WO2020238099A1 - 微发光二极管的转移方法及显示面板的制作方法 - Google Patents

微发光二极管的转移方法及显示面板的制作方法 Download PDF

Info

Publication number
WO2020238099A1
WO2020238099A1 PCT/CN2019/120948 CN2019120948W WO2020238099A1 WO 2020238099 A1 WO2020238099 A1 WO 2020238099A1 CN 2019120948 W CN2019120948 W CN 2019120948W WO 2020238099 A1 WO2020238099 A1 WO 2020238099A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting diode
micro light
substrate
diode chip
light emitting
Prior art date
Application number
PCT/CN2019/120948
Other languages
English (en)
French (fr)
Inventor
王岩
Original Assignee
云谷(固安)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云谷(固安)科技有限公司 filed Critical 云谷(固安)科技有限公司
Priority to KR1020217035346A priority Critical patent/KR20210137219A/ko
Publication of WO2020238099A1 publication Critical patent/WO2020238099A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present disclosure relates to display technology, and more particularly to a method for transferring micro light emitting diodes and a method for manufacturing a display panel.
  • Micro LED is a device with a size between several micrometers and hundreds of micrometers.
  • Micro LED displays are self-luminous displays like Organic Light-Emitting Diode (OLED) displays, but compared to OLED displays, Micro LED displays also have the advantages of better material stability, longer life, and no image burn-in.
  • OLED Organic Light-Emitting Diode
  • the micro-light-emitting diode chip When the micro-light-emitting diode chip is bonded to the receiving substrate, the micro-light-emitting diode chip cannot be effectively fixed on the circuit substrate, and the electrodes of the micro-light-emitting diode chip and the electrodes on the circuit substrate cannot achieve good electrical connection, causing micro-luminescence The quality and yield of the diode display panel are reduced.
  • the present disclosure provides a method for transferring micro-light-emitting diodes, which can effectively fix the micro-light-emitting diode chip on the circuit substrate and ensure that the electrodes of the micro-light-emitting diode chip and the electrodes on the circuit substrate achieve good electrical connection.
  • the present disclosure also provides a method for manufacturing a display panel, including the above-mentioned transfer method of micro-light-emitting diodes, which can improve the quality and yield of the micro-light-emitting diode display panel.
  • one aspect of the present disclosure provides a method for transferring micro light emitting diodes, which includes: picking up micro light emitting diode chips with a flexible transfer head arranged on a rigid substrate; and picking up micro light emitting diode chips and circuits from the rigid substrate
  • the substrate is aligned so that the electrodes on the micro LED chip correspond to the electrodes on the circuit substrate; pressure is applied to the rigid substrate, so that the micro LED chip is squeezed into the flexible transfer head, and the pressure passes through the rigid substrate and the flexible transfer head It is transferred to the micro light emitting diode chip, and the electrodes on the micro light emitting diode chip are bonded with the electrodes on the circuit substrate; the flexible transfer head is separated from the micro light emitting diode chip.
  • the separation includes first separating the rigid substrate and the flexible transfer head, and then peeling the flexible transfer head from the micro light emitting diode chip, or separating the rigid substrate and the flexible transfer head from the micro light emitting diode chip together.
  • Another aspect of the present disclosure is to provide a method for manufacturing a display panel, including: forming a micro light emitting diode chip on a substrate; according to the transfer method described in the first aspect, transferring the micro light emitting diode chip to a circuit substrate, A micro-light-emitting diode display array is formed to form a display; the micro-light-emitting diode display array is packaged to obtain a micro-light-emitting diode display panel.
  • the package adopts a physical deposition process.
  • the method for transferring micro-light-emitting diodes is to arrange a flexible transfer head on a rigid substrate, so that during pressing, the micro-light-emitting diode chip will be squeezed into the flexible transfer head, so that the rigid substrate is
  • the pressing force can be effectively transmitted to the micro-light-emitting diode chip and the circuit substrate through the rigid substrate, ensuring that the electrodes of the micro-light-emitting diode chip and the electrodes on the circuit substrate are effectively bonded and electrically connected, and the performance of the micro-light-emitting diode device is improved.
  • the flexible transfer head is squeezed and deformed to form a groove for accommodating the micro light emitting diode chip, which not only increases the contact area and bonding between the flexible transfer head and the micro light emitting diode chip
  • the micro-light-emitting diode chip can be prevented from shifting relative to the circuit substrate, and the effective bonding and electrical connection between the micro-light-emitting diode chip and the circuit substrate can be further ensured.
  • the transfer method realizes the batch transfer of micro light emitting diode chips, and the entire process flow is relatively simple, which is very beneficial to actual production, application and promotion.
  • the manufacturing method of the display panel provided by the present disclosure adopts the aforementioned transfer method to perform batch transfer of the micro light emitting diodes, so it has the same advantages as the above transfer method, and improves the quality and yield of the micro light emitting diode display panel.
  • FIG. 1 is a schematic diagram of a method for transferring a micro light emitting diode provided in an embodiment of the disclosure
  • step S1 is a schematic diagram of step S1 in the method for transferring micro light emitting diodes provided in a specific embodiment of the present disclosure
  • step S2 is a schematic diagram of step S2 in the method for transferring micro light emitting diodes provided in a specific embodiment of the present disclosure
  • step S3 is a schematic diagram of step S3 in the method for transferring micro light emitting diodes provided in a specific embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of step S4 in the method for transferring micro light emitting diodes provided in a specific embodiment of the present disclosure
  • step S0 is a schematic diagram of step S0 in the method for transferring micro light emitting diodes provided in a specific embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart of a method for transferring a micro light emitting diode provided in another specific embodiment of the present disclosure.
  • Micro LED display panels usually first epitaxially obtain Micro LED chips on a sapphire substrate, and then separate the micro LED chips from the substrate by laser lift-off technology.
  • Micro Transfer Print (Micro Transfer Print) technology transfers the micro light emitting diode chip to a circuit substrate with pre-prepared electrode patterns to form a Micro LED array, and finally through packaging and other manufacturing processes to produce a Micro LED display panel.
  • the principle of micro-transfer technology is roughly as follows: use a transfer head with a certain viscosity, such as a polydimethylsiloxane (PDMS) transfer head to pick up the micro light-emitting diode chip, and then transfer the PDMS head to the circuit substrate Perform alignment.
  • PDMS polydimethylsiloxane
  • the circuit substrate is provided with solder joints corresponding to the electrodes of each micro-light-emitting diode chip.
  • the surface of the solder joints is provided with solder.
  • the solder layer is welded and fixed with the electrodes of the micro-light-emitting diode chip at high temperature, so that the electrodes of the micro-light-emitting diode chip It is electrically connected with the electrodes on the circuit substrate, and finally the PDMS transfer head is peeled off from the circuit substrate to complete the batch transfer of the micro light-emitting diode chips to form a Micro LED array.
  • the present disclosure proposes a method for transferring micro light emitting diodes.
  • This embodiment provides a method for transferring micro light-emitting diodes. Please refer to FIG. 1 in conjunction with FIGS. 2 to 5, which specifically includes the following steps:
