WO2013073563A1 - 異方性導電フィルム、接続方法、及び接合体 - Google Patents

異方性導電フィルム、接続方法、及び接合体 Download PDF

Info

Publication number
WO2013073563A1
WO2013073563A1 PCT/JP2012/079486 JP2012079486W WO2013073563A1 WO 2013073563 A1 WO2013073563 A1 WO 2013073563A1 JP 2012079486 W JP2012079486 W JP 2012079486W WO 2013073563 A1 WO2013073563 A1 WO 2013073563A1
Authority
WO
WIPO (PCT)
Prior art keywords
anisotropic conductive
conductive film
light
resin
terminal
Prior art date
Application number
PCT/JP2012/079486
Other languages
English (en)
French (fr)
Inventor
芳人 田中
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020147015790A priority Critical patent/KR101582766B1/ko
Publication of WO2013073563A1 publication Critical patent/WO2013073563A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/314Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive layer and/or the carrier being conductive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/41Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the carrier layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16238Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/2939Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29444Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29463Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29464Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/819Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector with the bump connector not providing any mechanical bonding
    • H01L2224/81901Pressing the bump connector against the bonding areas by means of another connector
    • H01L2224/81903Pressing the bump connector against the bonding areas by means of another connector by means of a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/8322Applying energy for connecting with energy being in the form of electromagnetic radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83871Visible light curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9211Parallel connecting processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides

Definitions

  • the present invention relates to an anisotropic conductive film capable of electrically and mechanically connecting electronic components, a connection method using the anisotropic conductive film, and a joined body.
  • a tape-like connection material for example, anisotropic conductive film (ACF)
  • ACF anisotropic conductive film
  • the anisotropic conductive film includes, for example, a terminal of a flexible printed circuit board (FPC) or an IC (integrated circuit, integrated circuit) chip, and an electrode formed on a glass substrate of an LCD (liquid crystal display, liquid crystal display) panel. It is used when various terminals are bonded and electrically connected to each other, starting with the case of connecting the terminals.
  • FPC flexible printed circuit board
  • IC integrated circuit, integrated circuit
  • the anisotropic conductive connection for electrically connecting the terminal of the substrate and the terminal of the electronic component using the anisotropic conductive film is usually performed by sandwiching the anisotropic conductive film between the substrate and the electronic component. This is done by heating and pressing the isotropic conductive film. The heating temperature at this time is, for example, about 170 ° C. to 200 ° C. This heat can affect the substrate and electronic components. Further, misalignment may occur at the time of connection due to a difference in thermal expansion coefficient between the substrate and the electronic component.
  • connection using light has been proposed as a method for anisotropic conductive connection between the terminal of the substrate and the terminal of the electronic component at a low temperature.
  • a substrate such as a glass substrate that transmits light and an anisotropic conductive film containing a photocurable resin are used.
  • the anisotropic conductive film is irradiated with light such as ultraviolet rays through the substrate to perform anisotropic conductive connection.
  • an anisotropic conductive film used for this connection for example, an anisotropic conductive film containing a photocationic polymerizable compound, a photocationic polymerization initiator, a photoradical polymerizable compound, and a photoradical polymerization initiator has been proposed.
  • an anisotropic conductive film capable of obtaining excellent curability and excellent conduction resistance even when a terminal that does not transmit light is used as a terminal of the substrate, and
  • the present condition is that a connection method using the anisotropic conductive film and provision of a bonded body are required.
  • the present invention provides an anisotropic conductive connection that uses light to obtain excellent curability and excellent conduction resistance even when a terminal that does not transmit light is used as the terminal of the substrate.
  • An object is to provide a conductive film, a connection method using the anisotropic conductive film, and a joined body.
  • Means for solving the problems are as follows. That is, ⁇ 1> An anisotropic conductive film for anisotropically conductively connecting a terminal of a substrate and a terminal of an electronic component, A conductive particle-containing layer containing conductive particles and a photocurable resin, and an insulating adhesive layer containing a photocurable resin; At least one of the conductive particle-containing layer and the insulating adhesive layer contains light-scattering fine particles.
  • the conductive particle-containing layer and the insulating adhesive layer only the insulating adhesive layer is the anisotropic conductive film according to ⁇ 1>, which contains light-scattering fine particles.
  • ⁇ 3> The content of ⁇ 1> to ⁇ 2>, wherein the content of the light scattering fine particles is 0.05% by mass to 10.00% by mass with respect to the resin in the layer containing the light scattering fine particles. It is an anisotropic conductive film in any one.
  • ⁇ 4> The anisotropic conductive film according to any one of ⁇ 1> to ⁇ 3>, wherein the light-scattering fine particles are titanium oxide.
  • ⁇ 5> A connection method for anisotropically connecting a terminal of a substrate and a terminal of an electronic component, An attaching step of attaching the anisotropic conductive film according to any one of ⁇ 1> to ⁇ 4> on a terminal of the substrate; A light irradiation step of irradiating light from the substrate side to the anisotropic conductive film on which the electronic component is placed.
  • ⁇ 6> A joined body obtained by the connection method according to ⁇ 5>.
  • the conventional problems can be solved and the object can be achieved, and even in the case of using a terminal that does not transmit light as the terminal of the substrate in the anisotropic conductive connection using light,
  • An anisotropic conductive film capable of obtaining excellent curability and excellent conduction resistance, a connection method using the anisotropic conductive film, and a joined body can be provided.
  • FIG. 1 is a schematic cross-sectional view of an example of the anisotropic conductive film of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an example of the anisotropic conductive film of the present invention.
  • FIG. 3 is a schematic cross-sectional view of an example of the anisotropic conductive film of the present invention.
  • FIG. 4A is a schematic diagram (part 1) for explaining the connection method of the present invention.
  • FIG. 4B is a schematic diagram (part 2) for explaining the connection method of the present invention.
  • FIG. 4C is a schematic diagram (part 3) for explaining the connection method of the present invention.
  • the anisotropic conductive film of the present invention is an anisotropic conductive film for anisotropically connecting a terminal of a substrate and a terminal of an electronic component, and has at least a conductive particle-containing layer and an insulating adhesive layer. Furthermore, it has other layers as required. At least one of the conductive particle-containing layer and the insulating adhesive layer contains light-scattering fine particles.
  • the light-scattering fine particles are not particularly limited as long as they are fine particles that scatter light that cures the conductive particle-containing layer and the insulating adhesive layer, and can be appropriately selected according to the purpose.
  • a metal oxide etc. are mentioned. There is no restriction
  • the titanium oxide may be any one of anatase type, rutile type, and brookite type, but the rutile type is preferable from the viewpoint of light scattering.
  • the light for curing the conductive particle-containing layer and the insulating adhesive layer is not particularly limited and may be appropriately selected depending on the intended purpose, but ultraviolet light is preferable.
  • the average particle diameter of the light-scattering fine particles is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 nm to 5,000 nm, more preferably 20 nm to 1,000 nm, and more preferably 100 nm to 800 nm. Particularly preferred. If the average particle size is less than 10 nm, UV light may be absorbed, and if it exceeds 5,000 nm, light scattering may be difficult. When the average particle diameter is within the particularly preferable range, it is advantageous in terms of light scattering efficiency.
  • the average particle diameter can be measured by, for example, a particle size distribution measuring apparatus (FPAR-1000, manufactured by Otsuka Electronics Co., Ltd.).
  • the light-scattering fine particles are preferably contained only in the insulating adhesive layer among the conductive particle-containing layer and the insulating adhesive layer in terms of conduction resistance, indentation, and curability.
  • the resin in the layer refers to a film-forming resin, a photocurable resin, a curing agent, and these It refers to a resin that forms a layer such as a cured product.
  • the conductive particle-containing layer contains at least conductive particles and a photocurable resin, and further contains other components as necessary.
  • the conductive particle-containing layer may contain the light scattering fine particles.
  • -Conductive particles There is no restriction
  • the metal-coated resin particles include particles in which the surface of the resin core is coated with any metal of nickel, copper, gold, and palladium. Furthermore, the surface of the resin core with an insulating film made of metal protrusions or organic matter may be used. There is no restriction
  • the material for the resin core is not particularly limited and may be appropriately selected depending on the intended purpose.
  • Examples thereof include styrene-divinylbenzene copolymer, benzoguanamine resin, cross-linked polystyrene resin, acrylic resin, and styrene-silica composite resin. Is mentioned. There is no restriction
  • photocurable resin- There is no restriction
  • the photo radical curable resin is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the photocationic curable resin is not particularly limited and may be appropriately selected depending on the intended purpose.
  • bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, oxetane resin, alicyclic type examples thereof include epoxy resins and modified epoxy resins thereof. These may be used individually by 1 type and may use 2 or more types together. Further, a photo radical curable resin or a photo cation curable resin may be mixed and used together.
  • Film-forming resin-- There is no restriction
  • the film forming resin may be used alone or in combination of two or more. Among these, phenoxy resin is particularly preferable from the viewpoints of film formability, processability, and connection reliability.
  • the said phenoxy resin is resin synthesize
  • the curing agent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a curing agent that generates active cationic species or radical species by light having a wavelength region of 200 nm to 750 nm. There is no restriction
  • Examples of the curing agent that generates active cationic species or radical species by light in the wavelength region of 200 nm to 750 nm include, for example, a photo radical curing agent (trade name: Irgacure 651, manufactured by BASF), a photo cationic curing agent (product) Name: Irgacure 369, manufactured by BASF). Moreover, you may use together, such as mixing a radical photocuring agent and a photocationic curing agent. There is no restriction
  • the silane coupling agent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include an epoxy silane coupling agent, an acrylic silane coupling agent, a thiol silane coupling agent, and an amine silane. A coupling agent etc. are mentioned. There is no restriction
  • the average thickness of the conductive particle-containing layer is not particularly limited and can be appropriately selected depending on the average particle diameter of the conductive particles and the thickness of the insulating adhesive layer, and is 1 ⁇ m to 10 ⁇ m. It is preferably 4 ⁇ m to 8 ⁇ m, more preferably 5 ⁇ m to 7 ⁇ m. When the average thickness is less than 1 ⁇ m, the conductive particles may not be sufficiently filled between the terminals of the substrate and the terminals of the electronic component, and when it exceeds 10 ⁇ m, connection failure may be caused.
  • the said average thickness is an average value at the time of measuring the thickness of five places of the said electroconductive particle content layer arbitrarily.
  • the insulating adhesive layer contains at least a photocurable resin, and further contains other components as necessary.
  • the insulating adhesive layer preferably contains the light scattering fine particles.
  • curing agent, a silane coupling agent etc. are mentioned.
  • the film-forming resin, the curing agent, and the silane coupling agent are not particularly limited and may be appropriately selected depending on the purpose.
  • the average thickness of the insulating adhesive layer is not particularly limited and can be appropriately selected in relation to the thickness of the conductive particle-containing layer, but is preferably 5 ⁇ m to 20 ⁇ m, more preferably 10 ⁇ m to 14 ⁇ m, 11 ⁇ m to 13 ⁇ m is particularly preferable.
  • the average thickness is less than 5 ⁇ m, the resin filling rate between the terminals may decrease, and when it exceeds 20 ⁇ m, connection failure may occur.
  • the said average thickness is an average value at the time of measuring the thickness of five places of the said insulating contact bonding layers arbitrarily.
  • the thickness of the anisotropic conductive film is not particularly limited and can be appropriately selected depending on the purpose.
  • FIG. 1 is schematic sectional views showing an example of the anisotropic conductive film of the present invention.
  • An anisotropic conductive film 1 in FIG. 1 has a conductive particle-containing layer 2 and an insulating adhesive layer 3, and the conductive particle-containing layer 2 contains conductive particles 4 and has an insulating property.
  • the adhesive layer 3 contains light scattering fine particles 5.
  • the anisotropic conductive film 1 in FIG. 2 has a conductive particle-containing layer 2 and an insulating adhesive layer 3, and the conductive particle-containing layer 2 contains conductive particles 4 and light-scattering fine particles 5. is doing.
