WO2011129313A1 - 発光装置の製造方法 - Google Patents

発光装置の製造方法 Download PDF

Info

Publication number
WO2011129313A1
WO2011129313A1 PCT/JP2011/059042 JP2011059042W WO2011129313A1 WO 2011129313 A1 WO2011129313 A1 WO 2011129313A1 JP 2011059042 W JP2011059042 W JP 2011059042W WO 2011129313 A1 WO2011129313 A1 WO 2011129313A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
particles
reflective
anisotropic conductive
emitting element
Prior art date
Application number
PCT/JP2011/059042
Other languages
English (en)
French (fr)
Inventor
秀次 波木
士行 蟹澤
英明 馬越
Original Assignee
ソニーケミカル&インフォメーションデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーケミカル&インフォメーションデバイス株式会社 filed Critical ソニーケミカル&インフォメーションデバイス株式会社
Priority to CN201180018865.5A priority Critical patent/CN102823084B/zh
Priority to KR1020117018368A priority patent/KR101892753B1/ko
Publication of WO2011129313A1 publication Critical patent/WO2011129313A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/75301Bonding head
    • H01L2224/75314Auxiliary members on the pressing surface
    • H01L2224/75315Elastomer inlay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/75301Bonding head
    • H01L2224/75314Auxiliary members on the pressing surface
    • H01L2224/75315Elastomer inlay
    • H01L2224/75316Elastomer inlay with retaining mechanisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape

Definitions

  • the present invention relates to a method of manufacturing a light emitting device in which a light emitting element such as an LED element is anisotropically conductively connected to a wiring board.
  • the connection strength by the gold wire is not sufficient, and the coefficient of thermal expansion between the sealing resin and the sealing resin is not sufficient.
  • the connection reliability was low due to the large difference.
  • the light extraction efficiency (light emission efficiency) is lowered due to light absorption of the gold wire, and a problem that the mounting tact time is increased because the curing speed of the die bond used for fixing the LED element to the wiring board is slow. .
  • An object of the present invention is to solve the above-described problems of the prior art, and light-emitting elements such as light-emitting diodes (LEDs) are flip-chip mounted on a wiring board using an anisotropic conductive adhesive to emit light.
  • LEDs light-emitting diodes
  • the present inventors can prevent the light emission efficiency from being lowered. It has been found that the luminous efficiency of the light emitting device can be prevented from being lowered by blending the reflective insulating particles.
  • the present inventors generally change the material of the heat-pressing head of the bonder from metal to elastomer so that the light-emitting element is pressed so as not to be cracked or chipped without impairing connection reliability.
  • the light-reflective insulating particles as described above are blended with the anisotropic conductive adhesive, it is found that the light-emitting element may be cracked or chipped.
  • an elastomer having a specific rubber hardness may be used as the elastomer to be used, and the present invention has been completed.
  • the present invention provides the following steps (A) and (B) in a method for producing a light emitting device in which a light emitting element is anisotropically conductively connected to a wiring board: Step (A) Disposing a light-reflective anisotropic conductive adhesive containing a thermosetting resin composition, conductive particles, and light-reflective insulating particles between the light-emitting element and the wiring board to which the light-emitting element is to be connected And step (B) Provided is a manufacturing method including a step of performing anisotropic conductive connection by heating and pressing a light emitting element to a wiring board with an elastomer head having a Shore A rubber hardness (JIS K6253) of 40 to less than 90 on a pressing surface. .
  • This production method further includes the following step (C): Process (C) You may have the process of sealing the light emitting element by which anisotropic conductive connection was carried out on the wiring board using transparent resin.
  • the present invention also provides a light emitting device manufactured by the above manufacturing method.
  • the light-reflective anisotropic conductive adhesive used in the method for manufacturing a light-emitting device of the present invention contains light-reflective insulating particles, it can reflect light emitted from the light-emitting element. Therefore, the method for manufacturing a light emitting device of the present invention can anisotropically connect the light emitting element to the wiring board without reducing the light emission efficiency of the light emitting element.
  • the heating and pressing head used in the method for manufacturing a light emitting device of the present invention is an elastomer head set to an optimum hardness, the light emitting element is uniformly pressurized and heated to the wiring board with an optimum pressure. Can do. Therefore, in the method for manufacturing a light emitting device of the present invention, a crack or a chip occurs in the light emitting element when the anisotropic conductive connection is performed using the light reflective anisotropic conductive adhesive containing the light reflective insulating particles. This can be prevented.
  • the present invention is a method of manufacturing a light emitting device in which a light emitting element is anisotropically conductively connected to a wiring board, and a thermosetting resin composition is provided between the light emitting element and the wiring board to which the light emitting element is to be connected.
  • the method may include a step (C) of sealing the light emitting element that is anisotropically conductively connected on the wiring board with a transparent resin.
  • bumps may be formed on either or both of these electrodes 1a and 2a by a known technique for improving connection reliability.
  • a light emitting element similar to that used in a conventional light emitting device can be used.
  • the wiring board 2 used in the present invention a wiring board similar to that used in the conventional light emitting device can be used.
  • a silicon semiconductor substrate, a glass wiring board, a ceramic wiring board, or the like is used. be able to.
  • a conventionally well-known structure can be employ
  • the light-reflective anisotropic conductive adhesive 3 used in the step (A) not only contributes to the anisotropic conductive connection between the light-emitting element 1 and the wiring board 2 but also reflects the light emitted from the light-emitting element 1. It contributes to the improvement of luminous efficiency, and contains the thermosetting resin composition 3a, the conductive particles 3b and the light-reflective insulating particles 3c dispersed therein.
  • the light-reflective insulating particle 3c reflects light incident on the anisotropic conductive adhesive to the outside and imparts light reflectivity to the anisotropic conductive adhesive.
  • the particles having light reflectivity include metal particles, particles coated with metal particles, inorganic particles such as metal oxides, metal nitrides, metal sulfides, and the like that are gray to white under natural light, resin
  • corrugation on the surface are contained irrespective of the material of particle
  • the light-reflective insulating particles that can be used in the present invention do not include metal particles because they are required to exhibit insulating properties.
  • light-reflective insulating particles 3c include silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), boron nitride (BN), zinc oxide (ZnO), and aluminum oxide (Al 2 O 3 ). , Barium titanate, strontium titanate, zinc sulfide, lead white, barium sulfate, magnesium oxide, zinc sulfide, calcium carbonate, aluminum hydroxide, mica, viscosity mineral and the like. These light-reflective insulating particles 3c can be used in combination of two or more.
  • the refractive index of the thermosetting resin composition 3a used by the refractive index thereof can be preferably used, specifically, titanium oxide (TiO 2 ), boron nitride (BN), zinc oxide (ZnO), aluminum oxide (Al 2 O 3 ) and the like can be preferably used, Titanium oxide (TiO 2 ) can be preferably used.
  • the shape of the light-reflective insulating particles 3c may be spherical, scaly, indeterminate, acicular, etc. In consideration of the reflection efficiency, spherical and scaly are preferable. Further, the average particle diameter is the Mie region where the scattering efficiency is highest when the particle diameter is 1 ⁇ 2 of the incident wavelength, the incident light to the particle is reflected without loss, and the visible light wavelength is 380 to In consideration of 780 nm, the thickness is preferably 150 nm to 500 nm, more preferably 190 to 390 nm. In this case, it is preferable to determine the particle size according to the emission wavelength of the light emitting element.
  • the emission wavelength is distributed in the range of 400 to 550 nm, so that the preferable average particle diameter is 200 to 275 nm.
  • the particle diameter in the case of scale-like particles is preferably based on the major axis.
  • the “average” particle size means an average particle size measured with a laser diffraction particle size distribution analyzer (for example, SALD-2000J, manufactured by Shimadzu Corporation).
  • the inorganic particles described above may be used as light-reflective insulating particles, but resin-coated metal particles obtained by coating the surface of scale-like or spherical metal particles with a transparent insulating resin are light-reflective insulating. It may be used as particles.
  • the metal particles include nickel, silver, and aluminum.
  • the shape of the particles include an amorphous shape, a spherical shape, a scaly shape, and a needle shape. Among these, a spherical shape is preferable from the viewpoint of the light diffusion effect, and a scaly shape is preferable from the viewpoint of the total reflection effect. Particularly preferred are scaly silver particles in terms of light reflectance. Before these metal particles are coated with an insulating resin, it is preferable that a ⁇ -glycidoxy group, a vinyl group, or the like is previously introduced to the metal surface with a silane coupling agent.
  • the average particle diameter is preferably 0.1 to 30 ⁇ m, more preferably 0.2 to 10 ⁇ m.
  • the average major axis is preferably 0.1 to 100 ⁇ m, more preferably 1 to 50 ⁇ m, and the average thickness is preferably 0.01 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m.
  • the size of the photoreactive particles is the size including the insulating coating when the insulating coating is applied.
  • a cured product of acrylic resin can be preferably used.
  • a preferable example is a resin obtained by radical copolymerization of methyl methacrylate and 2-hydroxyethyl methacrylate in the presence of a radical initiator such as an organic peroxide such as benzoyl peroxide.
  • a radical initiator such as an organic peroxide such as benzoyl peroxide.
  • it is more preferably crosslinked with an isocyanate-based crosslinking agent such as 2,4-tolylene diisocyanate.
  • such resin-coated metal particles are prepared by adding metal particles and a silane coupling agent in a solvent such as toluene and stirring the mixture at room temperature for about 1 hour, and then, if necessary, a radical monomer and a radical polymerization initiator. Then, a crosslinking agent is added, and the mixture is stirred by heating to the radical polymerization starting temperature.
  • the amount of the light-reflective insulating particles 3c described above in the light-reflective anisotropic conductive adhesive is too small, sufficient light reflection cannot be realized, and if it is too large, it is used in combination. Since the connection based on the conductive particles is hindered, it is preferably 1 to 50% by volume, more preferably 2 to 25% by volume, and further preferably 3 to 20% by volume in the thermosetting resin composition.
  • metal particles used in conventional conductive particles for anisotropic conductive connection can be used.
  • examples thereof include gold, nickel, copper, silver, solder, palladium, aluminum, alloys thereof, multilayered products thereof (for example, nickel plating / gold flash plating products), and the like.
  • gold, nickel, and copper turn the conductive particles brown, so that the effects of the present invention can be enjoyed over other metal materials.
  • metal-coated resin particles obtained by coating resin particles with a metal material can be used.
  • resin particles include styrene resin particles, benzoguanamine resin particles, and nylon resin particles.
  • a method of coating the resin particles with a metal material a conventionally known method can be employed, and an electroless plating method, an electrolytic plating method, or the like can be used.
  • the layer thickness of the metal material to be coated is sufficient to ensure good connection reliability, and is usually 0.1 to 3 ⁇ m although it depends on the particle size of the resin particles and the type of metal.
  • the particle size of the resin particle is too small, poor conduction tends to occur, and if it is too large, there is a tendency for a short circuit between patterns to occur. Therefore, it is preferably 1 to 20 ⁇ m, more preferably 3 to 10 ⁇ m, and particularly preferably 3 to 5 ⁇ m. is there.
  • the shape of the core particle 1 is preferably a spherical shape, but may be a flake shape or a rugby ball shape.
  • the metal-coated resin particles have a spherical shape, and if the particle size is too large, the connection reliability is lowered. Therefore, it is preferably 1 to 20 ⁇ m, more preferably 3 to 10 ⁇ m.
  • the conductive particles it is preferable to use, as the conductive particles, light reflective conductive particles obtained by imparting light reflectivity to the conductive particles as described above.
  • 2A and 2B are cross-sectional views of such light reflective conductive particles 200 and multilayered light reflective conductive particles 300. First, the light reflective conductive particles in FIG. 2A will be described.
  • the light reflective conductive particles 200 are selected from core particles 21 coated with a metal material, and titanium oxide (TiO 2 ) particles, zinc oxide (ZnO) particles, or aluminum oxide (Al 2 O 3 ) particles on the surface thereof. And a light reflection layer 23 formed of at least one kind of inorganic particles 22. Titanium oxide particles, zinc oxide particles, or aluminum oxide particles are inorganic particles that exhibit a white color under sunlight. Accordingly, the light reflecting layer 23 formed from them exhibits white to gray.
  • the expression of white to gray means that the wavelength dependency of the reflection characteristic for visible light is small and the visible light is easily reflected.
  • Zinc oxide which is not catalytic and has a high refractive index can be preferably used.
  • the surface thereof is made of a metal material.
  • the surface is coated with a metal material, as described above, an aspect in which the core particle 21 itself is a metal material, or an aspect in which the surface of the resin particle is coated with a metal material can be cited.
  • the particle thickness of the core particles 21 is preferably 0.5 to 50%, more preferably 1 to 25%.
  • the particle size of the inorganic particles 22 constituting the light-reflecting layer 23 is preferably 0.02 to 4 ⁇ m, more preferably 0.1 to 1 ⁇ m, and particularly preferably 0.2 to 0.5 ⁇ m.
  • the particle size of the inorganic particles 22 is set so that the light to be reflected (that is, the light emitted from the light emitting element) is not transmitted. It is preferable that it is 50% or more.
  • examples of the shape of the inorganic particles 22 include an amorphous shape, a spherical shape, a scaly shape, and a needle shape.
  • a spherical shape is preferable from the viewpoint of the light diffusion effect
  • a scaly shape is preferable from the viewpoint of the total reflection effect.
  • the light-reflective conductive particle 200 in FIG. 2A is a known film formation technique (a so-called mechanofusion method) in which a film composed of small particle diameter particles is formed on the surface of large particle diameter particles by physically colliding large and small powders. ).
  • the inorganic particles 22 are fixed so as to bite into the metal material on the surface of the core particle 21, and on the other hand, the inorganic particles are not easily fused and fixed together, so that the monolayer of the inorganic particles constitutes the light reflecting layer 23. Therefore, in the case of FIG. 2A, the layer thickness of the light reflecting layer 23 is considered to be equal to or slightly thinner than the particle size of the inorganic particles 22.
  • the multilayered light reflective conductive particles 300 in FIG. 2B will be described.
  • the light-reflecting layer 23 contains a thermoplastic resin 24 that functions as an adhesive, and the inorganic particles 22 are also fixed together by this thermoplastic resin 24, so that the inorganic particles 22 are multilayered. It differs from the light-reflective conductive particle 200 of FIG. 2A in that it is multi-layered (for example, two or three layers). By including such a thermoplastic resin 24, the mechanical strength of the light reflecting layer 23 is improved, and the inorganic particles are less likely to be peeled off.
  • thermoplastic resin 24 a halogen-free thermoplastic resin can be preferably used for the purpose of reducing the environmental load.
  • polyolefins such as polyethylene and polypropylene, polystyrene, acrylic resins, and the like can be preferably used.
  • Such multilayered light-reflective conductive particles 300 can also be manufactured by a mechanofusion method. If the particle size of the thermoplastic resin 24 applied to the mechano-fusion method is too small, the adhesion function is lowered, and if it is too large, it is difficult to adhere to the core particles. Therefore, it is preferably 0.02 to 4 ⁇ m, more preferably 0.1. ⁇ 1 ⁇ m. Further, when the amount of the thermoplastic resin 24 is too small, the adhesive function is deteriorated. When the amount is too large, an aggregate of particles is formed. The amount is 2 to 500 parts by mass, more preferably 4 to 25 parts by mass.
  • thermosetting resin composition 3a constituting the light-reflective anisotropic conductive adhesive 3 used in the present invention it is preferable to use a colorless and transparent material as much as possible. This is because the light reflection efficiency of the light-reflective insulating particles or the like in the anisotropic conductive adhesive is not lowered, and the incident light is reflected without changing the light color.
  • colorless and transparent means that the cured product of the anisotropic conductive adhesive has a light transmittance of 1 cm with respect to visible light having a wavelength of 380 to 780 nm (measured in accordance with JIS K7105) of 80% or more, Preferably, it means 90% or more.
  • the blending amount of the conductive particles 3b with respect to 100 parts by mass of the thermosetting resin composition 3a is too small, poor conduction occurs, and if it is too large, a short circuit between patterns occurs.
  • thermosetting resin composition 3a constituting the light-reflective anisotropic conductive adhesive 3 used in the present invention
  • those used in conventional anisotropic conductive adhesives and anisotropic conductive films are utilized. be able to.
  • a thermosetting resin composition is obtained by blending a curing agent with an insulating binder resin.
  • the insulating binder resin include epoxy resins mainly composed of an alicyclic epoxy compound, a heterocyclic epoxy compound, a hydrogenated epoxy compound, and the like.
  • Preferred examples of the alicyclic epoxy compound include those having two or more epoxy groups in the molecule. These may be liquid or solid. Specific examples include glycidyl hexahydrobisphenol A, 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate, and the like. Among these, glycidyl hexahydrobisphenol A, 3,4-epoxycyclohexenylmethyl-3 ′, 4 is preferable because it can ensure light transmission suitable for mounting LED elements on the cured product and is excellent in rapid curing. '-Epoxycyclohexenecarboxylate can be preferably used.
  • heterocyclic epoxy compound examples include an epoxy compound having a triazine ring, and 1,3,5-tris (2,3-epoxypropyl) -1,3,5-triazine-2,4 is particularly preferable. , 6- (1H, 3H, 5H) -trione.
  • hydrogenated epoxy compound hydrogenated products of the above-described alicyclic epoxy compounds and heterocyclic epoxy compounds, and other known hydrogenated epoxy resins can be used.
  • An alicyclic epoxy compound, a heterocyclic epoxy compound, a hydrogenated epoxy compound, and the like may be used alone, but two or more kinds may be used in combination. In addition to these epoxy compounds, other epoxy compounds may be used in combination as long as the effects of the present invention are not impaired.
  • the curing agent examples include an acid anhydride curing agent, an imidazole compound curing agent, a dicyan curing agent, and a dian curing agent.
  • an acid anhydride-based curing agent that hardly changes the color of the cured product particularly an alicyclic acid anhydride-based curing agent, can be preferably used.
  • methylhexahydrophthalic anhydride etc. can be mentioned preferably.
  • thermosetting resin composition 3a of the light-reflective anisotropic conductive adhesive 3 used in the present invention when an alicyclic epoxy compound and an alicyclic acid anhydride-based curing agent are used, each usage amount is If the amount of the alicyclic acid anhydride curing agent is too small, the amount of the uncured epoxy compound is increased. If the amount is too large, the corrosion of the adherend material tends to be accelerated by the influence of the excess curing agent.
  • the alicyclic acid anhydride curing agent is preferably used in an amount of 80 to 120 parts by mass, more preferably 95 to 105 parts by mass with respect to 100 parts by mass of the epoxy compound.
  • the equivalent ratio of the epoxy resin and the acid anhydride curing agent is preferably 0.85 to 1.2, more preferably 0.9 to 1.1. Within this range, good heat-resistant light characteristics can be realized.
  • the light-reflective anisotropic conductive adhesive 3 includes a curing accelerator such as DBU-p-toluenesulfonate, quaternary ammonium salt, organic phosphine, and epoxy resin for improving heat-resistant light characteristics.
  • the amount can be blended in a proportion of preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass in total with the acid anhydride curing agent.
  • the light-reflective anisotropic conductive adhesive 3 includes a primary antioxidant (a radical chain inhibitor supplementing a peroxide radical (ROO.) Generated in the deterioration process) as an anti-aging agent, for example, phenol-based aging.
  • a primary antioxidant a radical chain inhibitor supplementing a peroxide radical (ROO.) Generated in the deterioration process
  • an anti-aging agent for example, phenol-based aging.
  • Antioxidants and amine-based anti-aging agents and secondary antioxidants (peroxide decomposing agents that capture unstable volatile peroxides (ROOH) and actively decompose them into stable compounds, for example, sulfur-based compounds)
  • Antioxidants and phosphorus antioxidants can be blended.
  • Such an anti-aging agent is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 2 parts by mass with respect to 100 parts by mass in total of the epoxy resin and the acid anhydride curing agent. Can be blended.
  • the light-reflective anisotropic conductive adhesive 3 may be blended with additives such as an ultraviolet absorber, a coupling agent, and a flame retardant as necessary.
  • the light-reflective anisotropic conductive adhesive 3 used in the present invention can be produced by uniformly mixing the thermosetting resin composition 3a, the conductive particles 3b, and the light-reflective insulating particles 3c.
  • a solvent such as toluene
  • the reflection characteristics of the light-reflective anisotropic conductive adhesive described above are obtained over the entire wavelength range of 380 to 780 nm of the cured product of the light-reflective anisotropic conductive adhesive in order to improve the light emission efficiency of the light-emitting element.
  • Spectral reflectance is preferably 30% or more, more preferably 50% or more, and further preferably 80% or more.
  • the spectral reflectance (measured in accordance with JIS K7105) for light having a wavelength of 450 nm is preferably 30% or more, more preferably 50% or more, and even more preferably 80% or more.
  • the reflection characteristics and blending amount of the light-reflective insulating particles to be used, the blending composition of the thermosetting resin composition, and the like may be appropriately adjusted. Usually, if the amount of light-reflective insulating particles having good reflection characteristics is increased, the reflectance tends to increase.
