WO2022067506A1 - 显示面板及其制作方法 - Google Patents

显示面板及其制作方法 Download PDF

Info

Publication number
WO2022067506A1
WO2022067506A1 PCT/CN2020/118823 CN2020118823W WO2022067506A1 WO 2022067506 A1 WO2022067506 A1 WO 2022067506A1 CN 2020118823 W CN2020118823 W CN 2020118823W WO 2022067506 A1 WO2022067506 A1 WO 2022067506A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
light
display panel
emitting units
driving substrate
Prior art date
Application number
PCT/CN2020/118823
Other languages
English (en)
French (fr)
Inventor
付杰
刘政明
龚立伟
张国建
Original Assignee
重庆康佳光电技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆康佳光电技术研究院有限公司 filed Critical 重庆康佳光电技术研究院有限公司
Priority to PCT/CN2020/118823 priority Critical patent/WO2022067506A1/zh
Priority to US17/542,035 priority patent/US20220102605A1/en
Publication of WO2022067506A1 publication Critical patent/WO2022067506A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present application relates to the field of display panels, and in particular, to a display panel and a manufacturing method thereof.
  • Micro Light Emitting Diode (Micro-LED) display panels are limited by the size of the LED, and the size of the P electrode and the N electrode of the LED is only ten microns.
  • the traditional solder paste reflow soldering technology is only suitable for display panels with a size of LEDs larger than 100 ⁇ m and a spacing between adjacent LEDs larger than 400 ⁇ m, and not suitable for display panels with micro-LEDs.
  • Most of the existing micro-LED display panels use two methods of indium tin oxide (ITO) eutectic bonding.
  • ITO eutectic method requires a high degree of metal lattice matching, and ITO has low affinity with most materials.
  • Au or Cu needs to be evaporated, and the process is complicated and the cost is high.
  • the bonding between the driving substrate and the light-emitting unit is not firm, and the position of the light-emitting unit is prone to be abnormal, and the technical problem of reducing the mass transfer accuracy is caused.
  • an embodiment of the present application provides a method for manufacturing a display panel, which includes: sequentially disposing a first adhesive layer and a second adhesive layer on a surface of a driving substrate, the first adhesive layer comprising: conductive particles; adhering a plurality of light-emitting units arranged in an array on the side of the second adhesive layer away from the driving substrate; semi-curing the second adhesive layer; and attaching the first adhesive layer and the The second adhesive layer is cured, and the plurality of light emitting units and the driving substrate are electrically connected through the conductive particles.
  • the manufacturing method of the display panel of the present application increases the bonding performance between the light-emitting unit and the driving substrate, so that the light-emitting unit can be better positioned with the electrodes on the driving substrate when the light-emitting unit is transferred in large quantities, and the position of the light-emitting unit is increased. accuracy, thereby improving the yield rate of display panel fabrication.
  • the first adhesive layer and the second adhesive layer are arranged on the surface of the driving substrate in sequence, and the first adhesive layer includes conductive particles, which specifically includes: under the first condition, the first adhesive layer is Laminating to the surface of the driving substrate provided with the electrodes, the first adhesive layer includes conductive particles; attaching an adhesive on the surface of the first adhesive layer away from the driving substrate and pre-curing to form second adhesive layer.
  • Pre-curing the adhesive for forming the second adhesive layer can reduce the fluidity of the adhesive, so that the thickness of the formed second adhesive layer is more uniform.
  • the first condition includes a first temperature and a first pressure, the first temperature is 60°C-80°C, and the first pressure is 0.5MPa to 1Mpa; or the first condition includes light action and a first pressure, the first pressure is 0.5MPa to 1Mpa.
  • the semi-curing the second adhesive layer specifically includes: pressing the plurality of light-emitting units under a second condition to semi-curing the second adhesive layer.
  • the second condition includes a second temperature and a second pressure, the second temperature is 80°C-120°C, and the second pressure is 0.8MPa-1.5MPa; or the second condition includes light Action and second pressure, the second pressure is 0.8MPa-1.5MPa.
  • the fluidity of the second adhesive layer is greater than that of the first adhesive layer, and the second adhesive layer is squeezed to flow to the gaps between the plurality of light-emitting units and fill the gaps to form a semi-cured first adhesive layer.
  • Two adhesive layers In this way, when the first adhesive layer is cured, the ability of the P electrode and the N electrode to capture conductive particles is increased, more conductive particles can be captured, and the P electrode and the N electrode can be better electrically connected to the driving substrate.
  • a shielding structure can be formed to prevent the crosstalk generated by the lateral light emitted by the light-emitting units to the light generated by the adjacent light-emitting units, thus eliminating the need for preparing a shielding structure. Steps of the light department.
  • the semi-curing of the second adhesive layer specifically includes: at a temperature at which the first adhesive layer is in a high elastic state, using a second pressure to hot press the plurality of light-emitting units, so that all the light-emitting units are pressed.
  • the second adhesive layer fills the gaps between the plurality of light emitting units and forms a semi-cured second adhesive layer.
  • the curing of the first adhesive layer and the second adhesive layer, and the electrical connection between the plurality of light-emitting units and the driving substrate through the conductive particles specifically includes: The plurality of light-emitting units are pressed together under the third condition, so that the first adhesive layer and the second adhesive layer fill the gaps between the plurality of light-emitting units and are cured, and the driving substrate is and electrically connected to the plurality of light-emitting units through the conductive particles.
  • the third condition includes a third temperature and a third pressure, the third temperature is 150°C-220°C, and the third pressure is 4.5MPa -7MPa; or the third condition includes light action and a third pressure, and the third pressure is 4.5MPa -7MPa.
  • the time for the temperature to rise to 90% of the third temperature is less than or equal to half of the total curing time.
  • the ability of the P electrode and the N electrode of the light-emitting unit to capture conductive particles can be increased, so that the P electrode and the N electrode can have better electrical connection with the driving substrate. If the temperature rises too slowly, the P-electrode and N-electrode capture less conductive particles, which affects the conductivity.
  • the second adhesive layer has light blocking properties, and the melting temperature of the second adhesive layer is lower than the melting temperature of the first adhesive layer.
  • the ability of the P electrode and the N electrode to capture conductive particles is increased, more conductive particles can be captured, and the P electrode and the N electrode can be better electrically connected to the driving substrate.
  • a shielding structure can be formed to prevent the crosstalk generated by the lateral light emitted by the light-emitting units to the light generated by the adjacent light-emitting units, thus eliminating the need for preparing a shielding structure. Steps of the light department.
  • an embodiment of the present application further provides a display panel, the display panel includes: a driving substrate; a plurality of light-emitting units, the plurality of light-emitting unit arrays are arranged on one side of the driving substrate; structure, the shielding structure and the plurality of light-emitting units are located on the same side of the driving substrate and in the gap between the plurality of light-emitting units, and are arranged around each of the light-emitting units, and the shielding structure includes conductive particles, each of the light-emitting units is electrically connected to the driving substrate through the conductive particles.
  • the bonding of the light-emitting unit and the driving substrate of the display panel of the present application is electrically connected by the conductive particles of the shielding structure, so that the shielding structure is formed when the light-emitting unit is bonded, which simplifies the preparation process of the display panel.
  • the shielding structure includes a connecting portion and a light blocking portion connected to the connecting portion, the connecting portion is disposed close to the driving substrate, and the light blocking portion is disposed away from the driving substrate; the connecting portion
  • the conductive particles are included and have anisotropic conductivity, and the light blocking part has light blocking performance.
  • the thickness of the light blocking portion is 4 ⁇ m-7 ⁇ m.
  • the thickness of the connecting portion is 3 ⁇ m-8 ⁇ m.
  • the electrical connection process of the plurality of light emitting units and the driving substrate is completed in the same process as the formation process of the shielding structure.
  • the display panel is manufactured by the manufacturing method of the display panel according to the embodiment of the present application.
  • the manufacturing method of the display panel of the present application includes sequentially disposing a first adhesive layer and a second adhesive layer on the surface of a driving substrate, the first adhesive layer including conductive particles; and the second adhesive layer facing away from the driving substrate Adhering a plurality of light-emitting units arranged in an array on one side; semi-curing the second adhesive layer; and curing the first adhesive layer and the second adhesive layer, and making the The plurality of light-emitting units are electrically connected to the driving substrate through the conductive particles.
  • the bonding performance between the light-emitting unit and the driving substrate is increased, so that the light-emitting unit can be better positioned with the electrodes on the driving substrate when the light-emitting unit is transferred in large quantities, and the accuracy of the position of the light-emitting unit is increased, thereby improving the production of the display panel.
  • the retaining wall structure formed by the bonding process effectively reduces the risk of color shift.
  • FIG. 1 is a flowchart of a method for fabricating a display panel according to an embodiment of the present application.
  • FIG. 2 is a flowchart of a method for fabricating a display panel according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a display panel according to an embodiment of the present application.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, features defined as “first”, “second” may expressly or implicitly include one or more of said features. In the description of the present application, “plurality” means two or more, unless otherwise expressly and specifically defined.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection connected, or integrally connected. It can be a mechanical connection or an electrical connection. It can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two elements or the interaction relationship between the two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection connected, or integrally connected. It can be a mechanical connection or an electrical connection. It can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two elements or the interaction relationship between the two elements.