  • the anisotropic conductive film 1 in FIG. 3 has a conductive particle-containing layer 2 and an insulating adhesive layer 3, and the conductive particle-containing layer 2 contains conductive particles 4 and light-scattering fine particles 5.
  • the insulating adhesive layer 3 contains light scattering fine particles 5.
  • connection method and joined body The connection method of the present invention includes at least a sticking step and a light irradiation step, and further includes other steps as necessary.
  • the connection method is a connection method in which the terminals of the substrate and the terminals of the electronic component are anisotropically conductively connected.
  • the joined body of the present invention is manufactured by the connection method of the present invention.
  • the substrate there is no particular limitation as long as it is a substrate having terminals, which is a target of anisotropic conductive connection, and transmits light that cures the anisotropic conductive film of the present invention. It can be appropriately selected depending on the case, and examples thereof include a glass substrate and a plastic substrate. There is no restriction
  • the terminal is a terminal that does not transmit light that cures the anisotropic conductive film.
  • the electronic component is not particularly limited as long as it is an electronic component having a terminal that is a target of anisotropic conductive connection, and can be appropriately selected according to the purpose.
  • an IC chip TAB (Tape Automated) Bonding) tape, liquid crystal panel, and the like.
  • the IC chip include a liquid crystal screen control IC chip in a flat panel display (FPD).
  • the anisotropic conductive film is the anisotropic conductive film of the present invention.
  • the anisotropic conductive film is usually pasted on the terminal of the substrate so that the conductive particle-containing layer of the anisotropic conductive film is in contact with the terminal of the substrate.
  • the light irradiation step is not particularly limited as long as it is a step of irradiating light from the substrate side to the anisotropic conductive film on which the electronic component is placed, and is appropriately selected according to the purpose. be able to.
  • the electronic component Prior to the light irradiation step, the electronic component is placed on the anisotropic conductive film. At this time, the insulating adhesive layer of the anisotropic conductive film is in contact with the terminal of the electronic component.
  • the light irradiation to the anisotropic conductive film is performed from the substrate side. That is, the light irradiation to the anisotropic conductive film is performed through the substrate.
  • the terminal of the substrate is a terminal that does not transmit light
  • light from the light irradiation source is placed on the portion of the anisotropic conductive film on the opposite side of the light irradiation source side of the terminal of the substrate. Does not reach directly.
  • at least one of the conductive particle-containing layer and the insulating adhesive layer of the anisotropic conductive film is incident on the anisotropic conductive film through the substrate by containing the light scattering fine particles.
  • the scattered light is scattered by the light-scattering fine particles, the light spreads to the part where the light from the light irradiation source does not reach directly, and the light from the light irradiation source does not reach directly.
  • Excellent curability can also be obtained in the conductive film portion. As a result, excellent conduction resistance can be obtained.
  • the light is not particularly limited and may be appropriately selected depending on the intended purpose.
  • ultraviolet rays are preferable because the photocurable resin of the conductive particle-containing layer and the insulating particle-containing layer is easily cured.
  • limiting in particular as a wavelength of the said ultraviolet-ray According to the objective, it can select suitably, For example, 200 nm-400 nm etc. are mentioned.
  • limiting in particular as the irradiation amount of the said light According to the objective, it can select suitably.
  • the heating and pressing treatment is preferably started before the light irradiation and is performed until the light irradiation is completed.
  • the process to heat and press there is no restriction
  • the heating and pressing member include a pressing member having a heating mechanism.
  • the pressing member having the heating mechanism include a heat tool.
  • the heating temperature is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 80 ° C to 140 ° C.
  • the pressing pressure is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1 MPa to 100 MPa.
  • the heating and pressing time is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 0.5 seconds to 120 seconds.
  • connection method of the present invention will be described with reference to the drawings.
  • 4A to 4C are schematic diagrams for explaining the connection method of the present invention.
  • the anisotropic conductive film 1 is attached to the substrate 6 having the terminals 7 so that the conductive particle-containing layer 2 of the anisotropic conductive film 1 is in contact with the terminals 7 (FIG. 4A).
  • the electronic component 9 having the terminals 8 is placed on the insulating adhesive layer 3 of the attached anisotropic conductive film 1.
  • the substrate 6 and the electronic component 9 are not yet anisotropically conductively connected (FIG. 4B).
  • the conductive particle-containing layer 2 and the insulating adhesive layer 3 contains the light scattering fine particles 5
  • the light incident on the anisotropic conductive film 1 through the substrate 6 is The anisotropic conductive film 1 is scattered by the light-scattering fine particles 5, and the light reaches the part where the light from the light irradiation source 10 does not reach directly, and the light from the light irradiation source 10 does not reach directly.
  • the site can also have excellent curability. As a result, excellent conduction resistance can be obtained.
  • the average particle size of the light-scattering fine particles was measured by a particle size distribution measuring device (FPAR-1000, manufactured by Otsuka Electronics Co., Ltd.).
  • the conductive particle-containing layer obtained above and the insulating adhesive layer were laminated at a roll temperature of 45 ° C. using a roll laminator to obtain an anisotropic conductive film.
  • Test IC chip gold size: 2,550 ⁇ m 2 , bump height: 15 ⁇ m, pitch: 15 ⁇ m (outer bump row, central bump row, central bump row, inner side) A distance between the bump rows of 15 ⁇ m and a distance of 15 ⁇ m between the bumps in each row)) and a glass substrate having an Al wiring (average thickness of 0.5 ⁇ m) corresponding to the bumps of the test IC chip (glass thickness of 0. 7 mm), and anisotropic conductive connection was performed.
  • the anisotropic conductive film produced in Comparative Example 1 is slit to a width of 1.5 mm, and the anisotropic conductive film is attached to the glass substrate so that the conductive particle-containing layer is in contact with the glass substrate. Pasted.
  • the test IC chip was placed and temporarily fixed, and then a heat tool having a width of 1.5 mm and a buffer material (Teflon (registered trademark) having a thickness of 70 ⁇ m) was used for pressure bonding conditions of 120 ° C., 80 MPa, 10 seconds ( Heating and pressing was started at a tool speed of 25 mm / second and a stage temperature of 30 ° C., and after 5 seconds from the start, an LED lamp having a maximum emission wavelength of 360 nm from the glass substrate side (controller: ZUV-C20H, head unit: ZUV- UV irradiation was performed at 400 W / cm 2 for 5 seconds using an H20MB lens unit: ZUV-212L, manufactured by OMRON Corporation. In addition, the heating press was maintained at the time of UV irradiation.
  • a buffer material Teflon (registered trademark) having a thickness of 70 ⁇ m
  • -Evaluation criteria- ⁇ As a result of observing 10 positions for each of the three observation positions, when indentations were observed at 9 positions or more at any observation position.
  • As a result of observing 10 positions for each of the 3 observation positions, at any observation position. Indentation is observed at 7 or 8 locations, and indentation is observed at 9 or more locations in other cases.
  • As a result of observing 10 locations for 3 observation locations, 5 or 6 locations at any of the observation locations. Indentation is observed, otherwise indentation is observed at 9 or more locations.
  • X As a result of observing 10 locations for each of the 3 observation positions, less than 5 indentations could be observed at any of the observation locations. If
  • the curing rate was measured for each of the conductive particle-containing layer on the Al wiring and the conductive particle-containing layer on the glass substrate in the joined body.
  • the curing rate was determined by the rate of decrease of the epoxy group of the resin in the conductive particle-containing layer. That is, how much the epoxy group of the resin in the conductive particle-containing layer before anisotropic conductive connection was reduced by anisotropic conductive connection was determined by measuring the absorption at 914 cm ⁇ 1 of the infrared absorption spectrum. It was.
  • Comparative Example 1 was the same as Comparative Example 1 except that the composition and average thickness of the conductive particle-containing layer and the insulating adhesive layer were changed to the composition and average thickness shown in Table 1-1 to Table 1-2. Thus, an anisotropic conductive film was obtained. Further, a joined body was produced in the same manner as in Comparative Example 1. The same evaluation as in Comparative Example 1 was performed. The results are shown in Table 1-1 to Table 1-2.
  • the unit of the amount of each component in Table 1-1 to Table 1-2 is part by mass.
  • Content (mass%) of light-scattering fine particles is content (mass%) with respect to resin in each layer of an electroconductive particle content layer and an insulating contact bonding layer.
  • the average particle diameter of titanium oxide 1 (R820, manufactured by Ishihara Sangyo Co., Ltd., rutile type) is 200 nm.
  • the average particle size of titanium oxide 2 (MC-50, manufactured by Ishihara Sangyo Co., Ltd., anatase type) is 240 nm.
  • the average particle diameter of zinc oxide (Nanotek ZnO, manufactured by CIK Nanotech Co., Ltd.) is 30 nm.
  • the anisotropic conductive films of Examples 1 to 13 had excellent curability, good indentation, and excellent conduction resistance.
  • an anisotropic conductive film containing light-scattering fine particles only in the insulating adhesive layer for example, Example 2
  • an anisotropic material containing light-scattering fine particles in the conductive particle-containing layer is used.
  • the conductive conductive film was used for example, Examples 1 and 3
  • all of the conduction resistance, the impression, and the curing rate on the wiring were further excellent.
  • the conductive particle-containing layer contains light-scattering fine particles, light is scattered at the interface between the substrate or the terminal of the substrate and the conductive particle-containing layer, and the amount of light incident on the anisotropic conductive film is reduced. It is thought to do.
  • the content of the light scattering fine particles is 0.05% by mass to 10.00% by mass with respect to the resin in the layer (Examples 2, 5 and 6)
  • the content of the light scattering fine particles is Compared to the cases outside the above range (Examples 4 and 7), the indentation and the curing rate on the wiring were further excellent.
  • the conduction resistance, the indentation, and the curing rate on the wiring are further superior to the case of the anatase type (Example 8).
  • zinc oxide was used for the light-scattering fine particles (Example 13)
  • both the indentation and the curing rate on the wiring were excellent, but the curing rate on the indentation and the wiring was slightly inferior to that of Example 2.
  • the average thickness of the conductive particle-containing layer was 4 ⁇ m (Example 9), it was as excellent as Example 2.
  • Example 10 When the average thickness of the conductive particle-containing layer was 8 ⁇ m (Example 10), all of the conduction resistance, indentation, and curing rate on the wiring were excellent, but were slightly inferior to Example 2.
  • Example 11 When the average thickness of the insulating adhesive layer is 10 ⁇ m (Example 11) and 14 ⁇ m (Example 12), all of the conduction resistance, indentation, and curing rate on the wiring are excellent. It was slightly inferior.
  • the anisotropic conductive film and connection method of the present invention have excellent curability and excellent conduction resistance even when a terminal that does not transmit light is used as a terminal of a substrate in anisotropic conductive connection using light. Since it can obtain, it can use suitably for manufacture of the conjugate