  • the reflection characteristics of the light-reflective anisotropic conductive adhesive can be evaluated from the viewpoint of refractive index. That is, if the refractive index of the cured product is larger than the refractive index of the cured product of the thermosetting resin composition excluding the conductive particles and the light-reflective insulating particles, the light-reflective insulating particles and the thermosetting surrounding them. This is because the amount of light reflection at the interface with the cured product of the conductive resin composition increases.
  • the refractive index of the light-reflective insulating particles may be larger than the refractive index of the cured product of the thermosetting resin composition (measured according to JIS K7142).
  • the difference between the two is 0.02 or more, more preferably 0.2 or more.
  • the refractive index of a thermosetting resin composition mainly composed of an epoxy resin is about 1.5.
  • anisotropic conductive connection is performed by heating and pressurizing the light emitting element to the wiring board.
  • an elastomer head 4 for heating and pressing is set at a position where the light emitting element 1 can be pressed, and a pressing surface 4a of the elastomer head 4 is required as shown in FIG. 1C. Accordingly, the light-emitting element 1 is pressed against the wiring board 2 through a protective film (not shown) and heated and pressurized.
  • the light-reflective anisotropic conductive adhesive 3 is flowed and then cured, whereby the light-emitting element 1 can be anisotropically conductively connected to the wiring board 2, and the light-emitting device 100 shown in FIG. 1D can be obtained. it can.
  • the light emitting device 100 light emitted from the light emitting element 1 toward the wiring board 2 side is light reflective insulating particles 3c in a cured product 3 ′ of a light reflective anisotropic conductive adhesive. And is emitted from the upper surface of the light emitting device 100. Accordingly, it is possible to prevent a decrease in luminous efficiency.
  • the elastomer head 4 used in this step is deformed at the time of anisotropic conductive connection, the unevenness of the anisotropic conductive connection portion can be canceled and the in-plane uniformity of pressing can be realized. Accordingly, even when a light emitting device is manufactured by anisotropically connecting a plurality of light emitting elements to a wiring board by the manufacturing method of the present invention by using the elastomer head 4, the shape and thickness of the connection electrodes are also reduced. Differences and dimensional errors can be canceled, and a plurality of light emitting elements can be collectively connected to the wiring board by anisotropic conductive connection. Further, the fillet portion 3d formed from the light-reflective anisotropic conductive adhesive 3 protruding from between the light-emitting element 1 and the wiring board 2 can be heated and pressed to be sufficiently cured. It can also improve the performance.
  • the elastomer head 4 has a pressing surface 4a having a Shore A rubber hardness (JIS K6253 (5-35 ° C.)) of 40 or more and less than 90, preferably 65 or more and 80 or less.
  • Shore A rubber hardness JIS K6253 (5-35 ° C.)
  • the Shore A rubber hardness is less than 40, the pressure on the light emitting element is insufficient and the initial resistance and the connection reliability tend to decrease.
  • the Shore A rubber hardness is 90 or more, the light emitting element is cracked or chipped. Because there is a tendency to.
  • the elastomer head 4 having a Shore A rubber hardness of 40 or more and less than 90, even if the light-reflective insulating particles 3c and the conductive particles 3b are blended with the light-reflective anisotropic conductive adhesive 3, Can be heated and pressed so as not to cause cracks or chipping in the light emitting element 1 at the time of conductive connection.
  • any of natural rubber, synthetic rubber, thermosetting or thermoplastic elastomer, etc. can be used, but from the viewpoint of heat resistance and pressure resistance, silicone rubber, fluorine rubber, etc. should be used. Is preferred.
  • such an elastomer head 4 is normally held by a metal head base 5 such as stainless steel in which a heater for heating (not shown) is built.
  • the size of the pressing surface 4a of the elastomer head 4 is set to a size that can press the fillet portion of the light-reflective anisotropic conductive adhesive protruding from between the light emitting element 1 and the wiring board 2 when pressed. It is preferable.
  • the thickness of the elastomer head 4 is preferably at least equal to or greater than the maximum thickness of the light emitting element 1.
  • the degree of heating at the time of anisotropic conductive connection is such that the light-reflective anisotropic conductive adhesive 3 has a melt viscosity within a suitable range in order to improve connection reliability and the like. It is preferable to heat the anisotropic conductive adhesive 3. Specifically, when the melt viscosity of the light-reflective anisotropic conductive adhesive is less than 1.0 ⁇ 10 2 mPa ⁇ s, the fluidity of the binder resin at the time of heating and pressing is large, and voids are generated in the initial stage.
  • the melt viscosity is greater than 1.0 ⁇ 10 5 mPa ⁇ s
  • the binder resin cannot be completely removed in the connection electrode part during heating and pressurization, and voids are generated, resulting in an initial resistance.
  • the connection reliability tends to be inferior
  • the light-reflective anisotropic conductive adhesive 3 has a melt viscosity of preferably 1.0 ⁇ 10 2 to 1.0 ⁇ 10 5 mPa ⁇ s, more preferably 1 Heating is preferably performed so that the pressure becomes 0.0 ⁇ 10 3 to 1.0 ⁇ 10 4 mPa ⁇ s.
  • the surface temperature of the elastomer head 4 can be appropriately set depending on the composition of the light-reflective anisotropic conductive adhesive 3 and the like, for example, the pressing surface 4a of the elastomer head 4 Heat the surface temperature to 50-350 ° C.
  • the wiring board 2 is connected to the light emitting element from the wiring board 2 side during the heating and pressurization. It is preferable to heat so that the temperature is higher than 1.
  • the surface of the pressing surface 4a of the elastomer head 4 is heated so as to be about 100 ° C.
  • the temperature of the light-reflective anisotropic conductive adhesive 3 is heated so as to be about 200 ° C. It is preferable to do.
  • the pressure at the time of anisotropic conductive connection is preferably about 2 to 50 Pa for one light emitting element 1 and is preferably pressed for about 10 to 60 seconds.
  • the light emitting device 100 obtained in step (B) shown in FIG. 1D may be sealed using a transparent sealing resin 6 so as to cover the entire light emitting element 1 as shown in FIG. 1E. Thereby, the light emitting device 110 with improved durability is obtained.
  • the transparent sealing resin 6 is not particularly limited as long as it is a general resin used for resin sealing of the light emitting element 1.
  • the cured product has low adhesiveness, little deterioration with time, and short curing time.
  • a silicone-based or acrylic-based transparent sealing resin can be preferably used.
  • the resin sealing method is not particularly limited as long as it is a general method used for resin sealing of a light-emitting element, and examples thereof include casting methods, potting methods, molding methods, and printing methods.
  • the potting method is preferred.
  • Example 1 (Preparation of light-reflective anisotropic conductive adhesive) 50 parts by mass of alicyclic epoxy resin (2021P, Daicel Chemical Industries, Ltd.) as the main agent, 50 parts by mass of methylhexahydrophthalic anhydride as the curing agent, and Au-coated resin conductive particles having an average particle size of 5 ⁇ m as conductive particles (Spherical acrylic resin particles having an average particle diameter of 4.6 ⁇ m and electroless gold plating having a thickness of 0.2 ⁇ m (Bright 20GNB4.6EH, Nippon Chemical Industry Co., Ltd.)) 15 parts by mass, and an organic phosphine curing accelerator (TPP-BF, Hokuko Chemical Industry Co., Ltd.) A thermosetting epoxy anisotropic conductive adhesive composed of 3 parts by mass and phosphorous anti-coloring agent (HCA, Sanko Co., Ltd.) 0.5 parts by mass By mixing silicon dioxide powder (Seahoster KE-E30, Nippon Shokubai Co
  • a bump bonder (Anisotropic conductive connection between light emitting element and wiring board) A bump bonder (FB700, Kaijo Corp.) is formed on a connecting electrode of a glass epoxy wiring board having a predetermined shape of a wiring formed by plating Ni / Au (5.0 ⁇ m thickness / 0.3 ⁇ m thickness) on a 100 ⁇ m pitch copper wiring. ) Was used to form gold bumps 15 ⁇ m high.
  • the light-reflective anisotropic conductive adhesive obtained above is applied to the glass epoxy wiring board with gold bumps, and a blue LED element having a 0.3 mm square and a 0.1 mm thickness (peak wavelength: 455 nm, rated)
  • An elastomer head (length 50 mm ⁇ width 50 mm, thickness 10 mm) having a pressing surface of Shore A rubber hardness (JIS K6253) 65 is arranged at 250 ° C. (elastomer head) with a current of 20 mA and a rated voltage of 3.2 V. Philip chip mounting was performed under the conditions of (pressing surface temperature), 30 seconds, and 1 N / chip to obtain an LED module as a light emitting device.
  • the light-emitting device obtained above is resin-sealed by a cast method using addition-curable methylsilicone resin (KER2500, Shin-Etsu Chemical Co., Ltd.), and a light-emitting device (LED module) sealed with a transparent resin Got.
  • KER2500 addition-curable methylsilicone resin
  • LED module light-emitting device
  • Example 2 As light-reflective insulating particles, instead of silicon dioxide powder, zinc oxide powder having an average particle size of 225 nm (JIS standard zinc oxide, 1 type, Hakusuitec Co., Ltd.) is used in the same manner as in Example 1 except that 15 vol% is used. Thus, a paste-like light-reflective anisotropic conductive adhesive having a white appearance color was obtained, and further, an LED module sealed with a transparent resin was obtained using this light-reflective anisotropic conductive adhesive.
  • JIS standard zinc oxide, 1 type, Hakusuitec Co., Ltd. JIS standard zinc oxide, 1 type, Hakusuitec Co., Ltd.
  • Example 3 As light-reflective insulating particles, instead of silicon dioxide powder, titanium dioxide powder having an average particle diameter of 210 nm (KR-380, Titanium Industry Co., Ltd.) was used in the same manner as in Example 1, except that 15 vol% was used. A paste-like light-reflective anisotropic conductive adhesive having a white appearance color was obtained, and further, an LED module sealed with a transparent resin was obtained using this light-reflective anisotropic conductive adhesive.
  • KR-380 Titanium Industry Co., Ltd.
  • Example 4 In the same manner as in Example 1, except that 15% by volume of titanium dioxide powder (KR-380, Titanium Industry Co., Ltd.) having an average particle diameter of 190 nm was used as the light-reflective insulating particles instead of silicon dioxide powder, the appearance was A paste-like light-reflective anisotropic conductive adhesive having a white color was obtained, and an LED module sealed with a transparent resin was obtained using the light-reflective anisotropic conductive adhesive.
  • titanium dioxide powder KR-380, Titanium Industry Co., Ltd.
  • Example 5 In the same manner as in Example 1, except that 15% by volume of titanium dioxide powder (KR-380, Titanium Industry Co., Ltd.) having an average particle diameter of 300 nm was used as the light-reflective insulating particles instead of silicon dioxide powder, the appearance was A paste-like light-reflective anisotropic conductive adhesive having a white color was obtained, and an LED module sealed with a transparent resin was obtained using the light-reflective anisotropic conductive adhesive.
  • titanium dioxide powder KR-380, Titanium Industry Co., Ltd.
  • Example 6 In the same manner as in Example 1, except that 5% by volume of titanium dioxide powder (KR-380, Titanium Industry Co., Ltd.) having an average particle diameter of 210 nm was used as the light-reflective insulating particles instead of silicon dioxide powder, the appearance was changed. A paste-like light-reflective anisotropic conductive adhesive having a white color was obtained, and an LED module sealed with a transparent resin was obtained using the light-reflective anisotropic conductive adhesive.
  • titanium dioxide powder KR-380, Titanium Industry Co., Ltd.
  • Example 7 In the same manner as in Example 1, except that 25% by volume of titanium dioxide powder (KR-380, Titanium Industry Co., Ltd.) having an average particle diameter of 210 nm was used as the light-reflective insulating particles instead of silicon dioxide powder, the appearance was A paste-like light-reflective anisotropic conductive adhesive having a white color was obtained, and an LED module sealed with a transparent resin was obtained using the light-reflective anisotropic conductive adhesive.
  • titanium dioxide powder KR-380, Titanium Industry Co., Ltd.
  • Example 8 As the light-reflective insulating particles, instead of silicon dioxide powder, titanium dioxide powder (KR-380, Titanium Industry Co., Ltd.) having an average particle diameter of 210 nm was used in an amount of 15% by volume and replaced with an elastomer head having a Shore A rubber hardness of 60. A paste-like light-reflective anisotropic conductive adhesive having a white appearance color was obtained in the same manner as in Example 1 except that an elastomer head having a Shore A rubber hardness of 40 was used. An LED module sealed with a transparent resin using an adhesive was obtained.
  • silicon dioxide powder KR-380, Titanium Industry Co., Ltd.
  • Example 9 As the light-reflective insulating particles, instead of silicon dioxide powder, titanium dioxide powder having an average particle diameter of 210 nm (KR-380, Titanium Industry Co., Ltd.) is used in an amount of 15% by volume, and replaced with an elastomer head having a Shore A rubber hardness of 60. A paste-like light-reflective anisotropic conductive adhesive having a white appearance color was obtained in the same manner as in Example 1 except that an elastomer head having a Shore A rubber hardness of 80 was used. Further, this light-reflective anisotropy was obtained. An LED module sealed with a transparent resin using a conductive adhesive was obtained.
  • KR-380 Titanium Industry Co., Ltd.
  • Example 10 As light-reflective insulating particles, instead of silicon dioxide powder, 15% by volume of light-reflective insulating particles having an average particle diameter of 1.2 ⁇ m prepared as described below was used in the same manner as in Example 1. Thus, a paste-like light-reflective anisotropic conductive adhesive having a white appearance color was obtained, and further, an LED module sealed with a transparent resin was obtained using this light-reflective anisotropic conductive adhesive.
  • Insulation-coated silver particles were obtained as light-reflective insulating particles.
  • the average particle diameter of the light-reflective insulating particles including the insulating coating was 1.2 ⁇ m.
  • the appearance color of the light-reflective insulating particles was gray.
  • Example 11 A paste-like light whose appearance color is white in the same manner as in Example 1, except that light-reflective conductive particles having an average particle diameter of 5 ⁇ m prepared as described below are used in place of the Au-coated resin conductive particles. A reflective anisotropic conductive adhesive was obtained, and further, an LED module sealed with a transparent resin using this light reflective anisotropic conductive adhesive was obtained.
  • (Creation of light-reflective conductive particles) 4 parts by mass of titanium oxide powder (KR-380, Titanium Industry Co., Ltd.) having an average particle size of 0.5 ⁇ m and Au coated resin conductive particles having an average particle size of 5 ⁇ m with a brown appearance color (spherical shape having an average particle size of 4.6 ⁇ m) 20 parts by mass of particles (electroless gold-plated 0.2 ⁇ m thick on acrylic resin particles) are put into a mechanofusion apparatus (AMS-GMP, Hosokawa Micron Corporation), and the surface of the conductive particles is made of titanium oxide particles.
  • a light reflective conductive particle was obtained by forming a light reflective layer having a thickness of about 0.5 ⁇ m.
  • the appearance color of the light reflective conductive particles was gray.
  • Comparative Example 1 (Preparation of anisotropic conductive adhesive) 10 parts by mass of a bisphenol A type epoxy resin (Epicoat 828, JER Co., Ltd.) as a main agent, 1 part by mass of an aliphatic polyamine-based curing agent (Adeka Hardener EH4357S, ADEKA Co., Ltd.), and an average particle size of 5 ⁇ m as conductive particles It consists of 10 parts by mass of Au-coated resin conductive particles (particles obtained by electroless gold plating of 0.2 ⁇ m thickness on spherical acrylic resin particles having an average particle size of 4.6 ⁇ m (Bright 20GNB4.6EH, Nippon Chemical Industry Co., Ltd.), A paste-like anisotropic conductive adhesive having a brown appearance color was obtained.
  • a bisphenol A type epoxy resin Epicoat 828, JER Co., Ltd.
  • an aliphatic polyamine-based curing agent Alka Hardener EH4357S, ADEKA Co
  • Comparative Example 2 A transparent resin-sealed LED module was obtained in the same manner as in Example 1 except that the anisotropic conductive adhesive obtained in Comparative Example 1 was used instead of the light-reflective anisotropic conductive adhesive. .
  • Comparative Example 4 A paste-like anisotropic conductive adhesive having a brown appearance color was obtained in the same manner as in Example 1 except that the light-reflective insulating particles were not blended, and further using this light-reflective anisotropic conductive adhesive. A transparent resin-sealed LED module was obtained.
  • Comparative Example 5 A transparent resin-sealed LED module was obtained in the same manner as in Example 1 except that a stainless steel metal head was used instead of the Shore A rubber hardness 60 elastomer head.
  • Comparative Example 6 As the light-reflective insulating particles, 15% by volume of titanium dioxide powder (KR-380, Titanium Industry Co., Ltd.) having an average particle diameter of 210 nm is used instead of silicon dioxide powder, and the elastomer head having a Shore A rubber hardness of 60 is used. A paste-like anisotropic conductive adhesive having a white appearance color was obtained in the same manner as in Example 1 except that an elastomer head having a Shore A rubber hardness of 90 was used. Further, this light-reflective anisotropic conductive adhesive was obtained. An LED module sealed with a transparent resin using an agent was obtained.
  • the die shear strength per one 300 ⁇ m square LED element of the LED module was measured using a die shear strength tester (PTR-1100, Inc.). And a shear rate of 20 ⁇ m / sec. The measurement was performed on two samples of an LED module in an initial state before lighting and an LED module after lighting continuously for 300 hours in a high temperature and high humidity environment of 85 ° C. and 85% RH. The obtained results are shown in Table 1.
  • the die shear strength is practically 300 gf / chip or more, preferably 400 gf / chip or more, as measured by the above measurement method.
  • the light emitting devices manufactured in Examples 1 to 11 use an anisotropic conductive adhesive having a spectral reflectance of more than 60%, and different in the elastomer head having a Shore A hardness of 40 or more and less than 90. Since the anisotropic conductive connection is made, the LED element is not chipped (Examples 1 to 7 and 9 to 11) or hardly (Example 8). In addition, it showed a stable and good die shear strength. Since this stable and good die shear strength is shown, it can be seen that good connection reliability is realized in the light emitting devices manufactured in Examples 1 to 11.
  • Example 10 In the case of Example 10 in which insulating coated Ag particles are used as the light-reflective insulating particles, the particle diameter is 1.2 ⁇ m larger than in the other examples. Although the ratio of geometric scattering was increased, the optical characteristics were better than those of Comparative Example 4 under the same conditions except that such light-reflective insulating particles were not used. Further, in the case of Example 11 in which the light-reflective conductive particles having the light-reflecting layer provided on the surface of the Au-coated conductive particles are used, compared to Example 3 under the same conditions except that the Au-coated resin conductive particles are used. Although the optical characteristics were slightly lowered, the optical characteristics were better than those of Comparative Example 4 in which Au-coated resin conductive particles were used but no light-reflective insulating particles were used.
  • Example 8 in which the Shore A hardness of the elastomer head is 40, the rubber head is flexible, and thus the pressure is applied so as to wrap the entire LED element. As a result, a load may be applied to the etched portion of the LED element. In the case of collective pressing, chip chipping may occur extremely rarely, but since chip chipping frequency is extremely low, it can be positioned as an example. It is. Therefore, it can be seen that it is necessary to use an elastomer head having a Shore A hardness of 40 (Example 8) or more and less than 90 (Comparative Example 6 and Example 9) in the anisotropic conductive connection.
  • Example 1 SiO 2 , refractive index 1.46
  • Example 2 ZnO, 1.9 to 2.01
  • Example 3 TiO 2 , In the case of a refractive index of 2.72 or 2.52), it can be seen that as the refractive index increases, both the spectral reflectance and the LED total luminous flux are improved.
  • Example 6 From Example 6 (5 vol%), Example 3 (15 vol%) and Example 7 (25 vol%) in which the content of the reflective insulating particles is different, the resin cured product increases when the content of the light reflective insulating particles increases. It becomes clear that the die shear strength tends to decrease because the material becomes too hard at the same time, and the total luminous flux tends to decrease as the content decreases. In addition, when content falls, there exists a tendency for the handleability as a paste-form adhesive to fall.
  • a light-reflective anisotropic conductive adhesive is used when mounting the light emitting element on the wiring board, the light emitting element is mounted on the wiring board without reducing the light emission efficiency of the light emitting element.
  • An anisotropic conductive connection can be made.
  • an elastomer head having a specific surface hardness is used for heating and pressurizing during anisotropic conductive connection, light-reflective anisotropic conductivity is prevented while preventing cracks and chips from occurring in the light-emitting element.
  • An anisotropic conductive connection with excellent connection reliability can be performed using an adhesive.
  • the manufacturing method of the light emitting device of the present invention and the light emitting device manufactured thereby are electronic devices such as a display device, a lighting device, a backlight, and an inspection light source using a light emitting element such as an LED element, and the manufacturing thereof. It is useful in the field of

