerization method or a suspension polymerization method
  • a gas phase polymerization method in the liquid phase polymerization method.
  • an inert hydrocarbon solvent include aliphatic carbonization such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, and kerosene.
  • cycloaliphatic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclopentane
  • aromatic hydrocarbons such as benzene, toluene, and xylene
  • halogenated hydrocarbons such as ethylene chloride, chlorobenzene, and dichloromethane, or mixtures thereof
  • olefins containing 4-methyl-1-pentene as a polymerization monomer can be used as a solvent.
  • the amount of component (i) is usually 10 ⁇ 8 to 10 ⁇ 2 mol, preferably 10 ⁇ 7 to 10 ⁇ 3 mol per liter of the polymerization reaction volume.
  • the molar ratio [(ii-1) / M] of the component (ii-1) and the transition metal atom (M) in the component (i) is usually 0.01 to 5000. It is preferably 0.05 to 2000.
  • the molar ratio [(ii-2) / M] of the aluminum atom of component (ii-2) to the transition metal atom (M) in component (i) is usually 10 to 5000, preferably Set to 20-2000.
  • the molar ratio [(ii-3) / M] of component (ii-3) to transition metal atom (M) in component (i) is usually 1 to 10, preferably 1 to 5. To be.
  • the temperature of the polymerization reaction for obtaining a 4-methyl-1-pentene polymer using a metallocene catalyst is usually in the range of ⁇ 50 to 400 ° C., preferably 10 to 300 ° C., more preferably 10 to 250 ° C. . If the polymerization temperature is too low, the polymerization activity per unit catalyst is lowered, which is not industrially preferable.
  • the polymerization pressure is usually from normal pressure to 10 MPa gauge pressure, preferably from normal pressure to 5 MPa gauge pressure.
  • the polymerization reaction can be carried out in any of batch, semi-continuous and continuous methods. Furthermore, the polymerization can be performed in two or more stages having different reaction conditions.
  • the polymerization activity can be controlled, and the molecular weight and intrinsic viscosity [ ⁇ ] of the 4-methyl-1-pentene polymer can be adjusted.
  • the amount of hydrogen gas introduced is suitably about 0.001 to 100,000 NL per kg of olefin.
  • Relatively low molecular weight 4-methyl-1-pentene polymers may be obtained by direct polymerization of olefins; comparative low molecular weight 4-methyl-1-pentene polymers obtained by polymerization may be obtained. It may be obtained by thermal decomposition. The thermally decomposed 4-methyl-1-pentene polymer may be subjected to solvent fractionation (fractionation based on a difference in solubility in a solvent) or molecular distillation (fractionation based on a difference in boiling point).
  • the conditions (decomposition temperature and decomposition time) for pyrolyzing the 4-methyl-1-pentene polymer before pyrolysis, which is the base, depend on the desired molecular weight and intrinsic viscosity [ ⁇ ] after pyrolysis. Set as appropriate.
  • the decomposition temperature is usually in the range of 150 to 450 ° C., preferably in the range of 250 to 440 ° C., particularly preferably in the range of 350 to 430 ° C.
  • the decomposition time is usually 5 to 300 minutes, preferably 10 to 240 minutes, more preferably 15 to 180 minutes.
  • the average particle diameter D 50 of the resin fine powder of the present invention is preferably 50 ⁇ m or less, can be 20 ⁇ m or less, and can be 10 ⁇ m or less. More specifically, the lower limit of the average particle diameter D 50 of the resin fine powder is preferably 1.0 ⁇ 10 ⁇ 1 ⁇ m, more preferably 5.0 ⁇ 10 ⁇ 1 ⁇ m, and 7.0 It is more preferable that it is ⁇ 10 ⁇ 1 ⁇ m, and it is particularly preferable that it is 1.0 ⁇ m.
  • the upper limit of the average particle diameter D 50 of the fine resin fines preferably from 5.0 ⁇ 10 [mu] m, more preferably 3.0 ⁇ 10 [mu] m, further preferably from 1.0 ⁇ 10 [mu] m, A thickness of 5.0 ⁇ m is particularly preferable.
  • the average particle diameter D 50 of the fine resin fines is measured using a laser diffraction particle size distribution measuring apparatus. Specifically, as a measurement sample of resin fine powder dispersed in a dispersion solvent, it determined the particle size distribution based on the laser diffraction scattering method, an average particle diameter D 50 of the particle size distribution obtained.
  • the average particle diameter D 50 is a particle diameter corresponding to 50% from the smallest particle diameter of the cumulative distribution curve; that is, when the powder group is divided into two groups based on a certain particle diameter, large particles
  • the average particle diameter D 50 of the fine resin fines obtained by pulverizing a resin mass of 4-methyl-1-pentene polymer may tend to decrease. Further, the particle size distribution of the resin fine powder obtained by pulverizing the resin mass of 4-methyl-1-pentene polymer tends to be relatively narrow. In particular, there is a tendency for the proportion of coarse particles to be low. These tendencies are characterized in that the 4-methyl-1-pentene polymer has a relatively bulky side chain, a low packing density of atoms, and a low intermolecular force among polyolefin resins. This is probably because of this. It is also considered that 4-methyl-1-pentene polymer has characteristics such as high glass transition temperature and rigidity because its molecular chain hardly moves.
  • the resin fine powder of the present invention is characterized by high fluidity despite a relatively small particle size.
  • High fluidity means that, for example, “the angle of repose” is small.
  • the angle of repose of the resin fine powder of the present invention is smaller than that of polyethylene powder of the same size.
  • the angle of repose is measured according to JISJR 9301.
  • the resin fine powder of the present invention is excellent in releasability and lubricity. Therefore, the resin fine powder of 4-methyl-1-pentene polymer exhibits high fluidity.
  • the resin fine powder of the present invention is a powder obtained by pulverization and is obtained as a dry powder. That is, it is different from powdered resin particles obtained by polymerizing monomer components in a solvent, such as emulsion polymerization.
  • the method for producing the resin fine powder of 4-methyl-1-pentene polymer of the present invention can be roughly classified into two.
  • One is a method in which a high molecular weight 4-methyl-1-pentene polymer is optionally pretreated and jet pulverized.
  • the other is a method of jet pulverizing a low molecular weight 4-methyl-1-pentene polymer.
  • the high molecular weight 4-methyl-1-pentene polymer generally means a polymer having an intrinsic viscosity [ ⁇ ] of 5.0 ⁇ 10 ⁇ 1 dl / g or more and less than 3.0 dl / g.
  • a pulverized 4-methyl-1-pentene polymer having an intrinsic viscosity [ ⁇ ] of 5.0 ⁇ 10 ⁇ 1 dl / g or more and less than 3.0 dl / g is less sticky and excellent in handling. .
  • a high molecular weight 4-methyl-1-pentene polymer is generally difficult to pulverize, and it is particularly difficult to obtain a fine powder having a narrow particle size distribution (for example, an average particle size D50 of 50 ⁇ m or less). there were. Therefore, a high molecular weight 4-methyl-1-pentene polymer is pretreated so that it can be jet crushed.
  • the pretreatment of the high molecular weight 4-methyl-1-pentene polymer should be carried out by appropriately selecting one or more treatments selected from cutter grinding, sieving treatment, solvent treatment, etc. according to the raw materials used. Is preferred.
  • the high molecular weight 4-methyl-1-pentene polymer is roughly pulverized by cutter pulverization.
  • the average particle diameter D 50 of the coarsely crushed product is preferably to such an extent 100 ⁇ m or less.
  • high molecular weight 4-methyl-1-pentene polymer pellets are preferably pulverized by cutter and coarsely pulverized. The cutter pulverization may be performed using a cutter mill.
  • the particle size distribution of high molecular weight 4-methyl-1-pentene polymer powder is sharpened.
  • the mesh size of the filter used for the sieving process is preferably 1000 ⁇ m or less.
  • the average particle diameter D 50 of the sieved product is preferably about 100 ⁇ m or less.
  • chips (cut pieces) obtained by cutting pellets of a high molecular weight 4-methyl-1-pentene polymer include fine powders but also large powders. Therefore, it is preferable to extract only fine powder by performing a sieving treatment.
  • Solvent treatment is to impregnate a 4-methyl-1-pentene polymer with a solvent; it is usually performed by immersing the polymer in a solvent.
  • the solvent include aliphatic hydrocarbons such as n-hexane, methylcyclohexane, decane and tecarin: ethers such as tetrahydrofuran; halogenated hydrocarbons such as dichloromethane and chloroform.
  • the immersion time in the solvent is generally 30 minutes to 24 hours, but about 3 to 4 hours is often sufficient.
  • the temperature of the solvent to be immersed may be room temperature, but may be heated or cooled.
  • the solvent treatment may be a pretreatment for cutter pulverization or a pretreatment for jet pulverization.
  • the resin fine powder of the present invention can be obtained by jet-pulverizing the pre-treated 4-methyl-1-pentene polymer.
  • the smaller the processing amount of jet pulverization (the amount of time per unit of raw material to be pulverized), the smaller the particle size of the pulverized product, but the lower the productivity.
  • the larger the throughput of jet pulverization the larger the particle size of the pulverized product, but the higher the productivity.
  • an ultrafine pulverizer may be used.
  • NanoJet Mizer manufactured by Aisin Nano Technologies
  • Jet pulverization may be performed only once, or may be repeated a plurality of times as necessary.
  • a low molecular weight 4-methyl-1-pentene polymer is usually a heavy polymer having an intrinsic viscosity [ ⁇ ] of 1.0 ⁇ 10 ⁇ 2 dl / g or more and less than 5.0 ⁇ 10 ⁇ 1 dl / g. Refers to coalescence.
  • a low molecular weight 4-methyl-1-pentene polymer is more easily pulverized than a high molecular weight 4-methyl-1-pentene polymer. Therefore, the low molecular weight 4-methyl-1-pentene polymer may or may not be subjected to pretreatment for jet pulverization.
  • the low molecular weight 4-methyl-1-pentene polymer can be obtained by thermally decomposing a high molecular weight 4-methyl-1-pentene polymer, but can also be obtained by direct polymerization.
  • the jet pulverization of the low molecular weight 4-methyl-1-pentene polymer may be performed by the same method as the jet pulverization of the high molecular weight 4-methyl-1-pentene polymer. Jet pulverization of a low molecular weight 4-methyl-1-pentene polymer is easier to pulverize than other polyolefins (polyethylene, polypropylene, etc.). This is because the 4-methyl-1-pentene polymer has a high glass transition temperature (Tg).
  • Composition containing fine resin powder of 4-methyl-1-pentene polymer The fine powder of 4-methyl-1-pentene polymer of the present invention can be used for various applications.
  • an additive for ink compositions and paint compositions as an additive for powder compositions for metallurgy, as an additive for powder compositions for ceramic sintering, as an additive for adhesives, as an additive for rubber, and as a toner
  • a mold release agent it can be used as a mold release material.
  • An example of a preferable composition of the present invention is a composition containing the fine resin powder described above and at least one sinterable powder selected from the group consisting of metal and ceramic powder.
  • the content of the resin fine powder with respect to 100 parts by mass of the sinterable powder is 0.1 to 150 parts by mass, preferably 5 to 150 parts by mass, more preferably 10 to 100 parts by mass, and particularly preferably 15 to 85 parts by mass. is there. If the content of the resin fine powder is too small, it may be difficult to mold the composition due to a decrease in the lubricity of the composition, and it is difficult to release the molded body or the sintered body from the mold (the mold releasability decreases). )Sometimes. On the other hand, when the content of the resin fine powder is too large, not only the mold release property and the lubricity are saturated, but also the compressibility is lowered, and it may be difficult to obtain a desired sintered body.
  • composition for porous sintered material contains the resin fine powder of the present invention, ceramic powder or metal powder, and a plasticizing binder.
  • a porous sintered material can be obtained from the composition for porous sintered material of the present invention.
  • the porous sintered material is, for example, a honeycomb filter.
  • the honeycomb filter is used, for example, as a catalyst carrier for a catalytic converter of an automobile or a catalyst carrier for purifying diesel engine exhaust gas.
  • Ceramic powder or metal powder is a material constituting the porous sintered body.
  • the ceramic powder include cordierite, spinel, clay, talc, alumina, aluminum hydroxide, silica, calcium oxide, magnesium oxide, boron oxide, titanium oxide, germanium oxide, alkali, transition metal and the like.
  • the metal powder include a powder mainly composed of iron, tungsten, copper, bronze, molybdenum, chromium, or nickel.
  • the plasticized binder is often composed of a thermoplastic resin such as an ethylene / vinyl acetate copolymer, cellulose or a derivative thereof, a surfactant (stearic acid or oleic acid), oil, water, or the like.
  • the content of the plasticizing binder in the porous sintered material composition is not particularly limited, but is preferably 5 to 200 parts by mass, and preferably 30 to 160 parts by mass with respect to 100 parts by mass of the sinterable powder. Is more preferable, and 40 to 100 parts by mass is particularly preferable.
  • the content of the resin fine powder in the porous sintered material composition is 5 to 150 parts by mass, preferably 10 to 100 parts by mass, particularly preferably 15 to 100 parts by mass with respect to 100 parts by mass of the ceramic powder. It can be 85 parts by weight.
  • the resin fine powder of the present invention acts as a pore forming material for forming pores in the sintered material in the porous sintered material composition.
  • the sintering process for obtaining the porous sintered body is as follows: 1) a step of shaping the composition for porous sintered material through an extrusion die to form an unfired body, and 2) heating the unfired body to form pores. A step of removing the material, and 3) a step of firing the green body from which the pore forming material has been removed. That is, the resin fine powder of the present invention vaporizes or decomposes when the green body is heated, thereby forming pores in the obtained ceramic sintered material.
  • the material composition for a porous sintered material of the present invention increases the density of spherical granules in the step of forming an unfired body, and therefore is easily caught in a kneading screw during kneading. Furthermore, the resin fine powder of the present invention also acts as a lubricant for the raw material powder (metal powder or ceramic powder). As a result, the porous sintered material composition of the present invention is uniformly kneaded in a short time.
  • the resin fine powder of the present invention is a fine powder composed of a 4-methyl-1-pentene polymer, and the 4-methyl-1-pentene polymer is decomposed in comparison with polyolefins such as polyethylene.
  • the temperature is low. Therefore, even if the heating temperature of the green body is low, it can be removed.
  • the sintered body when removing the pore forming agent by heating the green body, if the pore forming agent melts at a low temperature, the sintered body may be deformed by its own weight. is there. Since the resin fine powder of the present invention has a high melting point, it is difficult to melt while the green body is heated. Therefore, deformation of the green body during heating is suppressed.
  • the lower limit of the average particle diameter D 50 of the pore forming agent in the composition for porous sintered material is preferably 1.0 ⁇ 10 ⁇ 1 ⁇ m, more preferably 5.0 ⁇ 10 ⁇ 1 ⁇ m. Preferably, it is 7.0 ⁇ 10 ⁇ 1 ⁇ m, more preferably 1.0 ⁇ m. This is because pores may not be formed in the sintered body with a pore-forming agent having an excessively small particle size.
  • the upper limit of the average particle diameter D 50 of the pore forming agent is preferably 5.0 ⁇ 10 ⁇ m, more preferably 3.0 ⁇ 10 ⁇ m, and further preferably 1.0 ⁇ 10 ⁇ m. 5.0 ⁇ m is particularly preferable. A pore forming agent having an excessively large particle diameter may not provide sufficient strength of the porous sintered body.
  • the metallurgical composition of the present invention includes the resin fine powder of the present invention and a sinterable powder. From the metallurgical composition, for example, a metal member that is a sintered body can be obtained.
  • the sinterable powder is a material constituting the obtained sintered body.
  • Sinterable powders are typically ceramic powders or metal powders; examples of metal powders include powders based on iron, tungsten, copper, bronze, molybdenum, chromium, or nickel.
  • the weight average particle size of the sinterable powder is preferably 1000 ⁇ m at the maximum, and is usually in the range of 10 to 500 ⁇ m. It is preferably 20 to 350 ⁇ m, particularly preferably 30 to 150 ⁇ m.
  • the content of the sinterable powder in the metallurgical composition is preferably 85 to 99.9% by mass, more preferably 95 to 99.8% by mass, and 98 to 99.7% by mass. It is particularly preferred.
  • the content of the resin fine powder in the metallurgical composition is preferably 0.1 to 15% by mass, more preferably 0.2 to 5% by mass, and 0.3 to 2% by mass. Is particularly preferred.
  • the amount of resin fine powder used is insufficient, the lubricity is insufficient.
  • resin fine powder of the present invention acts as a dry lubricant.