Landscapes

  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Non-Insulated Conductors (AREA)
  • Adhesive Tapes (AREA)
  • Wire Bonding (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

 基板の端子と電子部品の端子とを異方性導電接続させる異方性導電フィルムであって、導電性粒子及び光硬化性樹脂を含有する導電性粒子含有層と、光硬化性樹脂を含有する絶縁性接着層とを有し、前記導電性粒子含有層及び前記絶縁性接着層の少なくともいずれかが、光散乱性微粒子を含有する異方性導電フィルムである。

Description

異方性導電フィルム、接続方法、及び接合体
 本発明は、電子部品を電気的かつ機械的に接続可能な異方性導電フィルム、並びに、前記異方性導電フィルムを用いた接続方法、及び接合体に関する。
 従来より、電子部品を基板と接続する手段として、導電性粒子が分散された熱硬化性樹脂を剥離フィルムに塗布したテープ状の接続材料(例えば、異方性導電フィルム(ACF;Anisotropic Conductive Film))が用いられている。
 この異方性導電フィルムは、例えば、フレキシブルプリント基板(FPC)やIC(集積回路、Integrated Circuit)チップの端子と、LCD(液晶ディスプレイ、Liquid Crystal Display)パネルのガラス基板上に形成された電極とを接続する場合を始めとして、種々の端子同士を接着すると共に電気的に接続する場合に用いられている。
 前記異方性導電フィルムを用い基板の端子と電子部品の端子とを電気的に接続する異方性導電接続は、通常、前記基板と前記電子部品とで前記異方性導電フィルムを挟み前記異方性導電フィルムを加熱及び押圧することにより行われる。この際の加熱温度としては、例えば、170℃~200℃程度である。この熱が基板及び電子部品へ影響を及ぼすことがある。また、基板と電子部品との熱膨張係数の違いに起因して接続時に位置ずれが発生することがある。
 そこで、低温で基板の端子と電子部品の端子とを異方性導電接続する方法として、光を用いた接続が提案されている。この接続では、ガラス基板などの光を透過する基板と、光硬化性樹脂を含有する異方性導電フィルムとが用いられる。そして、前記基板越しに紫外線などの光が前記異方性導電フィルムに照射され異方性導電接続が行われる。この接続に用いる異方性導電フィルムとしては、例えば、光カチオン重合性化合物、光カチオン重合開始剤、光ラジカル重合性化合物、及び光ラジカル重合開始剤を含有する異方性導電フィルムが提案されている(例えば、特許文献1参照)。しかし、この場合、前記基板の端子が光を透過しない端子であると、前記端子に接触する異方性導電フィルムの部位は、前記端子によって光照射源からの光が遮られるために、十分に硬化することができず、基板の端子と電子部品の端子との導通抵抗が十分ではないという問題がある。
 なお、フィルムに入射した光を多方向に拡散させるために、光を散乱する粒子をフィルム中に含有させる技術が知られている(例えば、特許文献2及び3参照)が、この技術を上記異方性導電フィルムに適用しても、十分な硬化性、及び導通抵抗を得ることはできない。
 したがって、光を用いた異方性導電接続において、光を透過しない端子を基板の端子として用いた場合でも、優れた硬化性、及び優れた導通抵抗を得ることができる異方性導電フィルム、並びに、該異方性導電フィルムを用いた接続方法、及び接合体の提供が求められているのが現状である。
国際公開2000/46315号パンフレット 特開平10-226773号公報 特開平9-178910号公報
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、光を用いた異方性導電接続において、光を透過しない端子を基板の端子として用いた場合でも、優れた硬化性、及び優れた導通抵抗を得ることができる異方性導電フィルム、並びに、該異方性導電フィルムを用いた接続方法、及び接合体を提供することを目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 基板の端子と電子部品の端子とを異方性導電接続させる異方性導電フィルムであって、
 導電性粒子及び光硬化性樹脂を含有する導電性粒子含有層と、光硬化性樹脂を含有する絶縁性接着層とを有し、
 前記導電性粒子含有層及び前記絶縁性接着層の少なくともいずれかが、光散乱性微粒子を含有することを特徴とする異方性導電フィルムである。
 <2> 導電性粒子含有層及び絶縁性接着層のうち、前記絶縁性接着層のみが、光散乱性微粒子を含有する前記<1>に記載の異方性導電フィルムである。
 <3> 光散乱性微粒子の含有量が、前記光散乱性微粒子が含有される層中の樹脂に対して0.05質量%~10.00質量%である前記<1>から<2>のいずれかに記載の異方性導電フィルムである。
 <4> 光散乱性微粒子が、酸化チタンである前記<1>から<3>のいずれかに記載の異方性導電フィルムである。
 <5> 基板の端子と電子部品の端子とを異方性導電接続させる接続方法であって、
 前記基板の端子上に前記<1>から<4>のいずれかに記載の異方性導電フィルムを貼り付ける貼付工程と、
 前記電子部品が載置された前記異方性導電フィルムに対して、前記基板側から光を照射する光照射工程とを含むことを特徴とする接続方法である。
 <6> 前記<5>に記載の接続方法により得られることを特徴とする接合体である。
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、光を用いた異方性導電接続において、光を透過しない端子を基板の端子として用いた場合でも、優れた硬化性、及び優れた導通抵抗を得ることができる異方性導電フィルム、並びに、該異方性導電フィルムを用いた接続方法、及び接合体を提供することができる。
図1は、本発明の異方性導電フィルムの一例の概略断面図である。 図2は、本発明の異方性導電フィルムの一例の概略断面図である。 図3は、本発明の異方性導電フィルムの一例の概略断面図である。 図4Aは、本発明の接続方法を説明するための概略図(その1)である。 図4Bは、本発明の接続方法を説明するための概略図(その2)である。 図4Cは、本発明の接続方法を説明するための概略図(その3)である。
(異方性導電フィルム)
 本発明の異方性導電フィルムは、基板の端子と電子部品の端子とを異方性導電接続させる異方性導電フィルムであって、導電性粒子含有層と、絶縁性接着層とを少なくとも有し、更に必要に応じて、その他の層を有する。
 前記導電性粒子含有層及び前記絶縁性接着層の少なくともいずれかは、光散乱性微粒子を含有する。
<光散乱性微粒子>
 前記光散乱性微粒子としては、前記導電性粒子含有層及び前記絶縁性接着層を硬化させる光を散乱させる微粒子であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、金属酸化物などが挙げられる。
 前記金属酸化物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、酸化チタン、酸化亜鉛などが挙げられる。これらの中でも、前記導電性粒子含有層及び前記絶縁性接着層において光散乱性に優れる点で、酸化チタンが好ましい。
 前記酸化チタンは、アナターゼ型、ルチル型、ブルッカイト型のいずれであってもよいが、ルチル型であることが、光散乱の点で好ましい。
 前記導電性粒子含有層及び前記絶縁性接着層を硬化させる光としては、特に制限はなく、目的に応じて適宜選択することができるが、紫外線が好ましい。
 前記光散乱性微粒子の平均粒径としては、特に制限はなく、目的に応じて適宜選択することができるが、10nm~5,000nmが好ましく、20nm~1,000nmがより好ましく、100nm~800nmが特に好ましい。前記平均粒径が、10nm未満であると、UV光を吸収することがあり、5,000nmを超えると、光散乱し難いことがある。前記平均粒径が、前記特に好ましい範囲内であると、光散乱効率の点で有利である。
 前記平均粒径は、例えば、粒度分布測定装置(FPAR-1000、大塚電子株式会社製)などにより測定することができる。
 前記光散乱性微粒子は、前記導電性粒子含有層及び前記絶縁性接着層のうち、前記絶縁性接着層のみに含有されていることが、導通抵抗、圧痕、及び硬化性の点で好ましい。
 前記光散乱性微粒子の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記光散乱性微粒子が含有される層中の樹脂に対して、0.01質量%~15.00質量%が好ましく、0.05質量%~10.00質量%がより好ましい
 ここで、前記層中の樹脂とは、膜形成樹脂、光硬化性樹脂、及び硬化剤、並びにこれらの硬化物などの層を形成する樹脂を指す。
<導電性粒子含有層>
 前記導電性粒子含有層は、導電性粒子及び光硬化性樹脂を少なくとも含有し、更に必要に応じて、その他の成分を含有する。
 前記導電性粒子含有層は、前記光散乱性微粒子を含有していてもよい。
-導電性粒子-
 前記導電性粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、金属粒子、金属被覆樹脂粒子などが挙げられる。
 前記金属粒子としては、例えば、ニッケル、コバルト、銀、銅、金、パラジウムなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、ニッケル、銀、銅が好ましい。これらの表面酸化を防ぐ目的で、これらの表面に金、パラジウムを施した粒子を用いてもよい。更に、これらの表面に金属突起や有機物で絶縁皮膜を施したものを用いてもよい。
 前記金属被覆樹脂粒子としては、例えば、樹脂コアの表面をニッケル、銅、金、及びパラジウムのいずれかの金属で被覆した粒子などが挙げられる。更に、前記樹脂コアの表面に金属突起や有機物で絶縁皮膜を施したものを用いてもよい。
 前記樹脂コアへの金属の被覆方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、無電解めっき法、スパッタリング法などが挙げられる。
 前記樹脂コアの材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スチレン-ジビニルベンゼン共重合体、ベンゾグアナミン樹脂、架橋ポリスチレン樹脂、アクリル樹脂、スチレン-シリカ複合樹脂などが挙げられる。
 前記導電性粒子含有層における前記導電性粒子の含有量としては、特に制限はなく、回路部材の配線ピッチや、接続面積などによって適宜調整することができる。
-光硬化性樹脂-
 前記光硬化性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、光ラジカル硬化性樹脂、光カチオン硬化性樹脂などが挙げられる。
 前記導電性粒子含有層における前記光硬化性樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
--光ラジカル硬化性樹脂--
 前記光ラジカル硬化性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ジメチロールトリシクロデカンジアクリレート、テトラメチレングリコールテトラアクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス[4-(アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロキシエチル)イソシアヌレート、エポキシアクリレート、ウレタンアクリレート、アクリレートオリゴマーなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 さらに、前記光ラジカル硬化性樹脂としては、前記アクリレートをメタクリレートにしたものが挙げられる。
 これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
--光カチオン硬化性樹脂--
 前記光カチオン硬化性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、オキセタン樹脂、脂環式エポキシ樹脂、及びこれらの変性エポキシ樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 また、光ラジカル硬化性樹脂、光カチオン硬化性樹脂を混合などして、併用してもよい。
-その他の成分-
 前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、膜形成樹脂、硬化剤、シランカップリング剤などが挙げられる。
--膜形成樹脂--
 前記膜形成樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フェノキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂などが挙げられる。前記膜形成樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、製膜性、加工性、接続信頼性の点からフェノキシ樹脂が特に好ましい。
 前記フェノキシ樹脂とは、ビスフェノールAとエピクロルヒドリンより合成される樹脂であって、適宜合成したものを使用してもよいし、市販品を使用してもよい。
 前記導電性粒子含有層における前記膜形成樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
--硬化剤--
 前記硬化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、波長領域200nm~750nmの光により活性なカチオン種又はラジカル種を発生させる硬化剤などが挙げられる。
 カチオン種を発生する光カチオン硬化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スルホニウム塩、オニウム塩などが挙げられ、種々のエポキシ樹脂を良好に硬化させることができる。
 ラジカル種を発生する光ラジカル硬化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アルキルフェノン系光重合開始剤、アシルフォスフィンオキサイド系光重合開始剤、チタノセン系光重合開始剤、オキシムエステル系光重合開始剤などが挙げられ、種々のアクリレートを良好に硬化させることができる。
 なお、前記波長領域200nm~750nmの光により活性なカチオン種又はラジカル種を発生させる硬化剤としては、例えば、光ラジカル硬化剤(商品名:イルガキュア651、BASF社製)、光カチオン硬化剤(商品名:イルガキュア369、BASF社製)などが挙げられる。
 また、光ラジカル硬化剤、光カチオン硬化剤を混合などして、併用してもよい。
 前記導電性粒子含有層における前記硬化剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
--シランカップリング剤--
 前記シランカップリング剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エポキシ系シランカップリング剤、アクリル系シランカップリング剤、チオール系シランカップリング剤、アミン系シランカップリング剤などが挙げられる。
 前記導電性粒子含有層における前記シランカップリング剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記導電性粒子含有層の平均厚みとしては、特に制限はなく、前記導電性粒子の平均粒径、前記絶縁性接着層の厚みとの関係で、適宜選択することができるが、1μm~10μmが好ましく、4μm~8μmがより好ましく、5μm~7μmが特に好ましい。前記平均厚みが、1μm未満であると、基板の端子と電子部品の端子の間に導電性粒子が十分に充填されないことがあり、10μmを超えると、接続不良の原因となることがある。
 ここで、前記平均厚みは、任意に前記導電性粒子含有層の5箇所の厚みを測定した際の平均値である。
<絶縁性接着層>
 前記絶縁性接着層は、光硬化性樹脂を少なくとも含有し、更に必要に応じて、その他の成分を含有する。
 前記絶縁性接着層は、前記光散乱性微粒子を含有することが好ましい。
-光硬化性樹脂-
 前記光硬化性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記導電性粒子含有層の説明において例示した前記光硬化性樹脂などが挙げられる。
 前記絶縁性接着層における前記光硬化性樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
-その他の成分-
 前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、膜形成樹脂、硬化剤、シランカップリング剤などが挙げられる。
 前記膜形成樹脂、前記硬化剤、前記シランカップリング剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記導電性粒子含有層の説明において例示した前記膜形成樹脂、前記硬化剤、前記シランカップリング剤などが挙げられる。
 前記絶縁性接着層における前記膜形成樹脂、前記硬化剤、前記シランカップリング剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記絶縁性接着層の平均厚みとしては、特に制限はなく、前記導電性粒子含有層の厚みとの関係で、適宜選択することができるが、5μm~20μmが好ましく、10μm~14μmがより好ましく、11μm~13μmが特に好ましい。前記平均厚みが、5μm未満であると、端子間における樹脂充填率が減少することがあり、20μmを超えると、接続不良の発生の原因となることがある。
 ここで、前記平均厚みは、任意に前記絶縁性接着層の5箇所の厚みを測定した際の平均値である。
 前記異方性導電フィルムの厚みとしては、特に制限はなく、目的に応じて適宜選択することができる。
 本発明の異方性導電フィルムの一例を、図面を用いて説明する。図1~図3は、本発明の異方性導電フィルムの一例を示す概略断面図である。図1の異方性導電フィルム1は、導電性粒子含有層2と絶縁性接着層3とを有しており、導電性粒子含有層2は、導電性粒子4を含有しており、絶縁性接着層3は、光散乱性微粒子5を含有している。図2の異方性導電フィルム1は、導電性粒子含有層2と絶縁性接着層3とを有しており、導電性粒子含有層2は、導電性粒子4及び光散乱性微粒子5を含有している。図3の異方性導電フィルム1は、導電性粒子含有層2と絶縁性接着層3とを有しており、導電性粒子含有層2は、導電性粒子4及び光散乱性微粒子5を含有しており、絶縁性接着層3は、光散乱性微粒子5を含有している。
(接続方法、及び接合体)
 本発明の接続方法は、貼付工程と、光照射工程とを少なくとも含み、更に必要に応じて、その他の工程を含む。
 前記接続方法は、基板の端子と電子部品の端子とを異方性導電接続させる接続方法である。
 本発明の接合体は、本発明の前記接続方法により製造される。
<基板>
 前記基板としては、異方性導電接続の対象となる、端子を有する基板であり、本発明の前記異方性導電フィルムを硬化させる光を透過する基板であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、ガラス基板、プラスチック基板などが挙げられる。
 前記基板の大きさ、形状、構造としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記端子は、前記異方性導電フィルムを硬化させる光を透過しない端子である。
 前記端子の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、金、銀、銅、アルミニウムなどの金属が挙げられる。
 前記端子の大きさ、形状、構造としては、特に制限はなく、目的に応じて適宜選択することができる。
<電子部品>
 前記電子部品としては、異方性導電接続の対象となる、端子を有する電子部品であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、ICチップ、TAB(Tape Automated Bonding)テープ、液晶パネルなどが挙げられる。前記ICチップとしては、例えば、フラットパネルディスプレイ(FPD)における液晶画面制御用ICチップなどが挙げられる。
<貼付工程>
 前記貼付工程としては、前記基板の端子上に異方性導電フィルムを貼り付ける工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記異方性導電フィルムは、本発明の前記異方性導電フィルムである。
 前記貼付工程においては、通常、前記異方性導電フィルムの前記導電性粒子含有層が前記基板の端子に接触するように、前記異方性導電フィルムを前記基板の端子上に貼り付ける。
<光照射工程>
 前記光照射工程としては、前記電子部品が載置された前記異方性導電フィルムに対して、前記基板側から光を照射する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記光照射工程の前に、前記電子部品は、前記異方性導電フィルム上に載置される。この際、前記異方性導電フィルムの前記絶縁性接着層が、前記電子部品の端子と接している。
 前記異方性導電フィルムへの光の照射は、前記基板側から行われる。即ち、前記異方性導電フィルムへの光の照射は、前記基板越しに行われる。この際、前記基板の端子は、光を透過しない端子であるため、前記基板の端子の光照射源側と反対側にある前記異方性導電フィルムの部位には、前記光照射源からの光が直接には届かない。しかし、前記異方性導電フィルムの前記導電性粒子含有層及び前記絶縁性接着層の少なくともいずれかが、前記光散乱性微粒子を含有することにより、前記基板越しに前記異方性導電フィルムに入射した光は、前記光散乱性微粒子により散乱され、前記光照射源からの光が直接には届かない部位にも光が行き渡り、前記光照射源からの光が直接には届かない前記異方性導電フィルムの部位も優れた硬化性を得ることができる。その結果、優れた導通抵抗を得ることができる。
 前記光としては、特に制限はなく、目的に応じて適宜選択することができるが、前記導電性粒子含有層及び前記絶縁性粒子含有層の光硬化性樹脂を硬化させやすい点で、紫外線が好ましい。前記紫外線の波長としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、200nm~400nmなどが挙げられる。
 前記光の照射源(光照射源)としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、LED(Light Emitting Diode)ランプ、YAG(Yttrium Aluminum Garnet)レーザ、キセノンランプ、ハロゲンランプなどが挙げられる。
 前記光の照射量としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記光照射工程の際には、前記異方性導電フィルムを加熱及び押圧する処理を併用することが好ましい。