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Wire Bonding (AREA)

Abstract

 発光ダイオード(LED)素子等の発光素子を配線板に異方性導電接着剤を用いてフリップチップ実装して発光装置を製造する際に、製造コストの増大を招くような光反射層をLED素子に設けなくても発光効率を改善でき、しかも発光素子に亀裂や欠けが生じないようにする。そのために、発光素子と、該発光素子が接続されるべき配線板との間に、熱硬化性樹脂組成物、導電粒子及び光反射性絶縁粒子を含有する光反射性異方性導電接着剤を配置した後、配線板に対して発光素子を、押圧面のショアAゴム硬度(JIS K6253)が40以上90未満であるエラストマーヘッドで加熱加圧して異方性導電接続を行う。

Description

発光装置の製造方法
 本発明は、LED素子等の発光素子が配線板に異方性導電接続されてなる発光装置の製造方法に関する。
 LED素子を配線板に実装する場合、金ワイヤーボンディング法により接続することが行われていたが、金ワイヤーによる接続強度は十分とは言えず、また、封止樹脂との間の熱膨張係数の差が大きいことから接続信頼性が低いという問題があった。さらに、金ワイヤーの光吸収により光取り出し効率(発光効率)の低下という問題や、LED素子の配線板への固定に使用するダイボンドの硬化速度が遅いことから実装タクトタイムの増大という問題があった。
 そこで、接続信頼性及びタクトタイムの改善を目的に、加熱加圧用の金属ヘッドを備えたボンダーを用いて、異方性導電接着剤を介してLED素子を配線板にフリップチップ実装することが一般的に行われているが、その際、異方性導電接着剤中の導電粒子やバインダー樹脂が、発光素子が発した光を吸収してしまうため、発光効率向上のためにLED素子の内部から下方(配線板側)に出射した光を上方に取り出すべく、配線板に面した側のLED素子表面の一対の電極間に光反射層を設けることが提案されている(特許文献1)。
特開平11-168235号公報
 しかしながら、そのような光反射層は、LED素子の表面の一対の電極と絶縁するように金属蒸着法などにより設けなければならず、製造上、コストアップが避けられないという問題があった。また、加熱加圧ヘッドでフリップチップ実装を行った場合、配線板や発光素子の接合面の凹凸により、発光素子に対する加熱加圧ヘッドの押圧の面内均一性が低下し、発光素子に亀裂や欠けが生ずるという問題があった。
 本発明の目的は、以上の従来の技術の問題点を解決することであり、発光ダイオード(LED)素子等の発光素子を配線板に異方性導電接着剤を用いてフリップチップ実装して発光装置を製造する際に、製造コストの増大を招くような光反射層をLED素子に設けなくても、発光効率を改善でき、しかも発光素子に亀裂や欠けが生じないように製造することである。
 本発明者らは、異方性導電接着剤そのものに光反射機能を持たせれば、発光効率を低下させないようにできるとの仮定の下、鋭意研究の結果、異方性導電接着剤に、光反射性絶縁粒子を配合することにより、発光素子の発光効率を低下させないようにできることを見出した。また、本発明者らは、ボンダーの加熱加圧ヘッドの材質を金属からエラストマーに変更することにより、一般的には接続信頼性を損なうことなく発光素子に亀裂や欠けを発生させないように押圧することができるが、異方性導電接着剤に上述したような光反射性絶縁粒子を配合すると、発光素子に亀裂や欠けが発生する場合があることを知見し、更にそのような亀裂や欠けの発生を防止するには、使用すべきエラストマーとして特定のゴム硬度のものを使用すればよいことを見出し、本発明を完成させるに至った。
 即ち、本発明は、発光素子を配線板に異方性導電接続してなる発光装置の製造方法において、以下の工程(A)及び(B):
工程(A)
 発光素子と、該発光素子が接続されるべき配線板との間に、熱硬化性樹脂組成物、導電粒子及び光反射性絶縁粒子を含有する光反射性異方性導電接着剤を配置する工程; 及び
工程(B)
 配線板に対して発光素子を、押圧面のショアAゴム硬度(JIS K6253)が40以上90未満であるエラストマーヘッドで加熱加圧することにより異方性導電接続を行う工程
を有する製造方法を提供する。なお、この製造方法は、更に、以下の工程(C)
工程(C)
 配線板上に異方性導電接続された発光素子を、透明樹脂を用いて封止する工程
を有していてもよい。
 また、本発明は、前記製造方法により製造された発光装置を提供する。
 本発明の発光装置の製造方法において用いる光反射性異方性導電接着剤は、光反射性絶縁粒子を含有するため、発光素子が発する光を反射することができる。したがって、本発明の発光装置の製造方法は、発光素子の発光効率を低下させることなく、発光素子を配線板に異方性導電接続することができる。
 また、本発明の発光装置の製造方法において用いる加熱加圧ヘッドは、最適な硬度に設定されたエラストマーヘッドであるため、配線板に対して発光素子を最適な押圧で均一に加圧加熱することができる。したがって、本発明の発光装置の製造方法は、光反射性絶縁粒子を含有する光反射性異方性導電接着剤を用いて異方性導電接続する際に、発光素子に亀裂や欠けが発生することを防止することができる。
本発明の製造方法の工程説明図である。 本発明の製造方法の工程説明図である。 本発明の製造方法の工程説明図である。 本発明で製造された発光装置の概略断面図である。 本発明で製造された発光装置の概略断面図である。 本発明に用いる光反射性導電粒子の断面図である。 本発明に用いる多層化光反射性導電粒子の断面図である。
 本発明は、発光素子を配線板に異方性導電接続してなる発光装置の製造方法であり、発光素子と、該発光素子が接続されるべき配線板との間に、熱硬化性樹脂組成物、導電粒子及び光反射性絶縁粒子を含有する光反射性異方性導電接着剤を配置する工程(A)と、配線板に対して発光素子を、押圧面のショアAゴム硬度(JIS K6253)が40以上90未満であるエラストマーヘッドで加熱加圧することにより異方性導電接続を行う工程(B)とを有する。更に、配線板上に異方性導電接続された発光素子を、透明樹脂を用いて封止する工程(C)を有してもよいものである。
 以下、図面を参照しつつ工程順に本発明を具体的に説明する。なお、各図中、同一符号は同一又は同等の構成要素を表している。
<工程(A)>
 まず、図1Aに示すように、発光素子1と、発光素子1が接続されるべき配線板2との間に、通常、互いに接続されるべき発光素子1の電極1aと配線板の電極2aとを互いに対向させた間に、光反射性異方性導電接着剤3をその形態(液状、ペースト状、フィルム状等)などに応じて公知の手法、例えば、スクリーン印刷法、パッド転写法、ディスペンス塗布法等により配置する。具体的には、配線板2の少なくとも電極2a上に光反射性異方性導電接着剤3を仮貼着し、その光反射性異方性導電接着剤3を挟み込むように発光素子1の電極1aを配線板2の電極2aに対向させる。
 なお、これらの電極1aと電極2aとのいずれか又は双方に、接続信頼性向上のために公知の手法によりバンプを形成していてもよい。
 本発明で使用する発光素子1としては、従来の発光装置において使用されているものと同様の発光素子を使用することができ、例えば、発光ダイオード素子(LED素子)、レーザーダイオード素子(LD素子)等が挙げられる。
 本発明で使用する配線板2としても、従来の発光装置において使用されているものと同様の配線板を使用することができ、例えば、シリコン半導体基板、ガラス配線板、セラミック配線板等を使用することができる。また、配線板2の配線の素材、L/Sピッチ等についても従来公知の構成を採用することができる。
 工程(A)で使用する光反射性異方性導電接着剤3は、発光素子1と配線板2との間の異方性導電接続に寄与するだけでなく発光素子1の発した光を反射して発光効率の向上にも寄与するものであり、熱硬化性樹脂組成物3aと、その中に分散されている導電粒子3bと光反射性絶縁粒子3cとを含有する。
 光反射性絶縁粒子3cは、異方性導電接着剤に入射した光を外部に反射し、異方性導電接着剤に光反射性を付与するものである。
 一般的に、光反射性を有する粒子には、金属粒子、金属粒子を樹脂被覆した粒子、自然光の下で灰色から白色である金属酸化物、金属窒素化物、金属硫化物等の無機粒子、樹脂コア粒子を無機粒子で被覆した粒子、粒子の材質によらず、その表面に凹凸がある粒子が含まれる。しかし、これらの粒子の中で、本発明で使用できる光反射性絶縁粒子には、絶縁性を示すことが求められている関係上、金属粒子は含まれない。また、金属酸化物粒子のうち、ITOのように導電性を有するものは使用できない。また、一般に、屈折率が1.4以上のものを使用することが好ましい。
 このような光反射性絶縁粒子3cの好ましい具体例としては、酸化ケイ素(SiO)、酸化チタン(TiO)、窒化ホウ素(BN)、酸化亜鉛(ZnO)、酸化アルミニウム(Al)、チタン酸バリウム、チタン酸ストロンチウム、硫化亜鉛、鉛白、硫酸バリウム、酸化マグネシウム、硫化亜鉛、炭酸カルシウム、水酸化アルミニウム、雲母、粘度鉱物等が挙げられる。これらの光反射性絶縁粒子3cは、2種類以上併用することができる。ここで、光反射性異方性導電接着剤3により高い反射率を付与するためには、これらの光反射性絶縁粒子3cの中でも、その屈折率が使用する熱硬化性樹脂組成物3aの屈折率よりも高いものを好ましく使用でき、具体的には、酸化チタン(TiO)、窒化ホウ素(BN)、酸化亜鉛(ZnO)及び酸化アルミニウム(Al)等を好ましく使用でき、特に、酸化チタン(TiO)を好ましく使用できる。
 光反射性絶縁粒子3cの形状としては、球状、鱗片状、不定形状、針状等でもよいが、反射効率を考慮すると、球状、鱗片状が好ましい。また、その平均粒径としては、粒径が入射波長の1/2のときに散乱効率が最も高くなるMie領域となり、粒子への入射光がロス無く反射されること及び可視光波長が380~780nmであることを考慮すると、好ましくは150nm~500nm、より好ましくは190~390nmである。この場合、発光素子の発光波長に応じて粒径を決定することが好ましい。例えば、青色LED素子を使用する場合には、発光波長が400~550nmに分布するので、好ましい平均粒径は200~275nmとなる。なお、鱗片状粒子の場合の粒径は、長径を基準とすることが好ましい。ここで、「平均」粒径は、レーザー回折式粒度分布測定装置(例えば、SALD-2000J、島津製作所製)で測定した平均粒径を意味する。
 本発明において、以上説明した無機粒子を、光反射性絶縁粒子として使用してもよいが、鱗片状又は球状金属粒子の表面を透明な絶縁性樹脂で被覆した樹脂被覆金属粒子を光反射性絶縁粒子として使用してもよい。ここで、金属粒子としては、ニッケル、銀、アルミニウム等を挙げることができる。粒子の形状としては、無定形、球状、鱗片状、針状等を挙げることができるが、中でも、光拡散効果の点から球状、全反射効果の点から鱗片状の形状が好ましい。特に、好ましいものは、光の反射率の点から鱗片状銀粒子である。これらの金属粒子は、絶縁性樹脂で被覆される前に、予めシランカップリング剤でγ-グリシドキシ基やビニル基等が金属表面に導入されていることが好ましい。
 光反射性絶縁粒子としての樹脂被覆金属粒子の大きさは、形状によっても異なるが、一般に大きすぎると、異方性導電粒子による接続を阻害するおそれがあり、小さすぎると光を反射しにくくなるので、球状の場合には、平均粒径が、好ましくは0.1~30μm、より好ましくは0.2~10μmである。また、鱗片状の場合には、上記と同様の観点から、平均長径が好ましくは0.1~100μm、より好ましくは1~50μmであり、平均厚みが好ましくは0.01~10μm、より好ましくは0.1~5μmである。ここで、光反応性粒子の大きさは、絶縁被覆されている場合には、その絶縁被覆も含めての大きさである。
 このような樹脂被覆金属粒子における被覆用の樹脂としては、種々の絶縁性樹脂を使用することができる。機械的強度や透明性等の点からアクリル系樹脂の硬化物を好ましく利用することができる。好ましくは、ベンゾイルパーオキサイド等の有機過酸化物などのラジカル開始剤の存在下で、メタクリル酸メチルとメタクリル酸2-ヒドロキシエチルとをラジカル共重合させた樹脂を挙げることができる。この場合、2,4-トリレンジイソシアネート等のイソシアネート系架橋剤で架橋されていることがより好ましい。
 このような樹脂被覆金属粒子は、例えば、トルエンなどの溶媒中に金属粒子とシランカップリング剤とを投入し、室温で約1時間攪拌した後、ラジカルモノマーとラジカル重合開始剤と、必要に応じて架橋剤とを投入し、ラジカル重合開始温度に加温しながら撹拌することにより製造することができる。
 以上に説明した光反射性絶縁粒子3cの光反射性異方性導電接着剤中の配合量は、少なすぎると十分な光反射を実現することができず、また多すぎると、併用している導電粒子に基づく接続が阻害されるので、熱硬化性樹脂組成物中に、好ましくは1~50体積%、より好ましくは2~25体積%、さらに好ましくは3~20体積%である。
 本発明に用いる光反射性異方性導電接着剤3を構成する導電粒子3bとしては、異方性導電接続用の従来の導電粒子において用いられている金属の粒子を利用することができる。例えば、金、ニッケル、銅、銀、半田、パラジウム、アルミニウム、それらの合金、それらの多層化物(例えば、ニッケルメッキ/金フラッシュメッキ物)等を挙げることができる。中でも、金、ニッケル、銅は、導電粒子を茶色としてしまうことから、本発明の効果を他の金属材料よりも享受することができる。
 また、導電粒子として、樹脂粒子を金属材料で被覆した金属被覆樹脂粒子を使用することができる。このような樹脂粒子としては、スチレン系樹脂粒子、ベンゾグアナミン樹脂粒子、ナイロン樹脂粒子などが挙げられる。樹脂粒子を金属材料で被覆する方法としても従来公知の方法を採用することができ、無電解メッキ法、電解メッキ法等を利用することができる。また、被覆する金属材料の層厚は、良好な接続信頼性を確保するに足る厚さであり、樹脂粒子の粒径や金属の種類にもよるが、通常、0.1~3μmである。
 また、樹脂粒子の粒径は、小さすぎると導通不良が生じ、大きすぎるとパターン間ショートが生じる傾向があるので、好ましくは1~20μm、より好ましくは3~10μm、特に好ましくは3~5μmである。この場合、コア粒子1の形状としては球形が好ましいが、フレーク状、ラクビーボール状であってもよい。
 好ましい金属被覆樹脂粒子は球状形状であり、その粒径は大きすぎると接続信頼性の低下となるので、好ましくは1~20μm、より好ましくは3~10μmである。
 本発明においては、上述したような導電粒子に対し光反射性を付与してなる光反射性導電粒子を、導電粒子として使用することが好ましい。図2A及び図2Bは、このような光反射性導電粒子200及び多層化光反射性導電粒子300の断面図である。まず、図2Aの光反射性導電粒子から説明する。
 光反射性導電粒子200は、金属材料で被覆されているコア粒子21と、その表面に酸化チタン(TiO)粒子、酸化亜鉛(ZnO)粒子又は酸化アルミニウム(Al)粒子から選択された少なくとも一種の無機粒子22から形成された光反射層23とから構成される。酸化チタン粒子、酸化亜鉛粒子又は酸化アルミニウム粒子は、太陽光の下では白色を呈する無機粒子である。従って、それらから形成された光反射層23は白色~灰色を呈する。白色~灰色を呈しているということは、可視光に対する反射特性の波長依存性が小さく、且つ可視光を反射しやすいことを意味する。
 なお、酸化チタン粒子、酸化亜鉛粒子又は酸化アルミニウム粒子のうち、硬化した異方性導電接着剤の熱硬化性樹脂組成物の硬化物の光劣化が懸念される場合には、光劣化に対して触媒性がなく、屈折率も高い酸化亜鉛を好ましく使用することができる。
 コア粒子21は、異方性導電接続に共されるものであるので、その表面が金属材料で構成されている。ここで、表面が金属材料で被覆されている態様としては、前述したように、コア粒子21そのものが金属材料である態様、もしくは樹脂粒子の表面が金属材料で被覆された態様が挙げられる。
 無機粒子22から形成された光反射層23の層厚は、コア粒子21の粒径との相対的大きさの観点からみると、コア粒子21の粒径に対し、小さすぎると反射率の低下が著しくなり、大きすぎると導通不良が生ずるので、好ましくは0.5~50%、より好ましくは1~25%である。