  • the solder paste reflow soldering technology is only suitable for display panels with a size of LEDs larger than 100 ⁇ m and a spacing between adjacent LEDs larger than 400 ⁇ m, and not suitable for display panels with micro-LEDs.
  • Most of the existing micro light emitting diode display panels use two methods of anisotropic conductive film (Anisotropic conductive film, ACF) bonding and indium tin oxide (ITO) eutectic bonding.
  • ACF anisotropic conductive film
  • ITO indium tin oxide
  • the ITO eutectic method requires a high degree of metal lattice matching, and ITO has low affinity with most materials.
  • Au or Cu needs to be evaporated, and the process is complicated and the cost is high.
  • the ACF material is not sticky before the main cure, and the bonding with the LED is not firm during the mass transfer process, which is prone to abnormal LED position, which reduces the mass transfer accuracy and increases the difficulty of repairing the thin film transistor (TFT
  • an embodiment of the present application provides a method for fabricating a display panel 100 , which includes: S1 , sequentially disposing a first adhesive layer 30 and a second adhesive layer 50 on the surface of the driving substrate 10 , and step S1 .
  • An adhesive layer 30 includes conductive particles 31 .
  • the driving substrate 10 is a thin film transistor array substrate, and the surface of the driving substrate 10 is provided with a first electrode 11 electrically connected to the source or drain of the thin film transistor array substrate and arranged in an array, and a common electrode (low
  • the second electrodes 13 are connected to the level Vss) and arranged in an array.
  • the first electrode 11 and the second electrode 13 are both indium tin oxide (ITO) electrodes.
  • the driving substrate 10 may be placed on the supporting table 101 . Before disposing the first adhesive layer 30 and the second adhesive layer 50 , the driving substrate 10 is disposed on the stage 101 .
  • the first adhesive layer 30 is an anisotropic conductive layer (Anisotropic conductive film, ACF), which is conductive in some directions and not in others.
  • the first adhesive layer 30 may be an adhesive including conductive particles 31 , the first adhesive layer 30 has a high elastic state, and the temperature of the first adhesive layer 30 in the high elastic state is in contact with the second adhesive layer. The semi-curing temperature of the bonding layer 50 is close.
  • the particle size of the conductive particles 31 may be 3 ⁇ m-5 ⁇ m. That is, the particle size of the conductive particles 31 may be any value between 3 ⁇ m and 5 ⁇ m, such as 3 ⁇ m, 3.5 ⁇ m, 4 ⁇ m, 4.5 ⁇ m, 5 ⁇ m, and the like.
  • the second adhesive layer 50 is a non-conductive material (Non-conductive patse, NCP), has light blocking properties, and the melting temperature of the second adhesive layer 50 is lower than the melting temperature of the first adhesive layer 30 .
  • the second adhesive layer 50 is a mixture of an epoxy resin material and a curing agent to which black substances such as carbon black or black color paste dyes are added.
  • the second adhesive layer 50 has a semi-cured state (B-stage). In the B-stage, the second adhesive layer 50 is meltable and soluble. When it is cured by heating, the second adhesive layer 50 changes from the B-stage. in a fully cured state.
  • the light-blocking properties include, but are not limited to, properties that prevent light from penetrating, such as emitting and absorbing light.
  • a first adhesive layer 30 and a second adhesive layer 50 are sequentially disposed on the surface of the driving substrate 10 , and the first adhesive layer 30 includes conductive particles 31 , which specifically includes: S11 , under the first condition, the first adhesive layer 30 is The bonding layer 30 is pressed and bonded to the surface of the driving substrate 10 on which the electrodes are provided.
  • the first condition includes a first temperature and a first pressure; or the first condition includes light action and a first pressure.
  • the first temperature is 60°C-80°C, that is, the first temperature may be any temperature between 60°C and 80°C, such as 60°C, 65°C, 70°C, 75°C, 80°C, etc. .
  • the first pressure is 0.5MPa to 1Mpa, that is, the first pressure can be any pressure between 0.5MPa and 1Mpa, such as 0.5MPa, 0.6Mpa, 0.75MPa, 0.8Mpa, 0.9MPa, 1Mpa, etc. .
  • the light action may be UV light action.
  • an ink printing technology Ink jet printing, IJP technology
  • an adhesive is sprayed, and an ultraviolet pre-curing (UV Pre-curing, UV pre-curing) is performed.
  • the second adhesive layer 50 is formed.
  • Using ultraviolet rays to pre-cur the adhesive for forming the second adhesive layer 50 can reduce the fluidity of the adhesive, so that the thickness of the formed second adhesive layer 50 is more uniform.
  • each light-emitting unit 70 includes a P electrode 71 and an N electrode 73 , the surface of the light-emitting unit 70 provided with the P electrode 71 and the N electrode 73 faces the driving substrate 10 , and the position of the P electrode 71 of each light-emitting unit 70 is the same as that of the first electrode 11 Correspondingly, the position of the N electrode 73 corresponds to that of the second electrode 13 .
  • the light emitting unit 70 may be, but not limited to, a micro light emitting diode (Micro LED) or a sub-millimeter light emitting diode (Mini LED).
  • Micro LED micro light emitting diode
  • Mini LED sub-millimeter light emitting diode
  • semi-curing the second adhesive layer 50 specifically includes: pressing a plurality of light emitting units 70 under a second condition to semi-curing the second adhesive layer 50. Under the second condition, the first The adhesive layer 30 is in a highly elastic state.
  • the second condition includes a second temperature and a second pressure, or the second condition includes light action and a second pressure.
  • the second temperature is 80°C-120°C, that is, the second temperature can be any temperature between 80°C and 120°C, such as 80°C, 85°C, 90°C, 95°C, 100°C, 105°C, 110°C, 115°C, 120°C, etc.
  • the second pressure is 0.8MPa-1.5MPa, that is, the second pressure can be any pressure between 0.8MPa and 1.5Mpa, such as 0.8MPa, 1.0Mpa, 1.1MPa, 1.2Mpa, 1.3MPa, 1.5Mpa, etc.
  • the action of light may be the action of ultraviolet rays, and at this time, the first adhesive layer 30 and the second adhesive layer 50 may be made of photo-curable materials.
  • the second adhesive layer 50 when the temperature is at the second temperature, the second adhesive layer 50 is in a semi-cured state (B-stage), and the first adhesive layer 30 gradually changes from a solid state (or a glass state, Glassy State) to a highly elastic state. (Rubbery State), and the curing temperature of the first adhesive layer 30 is lower than the second temperature.
  • the semi-curing temperature (second temperature) of the second adhesive layer 50 is higher than the glass transition temperature (Tg) of the first adhesive and lower than the curing temperature of the first adhesive .
  • the fluidity of the second adhesive layer 50 is greater than that of the first adhesive layer 30, and the second adhesive layer 50 is squeezed to flow to the gaps between the plurality of light emitting units 70 and fill the gaps to form The semi-cured second adhesive layer 50 .
  • the ability of the P electrode 71 and the N electrode 73 to capture the conductive particles 31 can be increased, more conductive particles 31 can be captured, and the P electrode 71 and the N electrode 73 can be better connected to the driving force.
  • the substrate 10 is electrically connected.
  • a shielding structure can be formed to prevent the crosstalk generated by the lateral light emitted by the light-emitting units 70 to the light generated by the adjacent light-emitting units 70, saving energy
  • the step of preparing the light blocking part 50 is gone.
  • the number of the conductive particles 31 captured by the P electrode 71 and the N electrode 73 toward the surface of the driving substrate 10 is greater than or equal to 5.
  • the P electrode 71 and the N electrode 73 and the driving substrate 10 may be more Good turn on.
  • a buffer layer is provided on the surface of the hot pressing head facing the plurality of light-emitting units 70; or a buffer layer is provided on the surface of the plurality of light-emitting units 70 away from the driving substrate 10 layer.
  • the buffer layer may be, but is not limited to, a polytetrafluoroethylene (PTFE) layer.
  • PTFE polytetrafluoroethylene
  • the buffer layer can protect the light-emitting unit 70 and prevent the surface of the light-emitting unit 70 from being damaged when the heat-pressing head hot-presses the light-emitting unit 70 .
  • the first adhesive layer 30 and the second adhesive layer 50 are cured (main cure, local pressure), and the plurality of light emitting units 70 and the driving substrate 10 are electrically connected through the conductive particles 31 .
  • the first adhesive layer 30 and the second adhesive layer 50 are cured, and the plurality of light-emitting units 70 and the driving substrate 10 are electrically connected through the conductive particles 31 , which specifically includes: pressing the plurality of light-emitting units 70 under the third condition.
  • the light emitting unit 70 is formed such that the first adhesive layer 30 and the second adhesive layer 50 fill the gaps between the plurality of light emitting units 70 and are cured, and the driving substrate 10 and the plurality of light emitting units 70 are electrically connected through the conductive particles 31 .
  • the third condition includes a third temperature and a third pressure; or the third condition includes light action and a third pressure, and the third pressure is 4.5MPa -7MPa.
  • the action of light may be the action of ultraviolet rays, and at this time, the first adhesive layer 30 and the second adhesive layer 50 may be made of photo-curable materials.
  • the third temperature is 150°C-220°C, that is, the third temperature can be any temperature between 150°C and 220°C, such as 150°C, 160°C, 170°C, 180°C, 190°C, 200°C, 210°C, 220°C, etc.
  • the third pressure is 4.5MPa-7MPa
  • the third pressure can be any pressure between 4.5MPa and 7Mpa, such as 4.5MPa, 4.8Mpa, 5.0MPa, 5.5Mpa, 6.0MPa, 6.5Mpa, 7Mpa, etc.
  • the second adhesive layer 50 gradually tends to be fully cured from the B-stage, and the second adhesive layer 50 still has slight fluidity before being fully cured.
  • the first adhesive layer 30 is completely transformed into In the liquid state, when the thermal pressure head is pressed down, the P electrode 71 and the N electrode 73 of the light emitting unit 70 are gradually embedded in the liquid first adhesive layer 30, and the material of the pressed first adhesive layer 30 also flows to the liquid state.
  • the gaps between the light-emitting units 70 are filled with retaining walls, and the P electrode 71 and the N electrode 73 of the light-emitting unit 70 are in contact with the conductive particles 31, and the particles are squeezed under the action of the third pressure.