 前記加熱及び押圧する処理は、前記光照射を行う前に開始し、前記光照射が終了するまで行うことが好ましい。
 前記加熱及び押圧する処理としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、加熱押圧部材を用いて行うことができる。
 前記加熱押圧部材としては、例えば、加熱機構を有する押圧部材などが挙げられる。前記加熱機構を有する押圧部材としては、例えば、ヒートツールなどが挙げられる。
 前記加熱の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、80℃~140℃が好ましい。
 前記押圧の圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、0.1MPa~100MPaが好ましい。
 前記加熱及び押圧の時間としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、0.5秒間~120秒間が挙げられる。
 本発明の接続方法の一例について図面を用いて説明する。図4A~図4Cは、本発明の接続方法を説明するための概略図である。まず、端子7を有する基板6に、異方性導電フィルム1を前記異方性導電フィルム1の導電性粒子含有層2が端子7に接するように貼り付ける(図4A)。続いて、その貼り付けた異方性導電フィルム1の絶縁性接着層3の上に、端子8を有する電子部品9を載置する。この時点では、基板6と電子部品9は、まだ異方性導電接続されていない(図4B)。そして、電子部品9の上から加熱押圧部材(図示せず)により電子部品9を加熱及び押圧しつつ、光照射源10から基板6越しに導電性粒子含有層2及び絶縁性接着層3へ光照射することにより、基板6と電子部品9を異方性導電接続する(図4C)。この際に、前記導電性粒子含有層2及び前記絶縁性接着層3の少なくともいずれかが光散乱性微粒子5を含有することにより、基板6越しに前記異方性導電フィルム1に入射した光は、光散乱性微粒子5により散乱され、光照射源10からの光が直接には届かない部位にも光が行き渡り、光照射源10からの光が直接には届かない異方性導電フィルム1の部位も優れた硬化性を得ることができる。その結果、優れた導通抵抗を得ることができる。
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
 実施例において、光散乱性微粒子の平均粒径は、粒度分布測定装置(FPAR-1000、大塚電子株式会社製)により測定した。
(比較例1)
<異方性導電フィルムの作製>
-導電性粒子含有層の作製-
 フェノキシ樹脂(品名:YP70、新日鐵化学株式会社製)、液状エポキシ樹脂(品名:EP828、三菱化学株式会社製)、固形エポキシ樹脂(品名:YD014、新日鐵化学株式会社製)、導電性粒子(品名:AUL704、積水化学工業株式会社製)、及びカチオン系硬化剤(光カチオン硬化剤、品名:LW-S1、サンアプロ株式会社製)を表1-1に示す配合で、撹拌装置(自転公転ミキサー、あわとり練太郎、株式会社シンキー製)を用いて均一に混合した。混合後の配合物を剥離処理したPET(ポリエチレンテレフタレートフィルム)上に乾燥後の平均厚みが6μmとなるように塗布し、導電性粒子含有層を作製した。
-絶縁性接着層の作製-
 フェノキシ樹脂(品名:YP70、新日鐵化学株式会社製)、液状エポキシ樹脂(品名:EP828、三菱化学株式会社製)、固形エポキシ樹脂(品名:YD014、新日鐵化学株式会社製)、及びカチオン系硬化剤(光カチオン硬化剤、品名:LW-S1、株式会社サンアプロ製)を表1-1に示す配合で、撹拌装置(自転公転ミキサー、あわとり練太郎、株式会社シンキー製)を用いて均一に混合した。混合後の配合物を剥離処理したPET上に乾燥後の平均厚みが12μmとなるように塗布し、絶縁性接着層を作製した。
 上記で得られた導電性粒子含有層と絶縁性接着層とをロールラミネータを用いて、ロール温度45℃にてラミネートし、異方性導電フィルムを得た。
<接続方法(接合体の製造)>
 周縁部に3列千鳥配置(staggered arrangement)された金バンプを有する試験用ICチップ(バンプサイズ2,550μm、バンプ高さ15μm、ピッチ15μm(外側バンプ列と中央バンプ列及び中央バンプ列と内側バンプ列間のそれぞれの距離15μm、各列内のバンプ間の距離15μm))と、前記試験用ICチップのバンプに対応するAl配線(平均厚み0.5μm)を有するガラス基板(ガラス厚み0.7mm)とを用い、異方性導電接続を行った。
 具体的には、比較例1で作製した異方性導電フィルムを1.5mm幅にスリットして、導電性粒子含有層が前記ガラス基板に接するように、異方性導電フィルムを前記ガラス基板に貼り付けた。
 その上に、前記試験用ICチップを置いて仮固定した後、ヒートツール1.5mm幅で緩衝材(厚み70μmのテフロン(登録商標))を用いて、圧着条件120℃、80MPa、10秒間(ツールスピード25mm/秒間、ステージ温度30℃)で加熱押圧を開始し、開始から5秒間後に、前記ガラス基板側から360nmに最大発光波長を持つLEDランプ(コントローラー:ZUV-C20H、ヘッドユニット:ZUV-H20MB、レンズユニット:ZUV-212L、オムロン株式会社製)を用いて400W/cmで5秒間、UV照射を行った。なお、UV照射の際、加熱押圧は維持していた。
<評価>
 作製した接合体について、以下の評価を行った。結果を表1-1に示す。
〔導通抵抗〕
 各接合体について、30箇所の端子間の抵抗値(Ω)を、4端子法を用いて電流1mAを流し測定した。その際の最大値(max)、及び平均値(ave.)を求めた。
〔圧痕の観察〕
 接合体のガラス基板側から、異方性導電フィルムの異方性導電接続部における、3列千鳥配列バンプの長手方向の中央位置、バンプ列の長手方向の全長Lの0.1L及び0.9Lの位置の3箇所を倍率10倍で顕微鏡観察し、圧痕の均一性について以下の評価基準で評価した。
-評価基準-
 ◎:3つの観察位置についてそれぞれ10箇所観察した結果、いずれの観察位置においても9箇所以上で圧痕が観察された場合
 ○:3つの観察位置についてそれぞれ10箇所観察した結果、いずれかの観察位置において7箇所又は8箇所で圧痕が観察され、それ以外では9箇所以上で圧痕が観察された場合
 △:3つの観察位置についてそれぞれ10箇所観察した結果、いずれかの観察位置において5箇所又は6箇所で圧痕が観察され、それ以外では9箇所以上で圧痕が観察された場合
 ×:3つの観察位置についてそれぞれ10箇所観察した結果、いずれかの観察位置で圧痕が観察できたのが5箇所未満であった場合
〔硬化率〕
 接合体におけるAl配線上の導電性粒子含有層及びガラス基板上の導電性粒子含有層のそれぞれについて、硬化率を測定した。硬化率は、導電性粒子含有層中の樹脂のエポキシ基の減少率により求めた。即ち、異方性導電接続前の導電性粒子含有層中の樹脂のエポキシ基が異方性導電接続によりどれだけ減少したかを、赤外吸収スペクトルの914cm-1の吸収を測定することで求めた。
(実施例1~13)
<異方性導電フィルム及び接合体の作製>
 比較例1において、導電性粒子含有層、及び絶縁性接着層の配合及び平均厚みを、表1-1~表1-2に示す配合及び平均厚みに変えた以外は、比較例1と同様にして、異方性導電フィルムを得た。
 また、比較例1と同様にして、接合体を作製した。
 比較例1と同様の評価に供した。結果を表1-1~表1-2に示す。
(比較例2)
<異方性導電フィルム及び接合体の作製>
-異方性導電フィルムの作製-
 フェノキシ樹脂(品名:YP70、新日鐵化学株式会社製)、液状エポキシ樹脂(品名:EP828、三菱化学株式会社製)、固形エポキシ樹脂(品名:YD014、新日鐵化学株式会社製)、導電性粒子(品名:AUL704、積水化学工業株式会社製)、カチオン系硬化剤(光カチオン硬化剤、品名:LW-S1、株式会社サンアプロ製)、及び酸化チタン1(R820、石原産業株式会社製)を表1-2に示す配合で、撹拌装置(自転公転ミキサー、あわとり練太郎、株式会社シンキー製)を用いて均一に混合した。混合後の配合物を剥離処理したPET上に乾燥後の平均厚みが20μmとなるように塗布し、導電性粒子含有層のみからなる異方性導電フィルムを作製した。
-接合体の作製-
 比較例1において、異方性導電フィルムを上記で作製した異方性導電フィルムに代えた以外は、比較例1と同様にして、接合体を作製した。
 比較例1と同様の評価に供した。結果を表1-2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1-1~表1-2中の各成分の配合量の単位は、質量部である。光散乱性微粒子の含有量(質量%)は、導電性粒子含有層及び絶縁性接着層のそれぞれの層中の樹脂に対する含有量(質量%)である。
 酸化チタン1(R820、石原産業株式会社製、ルチル型)の平均粒径は、200nmである。
 酸化チタン2(MC-50、石原産業株式会社製、アナターゼ型)の平均粒径は、240nmである。
 酸化亜鉛(Nanotek ZnO、CIKナノテック株式会社製)の平均粒径は、30nmである。
 実施例1~13の異方性導電フィルムは、硬化性に優れ、圧痕も良好であり、かつ導通抵抗にも優れていた。
 特に、絶縁性接着層にのみ光散乱性微粒子を含有させた異方性導電フィルムを用いた場合(例えば、実施例2)は、導電性粒子含有層に光散乱性微粒子を含有させた異方性導電フィルムを用いた場合(例えば、実施例1及び3)に比べ、導通抵抗、圧痕、及び配線上の硬化率のいずれもが更に優れていた。これは、導電性粒子含有層に光散乱性微粒子を含有すると、基板又は基板の端子と導電性粒子含有層との界面で光が散乱してしまい、異方性導電フィルムに入射する光量が減少するためと考えられる。
 光散乱性微粒子の含有量が、層中の樹脂に対して、0.05質量%~10.00質量%の場合(実施例2、5及び6)は、光散乱性微粒子の含有量が、前記範囲外の場合(実施例4及び7)に比べて、圧痕及び配線上の硬化率が更に優れていた。
 光散乱性微粒子としての酸化チタンがルチル型の場合(実施例2)は、アナターゼ型の場合(実施例8)に比べて、導通抵抗、圧痕及び配線上の硬化率が更に優れていた。
 光散乱性微粒子に酸化亜鉛を用いた場合(実施例13)は、圧痕及び配線上の硬化率のいずれも優れるものの、圧痕及び配線上の硬化率が、実施例2よりは若干劣っていた。
 導電性粒子含有層の平均厚みを4μmにした場合(実施例9)は、実施例2と同程度に優れていた。導電性粒子含有層の平均厚みを8μmにした場合(実施例10)は、導通抵抗、圧痕及び配線上の硬化率のいずれも優れるものの、実施例2よりは若干劣っていた。
 絶縁性接着層の平均厚みを10μmにした場合(実施例11)及び14μmにした場合(実施例12)は、導通抵抗、圧痕及び配線上の硬化率のいずれも優れるものの、実施例2よりは若干劣っていた。
 一方、光散乱性微粒子を含有しない場合(比較例1)には、導通抵抗、圧痕、及び配線上の硬化率のいずれもが、実施例1~13よりも劣っていた。
 導電性粒子含有層のみからなる異方性導電フィルムに光散乱性微粒子を含有した場合(比較例2)には、圧痕が、実施例1~13よりも劣っていた。
 本発明の異方性導電フィルム及び接続方法は、光を用いた異方性導電接続において、光を透過しない端子を基板の端子として用いた場合でも、優れた硬化性、及び優れた導通抵抗を得ることができることから、光を用いた接合体の製造に好適に用いることができる。
  1  異方性導電フィルム
  2  導電性粒子含有層
  3  絶縁性接着層
  4  導電性粒子
  5  光散乱性微粒子
  6  基板
  7  端子
  8  端子
  9  電子部品
  10 光照射源