 また、光反射性導電粒子200において、光反射層23を構成する無機粒子22の粒径は、小さすぎると光反射現象が生じ難くなり、大きすぎると光反射層の形成が困難となる傾向があるので、好ましくは0.02~4μm、より好ましくは0.1~1μm、特に好ましくは0.2~0.5μmである。この場合、光反射させる光の波長の観点からみると、無機粒子22の粒径は、反射させるべき光(即ち、発光素子が発する光)が透過してしまわないように、その光の波長の50%以上であることが好ましい。この場合、無機粒子22の形状としては無定形、球状、鱗片状、針状等を挙げることができるが、中でも、光拡散効果の点から球状、全反射効果の点から鱗片状の形状が好ましい。
 図2Aの光反射性導電粒子200は、大小の粉末同士を物理的に衝突させることにより大粒径粒子の表面に小粒径粒子からなる膜を形成させる公知の成膜技術(いわゆるメカノフュージョン法)により製造することができる。この場合、無機粒子22は、コア粒子21の表面の金属材料に食い込むように固定され、他方、無機粒子同士が融着固定されにくいから、無機粒子のモノレイヤーが光反射層23を構成する。従って、図2Aの場合、光反射層23の層厚は、無機粒子22の粒径と同等乃至はわずかに薄くなると考えられる。
 次に、図2Bの多層化光反射性導電粒子300について説明する。この多層化光反射性導電粒子300においては、光反射層23が接着剤として機能する熱可塑性樹脂24を含有し、この熱可塑性樹脂24により無機粒子22同士も固定され、無機粒子22が多層化(例えば2層あるいは3層に多層化)している点で、図2Aの光反射性導電粒子200と相違する。このような熱可塑性樹脂24を含有することにより、光反射層23の機械的強度が向上し、無機粒子の剥落などが生じにくくなる。
 熱可塑性樹脂24としては、環境低負荷を意図してハロゲンフリーの熱可塑性樹脂を好ましく使用することができ、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンやポリスチレン、アクリル樹脂等を好ましく使用することができる。
 このような多層化光反射性導電粒子300も、メカノフュージョン法により製造することができる。メカノフュージョン法に適用する熱可塑性樹脂24の粒子径は、小さすぎると接着機能が低下し、大きすぎるとコア粒子に付着しにくくなるので、好ましくは0.02~4μm、より好ましくは0.1~1μmである。また、このような熱可塑性樹脂24の配合量は、少なすぎると接着機能が低下し、多すぎると粒子の凝集体が形成されるので、無機粒子22の100質量部に対し、好ましくは0.2~500質量部、より好ましくは4~25質量部である。
 また、本発明に用いる光反射性異方性導電接着剤3を構成する熱硬化性樹脂組成物3aとしては、なるべく無色透明なものを使用することが好ましい。異方性導電接着剤中の光反射性絶縁粒子等の光反射効率を低下させず、しかも入射光の光色を代えずに反射させるためである。ここで、無色透明とは、異方性導電接着剤の硬化物が、波長380~780nmの可視光に対して光路長1cmの光透過率(JIS K7105に準拠して測定)が80%以上、好ましくは90%以上となることを意味する。
 本発明に用いる光反射性異方性導電接着剤3において、熱硬化性樹脂組成物3aの100質量部に対する導電粒子3bの配合量は、少なすぎると導通不良が生じ、多すぎるとパターン間ショートが生ずる傾向があるので、好ましくは1~100質量部、より好ましくは10~50質量部、さらに好ましくは10~30質量部である。
 本発明に用いる光反射性異方性導電接着剤3を構成する熱硬化性樹脂組成物3aとしては、従来の異方性導電接着剤や異方性導電フィルムにおいて使用されているものを利用することができる。一般に、このような熱硬化性樹脂組成物は、絶縁性バインダー樹脂に硬化剤を配合したものである。絶縁性バインダー樹脂としては、脂環式エポキシ化合物、複素環系エポキシ化合物及び水素添加エポキシ化合物等を主成分としたエポキシ系樹脂が好ましく挙げられる。
 脂環式エポキシ化合物としては、分子内に2つ以上のエポキシ基を有するものが好ましく挙げられる。これらは液状であっても、固体状であってもよい。具体的には、グリシジルヘキサヒドロビスフェノールA、3,4-エポキシシクロヘキセニルメチル-3′,4′-エポキシシクロヘキセンカルボキシレート等を挙げることができる。中でも、硬化物にLED素子の実装等に適した光透過性を確保でき、速硬化性にも優れている点から、グリシジルヘキサヒドロビスフェノールA、3,4-エポキシシクロヘキセニルメチル-3′,4′-エポキシシクロヘキセンカルボキシレートを好ましく使用することができる。
 複素環系エポキシ化合物としては、トリアジン環を有するエポキシ化合物を挙げることができ、特に好ましくは1,3,5-トリス(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオンを挙げることができる。
 水素添加エポキシ化合物としては、先述の脂環式エポキシ化合物や複素環系エポキシ化合物の水素添加物や、その他公知の水素添加エポキシ樹脂を使用することができる。
 脂環式エポキシ化合物、複素環系エポキシ化合物及び水素添加エポキシ化合物等は、単独で使用してもよいが、2種以上を併用することができる。また、これらのエポキシ化合物に加えて本発明の効果を損なわない限り、他のエポキシ化合物を併用してもよい。例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、テトラメチルビスフェノールA、ジアリールビスフェノールA、ハイドロキノン、カテコール、レゾルシン、クレゾール、テトラブロモビスフェノールA、トリヒドロキシビフェニル、ベンゾフェノン、ビスレゾルシノール、ビスフェノールヘキサフルオロアセトン、テトラメチルビスフェノールA、テトラメチルビスフェノールF、トリス(ヒドロキシフェニル)メタン、ビキシレノール、フェノールノボラック、クレゾールノボラックなどの多価フェノールとエピクロルヒドリンとを反応させて得られるグリシジルエーテル; グリセリン、ネオペンチルグリコール、エチレングリコール、プロピレングリコール、チレングリコール、ヘキシレングリコール、ポリエチレングリコール、ポリプロピレングリコールなどの脂肪族多価アルコールとエピクロルヒドリンとを反応させて得られるポリグリシジルエーテル; p-オキシ安息香酸、β-オキシナフトエ酸のようなヒドロキシカルボン酸とエピクロルヒドリンとを反応させて得られるグリシジルエーテルエステル; フタル酸、メチルフタル酸、イソフタル酸、テレフタル酸、テトラハイドロフタル酸、エンドメチレンテトラハイドロフタル酸、エンドメチレンヘキサハイドロフタル酸、トリメリット酸、重合脂肪酸のようなポリカルボン酸から得られるポリグリシジルエステル; アミノフェノール、アミノアルキルフェノールから得られるグリシジルアミノグリシジルエーテル; アミノ安息香酸から得られるグリシジルアミノグリシジルエステル; アニリン、トルイジン、トリブロムアニリン、キシリレンジアミン、ジアミノシクロヘキサン、ビスアミノメチルシクロヘキサン、4,4′-ジアミノジフェニルメタン、4,4′-ジアミノジフェニルスルホンなどから得られるグリシジルアミン; エポキシ化ポリオレフィン等の公知のエポキシ樹脂類が挙げられる。
 硬化剤としては、酸無水物系硬化剤、イミダゾール化合物系硬化剤、ジシアン系硬化剤、ジアン系硬化剤などを挙げることができる。中でも、硬化物を変色させ難い酸無水物系硬化剤、特に脂環式酸無水物系硬化剤を好ましく使用できる。具体的には、メチルヘキサヒドロフタル酸無水物等を好ましく挙げることができる。
 本発明に用いる光反射性異方性導電接着剤3の熱硬化性樹脂組成物3aにおいて、脂環式エポキシ化合物と脂環式酸無水物系硬化剤とを使用する場合、それぞれの使用量は、脂環式酸無水物系硬化剤が少なすぎると未硬化エポキシ化合物が多くなり、多すぎると余剰の硬化剤の影響で被着体材料の腐食が促進される傾向があるので、脂環式エポキシ化合物100質量部に対し、脂環式酸無水物系硬化剤を、好ましくは80~120質量部、より好ましくは95~105質量部の割合で使用する。
 エポキシ系樹脂と酸無水物系硬化剤との当量比(酸無水物当量/エポキシ当量)は、好ましくは0.85~1.2、より好ましくは0.9~1.1である。この範囲であれば、良好な耐熱光特性を実現することができる。
 光反射性異方性導電接着剤3には、耐熱光特性向上のために、DBU-p-トルエンスルホン酸塩、第4級アンモニウム塩、有機ホスフィン類などの硬化促進剤を、エポキシ系樹脂と酸無水物系硬化剤との合計100質量部に対し、好ましくは0.1~5質量部、より好ましくは0.5~3質量部の割合で配合することができる。
 更に、光反射性異方性導電接着剤3には、老化防止剤として、一次酸化防止剤(劣化過程で生成する過酸化ラジカル(ROO・)を補足するラジカル連鎖禁止剤、例えば、フェノール系老化防止剤やアミン系老化防止剤)や、二次酸化防止剤(不安定な過酸化物(ROOH)を補足して積極的に分解し安定な化合物に変える過酸化物分解剤、例えば、イオウ系酸化防止剤、リン系酸化防止剤)を配合することができる。このような老化防止剤は、エポキシ系樹脂と酸無水物系硬化剤との合計100質量部に対し、好ましくは0.1~5質量部、より好ましくは0.5~2質量部の割合で配合することができる。
 光反射性異方性導電接着剤3には、必要に応じて紫外線吸収剤、カップリング剤、難燃剤等の添加剤を配合してもよい。
 本発明に用いる光反射性異方性導電接着剤3は、熱硬化性樹脂組成物3aと導電粒子3bと光反射性絶縁粒子3cとを均一に混合することにより製造することができる。また、フィルム状の形態の光反射性異方性導電フィルムとする場合には、それらをトルエン等の溶媒とともに分散混合し、剥離処理したPETフィルムに所期の厚さとなるように塗布し、約80℃程度の温度で乾燥すればよい。
 以上説明した光反射性異方性導電接着剤の反射特性は、発光素子の発光効率を向上させるために、光反射性異方性導電接着剤の硬化物の波長380~780nmの全域に亘って分光反射率(JIS K7105に準拠して測定)が、好ましくは30%以上であり、より好ましくは50%以上であり、さらに好ましくは80%以上であるが、反射特性を簡便に評価する場合には、波長450nmの光に対する分光反射率(JIS K7105に準拠して測定)が、好ましくは30%以上であり、より好ましくは50%以上であり、さらに好ましくは80%以上である。このような分光反射率とするためには、使用する光反射性絶縁粒子等の反射特性や配合量、熱硬化性樹脂組成物の配合組成などを適宜調整すればよい。通常、反射特性の良好な光反射性絶縁粒子等の配合量を増量すれば、反射率も増大する傾向がある。
 また、光反射性異方性導電接着剤の反射特性は、屈折率という観点から評価することもできる。即ち、その硬化物の屈折率が、導電粒子と光反射性絶縁粒子とを除いた熱硬化性樹脂組成物の硬化物の屈折率よりも大きいと、光反射性絶縁粒子とそれを取り巻く熱硬化性樹脂組成物の硬化物との界面での光反射量が増大するからである。具体的には、光反射性絶縁粒子の屈折率(JIS K7142に準拠して測定)が、熱硬化性樹脂組成物の硬化物の屈折率(JIS K7142に準拠して測定)よりも大きいことが好ましく、両者の差が0.02以上であることがより好ましく、0.2以上であることがさらに好ましい。なお、通常、エポキシ樹脂を主体とする熱硬化性樹脂組成物の屈折率は約1.5である。
<工程(B)>
 工程(A)の後、配線板に対して発光素子を加熱加圧することにより異方性導電接続を行う。具体的には、図1Bに示すように、発光素子1を押圧できる位置に、加熱加圧するためのエラストマーヘッド4をセットし、図1Cに示すように、エラストマーヘッド4の押圧面4aを、必要に応じて保護フィルム(図示せず)を介して、発光素子1を配線板2に押し当て、加熱加圧する。これにより、光反射性異方性導電接着剤3を流動させた後硬化させて発光素子1を配線板2に異方性導電接続することができ、図1Dに示す発光装置100を得ることができる。この発光装置100では、発光素子1が発した光のうち、配線板2側に向かって発した光は、光反射性異方性導電接着剤の硬化物3′中の光反射性絶縁粒子3cで反射し、発光装置100の上面から出射する。従って、発光効率の低下を防止することができる。
 この工程で使用するエラストマーヘッド4は、異方性導電接続の際に変形するので、異方性導電接続部の凹凸をキャンセルし、押圧の面内均一性を実現することができる。従って、エラストマーヘッド4の使用により、本願発明の製造方法で、複数の発光素子を配線板に異方性導電接続して発光装置を製造する場合にも、それらの接続用電極の形状や厚みの差異、寸法誤差をキャンセルし、複数の発光素子を配線板に一括して異方性導電接続することができる。また、発光素子1と配線板2との間からはみ出た光反射性異方性導電接着剤3から形成されるフィレット部3dを加熱押圧して十分に硬化させることもでき、発光素子1の密着性を向上させることもできる。
 特に、本発明においては、エラストマーヘッド4として、その押圧面4aの硬度がショアAゴム硬度(JIS K6253(5~35℃))40以上90未満、好ましくは65以上80以下のものを使用する。これは、ショアAゴム硬度が40未満では、発光素子に対する圧力が不十分で初期抵抗及び接続信頼性が低下する傾向があり、ショアAゴム硬度が90以上では、発光素子に亀裂や欠けが発生する傾向があるからである。よって、ショアAゴム硬度が40以上90未満のエラストマーヘッド4を使用することにより、光反射性絶縁粒子3cや導電粒子3bを光反射性異方性導電接着剤3に配合しても、異方性導電接続時に発光素子1に亀裂や欠けを生じさせないように加熱押圧することができる。
 このようなエラストマーとしては、天然ゴム、合成ゴム、熱硬化性又は熱可塑性エラストマー等のいずれも用いることができるが、耐熱性、耐圧性の観点からは、シリコーンゴム、フッ素系ゴム等を用いることが好ましい。
 このようなエラストマーヘッド4は、図1Bに示すように、通常、加熱用ヒータ(図示せず)が内蔵されたステンレススチール等の金属ヘッドベース5で保持されている。エラストマーヘッド4の押圧面4aの大きさは、押圧したときに、発光素子1と配線板2との間からはみ出た光反射性異方性導電接着剤のフィレット部を押圧できる程度の大きさとすることが好ましい。また、エラストマーヘッド4の厚さは、少なくとも発光素子1の最大厚と同等以上であることが好ましい。
 なお、異方性導電接続の際の加熱の程度は、接続信頼性等を向上させるために、光反射性異方性導電接着剤3の溶融粘度が好適な範囲となるように、光反射性異方性導電接着剤3を加熱することが好ましい。具体的には、光反射性異方性導電接着剤の溶融粘度が1.0×10mPa・s未満の場合、加熱加圧時のバインダー樹脂の流動性が大きく、ボイドが発生して初期抵抗及び接続信頼性が劣る傾向があり、溶融粘度が1.0×10mPa・sより大きい場合、加熱加圧時に接続用電極部分においてバインダー樹脂が排除しきれず、ボイドが発生して初期抵抗及び接続信頼性が劣る傾向があるため、光反射性異方性導電接着剤3を、その溶融粘度が好ましくは1.0×10~1.0×10mPa・s、より好ましくは1.0×10~1.0×10mPa・sとなるように加熱することが好ましい。
 このような溶融粘度にするために、エラストマーヘッド4の表面温度の設定は、光反射性異方性導電接着剤3の組成等により適宜行うことができ、例えば、エラストマーヘッド4の押圧面4aの表面温度を50~350℃となるように加熱する。この場合、発光素子1の周囲のフィレット部に対して十分に加熱してボイドの発生を確実に防止する観点からは、加熱加圧の際に、配線板2側から、配線板2が発光素子1よりも高温となるように加熱することが好ましい。例えば、エラストマーヘッド4の押圧面4aの表面温度を100℃程度となるように加熱する一方、光反射性異方導電性接着剤3の温度が200℃程度になるように配線板2側から加熱することが好ましい。
 また、異方性導電接続の際の圧力は、発光素子1の1個当たり、好ましくは2~50Pa程度の圧力で、10~60秒程度の時間加圧することが好ましい。
<工程(C)>
 図1Dに示す、工程(B)で得られた発光装置100に対し、図1Eに示すように、発光素子1全体を覆うように、透明封止樹脂6を用いて封止してもよい。これにより、耐久性が向上した発光装置110となる。この透明封止樹脂6としては、発光素子1の樹脂封止に用いられる一般的な樹脂であれば特に制限されないが、例えば、硬化物の粘着性が低く、経時劣化が少なく、硬化時間が短い等の観点から、シリコーン系又はアクリル系の透明封止樹脂を好ましく使用することができる。
 また、樹脂封止の工法も、発光素子の樹脂封止に用いられる一般的な工法であれば特に制限されないが、例えば、キャスティング法、ポッティング法、モールディング法、プリンティング法などの工法が挙げられ、ポッティング法が好ましい。