  • the metallurgical composition can be obtained by adding an appropriate amount of resin fine powder to the sinterable powder and then mixing with a mixer.
  • a mixer having a small shearing force applied to the mixed powder such as a container rotating type, a mechanical stirring type, a flow stirring type and a non-stirring type, is preferable.
  • a container rotation type mixer a horizontal cylindrical type, an inclined cylindrical type, a V-shaped type, a double cone type and a continuous V type are preferable, and a mixer having a built-in stirring blade can also be suitably used.
  • the mechanical stirring mixer a ribbon type, a screw type, a biaxial paddle type, a conical screw type and a rotating disk type are preferable.
  • a fluid agitation mixer a fluid bed type, a swirl type, and a jet pump type are preferable.
  • the metallurgical process is as follows: 1) a step of filling the metallurgical composition mixed by the above-described method into a sintering die and compression molding, 2) a step of releasing the compression molded product from the die, 3) Heat treating and sintering the mold release.
  • any known method may be applied to the step of filling the metallurgical composition into a sintering mold and compression molding.
  • filling and compressing a metallurgical composition at room temperature into a mold heated to 50 to 70 ° C. is preferable because the powder can be easily handled and the green compact density can be further improved.
  • warm forming in which the metallurgical composition and the mold are both heated to 100 ° C. to 150 ° C. may be adapted.
  • a known method may be adapted for sintering and heat treatment.
  • the dry lubricant is required to flow the sinterable powder when the metallurgical composition is compression-molded in the mold so as to reach the entire cavity of the sintering mold. Furthermore, the dry lubricant is required to improve the releasability when the compression molded product is released from the mold. As a result, a compression-molded product having a precise shape is obtained. Since the resin fine powder of the present invention is a fine powder composed of a 4-methyl-1-pentene polymer having a high melting point and a low surface tension, the sinterable powder can be flowed from the mold. Can be easily released.
  • the dry lubricant blended in the metallurgical composition has a low melting point, fluidity may be lowered in order to form a liquid bridge between the powders of the sinterable powder.
  • a dry lubricant having a high melting point for example, higher fatty acid metal salts or ethylene bisamide may be added to the metallurgical composition.
  • these are insufficient in improving the fluidity of the sinterable powder.
  • the lower limit of the average particle diameter D 50 of the resin fine powder in the metallurgical composition is preferably 1.0 ⁇ 10 ⁇ 1 ⁇ m, more preferably 5.0 ⁇ 10 ⁇ 1 ⁇ m, and 7.0. It is more preferable that it is * 10 ⁇ -1 > micrometer, and it is especially preferable that it is 1.0 micrometer.
  • the upper limit of the average particle diameter D 50 of the fine resin fines preferably from 5.0 ⁇ 10 [mu] m, more preferably 3.0 ⁇ 10 [mu] m, further preferably from 1.0 ⁇ 10 [mu] m, A thickness of 5.0 ⁇ m is particularly preferable. This is because the resin fine powder having a large particle size reduces the strength of the sintered body. On the other hand, resin fine powder having an excessively small particle size cannot sufficiently improve the fluidity of the sinterable powder in the metallurgical composition.
  • the dry lubricant in the metallurgical composition must be thermally decomposed and removed when the release product is sintered.
  • the resin fine powder of the present invention is a fine powder composed of a 4-methyl-1-pentene polymer, and the 4-methyl-1-pentene polymer has a lower decomposition initiation temperature than a polyolefin such as polyethylene. Therefore, it can be removed more reliably at a lower sintering temperature.
  • amide waxes that are sometimes used as dry lubricants in metallurgical compositions may cause odorous substances to be generated by thermal decomposition and reduce the work efficiency, but the resin fine powder of the present invention does not contain odorous substances. Hard to generate.
  • a part of the resin fine powder contained in the metallurgical composition may be a resin fine powder other than the resin fine powder of the present invention.
  • resin fine powders other than the resin fine powder of the present invention include fatty acid metal salts and amide waxes; more specifically, fatty acid metal salts such as lithium stearate, calcium stearate, zinc stearate, and ethylene Bis (stearoylamide) type amide wax, stearoylamide type amide wax and the like are included.
  • the ink composition and the coating composition of the present invention contain the resin fine powder of the present invention, a matrix resin, an organic solvent, and a colorant.
  • the ink composition can be used for offset printing, for example.
  • the matrix resin examples include natural resins such as rosin, gilsonite, and ester gum; and synthetic resins such as phenol resin, alkyd resin, petroleum resin, vinyl resin, polyamide resin, acrylic resin, nitrocellulose, and chlorinated rubber.
  • organic solvents examples include aromatic hydrocarbons such as benzene, toluene and xylene; aliphatic hydrocarbons such as hexane, octane and decane; alicyclic hydrocarbons such as cyclohexane, cyclohexene, methylcyclohexane and ethylcyclohexane; trichloroethylene Halogenated hydrocarbons such as methanol, ethanol, isopropyl alcohol, butanol, pentanol, hexanol, propanediol, phenol, etc .; acetone, methyl isobutyl ketone, methyl ethyl ketone, pentanone, hexanone, isophorone, acetophenone, etc.
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • aliphatic hydrocarbons such as hexane, octane
  • Ketones such as methyl cellosolve and ethyl cellosolve; methyl acetate, ethyl acetate, butyl acetate, methyl propionate, butyl formate What esters; and the like ethers such as tetrahydrofuran.
  • the content of the resin fine powder of the present invention in the ink composition and the coating composition is preferably 0.1 to 10% by mass.
  • the resin fine powder of the present invention acts as a wax.
  • the wax increases the friction resistance of the printed film.
  • the coating film coated with the ink composition and the coating composition comes into contact with other members, the printing surface may be rubbed and the printing quality may be deteriorated, but the wax suppresses the deterioration of the printing quality. .
  • the coating film is heated (heat set) to evaporate the solvent to obtain a printed matter.
  • the heating temperature may be high, for example, 150 ° C. or higher. For this reason, the normal wax is dissolved in the heating step of the coating film, and its wear resistance characteristics may not be maintained.
  • the resin fine powder of the present invention is a resin fine powder made of 4-methyl-1-pentene polymer, and 4-methyl-1-pentene polymer has a melting point as compared with polyethylene used as a wax. High (150 ° C. or higher, preferably 180 ° C. or higher, more preferably 200 ° C. or higher). Therefore, the composition ink composition containing the resin fine powder of the present invention and the coating composition have high friction resistance of the printed film, even if it is a printed film by offset printing having a high heat-set temperature, and wear resistance. Can increase.
  • the 4-methyl-1-pentene polymer constituting the resin fine powder of the present invention has high transparency. Therefore, the resin fine powder of the present invention hardly affects the color tone of the printed film and has little influence on the print quality.
  • the density of the 4-methyl-1-pentene polymer constituting the resin fine powder of the present invention is low. Therefore, the resin fine powder of the present invention can be unevenly distributed on the surface of the printed coating film of the ink composition and the coating composition. When the wax is unevenly distributed on the surface of the coating film, the wear resistance of the printed film is further improved.
  • Example 1 Poly-4-methyl-1-pentene (manufactured by Mitsui Chemicals, trade name: TPX, brand name: DX820, melting point: 233 ° C., MFR: 180 [g / 10 min] (ASTM-D1238, 260 ° C.-5 kg load) Pellets (particle size about 3 mm) were prepared.
  • the pellet was immersed in methylcyclohexane at room temperature for 4 hours and treated with a solvent.
  • the solvent-treated pellets were pulverized with a cutter mill.
  • the pulverized cutter was further subjected to jet pulverization treatment (six times).
  • a nano jet mizer (NJ50 type: manufactured by Aisin Nano Technologies Co., Ltd.) was used.
  • the pulverization conditions were set in the range of indentation pressure: 1.3 to 1.5 MPa and pulverization pressure: 1.0 to 1.35 MPa.
  • the particle size of the obtained powder was measured, and the results are summarized in Table 1.
  • Example 2 Poly-4-methyl-1-pentene (Mitsui Chemicals, trade name: TPX, brand name: DX810UP, melting point: 233 ° C., MFR: 5 [g / 10 min] (ASTM-D1238, 260 ° C.-5 kg load) Powder (particle size of about 300 ⁇ m) was prepared.
  • the powder was immersed in methylcyclohexane at room temperature for 4 hours for solvent treatment.
  • the solvent-treated powder was jet pulverized (twice).
  • the jet pulverization treatment was performed in the same manner as in Example 1.
  • the particle size of the obtained powder was measured, and the results are summarized in Table 1.
  • Example 3 Poly-4-methyl-1-pentene (trade name: TPX, manufactured by Mitsui Chemicals, Inc., melting point: about 233 ° C., MFR: about 1 to 200 [g / 10 min] (ASTM-D1238, 260 ° C.-5 kg load) A mixture of facets and pellets (particle size of about 1 ⁇ m to 3 mm) generated in step 1 was prepared.
  • a sieve treatment was performed on the mixture of the facets and pellets using an 850 micron mesh.
  • the sieve passing material was subjected to jet pulverization (three times).
  • the jet pulverization treatment was performed in the same manner as in Example 1.
  • the particle size of the obtained powder was measured, and the results are summarized in Table 1.
  • the average particle diameter D 50 of the powder in each example and comparative examples were measured in the following manner. After the powder is diffused and dispersed in an aqueous solution containing a surfactant, the particle size of the pulverized material is measured with a particle size distribution analyzer (CILAS 1064 measurement range: 0.04 to 500 ⁇ m). It was measured average particle diameter D 50. As described above, the average particle diameter D 50 is the particle diameter corresponding from the side the particle size of cumulative distribution curve is less 50%, that is, when divided into two from the particle size in the powder, larger side and the smaller side The particle diameter when the mass of the same becomes equal. Further, the particle size distribution of the powders of Examples 1 to 3 was measured by the same method, and the results are shown in FIG. 4 (Example 1), FIG. 5 (Example 2), and FIG. 6 (Example 3). It was.
  • Example 1 as a pretreatment of 4-methyl-1-pentene polymer pellets, cutter pulverization was performed after the solvent treatment, and the raw material particle size after the pretreatment was 76 ⁇ m. Further, as a result of jet pulverization (six times), sand-shaped fine particles shown in FIG. 1 were obtained, and the average particle size was 4 ⁇ m. On the other hand, in Comparative Example 1, jet pulverization was performed using the same pellets as in Example 1 without performing pretreatment, but no pulverization effect was observed.
  • Example 2 the 4-methyl-1-pentene polymer powder was subjected to solvent treatment, and the raw material particle size was 113 ⁇ m. Furthermore, as a result of jet pulverization (twice), sand-shaped fine particles shown in FIG. 2 were obtained, and the average particle size was 3 ⁇ m. Also in Comparative Example 2, jet pulverization was performed without carrying out the pretreatment of the powder used in Example 2, but sufficient pulverization was not possible, and the average particle size was 211 ⁇ m.
  • Example 4 150 g of 4-methyl-1-pentene homopolymer having an intrinsic viscosity [ ⁇ ] of 2.9 dL / g was charged into a 500 ml branched polymerization flask, and heated to 358 ° C. using a sand bath while flowing nitrogen. After confirming that the polymer on the flask wall surface was melted, the 4-methyl-1-pentene polymer was thermally decomposed by continuing stirring for 2 hours while maintaining the temperature. Thereafter, by cooling to room temperature, an oligomer (4MP1 oligomer) having an intrinsic viscosity [ ⁇ ] of 0.20 dL / g was obtained.
  • Table 2 shows the number average molecular weight Mn, weight average molecular weight Mw, molecular weight distribution Mw / Mn, melting point, critical surface tension and the like of the obtained oligomer.
  • the obtained oligomer was pulverized using a single track jet mill (STJ-200 type manufactured by Seishin Enterprise Co., Ltd.) (grinding treatment amount: 2 kg / h).
  • the average particle diameter D 50 of the grinding process was a 2.5 [mu] m.
  • Example 5 150 g of 4-methyl-1-pentene polymer (DX820, manufactured by Mitsui Chemicals) was charged into a 500 ml branched polymerization flask, and heated to 357 ° C. using a sand bath while flowing nitrogen. After confirming that the polymer on the flask wall surface was melted, the 4-methyl-1-pentene polymer was thermally decomposed by continuing stirring for 2 hours while maintaining the temperature. Thereafter, by cooling to room temperature, an oligomer (4MP1 oligomer) having an intrinsic viscosity [ ⁇ ] of 0.23 dL / g was obtained.
  • Table 2 shows the number average molecular weight Mn, weight average molecular weight Mw, molecular weight distribution Mw / Mn, melting point, critical surface tension and the like of the obtained oligomer.
  • the obtained oligomer was pulverized using a single track jet mill (STJ-200 type manufactured by Seishin Enterprise Co., Ltd.) (pulverization amount: 5 kg / h). The same pulverization process was repeated twice.
  • the average particle diameter D 50 of the grinding process was a 3.6 [mu] m.
  • [Intrinsic viscosity [ ⁇ ]] It measured at 135 degreeC using the decalin solvent. About 20 mg of the sample was dissolved in 15 ml of decalin, and the specific viscosity ⁇ sp was measured in an oil bath at 135 ° C. The decalin solution was diluted by adding 5 ml of decalin solvent, and the specific viscosity ⁇ sp was measured in the same manner. This dilution operation was further repeated twice, and the value of ⁇ sp / C when the concentration (C) was extrapolated to 0 was determined as the intrinsic viscosity. [ ⁇ ] lim ( ⁇ sp / C) (C ⁇ 0 [molecular weight])
  • the ratio (Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) was determined from GPC measurement. The measurement was performed under the following conditions. The weight average molecular weight and number average molecular weight were determined based on the following conversion method by preparing a calibration curve using commercially available monodisperse standard polystyrene.
  • Apparatus Gel permeation chromatograph Alliance GPC2000 type (manufactured by Waters) Solvent: o-dichlorobenzene column: TSKgel column (manufactured by Tosoh Corp.) ⁇ 4 Flow rate: 1.0 ml / min Sample: 0.15 mg / mL o-dichlorobenzene Solution temperature: 140 ° C.
  • Molecular weight conversion PS conversion / general-purpose calibration method The coefficient of Mark-Houwink viscosity equation shown below was used for calculation of general-purpose calibration.
  • a test sample for measuring critical surface tension was prepared by casting a 4-methyl-1-pentene polymer on a SUS plate. For casting, a 4-methyl-1-pentene polymer was heated and melted on a SUS plate under a nitrogen atmosphere at 250 ° C. for 5 minutes, and then returned to room temperature and solidified. The critical surface tension of the surface of this test sample was measured.
  • Example 4 and Example 5 The average particle diameter D 50 and the particle size distribution in Example 4 and Example 5 were determined by diffusing and dispersing the powder in an aqueous solution containing a surfactant, and then using a laser diffraction / scattering particle size distribution measuring apparatus (LMS manufactured by Seishin Enterprise Co., Ltd.). ⁇ 30, measurement range: 0.1 to 1000 ⁇ m). Moreover, the particle size distribution of the powder of Example 4 and Example 5 was shown in FIG. 7 (Example 4) and FIG. 8 (Example 5).
  • LMS laser diffraction / scattering particle size distribution measuring apparatus
  • the average particle size D 50 in Comparative Example 3 an aqueous solution containing a surfactant, a powder after being diffused dispersed, a laser diffraction and diffusion particle size distribution measuring device (manufactured by Nikkiso Co., Ltd. Microtrac HRA, measuring range: 0. 1 to 700 ⁇ m).
  • the oligomers of the 4-methyl-1-pentene-1 polymer of Examples 4 and 5 were obtained by jet milling with an average particle size D 50 of 2.5 ⁇ m and no pretreatment. The particles became 3.6 ⁇ m.
  • the oligomers of 4-methyl-1-pentene-1-based polymers of Example 4 and Example 5 have a small angle of repose compared to an ethylenebisstearylamide of the same size. . That is, the resin fine powder of the present invention is characterized by high fluidity despite a relatively small particle size.
  • the resin fine powder of the present invention can be used as an additive to various compositions by utilizing the characteristics of 4-methyl-1-pentene polymer.
  • 4-methyl-1-pentene polymer is used as a lubricant because it has a low surface tension; it has a higher melting point than other polyolefins, so it is used as a wax for an ink composition having a high heat setting temperature.
  • 4-methyl-1-pentene polymer is used as a lubricant because it has a low surface tension; it has a higher melting point than other polyolefins, so it is used as a wax for an ink composition having a high heat setting temperature.