  • a flexible transfer head 20 arranged on the rigid substrate 10 is used to pick up the micro light emitting diode chip 30;
  • S2 align the micro light emitting diode chip 30 picked up by the rigid substrate 10 and the circuit substrate 40, so that the electrode 31 on the micro light emitting diode chip 30 corresponds to the electrode 41 on the circuit substrate 40;
  • the flexible transfer head 20 is arranged on the rigid substrate 10.
  • the micro-light-emitting diode chip 30 and the circuit substrate 40 are pressed together, the micro-light-emitting diode chip 30 will squeeze the flexible transfer
  • the head 20 is constantly approaching the rigid substrate 10, so that the pressing force applied to the rigid substrate 10 can be effectively transmitted to the micro LED chip 30 and the circuit substrate 40, ensuring that the electrodes 31 of the micro LED chip 30 and the electrodes on the circuit substrate 40 41 Realize effective bonding and electrical connection, and improve the performance of the micro light emitting diode device.
  • the flexible transfer head 20 is squeezed and deformed to form a groove for accommodating the micro light emitting diode chip 30.
  • the groove increases the contact area and bonding force between the flexible transfer head 20 and the micro light emitting diode chip 30.
  • the groove can also play a certain limit function, so it can avoid the micro light emitting diode chip 30 and the circuit substrate 40 The deviation occurs between the micro-light-emitting diode chip 30 and the circuit substrate 40 to further ensure effective bonding and electrical connection.
  • the transfer method increases the functionality of the micro-light-emitting diode transfer technology, and the process flow is relatively simple, which improves the batch transfer efficiency of the micro-light-emitting diode chips 30.
  • This embodiment does not specifically limit the structure of the micro-light-emitting diode chip 30 and its electrodes 31, as long as at least one of the n-type electrode and p-type electrode of the micro-light-emitting diode chip 30 faces the circuit substrate 40 and is used for bonding during bonding. Soldering to the circuit board 40 is sufficient.
  • the micro light emitting diode chip 30 is a flip chip, and during bonding, its n-type electrode and p-type electrode are both facing the circuit substrate 40 and used for welding with the circuit substrate 40; or, the micro light emitting diode chip 30 may also be vertical When the chip is bonded, one of the n-type electrode and the p-type electrode faces the circuit substrate 40 and is used to connect with the circuit substrate 40, and the other faces the circuit substrate 40.
  • FIGS. 2 to 6 take flip-chip as an example to illustrate the transfer method of this embodiment.
  • the transfer method of the micro light-emitting diode provided by this embodiment is not limited to flip-chip, and it is also applicable For vertical chips, this transfer method can be applied as long as there is at least one electrode 31 connected to the circuit substrate 40 by welding.
  • the micro light emitting diode chip 30 may be disposed on the temporary substrate 50, that is, the flexible transfer head 20 disposed on the rigid substrate 10 is removed from the temporary substrate 50 Pick up the micro light emitting diode chip 30.
  • the method for transferring micro light emitting diodes may further include the following step S0 before step S1 is implemented:
  • the micro light emitting diode chip 30 formed on the substrate 60 is transferred from the substrate 60 to the temporary substrate 50.
  • the material of the substrate 60 is not particularly limited, and can be selected reasonably according to the requirements of processing equipment and micro-light-emitting diode chips.
  • it can be a sapphire substrate, silicon carbide substrate, and silicon substrate commonly used in the field of micro-light-emitting diode chips.
  • the method of forming the micro-light emitting diode chip 30 on the substrate 60 is not particularly limited. For example, it can be epitaxially grown on a C-plane sapphire substrate.
  • This embodiment does not specifically limit the specific implementation of transferring the micro-light-emitting diode chip 30 from the substrate 60 to the temporary substrate 50.
  • a laser lift-off technique may be used. As shown in FIG. 6, the temporary bonding glue may be used first. 51. Paste the micro-light-emitting diode chip 30 on the temporary substrate 50, and then remove the substrate 60 by laser lift-off. That is, the micro-light-emitting diode chip 30 is transferred from the substrate 60 to the temporary substrate 50.
  • debonding can also be selected, such as heating or heating or selecting the material of the temporary bonding glue 51. UV radiation is used to reduce the force between the temporary bonding glue 51 and the micro light emitting diode chip 30, so that the flexible transfer head 20 can pick up the micro light emitting diode chip 30 from the temporary substrate 50. If the adhesive force between the temporary bonding glue 51 and the micro light emitting diode chip 30 is less than the adhesive force between the flexible transfer head 20 and the micro light emitting diode chip 30, the debonding step may not be implemented.
  • step S1 the flexible transfer head 20 disposed on the rigid substrate 10 can pick up the micro light emitting diode chip 30 by van der Waals force.
  • the material of the flexible transfer head 20 is not particularly limited, as long as it has sufficient adhesion with the micro LED chip 30 to overcome the force between the temporary bonding glue 51 and the micro LED chip 30, And it can be easily squeezed and deformed by the micro light emitting diode chip 30 during the pressing process.
  • a transfer head that uses polydimethylsiloxane PDMS as a basic component may be used. That is, the flexible transfer head 20 can be made of PDMS material, or the PDMS material can be doped with other materials to improve its viscosity, hardness, temperature resistance and other physical and chemical properties, thereby improving the pickup of the micro light emitting diode chip 30 by the PDMS transfer head.
  • PDMS transfer heads The effect of bonding the micro-light-emitting diode chip 30 and the circuit substrate 40, and separating the PDMS transfer head from the micro-light-emitting diode chip 30 after bonding.
  • the transfer heads using polydimethylsiloxane PDMS as the basic component are collectively referred to as PDMS transfer heads in this embodiment.
  • step S2 the micro light emitting diode chip 30 picked up by the rigid substrate 10 and the circuit substrate 40 are aligned, so that the electrodes 31 on the micro light emitting diode chip 30 and the circuit substrate 40 The electrodes 41 are arranged opposite and aligned with each other.
  • the circuit substrate 40 is used to carry and drive the micro light emitting diode chip 30 so that the micro light emitting diode chip 30 is driven to emit light.
  • the circuit substrate 40 may specifically be a circuit substrate 40 commonly used in current micro-light emitting diode display panels, including but not limited to printed backplanes, TFT (Thick Film Transistor) backplanes, PM (Passive Matrix) wiring backplanes, CMOS ( Complementary Metal Oxide Semiconductor) Transistor backplane, etc.
  • step S3 pressure is applied to the rigid substrate 10 (the direction of the dashed arrow in FIG. 4 represents the direction of pressure). Since the material of the flexible transfer head 20 is relatively soft, the micro light emitting diode chip 30 is relatively The rigid substrate 10 moves in a direction away from the pressure and squeezes the flexible transfer head 20; as the flexible transfer head 20 is continuously squeezed and deformed, the distance between the micro light emitting diode chip 30 and the rigid substrate 10 is continuously reduced or even approached infinitely, so that The rigid substrate 10 can provide the required hardness during the pressing process to ensure that the pressure applied to the rigid substrate 10 can be fully transmitted to the micro-light-emitting diode chip 30 and the circuit substrate 40, which is beneficial to realize the electrodes 31 and the circuit substrate on the micro-light-emitting diode chip 30. The bonding between the electrodes 41 on the circuit substrate 40 forms a good electrical connection.
  • the rigid substrate 10 should be able to provide sufficient hardness during the pressing process, so that the pressing force can be fully transmitted to the micro light emitting diode chip 30 and the circuit substrate 40 through the rigid substrate 10.