  • the bonding between the P electrode 71 of the light emitting unit 70 and the first electrode 11 of the driving substrate 10 and the bonding between the N electrode 73 of the light emitting unit 70 and the second electrode 13 of the driving substrate 10 are realized.
  • the first adhesive layer 30 is cured to form the connecting portion 30 of the display panel 100
  • the second adhesive layer 50 is cured to form the light blocking portion 50 of the display panel 100 .
  • the time for the temperature to rise to 90% of the third temperature is less than or equal to half of the total curing time. For example, when the total curing time is 10 seconds, the temperature is raised to 90% of the third temperature within 5 seconds. For another example, when the total curing time is 5 seconds, the temperature is raised to 90% of the third temperature within 2 seconds.
  • the ability of the P electrode 71 and the N electrode 73 of the light emitting unit 70 to capture the conductive particles 31 can be increased, so that the P electrode 71 and the N electrode 73 and the driving substrate 10 have better electrical connection. If the temperature rises too slowly, the P electrode 71 and the N electrode 73 capture less conductive particles 31 , which affects the conductivity.
  • a buffer layer is provided on the surface of the hot pressing head facing the plurality of light-emitting units 70; or a buffer layer is provided on the surface of the plurality of light-emitting units 70 away from the driving substrate 10 .
  • the buffer layer may be, but is not limited to, a polytetrafluoroethylene (PTFE) layer.
  • PTFE polytetrafluoroethylene
  • the buffer layer can protect the light-emitting unit 70 and prevent the surface of the light-emitting unit 70 from being damaged when the heat-pressing head hot-presses the light-emitting unit 70 .
  • the thickness of the second adhesive layer 30 of the fabricated display panel 100 is 4 ⁇ m-7 ⁇ m. In this way, crosstalk of lateral light emitted between different light emitting units can be better prevented.
  • the manufacturing method of the display panel 100 of the present application includes sequentially disposing a first adhesive layer 30 and a second adhesive layer 50 on the surface of the driving substrate 10 , the first adhesive layer 30 includes conductive particles 31 ; The side of the layer 50 facing away from the driving substrate 10 is adhered to a plurality of light emitting units 70 arranged in an array; the second adhesive layer 50 is semi-cured; and the first adhesive layer 30 and the first The two adhesive layers 50 are cured, and the plurality of light-emitting units 70 and the driving substrate 10 are electrically connected through the conductive particles 31 .
  • the bonding performance between the light-emitting unit 70 and the driving substrate 10 is increased, so that the light-emitting unit 70 can be better positioned with the electrodes on the driving substrate 10 when the light-emitting unit 70 is transferred in large quantities, and the accuracy of the position of the light-emitting unit 70 is increased.
  • the yield of the display panel 100 is improved, and the light blocking portion 50 formed between the light emitting units 70 by the second adhesive layer 50 effectively reduces the risk of color shift.
  • a method for fabricating a display panel 100 provided by the present application includes: disposing the driving substrate 10 on the bearing table 101; ACF layer (ACF layer) is attached to the surface of the driving substrate 10 provided with the first electrode 11 and the second electrode 13 to form a first adhesive layer 30, wherein the first adhesive layer 30 includes conductive particles 31; carbon will be added Epoxy resin of black and curing agent is sprayed onto the surface of the first adhesive layer 30 away from the driving substrate 10, and pre-cured with ultraviolet light to form the second adhesive layer 50; using mass transfer, a plurality of light-emitting units 70 are arranged in an array On the surface of the second adhesive layer 50 facing away from the driving substrate 10, the position of the P electrode 71 of each light-emitting unit 70 corresponds to the first electrode 11, and the position of the N electrode 73 corresponds to the second electrode 13; at 100° C.
  • a thermal head of 1MPa press down the plurality of light-emitting units 70 at a constant speed, so that the second adhesive layer 50 is semi-cured, in the B-Stage state, and the second adhesive layer 50 is squeezed between the plurality of light-emitting units 70
  • a 5MPa thermal head press down the plurality of light-emitting units 70 at a constant speed again, so that the P-electrodes and N-electrodes of the plurality of light-emitting units 70 squeeze the conductive particles 31, and the conductive particles 31 are respectively connected to the conductive particles 31.
  • the first electrode 11 and the second electrode 13 of the driving substrate 10 are electrically connected, and at the same time, the first adhesive layer is also pressed to the gaps between the plurality of light-emitting units 70, and the second adhesive layer 50 is further pressed to the plurality of light-emitting units 70.
  • the gaps between the light emitting units 70 form light blocking portions.
  • a method for fabricating a display panel 100 includes: disposing the driving substrate 10 on the bearing table 101; An anisotropic conductive layer (ACF layer) is attached to the surface of the driving substrate 10 on which the first electrode 11 and the second electrode 13 are provided to form a first adhesive layer 30, wherein the first adhesive layer 30 includes conductive particles 31; Epoxy resin with black dye and curing agent is sprayed onto the surface of the first adhesive layer 30 away from the driving substrate 10, and pre-cured with ultraviolet light to form the second adhesive layer 50; using mass transfer, a plurality of light-emitting units 70 The array is disposed on the surface of the second adhesive layer 50 facing away from the driving substrate 10, wherein the position of the P electrode 71 of each light-emitting unit 70 corresponds to the first electrode 11, and the position of the N electrode 73 corresponds to the second electrode 13; at 90 At a temperature of °C, a 1.5MPa thermal head is used to press down the plurality of light-emitting units 70 at a constant
  • the first adhesive layer is also pressed to the gap between the plurality of light-emitting units 70, and the second adhesive layer 50 is also pressed further.
  • the light blocking portion 50 is formed by pressing to the gaps between the plurality of light emitting units 70 .
  • a method for fabricating a display panel 100 includes: arranging the driving substrate 10 on the bearing table 101;
  • the conductive layer (ACF layer) is attached to the surface of the driving substrate 10 on which the first electrode 11 and the second electrode 13 are provided to form a first adhesive layer 30, wherein the first adhesive layer 30 includes conductive particles 31;
  • Epoxy resin containing black dye and curing agent is sprayed onto the surface of the first adhesive layer 30 away from the driving substrate 10, and pre-cured with ultraviolet light to form the second adhesive layer 50; using mass transfer, a plurality of light-emitting units 70 are arrayed Disposed on the surface of the second adhesive layer 50 facing away from the driving substrate 10, wherein the position of the P electrode 71 of each light-emitting unit 70 corresponds to the first electrode 11, and the position of the N electrode 73 corresponds to the second electrode 13; at 120° C.
  • the first adhesive layer is also pressed to the gap between the plurality of light-emitting units 70, and the second adhesive layer 50 is also pressed further.
  • the light blocking portion is formed by pressing to the gaps between the plurality of light emitting units 70 .
  • an embodiment of the present application further provides a display panel 100 , which includes: a driving substrate 10 ; ; the shielding structure 20, the shielding structure 20 and the plurality of light-emitting units 70 are located on the same side of the driving substrate 10, and are located in the gap between the plurality of light-emitting units 70, surrounding each of the light-emitting units 70 It is provided that the shielding structure 20 includes conductive particles 31 , and each of the light-emitting units 70 is electrically connected to the driving substrate 10 through the conductive particles 31 .
  • the electrical connection process of the plurality of light emitting units 70 and the driving substrate 10 is completed in the same process as the formation of the shielding structure 20 .
  • the manufacturing steps of the shielding structure 20 can be further simplified.
  • the bonding of the light-emitting unit 70 and the driving substrate 10 of the display panel 100 of the present application is electrically connected through the conductive particles 31 of the shielding structure 20 , so that the shielding structure 20 is formed when the light-emitting unit 70 is bonded, which simplifies the preparation of the display panel 100 craft.
  • the shielding structure 20 includes a connecting portion 30 and a light blocking portion 50 connected to the connecting portion 30 , the connecting portion 30 is disposed close to the driving substrate 10 , and the light blocking portion 50 is The portion 50 is disposed away from the driving substrate 10 ; the connecting portion 30 includes the conductive particles 31 and has anisotropic conductivity, and the light blocking portion 50 has light blocking performance.
  • the thickness of the light blocking portion 50 is 4 ⁇ m-7 ⁇ m. That is, the particle size of the light blocking portion 50 can be any value between 4 ⁇ m and 7 ⁇ m, such as 4 ⁇ m, 4.5 ⁇ m, 5 ⁇ m, 5.5 ⁇ m, 6 ⁇ m, 6.5 ⁇ m or 7 ⁇ m.
  • the light blocking portion 50 is formed by curing the second adhesive layer 50 in the display panel manufacturing method of the present application.
  • the above method embodiments please refer to the above method embodiments, which will not be repeated here.
  • the thickness of the connecting portion 30 is 3 ⁇ m-8 ⁇ m. That is, the particle diameter of the connecting portion 30 can be any value between 3 ⁇ m and 8 ⁇ m, such as 3 ⁇ m, 3.5 ⁇ m, 4 ⁇ m, 4.5 ⁇ m, 5 ⁇ m, 5.5 ⁇ m, 6 ⁇ m, 6.5 ⁇ m, 7 ⁇ m, 7.5 ⁇ m or 8 ⁇ m.
  • the connecting portion 30 is formed by curing the first adhesive layer 30 in the method for manufacturing the display panel of the present application.
  • the connecting portion 30 is formed by curing the first adhesive layer 30 in the method for manufacturing the display panel of the present application.
  • the particle size of the conductive particles 31 is 3 ⁇ m-5 ⁇ m. That is, the particle size of the conductive particles 31 may be any value between 3 ⁇ m and 5 ⁇ m, such as 3 ⁇ m, 3.5 ⁇ m, 4 ⁇ m, 4.5 ⁇ m, 5 ⁇ m, and the like.
  • the display panel 100 of the present application is manufactured by the manufacturing method of the display panel of the embodiment of the present application.
  • references to the terms “one embodiment,” “some embodiments,” “exemplary embodiments,” “examples,” “specific examples,” or “some examples”, etc., are meant to incorporate embodiments A particular feature, structure, material, or characteristic described or exemplified is included in at least one embodiment or example of the present application.
  • schematic representations of the above terms do not necessarily refer to the same embodiment or example.
  • the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Device Packages (AREA)