Abstract

 デカリン溶媒中135℃で測定した極限粘度[η]が、1.0×10-2dl/g以上3.0dl/g未満である4-メチル-1-ペンテン系重合体からなり、平均粒径D50が1.0×10-1~5.0×10μmである樹脂微粉末、ならびに当該樹脂微粉末と、金属およびセラミック粉末からなる群から選ばれる少なくとも1種の焼結性粉末と、を含有する組成物を提供する。

Description

4-メチル-1-ペンテン系重合体からなる樹脂微粉末、およびそれを含む組成物、ならびにその製造方法
 本発明は、4-メチル-1-ペンテン系重合体からなる樹脂微粉末と、それを含む組成物に関する。
 4-メチル-1-ペンテンに由来する構成単位を含むオレフィン系重合体(以下、4-メチル-1-ペンテン系重合体ともいう)は、遷移金属化合物と、有機アルミニウム化合物とからなる触媒、いわゆるチーグラー型触媒を用いて製造されるのが一般的であるが(特許文献2を参照)、メタロセン触媒を用いて得られることも報告されている(特許文献1を参照)。
 4-メチル-1-ペンテン系重合体は、透明性、ガス透過性、耐薬品性、剥離性とともに耐熱性に優れた樹脂として、医療器具、耐熱電線、耐熱食器、剥離用材など様々な分野で利用されている。特に、4-メチル-1-ペンテン系重合体の表面張力が低いことを利用して、離型フィルムとして用いたり、離型ワックスとして用いたりする(特許文献1などを参照)。
 これらの用途に4-メチル-1-ペンテン系重合体を適用する場合には、重合反応により得られたバルクを用いてもよい。重合反応により得られたバルクを他の樹脂とブレンドして用いてもよい。重合反応により得られるバルクまたはそのブレンドを、必要に応じてペレット化したり、所望の形状(例えば、フィルム状)に成形することもある。さらには、重合反応により得られたバルクを、熱分解によりオリゴマー化してもよい。オリゴマーを、他の樹脂とブレンドしたり、所望の形状に成形してもよい。いずれの方法も、生産コストの点から好ましい。
 高い融点を有し、かつ表面張力の低い粉末状樹脂は、例えば、焼結性粉末との混合用途、より具体的には多孔質焼結材用組成物や冶金用組成物などで必要とされている。焼結性粉末へ添加する粉末状樹脂として、例えばアミド系樹脂粉末などが用いられる場合がある。アミド系樹脂粉末などは、焼結工程における熱分解により、臭気を発生させるおそれがある。
 また、一般的に樹脂を切削加工するときに、切子と称される切削くずが発生する。この切削くずを、廃棄することなく有効活用することが求められている。
国際公開第2005/121192号 特公平5-88250号公報
 本発明は、4-メチル-1-ペンテン系重合体は、高い融点を有し、かつ表面張力が低く、さらに熱分解させても臭気の発生が抑制されることに着目し、4-メチル-1-ペンテン系重合体の微粉末を、種々の組成物への微粉末状の添加剤として用いることを検討した。その結果、特定の前処理を施すことで、4-メチル-1-ペンテン系重合体の粉砕による微粉化ができることを見出した。また、比較的低分子量の4-メチル-1-ペンテン系重合体は、他のオレフィン重合体と比べて、むしろ効率的に粉砕され、微粉化ができることを見出した。
 そこで本発明は、4-メチル-1-ペンテン系重合体の微粉末を提供すること、およびそれを種々の組成物の添加剤として応用すること、を目的とする。また、4-メチル-1-ペンテン系重合体の微粉末の原料として、4-メチル-1-ペンテン系重合体を切削加工するときの切子を用いることで、切子の有効活用を実現する。
 すなわち本発明の第1は、以下に示す樹脂微粉末に関する。
 [1] デカリン溶媒中135℃で測定した極限粘度[η]が、1.0×10-2dl/g以上3.0dl/g未満である4-メチル-1-ペンテン系重合体からなり、平均粒径D50が1.0×10-1~5.0×10μmである樹脂微粉末。
 [2] 前記平均粒径D50が、1.0×10-1~1.0×10μmである、[1]に記載の樹脂微粉末。
 [3] 前記極限粘度[η]が、1.0×10-2dl/g以上5.0×10-1dl/g未満である、[1]に記載の樹脂微粉末。
 [4] 前記極限粘度[η]が、5.0×10-1dl/g以上3.0dl/g未満である、[1]に記載の樹脂微粉末。
 本発明の第2は、以下に示す、樹脂微粉末を含む組成物などに関する。
 [5] (A)前記[1]に記載の樹脂微粉末0.1~150質量部と、(B)金属およびセラミック粉末からなる群から選ばれる少なくとも1種の焼結性粉末100質量部と、を含有する組成物。
 [6] 前記組成物は、(C)可塑化バインダー5~200質量部をさらに含有する、[5]に記載の組成物。
 [7] 前記[5]に記載の組成物を押し出し成形して成形体を得る工程と、前記成形体を焼結する工程と、を含む多孔質焼結体の製造方法。
 [8] 前記多孔質焼結体はハニカムフィルタである、[7]に記載の製造方法。
 [9] 前記[1]に記載の樹脂微粉末を含有する塗料。
 [10] 前記[1]に記載の樹脂微粉末を含有するインキ。
 本発明の第3は、以下に示す、樹脂微粉末を製造する方法に関する。
 [11] 4-メチル-1-ペンテン系重合体のバルクまたは粗粉砕物を、ジェット粉砕処理する工程を含む、[1]に記載の樹脂微粉末を製造する方法。
 [12] 前記粗粉砕物は、有機溶媒を染み込ませた4-メチル-1-ペンテン系重合体を粉砕して得る、[11]に記載の製造方法。
 [13] 前記バルクまたは粗粉砕物は、4-メチル-1-ペンテン系重合体の熱分解物である、[11]に記載の製造方法。
 本発明の樹脂微粉末は、4-メチル-1-ペンテン系重合体からなり;4-メチル-1-ペンテン系重合体は、高融点、低表面張力、滑性、潤滑性、熱分解しても臭気を発生させない、という特性を有しうる。それらの特性を活用して、本発明の樹脂微粉末は種々の用途に用いられうる。つまり、冶金用組成物の添加剤として、セラミック焼結材用組成物の添加剤として、粘着剤の添加剤として、ゴムの添加剤としての用途などが考えられる。また、4-メチル-1-ペンテン系重合体は上記の特性に加え、低密度、透明性も有しているため、インキや塗料の添加剤としても有用であると考えられるが、他にも種々の用途展開がある。
実施例1で得られたTPX微粒子の電子顕微鏡(SEM)写真(拡大倍率2000倍)である。 実施例2で得られたTPX微粒子の電子顕微鏡(SEM)写真(拡大倍率2000倍)である。 実施例3で得られたTPX微粒子の電子顕微鏡(SEM)写真(拡大倍率1000倍)である。 実施例1で得られた粉体の粒径分布を示すグラフである。X軸は粉体の粒径を示し、Y軸(右側)は、粒径に対応する粉体個数を示し(ヒストグラム参照)、Y軸(左側)は、粉体の累積個数分布を示す(曲線参照)。 実施例2で得られた粉体の粒径分布を示すグラフである。X軸は粉体の粒径を示し、Y軸(右側)は、粒径に対応する粉体個数を示し(ヒストグラム参照)、Y軸(左側)は、粉体の累積個数分布を示す(曲線参照)。 実施例3で得られた粉体の粒径分布を示すグラフである。X軸は粉体の粒径を示し、Y軸(右側)は、粒径に対応する粉体個数を示し(ヒストグラム参照)、Y軸(左側)は、粉体の累積個数分布を示す(曲線参照)。 実施例4で得られた粉体の粒径分布を示すグラフである。X軸は粉体の粒径を示し、Y軸(右側)は、粒径に対応する粉体個数を示し(ヒストグラム参照)、Y軸(左側)は、粉体の累積個数分布を示す(曲線参照)。 実施例5で得られた粉体の粒径分布を示すグラフである。X軸は粉体の粒径を示し、Y軸(右側)は、粒径に対応する粉体個数を示し(ヒストグラム参照)、Y軸(左側)は、粉体の累積個数分布を示す(曲線参照)。
1.4-メチル-1-ペンテン系重合体の樹脂微粉末
 本発明の樹脂微粉末は、4-メチル-1-ペンテン系重合体を含む。4-メチル-1-ペンテン系重合体とは、構成単位の少なくとも一部が4-メチル-1-ペンテン由来の構成単位である重合体である。
 本発明の樹脂微粉末を構成する4-メチル-1-ペンテン系重合体の全構成単位に対する、4-メチル-1-ペンテンから導かれる構成単位の割合は、50~100質量%であることが好ましく、60~100質量%であることがより好ましく、70~100質量%であることがさらに好ましく、90~100質量%であることが特に好ましい。
 4-メチル-1-ペンテン系重合体に含まれる、4-メチル-1-ペンテン由来の構成単位以外の構成単位は、炭素原子数が2~20のオレフィンから導かれる構成単位であることが好ましい。4-メチル-1-ペンテン系重合体の全構成単位に対する、4-メチル-1-ペンテン以外の炭素原子数が2~20のオレフィンから導かれる構成単位の合計割合は、0~50質量%であることが好ましく、0~40質量%であることがより好ましく、0~30質量%であることがさらに好ましく、0~10質量%であることが特に好ましい。
 4-メチル-1-ペンテン系重合体に構成単位として含まれる4-メチル-1-ペンテン以外の炭素原子数2~20のオレフィンの例には、直鎖状または分岐状のα-オレフィン、環状オレフィン、芳香族ビニル化合物、共役ジエン、非共役ポリエン、官能化ビニル化合物などが含まれる。
 4-メチル-1-ペンテン系重合体に構成単位として含まれる、直鎖状または分岐状のα-オレフィンの具体例には、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどの炭素原子数2~20、好ましくは2~10の直鎖状のα-オレフィン;3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4,4-ジメチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセンなどの、好ましくは5~20、より好ましくは5~10の分岐状のα-オレフィンが含まれる。
 4-メチル-1-ペンテン系重合体に構成単位として含まれる環状オレフィンの具体例には、シクロペンテン、シクロヘプテン、ノルボルネン、5-メチル-2-ノルボルネン、テトラシクロドデセン、ビニルシクロヘキサンなどの、炭素原子数3~20、好ましくは5~15の環状オレフィンが含まれる。
 4-メチル-1-ペンテン系重合体に構成単位として含まれる芳香族ビニル化合物の具体例には、スチレン、およびα-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o,p-ジメチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレンなどの、モノまたはポリアルキルスチレンが含まれる。
 4-メチル-1-ペンテン系重合体に構成単位として含まれる共役ジエンの例には、1,3-ブタジエン、イソプレン、クロロプレン、1,3-ペンタジエン、2,3-ジメチルブタジエン、4-メチル-1,3-ペンタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-オクタジエンなどの、炭素原子数4~20、好ましくは4~10の共役ジエンが含まれる。
 4-メチル-1-ペンテン系重合体に構成単位として含まれる非共役ポリエンの具体例には、1,4-ペンタジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、1,4-オクタジエン、1,5-オクタジエン、1,6-オクタジエン、1,7-オクタジエン、2-メチル-1,5-ヘキサジエン、6-メチル-1,5-ヘプタジエン、7-メチル-1,6-オクタジエン、4-エチリデン-8-メチル-1,7-ノナジエン、4,8-ジメチル-1,4,8-デカトリエン(DMDT)、ジシクロペンタジエン、シクロヘキサジエン、ジシクロオクタジエン、メチレンノルボルネン、5-ビニルノルボルネン、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、6-クロロメチル-5-イソプロペンル-2-ノルボルネン、2,3-ジイソプロピリデン-5-ノルボルネン、2-エチリデン-3-イソプロピリデン-5-ノルボルネン、2-プロペニル-2,2-ノルボルナジエンなどの、炭素原子数5~20、好ましくは5~10の非共役ポリエンが含まれる。
 4-メチル-1-ペンテン系重合体に構成単位として含まれる官能化ビニル化合物の例には、水酸基含有オレフィン;ハロゲン化オレフィン;アクリル酸、プロピオン酸、3-ブテン酸、4-ペンテン酸、5-ヘキセン酸、6-ヘプテン酸、7-オクテン酸、8-ノネン酸、9-デセン酸などの不飽和カルボン酸類;アリルアミン、5-ヘキセンアミン、6-ヘプテンアミンなどの不飽和アミン類;(2,7-オクタジエニル)コハク酸無水物、ペンタプロペニルコハク酸無水物、および上記不飽和カルボン酸類として例示した化合物において、カルボン酸基をカルボン酸無水物基に置き換えた化合物などの不飽和酸無水物類;上記不飽和カルボン酸類として例示した化合物において、カルボン酸基をカルボン酸ハライド基に置き換えた化合物などの不飽和カルボン酸ハライド類;4-エポキシ-1-ブテン、5-エポキシ-1-ペンテン、6-エポキシ-1-ヘキセン、7-エポキシ-1-ヘプテン、8-エポキシ-1-オクテン、9-エポキシ-1-ノネン、10-エポキシ-1-デセン、11-エポキシ-1-ウンデセンなどの不飽和エポキシ化合物類などが含まれる。
 4-メチル-1-ペンテン系重合体に構成単位として含まれる水酸基含有オレフィンは、水酸基含有のオレフィン系化合物であれば特に制限はないが、例えば末端水酸化オレフィン化合物が挙げられる。末端水酸化オレフィン化合物の具体例には、ビニルアルコール、アリルアルコール、水酸化-1-ブテン、水酸化-1-ペンテン、水酸化-1-ヘキセン、水酸化-1-オクテン、水酸化-1-デセン、水酸化-1-ドデセン、水酸化-1-テトラデセン、水酸化-1-ヘキサデセン、水酸化-1-オクタデセン、水酸化-1-エイコセンなどの、炭素原子数2~20、好ましくは2~10の直鎖状の水酸化α-オレフィン;水酸化-3-メチル-1-ブテン、水酸化-4-メチル-1-ペンテン、水酸化-3-メチル-1-ペンテン、水酸化-3-エチル-1-ペンテン、水酸化-4,4-ジメチル-1-ペンテン、水酸化-4-メチル-1-ヘキセン、水酸化-4,4-ジメチル-1-ヘキセン、水酸化-4-エチル-1-ヘキセン、水酸化-3-エチル-1-ヘキセンなどの、好ましくは5~20、より好ましくは5~10の分岐状の水酸化α-オレフィンが含まれる。
 4-メチル-1-ペンテン系重合体に構成単位として含まれるハロゲン化オレフィンの具体例には、塩素、臭素、ヨウ素等周期表第17族原子を有するハロゲン化α-オレフィン、例えばハロゲン化ビニル、ハロゲン化-1-ブテン、ハロゲン化-1-ペンテン、ハロゲン化-1-ヘキセン、ハロゲン化-1-オクテン、ハロゲン化-1-デセン、ハロゲン化-1-ドデセン、ハロゲン化-1-テトラデセン、ハロゲン化-1-ヘキサデセン、ハロゲン化-1-オクタデセン、ハロゲン化-1-エイコセンなどの、炭素原子数2~20、好ましくは2~10の直鎖状のハロゲン化α-オレフィン;ハロゲン化-3-メチル-1-ブテン、ハロゲン化-4-メチル-1-ペンテン、ハロゲン化-3-メチル-1-ペンテン、ハロゲン化-3-エチル-1-ペンテン、ハロゲン化-4,4-ジメチル-1-ペンテン、ハロゲン化-4-メチル-1-ヘキセン、ハロゲン化-4,4-ジメチル-1-ヘキセン、ハロゲン化-4-エチル-1-ヘキセン、ハロゲン化-3-エチル-1-ヘキセンなどの、好ましくは5~20、より好ましくは5~10の分岐状のハロゲン化α-オレフィンが含まれる。
 4-メチル-1-ペンテンとともに構成単位として含まれるオレフィン類として特に好ましい例には、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン、ビニルシクロヘキサン、スチレンなどが含まれる。4-メチル-1-ペンテン系重合体(B)に、4-メチル-1-ペンテンとともに構成単位として含まれるオレフィン類は、1種類であってもよく、2種類以上の組み合わせであってもよい。