  • the rigid substrate 10 may specifically be a rigid glass substrate, a rigid plastic substrate, or a metal substrate.
  • the rigid glass substrate may be, for example, a borosilicate glass sheet
  • the rigid plastic substrate may be a polyvinyl chloride sheet, a polyurethane sheet, etc.
  • the substrate may be steel plate, copper plate, etc., for example.
  • the micro light emitting diode chip 30 is squeezed into the flexible transfer head 20, which causes the flexible transfer head 20 to be squeezed and deformed.
  • the part where the flexible transfer head 20 is in direct contact with the micro light emitting diode chip 30 is compressed to reduce its thickness and extends in a direction parallel to the rigid substrate 10, resulting in the part where the flexible transfer head 20 does not contact the micro light emitting diode chip 30 It will also extend, and the thickness may also increase slightly.
  • the thickness of the flexible transfer head 20 should preferably not exceed the thickness of the micro light emitting diode chip 30 (or Called height).
  • the thickness of the flexible transfer head 20 should also consider the material characteristics of the flexible transfer head 20 itself, such as viscosity and hardness, so that the pressing force applied to the rigid substrate 10 during bonding can be fully transmitted to the micro light emitting diode chip 30 and ensure During the picking process, there is sufficient van der Waals force between the flexible transfer head 20 and the micro light emitting diode chip 30, and after the bonding is completed, the flexible transfer head 20 can be easily separated from the micro light emitting diode chip 30.
  • the thickness of the flexible transfer head 20 can be controlled to not exceed 7 ⁇ m, such as 1-7 ⁇ m, and further such as 3-5 ⁇ m.
  • the above-mentioned ultra-thick flexible transfer head 20 can not only prevent the micro light emitting diode chip 30 from being completely wrapped, but also during the pressing process, the thickness of the flexible transfer head 20 will be further reduced on this basis, which is more conducive to the realization of micro light emission.
  • the infinite proximity between the diode chip 30 and the rigid substrate 10 ensures that the pressing force is transmitted to the micro light emitting diode chip 30 and the circuit substrate 40 via the rigid substrate 10.
  • the flexible transfer head 20 with the above-mentioned thickness can easily be separated from the micro light emitting diode chip 30 in the subsequent step S4.
  • adjacent flexible transfer heads 20 do not contact each other.
  • each The flexible transfer head 20 since the adjacent flexible transfer heads 20 are arranged at intervals, when the bonding between the micro light emitting diode chip 30 and the circuit board 40 is subsequently realized by welding, especially heating welding, even if the flexible transfer head 20 is heated and expands, each The flexible transfer head 20 also swells centered on its own location, and avoids that the flexible transfer head 20 is designed as a whole layer or the adjacent flexible transfer heads 20 contact each other during the pressing process, resulting in the micro light emitting diode chip 30 relative to the circuit substrate 40 overall shift occurred.
  • solder 42 may be provided on the electrode 41 of the circuit substrate 40 in advance. During the pressing process, the solder 42 and the electrode 31 of the micro light emitting diode chip 30 are bonded by welding. Specifically, during the pressing process, the solder 42 is heated and then cooled to melt and solidify the solder 42 to complete the bonding between the micro light emitting diode chip 30 and the circuit substrate 40.
  • the soldering temperature should preferably not exceed the maximum withstand temperature (or called the maximum withstand temperature) of the flexible transfer head 20 to avoid damage to the flexible transfer
  • the head 20 also avoids damage to the micro light emitting diode chip 30.
  • the selected solder 42 is a low-temperature solder, and the soldering temperature during actual operation does not exceed the maximum withstand temperature of the flexible transfer head 20.
  • the maximum withstand temperature of the PDMS transfer head commonly used in the industry is about 120°C, and the solder 42 can be indium, indium-tin alloy, bismuth-lead-tin alloy, etc.
  • indium its melting point is about 156.6°C. In actual operation, welding indium at about 100°C can also form a metal bond. Indium tin alloys, bismuth-lead tin alloys, etc. are generally considered to have a melting point lower than the maximum withstand temperature of PDMS 120 degrees.
  • the flexible transfer head 20 and the micro light emitting diode chip 30 are separated.
  • the separation means between the flexible transfer head 20 and the micro light emitting diode chip 30 is not particularly limited.
  • a suitable separation means can be selected according to the specific material of the flexible transfer head 20 and other factors. For example, the rigid substrate 10 and the flexible substrate can be separated first. Transfer head 20, and then peel off the flexible transfer head 20 from the micro light emitting diode chip 30, or the rigid substrate 10 and the flexible transfer head 20 can be separated from the micro light emitting diode chip 30 together to complete the micro light emitting diode chip 30 to the circuit Transfer of the substrate 40.
  • This embodiment provides a method for transferring micro light-emitting diodes, as shown in FIG. 1, FIG. 6 and FIG. 7.
  • the difference between the transfer method and the above-mentioned embodiment lies in that: in step S1, a flexible substrate disposed on a rigid substrate 10 is used.
  • the transfer head 20 selectively picks up the micro light emitting diode chip 30 from the temporary substrate 50.
  • the arrangement of the micro light emitting diode chips 30 on the substrate 60 and the circuit substrate 40 is often different.
  • the former mainly depends on the formation process of the micro LED chip 30, and the latter mainly depends on the pixel arrangement of the micro LED display panel. Therefore, during the batch transfer of the micro light emitting diode chips 30, the flexible transfer head 20 can selectively pick up the micro light emitting diode chips 30 from the temporary substrate 50.
  • the flexible transfer head 20 on the rigid substrate 10 can first pick up the 1# and 3# micro light emitting diode chips 30, and then pick up the 2# and 4# micro light emitting diode chips 30.
  • This embodiment provides a manufacturing method of a display panel, please refer to FIG. 1 to FIG. 7, including:
  • the micro light emitting diode chip 30 is transferred to the circuit substrate 40 to form a micro light emitting diode display array used to form a display;
  • the micro light emitting diode display array is packaged to obtain the micro light emitting diode display panel.
  • this embodiment does not specifically limit the material of the substrate 60, including but not limited to a sapphire substrate, a silicon carbide substrate, and a silicon substrate.
  • the method of forming the micro light emitting diode chip 30 is not particularly limited.
  • the micro light emitting diode chip 30 can be formed on a C-plane sapphire substrate by epitaxial growth.
  • the current typical GaN-based Micro LED chip structure includes an n-GaN layer on the substrate 60 and an n-type on a part of the n-GaN layer.
  • the n-type electrode and the p-type electrode are collectively referred to as the electrode 31.
  • This embodiment does not specifically limit the packaging method of the micro-light-emitting diode display array.
  • a physical deposition process may be adopted to form the protective layer and the upper electrode to complete the packaging and obtain the micro-light-emitting diode display panel.
  • the manufacturing method of the display panel provided in this embodiment includes the transfer method in the first embodiment to form a micro-light emitting diode display array for display, so it also has the same advantages as the first embodiment.
  • the electrode 31 of the micro light emitting diode chip 30 and the electrode 41 on the circuit substrate 40 form an effective bonding and electrical connection, the performance and yield of the micro light emitting diode display panel are significantly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)