Abstract

一种显示面板(100)及其制作方法。显示面板(100)的制作方法包括在驱动基板(10)的表面依次设置第一粘合层(30)及第二粘合层(50),第一粘合层(30)包括导电粒子(31);在第二粘合层(50)背离驱动基板(10)的一侧粘附阵列排布的多个发光单元(70);将第二粘合层(50)进行半固化;以及将第一粘合层(30)及第二粘合层(50)进行固化,并使多个发光单元(70)与驱动基板(10)通过导电粒子(31)电连接。

Description

显示面板及其制作方法 技术领域
本申请涉及显示面板领域,尤其涉及一种显示面板及其制作方法。
背景技术
微发光二极管(Micro Light Emitting Diode,Micro-LED)显示面板由于LED尺寸限制,LED的P电极和N电极的尺寸只有十几微米。传统的锡膏回流焊技术仅适用于发光二极管尺寸大于100μm且相邻发光二极管之间间距大于400μm显示面板,不适用微发光二极管显示面板。现有的微发光二极管显示面板大多采用氧化铟锡(ITO)共晶键合两种方式。ITO共晶方式对金属晶格匹配度需求高,ITO与绝大部分材料亲和性低,通常需要蒸镀Au或Cu,工艺复杂且成本较高。
技术问题
现有的显示面板进行巨量转移时,驱动基板与发光单元之间粘结不牢固,易出现发光单元位置异常,降低巨量转移精度的技术问题。
技术解决方案
鉴于上述现有技术的不足,本申请实施例提供一种显示面板制作方法,其包括:在驱动基板的表面依次设置第一粘合层及第二粘合层,所述第一粘合层包括导电粒子;在第二粘合层背离所述驱动基板的一侧粘附阵列排布的多个发光单元;将所述第二粘合层进行半固化;以及将所述第一粘合层及所述第二粘合层进行固化,并使所述多个发光单元与所述驱动基板通过所述导电粒子电连接。
本申请的显示面板的制作方法增加了发光单元与驱动基板之间的粘结性能,使得发光单元在进行巨量转移时,可以更好的跟驱动基板上的电极进行定位,增加发光单元位置的准确性,从而提高显示面板制作的良率。
可选地,所述在驱动基板的表面依次设置第一粘合层及第二粘合层,所述第一粘合层包括导电粒子,具体包括:于第一条件下,将第一粘合层压合至所述驱动基板设有电极的表面,所述第一粘合层包括导电粒子;在所述第一粘合层背离所述驱动基板的表面附着粘合剂并进行预固化,形成第二粘合层。
对形成第二粘合层的粘合剂进行预固化,可以降低粘合剂的流动性,使得形成的第二粘合层的厚度更均匀。
可选地,所述第一条件包括第一温度及第一压力,所述第一温度为60℃-80℃,所述第一压力为0.5MPa至1Mpa;或者所述第一条件包括光作用及第一压力,所述第一压力为0.5MPa至1Mpa。
可选地,所述将所述第二粘合层进行半固化,具体包括:在第二条件下,压合所述多个发光单元,以使所述第二粘合层半固化。
可选地,所述第二条件包括第二温度及第二压力,所述第二温度为80℃-120℃,所述第二压力为0.8MPa-1.5MPa;或者所述第二条件包括光作用及第二压力,所述第二压力为0.8MPa-1.5MPa。
在第二温度下,第二粘合层的流动性大于第一粘合层的流动性,第二粘合层受挤压流动至多个发光单元之间的间隙并填充间隙,形成半固化的第二粘合层。这样可以使得当第一粘合层固化时,P电极和N电极捕获导电粒子的能力增加,可以捕获更多的导电粒子,更好的将P电极和N电极与驱动基板电连接。同时,第一粘合层的填充多个发光单元之间的间隙后,可以形成遮挡结构,防止发光单元发出的侧向光对相邻的发光单元产生的光产生的串扰,省去了制备挡光部的步骤。
可选地,所述将所述第二粘合层进行半固化,具体包括:在第一粘合层处于高弹态的温度下,采用第二压力热压所述多个发光单元,使所述第二粘合层填充所述多个发光单元之间的间隙,并形成半固化的第二粘合层。
可选地,所述将所述第一粘合层及所述第二粘合层进行固化,并使所述多个发光单元与所述驱动基板通过所述导电粒子电连接,具体包括:在第三条件下压合所述多个发光单元,以使所述第一粘合层及所述第二粘合层填充所述多个发光单元之间的间隙并进行固化,且所述驱动基板与所述多个发光单元通过所述导电粒子电连接。
可选地,所述第三条件包括第三温度及第三压力,所述第三温度为150℃-220℃,所述第三压力为4.5MPa -7MPa;或者所述第三条件包括光作用及第三压力,所述第三压力为4.5MPa -7MPa。
可选地,在固化时,温度升温至90%第三温度的时间小于等于固化总时长的一半。这样可以增加发光单元的P电极和N电极捕获导电粒子的能力,使P电极和N电极与驱动基板具有更好的进行电连接。如果升温太慢,则P电极和N电极捕获导电粒子数量较少,影响导电性。
可选地,所述第二粘合层具有挡光性能,且所述第二粘合层的熔融温度低于所述第一粘合层的熔融温度。这样可以使得当第一粘合层固化时,P电极和N电极捕获导电粒子的能力增加,可以捕获更多的导电粒子,更好的将P电极和N电极与驱动基板电连接。同时,第一粘合层的填充多个发光单元之间的间隙后,可以形成遮挡结构,防止发光单元发出的侧向光对相邻的发光单元产生的光产生的串扰,省去了制备挡光部的步骤。
基于同样的发明构思,本申请实施例还提供一种显示面板,所述显示面板包括:驱动基板;多个发光单元,所述多个发光单元阵列排布于所述驱动基板的一侧;遮挡结构,所述遮挡结构与所述多个发光单元位于所述驱动基板的同侧,且位于所述多个发光单元之间的间隙,环绕每个所述发光单元设置,所述遮挡结构包括导电粒子,每个所述发光单元通过所述导电粒子与所述驱动基板电连接。
本申请的显示面板的发光单元和驱动基板的键合通过遮挡结构的导电粒子电连接,从而在进行发光单元键合的时候形成遮挡结构,简化了显示面板的制备工艺。
可选地,所述遮挡结构包括连接部及与所述连接部连接的挡光部,所述连接部靠近所述驱动基板设置,所述挡光部背离所述驱动基板设置;所述连接部包括所述导电粒子,且具有各项异性导电性,所述挡光部具有挡光性能。
可选地,所述挡光部的厚度为4μm-7μm。
可选地,所述连接部的厚度为3μm-8μm。
可选地,所述多个发光单元与所述驱动基板的电连接过程,与所述遮挡结构的形成过程在同一制程中完成。
可选地,所述显示面板由本申请实施例的显示面板的制作方法制得。
有益效果
本申请的显示面板的制作方法包括在驱动基板的表面依次设置第一粘合层及第二粘合层,所述第一粘合层包括导电粒子;在第二粘合层背离所述驱动基板的一侧粘附阵列排布的多个发光单元;将所述第二粘合层进行半固化;以及将所述第一粘合层及所述第二粘合层进行固化,并使所述多个发光单元与所述驱动基板通过所述导电粒子电连接。增加了发光单元与驱动基板之间的粘结性能,使得发光单元在进行巨量转移时,可以更好的跟驱动基板上的电极进行定位,增加发光单元位置的准确性,从而提高显示面板制作的良率,同时利用键合过程形成的挡墙结构有效降低色偏风险。
附图说明
为了更清楚地说明本申请实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例的显示面板的制作方法的流程框图。
图2为本申请实施例的显示面板的制作方法的流程图。
图3为本申请实施例的显示面板的结构示意图。
附图标记说明:100-显示面板;10-驱动基板;11-第一电极;13-第二电极;20-遮挡结构;30-第一粘合层/连接部;31-导电粒子;50-第二粘合层/挡光部;70-发光单元;71-P电极;73-N电极。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是机械连接,也可以是电连接。可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