 本発明の樹脂微粉末に含まれる4-メチル-1-ペンテン系重合体の、ゲルパーミエーションクロマトグラフィー(GPC)により求められる重量平均分子量(Mw)と数平均分子量(Mn)との比率(分子量分布 Mw/Mn)は、1.0~20.0であり、1.0~10.0であってもよく、1.0~5.0であってもよい。重量平均分子量(Mw)と数平均分子量(Mn)は、それぞれゲルパーミエーションクロマトグラフィー(GPC)により測定される、ポリスチレン換算値である。GPC測定は、温度140℃、展開溶媒をオルトジクロロベンゼンとして行えばよい。
 4-メチル-1-ペンテン系重合体の、示差走査熱量計で測定される融点(Tm)の下限は、120℃であることが好ましく、160℃であることがより好ましく、180℃であることがさらに好ましく、200℃であることが特に好ましい。また、融点(Tm)の上限は、245℃であることが好ましく、240℃であることがより好ましく、235℃であることがさらに好ましく、230℃であることが特に好ましい。このように、4-メチル-1-ペンテン系重合体は、ポリオレフィン系樹脂の中では高い融点を有する。これは、4-メチル-1-ペンテン系重合体は嵩高い側鎖を有しているので、その分子鎖が動き難いためであると考えられる。
 融点の測定は、示差走査型熱量計(Diamond DSC、パーキンエルマー社製)を用いて行い、試料約5mgをアルミパンに詰めて10℃/分で280℃まで昇温し;280℃で5分間保持し;10℃/分で30℃まで冷却し;30℃で5分間保持した後;10℃/分で280℃まで昇温する際の吸熱ピークを融点とする。
 4-メチル-1-ペンテン系重合体の、デカリン溶媒中135℃で測定した極限粘度[η](dl/g)は、1×10-2~3.0であることが好ましい。4-メチル-1-ペンテン系重合体は、極限粘度[η]に応じて、大きく2つに分類して考えてもよい。第1は、極限粘度[η]が5×10-1~3.0の範囲にある重合体であり、比較的高分子量の4-メチル-1-ペンテン系重合体である。第2は、極限粘度[η]が1×10-2~5×10-1の範囲にある重合体であり、比較的低分子量の4-メチル-1-ペンテン系重合体である。
 4-メチル-1-ペンテン系重合体の臨界表面張力は、好ましくは22~28mN/m,より好ましくは23~27.5mN/m、さらに好ましくは23.5~27.5mN/m、特に好ましくは24.0~27.5mN/mである。臨界表面張力は、4-メチル-1-ペンテン系重合体における、4-メチル-1-ペンテンの構成単位に依存する。前記好適な臨界表面張力を得るには、4-メチル-1-ペンテンの構成単位の含有量を、50~100重量%、好ましくは、60~100重量%、より好ましくは70~100重量%、特に好ましくは80~100重量%とすることが好ましい。臨界表面張力がこの範囲にある4-メチル-1-ペンテン系重合体の樹脂微粉末は、それを含む粉体組成物の流動性を高めることができる。
 4-メチル-1-ペンテン系重合体は、オレフィン類を直接重合して得ることができる。重合に用いる重合触媒の例には、特開昭57-63310号公報、特開昭58-83006号公報、特開平3-706号公報、特許第3476793号公報、特開平4-218508号公報、特開2003-105022号公報等に記載されているマグネシウム担持型チタン触媒;国際公開第01/53369号、国際公開第01/27124号、特開平3-193796号公報あるいは特開平2-41303号公報などに記載のメタロセン触媒などが好適に用いられる。マグネシウム担持型チタン触媒は、電子供与体成分としてポリエーテルを含む触媒が、分子量分布の比較的狭い重合体が得られる傾向があるため特に好ましい。
 このように、本発明の組成物に含まれる4-メチル-1-ペンテン系重合体は、メタロセン触媒を用いて製造されうる。メタロセン触媒としては、下記一般式(1)または(2)で表されるメタロセン化合物を用いたオレフィン重合触媒が好適に用いられる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 上記一般式(1)または(2)における、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14は、水素、炭化水素基、ケイ素含有炭化水素基から選ばれ、それぞれ同一でも異なっていてもよい。互いに隣接したR1からR4は、互いに結合して環を形成してもよく;互いに隣接したR5からR12は、互いに結合して環を形成してもよい。
 上記一般式(2)におけるAは、一部不飽和結合および/または芳香族環を含んでいてもよい炭素原子数2~20の2価の炭化水素基である。Aは、Yと共に形成する環を含めて2つ以上の環構造を含んでいてもよい。
 上記一般式(1)または(2)におけるMは、周期表第4族から選ばれた金属である。Yは炭素またはケイ素であり、Qはハロゲン、炭化水素基、アニオン配位子または孤立電子対で配位可能な中性配位子から同一または異なる組合せで選んでもよく、jは1~4の整数である。
 上記一般式(1)または(2)におけるR1~R14で表される炭化水素基の好ましい例には、炭素原子数1~20のアルキル基、炭素原子数7~20のアリールアルキル基、炭素原子数6~20のアリール基、または炭素原子数7~20のアルキルアリール基が含まれ、1つ以上の環構造を含んでいてもよい。それらの具体例には、メチル、エチル、n-プロピル、イソプロピル、2-メチルプロピル、1,1-ジメチルプロピル、2,2-ジメチルプロピル、1,1-ジエチルプロピル、1-エチル-1-メチルプロピル、1,1,2,2-テトラメチルプロピル、sec-ブチル、tert-ブチル、1,1-ジメチルブチル、1,1,3-トリメチルブチル、ネオペンチル、シクロヘキシルメチル、シクロヘキシル、1-メチル-1-シクロヘキシル、1-アダマンチル、2-アダマンチル、2-メチル-2-アダマンチル、メンチル、ノルボルニル、ベンジル、2-フェニルエチル、1-テトラヒドロナフチル、1-メチル-1-テトラヒドロナフチル、フェニル、ナフチル、トリルなどが含まれる。
 上記一般式(1)または(2)におけるR1~R14で表されるケイ素含有炭化水素基の好ましい例には、ケイ素原子数1~4かつ炭素原子数3~20のアルキルシリル基、またはアリールシリル基が含まれる。その具体例には、トリメチルシリル、tert-ブチルジメチルシリル、トリフェニルシリルなどが含まれる。
 上記一般式(1)または(2)において、R1およびR3が水素であり、かつR2が炭化水素基またはケイ素含有炭化水素基であることが好ましい。R2は、立体的に嵩高い置換基であることがさらに好ましく、R2は炭素原子数4以上の置換基であることが特に好ましい。
 上記一般式(1)または(2)における、フルオレン環上の置換基R5からR12のうち、互いに隣接した置換基は、互いに結合して環を形成してもよい。つまり、一般式(1)または(2)における置換フルオレニル基は、ベンゾフルオレニル、ジベンゾフルオレニル、オクタヒドロジベンゾフルオレニルまたはオクタメチルオクタヒドロジベンゾフルオレニルなどでありうる。
 また、上記一般式(1)または(2)における、フルオレン環上のR5からR12の置換基は、合成上の容易さから左右対称、すなわちR5=R12、R6=R11、R7=R10、R8=R9であることが好ましい。つまり、一般式(1)または(2)におけるフルオレニル基は、無置換フルオレニル、3,6-二置換フルオレニル、2,7-二置換フルオレニルまたは2,3,6,7-四置換フルオレニルであることがより好ましい(ここでフルオレン環上の3位、6位、2位、7位はそれぞれR7、R10、R6、R11に対応する)。
 上記一般式(1)におけるR13とR14は、水素、炭化水素基から選ばれ、それぞれ同一でも異なっていてもよい。好ましい炭化水素基の具体例としては、R1~R14で表される炭化水素基と同様のものを挙げることができる。
 一般式(1)におけるYは炭素またはケイ素であり、R13とR14と結合し、架橋部として置換メチレン基または置換シリレン基を構成する。置換メチレン基の好ましい具体例には、メチレン、ジメチルメチレン、ジイソプロピルメチレン、メチルtert-ブチルメチレン、ジシクロヘキシルメチレン、メチルシクロヘキシルメチレン、メチルフェニルメチレン、ジフェニルメチレン、メチルナフチルメチレン、ジナフチルメチレンが含まれ;置換シリレン基の好ましい具体例には、ジメチルシリレン、ジイソプロピルシリレン、メチルtert-ブチルシリレン、ジシクロヘキシルシリレン、メチルシクロヘキシルシリレン、メチルフェニルシリレン、ジフェニルシリレン、メチルナフチルシリレン、ジナフチルシリレンなどが含まれる。
 一般式(2)におけるYは炭素またはケイ素であり、不飽和結合および/または芳香族環を含んでいてもよい炭素原子数2~20の2価の炭化水素基Aと結合し、シクロアルキリデン基またはシクロメチレンシリレン基などを構成する。好ましいシクロアルキリデン基の具体例には、シクロプロピリデン、シクロブチリデン、シクロペンチリデン、シクロヘキシリデン、シクロヘプチリデン、ビシクロ[3.3.1]ノニリデン、ノルボルニリデン、アダマンチリデン、テトラヒドロナフチリデン、ジヒドロインダニリデンなどが含まれ;好ましいシクロメチレンシリレン基の具体例には、シクロジメチレンシリレン、シクロトリメチレンシリレン、シクロテトラメチレンシリレン、シクロペンタメチレンシリレン、シクロヘキサメチレンシリレン、シクロヘプタメチレンシリレンなどが含まれる。 
 一般式(1)および(2)におけるMは、周期表第4族から選ばれる金属元素であり、チタニウム、ジルコニウム、ハフニウムなどでありうる。
 一般式(1)および(2)におけるQは,ハロゲン、炭素原子数1~20の炭化水素基、アニオン配位子、または孤立電子対で配位可能な中性配位子から同一または異なる組み合わせで選ばれる。ハロゲンの具体例には、フッ素、塩素、臭素、ヨウ素が含まれる。炭化水素基の具体例には、R1~R14で表される炭化水素基と同様のものが含まれる。アニオン配位子の具体例には、メトキシ、tert-ブトキシ、フェノキシなどのアルコキシ基;アセテート、ベンゾエートなどのカルボキシレート基;メシレート、トシレートなどのスルホネート基などが含まれる。孤立電子対で配位可能な中性配位子の具体例には、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン、ジフェニルメチルホスフィンなどの有機リン化合物;またはテトラヒドロフラン、ジエチルエーテル、ジオキサン、1,2-ジメトキシエタンなどのエーテル類が含まれる。これらのうち、Qは同一でも異なった組み合わせでもよいが、少なくとも一つはハロゲンまたはアルキル基であることが好ましい。
 本発明における上記メタロセン化合物の具体例としては、WO01/27124に例示される化合物が好適に挙げられるが、特にこれによって本発明の範囲が限定されるものではない。これらの中でも一般式(1)で表されるメタロセン化合物が、分子量分布や末端構造の観点から好ましい。
 前記の通り、本発明の樹脂組成物に含まれる4-メチル-1-ペンテン系重合体(B)は、メタロセン触媒を用いて製造されうるが、その場合の触媒組成物は以下の成分を含むことが好ましい。
 成分(i):上記一般式(1)または(2)で表されるメタロセン化合物
 成分(ii):(ii-1)有機金属化合物、(ii-2)有機アルミニウムオキシ化合物、および(ii-3)メタロセン化合物(i)と反応してイオン対を形成する化合物、から選ばれる少なくとも1種の化合物
 成分(iii):微粒子状担体(必須成分ではないが必要に応じて含まれる)
 これらの触媒組成物は、従来から用いられており、例えば国際公開第01/27124号に記載されている。
 メタロセン触媒を用いた4-メチル-1-ペンテン系重合体を得るための重合は、溶液重合法や懸濁重合法などの液相重合法、または気相重合法のいずれであってもよい。液相重合法においては不活性炭化水素溶媒を用いてもよく、不活性炭化水素溶媒の具体例には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;エチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素またはこれらの混合物などが含まれ、重合モノマーである4-メチル-1-ペンテンを含むオレフィン類自身を溶媒として用いることもできる。
 重合反応容積1リットルあたり、成分(i)の量は、通常10-8~10-2モル、好ましくは10-7~10-3モルとなるようにする。
 触媒組成物において、成分(ii-1)と、成分(i)中の遷移金属原子(M)とのモル比〔(ii-1)/M〕は、通常0.01~5000となるように、好ましくは0.05~2000となるようにする。触媒組成物において、成分(ii-2)のアルミニウム原子と、成分(i)中の遷移金属原子(M)とのモル比〔(ii-2)/M〕は、通常10~5000、好ましくは20~2000となるようにする。触媒組成物において、成分(ii-3)と、成分(i)中の遷移金属原子(M)とのモル比〔(ii-3)/M〕は、通常1~10、好ましくは1~5となるようにする。
 メタロセン触媒を用いた4-メチル-1-ペンテン系重合体を得るための重合反応の温度は、通常-50~400℃、好ましくは10~300℃、より好ましくは10~250℃の範囲である。重合温度が低すぎると単位触媒あたりの重合活性が低下してしまい、工業的に好ましくない。
 重合圧力は、通常、常圧~10MPaゲージ圧、好ましくは常圧~5MPaゲージ圧の条件下である。重合反応は、回分式、半連続式、連続式のいずれの方法においても行うことができる。さらに重合を反応条件の異なる2段以上に分けて行うことも可能である。
 また、重合反応系中に水素ガスを導入することで、重合活性を制御したり、4-メチル-1-ペンテン系重合体の分子量や極限粘度[η]を調整したりすることができる。水素ガスの導入量は、オレフィン1kgあたり0.001~100000NL程度が適当である。
 比較的低分子量の4-メチル-1-ペンテン系重合体は、オレフィン類を直接重合して得てもよいし;重合により得た比較低高分子量の4-メチル-1-ペンテン系重合体を、熱分解して得てもよい。熱分解した4-メチル-1-ペンテン系重合体を、溶媒分別(溶媒に対する溶解度の差で分別すること)したり、分子蒸留(沸点の差で分別すること)したりしてもよい。
 ベースとなる熱分解前の4-メチル-1-ペンテン系重合体を熱分解するための条件(分解温度や分解時間)は、熱分解後の所望の分子量や極限粘度[η]などに応じて適宜設定される。分解温度は、通常150~450℃の範囲であるが、250℃~440℃の範囲が好ましく、350~430℃の範囲が特に好ましい。また、分解時間は、通常5~300分であるが、好ましくは、10~240分、より好ましくは15~180分である。
 本発明の樹脂微粉末の平均粒径D50は、50μm以下であることが好ましく、20μm以下とすることもでき、10μm以下とすることもできる。より具体的に、樹脂微粉末の平均粒径D50の下限は、1.0×10-1μmであることが好ましく、5.0×10-1μmであることがより好ましく、7.0×10-1μmであることがさらに好ましく、1.0μmであることが特に好ましい。また、樹脂微粉末の平均粒径D50の上限は、5.0×10μmであることが好ましく、3.0×10μmであることがより好ましく、1.0×10μmであることがさらに好ましく、5.0μmであることが特に好ましい。