Abstract

本公开提供一种微发光二极管的转移方法及显示面板的制作方法。该微发光二极管的转移方法,包括:采用设置于刚性基板上的柔性转移头拾取微发光二极管芯片;对微发光二极管芯片与电路基板进行对位,使微发光二极管芯片上的电极与电路基板上的电极相对应;对刚性基板施加压力,使微发光二极管芯片被挤压入柔性转移头内,该压力经由刚性基板及柔性转移头传递给微发光二极管芯片,并使微发光二极管芯片上的电极与电路基板上的电极实现键合;使柔性转移头与微发光二极管芯片分离。本公开提供的转移方法,能够使微发光二极管芯片有效地固定在电路基板上,确保微发光二极管芯片的电极与电路基板上的电极实现良好的电连接,从而提高显示面板的品质和良率。

Description

微发光二极管的转移方法及显示面板的制作方法 技术领域
本公开涉及显示技术,尤其涉及一种微发光二极管的转移方法及显示面板的制作方法。
背景技术
微发光二极管(Micro Light Emitting Diode,Micro LED)是一种尺寸在几微米到几百微米之间的器件。Micro LED显示器和有机发光二极管(Organic Light-Emitting Diode,OLED)显示器一样属于自发光显示器,但Micro LED显示器相比于OLED显示器还具有材料稳定性更好、寿命更长、无影像烙印等优点。
在微发光二极管芯片与接受基板进行键合时,会出现微发光二极管芯片不能有效地固定在电路基板上,微发光二极管芯片的电极与电路基板上的电极不能实现良好的电连接,使微发光二极管显示面板的品质和良率均下降等问题。
发明内容
针对上述缺陷,本公开提供一种微发光二极管的转移方法,能够使微发光二极管芯片有效地固定在电路基板上,确保微发光二极管芯片的电极与电路基板上的电极实现良好的电连接。
本公开还提供一种显示面板的制作方法,包括上述微发光二极管的转移方法,该制作方法能够提高微发光二极管显示面板的品质和良率。
为实现上述目的,本公开的一个方面提供一种微发光二极管的转移方法,包括:采用设置于刚性基板上的柔性转移头拾取微发光二极管芯片;对刚性基板所拾取的微发光二极管芯片与电路基板进行对位,使微发光二极管芯片上的电极与电路基板上的电极相对应;对刚性基板施加压力,使微发光二极管芯片被挤压入柔性转移头内,压力经由刚性基板及柔性转移头传递给微发光二极管芯片,并使微发光二极管芯片上的电极与电路基板上的电极实现键 合;将柔性转移头与微发光二极管芯片分离。具体地,分离为首先分离刚性基板和柔性转移头,然后将柔性转移头从微发光二极管芯片上剥离,或者为将刚性基板和柔性转移头一起与微发光二极管芯片实现分离。
本公开的另一个方面是提供一种显示面板的制作方法,包括:在衬底上形成微发光二极管芯片;按照第一个方面所述的转移方法,将微发光二极管芯片转移到电路基板上,形成用于构成显示的微发光二极管显示阵列;对微发光二极管显示阵列进行封装,得到微发光二极管显示面板。
进一步地,封装采取物理沉积制程。
本公开提供的微发光二极管的转移方法,通过将柔性转移头设置在刚性基板上,这样在进行压合时,微发光二极管芯片会被挤压入柔性转移头内,使得对刚性基板所施加的压合力能够通过该刚性基板有效地传递给微发光二极管芯片以及电路基板,确保微发光二极管芯片的电极与电路基板上的电极实现有效的键合及电连接,提高微发光二极管器件的性能。
在压合过程中,柔性转移头被挤压变形而形成了用于容纳微发光二极管芯片的凹槽,该凹槽不仅增大了柔性转移头与微发光二极管芯片之间的接触面积及粘结力,而且还能起到限位作用,从而能够避免微发光二极管芯片相对于电路基板发生偏移,进一步确保了微发光二极管芯片与电路基板之间的有效的键合及电连接。
此外,该转移方法实现了微发光二极管芯片的批量转移,且整个工艺流程较为简单,非常有利于实际生产应用和推广。
本公开提供的显示面板的制作方法,由于采用前述转移方法进行微发光二极管的批量转移,因此具有与上述转移方法相同的优势,提高了微发光二极管显示面板的品质和良率。
附图说明
图1为本公开实施例中提供的微发光二极管的转移方法的示意图;
图2为本公开一具体实施例中所提供的微发光二极管的转移方法中步骤S1的示意图;
图3为本公开一具体实施例中所提供的微发光二极管的转移方法中步骤S2的示意图;
图4为本公开一具体实施例中所提供的微发光二极管的转移方法中步骤S3的示意图;
图5为本公开一具体实施例中所提供的微发光二极管的转移方法中步骤S4的示意图;
图6为本公开一具体实施例中所提供的微发光二极管的转移方法中步骤S0的示意图;
图7为本公开另一具体实施例中所提供的微发光二极管的转移方法的流程示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。
现阶段Micro LED显示面板的制备,通常是先在蓝宝石类的衬底上外延获得Micro LED芯片,随后通过激光剥离(Laser lift-off)技术将微发光二极管芯片从衬底上分离开,然后通过微转印(Micro Transfer Print)技术将微发光二极管芯片转移到已经预先制备完成电极图案的电路基板上,形成Micro LED阵列,最后再经过封装等制程,制得Micro LED显示面板。微转印技术的原理大致为:使用具有一定粘性的转移头(Transfer head),例如聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)转移头拾取微发光二极管芯片,然后将PDMS转移头与电路基板进行对位。电路基板上设有与每个微发光二极管芯片的电极相对应的焊点,焊点表面设有焊料,焊料层在高温下与微发光二极管芯片的电极焊接固定,从而使微发光二极管芯片的电极与电路基板上的电极实现电连接,最后再将PDMS转移头从电路基板上剥离,即可完成微发光二极管芯片的批量转移,形成Micro LED阵列。
但是,在微发光二极管芯片与接受基板进行键合时,由于目前所常采用的转移头的材质较软,无法为微发光二极管芯片提供足够的压合力,导致微发光二极管芯片不能有效地固定在电路基板上,微发光二极管芯片的电极与电路基板上的电极不能实现良好的电连接,使微发光二极管显示面板的品质和良率均下降。为了解决上述问题,本公开提出了一种微发光二 极管的转移方法。
实施例一
本实施例提供一种微发光二极管的转移方法,请参考图1并结合图2至图5,具体可包括如下步骤:
S1、采用设置于刚性基板10上的柔性转移头20拾取微发光二极管芯片30;
S2、对刚性基板10所拾取的微发光二极管芯片30与电路基板40进行对位,使微发光二极管芯片30上的电极31与电路基板40上的电极41相对应;
S3、对刚性基板10施加压力,使微发光二极管芯片30被挤压入柔性转移头20内,压力经由刚性基板10及柔性转移头20传递给微发光二极管芯片30,并使微发光二极管芯片30上的电极31与电路基板40上的电极41实现键合;
S4、使柔性转移头20与微发光二极管芯片30分离。
本实施例提供的微发光二极管的转移方法,将柔性转移头20设置在刚性基板10上,在将微发光二极管芯片30与电路基板40进行压合时,微发光二极管芯片30会挤压柔性转移头20并不断接近刚性基板10,这样对刚性基板10所施加的压合力能够有效地传递给微发光二极管芯片30以及电路基板40,确保微发光二极管芯片30的电极31与电路基板40上的电极41实现有效的键合及电连接,提高微发光二极管器件的性能。
此外,在压合过程中,由于微发光二极管芯片30会挤压入柔性转移头20内,即柔性转移头20被挤压变形而形成了用于容纳微发光二极管芯片30的凹槽,该凹槽增大了柔性转移头20与微发光二极管芯片30之间的接触面积及粘结力,此外该凹槽还能起到一定的限位作用,所以能够避免微发光二极管芯片30与电路基板40之间发生偏移,进一步确保微发光二极管芯片30与电路基板40之间实现有效键合及电连接。
并且,该转移方法增加了微发光二极管转印技术的功能性,而且工艺流程较为简单,提高了微发光二极管芯片30的批量转移效率。
本实施例对于微发光二极管芯片30及其电极31的结构不做特别限定,只要在键合时,该微发光二极管芯片30的n型电极和p型电极中至少有一个朝向电路基板40并用于与电路基板40焊接即可。比如该微发光二极管芯片 30是倒装芯片,在键合时,其n型电极和p型电极均朝向电路基板40并用于与电路基板40焊接;或者,该微发光二极管芯片30也可以是垂直芯片,在键合时,其n型电极和p型电极中有一个朝向电路基板40并用于与电路基板40连接,另一个背向电路基板40。
为进一步说明,图2至图6以倒装芯片为例对本实施例的转移方法进行阐述,但是,本实施例所提供的微发光二极管的转移方法并不仅限于倒装芯片,其也同样可适用于垂直芯片,只要有至少一个电极31与电路基板40焊接连接即可适用该转移方法。
请进一步参考图2,在采用柔性转移头20拾取微发光二极管芯片30之前,微发光二极管芯片30可以设置于临时基板50上,即设置于刚性基板10上的柔性转移头20从临时基板50上拾取微发光二极管芯片30。
请进一步参考图1和图2并结合图6,本实施例提供的微发光二极管的转移方法,在实施步骤S1之前还可以包括如下的步骤S0:
将形成于衬底60上的微发光二极管芯片30从衬底60转移到临时基板50上。
本实施例对于衬底60的材质不做特别限定,可根据加工设备和微发光二极管芯片的要求合理选择,比如可以是目前微发光二极管芯片领域所常用的蓝宝石衬底、碳化硅衬底、硅衬底等。本实施例对于微发光二极管芯片30在衬底60上的形成方式也不做特别限定,比如可通过外延生长在C面蓝宝石衬底上。
本实施例对于将微发光二极管芯片30从衬底60转移到临时基板50上的具体实现方式不做特别限定,比如可以采用激光剥离技术,具体如图6所示,可首先采用临时键合胶51将微发光二极管芯片30粘贴到临时基板50上,然后激光剥离去除衬底60,即实现了微发光二极管芯片30从衬底60上转移到临时基板50上。
具体地,在采用设置于刚性基板10上的柔性转移头20从临时基板50上拾取微发光二极管芯片30之前,还可以选择进行解键合,比如根据临时键合胶51的材质选择对其进行加热或UV辐照,以降低临时键合胶51与微发光二极管芯片30之间的作用力,方便柔性转移头20从临时基板50上拾取微发光二极管芯片30。若临时键合胶51与微发光二极管芯片30之间的粘结力小 于柔性转移头20与微发光二极管芯片30之间的粘结力,也可以不实施解键合的步骤。
具体地,在步骤S1中,设置于刚性基板10上的柔性转移头20可以通过范德华力拾取微发光二极管芯片30。
本实施例对于柔性转移头20的材质不做特别限定,其只要与微发光二极管芯片30之间具有足够的粘结力以克服临时键合胶51与微发光二极管芯片30之间的作用力,并能够在压合过程中容易被微发光二极管芯片30挤压变形即可,比如可以是以聚二甲基硅氧烷PDMS作为基础成分的转移头。即该柔性转移头20可以是由PDMS材料制成,也可以通过在PDMS材料中掺杂其它材料以改善其黏度、硬度、耐受温度等理化性质,进而提高PDMS转移头拾取微发光二极管芯片30、微发光二极管芯片30与电路基板40键合、键合后PDMS转移头与微发光二极管芯片30分离的效果。为方便说明,本实施例将以聚二甲基硅氧烷PDMS作为基础成分的转移头统称为PDMS转移头。
请进一步参考图1和图3,在步骤S2中,对刚性基板10所拾取的微发光二极管芯片30与电路基板40进行对位,以使微发光二极管芯片30上的电极31与电路基板40上的电极41相向设置并互相对准。
本实施例中,电路基板40用于承载并驱动微发光二极管芯片30,使微发光二极管芯片30被驱动发光。该电路基板40具体可以是目前微发光二极管显示面板中所常用的电路基板40,包括但不限于印刷背板、TFT(Thick Film Transistor)背板、PM(Passive Matrix)走线背板、CMOS(Complementary Metal Oxide Semiconductor)晶体管背板等。
请进一步参考图1和图4,步骤S3中,对刚性基板10施加压力(图4中虚线箭头方向代表压力的方向),由于柔性转移头20的材质较软,所以微发光二极管芯片30相对于刚性基板10朝向背离压力的方向运动并挤压柔性转移头20;随着柔性转移头20不断被挤压变形,微发光二极管芯片30与刚性基板10之间的距离不断缩小甚至无限接近,从而使刚性基板10能够提供压合过程中所需的硬度,确保施加给刚性基板10的压力能够充分地传递给微发光二极管芯片30和电路基板40,有利于实现微发光二极管芯片30上的电极31与电路基板40上的电极41之间的键合并形成良好的电连接。
如前所述,刚性基板10应能够在压合过程中提供足够的硬度,使压合力 能够经刚性基板10充分传递给微发光二极管芯片30和电路基板40。该刚性基板10具体可以是硬质玻璃基板、硬质塑料基板或者金属基板,其中硬质玻璃基板比如可以是硼硅玻璃板材,硬质塑料基板比如可以是聚氯乙烯板材、聚氨酯板材等,金属基板比如可以是钢板、铜板等。
在对刚性基板10施加压力的过程中,微发光二极管芯片30被挤压入柔性转移头20内,这导致柔性转移头20被挤压变形。直观表现为,柔性转移头20与微发光二极管芯片30直接接触的部位被压缩而厚度减小且向平行于刚性基板10的方向延伸,导致柔性转移头20不与微发光二极管芯片30接触的部位也会随之延伸,且厚度也可能会略有增大。
为避免微发光二极管芯片30被厚度增大的柔性转移头20完全包裹而影响与电路基板40之间的键合连接,柔性转移头20的厚度最好不超过微发光二极管芯片30的厚度(或称为高度)。此外,柔性转移头20的厚度还应考虑柔性转移头20自身的黏度、硬度等材料特征,使在键合时,施加给刚性基板10的压合力能够充分传递给微发光二极管芯片30,并确保在拾取过程中,柔性转移头20与微发光二极管芯片30之间具有足够的范德华力,且在键合完成之后,柔性转移头20可较易与微发光二极管芯片30分离。上述因素综合考量,加之当前微发光二极管芯片30的一般厚度为5~7μm,因此可控制柔性转移头20的厚度不超过7μm,比如1~7μm,进一步如3~5μm。
上述超薄膜厚的柔性转移头20不仅能够避免微发光二极管芯片30被完全包裹,而且在压合过程中,由于柔性转移头20的厚度会在此基础上进一步降低,从而更有利于实现微发光二极管芯片30与刚性基板10之间无限接近,确保压合力经由刚性基板10传递给微发光二极管芯片30及电路基板40。此外,上述厚度的柔性转移头20还容易实现后续步骤S4中与微发光二极管芯片30之间的分离。
请进一步参考图4,优选地,在微发光二极管芯片30被挤压入柔性转移头20内的过程中,相邻的柔性转移头20之间不互相接触。或者说,相邻柔性转移头20之间具有足够的间距,这样在对刚性基板10施加压力的过程中,虽然柔性转移头20被挤压而向平行于刚性基板10的方向延伸,但柔性转移头20之间仍旧保持间隔设置,避免各柔性转移头20为一整层设计(即连在一起成为一个整体层)或者在压合过程中相邻柔性转移头20互相接触而导致 的微发光二极管芯片30与电路基板40之间发生偏移。
此外,由于相邻柔性转移头20之间间隔设置,在后续通过焊接、尤其是加热焊接实现微发光二极管芯片30与电路基板40之间的键合时,即使柔性转移头20受热发生膨胀,各柔性转移头20也是以自己所在位置为中心发生膨胀,而避免柔性转移头20为一整层设计或者在压合过程中相邻柔性转移头20互相接触而导致微发光二极管芯片30相对于电路基板40发生整体偏移。
本实施例对于微发光二极管芯片30与电路基板40之间实现键合的具体方式不做特别限定,如前所述,可通过焊接方式实现。具体地,可事先在电路基板40的电极41上设有焊料42。在压合过程中,焊料42与微发光二极管芯片30的电极31通过焊接实现键合。具体地,在压合过程中,对焊料42进行加热后冷却,使焊料42熔化再凝固,完成微发光二极管芯片30与电路基板40之间的键合。
进一步的,在焊料42与微发光二极管芯片30的电极31之间进行焊接时,焊接温度最好不超过柔性转移头20的最高承受温度(或称为最高耐受温度),以避免损伤柔性转移头20,也避免对微发光二极管芯片30造成伤害。具体地,所选用的焊料42为低温焊料,其实际操作时的焊接温度不超过柔性转移头20的最高承受温度。比如目前工业中普遍使用的PDMS转移头的最高承受温度约为120℃,则焊料42可以选择铟、铟锡合金、铋铅锡合金等。以铟为例,其熔点约为156.6℃,在实际操作时,在100℃左右焊接铟亦可形成金属键合。而铟锡合金、铋铅锡合金等一般认为其熔点均低于PDMS的最高耐受温度120度。
请进一步参考图1和图5,在完成微发光二极管芯片30与电路基板40之间键合之后,分离柔性转移头20与微发光二极管芯片30。本实施例对于柔性转移头20与微发光二极管芯片30之间的分离手段不做特别限定,可根据柔性转移头20的具体材质等因素选择适宜的分离手段,比如可首先分离刚性基板10和柔性转移头20,然后将柔性转移头20从微发光二极管芯片30上剥离,或者也可以将刚性基板10和柔性转移头20一起与微发光二极管芯片30实现分离,从而完成微发光二极管芯片30到电路基板40的转移。
本实施例提供一种微发光二极管的转移方法,如图1、图6和图7所示,该转移方法与上述实施例的区别在于:在步骤S1中,采用设置于刚性基板 10上的柔性转移头20从临时基板50上选择性拾取微发光二极管芯片30。
在实际工业生产中,微发光二极管芯片30在衬底60和电路基板40上的排布方式往往并不相同。前者主要取决于微发光二极管芯片30的形成工艺,后者主要取决于微发光二极管显示面板的像素排布。因此在进行微发光二极管芯片30的批量转移时,柔性转移头20可从临时基板50上选择性拾取微发光二极管芯片30。
如图7所示,以电路基板40上相邻两个微发光二极管芯片30之间的间距为衬底60上相邻两个微发光二极管芯片30之间的间距的2倍为例,设置于刚性基板10上的柔性转移头20可以先拾取1#和3#微发光二极管芯片30,然后再拾取2#和4#微发光二极管芯片30。
本实施例提供一种显示面板的制作方法,请参考图1至图7,包括:
在衬底60上形成微发光二极管芯片30;
按照实施例一或实施例二中的转移方法,将微发光二极管芯片30转移到电路基板40上,形成用于构成显示的微发光二极管显示阵列;
对微发光二极管显示阵列进行封装,得到微发光二极管显示面板。
如前述,本实施例对于衬底60的材质不做特别限定,包括但不限于蓝宝石衬底、碳化硅衬底、硅衬底。本实施例对于微发光二极管芯片30的形成方式也不做特别限定,比如可以在C面蓝宝石衬底上通过外延生长而形成微发光二极管芯片30。
本实施例对于微发光二极管芯片30的结构也不做特别限定,比如目前典型的GaN基Micro LED芯片结构,包括位于衬底60上的n-GaN层、位于一部分n-GaN层上的n型电极、位于另一部分n-GaN层上的多量子阱有源层、位于多量子阱有源层上的p-GaN层、位于p-GaN层上的p型电极。本实施例中,为方便说明,将n型电极和p型电极统称为电极31。
本实施例对于微发光二极管显示阵列的封装方式不做特别限定,比如可采取物理沉积制程,形成保护层与上电极,从而完成封装,得到微发光二极管显示面板。
本实施例提供的显示面板的制作方法,由于包括通过前述实施例一中的转移方法,形成用于构成显示的微发光二极管显示阵列,因此也具有与实施例一相同的优势。此外由于微发光二极管芯片30的电极31与电路基板40上 的电极41之间形成了有效的键合及电连接,因此该微发光二极管显示面板的性能和良率都有明显提升。
以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。

Claims (20)

  1. 一种微发光二极管的转移方法,包括:
    采用设置于刚性基板上的柔性转移头拾取微发光二极管芯片;
    将拾取的所述微发光二极管芯片与电路基板进行对位,使所述微发光二极管芯片上的电极与所述电路基板上的电极相对应;
    对所述刚性基板施加压力,使所述微发光二极管芯片被挤压入所述柔性转移头内,所述压力经由所述刚性基板及所述柔性转移头传递给所述微发光二极管芯片,并使所述微发光二极管芯片上的电极与所述电路基板上的电极实现键合;
    将所述柔性转移头与所述微发光二极管芯片分离。
  2. 根据权利要求1所述的转移方法,其中,所述柔性转移头通过范德华力拾取所述微发光二极管芯片。
  3. 根据权利要求1或2所述的转移方法,其中,所述柔性转移头是以聚二甲基硅氧烷作为基础成分的转移头。
  4. 根据权利要求1或2所述的转移方法,其中,所述柔性转移头的厚度小于或等于所述微发光二极管芯片的厚度。
  5. 根据权利要求4所述的转移方法,其中,所述柔性转移头的厚度不超过7μm。
  6. 根据权利要求5所述的转移方法,其中,所述柔性转移头的厚度为1~7μm。
  7. 根据权利要求1所述的转移方法,其中,所述刚性基板为硬质玻璃基板、硬质塑料基板或者金属基板。
  8. 根据权利要求1所述的转移方法,其中,在所述微发光二极管芯片被挤压入所述柔性转移头内的过程中,相邻的所述柔性转移头之间互相不接触。
  9. 根据权利要求1所述的转移方法,其中,所述电路基板的电极上设有焊料,所述焊料与所述微发光二极管芯片的电极通过焊接实现所述键合。
  10. 根据权利要求9所述的转移方法,其中,在进行所述键合时,所述焊料与所述微发光二极管芯片的电极之间的焊接温度不超过所述柔性转移头的最高承受温度。
  11. 根据权利要求10所述的转移方法,其中,所述焊料为低温焊料,并 且为铟、铟锡合金、铋铅锡合金。
  12. 根据权利要求1所述的转移方法,所述将所述柔性转移头与所述微发光二极管芯片分离为首先分离所述刚性基板和所述柔性转移头,然后将所述柔性转移头从所述微发光二极管芯片上剥离,或者为将所述刚性基板和所述柔性转移头一起与所述微发光二极管芯片实现分离。
  13. 根据权利要求1所述的转移方法,其中,采用设置于刚性基板上的柔性转移头拾取微发光二极管芯片的步骤之前还包括:将形成于衬底上的微发光二极管芯片从所述衬底转移到临时基板上。
  14. 根据权利要求13所述的转移方法,其中,所述微发光二极管芯片在所述衬底和所述电路基板上的排布方式相同或不同。
  15. 根据权利要求14所述的转移方法,其中,所述微发光二极管芯片在所述衬底和所述电路基板上的排布方式不同时,所述柔性转移头能从所述临时基板上选择性拾取所述微发光二极管芯片。
  16. 根据权利要求13所述的转移方法,其中,采用激光剥离技术将所述微发光二极管芯片从所述衬底转移到所述临时基板上。
  17. 根据权利要求13所述的转移方法,其中,所述微发光二极管芯片在所述衬底上通过外延生长而形成。
  18. 根据权利要求13所述的转移方法,其中,所述衬底为蓝宝石衬底、碳化硅衬底或硅衬底。
  19. 一种显示面板的制作方法,包括:
    在衬底上形成微发光二极管芯片;
    按照权利要求1-18任一项所述的转移方法,将所述微发光二极管芯片转移到电路基板上,形成用于构成显示的微发光二极管显示阵列;
    对所述微发光二极管显示阵列进行封装,得到微发光二极管显示面板。
  20. 根据权利要求19所述的制作方法,其中,所述对所述微发光二极管显示阵列进行封装采取物理沉积制程。
PCT/CN2019/120948 2019-05-31 2019-11-26 微发光二极管的转移方法及显示面板的制作方法 WO2020238099A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020217035346A KR20210137219A (ko) 2019-05-31 2019-11-26 마이크로 발광 다이오드의 이송 방법 및 디스플레이 패널의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910470274.X 2019-05-31
CN201910470274.XA CN112018218B (zh) 2019-05-31 2019-05-31 微发光二极管的转移方法及显示面板的制作方法

Publications (1)

Publication Number Publication Date
WO2020238099A1 true WO2020238099A1 (zh) 2020-12-03

Family

ID=73502080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120948 WO2020238099A1 (zh) 2019-05-31 2019-11-26 微发光二极管的转移方法及显示面板的制作方法

Country Status (3)

Country Link
KR (1) KR20210137219A (zh)
CN (1) CN112018218B (zh)
WO (1) WO2020238099A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113078145A (zh) * 2021-03-30 2021-07-06 厦门乾照半导体科技有限公司 一种阵列式发光二极管器件及其制作方法
CN113764546A (zh) * 2021-08-30 2021-12-07 东莞市中麒光电技术有限公司 一种Mini-LED器件、LED显示模块及其制作方法
WO2023108781A1 (zh) * 2021-12-15 2023-06-22 厦门市芯颖显示科技有限公司 一种微led显示模组及其制造方法及显示面板
CN116944759A (zh) * 2023-09-20 2023-10-27 武汉高芯科技有限公司 一种低接触电阻的倒装焊加工方法及倒装互联结构

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112582520B (zh) * 2020-12-29 2021-10-08 苏州芯聚半导体有限公司 微发光二极管转移方法及显示面板
CN113035763B (zh) * 2021-03-01 2023-06-09 东莞市中麒光电技术有限公司 一种高精度芯片转移方法
CN113257979A (zh) * 2021-05-12 2021-08-13 华南理工大学 芯片转移基板、芯片转移装置和芯片转移方法
CN113284991A (zh) * 2021-07-09 2021-08-20 苏州芯聚半导体有限公司 微led芯片及其封装方法、电子装置
CN113990765B (zh) * 2021-12-28 2023-04-18 深圳市思坦科技有限公司 柔性发光器件的制备方法、柔性发光器件及发光装置
CN114725082A (zh) * 2022-03-29 2022-07-08 厦门天马微电子有限公司 一种显示面板、显示装置及发光二极管的转移装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107644927A (zh) * 2017-10-20 2018-01-30 上海天马微电子有限公司 微发光二极管的生长和转运设备及转运方法
CN107799455A (zh) * 2017-10-24 2018-03-13 上海天马微电子有限公司 转运头及其制作方法、转印方法及显示面板的制作方法
CN108258006A (zh) * 2017-12-21 2018-07-06 厦门市三安光电科技有限公司 微发光元件
US20190103532A1 (en) * 2017-10-03 2019-04-04 Center For Integrated Smart Sensors Foundation Laminating structure of electronic device using transferring element, transferring apparatus for fabricating the electronic device and method for fabricating the electronic device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8349116B1 (en) * 2011-11-18 2013-01-08 LuxVue Technology Corporation Micro device transfer head heater assembly and method of transferring a micro device
CN108463891B (zh) * 2016-01-20 2020-09-22 歌尔股份有限公司 微发光二极管转移方法及制造方法
CN207116403U (zh) * 2017-04-21 2018-03-16 厦门市三安光电科技有限公司 一种用于微元件转移的转置头

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190103532A1 (en) * 2017-10-03 2019-04-04 Center For Integrated Smart Sensors Foundation Laminating structure of electronic device using transferring element, transferring apparatus for fabricating the electronic device and method for fabricating the electronic device
CN107644927A (zh) * 2017-10-20 2018-01-30 上海天马微电子有限公司 微发光二极管的生长和转运设备及转运方法
CN107799455A (zh) * 2017-10-24 2018-03-13 上海天马微电子有限公司 转运头及其制作方法、转印方法及显示面板的制作方法
CN108258006A (zh) * 2017-12-21 2018-07-06 厦门市三安光电科技有限公司 微发光元件

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113078145A (zh) * 2021-03-30 2021-07-06 厦门乾照半导体科技有限公司 一种阵列式发光二极管器件及其制作方法
CN113078145B (zh) * 2021-03-30 2022-06-21 厦门乾照半导体科技有限公司 一种阵列式发光二极管器件及其制作方法
CN113764546A (zh) * 2021-08-30 2021-12-07 东莞市中麒光电技术有限公司 一种Mini-LED器件、LED显示模块及其制作方法
WO2023108781A1 (zh) * 2021-12-15 2023-06-22 厦门市芯颖显示科技有限公司 一种微led显示模组及其制造方法及显示面板
CN116944759A (zh) * 2023-09-20 2023-10-27 武汉高芯科技有限公司 一种低接触电阻的倒装焊加工方法及倒装互联结构

Also Published As

Publication number Publication date
KR20210137219A (ko) 2021-11-17
CN112018218B (zh) 2023-02-28
CN112018218A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
WO2020238099A1 (zh) 微发光二极管的转移方法及显示面板的制作方法
US11450785B2 (en) Transfer carrier for micro light-emitting element
US11705349B2 (en) Transfer substrate for component transferring and micro LEDs carrying substrate
US11955506B2 (en) Fabrication method of display device
JP4745073B2 (ja) 表面実装型発光素子の製造方法
CN114008801A (zh) 显示模块及其制造方法
KR20180120527A (ko) 반도체 발광 소자를 이용한 디스플레이 장치의 제조 방법
JP2020068313A (ja) 発光素子および表示装置の製造方法
KR20220115093A (ko) 발광 소자 복구 방법 및 복구된 발광 소자를 포함하는 디스플레이 패널
WO2023087394A1 (zh) 发光二极管的转移方法及发光基板
CN112531091B (zh) 发光装置
US8232119B2 (en) Method for manufacturing heat dissipation bulk of semiconductor device
US20230005878A1 (en) Temporary Chip Assembly, Display Panel, and Manufacturing Methods of Temporary Chip Assembly and Display Panel
KR101387847B1 (ko) 롤러를 이용한 플렉서블 발광소자 전사방법, 제조방법 및 이에 의하여 제조된 플렉서블 발광소자
CN112599651B (zh) 阵列基板及转移方法
TWI810025B (zh) 利用轉移方式的超小型發光二極體晶片返修裝置以及返修方法
KR20200080617A (ko) 표시 장치 및 이의 제조 방법
US11948928B2 (en) Display apparatus and manufacturing method thereof
TWI762953B (zh) 利用巨量轉移發光二極體晶片的面板製造方法
TWI830256B (zh) Led晶片之移載方法
US11056375B2 (en) Micro LED carrier board
KR20240023463A (ko) 전사 부재 제작 방법, 발광 소자 전사 방법 및 표시 패널의 제작 방법
TW202341527A (zh) 具有主動型元件之發光基板
KR20240043827A (ko) 표시 패널의 제조 장치 및 그의 제조 방법
CN116417472A (zh) 一种显示面板及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930848

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217035346

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930848

Country of ref document: EP

Kind code of ref document: A1