Claims (6)

  1.  基板の端子と電子部品の端子とを異方性導電接続させる異方性導電フィルムであって、
     導電性粒子及び光硬化性樹脂を含有する導電性粒子含有層と、光硬化性樹脂を含有する絶縁性接着層とを有し、
     前記導電性粒子含有層及び前記絶縁性接着層の少なくともいずれかが、光散乱性微粒子を含有することを特徴とする異方性導電フィルム。
  2.  導電性粒子含有層及び絶縁性接着層のうち、前記絶縁性接着層のみが、光散乱性微粒子を含有する請求項1に記載の異方性導電フィルム。
  3.  光散乱性微粒子の含有量が、前記光散乱性微粒子が含有される層中の樹脂に対して0.05質量%~10.00質量%である請求項1から2のいずれかに記載の異方性導電フィルム。
  4.  光散乱性微粒子が、酸化チタンである請求項1から3のいずれかに記載の異方性導電フィルム。
  5.  基板の端子と電子部品の端子とを異方性導電接続させる接続方法であって、
     前記基板の端子上に請求項1から4のいずれかに記載の異方性導電フィルムを貼り付ける貼付工程と、
     前記電子部品が載置された前記異方性導電フィルムに対して、前記基板側から光を照射する光照射工程とを含むことを特徴とする接続方法。
  6.  請求項5に記載の接続方法により得られることを特徴とする接合体。
PCT/JP2012/079486 2011-11-14 2012-11-14 異方性導電フィルム、接続方法、及び接合体 WO2013073563A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020147015790A KR101582766B1 (ko) 2011-11-14 2012-11-14 이방성 도전 필름, 접속 방법 및 접합체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011248891A JP2013105636A (ja) 2011-11-14 2011-11-14 異方性導電フィルム、接続方法、及び接合体
JP2011-248891 2011-11-14

Publications (1)

Publication Number Publication Date
WO2013073563A1 true WO2013073563A1 (ja) 2013-05-23

Family

ID=48429619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079486 WO2013073563A1 (ja) 2011-11-14 2012-11-14 異方性導電フィルム、接続方法、及び接合体

Country Status (4)

Country Link
JP (1) JP2013105636A (ja)
KR (1) KR101582766B1 (ja)
TW (1) TWI579865B (ja)
WO (1) WO2013073563A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083809A1 (ja) * 2013-12-05 2015-06-11 デクセリアルズ株式会社 接続構造体の製造方法、及び異方性導電フィルム
WO2015108025A1 (ja) * 2014-01-16 2015-07-23 デクセリアルズ株式会社 接続体、接続体の製造方法、接続方法、異方性導電接着剤
KR20160117458A (ko) * 2014-02-04 2016-10-10 데쿠세리아루즈 가부시키가이샤 이방성 도전 필름 및 그 제조 방법
KR20160119087A (ko) * 2014-02-04 2016-10-12 데쿠세리아루즈 가부시키가이샤 이방성 도전 필름 및 그 제조 방법
KR20160137957A (ko) 2014-03-28 2016-12-02 데쿠세리아루즈 가부시키가이샤 이방성 도전 필름
CN107078071A (zh) * 2015-01-20 2017-08-18 迪睿合株式会社 连接体的制造方法、电子部件的连接方法、连接体
JP2021509693A (ja) * 2018-01-08 2021-04-01 ディディピー スペシャリティ エレクトロニック マテリアルズ ユーエス エルエルシー エポキシ樹脂接着剤組成物
TWI781710B (zh) * 2014-10-28 2022-10-21 日商迪睿合股份有限公司 異向性導電膜、其製造方法及連接構造體