 樹脂微粉末の平均粒径D50は、レーザ回折式粒度分布測定装置を用いて測定される。具体的には、分散溶媒に樹脂微粉末を分散させて測定試料として、レーザ回折・散乱法に基づいて粒径分布を求め、求めた粒径分布から平均粒径D50を算出する。平均粒径D50とは、積算分布曲線の粒径が小さい方から50%に相当する粒子径であり;すなわち粉体群を、ある粒子径を基準に2つの群に分けたとき、大きい粒子径を有する群の質量と、小さい粒子径を有する群の質量とが等質量となるときの、その基準とした粒子径をいう。
 4-メチル-1-ペンテン系重合体の樹脂塊を粉砕して得られる樹脂微粉末の平均粒径D50は、小さくなる傾向にある。また、4-メチル-1-ペンテン系重合体の樹脂塊を粉砕して得られる樹脂微粉末の粒度分布は、相対的に狭くなる傾向にある。特に、粗大粒子の存在割合が低くなる傾向が見られる。これらの傾向は、4-メチル-1-ペンテン系重合体が、ポリオレフィン系樹脂の中では、比較的嵩高い側鎖を有し、原子の充填密度が低く、分子間力が小さいといった特徴を有するためであると考えられる。また、4-メチル-1-ペンテン系重合体は、その分子鎖が動きにくいため、ガラス転移温度が高く、剛直であるといった特徴を有するためであるとも考えられる。
 本発明の樹脂微粉末は、粒子径が比較的小さいにも係わらず、流動性が高いことを特徴とする。流動性が高いことは、例えば「安息角」が小さいことをいう。例えば、本発明の樹脂微粉末の安息角は、同じサイズのポリエチレン粉末の安息角と比較して小さい。安息角は、JIS R 9301に準じて測定される。
 前述の通り、4-メチル-1-ペンテン系重合体の分子間力は小さいため、4-メチル-1-ペンテン系重合体の樹脂微粉末表面の臨界表面張力は低い。したがって、本発明の樹脂微粉末は、離型性および滑性に優れる。このため、4-メチル-1-ペンテン系重合体の樹脂微粉末は、高い流動性を示す。
 本発明の樹脂微粉末は、粉砕により得られる粉末であり、乾燥粉末として得られることを特徴とする。つまり、乳化重合などのように、溶媒中でモノマー成分を重合して得る粉体状樹脂粒子とは異なる。
2.4-メチル-1-ペンテン系重合体の樹脂微粉末の製造方法
 本発明の4-メチル-1-ペンテン系重合体の樹脂微粉末の製法は、大きく2つに分類されうる。1つは、高分子量の4-メチル-1-ペンテン系重合体を任意に前処理して、ジェット粉砕する方法である。他の1つは、低分子量の4-メチル-1-ペンテン系重合体を、ジェット粉砕する方法である。
 高分子量の4-メチル-1-ペンテン系重合体とは、通常、極限粘度[η]が5.0×10-1dl/g以上3.0dl/g未満である重合体をいう。通常、極限粘度[η]が5.0×10-1dl/g以上3.0dl/g未満である4-メチル-1-ペンテン系重合体の粉砕物は、ベトつきが少なく、ハンドリングに優れる。ところが、高分子量の4-メチル-1-ペンテン系重合体は、一般には微粉化は困難であり、特に粒径分布の狭い微粉(例えば平均粒径D50が50μm以下)を得ることは困難であった。そこで、高分子量の4-メチル-1-ペンテン系重合体を前処理して、ジェット粉砕可能な状態にする。
 高分子量の4-メチル-1-ペンテン系重合体の前処理には、使用原料に応じて、カッター粉砕、ふるい処理、溶媒処理などから選ばれる1種類以上の処理を適宜選択して実施することが好ましい。
 カッター粉砕により、高分子量の4-メチル-1-ペンテン系重合体を粗粉砕する。粗粉砕物の平均粒径D50は、100μm以下程度にすることが好ましい。例えば、高分子量の4-メチル-1-ペンテン系重合体のペレットは、カッター粉砕して粗粉砕することが好ましい。カッター粉砕は、カッターミルを用いて行えばよい。
 ふるい処理により、高分子量の4-メチル-1-ペンテン系重合体の粉体の粒径分布をシャープにする。ふるい処理に用いられるフィルターのメッシュサイズは、1000μm以下であることが好ましい。ふるい処理物の平均粒径D50は、100μm以下程度にすることが好ましい。例えば、高分子量の4-メチル-1-ペンテン系重合体のペレットを切断したときの切りくず(切子)は、微細な粉体をも含むが、大きい粉体をも含む。そのため、ふるい処理を行うことで、微細な粉体のみを抽出することが好ましい。
 溶媒処理とは、4-メチル-1-ペンテン系重合体に溶媒を染込ませることであり;通常は、重合体を溶媒中に浸漬させて行う。溶媒の例には、n-へキサン、メチルシクロへキサン、デカン、テカリンなどの脂肪族系炭化水素:テトラヒドロフランなどのエーテル類;ジクロロメタン、クロロフォルムなどのハロゲン化炭化水素などが含まれる。溶媒中への浸漬時間は、30分~24時間が一般的であるが、3~4時間程度で十分なことが多い。浸漬する溶媒の温度は、常温でもよいが、加熱または冷却してもよい。溶媒処理は、カッター粉砕の前処理としてもよく、ジェット粉砕の前処理として行ってもよい。
 前処理後の4-メチル-1-ペンテン系重合体を、ジェット粉砕することで、本発明の樹脂微粉末を得ることができる。ジェット粉砕の処理量(粉砕させる原料の、単位あたり時間の量)が少ないほど、粉砕物の粒径は小さくなるが、生産性は低下する。一方、ジェット粉砕の処理量が多いほど、粉砕物の粒径は大きくなるが、生産性は高まる。
 ジェット粉砕は、超微粉砕機を用いればよく、例えばナノジェットマイザー(株式会社アイシンナノテクノロジーズ製)などを用いることができる。ジェット粉砕は、1回だけ行ってもよいし、必要に応じて複数回繰り返して行ってもよい。
 一方、低分子量の4-メチル-1-ペンテン系重合体とは、通常、極限粘度[η]が1.0×10-2dl/g以上5.0×10-1dl/g未満ある重合体をいう。低分子量の4-メチル-1-ペンテン系重合体は、高分子量の4-メチル-1-ペンテン系重合体と比較すると、微粉化しやすい。そのため、低分子量の4-メチル-1-ペンテン系重合体には、ジェット粉砕をするための前処理を行っても行わなくてもよい。
 低分子量の4-メチル-1-ペンテン系重合体は、高分子量の4-メチル-1-ペンテン系重合体を熱分解して得ることができるが、直接重合によって得ることもできる。
 低分子量の4-メチル-1-ペンテン系重合体のジェット粉砕は、高分子量の4-メチル-1-ペンテン系重合体のジェット粉砕と同様の手法にて行えばよい。低分子量の4-メチル-1-ペンテン系重合体のジェット粉砕は、他のポリオレフィン(ポリエチレンやポリプロピレンなど)と比較して、粉砕しやすい。4-メチル-1-ペンテン系重合体のガラス転移温度(Tg)が高いためである。
3.4-メチル-1-ペンテン系重合体の樹脂微粉末を含む組成物
 本発明の4-メチル-1-ペンテン系重合体の樹脂微粉末は、種々の用途に用いられうる。例えば、インキ組成物や塗料組成物の添加剤として、冶金用粉末組成物の添加剤として、セラミック焼結用粉末組成物の添加剤として、粘着剤の添加剤として、ゴムの添加剤として、トナーの離型剤として、金型離型材などとして用いられうる。
 さらには、軸上、歯車、カム、電気部品、カメラ部品、自動車部品、家庭用品向けの部品への樹脂添加剤として、ワックス、グリース、エンジンオイル、ファインセラミックス、メッキなどの樹脂添加剤としても用いられうる。
 本発明の好ましい組成物の一例は、前述の樹脂微粉末と、金属およびセラミック粉末からなる群から選ばれる少なくとも1種の焼結性粉末とを含有する組成物である。焼結性粉末100質量部に対する、樹脂微粉末の含有量は0.1~150質量部、好ましくは5~150質量部、さらに好ましくは10~100質量部、特に好ましくは15~85質量部である。樹脂微粉末の含有量が少なすぎると、組成物の潤滑性低下して成形しにくくなる場合があり、また成形体や焼結体を金型から離型しにくくなる(離型性が低下する)ことがある。一方、樹脂微粉末の含有量が多すぎると、離型性および潤滑性が飽和するだけでなく、圧縮性が低下して所望の焼結体が得られにくい場合がある。
 多孔質焼結材用組成物
 本発明の多孔質焼結材用組成物は、本発明の樹脂微粉末と、セラミック粉末または金属粉末と、可塑化バインダーと、を含有する。本発明の多孔質焼結材用組成物からは、多孔質性の焼結材を得ることができる。多孔質性の焼結材とは、例えばハニカムフィルタである。ハニカムフィルタは、例えば自動車の触媒コンバータの触媒担体や、ディーゼルエンジン排ガスの浄化用触媒担体に用いられる。
 セラミック粉末または金属粉末は、多孔質焼結体を構成する材料となる。セラミック粉末の例には、コージェライト、スピネル、クレイ、タルク、アルミナ、水酸化アルミニウム、シリカ、酸化カルシウム、酸化マグネシウム、酸化ホウ素、酸化チタン、酸化ゲルマニウム、アルカリ、遷移金属などが含まれる。金属粉末の例には、鉄、タングステン、銅、青銅、モリブデン、クロム、またはニッケルを主成分とする粉末が含まれる。
 可塑化バインダーは、エチレン・酢酸ビニル共重合物などの熱可塑性樹脂、セルロースまたはその誘導体、界面活性剤(ステアリン酸やオレイン酸)、オイル、水などからなることが多い。多孔質焼結材用組成物における可塑化バインダーの含有量は特に限定されないが、焼結性粉末100質量部に対して5~200質量部であることが好ましく、30~160質量部であることがさらに好ましく、40~100質量部であることが特に好ましい。例えば、100質量部のセラミック粉末に対して、2~25質量部のセルロースまたはその誘導体と、0.5~10質量部の界面活性剤と、2~25質量部のオイルと、30~100質量部の水とを含む。
 多孔質焼結材用組成物における樹脂微粉末の含有量は、100質量部のセラミック粉末に対して、5~150質量部であり、好ましくは10~100質量部であり、特に好ましくは15~85質量部でありうる。本発明の樹脂微粉末は、多孔質焼結材用組成物において、焼結材に孔を形成させるための細孔形成材として作用する。
 多孔質焼結体を得るための焼結プロセスは、1)多孔質焼結材用組成物を、押出ダイを通して未焼成体を造形する工程、2)未焼成体を加熱して、細孔形成材を除去する工程、3)細孔形成材を除去した未焼成体を焼成する工程、を含みうる。つまり、本発明の樹脂微粉末が、未焼成体を加熱した際に、気化または分解することによって、得られるセラミック焼結材に細孔を形成する。
 本発明の多孔質焼結材用材組成物は、未焼成体を造形する工程において球状顆粒の密度が高まり、そのため、混練の際に混練スクリューに巻き込まれ易くなる。さらに、本発明の樹脂微粉末は、原料粉末(金属粉末またはセラミック粉末)に対する滑剤としても作用する。その結果、本発明の多孔質焼結材用材組成物は、短時間で均一に混練される。
 前記の通り、本発明の樹脂微粉末は4-メチル-1-ペンテン系重合体からなる微粉末であり、4-メチル-1-ペンテン系重合体はポリエチレンなどのポリオレフィンと比較して、分解開始温度が低い。そのため、未焼成体の加熱温度が低くても、除去することができる。
 また、未焼結体を加熱して細孔形成剤を除去するときに、細孔形成剤が低温で溶融してしまうと、未焼結体の自重によって焼結体が変形してしまうことがある。本発明の樹脂微粉末の融点は高いので、未焼成体を加熱している間に溶融しにくい。そのため、加熱中の未焼結体の変形が抑制される。
 多孔質焼結材用組成物における細孔形成剤の平均粒径D50の下限は、1.0×10-1μmであることが好ましく、5.0×10-1μmであることがより好ましく、7.0×10-1μmであることがさらに好ましく、1.0μmであることが特に好ましい。過剰に小さい粒径の細孔形成剤では、焼結体に孔を形成できないことがあるからである。また、細孔形成剤の平均粒径D50の上限は、5.0×10μmであることが好ましく、3.0×10μmであることがより好ましく、1.0×10μmであることがさらに好ましく、5.0μmであることが特に好ましい。過剰に大きい粒径の細孔形成剤では、多孔質焼結体の十分な強度が得られないことがある。
 冶金用粉末組成物
 本発明の冶金用組成物は、本発明の樹脂微粉末と、焼結性粉末とを含む。冶金用組成物からは、例えば、焼結体である金属部材などを得ることができる。
 焼結性粉末は、得られる焼結体を構成する材料となる。焼結性粉末は、通常、セラミック粉末または金属粉末であり;金属粉末の例には、鉄、タングステン、銅、青銅、モリブデン、クロム、またはニッケルを主成分とする粉末が含まれる。焼結性粉末の重量平均粒径は、最大1000μmであることが好ましく、通常、10~500μmの範囲である。20~350μmが好ましく、30~150μmが特に好ましい。冶金用組成物における焼結性粉末の含有量は、85~99.9質量%であることが好ましく、95~99.8質量%であることがより好ましく、98~99.7質量%であることが特に好ましい。冶金用組成物における樹脂微粉末の含有量は、0.1~15質量%であることが好ましく、0.2~5質量%であることがより好ましく、0.3~2質量%であることが特に好ましい。樹脂微粉末の使用量が不足すると、潤滑性が不足する。また、樹脂微粉末を過剰に使用すると、潤滑性が飽和するだけでなく、圧縮性が低下する。なお、冶金用組成物において、本発明の樹脂微粉末は乾燥潤滑剤として作用する。
 冶金用組成物は、焼結性粉末に樹脂微粉末を適量添加したのち、混合機で混合して得ることができる。混合機としては、容器回転式、機械撹拌式、流動撹拌式および無撹拌式等の、混合粉体に与えるせん断力が小さい混合機が好適である。容器回転式混合機では、水平円筒型、傾斜円筒型、V 型、二重円錐型および連続V型が好ましく、撹拌羽が内蔵されている混合機も好適に使用できる。機械撹拌式混合機では、リボン型、スクリュー型、複軸パドル型、円錐形スクリュー型および回転円板型が好ましい。流動撹拌式混合機では、流動床式、旋回流動式、ジェットポンプ式が好ましい。
 冶金のプロセスは、1)前述記載の方法で混合した冶金用組成物を、焼結用金型に充填して圧縮成形する工程、2)金型から圧縮成形物を離型する工程、3)離型物を熱処理および焼結する工程、を含みうる。
 冶金用組成物を焼結用金型に充填して圧縮成形する工程には、公知のいずれの方法を適合してもよい。例えば、室温の冶金用組成物を、50~70℃に加熱した金型に充填・圧縮すると、粉末の取り扱いが容易で、圧粉体密度をさらに向上させることができるため好適である。また、冶金用組成物と金型を、ともに100℃~150℃に加熱する温間成形を適合してもよい。
 さらに、焼結および熱処理についても、公知の方法を適合すればよい。
 乾燥潤滑剤には、冶金用組成物を金型内で圧縮成形したときに焼結性粉末を流動させて、焼結用金型のキャビティーの全体に行きわたらせることが求められる。さらには、乾燥潤滑剤には、金型から圧縮成形物を離型するときの離形性を高めることが求められる。その結果、精密な形状の圧縮成形物が得られる。本発明の樹脂微粉末は、融点が高く、低表面張力を有する4-メチル-1-ペンテン系重合体からなる微粉末であるので、焼結性粉末を流動させることができ、かつ金型からの離型を容易にすることができる。
 冶金用組成物に配合された乾燥潤滑剤が低融点であると、焼結性粉末の粉末同士の間に液架橋を形成するために、流動性を低下させることがあった。特に、冶金用組成物を焼結用金型に充填するときに、冶金用組成物と金型とを加熱する場合には、この流動性の低下が顕著であった。そのため、冶金用組成物に、融点の高い乾燥潤滑剤、例えば高級脂肪酸金属塩類やエチレンビスアミドを配合することがあった。ところが、これらは、焼結性粉末の流動性の向上効果が不十分であった。
 冶金用組成物における樹脂微粉末の平均粒径D50の下限は、1.0×10-1μmであることが好ましく、5.0×10-1μmであることがより好ましく、7.0×10-1μmであることがさらに好ましく、1.0μmであることが特に好ましい。また、樹脂微粉末の平均粒径D50の上限は、5.0×10μmであることが好ましく、3.0×10μmであることがより好ましく、1.0×10μmであることがさらに好ましく、5.0μmであることが特に好ましい。粒径が大きい樹脂微粉末は、焼結体の強度を低下させるからである。一方、粒径が過剰に小さい樹脂微粉末は、冶金用組成物における焼結性粉末の流動性を十分に高めることができない。