锡膏回流焊技术仅适用于发光二极管尺寸大于100μm且相邻发光二极管之间间距大于400μm显示面板,不适用微发光二极管显示面板。现有的微发光二极管显示面板大多采用各向异性导电胶(Anisotropic conductive film,ACF)键合和氧化铟锡(ITO)共晶键合两种方式。ITO共晶方式对金属晶格匹配度需求高,ITO与绝大部分材料亲和性低,通常需要蒸镀Au或Cu,工艺复杂且成本较高。而ACF材料在本压(main cure)前不具有粘性,巨量转移过程中与LED粘接不牢固,易出现LED位置异常,降低巨量转移精度并增大薄膜晶体管(TFT)基板的返修难度。
基于此,本申请希望提供一种能够解决上述技术问题的方案,其详细内容将在后续实施例中得以阐述。
请参见图1至图3,本申请实施例提供一种显示面板100的制作方法,其包括:S1,在驱动基板10的表面依次设置第一粘合层30及第二粘合层50,第一粘合层30包括导电粒子31。
具体地,驱动基板10为薄膜晶体管阵列基板,在驱动基板10的表面设有与薄膜晶体管阵列基板的源极或漏极电连接的且阵列排布的第一电极11,以及与公共电极(低电平Vss)连接的且阵列排布的第二电极13。可选地,第一电极11和第二电极13均为氧化铟锡(ITO)电极。
可选地,整个显示面板100的制作方法过程中,驱动基板10可以放置在承载台101上。在设置第一粘合层30及第二粘合层50之前,先将驱动基板10设置在承载台101上。
可选地,第一粘合层30为各向异性导电层(Anisotropic conductive film,ACF),其在某些方向具有导电性,在另一些方向不具有导电性。在一些实施例中,第一粘合层30可以为包括导电粒子31的粘合剂,第一粘合层30具有高弹态,第一粘合层30处于高弹态的温度与第二粘合层50的半固化温度接近。
可选地,导电粒子31的粒径可以为3μm-5μm。也就是说,导电粒子31的粒径可以为3μm和5μm之间的任意数值,例如3μm、3.5μm、4μm、4.5μm、5μm等。
可选地,第二粘合层50为非导电材料(Non-conductive patse,NCP),具有挡光性能,第二粘合层50的熔融温度低于第一粘合层30的熔融温度。在一些实施例中,第二粘合层50为添加炭黑或黑色色膏类染料等黑色物质的环氧树脂材料和固化剂的混合物。第二粘合层50具有半固化状态(B-stage),在B-stage时第二粘合层50可熔可溶的,当再经过加热固化,第二粘合层50从B-stage变为完全固化状态。
可选地,挡光性能包括但不限于包括对光具有发射作用,吸收作用等防止光穿透的性能。
具体地,驱动基板10的表面依次设置第一粘合层30及第二粘合层50,第一粘合层30包括导电粒子31,具体包括:S11,于第一条件下,将第一粘合层30压合至驱动基板10设有电极的表面。
可选地,第一条件包括第一温度及第一压力;或者第一条件包括光作用及第一压力。
可选地,第一温度为60℃-80℃,也就是说,第一温度可以为60℃和80℃之间的任意温度,例如60℃、65℃、70℃、75℃、80℃等。
可选地,第一压力为0.5MPa至1Mpa,也就是说,第一压力可以为0.5MPa和1Mpa之间的任意压力,例如0.5MPa、0.6Mpa、0.75MPa、0.8Mpa、0.9MPa、1Mpa等。
可选地,光作用可以为紫外光作用。
S12,在第一粘合层30背离驱动基板10的表面附着粘合剂并进行预固化,形成第二粘合层50。
具体地,在第一粘合层30背离驱动基板10的表面,采用油墨印刷技术(Ink jet printing,IJP技术),喷涂粘合剂,并进行紫外线预固化(UV Pre-curing,UV预固化)形成第二粘合层50。
采用紫外线对形成第二粘合层50的粘合剂进行预固化,可以降低粘合剂的流动性,使得形成的第二粘合层50的厚度更均匀。
S2,在第二粘合层50背离驱动基板10的一侧粘附阵列排布的多个发光单元70。
具体地,采用巨量转移,将多个发光单元70粘附至第二粘合层50背离驱动基板10的一侧,使多个发光单元70阵列排布于第二粘合层50上。每个发光单元70包括P电极71和N电极73,发光单元70设有P电极71和N电极73的表面朝向驱动基板10,且每个发光单元70的P电极71的位置与第一电极11对应,N电极73的位置与第二电极13对应。
可选地,发光单元70可以为但不限于为微发光二极管(Micro LED)、次毫米发光二极管(Mini LED)。
S3,将第二粘合层50进行半固化。
可选地,将第二粘合层50进行半固化,具体包括:在第二条件下压合多个发光单元70,以使第二粘合层50半固化,在第二条件下,第一粘合层30处于高弹态。
可选地,第二条件包括第二温度及第二压力,或者第二条件包括光作用及第二压力。
可选地,第二温度为80℃-120℃,也就是说,第二温度可以为80℃和120℃之间的任意温度,例如80℃、85℃、90℃、95℃、100℃、105℃、110℃、115℃、120℃等。
可选地,第二压力为0.8MPa-1.5MPa,也就是说,第二压力可以为0.8MPa和1.5Mpa之间的任意压力,例如0.8MPa、1.0Mpa、1.1MPa、1.2Mpa、1.3MPa、1.5Mpa等。
可选地,光作用可以为紫外线作用,此时,第一粘合层30和第二粘合层50可以为光固化材料制得。
可选地,当温度处于第二温度时,第二粘合层50处于半固化状态(B-stage),第一粘合层30由固态(或者玻璃态,Glassy State)逐渐变成高弹态(Rubbery State),且第一粘合层30的固化温度低于第二温度。
也就是说,第二粘合层50的半固化温度(第二温度)高于第一粘合剂的玻璃态转变温度(Glass Transition Temperature,Tg),且低于第一粘合剂的固化温度。
在第二温度下,第二粘合层50的流动性大于第一粘合层30的流动性,第二粘合层50受挤压流动至多个发光单元70之间的间隙并填充间隙,形成半固化的第二粘合层50。这样可以使得当第一粘合层30固化时,P电极71和N电极73捕获导电粒子31的能力增加,可以捕获更多的导电粒子31,更好的将P电极71和N电极73与驱动基板10电连接。同时,第一粘合层30的填充多个发光单元70之间的间隙后,可以形成遮挡结构,防止发光单元70发出的侧向光对相邻的发光单元70产生的光产生的串扰,省去了制备挡光部50的步骤。
可选地,在一些实施例中,P电极71和N电极73朝向驱动基板10的表面捕获导电粒子31的数量大于等于5颗,此时,P电极71和N电极73与驱动基板10可以更好的导通。
可选地,在一些实施例中,在进行半固化热压时,在热压压头朝向多个发光单元70的表面设置缓冲层;或者在多个发光单元70背离驱动基板10的表面设置缓冲层。
可选地,缓冲层可以为但不限于为聚四氟乙烯(PTFE)层。缓冲层可以保护发光单元70,防止热压头对发光单元70进行热压时,使发光单元70表面受损害。
S4,将第一粘合层30及第二粘合层50进行固化(Main cure,本压),并使多个发光单元70与驱动基板10通过导电粒子31电连接。
具体地,将第一粘合层30及第二粘合层50进行固化,并使多个发光单元70与驱动基板10通过导电粒子31电连接,具体包括:在第三条件下压合多个发光单元70,以使第一粘合层30及第二粘合层50填充多个发光单元70之间的间隙并进行固化,且驱动基板10与多个发光单元70通过导电粒子31电连接。