 以下、実施例及び比較例を挙げて、本発明をより具体的に説明する。
  実施例1
(光反射性異方性導電接着剤の調製)
 主剤として脂環式エポキシ樹脂(2021P、ダイセル化学工業(株))50質量部と、硬化剤としてメチルヘキサヒドロフタル酸無水物50質量部と、導電粒子として平均粒径5μmのAu被覆樹脂導電粒子(平均粒径4.6μmの球状アクリル樹脂粒子に0.2μm厚の無電解金メッキを施した粒子(ブライト20GNB4.6EH、日本化学工業(株)))15質量部と、有機ホスフィン系硬化促進剤(TPP-BF、北興化学工業(株))3質量部と、リン系着色防止剤(HCA、三光(株))0.5質量部とからなる熱硬化型エポキシ系異方性導電接着剤に、光反射性絶縁粒子として平均粒径210nmの二酸化ケイ素粉末(シーホスター KE-E30、日本触媒(株))を15体積%となるように配合し、均一に混合することにより、外観色が白色のペースト状の光反射性異方性導電接着剤を得た。
(発光素子と配線板との異方性導電接続)
 100μmピッチの銅配線にNi/Au(5.0μm厚/0.3μm厚)メッキ処理した所定の形状の配線を有するガラスエポキシ配線板の接続用電極上に、バンプボンダー(FB700、カイジョー(株))を用いて15μm高の金バンプを形成した。この金バンプ付きガラスエポキシ配線板に、上記で得た光反射性異方性導電接着剤を適用し、その上に、0.3mm角で0.1mm厚の青色LED素子(ピーク波長455nm、定格電流20mA、定格電圧3.2V)20個を配置し、ショアAゴム硬度(JIS K6253)65の押圧面を有するエラストマーヘッド(縦50mm×横50mm、厚さ10mm)を用い、250℃(エラストマーヘッド押圧面温度)、30秒、1N/チップという条件でフィリップチップ実装し、発光装置としてLEDモジュールを得た。
(透明樹脂封止)
 上記で得られた発光装置に対し、付加硬化型メチルシリコーン樹脂(KER2500、信越化学工業(株))を用いてキャスト法により樹脂封止を行い、透明樹脂封止された発光装置(LEDモジュール)を得た。
  実施例2
 光反射性絶縁粒子として、二酸化ケイ素粉末に代えて、平均粒径225nmの酸化亜鉛粉末(JIS規格酸化亜鉛1種、ハクスイテック(株))を15体積%で用いること以外、実施例1と同様にして、外観色が白色のペースト状の光反射性異方性導電接着剤を得、更にこの光反射性異方性導電接着剤を用いて透明樹脂封止されたLEDモジュールを得た。
  実施例3
 光反射性絶縁粒子として、二酸化ケイ素粉末に代えて、平均粒径210nmの二酸化チタン粉末(KR-380、チタン工業(株))を15体積%で用いること以外、実施例1と同様にして、外観色が白色のペースト状の光反射性異方性導電接着剤を得、更にこの光反射性異方性導電接着剤を用いて透明樹脂封止されたLEDモジュールを得た。
  実施例4
 光反射性絶縁粒子として、二酸化ケイ素粉末に代えて、平均粒径190nmの二酸化チタン粉末(KR-380、チタン工業(株))を15体積%用いること以外、実施例1と同様にして、外観色が白色のペースト状の光反射性異方性導電接着剤を得、更にこの光反射性異方性導電接着剤を用いて透明樹脂封止されたLEDモジュールを得た。
  実施例5
 光反射性絶縁粒子として、二酸化ケイ素粉末に代えて、平均粒径300nmの二酸化チタン粉末(KR-380、チタン工業(株))を15体積%用いること以外、実施例1と同様にして、外観色が白色のペースト状の光反射性異方性導電接着剤を得、更にこの光反射性異方性導電接着剤を用いて透明樹脂封止されたLEDモジュールを得た。
  実施例6
 光反射性絶縁粒子として、二酸化ケイ素粉末に代えて、平均粒径210nmの二酸化チタン粉末(KR-380、チタン工業(株))を5体積%用いること以外、実施例1と同様にして、外観色が白色のペースト状の光反射性異方性導電接着剤を得、更にこの光反射性異方性導電接着剤を用いて透明樹脂封止されたLEDモジュールを得た。
  実施例7
 光反射性絶縁粒子として、二酸化ケイ素粉末に代えて、平均粒径210nmの二酸化チタン粉末(KR-380、チタン工業(株))を25体積%用いること以外、実施例1と同様にして、外観色が白色のペースト状の光反射性異方性導電接着剤を得、更にこの光反射性異方性導電接着剤を用いて透明樹脂封止されたLEDモジュールを得た。
  実施例8
 光反射性絶縁粒子として、二酸化ケイ素粉末に代えて、平均粒径210nmの二酸化チタン粉末(KR-380、チタン工業(株))を15体積%用い且つショアAゴム硬度60のエラストマーヘッドに代えてショアAゴム硬度40のエラストマーヘッドを用いること以外、実施例1と同様にして、外観色が白色のペースト状の光反射性異方性導電接着剤を得、更にこの光反射性異方性導電接着剤を用いて透明樹脂封止されたLEDモジュールを得た。
  実施例9
 光反射性絶縁粒子として、二酸化ケイ素粉末に代えて、平均粒径210nmの二酸化チタン粉末(KR-380、チタン工業(株))を15体積%用い、且つショアAゴム硬度60のエラストマーヘッドに代えてショアAゴム硬度80のエラストマーヘッドを用いること以外、実施例1と同様にして、外観色が白色のペースト状の光反射性異方性導電接着剤を得、更にこの光反射性異方性導電接着剤を用いて透明樹脂封止されたLEDモジュールを得た。
  実施例10
 光反射性絶縁粒子として、二酸化ケイ素粉末に代えて、以下に説明するように調製した平均粒径1.2μmの光反射性絶縁粒子を15体積%使用すること以外、実施例1と同様にして、外観色が白色のペースト状の光反射性異方性導電接着剤を得、更にこの光反射性異方性導電接着剤を用いて透明樹脂封止されたLEDモジュールを得た。
(光反射性絶縁粒子の調製)
 攪拌機つきフラスコに粒状銀粒子(平均粒径1μm)5gとトルエン50mlとを投入し、攪拌しながらフラスコにシランカップリング剤(3-メタクリロキシプロピルトリエトキシシラン)0.25gを投入し、25℃で60分間攪拌した。次に、この混合物に、メタクリル酸メチル2gとメタクリル酸-2-ヒドロキシエチル2gとベンゾイルパーオキサイド0.04gと2,4-トリレンジイソシアネート1gとを投入し、80℃で12時間攪拌することにより、光反射性絶縁粒子として絶縁被覆銀粒子を得た。絶縁被覆を含めた光反射性絶縁粒子の平均粒径は1.2μmであった。この光反射性絶縁粒子の外観色は灰色であった。
  実施例11
 Au被覆樹脂導電粒子に代えて、以下に説明するように調製した平均粒径5μmの光反射性導電粒子を使用すること以外、実施例1と同様にして、外観色が白色のペースト状の光反射性異方性導電接着剤を得、更にこの光反射性異方性導電接着剤を用いて透明樹脂封止されたLEDモジュールを得た。
(光反射性導電粒子の作成)
 平均粒子径0.5μmの酸化チタン粉末(KR-380、チタン工業(株))4質量部と、外観色が茶色の平均粒径5μmのAu被覆樹脂導電粒子(平均粒径4.6μmの球状アクリル樹脂粒子に0.2μm厚の無電解金メッキを施した粒子)20質量部とを、メカノフュージョン装置(AMS-GMP、ホソカワミクロン(株))に投入し、導電粒子の表面に酸化チタン粒子からなる約0.5μm厚の光反射層を成膜することにより、光反射性導電粒子を得た。この光反射性導電粒子の外観色は灰色であった。
  比較例1
(異方性導電接着剤の調製)
 主剤としてビスフェノールA型エポキシ樹脂(エピコート828、JER(株))10質量部と、脂肪族ポリアミン系硬化剤(アデカハードナー EH4357S、(株)ADEKA)1質量部と、導電粒子として平均粒径5μmのAu被覆樹脂導電粒子(平均粒径4.6μmの球状アクリル樹脂粒子に0.2μm厚の無電解金メッキを施した粒子(ブライト20GNB4.6EH、日本化学工業(株))10質量部とからなる、外観色が茶色のペースト状の異方性導電接着剤を得た。
(LED素子と配線板との異方性導電接続)
 光反射性異方性導電接着剤に代えて上記で得た異方性導電接着剤を用い且つショアAゴム硬度が65のエラストマーヘッドに代えてステンレススチール製の金属ヘッドを用いること以外、実施例1と同様にして透明樹脂封止されたLEDモジュールを得た。
  比較例2
 光反射性異方性導電接着剤に代えて、上記の比較例1で得た異方性導電接着剤を用いること以外、実施例1と同様にして透明樹脂封止されたLEDモジュールを得た。
  比較例3
(異方性導電接着剤の調製)
 付加硬化型メチルシリコーン樹脂(KER2500、信越化学工業(株))100質量部に、導電粒子として平均粒径5μmのAu被覆樹脂導電粒子(平均粒径4.6μmの球状アクリル樹脂粒子に0.2μm厚の無電解金メッキを施した粒子(ブライト20GNB4.6EH、日本化学工業(株))10質量部を均一に混合することにより、外観色が茶色のペースト状の異方性導電接着剤を得、更にこの光反射性異方性導電接着剤を用いて、実施例1と同様にして透明樹脂封止されたLEDモジュールを得た。
  比較例4
 光反射性絶縁粒子を配合しないこと以外、実施例1と同様にして、外観色が茶色のペースト状の異方性導電接着剤を得、更にこの光反射性異方性導電接着剤を用いて透明樹脂封止されたLEDモジュールを得た。
  比較例5
 ショアAゴム硬度60のエラストマーヘッドに代えてステンレススチール製の金属ヘッドを用いること以外、実施例1と同様にして、透明樹脂封止されたLEDモジュールを得た。
  比較例6
 光反射性絶縁粒子として、二酸化ケイ素粉末に代えて、平均粒径210nmの二酸化チタン粉末(KR-380、チタン工業(株))を15体積%用い且つショアAゴム硬度が60のエラストマーヘッドに代えてショアAゴム硬度が90のエラストマーヘッドを用いること以外、実施例1と同様にして、外観色が白色のペースト状の異方性導電接着剤を得、更にこの光反射性異方性導電接着剤を用いて透明樹脂封止されたLEDモジュールを得た。
<評価>
(光反射率評価試験)
 実施例及び比較例で得られた異方性導電接着剤を、ガラスエポキシ基板に、10mm角で乾燥厚で0.3mmとなるように塗布し、250℃で30秒間加熱して硬化させた。この硬化物に対し、キセノンランプ光源から光で照射し、積分球を用いる分光側色計(CM3600d、コニカミノルタ(株))を用いて、波長450nmの光に対する反射率(JIS K7150)を、硬化物に垂直な軸と8度の角度の光について測定した。反射率は、実用上30%以上であることが望まれる。
(LED素子の欠け数の評価)
 実施例及び比較例で作成した各LEDモジュールについて、20個のLED素子の外観を目視観察し、亀裂又は欠けが発生しているLED素子の個数をカウントした。得られた結果を表1に示す。なお、「チップの欠け」評価の「0~1」の意味は、通常は20個のLED素子に亀裂又は欠けが生ずることがないが、極めて稀にチップの欠けが生ずる場合があることを意味する。
(LED素子の接着力評価試験)
 実施例及び比較例で作成した各LEDモジュールにおけるLED素子と配線板との接着力として、LEDモジュールの300μm角LED素子1チップ当たりのダイシェア強度を、ダイシェア強度試験機(PTR-1100、(株)レスカ)を用い、剪断速度20μm/secの条件で測定した。測定は、点灯前の初期状態のLEDモジュールと、85℃、85%RHの高温高湿環境下において300時間連続点灯後のLEDモジュールの2つのサンプルについて行った。得られた結果を表1に示す。ダイシェア強度は、上記の測定方法で測定して、実用上300gf/チップ以上、好ましくは400gf/チップ以上であることが望まれる。
(全光束量評価試験)
 実施例及び比較例で作成した各LEDモジュールについて、透明性維持性の評価として、全光束測定システム(積分全球)(LE-2100、大塚電子(株))を用いて全光束量を測定した(測定条件:If=20mA(定電流制御))。測定は、点灯前の初期状態のLEDモジュールと、85℃、85%RHの高温高湿環境下において300時間連続点灯後のLEDモジュールの2つのサンプルについて行った。得られた結果を表1に示す。全光束量は、上記の測定方法で測定して、実用上200mlm以上、好ましくは350mlm以上であることが望まれる。
Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、実施例1~11で製造した発光装置は、分光反射率が60%を超える異方性導電接着剤を使用し、ショアA硬度が40以上90未満のエラストマーヘッドで異方性導電接続を行ったので、LED素子に欠けは生じないか(実施例1~7及び9~11)又は殆ど生じておらず(実施例8)、実用上、問題のない安定した全光束量を示し、また、安定した良好なダイシェア強度を示していた。この安定した良好なダイシェア強度を示していることから、実施例1~11で製造した発光装置においては、良好な接続信頼性が実現されていることがわかる。
 なお、光反射性絶縁粒子として、絶縁被覆Ag粒子を使用した実施例10の場合、他の実施例の場合に比べて粒子径が1.2μmと大きいため、粒子に対して光が正反射ではなく幾何学散乱する割合が増加するものの、そのような光反射性絶縁粒子を使用しない以外は同条件の比較例4に比べて良好な光特性を示した。また、Au被覆導電粒子の表面に光反射層を設けた光反射性導電粒子を使用した実施例11の場合、Au被覆樹脂導電粒子を使用している以外は同条件の実施例3に比べて若干光学特性が低下するものの、Au被覆樹脂導電粒子を使用しているが光反射性絶縁粒子を使用していない比較例4に比べて良好な光特性を示した。
 それに対し、異方性導電接続の際に金属ヘッドで加熱加圧を行った比較例1、5の場合、LED素子に欠けが生じてしまった。エラストマーヘッドのショアA硬度が90である比較例6の場合も、LED素子に欠けが生じていた。
 なお、エラストマーヘッドのショアA硬度が40である実施例8の場合、ゴムヘッドが柔軟であるため、LED素子全体を包み込むように加圧される。その結果、LED素子のエッチ部分に負荷がかかる場合があり、一括押圧の場合は極稀にチップ欠けが生ずる場合があったが、チップ欠け発生頻度が極めて低いため、実施例として位置づけることが可能である。従って、異方性導電接続の際にショアA硬度40(実施例8)以上90未満(比較例6、実施例9)のエラストマーヘッドの使用が必要であることがわかる。
 また、光反射性絶縁粒子を使用しない比較例1~4の場合、全光束量が不十分であった。従って、光反射性絶縁粒子の使用が必須であることがわかる。
 なお、屈折率が相違する反射性絶縁粒子を使用した実施例1(SiO、屈折率1.46)、実施例2(ZnO、1.9~2.01)、実施例3(TiO、屈折率2.72又は2.52)の場合、屈折率が大きくなるに連れて、分光反射率及びLED全光束量が共に向上していることがわかる。
 反射性絶縁粒子の含有量が相違する実施例6(5vol%)、実施例3(15vol%)及び実施例7(25vol%)から、光反射性絶縁粒子の含有量が多くなると、樹脂硬化物が硬くなりすぎると同時に脆くなるため、ダイシェア強度が低下する傾向があり、また、含有量が少なくなると、全光束量が低下する傾向があることがわかる。なお、含有量が少なくなると、ペースト状接着剤としてのハンドリング性が低下する傾向がある。
 比較例3から、異方性導電接着剤の主剤として付加硬化型シリコーン系樹脂を使用すると、脂環式エポキシを使用した場合よりも、ダイシェア強度が低くなり、接続信頼性が低下することがわかる。
 本発明の発光装置の製造方法においては、発光素子を配線板に実装する際に光反射性異方性導電接着剤を用いるため、発光素子の発光効率を低下させることなく、発光素子を配線板に異方性導電接続することができる。また、異方性導電接続の際の加熱加圧のために特定の表面硬度を有するエラストマーヘッドを用いるため、発光素子に亀裂や欠けが発生することを防止しながら、光反射性異方性導電接着剤を用いて優れた接続信頼性の異方性導電接続を行うことができる。よって、本発明の発光装置の製造方法、及びそれにより製造された発光装置は、LED素子等の発光素子を用いる表示用ディスプレイ装置、照明装置、バックライト、検査機器光源等の電子機器及びその製造の分野において有用である。
1 発光素子
1a 発光素子の電極
2 配線板
2a 配線板の電極
3 光反射性異方性導電接着剤
3a 熱硬化性樹脂組成物
3b 導電粒子
3c 光反射性絶縁粒子
3d フィレット部
4 エラストマーヘッド
4a エラストマーヘッドの押圧面
5 ヘッドベース
6 透明封止樹脂
21 コア粒子
22 無機粒子
23 光反射層
24 熱可塑性樹脂
100、110 発光装置
200 光反射性導電粒子
300 多層化光反射性導電粒子

Claims (14)

  1.  発光素子を配線板に異方性導電接続してなる発光装置の製造方法において、以下の工程(A)及び(B):
    工程(A)
     発光素子と、該発光素子が接続されるべき配線板との間に、熱硬化性樹脂組成物、導電粒子及び光反射性絶縁粒子を含有する光反射性異方性導電接着剤を配置する工程; 及び
    工程(B)
     配線板に対して発光素子を、押圧面のショアAゴム硬度(JIS K6253)が40以上90未満であるエラストマーヘッドで加熱加圧することにより異方性導電接続を行う工程
    を有する製造方法。
  2.  光反射性異方性導電接着剤の波長450nmの光に対する分光反射率(JIS K7105)が、30%以上である請求項1記載の製造方法。
  3.  光反射性絶縁粒子が、酸化ケイ素、酸化チタン、窒化ホウ素、酸化亜鉛及び酸化アルミニウムからなる群より選択される少なくとも一種の無機粒子である請求項1又は2記載の製造方法。
  4.  光反射性絶縁粒子の平均粒子径が、150nm~550nmである請求項1~3のいずれかに記載の製造方法。
  5.  光反射性絶縁粒子の屈折率(JIS K7142)が、熱硬化性樹脂組成物の硬化物の屈折率(JIS K7142)よりも大きい請求項1~4のいずれかに記載の製造方法。
  6.  光反射性絶縁粒子が、鱗片状又は球状銀粒子の表面を絶縁性樹脂で被覆した樹脂被覆金属粒子である請求項1~5のいずれかに記載の製造方法。
  7.  熱硬化性樹脂組成物中における光反射性絶縁粒子の配合量が、1~50体積%である請求項1~6のいずれかに記載の製造方法。
  8.  熱硬化性樹脂組成物が、エポキシ樹脂と酸無水物系硬化剤とを含有する請求項1~7のいずれかに記載の製造方法。
  9.  エラストマーヘッドの押圧面のショアAゴム硬度(JIS K6253)が、65以上80以下である請求項1~8のいずれかに記載の製造方法。
  10.  更に、以下の工程(C)
     (C)配線板上に異方性導電接続された発光素子を、透明樹脂を用いて封止する工程
    を有する請求項1~9のいずれかに記載の製造方法。
  11.  導電粒子が、金属材料で被覆されているコア樹脂粒子と、その表面に酸化チタン粒子、酸化亜鉛粒子又は酸化アルミニウム粒子から選択された少なくとも一種の無機粒子から形成された光反射層とからなる光反射性導電粒子である請求項1~10のいずれかに記載の製造方法。
  12.  熱硬化性樹脂組成物100質量部に対する光反射性導電粒子の配合量が、1~100質量部である請求項11記載の製造方法。
  13.  請求項1~12のいずれかに記載の製造方法により製造された発光装置。
  14.  発光素子が、発光ダイオードである請求項13記載の発光装置。
PCT/JP2011/059042 2010-04-12 2011-04-12 発光装置の製造方法 WO2011129313A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180018865.5A CN102823084B (zh) 2010-04-12 2011-04-12 发光装置的制造方法
KR1020117018368A KR101892753B1 (ko) 2010-04-12 2011-04-12 발광 장치의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010091567A JP5402804B2 (ja) 2010-04-12 2010-04-12 発光装置の製造方法
JP2010-091567 2010-04-12

Publications (1)

Publication Number Publication Date
WO2011129313A1 true WO2011129313A1 (ja) 2011-10-20

Family

ID=44798685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059042 WO2011129313A1 (ja) 2010-04-12 2011-04-12 発光装置の製造方法

Country Status (5)

Country Link
JP (1) JP5402804B2 (ja)
KR (1) KR101892753B1 (ja)
CN (1) CN102823084B (ja)
TW (1) TWI529980B (ja)
WO (1) WO2011129313A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073563A1 (ja) * 2011-11-14 2013-05-23 デクセリアルズ株式会社 異方性導電フィルム、接続方法、及び接合体
CN104821369A (zh) * 2015-05-25 2015-08-05 叶志伟 一种倒装led的封装方法
WO2017021412A1 (de) * 2015-08-06 2017-02-09 Osram Opto Semiconductors Gmbh Verfahren zum herstellen eines optoelektronischen bauelements und optoelektronisches bauelement
EP3226290A1 (en) * 2016-04-01 2017-10-04 Nichia Corporation Light emitting element mounting base member and method of manufacturing a light emitting element mounting base member
EP3226291A1 (en) * 2016-04-01 2017-10-04 Nichia Corporation Light emitting element mounting base member and method of manufacturing a light emitting element mounting base member
JP2017188673A (ja) * 2016-04-01 2017-10-12 日亜化学工業株式会社 発光素子載置用基体の製造方法及びそれを用いた発光装置の製造方法並びに発光素子載置用基体及びそれを用いた発光装置
JP2017188672A (ja) * 2016-04-01 2017-10-12 日亜化学工業株式会社 発光素子載置用基体の製造方法及びそれを用いた発光装置の製造方法並びに発光素子載置用基体及びそれを用いた発光装置
EP3271953A4 (en) * 2015-05-21 2018-02-21 Goertek Inc. Transferring method, manufacturing method, device and electronic apparatus of micro-led
EP3200250B1 (en) * 2014-09-26 2020-09-02 Toshiba Hokuto Electronics Corp. Production method for light-emission module
WO2021192542A1 (ja) * 2020-03-24 2021-09-30 株式会社ジャパンディスプレイ 配線基板及び表示装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101933190B1 (ko) * 2012-03-28 2018-12-31 서울반도체 주식회사 발광다이오드 패키지 및 그 제조방법
JP6477794B2 (ja) * 2012-04-23 2019-03-06 日亜化学工業株式会社 発光装置
JP2013243344A (ja) * 2012-04-23 2013-12-05 Nichia Chem Ind Ltd 発光装置
CN103378282A (zh) * 2012-04-27 2013-10-30 展晶科技(深圳)有限公司 发光二极管封装结构的制造方法
JP5958107B2 (ja) * 2012-06-15 2016-07-27 デクセリアルズ株式会社 光反射性異方性導電接着剤及び発光装置
JP6490328B2 (ja) * 2012-06-20 2019-03-27 日亜化学工業株式会社 発光装置及びその製造方法
JP2014037528A (ja) * 2012-07-19 2014-02-27 Dexerials Corp 光反射性異方性導電接着剤及び発光装置
CN103000796A (zh) * 2012-11-23 2013-03-27 王知康 一种利用非对称导电胶水(acp)安装led的方法
WO2014178666A1 (ko) * 2013-04-30 2014-11-06 주식회사 세미콘라이트 반도체 발광소자 및 이를 제조하는 방법
CN103337578A (zh) * 2013-05-24 2013-10-02 袁灵 正装双电极芯片反贴应用的方法及结构
JP6343923B2 (ja) * 2013-12-18 2018-06-20 日亜化学工業株式会社 発光装置
KR20150078296A (ko) * 2013-12-30 2015-07-08 일진엘이디(주) 신뢰성이 향상된 발광 소자
US9812625B2 (en) 2014-02-18 2017-11-07 Nichia Corporation Light-emitting device having resin member with conductive particles
JP2015153981A (ja) * 2014-02-18 2015-08-24 日亜化学工業株式会社 発光装置
JP6349910B2 (ja) * 2014-04-23 2018-07-04 日亜化学工業株式会社 発光装置及びその製造方法
WO2015141830A1 (ja) * 2014-03-20 2015-09-24 デクセリアルズ株式会社 異方性導電フィルム及びその製造方法
JP6398554B2 (ja) * 2014-09-30 2018-10-03 日亜化学工業株式会社 発光装置およびその製造方法
US10626301B2 (en) 2015-03-18 2020-04-21 Dexerials Corporation Method for manufacturing light emitting device
TWI837362B (zh) * 2016-03-15 2024-04-01 晶元光電股份有限公司 發光模組
TWI696300B (zh) 2016-03-15 2020-06-11 晶元光電股份有限公司 半導體裝置及其製造方法
CN108803149B (zh) * 2018-07-20 2021-05-25 京东方科技集团股份有限公司 面光源及其制作方法以及液晶显示装置
US10964867B2 (en) 2018-10-08 2021-03-30 Facebook Technologies, Llc Using underfill or flux to promote placing and parallel bonding of light emitting diodes
WO2020074654A1 (de) * 2018-10-12 2020-04-16 Osram Gmbh Verfahren zum herstellen einer lichtemittierenden vorrichtung
JP2020087907A (ja) * 2018-11-21 2020-06-04 信越化学工業株式会社 異方性フィルムの製造方法
TWI779188B (zh) * 2019-05-02 2022-10-01 光感動股份有限公司 發光元件封裝結構及其製作方法
KR102252598B1 (ko) * 2019-10-01 2021-05-18 주식회사 에스엘바이오닉스 기판 및 이를 이용한 반도체 발광소자

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332124A (ja) * 2000-05-22 2001-11-30 Toshiba Chem Corp 導電性ペーストおよび光半導体装置
JP2010050236A (ja) * 2008-08-20 2010-03-04 Mitsubishi Chemicals Corp 半導体発光装置およびその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1120233A (ja) * 1997-06-30 1999-01-26 Kyocera Corp 光プリンタヘッド
JPH11168235A (ja) * 1997-12-05 1999-06-22 Toyoda Gosei Co Ltd 発光ダイオード
JP2001234152A (ja) * 2000-02-24 2001-08-28 Sumitomo Metal Mining Co Ltd 導電性接着剤
JP4114364B2 (ja) * 2001-11-08 2008-07-09 日亜化学工業株式会社 発光装置およびその製造方法
JP3886401B2 (ja) * 2002-03-25 2007-02-28 ソニーケミカル&インフォメーションデバイス株式会社 接続構造体の製造方法
JP4539813B2 (ja) * 2003-08-19 2010-09-08 ソニーケミカル&インフォメーションデバイス株式会社 絶縁被覆導電粒子
WO2006093315A1 (ja) * 2005-03-04 2006-09-08 Sony Chemical & Information Device Corporation 異方導電性接着剤及びこれを用いた電極の接続方法
JP2007157940A (ja) * 2005-12-02 2007-06-21 Nichia Chem Ind Ltd 発光装置および発光装置の製造方法
JP4925669B2 (ja) * 2006-01-13 2012-05-09 ソニーケミカル&インフォメーションデバイス株式会社 圧着装置及び実装方法
JP5099289B2 (ja) * 2006-02-03 2012-12-19 ソニーケミカル&インフォメーションデバイス株式会社 熱硬化型接着剤
JP2007324413A (ja) * 2006-06-01 2007-12-13 Sony Chemical & Information Device Corp 熱圧着ヘッド及びこれを用いた実装装置
JP4432949B2 (ja) * 2006-09-15 2010-03-17 パナソニック株式会社 電気部品の接続方法
JP5608955B2 (ja) * 2007-02-06 2014-10-22 日亜化学工業株式会社 発光装置及びその製造方法並びに発光装置用成形体
JP5074082B2 (ja) * 2007-04-16 2012-11-14 ソニーケミカル&インフォメーションデバイス株式会社 導電性粒子体及びこれを用いた異方性導電接続材料、並びに導電性粒子体の製造方法
JP5226562B2 (ja) * 2008-03-27 2013-07-03 デクセリアルズ株式会社 異方性導電フィルム、並びに、接合体及びその製造方法
JP2010050235A (ja) * 2008-08-20 2010-03-04 Mitsubishi Chemicals Corp 半導体発光装置およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332124A (ja) * 2000-05-22 2001-11-30 Toshiba Chem Corp 導電性ペーストおよび光半導体装置
JP2010050236A (ja) * 2008-08-20 2010-03-04 Mitsubishi Chemicals Corp 半導体発光装置およびその製造方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073563A1 (ja) * 2011-11-14 2013-05-23 デクセリアルズ株式会社 異方性導電フィルム、接続方法、及び接合体
US10777720B2 (en) 2014-09-26 2020-09-15 Toshiba Hokuto Electronics Corporation Light emitting module and light emitting module manufacturing method
EP3200250B1 (en) * 2014-09-26 2020-09-02 Toshiba Hokuto Electronics Corp. Production method for light-emission module
EP3271953A4 (en) * 2015-05-21 2018-02-21 Goertek Inc. Transferring method, manufacturing method, device and electronic apparatus of micro-led
CN104821369A (zh) * 2015-05-25 2015-08-05 叶志伟 一种倒装led的封装方法
US20180226518A1 (en) * 2015-08-06 2018-08-09 Osram Opto Semiconductors Gmbh Method of manufacturing an optoelectronic component, and optoelectronic component
WO2017021412A1 (de) * 2015-08-06 2017-02-09 Osram Opto Semiconductors Gmbh Verfahren zum herstellen eines optoelektronischen bauelements und optoelektronisches bauelement
US10644210B2 (en) 2016-04-01 2020-05-05 Nichia Corporation Method of manufacturing light emitting element mounting base member, method of manufacturing light emitting device using the light emitting element mounting base member, light emitting element mounting base member, and light emitting device using the light emitting element mounting base member
EP3226290A1 (en) * 2016-04-01 2017-10-04 Nichia Corporation Light emitting element mounting base member and method of manufacturing a light emitting element mounting base member
CN107425104A (zh) * 2016-04-01 2017-12-01 日亚化学工业株式会社 发光元件载置用基体的制造方法及发光元件载置用基体
EP3226291A1 (en) * 2016-04-01 2017-10-04 Nichia Corporation Light emitting element mounting base member and method of manufacturing a light emitting element mounting base member
JP2017188672A (ja) * 2016-04-01 2017-10-12 日亜化学工業株式会社 発光素子載置用基体の製造方法及びそれを用いた発光装置の製造方法並びに発光素子載置用基体及びそれを用いた発光装置
JP2017188673A (ja) * 2016-04-01 2017-10-12 日亜化学工業株式会社 発光素子載置用基体の製造方法及びそれを用いた発光装置の製造方法並びに発光素子載置用基体及びそれを用いた発光装置
US10790426B2 (en) 2016-04-01 2020-09-29 Nichia Corporation Method of manufacturing light emitting element mounting base member, method of manufacturing light emitting device using the light emitting element mounting base member, light emitting element mounting base member, and light emitting device using the light emitting element mounting base member
US11223000B2 (en) 2016-04-01 2022-01-11 Nichia Corporation Method of manufacturing light emitting element mounting base member, method of manufacturing light emitting device using the light emitting element mounting base member, light emitting element mounting base member, and light emitting device using the light emitting element mounting base member
JP7011147B2 (ja) 2016-04-01 2022-01-26 日亜化学工業株式会社 発光素子載置用基体の製造方法及びそれを用いた発光装置の製造方法並びに発光素子載置用基体及びそれを用いた発光装置
JP7011148B2 (ja) 2016-04-01 2022-01-26 日亜化学工業株式会社 発光素子載置用基体の製造方法及びそれを用いた発光装置の製造方法並びに発光素子載置用基体及びそれを用いた発光装置
US11257999B2 (en) 2016-04-01 2022-02-22 Nichia Corporation Light emitting element mounting base member, and light emitting device using the light emitting element mounting base member
WO2021192542A1 (ja) * 2020-03-24 2021-09-30 株式会社ジャパンディスプレイ 配線基板及び表示装置

Also Published As

Publication number Publication date
KR20120135006A (ko) 2012-12-12
TWI529980B (zh) 2016-04-11
JP5402804B2 (ja) 2014-01-29
TW201145620A (en) 2011-12-16
CN102823084A (zh) 2012-12-12
KR101892753B1 (ko) 2018-08-28
JP2011222830A (ja) 2011-11-04
CN102823084B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
JP5402804B2 (ja) 発光装置の製造方法
JP5617210B2 (ja) 光反射性異方性導電接着剤及び発光装置
TWI553088B (zh) A light reflective anisotropic conductive adhesive and a light emitting device
EP2584015B1 (en) Light-reflecting anisotropically conductive adhesive and light emitting device
JP5958107B2 (ja) 光反射性異方性導電接着剤及び発光装置
JP5526698B2 (ja) 光反射性導電粒子、異方性導電接着剤及び発光装置
JP5555038B2 (ja) 光反射性異方性導電接着剤及び発光装置
WO2012144033A1 (ja) 光反射性導電粒子、異方性導電接着剤及び発光装置
WO2014013984A1 (ja) 光反射性異方性導電接着剤及び発光装置
JP2014030026A (ja) 異方性導電接着剤及び発光装置
JP5785306B2 (ja) 光反射性異方性導電接着剤及び発光装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180018865.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20117018368

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11768834

Country of ref document: EP

Kind code of ref document: A1