 冶金用組成物における乾燥潤滑剤は、離型物を焼結する際に、熱分解されて除去されなければならない。本発明の樹脂微粉末は4-メチル-1-ペンテン系重合体からなる微粉末であり、4-メチル-1-ペンテン系重合体はポリエチレンなどのポリオレフィンと比較して、分解開始温度が低い。よって、より低い焼結温度で、より確実に除去されうる。また、冶金用組成物における乾燥潤滑剤として用いられることがあるアミドワックスなどは、熱分解によって臭気物質を発生させて作業効率を低下させることがあるが、本発明の樹脂微粉末は臭気物質を発生させにくい。
 冶金用組成物に含まれる樹脂微粉末の一部は、本発明の樹脂微粉末以外の樹脂微粉末であってもよい。本発明の樹脂微粉末以外の樹脂微粉末の例には、脂肪酸金属塩やアミドワックスが含まれ;より具体的には、ステアリン酸リチウム、ステアリン酸カルシウム、ステアリン酸亜鉛などの脂肪酸金属塩や、エチレンビス(ステアロイルアミド)型アミドワックス、ステアロイルアミド型アミドワックスなどが含まれる。
 インキ組成物/塗料組成物
 本発明のインキ組成物および塗料組成物は、本発明の樹脂微粉末と、マトリックス樹脂と、有機溶媒と、着色剤とを含有する。インキ組成物は、例えばオフセット印刷などに用いられうる。
 マトリックス樹脂の例には、ロジン、ギルソナイト、エステルガムなどの天然樹脂;フェノール樹脂、アルキッド樹脂、石油樹脂、ビニル樹脂、ポリアミド樹脂、アクリル樹脂、ニトロセルロース、塩化ゴムなどの合成樹脂が含まれる。
 有機溶媒の例には、ベンゼン、トルエン、キシレンなどの芳香族炭化水素;ヘキサン、オクタン、デカンなどの脂肪族系炭化水素;シクロヘキサン、シクロヘキセン、メチルシクロヘキサン、エチルシクロヘキサンなどの脂環族炭化水素;トリクロロエチレン、ジクロロエチレン、クロロベンゼンなどのハロゲン化炭化水素;メタノール、エタノール、イソプロピルアルコール、ブタノール、ペンタノール、ヘキサノール、プロパンジオール、フェノールなどのアルコール;アセトン、メチルイソブチルケトン、メチルエチルケトン、ペンタノン、ヘキサノン、イソホロン、アセトフェノンなどのケトン;メチルセルソルブ、エチルセルソルブなどのセルソルブ類;酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、ギ酸ブチルなどのエステル類;テトラヒドロフランなどのエーテル類などが含まれる。
 インキ組成物および塗料組成物における、本発明の樹脂微粉末の含有量は0.1~10質量%であることが好ましい。インキ組成物および塗料組成物において、本発明の樹脂微粉末はワックスとして作用する。
 インキ組成物および塗料組成物において、ワックスは、印刷皮膜の耐摩擦性を高める。例えば、インキ組成物および塗料組成物を塗布した塗膜が、他の部材に接触することで、印刷面がこすれて印刷品質が低下することがあるが、ワックスは、この印刷品質低下を抑制する。
 ところが、オフセット印刷は、塗膜を加熱する(ヒートセットする)ことで溶媒を蒸発させて印刷物を得るが、この加熱温度(ヒートセット温度)が高温、例えば150℃以上になることもある。そのため、通常のワックスは塗膜の加熱工程において溶解してしまい、その耐磨耗特性を維持できないことがあった。
 本発明の樹脂微粉末は、4-メチル-1-ペンテン系重合体からなる樹脂微粉末であり、4-メチル-1-ペンテン系重合体は、ワックスとして用いられるポリエチレンなどと比較して融点が高い(150℃以上、好ましくは180℃以上、より好ましくは200℃以上)。そのため、本発明の樹脂微粉末を含有する組成物インキ組成物および塗料組成物は、印刷皮膜の耐摩擦性が高く、たとえヒートセット温度が高いオフセット印刷による印刷皮膜であっても、耐摩耗性が高まりうる。
 また、本発明の樹脂微粉末を構成する4-メチル-1-ペンテン系重合体は透明性も高い。したがって本発明の樹脂微粉末は、印刷皮膜の色調に影響を与えにくく、印刷品質への影響が小さい。
 さらに、本発明の樹脂微粉末を構成する4-メチル-1-ペンテン系重合体の密度は低い。そのため、インキ組成物および塗料組成物の印刷塗膜における表面に、本発明の樹脂微粉末が偏在しうる。塗膜表面にワックスが偏在することで、印刷皮膜の耐摩耗性はさらに向上する。
 [実施例1]
 ポリ-4-メチル-1-ペンテン(三井化学株式会社製、商標名:TPX、銘柄名:DX820、融点:233℃、MFR:180[g/10min](ASTM-D1238、260℃‐5kg荷重)のペレット(粒径約3mm)を用意した。
 前記ペレットを、常温のメチルシクロヘキサンに4時間浸漬して溶媒処理した。溶媒処理したペレットを、カッターミルでカッター粉砕した。カッター粉砕物に、さらにジェット粉砕処理(6回)を行った。ジェット粉砕処理は、ナノジェットマイザー(NJ50型:株式会社アイシンナノテクノロジーズ製)を用いた。粉砕条件は、押し込み圧:1.3~1.5MPa、粉砕圧:1.0~1.35MPaの範囲に設定した。得られた粉体の粒径を測定し、結果を表1にまとめた。
 [実施例2]
 ポリ-4-メチル-1-ペンテン(三井化学株式会社製、商標名:TPX、銘柄名:DX810UP、融点:233℃、MFR:5[g/10min](ASTM-D1238、260℃‐5kg荷重)のパウダー(粒径約300μm)を用意した。
 前記パウダーを、常温のメチルシクロヘキサンに4時間浸漬して溶媒処理した。溶媒処理したパウダーに、ジェット粉砕(2回)処理を行った。ジェット粉砕処理は、実施例1と同様の手法にて行った。得られた粉体の粒径を測定し、結果を表1にまとめた。
 [実施例3]
 ポリ-4-メチル-1-ペンテン(三井化学株式会社製、商標名:TPX、融点約233℃、MFR 約1~200[g/10min](ASTM-D1238、260℃‐5kg荷重)の製造工程で発生した、切子やペレットの混合物(粒径約1μm~3mm)を用意した。
 前記切子やペレットの混合物に、850ミクロン・メッシュを用いて、ふるい処理を実施した。ふるい通過物に、ジェット粉砕(3回)処理を行った。ジェット粉砕処理は、実施例1と同様の手法にて行った。得られた粉体の粒径を測定し、結果を表1にまとめた。
 [比較例1]
 実施例1で用意したペレット(粒径:D50=3mm)に、前処理(溶媒処理およびカッター粉砕)を実施することなく、ジェット粉砕(1回)処理を行った。その粉体の粒径を測定した結果を表1にまとめた。
 [比較例2]
 実施例2で用意したパウダー(粒径:D50=300μm)に、前処理(溶媒処理)を実施することなく、ジェット粉砕(3回)処理を行った。その粉体の粒径を測定した結果を表1にまとめた。
〔粒度分布測定〕
 各実施例および比較例における粉体の平均粒径D50は、以下の手法で測定した。界面活性剤を含む水溶液に、粉体を拡散分散させた後に、粒度分布測定機(CILAS社製・1064型 測定範囲:0.04~500μm)にて、原料粉砕物の粒径サイズを測定し、平均粒径D50を測定した。前述の通り、平均粒径D50とは、積算分布曲線の粒径が小さい方から50%に相当する粒子径、すなわち粉体をある粒子径から2つに分けたとき、大きい側と小さい側の質量が等量となる際の粒径をいう。また、実施例1~3の粉体について、同様の方法で粒度分布を測定し、結果を図4(実施例1)、図5(実施例2)、および図6(実施例3)に示した。
〔モルフォロジー観察〕
 ジェット粉砕処理後の粉体の形状を、走査型電子顕微鏡(日本電子(株):JSM6380)にて観察した。実施例1~3で得られた粉体の顕微鏡写真を、それぞれ図1~図3に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1においては、4-メチル-1-ペンテン系重合体ペレットの前処理として、溶媒処理後にカッター粉砕を行い、前処理後の原料粒径は76μmとなった。さらにジェット粉砕(6回)を行った結果、図1に示す砂粒形状の微粒子が得られ、その平均粒径は4μmであった。一方、比較例1では、実施例1と同じペレットを用いて、前処理を施さずジェット粉砕を実施したが、粉砕効果が全く見られなかった。
 実施例2においては、4-メチル-1-ペンテン系重合体パウダーに溶媒処理を行い、原料粒径は113μmとなった。さらにジェット粉砕(2回)を行った結果、図2に示す砂粒形状の微粒子が得られ、その平均粒径は3μmであった。また、比較例2においても、実施例2で用いたパウダーの前処理を実施せずジェット粉砕を行ったが、十分に粉砕することができず、平均粒径は211μmであった。
 このように、4-メチル-1-ペンテン系重合体微粉末を得るためには、溶媒処理などの前処理を行ってから、ジェット粉砕をすることが重要であることが明らかとなった。
 4-メチル-1-ペンテン系重合体ペレットの製造工程で発生する切子は、ペレット、及び、いびつな形状の切り屑が混在しているため、ふるい処理(850ミクロン・メッシュ)を実施した。ふるい工程後の原料粒径は35μmとなった。さらにジェット粉砕(3回)することで、図3に示すように、針形状、もしくは枝分かれ形状の微粒子が得られ、その粒径は長軸方向で7μmであった。
 [実施例4]
 極限粘度[η]が2.9dL/gの4-メチル-1-ペンテンホモポリマー150gを500mlの枝付重合フラスコに仕込み、窒素を流通させながら、サンドバスを用い358℃に加熱した。フラスコ壁面の重合体が融解したことを確認した後、温度を保ったまま2時間撹拌を続けることにより、4-メチル-1-ペンテン系ポリマーを熱分解した。その後、常温まで冷却することにより、極限粘度[η]が0.20dL/gのオリゴマー(4MP1系オリゴマー)を得た。得られたオリゴマーの数平均分子量Mn、重量平均分子量Mw、分子量分布Mw/Mn、融点、臨界表面張力などを、表2に示した。
 得られたオリゴマーを、シングルトラックジェットミル(セイシン企業社製STJ-200型)を用いて粉砕処理した(粉砕処理量;2kg/h)。粉砕処理物の平均粒径D50は、2.5μmであった。
 [実施例5]
 4-メチル-1-ペンテン系ポリマー(三井化学社製DX820)150gを500mlの枝付重合フラスコに仕込み、窒素を流通させながら、サンドバスを用い357℃に加熱した。フラスコ壁面の重合体が融解したことを確認した後、温度を保ったまま2時間撹拌を続けることにより、4-メチル-1-ペンテン系ポリマーを熱分解した。その後、常温まで冷却することにより、極限粘度[η]が0.23dL/gのオリゴマー(4MP1系オリゴマー)を得た。得られたオリゴマーの数平均分子量Mn、重量平均分子量Mw、分子量分布Mw/Mn、融点、臨界表面張力などを、表2に示した。
 得られたオリゴマーを、シングルトラックジェットミル(セイシン企業社製STJ-200型)を用いて粉砕処理した(粉砕処理量;5kg/h)。同様の粉砕処理を、2回繰り返して行った。粉砕処理物の平均粒径D50は、3.6μmであった。
 [比較例3]
 微粉のエチレンビスステアリルアミド(日本化成社製スリパックスEK)を用意した。融点と平均粒径D50を表2に示した。
 実施例4および実施例5、ならびに比較例3に示す物性値は、以下の方法により求めた。〔オリゴマー組成〕
 13C-NMRスペクトルの解析により求めた。
〔極限粘度[η]〕
 デカリン溶媒を用いて、135℃で測定した。サンプル約20mgを、デカリン15mlに溶解し、135℃のオイルバス中で比粘度ηspを測定した。このデカリン溶液に、デカリン溶媒を5ml追加して希釈した後に、同様にして比粘度ηspを測定した。この希釈操作をさらに2回繰り返し、濃度(C)を0に外挿した時のηsp/Cの値を極限粘度として求めた。
   [η]= lim(ηsp/C) (C→0[分子量])
〔分子量分布〕
 重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)を、GPC測定から求めた。測定は以下の条件で行った。また、重量平均分子量と数平均分子量は、市販の単分散標準ポリスチレンを用いて検量線を作成し、下記の換算法に基づいて求めた。装置  :  ゲル浸透クロマトグラフAlliance  GPC2000型(Waters社製)溶剤  :  o-ジクロロベンゼンカラム:  TSKgelカラム(東ソー社製)×4流速  :  1.0 ml/分試料  :  0.15mg/mL  o-ジクロロベンゼン溶液温度  :  140℃分子量換算  :  PS換算/汎用較正法
 なお、汎用較正の計算には、以下に示すMark-Houwink粘度式の係数を用いた。ポリスチレン(PS)の係数:KPS=1.38×10-4,aPS=0.70
〔融点〕
 示差走査型熱量計(DSC)を用いて、試料約5mgをアルミパンに詰めて280℃まで昇温し、280℃で5分間保持した後、10℃/分で30℃まで冷却し、30℃で5分間保持した後、10℃/分で昇温する際の吸熱ピークを融点とした。
〔臨界表面張力〕
 画像処理式・固液界面解析システム(協和界面科学社製Dropmaster500)を用いて、23℃、50%RHの雰囲気下で、試験サンプル表面に表面張力の判明している4種類のぬれ張力試験用混合液(エチレングリコールモノエチルエーテル/ホルムアミド、表面張力各31、34、37、40mN/m)を滴下し、接触角を測定した。
 5枚の試験サンプルについて測定を行い、その平均値を求めた。この接触角の平均値θから算出されるcosθ(Y軸)と、試験用混合液の表面張力(X軸)とから得られる点(5個以上)を、X-Y座標にプロットした。これらの点の最小二乗法より得られる直線と、cosθ=1との交点に対応する表面張力(X軸)を、臨界表面張力(mN/m)とした。
 臨界表面張力測定用の試験サンプルは、SUSプレート上に4-メチル-1-ペンテン系重合体をキャスティングして調製した。キャスティングは、窒素雰囲気下、250℃×5分の条件にて、4-メチル-1-ペンテン系重合体をSUSプレート上に加熱溶融し、その後、常温に戻して固化させた。本試験サンプルの表面について、臨界表面張力を測定した。
〔粒度分布測定〕
 実施例4および実施例5における平均粒径D50および粒度分布は、界面活性剤を含む水溶液に、粉体を拡散分散させた後に、レーザ回折・散乱式粒度分布測定装置(セイシン企業社製LMS-30、測定範囲:0.1~1000μm)を用いて測定した。また、実施例4および実施例5の粉体の粒度分布を、図7(実施例4)および図8(実施例5)に示した。
 比較例3における平均粒径D50は、界面活性剤を含む水溶液に、粉体を拡散分散させた後に、レーザ回折・散乱式粒度分布測定装置(日機装社製マイクロトラックHRA、測定範囲:0.1~700μm)を用いて測定した。
〔安息角〕
 安息角は、JIS R 9301に準じて測定された。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、実施例4および実施例5の4-メチル-1-ペンテン-1系重合体のオリゴマーは、前処理なしで、ジェットミル粉砕によって平均粒径D502.5μmおよび3.6μmの粒子となった。
 また、表2に示されるように、実施例4および実施例5の4-メチル-1-ペンテン-1系重合体のオリゴマーは、同等のサイズのエチレンビスステアリルアミドと比較して安息角が小さい。すなわち、本発明の樹脂微粉末は、粒子径が比較的小さいにも係わらず、流動性が高いことを特徴とする。
 本出願は、2010年4月28日出願の出願番号JP2010-104310、および2010年7月28日出願のUS61/368,420に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。
 本発明の樹脂微粉末は、4-メチル-1-ペンテン系重合体の特性を利用して、各種組成物への添加剤として用いられうる。例えば、4-メチル-1-ペンテン系重合体は表面張力が低いので、滑剤として用いられたり;他のポリオレフィンと比べて高融点であるので、ヒートセット温度の高いインキ組成物へのワックスとして用いられたりする。