可选地,第三条件包括第三温度及第三压力;或者所述第三条件包括光作用及第三压力,所述第三压力为4.5MPa -7MPa。
可选地,光作用可以为紫外线作用,此时,第一粘合层30和第二粘合层50可以为光固化材料制得。
可选地,第三温度为150℃-220℃,也就是说,第三温度可以为150℃和220℃之间的任意温度,例如150℃、160℃、170℃、180℃、190℃、200℃、210℃、220℃等。
可选地,第三压力为4.5MPa -7MPa,第三压力可以为4.5MPa和7Mpa之间的任意压力,例如4.5MPa、4.8Mpa、5.0MPa、5.5Mpa、6.0MPa、6.5Mpa、7Mpa等。
在第三温度下,第二粘合层50从B-stage逐渐趋于完全固化,第二粘合层50在完全固化之前仍具有轻微流动性,此时,第一粘合层30完全转变为液态,当热压压头下压时,发光单元70的P电极71和N电极73逐渐嵌入液态状的第一粘合层30中,受到挤压的第一粘合层30的材料同样流动至发光单元70之间的间隙填充挡墙,发光单元70的P电极71和N电极73与导电粒子31接触,在第三压力的作用下挤压粒子。从而实现发光单元70的P电极71与驱动基板10的第一电极11的键合,以及发光单元70的N电极73与驱动基板10的第二电极13的键合。在这个过程中,第一粘合层30固化形成了显示面板100的连接部30,第二粘合层50固化形成了显示面板100的挡光部50。
可选地,在固化时,温度升温至90%第三温度的时间小于等于固化总时长的一半。例如,当固化时间总时长为10秒时,温度在5秒以内升温至90%第三温度。又例如,当固化时间总时长为5秒时,温度在2秒以内升温至90%第三温度。这样可以增加发光单元70的P电极71和N电极73捕获导电粒子31的能力,使P电极71和N电极73与驱动基板10具有更好的进行电连接。如果升温太慢,则P电极71和N电极73捕获导电粒子31数量较少,影响导电性。
可选地,在一些实施例中,在进行固化热压时,在热压压头朝向多个发光单元70的表面设置缓冲层;或者在多个发光单元70背离驱动基板10的表面设置缓冲层。
可选地,缓冲层可以为但不限于为聚四氟乙烯(PTFE)层。缓冲层可以保护发光单元70,防止热压头对发光单元70进行热压时,使发光单元70表面受损害。
可选地,在一些实施例中,制得的显示面板100的第二粘合层30的厚度为4μm-7μm。这样可以更好地防止不同发光单元之间发出的侧向光的串扰。
本申请的显示面板100的制作方法包括在驱动基板10的表面依次设置第一粘合层30及第二粘合层50,所述第一粘合层30包括导电粒子31;在第二粘合层50背离所述驱动基板10的一侧粘附阵列排布的多个发光单元70;将所述第二粘合层50进行半固化;以及将所述第一粘合层30及所述第二粘合层50进行固化,并使所述多个发光单元70与所述驱动基板10通过所述导电粒子31电连接。增加了发光单元70与驱动基板10之间的粘结性能,使得发光单元70在进行巨量转移时,可以更好的跟驱动基板10上的电极进行定位,增加发光单元70位置的准确性,从而提高显示面板100制作的良率,同时利用第二粘合层50在发光单元70之间形成的挡光部50有效降低色偏风险。
下面通过具体实施例对本申请的技术方案做更进一步的描述。
在一些实施方式中,本申请提供的一种显示面板100的制作方法,包括:将驱动基板10设置在承载台101上;在75℃条件下,采用0.8MPa的压头,将各向异性导电层(ACF层)贴附在驱动基板10设有第一电极11和第二电极13的表面,形成第一粘合层30,其中,第一粘合层30包括导电粒子31;将添加有炭黑和固化剂的环氧树脂喷涂至第一粘合层30背离驱动基板10的表面,并进行紫外线预固化,形成第二粘合层50;采用巨量转移,将多个发光单元70阵列设置在第二粘合层50背离驱动基板10的表面,其中,每个发光单元70的P电极71的位置与第一电极11对应,N电极73的位置与第二电极13对应;在100℃下,采用1MPa的热压头,匀速下压多个发光单元70,使第二粘合层50进行半固化,处于B-Stage状态,第二粘合层50被挤压至多个发光单元70之间的间隙;在200℃下,采用5MPa的热压头,再次匀速下压多个发光单元70,使多个发光单元70的P电极和N电极挤压导电粒子31,并通过导电粒子31分别与驱动基板10的第一电极11和第二电极13电连接,同时,第一粘合层也被挤压至多个发光单元70之间的间隙,第二粘合层50也被进一步挤压至多个发光单元70之间的间隙形成挡光部。
在又一些实施方式中,本申请提供的一种显示面板100的制作方法,方法包括:将驱动基板10设置在承载台101上;在80℃条件下,采用0.5MPa的压头,将各向异性导电层(ACF层)贴附在驱动基板10设有第一电极11和第二电极13的表面,形成第一粘合层30,其中,第一粘合层30包括导电粒子31;将添加有黑色染料和固化剂的环氧树脂喷涂至第一粘合层30背离驱动基板10的表面,并进行紫外线预固化,形成第二粘合层50;采用巨量转移,将多个发光单元70阵列设置在第二粘合层50背离驱动基板10的表面,其中,每个发光单元70的P电极71的位置与第一电极11对应,N电极73的位置与第二电极13对应;在90℃下,采用1.5MPa的热压头,匀速下压多个发光单元70,使第二粘合层50进行半固化,处于B-Stage状态,第二粘合层50被挤压至多个发光单元70之间的间隙;在150℃下,采用7MPa的热压头,再次匀速下压多个发光单元70,使多个发光单元70的P电极和N电极挤压导电粒子31,并通过导电粒子31分别与驱动基板10的第一电极11和第二电极13电连接,同时,第一粘合层也被挤压至多个发光单元70之间的间隙,第二粘合层50也被进一步挤压至多个发光单元70之间的间隙形成挡光部50。
在某些实施方式中,本申请提供的一种显示面板100的制作方法,方法包括:将驱动基板10设置在承载台101上;在60℃条件下,采用1MPa的压头,将各向异性导电层(ACF层)贴附在驱动基板10设有第一电极11和第二电极13的表面,形成第一粘合层30,其中,第一粘合层30包括导电粒子31;将添加有黑色染料和固化剂的环氧树脂喷涂至第一粘合层30背离驱动基板10的表面,并进行紫外线预固化,形成第二粘合层50;采用巨量转移,将多个发光单元70阵列设置在第二粘合层50背离驱动基板10的表面,其中,每个发光单元70的P电极71的位置与第一电极11对应,N电极73的位置与第二电极13对应;在120℃下,采用0.8MPa的热压头,匀速下压多个发光单元70,使第二粘合层50进行半固化,处于B-Stage状态,第二粘合层50被挤压至多个发光单元70之间的间隙;在220℃下,采用5.5MPa的热压头,再次匀速下压多个发光单元70,使多个发光单元70的P电极和N电极挤压导电粒子31,并通过导电粒子31分别与驱动基板10的第一电极11和第二电极13电连接,同时,第一粘合层也被挤压至多个发光单元70之间的间隙,第二粘合层50也被进一步挤压至多个发光单元70之间的间隙形成挡光部。
请再次参见图3,本申请实施例还提供一种显示面板100,其包括:驱动基板10;多个发光单元70,所述多个发光单元70阵列排布于所述驱动基板10的一侧;遮挡结构20,所述遮挡结构20与所述多个发光单元70位于所述驱动基板10的同侧,且位于所述多个发光单元70之间的间隙,环绕每个所述发光单元70设置,所述遮挡结构20包括导电粒子31,每个所述发光单元70通过所述导电粒子31与所述驱动基板10电连接。
可选地,所述多个发光单元70与所述驱动基板10的电连接过程,与所述遮挡结构20的形成在同一制程中完成。这样可以进一步简化遮挡结构20的制备步骤。
本申请的显示面板100的发光单元70和驱动基板10的键合通过遮挡结构20的导电粒子31电连接,从而在进行发光单元70键合的时候形成遮挡结构20,简化了显示面板100的制备工艺。
可选地,在一些实施例中,所述遮挡结构20包括连接部30及与所述连接部30连接的挡光部50,所述连接部30靠近所述驱动基板10设置,所述挡光部50背离所述驱动基板10设置;所述连接部30包括所述导电粒子31,且具有各项异性导电性,所述挡光部50具有挡光性能。
可选地,在一些实施例中,所述挡光部50的厚度为4μm-7μm。也就是说,挡光部50的粒径可以为4μm和7μm之间的任意数值,例如4μm、4.5μm、5μm、5.5μm、6μm、6.5μm或7μm等。
可选地,挡光部50由本申请显示面板制作方法中的第二粘合层50固化形成。详细描述请参见上述方法实施例,在此不再赘述。
可选地,在一些实施例中,所述连接部30的厚度为3μm-8μm。也就是说,连接部30的粒径可以为3μm和8μm之间的任意数值,例如3μm、3.5μm、4μm、4.5μm、5μm、5.5μm、6μm、6.5μm、7μm、7.5μm或8μm等。
可选地,连接部30由本申请显示面板制作方法中的第一粘合层30固化形成。详细描述请参见上述方法实施例,在此不再赘述。
可选地,在一些实施例中,所述导电粒子31的粒径为3μm-5μm。也就是说,导电粒子31的粒径可以为3μm和5μm之间的任意数值,例如3μm、3.5μm、4μm、4.5μm、5μm等。
可选地,在一些实施例中,本申请的显示面板100由本申请实施例的显示面板的制作方法制得。
详细描述请参见上述方法实施例,在此不再赘述。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种显示面板制作方法,其特征在于,包括:
    在驱动基板的表面依次设置第一粘合层及第二粘合层,所述第一粘合层包括导电粒子;
    在第二粘合层背离所述驱动基板的一侧粘附阵列排布的多个发光单元;
    将所述第二粘合层进行半固化;以及
    将所述第一粘合层及所述第二粘合层进行固化,并使所述多个发光单元与所述驱动基板通过所述导电粒子电连接。
  2. 如权利要求1所述的显示面板的制作方法,其特征在于,所述在驱动基板的表面依次设置第一粘合层及第二粘合层,所述第一粘合层包括导电粒子,具体包括:
    于第一条件下,将第一粘合层压合至所述驱动基板设有电极的表面,所述第一粘合层包括导电粒子;
    在所述第一粘合层背离所述驱动基板的表面附着粘合剂并进行预固化,形成第二粘合层。
  3. 如权利要求2所述的显示面板的制作方法,其特征在于,所述第一条件包括第一温度及第一压力,所述第一温度为60℃-80℃,所述第一压力为0.5MPa至1Mpa;或者所述第一条件包括光作用及第一压力,所述第一压力为0.5MPa至1Mpa。
  4. 如权利要求1所述的显示面板的制作方法,其特征在于,所述将所述第二粘合层进行半固化,具体包括:
    在第二条件下,压合所述多个发光单元,以使所述第二粘合层半固化。
  5. 如权利要求4所述的显示面板的制作方法,其特征在于,所述第二条件包括第二温度及第二压力,所述第二温度为80℃-120℃,所述第二压力为0.8MPa-1.5MPa;或者所述第二条件包括光作用及第二压力,所述第二压力为0.8MPa-1.5MPa。
  6. 如权利要求1所述的显示面板的制作方法,其特征在于,所述将所述第二粘合层进行半固化,具体包括:
    在第一粘合层处于高弹态的温度下,采用第二压力热压所述多个发光单元,使所述第二粘合层填充所述多个发光单元之间的间隙,并形成半固化的第二粘合层。
  7. 如权利要求1所述的显示面板的制作方法,其特征在于,所述将所述第一粘合层及所述第二粘合层进行固化,并使所述多个发光单元与所述驱动基板通过所述导电粒子电连接,具体包括:
    在第三条件下压合所述多个发光单元,以使所述第一粘合层及所述第二粘合层填充所述多个发光单元之间的间隙并进行固化,且所述驱动基板与所述多个发光单元通过所述导电粒子电连接。
  8. 如权利要求7所述的显示面板的制作方法,其特征在于,所述第三条件包括第三温度及第三压力,所述第三温度为150℃-220℃,所述第三压力为4.5MPa -7MPa;或者所述第三条件包括光作用及第三压力,所述第三压力为4.5MPa -7MPa。
  9. 如权利要求7所述的显示面板的制作方法,其特征在于,在固化时,温度升温至90%第三温度的时间小于等于固化总时长的一半。
  10. 如权利要求1-9任一项所述的显示面板的制作方法,其特征在于,所述第二粘合层具有挡光性能,且所述第二粘合层的熔融温度低于所述第一粘合层的熔融温度。
  11. 一种显示面板,其特征在于,所述显示面板包括:
    驱动基板;
    多个发光单元,所述多个发光单元阵列排布于所述驱动基板的一侧;
    遮挡结构,所述遮挡结构与所述多个发光单元位于所述驱动基板的同侧,且位于所述多个发光单元之间的间隙,环绕每个所述发光单元设置,所述遮挡结构包括导电粒子,每个所述发光单元通过所述导电粒子与所述驱动基板电连接。
  12. 根据权利要求11所述的显示面板,其特征在于,所述遮挡结构包括连接部及与所述连接部连接的挡光部,所述连接部靠近所述驱动基板设置,所述挡光部背离所述驱动基板设置;所述连接部包括所述导电粒子,且具有各项异性导电性,所述挡光部具有挡光性能。
  13. 根据权利要求12所述的显示面板,其特征在于,所述挡光部的厚度为4μm-7μm。
  14. 根据权利要求12所述的显示面板,其特征在于,所述连接部的厚度为3μm-8μm。
  15. 根据权利要求11所述的显示面板,其特征在于,所述多个发光单元与所述驱动基板的电连接过程,与所述遮挡结构的形成过程在同一制程中完成。
  16. 根据权利要求11所述的显示面板,其特征在于,所述显示面板由权利要求1-10任一项所述的显示面板的制作方法制得
PCT/CN2020/118823 2020-09-29 2020-09-29 显示面板及其制作方法 WO2022067506A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/118823 WO2022067506A1 (zh) 2020-09-29 2020-09-29 显示面板及其制作方法
US17/542,035 US20220102605A1 (en) 2020-09-29 2021-12-03 Display panel and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/118823 WO2022067506A1 (zh) 2020-09-29 2020-09-29 显示面板及其制作方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/542,035 Continuation US20220102605A1 (en) 2020-09-29 2021-12-03 Display panel and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2022067506A1 true WO2022067506A1 (zh) 2022-04-07

Family

ID=80823600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118823 WO2022067506A1 (zh) 2020-09-29 2020-09-29 显示面板及其制作方法

Country Status (2)

Country Link
US (1) US20220102605A1 (zh)
WO (1) WO2022067506A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047228A (ja) * 2002-07-10 2004-02-12 Bridgestone Corp 異方性導電フィルム及び電極付き基板の接着方法
CN102334238A (zh) * 2009-02-27 2012-01-25 索尼化学&信息部件株式会社 各向异性导电膜和发光装置
CN103069656A (zh) * 2011-04-06 2013-04-24 迪睿合电子材料有限公司 各向异性导电膜、接合体的制造方法以及接合体
TW201322276A (zh) * 2011-11-14 2013-06-01 Dexerials Corp 各向異性導電膜、連接方法、及接合體
JP2013125858A (ja) * 2011-12-14 2013-06-24 Dexerials Corp 接続方法、接続構造体、異方性導電フィルム及びその製造方法
CN107001865A (zh) * 2014-11-12 2017-08-01 迪睿合株式会社 光固化类各向异性导电粘接剂、连接体的制造方法及电子部件的连接方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10186548B2 (en) * 2016-08-19 2019-01-22 Innolux Corporation Light emitting diode display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047228A (ja) * 2002-07-10 2004-02-12 Bridgestone Corp 異方性導電フィルム及び電極付き基板の接着方法
CN102334238A (zh) * 2009-02-27 2012-01-25 索尼化学&信息部件株式会社 各向异性导电膜和发光装置
CN103069656A (zh) * 2011-04-06 2013-04-24 迪睿合电子材料有限公司 各向异性导电膜、接合体的制造方法以及接合体
TW201322276A (zh) * 2011-11-14 2013-06-01 Dexerials Corp 各向異性導電膜、連接方法、及接合體
JP2013125858A (ja) * 2011-12-14 2013-06-24 Dexerials Corp 接続方法、接続構造体、異方性導電フィルム及びその製造方法
CN107001865A (zh) * 2014-11-12 2017-08-01 迪睿合株式会社 光固化类各向异性导电粘接剂、连接体的制造方法及电子部件的连接方法

Also Published As

Publication number Publication date
US20220102605A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
US11302679B2 (en) Manufacturing method of micro-LED display panel
CN109728022B (zh) 微型发光二极管显示面板及其制造方法
JP4345153B2 (ja) 映像表示装置の製造方法
CN104465479B (zh) 柔性显示基板母板及柔性显示基板的制备方法
TWI635605B (zh) 微型發光二極體顯示面板
WO2020238099A1 (zh) 微发光二极管的转移方法及显示面板的制作方法
US6939737B2 (en) Low-cost circuit board materials and processes for area array electrical interconnections over a large area between a device and the circuit board
WO2021160090A1 (zh) 显示面板以及显示装置
WO2021022642A1 (zh) 邦定结构及其制备方法、显示面板
WO2021160089A1 (zh) 显示面板以及显示装置
WO2021103354A1 (zh) 一种显示装置
US20220028924A1 (en) Display device, light-emitting diode substrate, and fabrication method of display device
JP2000242190A (ja) 表示パネルへのtcpフィルムの実装方法
WO2020211539A1 (zh) 绑定材料、微发光二极管基板和绑定方法
WO2022067506A1 (zh) 显示面板及其制作方法
TWI751848B (zh) 電子元件的接合方法
CN113451491B (zh) 显示面板及其制作方法
CN113054073B (zh) 驱动背板及其制作方法、转移方法、显示装置
CN112768590A (zh) 一种显示面板的制备方法及显示面板
TW202125745A (zh) 電子裝置及其製造方法
WO2020067495A1 (ja) 発光モジュール及びその製造方法
JP2005241827A (ja) 液晶表示装置
US20240178356A1 (en) Display device and manufacturing method thereof
US20220262775A1 (en) Light-emitting diode light-emitting backplane and manufacturing method thereof
CN110880544A (zh) 一种用于玻璃基板的芯片及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955533

Country of ref document: EP

Kind code of ref document: A1