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6002518B2 (ja) * 2012-09-21 2016-10-05 デクセリアルズ株式会社 異方性導電フィルム、接続方法、及び接合体
JP6428325B2 (ja) * 2014-02-04 2018-11-28 デクセリアルズ株式会社 異方性導電フィルム及びその製造方法
JP6273875B2 (ja) 2014-02-04 2018-02-07 デクセリアルズ株式会社 異方性導電フィルム及びその製造方法
CN105940563B (zh) * 2014-02-04 2019-03-05 迪睿合株式会社 各向异性导电膜及其制造方法
JP6233069B2 (ja) * 2014-02-04 2017-11-22 デクセリアルズ株式会社 異方性導電フィルム及びその製造方法
JP6260313B2 (ja) 2014-02-04 2018-01-17 デクセリアルズ株式会社 異方性導電フィルム及びその製造方法
JP6217422B2 (ja) * 2014-02-04 2017-10-25 デクセリアルズ株式会社 異方性導電フィルム及びその製造方法
JP6260312B2 (ja) * 2014-02-04 2018-01-17 デクセリアルズ株式会社 異方性導電フィルム及びその製造方法
US11309270B2 (en) 2014-02-04 2022-04-19 Dexerials Corporation Anisotropic conductive film and production method of the same
KR20170033378A (ko) * 2014-10-28 2017-03-24 데쿠세리아루즈 가부시키가이샤 이방 도전성 필름 및 접속 구조체
KR102031530B1 (ko) * 2014-11-12 2019-10-14 데쿠세리아루즈 가부시키가이샤 광 경화계 이방성 도전 접착제, 접속체의 제조 방법 및 전자 부품의 접속 방법
WO2016117613A1 (ja) * 2015-01-20 2016-07-28 デクセリアルズ株式会社 接続体の製造方法、電子部品の接続方法、接続体
JP6661886B2 (ja) * 2015-03-11 2020-03-11 日立化成株式会社 フィルム状回路接続材料及び回路部材の接続構造体の製造方法
JP6859609B2 (ja) * 2015-05-27 2021-04-14 デクセリアルズ株式会社 異方導電性フィルム及び接続構造体
JP2020024937A (ja) * 2019-10-28 2020-02-13 日立化成株式会社 フィルム状回路接続材料及び回路部材の接続構造体の製造方法
WO2022067506A1 (zh) * 2020-09-29 2022-04-07 重庆康佳光电技术研究院有限公司 显示面板及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315946A (ja) * 1995-03-14 1996-11-29 Fujikura Rubber Ltd 基板の接続方法および接続装置
JP2006145919A (ja) * 2004-11-19 2006-06-08 Mitsubishi Plastics Ind Ltd 光反射体及び光反射体の製造方法
WO2010098273A1 (ja) * 2009-02-27 2010-09-02 ソニーケミカル&インフォメーションデバイス株式会社 異方性導電フィルム及び発光装置
WO2011129313A1 (ja) * 2010-04-12 2011-10-20 ソニーケミカル&インフォメーションデバイス株式会社 発光装置の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09178910A (ja) 1995-12-26 1997-07-11 Bridgestone Corp 接着性を有する光散乱体
JP3516379B2 (ja) 1996-12-10 2004-04-05 住友ベークライト株式会社 異方導電フィルム
JP4469089B2 (ja) * 1999-02-08 2010-05-26 日立化成工業株式会社 回路接続用フィルム状異方導電性接着剤、電極の接続構造及び電極の接続方法
JP2005235530A (ja) * 2004-02-18 2005-09-02 Hitachi Chem Co Ltd 回路接続材料
JP4880533B2 (ja) * 2007-07-03 2012-02-22 ソニーケミカル&インフォメーションデバイス株式会社 異方性導電膜及びその製造方法、並びに接合体
JP2008124024A (ja) * 2007-11-12 2008-05-29 Hitachi Chem Co Ltd 回路電極の接続方法
JP5226562B2 (ja) * 2008-03-27 2013-07-03 デクセリアルズ株式会社 異方性導電フィルム、並びに、接合体及びその製造方法
CN102484326B (zh) * 2009-08-26 2014-12-10 积水化学工业株式会社 各向异性导电材料、连接结构体及连接结构体的制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315946A (ja) * 1995-03-14 1996-11-29 Fujikura Rubber Ltd 基板の接続方法および接続装置
JP2006145919A (ja) * 2004-11-19 2006-06-08 Mitsubishi Plastics Ind Ltd 光反射体及び光反射体の製造方法
WO2010098273A1 (ja) * 2009-02-27 2010-09-02 ソニーケミカル&インフォメーションデバイス株式会社 異方性導電フィルム及び発光装置
WO2011129313A1 (ja) * 2010-04-12 2011-10-20 ソニーケミカル&インフォメーションデバイス株式会社 発光装置の製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083809A1 (ja) * 2013-12-05 2015-06-11 デクセリアルズ株式会社 接続構造体の製造方法、及び異方性導電フィルム
WO2015108025A1 (ja) * 2014-01-16 2015-07-23 デクセリアルズ株式会社 接続体、接続体の製造方法、接続方法、異方性導電接着剤
KR102450569B1 (ko) * 2014-02-04 2022-10-04 데쿠세리아루즈 가부시키가이샤 이방성 도전 필름 및 그 제조 방법
KR20160119087A (ko) * 2014-02-04 2016-10-12 데쿠세리아루즈 가부시키가이샤 이방성 도전 필름 및 그 제조 방법
US11195813B2 (en) 2014-02-04 2021-12-07 Dexerials Corporation Anisotropic conductive film and production method of the same
KR20160117458A (ko) * 2014-02-04 2016-10-10 데쿠세리아루즈 가부시키가이샤 이방성 도전 필름 및 그 제조 방법
KR102552788B1 (ko) * 2014-02-04 2023-07-06 데쿠세리아루즈 가부시키가이샤 이방성 도전 필름 및 그 제조 방법
KR20160137957A (ko) 2014-03-28 2016-12-02 데쿠세리아루즈 가부시키가이샤 이방성 도전 필름
TWI781710B (zh) * 2014-10-28 2022-10-21 日商迪睿合股份有限公司 異向性導電膜、其製造方法及連接構造體
CN107078071A (zh) * 2015-01-20 2017-08-18 迪睿合株式会社 连接体的制造方法、电子部件的连接方法、连接体
CN107078071B (zh) * 2015-01-20 2020-03-03 迪睿合株式会社 连接体的制造方法、电子部件的连接方法、连接体
JP2021509693A (ja) * 2018-01-08 2021-04-01 ディディピー スペシャリティ エレクトロニック マテリアルズ ユーエス エルエルシー エポキシ樹脂接着剤組成物
US11674063B2 (en) 2018-01-08 2023-06-13 Ddp Specialty Electronic Materials Us, Llc Epoxy resin adhesive compositions
JP7410031B2 (ja) 2018-01-08 2024-01-09 ディディピー スペシャルティ エレクトロニック マテリアルズ ユーエス,エルエルシー エポキシ樹脂接着剤組成物

Also Published As

Publication number Publication date
JP2013105636A (ja) 2013-05-30
TWI579865B (zh) 2017-04-21
KR101582766B1 (ko) 2016-01-05
KR20140091055A (ko) 2014-07-18
TW201322276A (zh) 2013-06-01

Similar Documents

Publication Publication Date Title
WO2013073563A1 (ja) 異方性導電フィルム、接続方法、及び接合体
JP7052254B2 (ja) フィラー含有フィルム
KR101035864B1 (ko) 이방성 도전막 및 그 제조방법과 접합체
JP5685473B2 (ja) 異方性導電フィルム、接合体の製造方法、及び接合体
JP7047282B2 (ja) フィラー含有フィルム
TW201435919A (zh) 異向性導電膜及其製造方法
WO2017141863A1 (ja) 異方性導電フィルム、その製造方法及び接続構造体
TWI703585B (zh) 異向性導電膜及連接構造體
JP2010199087A (ja) 異方性導電膜及びその製造方法、並びに、接合体及びその製造方法
WO2011162137A1 (ja) 接合体及びその製造方法
JP7087305B2 (ja) フィラー含有フィルム
WO2018074318A1 (ja) フィラー含有フィルム
WO2015083809A1 (ja) 接続構造体の製造方法、及び異方性導電フィルム
JP2022097477A (ja) フィラー含有フィルム
WO2015174447A1 (ja) 異方性導電フィルム
JP7062389B2 (ja) 異方性導電フィルム
TWI638025B (zh) Anisotropic conductive film
JP7234032B2 (ja) 接着フィルムの製造方法、接着フィルム、及び接続体の製造方法
JP6705516B2 (ja) 異方導電性フィルムの製造方法
JP6517130B2 (ja) リペア方法、及び接続方法
TW201606036A (zh) 異向性導電膜及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849607

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147015790

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12849607

Country of ref document: EP

Kind code of ref document: A1