Claims (13)

  1.  デカリン溶媒中135℃で測定した極限粘度[η]が、1.0×10-2dl/g以上3.0dl/g未満である4-メチル-1-ペンテン系重合体からなり、平均粒径D50が1.0×10-1~5.0×10μmである樹脂微粉末。
  2.  前記平均粒径D50が、1.0×10-1~1.0×10μmである、請求項1に記載の樹脂微粉末。
  3.  前記極限粘度[η]が、1.0×10-2dl/g以上5.0×10-1dl/g未満である、請求項1に記載の樹脂微粉末。
  4.  前記極限粘度[η]が、5.0×10-1dl/g以上3.0dl/g未満である、請求項1に記載の樹脂微粉末。
  5.  (A)請求項1に記載の樹脂微粉末0.1~150質量部と、
     (B)金属およびセラミック粉末からなる群から選ばれる少なくとも1種の焼結性粉末100質量部と、を含有する組成物。
  6.  前記組成物は、(C)可塑化バインダー5~200質量部をさらに含有する、請求項5に記載の組成物。
  7.  請求項5に記載の組成物を押し出し成形して成形体を得る工程と、
     前記成形体を焼結する工程と、を含む多孔質焼結体の製造方法。
  8.  前記多孔質焼結体はハニカムフィルタである、請求項7に記載の製造方法。
  9.  請求項1に記載の樹脂微粉末を含有する塗料。
  10.  請求項1に記載の樹脂微粉末を含有するインキ。
  11.  4-メチル-1-ペンテン系重合体のバルクまたは粗粉砕物を、ジェット粉砕処理する工程を含む、請求項1に記載の樹脂微粉末を製造する方法。
  12.  前記粗粉砕物は、有機溶媒を染み込ませた4-メチル-1-ペンテン系重合体を粉砕して得る、請求項11に記載の製造方法。
  13.  前記バルクまたは粗粉砕物は、4-メチル-1-ペンテン系重合体の熱分解物である、請求項11に記載の製造方法。
     
PCT/JP2011/000699 2010-04-28 2011-02-08 4-メチル-1-ペンテン系重合体からなる樹脂微粉末、およびそれを含む組成物、ならびにその製造方法 WO2011135763A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/643,866 US9260549B2 (en) 2010-04-28 2011-02-08 Resin fine powder consisting of 4-methyl-1-pentene polymer, composition containing same, and process for production thereof
EP11774554.7A EP2565210B1 (en) 2010-04-28 2011-02-08 Resin fine powder consisting of 4-methyl-1-pentene polymer, composition containing same, and process for production thereof
JP2012512628A JP5798113B2 (ja) 2010-04-28 2011-02-08 4−メチル−1−ペンテン系重合体からなる樹脂微粉末、およびそれを含む組成物、ならびにその製造方法
CN201180021016.5A CN102869687B (zh) 2010-04-28 2011-02-08 由4-甲基-1-戊烯系聚合物构成的树脂细粉末、含有其的组合物、以及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-104310 2010-04-28
JP2010104310 2010-04-28
US36842010P 2010-07-28 2010-07-28
US61/368,420 2010-07-28

Publications (1)

Publication Number Publication Date
WO2011135763A1 true WO2011135763A1 (ja) 2011-11-03

Family

ID=44861092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000699 WO2011135763A1 (ja) 2010-04-28 2011-02-08 4-メチル-1-ペンテン系重合体からなる樹脂微粉末、およびそれを含む組成物、ならびにその製造方法

Country Status (5)

Country Link
US (1) US9260549B2 (ja)
EP (1) EP2565210B1 (ja)
JP (1) JP5798113B2 (ja)
CN (1) CN102869687B (ja)
WO (1) WO2011135763A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013539479A (ja) * 2010-07-28 2013-10-24 スティーブンスン,マイケル,ジェイ 印刷インキ、転写、およびポリオレフィン製品の装飾の方法
US9296243B2 (en) 2010-07-28 2016-03-29 Michael Stevenson & Kathleen Stevenson Printing ink, transfers, and methods of decorating polyolefin articles
JP2017071806A (ja) * 2015-10-05 2017-04-13 Ntn株式会社 多孔質金属部品の製造方法
KR101771677B1 (ko) * 2016-12-06 2017-08-25 신화진 음이온 및 원적외선을 발산하는 벽난로용 내화벽돌
JPWO2022034834A1 (ja) * 2020-08-12 2022-02-17

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11162050B2 (en) 2016-12-27 2021-11-02 Mitsui Chemicals, Inc. Lubricating oil composition, viscosity modifier for lubricating oil, and additive composition for lubricating oil
JP7223862B2 (ja) 2019-08-29 2023-02-16 三井化学株式会社 潤滑油組成物
KR102465239B1 (ko) * 2021-11-04 2022-11-09 주식회사 은진공업 내마모성이 우수한 융착식 노면표지용 도료 조성물 및 이의 제조 방법

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763310A (en) 1980-08-13 1982-04-16 Montedison Spa Ingredient and catalyst for olefin polymerization
JPS5883006A (ja) 1981-11-13 1983-05-18 Mitsui Petrochem Ind Ltd オレフインの重合方法
JPS63178175A (ja) * 1987-12-11 1988-07-22 Mitsui Petrochem Ind Ltd 被覆用組成物
JPH0241303A (ja) 1988-07-15 1990-02-09 Fina Technol Inc シンジオタクチツクポリオレフインの製造方法及び触媒
JPH03706A (ja) 1988-09-30 1991-01-07 Himont Inc オレフィン重合用固体触媒成分および触媒
JPH03193796A (ja) 1989-10-10 1991-08-23 Fina Technol Inc メタロセン化合物
JPH04218508A (ja) 1990-04-13 1992-08-10 Mitsui Petrochem Ind Ltd α−オレフィン系重合体の製造方法
JPH0588250A (ja) 1991-09-30 1993-04-09 Ricoh Co Ltd カメラ
JPH05156028A (ja) * 1991-12-11 1993-06-22 Mitsui Petrochem Ind Ltd オレフィン系重合体組成物の水性分散液の製造方法
JPH05194751A (ja) * 1992-01-17 1993-08-03 Furukawa Electric Co Ltd:The ポリオレフィン微粉末の製造方法
JPH07300538A (ja) * 1994-05-06 1995-11-14 Supeishii Chem Kk 親水性透湿性多孔質オレフィン系重合体焼結体およびそれを使用した冷蔵庫
JPH09328588A (ja) * 1996-06-11 1997-12-22 Mitsui Petrochem Ind Ltd 樹脂微粒子およびゴム組成物
WO2001027124A1 (fr) 1999-10-08 2001-04-19 Mitsui Chemicals, Inc. Compose metallocene, son procede de fabrication, catalyseur de polymerisation d'olefine, procede de production de polyolefine et polyolefine
WO2001053369A1 (fr) 2000-01-21 2001-07-26 Mitsui Chemicals, Inc. Copolymeres blocs d'olefine, procedes de fabrication et utilisation
JP2002265719A (ja) * 2001-03-14 2002-09-18 Mitsui Chemicals Inc 4−メチル−1−ペンテン系重合体の水性分散液
JP2003105022A (ja) 2001-09-28 2003-04-09 Mitsui Chemicals Inc α−オレフィン系重合体の製造方法
JP2003160669A (ja) * 2001-11-27 2003-06-03 Sumitomo Chem Co Ltd 有機天然物フィラー充填熱可塑性樹脂組成物の製造方法、樹脂組成物および成形体
JP3476793B2 (ja) 1990-04-13 2003-12-10 三井化学株式会社 オレフィン重合用固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法
WO2005121192A1 (ja) 2004-06-10 2005-12-22 Mitsui Chemicals, Inc. オレフィン系重合体およびその用途
JP2007031639A (ja) * 2005-07-29 2007-02-08 Mitsui Chemicals Inc ポリオレフィン系オリゴマーの水性分散系及びその用途
WO2009011231A1 (ja) * 2007-07-13 2009-01-22 Mitsui Chemicals, Inc. 超高分子量ポリオレフィン微粒子、その製造方法およびその成形体

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2441541C2 (de) * 1974-08-30 1982-07-15 Basf Ag, 6700 Ludwigshafen Verfahren zum Herstellen einer modifizierten Titan-Komponente für Katalysatoren des Ziegler-Natta-Typs
US6777508B1 (en) 1980-08-13 2004-08-17 Basell Poliolefine Italia S.P.A. Catalysts for the polymerization of olefins
EP0143334B1 (en) * 1983-10-29 1988-05-04 Nippon Oil Co. Ltd. Process for preparing 4-methyl-1-pentene
JPS61113604A (ja) 1984-11-07 1986-05-31 Mitsui Petrochem Ind Ltd 4―メチル―1―ペンテン系重合体
US5445327A (en) * 1989-07-27 1995-08-29 Hyperion Catalysis International, Inc. Process for preparing composite structures
US5726262A (en) 1990-04-13 1998-03-10 Mitsui Petrochemical Industries, Ltd. Solid titanium catalyst component for olefin polymerization, olefin polymerization catalyst, prepolymerized polyolefin-containing catalyst and method of olefin polymerization
US5874521A (en) * 1992-06-19 1999-02-23 University Technologies International Inc. Polymer ahoy material and process for production thereof
US6525125B1 (en) 1999-02-05 2003-02-25 Materia, Inc. Polyolefin compositions having variable density and methods for their production and use
US20020155776A1 (en) 1999-10-15 2002-10-24 Mitchler Patricia Ann Particle-containing meltblown webs
JP2002355544A (ja) 2001-05-30 2002-12-10 Tdk Corp 球状セラミックス粉末の製造方法、球状セラミックス粉末および複合材料
US6630016B2 (en) * 2002-01-31 2003-10-07 Koslow Technologies Corp. Microporous filter media, filtration systems containing same, and methods of making and using
JP4019074B2 (ja) * 2004-08-12 2007-12-05 埼玉日本電気株式会社 発着呼規制装置及び方法
WO2006054696A1 (ja) 2004-11-19 2006-05-26 Mitsui Chemicals, Inc. エチレン系重合体微粒子、官能基含有エチレン系重合体微粒子およびその製造用触媒担体
DE102005024722A1 (de) * 2005-05-31 2006-12-07 Clariant Produkte (Deutschland) Gmbh Blaues Farbmittel auf Basis von C.I. Pigment Blue 80
NZ569756A (en) * 2005-12-12 2011-07-29 Allaccem Inc Methods and systems for preparing antimicrobial films and coatings utilising polycyclic bridged ammonium salts
JP4666682B2 (ja) * 2006-03-17 2011-04-06 日立マクセル株式会社 油性インク組成物
WO2008093575A1 (ja) * 2007-01-30 2008-08-07 Asahi Kasei E-Materials Corporation 多層多孔膜及びその製造方法
JP2009108199A (ja) * 2007-10-30 2009-05-21 Fujifilm Corp 水分散体、それを用いた記録液、画像形成方法、及び画像形成装置、並びに水分散体の製造方法及びそれにより得られるインクジェット用インク
TWI472537B (zh) * 2008-07-10 2015-02-11 Mitsui Chemicals Inc 4-methyl-1-pentene-based polymer and a resin composition containing 4-methyl-1-pentene-based polymer and its masterbatch and the molded product
CN103189442A (zh) * 2010-10-19 2013-07-03 三井化学株式会社 聚-4-甲基-1-戊烯系树脂组合物及由该组合物获得的成型体

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763310A (en) 1980-08-13 1982-04-16 Montedison Spa Ingredient and catalyst for olefin polymerization
JPS5883006A (ja) 1981-11-13 1983-05-18 Mitsui Petrochem Ind Ltd オレフインの重合方法
JPS63178175A (ja) * 1987-12-11 1988-07-22 Mitsui Petrochem Ind Ltd 被覆用組成物
JPH0241303A (ja) 1988-07-15 1990-02-09 Fina Technol Inc シンジオタクチツクポリオレフインの製造方法及び触媒
JPH03706A (ja) 1988-09-30 1991-01-07 Himont Inc オレフィン重合用固体触媒成分および触媒
JPH03193796A (ja) 1989-10-10 1991-08-23 Fina Technol Inc メタロセン化合物
JP3476793B2 (ja) 1990-04-13 2003-12-10 三井化学株式会社 オレフィン重合用固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法
JPH04218508A (ja) 1990-04-13 1992-08-10 Mitsui Petrochem Ind Ltd α−オレフィン系重合体の製造方法
JPH0588250A (ja) 1991-09-30 1993-04-09 Ricoh Co Ltd カメラ
JPH05156028A (ja) * 1991-12-11 1993-06-22 Mitsui Petrochem Ind Ltd オレフィン系重合体組成物の水性分散液の製造方法
JPH05194751A (ja) * 1992-01-17 1993-08-03 Furukawa Electric Co Ltd:The ポリオレフィン微粉末の製造方法
JPH07300538A (ja) * 1994-05-06 1995-11-14 Supeishii Chem Kk 親水性透湿性多孔質オレフィン系重合体焼結体およびそれを使用した冷蔵庫
JPH09328588A (ja) * 1996-06-11 1997-12-22 Mitsui Petrochem Ind Ltd 樹脂微粒子およびゴム組成物
WO2001027124A1 (fr) 1999-10-08 2001-04-19 Mitsui Chemicals, Inc. Compose metallocene, son procede de fabrication, catalyseur de polymerisation d'olefine, procede de production de polyolefine et polyolefine
WO2001053369A1 (fr) 2000-01-21 2001-07-26 Mitsui Chemicals, Inc. Copolymeres blocs d'olefine, procedes de fabrication et utilisation
JP2002265719A (ja) * 2001-03-14 2002-09-18 Mitsui Chemicals Inc 4−メチル−1−ペンテン系重合体の水性分散液
JP2003105022A (ja) 2001-09-28 2003-04-09 Mitsui Chemicals Inc α−オレフィン系重合体の製造方法
JP2003160669A (ja) * 2001-11-27 2003-06-03 Sumitomo Chem Co Ltd 有機天然物フィラー充填熱可塑性樹脂組成物の製造方法、樹脂組成物および成形体
WO2005121192A1 (ja) 2004-06-10 2005-12-22 Mitsui Chemicals, Inc. オレフィン系重合体およびその用途
JP2007031639A (ja) * 2005-07-29 2007-02-08 Mitsui Chemicals Inc ポリオレフィン系オリゴマーの水性分散系及びその用途
WO2009011231A1 (ja) * 2007-07-13 2009-01-22 Mitsui Chemicals, Inc. 超高分子量ポリオレフィン微粒子、その製造方法およびその成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2565210A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013539479A (ja) * 2010-07-28 2013-10-24 スティーブンスン,マイケル,ジェイ 印刷インキ、転写、およびポリオレフィン製品の装飾の方法
US9296243B2 (en) 2010-07-28 2016-03-29 Michael Stevenson & Kathleen Stevenson Printing ink, transfers, and methods of decorating polyolefin articles
JP2017071806A (ja) * 2015-10-05 2017-04-13 Ntn株式会社 多孔質金属部品の製造方法
KR101771677B1 (ko) * 2016-12-06 2017-08-25 신화진 음이온 및 원적외선을 발산하는 벽난로용 내화벽돌
JPWO2022034834A1 (ja) * 2020-08-12 2022-02-17
WO2022034834A1 (ja) * 2020-08-12 2022-02-17 住友ベークライト株式会社 離型フィルムおよび成型品の製造方法
JP7283639B2 (ja) 2020-08-12 2023-05-30 住友ベークライト株式会社 離型フィルムおよび成型品の製造方法

Also Published As

Publication number Publication date
JPWO2011135763A1 (ja) 2013-07-18
CN102869687A (zh) 2013-01-09
EP2565210A4 (en) 2015-05-27
JP5798113B2 (ja) 2015-10-21
US20130052464A1 (en) 2013-02-28
CN102869687B (zh) 2015-03-18
US9260549B2 (en) 2016-02-16
EP2565210B1 (en) 2019-11-06
EP2565210A1 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5798113B2 (ja) 4−メチル−1−ペンテン系重合体からなる樹脂微粉末、およびそれを含む組成物、ならびにその製造方法
CN106117756B (zh) 一种注塑级超高分子量聚乙烯的制备方法
US9163137B2 (en) Nanocomposite
US6288189B1 (en) Polyolefin microspheres
JP6146589B2 (ja) 超高分子量ポリエチレンを製造するための触媒系
JPWO2009011231A1 (ja) 超高分子量ポリオレフィン微粒子、その製造方法およびその成形体
US6884861B2 (en) Metal nanoparticle thermoset and carbon compositions from mixtures of metallocene-aromatic-acetylene compounds
EA023514B1 (ru) Способ получения полиэтилена в петлевом реакторе
US9321905B2 (en) Nanocomposite
JP2019527254A (ja) パイプ用ポリエチレン
JP7134548B2 (ja) ペレット型ポリプロピレン樹脂およびその製造方法
JP2011513560A (ja) 触媒系およびこの触媒系の存在下でポリエチレンを製造するプロセス
JPH0374245B2 (ja)
HUE030644T2 (en) A method for producing a polyethylene mixture comprising a metallocene-made resin and a chromium-based resin.
RU2667897C1 (ru) Способ получения реагента для снижения гидродинамического сопротивления турбулентного потока жидких углеводородов в трубопроводах с рециклом сольвента
WO2014031919A1 (en) Wastewater treatment with aeration device
US10933593B2 (en) Sintered and porous articles having improved flexural strength
KR101953512B1 (ko) 폴리에틸렌 파우더 및 그의 성형물
EP2766416B1 (en) Process for preparing nanocomposite
CN114249851B (zh) 一类低堆密度超高分子量聚乙烯微粉
WO2022186044A1 (ja) 4-メチル-1-ペンテン重合体
JP2023073865A (ja) フィルムおよびフィルムの製造方法
JP2017071741A (ja) オレフィン重合触媒
TW202334331A (zh) 含鋁導熱膏
Vlasova et al. Properties of polyethylene-kaolin composites synthesized by polymerization of ethylene on the particulate surface of kaolin treated with organoaluminium compounds

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180021016.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774554

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012512628

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011774554

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13643866

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE