WO2014178666A1 - 반도체 발광소자 및 이를 제조하는 방법 - Google Patents

반도체 발광소자 및 이를 제조하는 방법 Download PDF

Info

Publication number
WO2014178666A1
WO2014178666A1 PCT/KR2014/003888 KR2014003888W WO2014178666A1 WO 2014178666 A1 WO2014178666 A1 WO 2014178666A1 KR 2014003888 W KR2014003888 W KR 2014003888W WO 2014178666 A1 WO2014178666 A1 WO 2014178666A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
semiconductor light
emitting device
conductive
plate
Prior art date
Application number
PCT/KR2014/003888
Other languages
English (en)
French (fr)
Inventor
전수근
박은현
Original Assignee
주식회사 세미콘라이트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130048110A external-priority patent/KR101426433B1/ko
Priority claimed from KR1020130048116A external-priority patent/KR101428774B1/ko
Priority claimed from KR1020130048113A external-priority patent/KR20140130270A/ko
Priority claimed from KR1020130066526A external-priority patent/KR101523664B1/ko
Priority claimed from KR1020140015466A external-priority patent/KR101561199B1/ko
Application filed by 주식회사 세미콘라이트 filed Critical 주식회사 세미콘라이트
Publication of WO2014178666A1 publication Critical patent/WO2014178666A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present disclosure generally relates to a metal substrate, a semiconductor light emitting device, and a method of manufacturing the same.
  • a novel type of lead frame or electrode, a semiconductor light emitting device having the same, and the same It relates to a manufacturing method.
  • the semiconductor light emitting device refers to a semiconductor optical device that generates light through recombination of electrons and holes, for example, a group III nitride semiconductor light emitting device.
  • GaAs type semiconductor light emitting elements used for red light emission, etc. are mentioned.
  • FIG. 1 is a view illustrating a conventional semiconductor light emitting device (Lateral Chip), the semiconductor light emitting device is a substrate 100, a buffer layer 200 on the substrate 100, a first semiconductor layer having a first conductivity ( 300), an active layer 400 that generates light through recombination of electrons and holes, and a second semiconductor layer 500 having a second conductivity different from the first conductivity are sequentially deposited, and translucent thereon for current diffusion thereon.
  • the conductive film 600 and the electrode 700 serving as the bonding pad are formed, and the electrode 800 serving as the bonding pad is formed on the etched and exposed first semiconductor layer 300.
  • the buffer layer 200 may be omitted.
  • FIG. 2 is a view illustrating another example of a conventional semiconductor light emitting device (Flip Chip), in which a semiconductor light emitting device includes a substrate 100, a first semiconductor layer 300 having a first conductivity, and an electron on the substrate 100; An active layer 400 that generates light through recombination of holes, and a second semiconductor layer 500 having a second conductivity different from the first conductivity are sequentially deposited, and reflect light onto the substrate 100 thereon. An electrode film 901, an electrode film 902, and an electrode film 903 having three layers are formed, and an electrode 800 serving as a bonding pad is formed on the first semiconductor layer 300 that is etched and exposed. have.
  • a semiconductor light emitting device includes a substrate 100, a first semiconductor layer 300 having a first conductivity, and an electron on the substrate 100;
  • An active layer 400 that generates light through recombination of holes, and a second semiconductor layer 500 having a second conductivity different from the first conductivity are sequentially deposited, and reflect light onto the substrate 100 thereon.
  • the semiconductor light emitting device is a first semiconductor layer 300 having a first conductivity, the active layer for generating light through the recombination of electrons and holes 400, a second semiconductor layer 500 having a second conductivity different from the first conductivity is sequentially deposited, and a metal for reflecting light to the first semiconductor layer 300 on the second semiconductor layer 500.
  • the reflective film 910 is formed, and the electrode 940 is formed on the support substrate 930 side.
  • the metal reflective film 910 and the support substrate 930 are bonded by the wafer bonding layer 920.
  • An electrode 800 that functions as a bonding pad is formed in the first semiconductor layer 300.
  • FIG. 4 is a view showing an example of the semiconductor light emitting device shown in US Patent No. 6,650,044, the semiconductor light emitting device in the form of a flip chip, having a first conductivity on the substrate 100, the substrate 100
  • the first semiconductor layer 300, an active layer 400 that generates light through recombination of electrons and holes, and a second semiconductor layer 500 having a second conductivity different from the first conductivity are sequentially deposited thereon.
  • a reflective film 950 for reflecting light toward the substrate 100 is formed, and an electrode 800 serving as a bonding pad is formed on the first semiconductor layer 300 that is etched and exposed, and the substrate 100 and An encapsulant 1000 is formed to surround the semiconductor layers 300, 400, and 500.
  • the reflective film 950 may be formed of a metal layer as shown in FIG.
  • the semiconductor light emitting device is mounted on a printed circuit board (PCB) 1200 having electrical wires 820 and 960 through conductive adhesives 830 and 970.
  • the encapsulant 1000 mainly contains phosphors. Since the semiconductor light emitting device includes the encapsulant 1000, the semiconductor light emitting device portion except for the encapsulant 1000 may be referred to as a semiconductor light emitting device chip for the purpose of classification. In this manner, the encapsulant 1000 may be applied to the semiconductor light emitting device chip as shown in FIG. 4.
  • FIG. 5 is a diagram illustrating another example of a conventional semiconductor light emitting device, wherein the semiconductor light emitting device includes a substrate 100, a buffer layer 200 grown on the substrate 100, and an n-type semiconductor layer grown on the buffer layer 200. 300), an active layer 400 grown on the n-type semiconductor layer 300, a p-type semiconductor layer 500 grown on the active layer 400, and a p-type semiconductor layer 500 formed on the light-transmitting function that serves as a current diffusion function.
  • the conductive film 600 includes a p-side bonding pad 700 formed on the transparent conductive film 600 and an n-side bonding pad 800 formed on the etched and exposed n-type semiconductor layer 300.
  • the distributed Bragg reflector 900 DBR: Distributed Bragg Reflector
  • the metal reflecting film 904 are provided on the transparent conductive film 600.
  • DBR Distributed Bragg Reflector
  • FIG. 6 and 7 illustrate an example of a method of manufacturing the semiconductor light emitting device shown in US Patent No. 6,650,044.
  • the semiconductor light emitting device chip 20 is mounted on a mounting surface 10 formed of a film or plate. Is laid.
  • the stencil mask 80 having the partition 82 and the opening 81 is placed on the mounting surface 10 so that the semiconductor light emitting device chip 20 is exposed.
  • the encapsulant 40 is introduced into the opening 81, and then the encapsulant 40 is cured for a predetermined time, and then the stencil mask 80 is separated from the mounting surface 10.
  • the stencil mask 80 is mainly made of a metal material.
  • FIG. 8 is a diagram illustrating another example of a conventional semiconductor light emitting device, and illustrates a package in which the semiconductor light emitting device chip 1 shown in FIG. 1 is mounted.
  • the package has a lead frame 4, 5, a mold 6 which fixes the lead frames 4, 5 and forms a recess 7.
  • the semiconductor light emitting element 1 semiconductor light emitting element chip
  • the encapsulant 1000 fills the recess 7 so as to cover the semiconductor light emitting element chip 1.
  • the encapsulant 1000 comprises a phosphor.
  • the substrate 100 is placed below, and since the thickness of the substrate 100 reaches 80 to 150 um, the active layer 400 for generating light is placed at a higher position, and thus, in the recess 7. In this case, the light can be emitted evenly throughout, and when the phosphor 1000 is provided in the encapsulant 1000, the phosphor can be excited well.
  • the substrate 100 faces upward, so that the active layer 400 that generates light is located within a range not exceeding 20 ⁇ m from the bottom of the package, and concave.
  • the encapsulant 1000 may uniformly cover the semiconductor light emitting device chip as shown in FIG. 4, rather than forming an encapsulant using a dispenser as shown in FIG. 8. The plan should be considered.
  • FIG. 25 is a diagram illustrating an example of a semiconductor light emitting device shown in Korean Patent Publication No. 10-0748241, except that the protection device 2000 for preventing static electricity is provided.
  • the protection device 2000 is to protect the semiconductor light emitting device chip 1 from static electricity or reverse electricity, and is connected in parallel with the semiconductor light emitting device chip 1 in a reverse direction.
  • As the protection element 2000 a zener diode is mainly used, but it is also possible to use a pn diode.
  • a recess 9 is formed in the lower part of the mold 6, the protection element 2000 is placed and electrically connected to the rib frame 4, and the lead frame 5 is connected through the wire 8. Is electrically connected).
  • an encapsulant 1000 may be provided in the recess 7 and the recess 9 to protect the semiconductor light emitting device chip 1, the protection device 2000, and the wires 2, 3, and 8. Can be.
  • the protection device 2000 below the lead frames or the electrodes 4 and 5
  • light absorption by the protection device 2000 can be reduced, but the thickness of the entire semiconductor light emitting device is increased.
  • the metal substrate supports the semiconductor device chip and the semiconductor light emitting device chip, for example, when configuring a semiconductor package using a semiconductor device chip or a lighting device using a semiconductor light emitting device chip such as an LED chip. It serves as a medium for electrically connecting the chip and the semiconductor light emitting device chip and the printed circuit board (PCB).
  • PCB printed circuit board
  • FIG. 40 is a view showing an example of a metal substrate according to the prior art shown in Korea Patent Publication No. 2003-0031412
  • Figure 41 is another of the metal substrate according to the prior art shown in Korea Patent Publication No. 2003-0031412 It is a figure which shows an example.
  • the metal substrate 10 is intended to simultaneously manufacture a plurality of semiconductor devices having a package form in a single process, and has a structure in which a plurality of unit metal substrates are connected in a matrix form.
  • the metal substrate 10 may generally be made of a metal material such as Cu, Cu alloy, Fe-Ni, Fe-Ni alloy, or the like.
  • the metal substrate 10 includes, for example, a chip mounting portion 15 on which a semiconductor element chip is mounted, and a plurality of external connection elements 17 that electrically connect the semiconductor element chip and the printed circuit board. .
  • Such metal substrates have been manufactured by conventional stamping or etching methods.
  • the stamping method is a method of punching a metal plate in a mold of a predetermined shape, and the metal substrate 10 having the structure in which the chip mounting part 15 and the plurality of external connection elements 17 as shown in FIG. 40 are connected.
  • the metal substrate 10 In the case of the metal substrate 10, the chip mounting unit 15 and the plurality of external connection devices 17 in a connected state are cut along the dividing line L, which is finally scheduled in the process of manufacturing a semiconductor device in a package form. Electrically separated when divided into individual semiconductor device units in a manner.
  • This stamping method has a problem that the structure of the mold is inevitably complicated, and therefore, a large cost is required to manufacture the mold.
  • the chip mounting part 15 as shown in FIG. 40 is removed by applying a photosensitive material to the metal plate to selectively etch only a portion of the metal plate, and then exposing and developing the mask part in a pre-fabricated mask pattern. And a metal substrate 10 having a structure in which a plurality of external connection elements 17 are connected, or a metal substrate 20 having a structure in which a chip mounting portion 25 and a plurality of external connection elements 27 as shown in FIG. 41 are separated. Form.
  • a certain portion of the metal substrate 20 is removed by etching during the manufacturing process.
  • the metal substrate 30 is laminated
  • the laminated body 33 is cut in the direction orthogonal to the surface of the electroconductive board 31 by the appropriate width
  • 45 and 46 are diagrams illustrating an example of a semiconductor light emitting device according to the related art shown in Korean Patent Publication No. 2012-0140454.
  • the semiconductor light emitting device chip 40 such as an LED chip is mounted on the metal substrate 30 as described above according to an appropriate arrangement rule, and the semiconductor light emitting device chip 40 is formed using the wire 37 or the like.
  • the conductive portion 34 of the metal substrate 30 are electrically connected to each other, and then the encapsulation portion 50 is formed so as to cover the semiconductor light emitting device chip 40 as shown in FIG.
  • the semiconductor light emitting device may be manufactured by cutting into a shape including the light emitting device chip.
  • the conductive plate 31 and the insulating plate 32 are bonded to each other with an adhesive containing an organic substance, or the conductive plate 31 and the conductive plate 31 are made of an insulating plate ( 32) to form a laminate 33 in the form of directly bonding with an insulating adhesive containing an organic material.
  • the adhesive melts due to high heat, resulting in poor bonding and poor insulation between the conductive portions, or discoloration of the adhesive due to high heat and light. There was a problem of lowering the light extraction efficiency of the light emitting device.
  • a first conductive portion and a second conductive portion and between the first conductive portion and the second conductive portion are provided.
  • a plate having an insulator and having a top surface and a bottom surface opposite the top surface;
  • a semiconductor light emitting device chip disposed on an upper surface of the plate and electrically connected to the first conductive part and the second conductive part, the semiconductor light emitting device having an active layer generating light using electrons and holes;
  • an encapsulant covering the plate and the semiconductor light emitting device chip is provided.
  • the first conductive portion and the second conductive portion are arranged to face each other with the insulating portion, the insulating portion interposed therebetween, and electrically insulated by the insulating portion.
  • a method of manufacturing a semiconductor light emitting device comprising: preparing a laminate in which two or more conductive plates are repeatedly laminated with an insulating material interposed therebetween; step; The laminate is cut to have a first conductive portion and a second conductive portion, each comprising an insulating portion made of an insulating material and a conductive plate, the first conductive portion and the second conductive portion being disposed to face each other with the insulating portion therebetween and electrically insulated by the insulating portion.
  • a disc having a lower surface opposite the upper surface, wherein the insulating portion extends from the upper surface to the lower surface; Forming a non-conductive reflecting film to cover the insulating portion on the upper surface side of the disc; A first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, an active layer interposed between the first semiconductor layer and the second semiconductor layer and generating light by recombination of electrons and holes Fixing a semiconductor light emitting device chip having a first electrode electrically connected to the first semiconductor layer, and a second electrode electrically connected to the second semiconductor layer, on an upper surface side of the original plate; Covering the semiconductor light emitting device chip with an encapsulant; And cutting the disc and the encapsulant together along a predetermined boundary of the semiconductor light emitting device.
  • each side of the insulated portion having an inclined portion and an inclined surface corresponding to the inclined portion of the insulated portion interposed therebetween is disposed to face each other.
  • a method of manufacturing a semiconductor light emitting device comprising: preparing a laminate in which two or more conductive plates are repeatedly laminated with an insulating material interposed therebetween; step; The laminate is cut from one side surface side in a lamination direction and an inclined direction, and is formed so as to face each one of the inclined surfaces made of the insulated material and the conductive plate, and each of the one side surfaces formed of the inclined surfaces corresponding to the inclination of the insulation portion.
  • a disc having a first conductive portion and a second conductive portion electrically insulated by the portion, the upper portion having a top surface and a bottom surface facing the top surface, and the insulating portion extending from the top surface to the bottom surface;
  • a first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, an active layer interposed between the first semiconductor layer and the second semiconductor layer and generating light by recombination of electrons and holes
  • Fixing a semiconductor light emitting device chip having a first electrode electrically connected to the first semiconductor layer, and a second electrode electrically connected to the second semiconductor layer on an upper surface of the original plate; Covering the semiconductor light emitting device chip with an encapsulant; And cutting the disc and the encapsulant together along a predetermined boundary of the semiconductor light emitting device.
  • the first conductive portion and the second conductive portion and the insulating portion provided between the first conductive portion and the second conductive portion, the upper surface A plate having a lower surface opposed to the upper surface;
  • a semiconductor light emitting device chip disposed on an upper surface of the plate and electrically connected to the first conductive part and the second conductive part, the semiconductor light emitting device having an active layer generating light using electrons and holes;
  • a protection device provided in a recess formed in a lower surface of the plate to protect the semiconductor light emitting device chip from static electricity.
  • a method of manufacturing a semiconductor light emitting device, the first conductive portion and the second conductive portion, and the first conductive portion and the second conductive Preparing a plate including a groove formed between the portions to separate the first conductive portion and the second conductive portion; A first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, an active layer interposed between the first semiconductor layer and the second semiconductor layer and generating light by recombination of electrons and holes Fixing a semiconductor light emitting device chip having a first electrode electrically connected to the first semiconductor layer, and a second electrode electrically connected to the second semiconductor layer on an upper surface of the plate; Covering the semiconductor light emitting device chip with an encapsulant; And cutting the plate and the encapsulant together along a predetermined boundary of the semiconductor light emitting device.
  • bonding a first metal layer and a second metal layer through a bonding metal layer to form a laminate Forming a laminate comprising a nonconductive film on at least one side of the metal layer and the second metal layer; And cutting the laminate such that the non-conductive film functions as an insulating film between the first metal layer and the second metal layer.
  • the first semiconductor layer having the first conductivity, the second semiconductor layer having the second conductivity different from the first conductivity, and the first semiconductor layer and the second semiconductor layer are interposed therebetween to emit light through recombination of electrons and holes.
  • a semiconductor light emitting device comprising: a semiconductor light emitting device chip having an active layer, wherein the first semiconductor layer is electrically connected to the first metal layer, and the second semiconductor layer is electrically connected to the second metal layer.
  • FIG. 1 is a view showing an example of a conventional semiconductor light emitting device (Lateral Chip),
  • FIG. 2 is a view showing another example (flip chip) of a conventional semiconductor light emitting device
  • FIG. 3 is a view showing another example of a conventional semiconductor light emitting device (Vertical Chip)
  • FIG. 4 is a view showing an example of a semiconductor light emitting device shown in US Patent No. 6,650,044;
  • FIG. 5 is a view showing still another example of a conventional semiconductor light emitting device
  • 6 and 7 are views showing an example of a method of manufacturing a semiconductor light emitting device shown in US Patent No. 6,650,044;
  • FIG. 8 is a view showing another example of a conventional semiconductor light emitting device
  • FIG. 9 illustrates an example of a semiconductor light emitting device according to the present disclosure
  • FIG. 10 is a partially exploded view of the semiconductor light emitting device of FIG. 9;
  • 11 to 16 illustrate an example of a method of manufacturing a semiconductor light emitting device according to the present disclosure
  • FIG 17 illustrates another example of the semiconductor light emitting device according to the present disclosure.
  • FIG. 18 is a view showing still another example of a semiconductor light emitting device according to the present disclosure.
  • FIG. 19 is a view showing still another example of a semiconductor light emitting device according to the present disclosure.
  • FIG. 21 illustrates another example of a semiconductor light emitting device according to the present disclosure
  • 22 is a view showing a fixed state on a printed circuit board of the semiconductor light emitting device according to the present disclosure
  • 23 and 24 illustrate another example of a method of manufacturing a semiconductor light emitting device according to the present disclosure
  • 25 is a view showing an example of a semiconductor light emitting device shown in Korean Patent Publication No. 10-0748241,
  • 26 is a view showing still another example of a semiconductor light emitting device according to the present disclosure.
  • FIG. 27 is a view showing still another example of a semiconductor light emitting device according to the present disclosure.
  • FIG. 28 is a view for explaining an example of a method of manufacturing the plate shown in FIGS. 26 and 27;
  • 29 is a photograph showing an example of a concave portion actually formed according to the present disclosure.
  • FIGS. 30 to 34 are views illustrating an example of a method of manufacturing a semiconductor light emitting device according to the present disclosure
  • 35 is a view showing an example of a semiconductor light emitting device manufactured by the method according to the present disclosure.
  • FIG. 37 is a view showing still another example of a semiconductor light emitting device manufactured by a method according to the present disclosure.
  • 38 is a view showing still another example of a semiconductor light emitting device manufactured by the method according to the present disclosure.
  • 39 is a view showing still another example of a semiconductor light emitting device manufactured by a method according to the present disclosure.
  • 40 is a view showing an example of a metal substrate according to the prior art shown in Korea Patent Publication No. 2003-0031412,
  • 42 to 44 is a view showing another example of a metal substrate according to the prior art shown in Korea Patent Publication No. 2012-0140454,
  • 45 and 46 are diagrams illustrating an example of a semiconductor light emitting device according to the related art shown in Korean Patent Publication No. 2012-0140454;
  • 47 and 48 illustrate an example of a metal substrate manufacturing method according to the present disclosure
  • 49 is a view illustrating an example of a metal substrate manufactured according to the metal substrate manufacturing method according to the present disclosure.
  • FIG. 50 is a view showing another example of a metal substrate manufactured according to the method of manufacturing a metal substrate according to the present disclosure
  • FIG. 51 illustrates an example of a semiconductor light emitting device according to the present disclosure.
  • FIG. 52 is a partially exploded view of the semiconductor light emitting device of FIG. 51;
  • 53 to 55 are views illustrating an example of a method of manufacturing a semiconductor light emitting device according to the present disclosure.
  • FIG. 9 is a diagram illustrating an example of a semiconductor light emitting device according to the present disclosure
  • FIG. 10 is a diagram partially disassembled and illustrates the semiconductor light emitting device of FIG. 9.
  • the semiconductor light emitting device includes a plate 110, a non-conductive reflective film 130, a semiconductor light emitting device chip 150, and an encapsulation unit 170.
  • the plate 110 includes an insulating portion 113 and a first conductive portion 111 and a second conductive portion 112 disposed to face side surfaces with the insulating portion 113 interposed therebetween.
  • the plate 110 has an upper surface 116 and a lower surface 117 opposite the upper surface 116.
  • the insulating portion 113 positioned between the first conductive portion 111 and the second conductive portion 112 extends from the upper surface 116 to the lower surface 117, thus, the first conductive portion 111 and the second conductive portion.
  • the part 112 is electrically insulated by the insulating part 113.
  • the material of the first conductive part 111 and the second conductive part 112 is not particularly limited as long as it is a conductive metal or a conductive semiconductor.
  • Such materials include materials such as W, Mo, Ni, Al, Zn, Ti, Cu, and Si. And an alloy form including at least one of them.
  • Al is suitable as an example in consideration of electrical conductivity, thermal conductivity, reflectance, and the like.
  • a nonmetallic material may also be used as long as it has conductivity.
  • the insulating portion 113 is made of colored or transparent insulating material.
  • the insulating part 113 may be made of an insulating adhesive having adhesiveness.
  • the insulating portion 113 serves to electrically insulate the first conductive portion 111 and the second conductive portion 112, as well as the first conductive portion 111 and the second conductive portion when forming the plate 110. The role of bonding the 112 to each other is also performed.
  • the upper surface 116 of the plate 110 is a portion on which the semiconductor light emitting device chip 150 is placed, and the insulating portion 113 constituting the plate 110 is also partially exposed to the upper surface 116.
  • the portion exposed to the upper surface 116 of the plate 110 of the insulating portion 113 is a portion exposed to strong light emitted from the semiconductor light emitting device chip 150, and is vulnerable to discoloration and discoloration.
  • the insulation 113 is discolored or discolored, the reflection efficiency on the upper surface 116 of the plate 110 of light emitted from the semiconductor light emitting device chip 150 may be reduced.
  • the non-conductive reflective film 130 is to improve the reflection efficiency decrease due to discoloration and discoloration of the insulating part 113, and is formed to cover the insulating part 113 on the upper surface 116 side of the plate 110. do.
  • the non-conductive reflecting film 130 covers the insulating part 113 to prevent discoloration and discoloration of the insulating part 113, thereby preventing the reduction of reflection efficiency on the upper surface 116 of the plate 110, and also the non-conductive reflecting film 130. )
  • the reflection efficiency improvement effect can be obtained by itself.
  • the nonconductive reflecting film 130 functions as a reflecting film, but is preferably made of a light transmitting material to prevent absorption of light.
  • the nonconductive reflective film 150 may be made of a transparent dielectric material such as SiO x , TiO x , Ta 2 O 5 , MgF 2 , SiN, SiON, Al 2 O 3, or the like.
  • the non-conductive reflective film 130 may be, for example, a single dielectric film composed of a transparent dielectric material such as SiO x , TiO x, or the like, and a plurality of heterogeneous dielectric films having different refractive indices (eg, SiO 2 / TiO 2 , SiO 2 / Ta 2 O 5 , SiO 2 / TiO 2 / Ta 2 O 5, etc.), preferably with a single distributed Bragg Reflector (DBR) or dielectric film, for example a combination of SiO 2 and TiO 2 It may be of various structures such as a combination of Bragg reflectors.
  • DBR distributed Bragg Reflector
  • the distributed Bragg reflector can reflect a greater amount of light and can be designed for a specific wavelength, effectively reflecting the wavelength of light generated. Therefore, when the nonconductive reflecting film 130 includes a distributed Bragg reflector, the reflection efficiency can be further improved.
  • the distributed Bragg reflector may have a repeating laminated structure composed of a combination of TiO 2 / SiO 2 , for example, and may be physical vapor deposition (PVD), and among them, electron beam evaporation or sputtering. It may be formed by sputtering or thermal evaporation.
  • each layer is designed to have an optical thickness of 1/4 of a given wavelength, the number of combinations being 4 to 20 pairs ( pairs) are suitable. This is because if the number of combinations is too small, the reflection efficiency of the distributed Bragg reflector is reduced, and if the number of combinations is too large, the thickness becomes excessively thick.
  • each layer is basically designed to have an optical thickness of 1/4 of a given wavelength, but may be designed to have an optical thickness greater than 1/4 of a given wavelength, depending on the wavelength band under consideration.
  • the distributed Bragg reflector may be designed with combinations of TiO 2 layers / SiO 2 layers with different optical thicknesses.
  • the distributed Bragg reflector may include a combination of a plurality of TiO 2 layers / SiO 2 layers that are repeatedly stacked, and the combination of a plurality of TiO 2 layers / SiO 2 layers may have different optical thicknesses, respectively.
  • the plate 110 preferably has a mirror-treated upper surface 116.
  • the first conductive portion 111 and the second conductive portion 112 constituting the plate 110 are made of Al, and the mirror surface treatment is performed by a method such as polishing, the plate 110 is formed.
  • the top surface 116 has a high reflectance.
  • the reflection efficiency decrease due to the discoloration or discoloration of the insulation portion 113 is reduced.
  • the area of the plate 110 that is prevented and covered by the non-conductive reflecting film 130 has a high reflectivity by the non-conductive reflecting film 130 itself, and also in the case of the region not covered by the non-conductive reflecting film 130.
  • the upper surface 116 has an improved reflectance by mirror treatment, so that the semiconductor light emitting device has a further improved reflection efficiency.
  • the semiconductor light emitting device chip 150 is a flip chip of the type illustrated in FIGS. 2, 4, and 5, and includes a first semiconductor layer having a first conductivity (eg, n-type) (see a conventional drawing) and a first conductivity.
  • the semiconductor light emitting device chip 150 is disposed such that the first electrode 151 and the second electrode 152 are disposed below the upper surface 116 of the plate 110.
  • the semiconductor light emitting device chip 150 is positioned over the insulating portion 113 at the upper surface 116 side of the plate 110.
  • the semiconductor light emitting device chip 150 is positioned over the non-conductive reflective film 130.
  • the first electrode 151 is bonded to the first conductive portion 111 on the left side of the non-conductive reflective film 130
  • the second electrode 152 is the non-conductive reflective film. 130 is bonded to the second conductive portion 112 on the right side.
  • the non-conductive reflective film 130 is positioned between the first electrode 151 and the second electrode 152 on the upper surface 116 of the plate 110. Bonding may be performed using Ag paste, or various methods already known in the semiconductor light emitting device field such as soldering may be used.
  • the semiconductor light emitting device chip 150 is in contact with the first conductive part 111 and the second conductive part 112 over a large area, and thus heat generated in the semiconductor light emitting device chip 150 is transferred through the plate 110. Can be effectively released.
  • the encapsulation part 170 is formed to cover the semiconductor light emitting device chip 150 on the upper surface 116 side of the plate 110.
  • the encapsulation unit 170 may include a transparent resin and a phosphor.
  • the semiconductor light emitting device as described above may be manufactured by the following method.
  • 11 to 16 are diagrams showing an example of a method of manufacturing a semiconductor light emitting device according to the present disclosure.
  • the laminate 105 is prepared by repeatedly laminating two or more conductive plates 101 in such a manner that they are bonded using an insulating material such as an insulating adhesive 103 or the like.
  • Such a laminate 105 is cut, and as shown in FIG. 12, the insulating portion 113 'made of the insulating adhesive 103 and the conductive portions 111', 112 'made of the conductive plate 101 are repeated.
  • a disk 110 ' To form a disk 110 '.
  • an insulating portion 113' is positioned between the conductive portion 111 'and the conductive portion 112', and two adjacent conductive portions 111 'and 112' are separated from the insulating portion 113 '.
  • the disc 110 ' includes a top surface 116' and a bottom surface 117 'opposite the top surface 116', and the insulating portion 113 'is bottom surface from the top surface 116' of the disc 110 '. (117 ').
  • the non-conductive reflective film 130 ′ is formed on the upper surface 116 ′ of the disc 110 ′ to cover the insulating portion 113 ′.
  • mirror processing may be performed on the upper surface 116 ′ of the disc 110 ′ by a method such as polishing.
  • the semiconductor light emitting device chip 150 is fixed on the master plate 110 ′ prepared as described above.
  • the semiconductor light emitting device chip 150 is disposed such that the first electrode 151 and the second electrode 152 are disposed below the upper surface 116 ′ of the disc 110 ′.
  • the semiconductor light emitting device chip 150 is positioned over the insulating portion 113 ′.
  • the first electrode 151 is bonded to the top surface 116 ′ of the disc 110 ′ on the left side of the insulating portion 113 ′, and the second electrode 152.
  • Such bonding may be performed using Ag paste, or various methods already known in the semiconductor light emitting device art may be used.
  • the encapsulant 170 ′ is dispensed on the entire upper surface 116 ′ of the disc 110 ′ so as to cover all the semiconductor light emitting device chips 150, and the encapsulant 170 Harden ').
  • the encapsulant 170 ' may include a liquid transparent resin material such as silicon and the like.
  • the cured encapsulant 170 'and the disc 110' are cut together along the predetermined boundary A of the semiconductor light emitting device on a plane, thereby completing a separate semiconductor light emitting device.
  • the encapsulant 170 ′ constitutes the encapsulation portion 170
  • the original plate 110 ′ constitutes the plate 110
  • the plate 110 is insulated.
  • a first conductive portion 111 and a second conductive portion 112 insulated by the insulating portion 113 with the 113 and the insulating portion 113 interposed therebetween.
  • FIG. 17 is a diagram illustrating another example of the semiconductor light emitting device according to the present disclosure.
  • the semiconductor light emitting device chip 150 may include bonding pads 141 and 142 positioned below the first electrode 151 and the second electrode 152, respectively. It may be provided.
  • the bonding pads 141 and 142 may be made of a metal material. Using the bonding pads 141 and 142, the semiconductor light emitting device chip 150 may be bonded to the plate 110 in a eutectic bonding manner. Therefore, in the completed semiconductor light emitting device, a bonding pad 141 is positioned between the first electrode 151 and the first conductive portion 111 of the plate 110, and the bonding electrode 152 of the second electrode 152 and the plate 110 is disposed.
  • the bonding pads 142 are positioned between the second conductive parts 112.
  • the non-conductive reflective film 130 may be formed to cover the entire upper surface 116 of the plate 110.
  • the first electrode 151 and the second electrode 152 may be electrically connected to the first conductive part 111 and the second conductive part 112, respectively.
  • the first through hole 121 partially exposes the first conductive portion 111 and the second through hole 122 partially exposes the second conductive portion 112.
  • the first through hole 121 and the second through hole 122 may be provided with the first electrode 151 and the second electrode 152 so that the first electrode 151 and the second electrode 152 can be inserted, respectively.
  • the plate 110 has a mirror-finished upper surface 116 and the non-conductive reflective film 130 is formed on the upper surface 116 of the mirrored plate 110, the non-mirror plate 110 Compared to the case where the non-conductive reflecting film 130 is formed on the top surface 116, the same reflecting efficiency can be achieved even with the non-conductive reflecting film 130 having a relatively thin thickness. That is, by mirror-processing the upper surface 116 of the plate 110, the non-conductive reflective film 130 can be made thin.
  • the non-conductive reflective film 130 may be formed to cover the entire upper surface 116 of the plate 110.
  • the first electrode 151 and the second electrode 152 may be electrically connected to the first conductive part 111 and the second conductive part 112, respectively, and penetrate the non-conductive reflective film.
  • the first connection electrode 131 and the second connection electrode 132 are provided.
  • the first connection electrode 131 is formed to penetrate the non-conductive reflective film 130 on the first conductive part 111, and the second connection electrode 132 is formed on the first conductive part 112. 130 is formed to pass through.
  • the first electrode 151 is bonded to the first connection electrode 131 to be electrically connected to the first conductive portion 111 through the first connection electrode 131, and the second electrode 152 is connected to the second electrode 152. It is bonded to the connection electrode 132 and electrically connected to the second conductive portion 112 through the second connection electrode 132.
  • the non-conductive reflecting film 130 is widely formed on the upper surface 116 of the plate 110, further improved reflection efficiency can be achieved.
  • FIG. 20 is a view illustrating another example of a semiconductor light emitting device according to the present disclosure.
  • the semiconductor light emitting device chip 150 As the semiconductor light emitting device chip 150, a lateral chip of the type illustrated in FIG. 1 is used.
  • the semiconductor light emitting device chip 150 ′ is disposed such that the first electrode 151 ′ and the second electrode 152 ′ are positioned above. When fixed on the plate 110, the semiconductor light emitting device chip 150 ′ is positioned over the insulating portion 113.
  • the first electrode 151 ′ is connected to the first conductive part 111 by a wire bonding method
  • the second electrode 152 ′ is connected to the second conductive part 112 by a wire bonding method.
  • the first electrode 151 ′ is electrically connected to the first conductive portion 111 by the wire 156, and the second electrode 152 ′ is connected by the wire 157. It is electrically connected to the second conductive portion 112.
  • the first electrode 151 and the second electrode 152 have the first through hole 121 as shown in FIG. 18.
  • the first conductive portion 111 and the second conductive portion ( 112 may be connected to each other by wire bonding.
  • the semiconductor light emitting device chip 150 ′ when fixing on the plate 110, the semiconductor light emitting device chip 150 ′ may be disposed so as not to span the insulating portion 113. In this case, only the semiconductor light emitting device chip 150 ′ is positioned above one of the first conductive part 111 and the second conductive part 112, and the first electrode 151 ′ is connected to the wire 156. ) Is electrically connected to the first conductive portion 111 by, and the second electrode 152 ′ is electrically connected to the second conductive portion 112 by the wire 157.
  • a vertical chip of the type illustrated in FIG. 3 may also be used.
  • the semiconductor light emitting device chip is positioned on the first conductive part 111 or the second conductive part 112, and one electrode positioned below the semiconductor light emitting device chip is the first conductive part 111 and the second conductive part.
  • the other electrode which is directly or indirectly bonded to any one of the portions 112 and positioned on the semiconductor light emitting device chip, is wire bonded to the other of the first conductive portion 111 and the second conductive portion 112. Bonded in a manner.
  • FIG. 21 is a diagram illustrating still another example of the semiconductor light emitting device according to the present disclosure, and the plate 210 is disposed to face one side with an insulated insulator 213 and an insulator 213 interposed therebetween.
  • the first conductive portion 211 and the second conductive portion 212 are provided.
  • One side surface of the first conductive portion 211 and the second conductive portion 212 facing each other includes an inclined surface corresponding to the inclination of the insulating portion 213.
  • the plate 210 has an upper surface 216 and a lower surface 217 opposite the upper surface 216.
  • An insulating portion 213 positioned between the first conductive portion 211 and the second conductive portion 212 extends from the upper surface 216 to the lower surface 217, and thus the first conductive portion 211 and the second conductive portion.
  • the part 212 is electrically insulated by the insulating part 213.
  • the insulating part 213 is formed to be inclined, the areas of the upper and lower surfaces of the first conductive part 211 and the second conductive part 212 are different.
  • the first conductive portion 211 has a narrow upper surface 216 side and a wider lower surface 217 side
  • the second conductive portion 212 has a wider upper surface 216 side and a lower surface 217 side. It is narrowly formed. Therefore, the first conductive portion 211 and the second conductive portion 212 have different heat dissipation performance.
  • one of the first and second electrodes 151 and 152 provided in the semiconductor light emitting device chip 150 may have a relatively large amount of heat generated.
  • the p-side electrode electrically connected to the p-type semiconductor layer may emit more heat than the n-side electrode electrically connected to the n-type semiconductor layer.
  • a relatively high heat generating electrode is bonded to any one of the first conductive part 211 and the second conductive part 212 having excellent heat dissipation performance, and the relatively low heat generating amount is generated.
  • the semiconductor light emitting device chip 150 may be fixed by bonding an electrode of the electrode to the other one of the first conductive part 211 and the second conductive part 212, thereby generating the semiconductor light emitting device chip 150. The heat can be released more effectively to the outside.
  • FIG. 22 is a view showing a fixed state on a printed circuit board of a semiconductor light emitting device according to the present disclosure.
  • the semiconductor light emitting device includes a printed circuit board 240 having a circuit pattern 235 such as a solder land. Can be mounted on In this case, since the semiconductor light emitting device includes the insulated portion 213 inclined, the semiconductor light emitting device may be easily disposed. Specifically, on the printed circuit board 240, there may be a case where the semiconductor light emitting device is not fixed at the desired position as the circuit pattern 235 is located away from the corresponding position although the semiconductor light emitting device is fixed.
  • the positions of the insulator 213 are different from those of the upper surface 216 and the lower surface 217 of the first conductive portion 211 and the second conductive portion 212.
  • the semiconductor light emitting device can be accurately connected to a circuit pattern at a position where the first conductive portion 211 and the second conductive portion 212 are biased while being fixed at a desired position.
  • the semiconductor light emitting device as shown in FIG. 21 can be manufactured by the following method.
  • FIG. 23 and 24 illustrate another example of a method of manufacturing a semiconductor light emitting device according to the present disclosure.
  • two or more conductive plates 201 are insulated such as an insulating adhesive 203, and the like.
  • the laminate 205 is prepared by repeating lamination by bonding with a material.
  • the laminate 205 is cut in the stacking direction x and the inclined direction c on the one side cross-section 207 side.
  • the insulated portions 213 'made of the insulative adhesive 203 and the conductive portions 211', 212 'made of the conductive plate 201 are shown.
  • an insulating portion 213 ' is positioned between the conductive portion 211' and the conductive portion 212 ', and the two conductive portions 211', 212 'are electrically connected by the insulating portion 213'. Insulated.
  • each of the conductive portions 211 'and 212' facing each other with the insulating portion 213 ' is formed of an inclined surface corresponding to the inclination ⁇ of the insulating portion 213'.
  • the disc 210 ' has a top surface 216' and a bottom surface 217 'opposite the top surface 216', and the insulated portion 213 'having an inclined surface is the top surface 216' of the disc 210 '. ) From the bottom to 217 '.
  • the inclination ⁇ of the insulating portion 213 ' can be adjusted by adjusting the inclination ⁇ between the stacking direction x and the cutting direction c, and such inclination adjustment
  • the position difference between the insulating portion 213 on the upper surface 216 side and the lower surface 217 side of the first conductive portion 211 and the second conductive portion 212 may be adjusted.
  • the non-conductive reflecting film 130 having various structures as described above may also be applied to a semiconductor light emitting device having an inclined insulating portion 213 as shown in FIG. 21, and a semiconductor having another structure such as a lateral chip.
  • the light emitting device chip 150 ′ may be applied.
  • the semiconductor light emitting device chip may have the first conductive portion 211 and the second conductive portion (212) on the upper surface 216 side of the plate 210 without being in contact with the insulating portion 213. It may be fixed on any one of 212). In this case, it is preferable that the semiconductor light emitting device chip is placed on the first conductive portion 211, which is advantageous in heat dissipation, among the first conductive portion 211 and the second conductive portion 212.
  • FIG. 26 is a diagram illustrating still another example of the semiconductor light emitting device according to the present disclosure.
  • a recess 2001 is provided on a bottom surface 117 of the plate 110, and a semiconductor light emitting device chip is formed in the recess 2001.
  • a protection element 2000 eg, a zener diode, a pn diode
  • the protection element 2000 is provided to protect the 150 from static electricity or reverse current.
  • the protective device 2000 is disposed on the lead frame or the electrodes 4, 5 and the mold 6 must separately protrude downward to form the recesses 9.
  • the protection device 2000 may be bonded to the first conductive part 111 and the second conductive part 112 by methods well known in the semiconductor light emitting device, such as Ag paste and eutectic bonding. By not using wire bonding for the electrical connection, the increase in thickness by the wire can also be reduced.
  • the first electrode 2002 of the protection element 2000 is connected to face the first conductive portion 111
  • the second electrode 2003 of the protection element 2000 is connected to the second conductive portion 112. Connected face to face. As illustrated in FIG.
  • the semiconductor light emitting device chip 150 and the protection device 2000 are electrically connected in a reverse direction.
  • the first conductive portion 111, the second conductive portion 112, and the insulating portion 113 are removed and exposed, and the exposed first conductive portion 111 and the second conductive portion 112 are exposed.
  • the first conductive part 111 is electrically connected to the protection device 2000 in a reverse direction in parallel with the first electrode 151 and the second electrode 152 of the semiconductor light emitting device chip 150.
  • the second conductive portion 112 are electrically connected to each other.
  • a protective element encapsulant 2005 is provided in the recess 2001 to protect the protective element 2000.
  • the encapsulant 2005 for the protection device may be made of the same material as the encapsulant 117 ′.
  • the encapsulation unit 170 is not necessarily formed on the entire upper surface 116.
  • the semiconductor light emitting device chip 150 has the first conductive portion 111 and the second conductive portion 112 without a short defect, with the insulating portion 113 between the upper surface 116 interposed therebetween. Can be electrically bonded to the bottom surface 11, the first conductive portion 111 and the second conductive portion 11 are electrically connected to the outside with the insulating portion 113 interposed therebetween.
  • the recess 2001 may be formed as a groove having a shape penetrating the drawing.
  • the concave portion 2001 may be designed in width, depth, and shape in consideration of the size of the protection element 2000 and the prevention of such short failure.
  • the recessed portion 2001 according to the present disclosure constitutes a feature of the invention regardless of the provision of the protection element 2000.
  • the recess 2001 may be formed through, for example, a milling operation.
  • milling equipment such as a CNC (Computer Numerical Control) facility and a machining center tool (MCT) may be used.
  • FIG. 27 is a diagram illustrating still another example of the semiconductor light emitting device according to the present disclosure.
  • One side of the protection device 2000 is electrically connected to the second conductive portion 112 by a wire 2005.
  • the other side of 2000 directly conducts contact with the first conductive portion 111.
  • the protection device 2000 may be electrically connected to the first conductive portion 111 and the second conductive portion 112 using two wires.
  • FIG. 28 is a view for explaining an example of a method of manufacturing the plate shown in FIGS. 26 and 27, and in the process step shown in FIG. 13, instead of forming the non-conductive reflecting film 130 ′, or non-conductive Before or after the formation of the reflective film 130 ', the concave portion 2001 is formed in the disc 110', and then the protective element 2000 is bonded thereto, and then protected by the encapsulant 2004 for the protective element.
  • the element 2000 may be covered.
  • FIGS. 30 to 34 are views illustrating an example of a method of manufacturing a semiconductor light emitting device according to the present disclosure.
  • the metal plate 10 is prepared.
  • the plate 10 has a plurality of grooves 15, so that the upper surface 16 of the plate 10 is divided into a plurality of regions.
  • the groove 15 may be formed to have a predetermined depth through a wet etching method or a dry etching method, or a mechanical cutting method using a blade or a wire.
  • the material of the plate 10 is not particularly limited as long as it is a conductive metal or a conductive semiconductor, and materials such as W, Mo, Ni, Al, Zn, Ti, Cu, Si, or the like, or an alloy form including at least one thereof, may be used.
  • Al may be a suitable example.
  • the semiconductor light emitting device chip 20 is a flip chip of the type illustrated in FIGS. 2, 4, and 5, and includes a first semiconductor layer having a first conductivity (eg, n-type) (see a conventional drawing) and a first conductivity.
  • a first semiconductor layer having a first conductivity eg, n-type
  • the semiconductor light emitting device chip 20 is disposed such that the first electrode 21 and the second electrode 22 are disposed below the upper surface 16 of the plate 10. The semiconductor light emitting device chip 20 is positioned over the groove 15.
  • the first electrode 21 is bonded to the upper surface 16 of the plate 10 on the left side of the groove 15, and the second electrode 22 is the groove 15. It is joined to the upper surface 16 of the plate 10 of the right side.
  • Such bonding may be performed using Ag paste, or various methods already known in the field of semiconductor light emitting devices such as eutectic bonding and the like may be used.
  • the encapsulant 30 is dispensed on the entire upper surface 16 of the plate 10 to cover all the semiconductor light emitting device chips 20, and the encapsulant 30 is cured. Let's do it.
  • the encapsulant 30 may include a liquid transparent resin material such as silicone and the like.
  • the lower part of the plate 10 is partially removed so that the groove 15 provided in the plate 10 is exposed to the lower surface 17 side of the plate 10. That is, the plate 10 is polished and / or wrapped on the lower surface 17 side, so that the groove 15 is exposed to the lower surface 17 side of the plate 10.
  • the plate 10 may have a thickness of 250 ⁇ 300um, it can be thinned to a thickness of about 50um through lapping.
  • the two portions of the plate 10 facing each other with one groove 15 therebetween are electrically insulated from each other. .
  • the cured encapsulant 30 and the plate 10 are cut together along a predetermined boundary A of the semiconductor light emitting device on a plane, thereby completing a separate semiconductor light emitting device.
  • 35 is a view showing an example of a semiconductor light emitting device manufactured by the method according to the present disclosure.
  • the semiconductor light emitting device includes a metal substrate 10 ', a semiconductor light emitting device chip 20, and an encapsulation portion 30'.
  • the metal substrate 10 ′ is formed by removing the lower portion of the plate 10 having the grooves 15 so that the grooves 15 are exposed and cutting along the boundaries of the individual semiconductor light emitting devices, and the grooves opened downward.
  • the gap 15 'corresponding to (15) and the first conductive portion 11 and the second conductive portion 12 facing the side surface with the gap 15' therebetween are provided.
  • the first conductive portion 11 and the second conductive portion 12 are electrically insulated by the gap 15'.
  • the semiconductor light emitting device chip 20 is disposed such that the first electrode 21 and the second electrode 22 are disposed below the upper surface 16 of the metal substrate 10 ′. On the upper surface 16 of the metal substrate 10 ', the first electrode 21 is bonded to the first conductive portion 11 and the second electrode 22 is bonded to the second conductive portion 12.
  • the encapsulation part 30 ′ covers the semiconductor light emitting device chip 20 with an encapsulant 30 including a resin and a phosphor of a transparent material, cures the encapsulant 30, and then cures the cured encapsulant 30. It is formed by cutting along the boundary of the semiconductor light emitting element.
  • the cutting of the plate 10 and the encapsulant 30 is performed at the same time, and thus, as shown in FIG. 35, the outer surface 33 and the metal substrate 10 'of the encapsulation portion 30' formed by such cutting, as shown in FIG.
  • the outer side surface 13 of) will form a continuous surface made of a cut surface.
  • the semiconductor light emitting device chip 20 is a metal located below the first electrode 21 and the second electrode 22, respectively Bonding pads 31 and 32 may be provided.
  • the bonding pads 31 and 32 the semiconductor light emitting device chip 20 may be bonded to the plate 10 by a Jewish bonding method. Therefore, in the completed semiconductor light emitting device, the bonding pad 31 is positioned between the first electrode 21 and the first conductive portion 11 of the metal substrate 10 ', and the second electrode 22 and the metal substrate ( The bonding pads 32 are positioned between the second conductive portions 12 of 10 ′.
  • FIG. 37 is a view showing another example of a semiconductor light emitting device manufactured by the method according to the present disclosure, and includes a gap 15 ′ inside a groove 15 provided in the plate 10, that is, a metal substrate 10 ′.
  • Filler 40 may be provided therein.
  • the filler 40 is filled in the groove 15 before the semiconductor light emitting device chip 20 is fixed to the plate 10.
  • the gap 15 ′ may be completely filled with the filler 40, as shown in FIG. 37, or only partially.
  • Filler 40 should be made of an insulating material.
  • Filler 40 may contain a phosphor.
  • the filler 40 may contain a white resin together with or in place of the phosphor. Due to the filler 40, the reflection efficiency of the semiconductor light emitting device may be improved.
  • FIG 38 is a view showing another example of a semiconductor light emitting device manufactured by the method according to the present disclosure, removing the lower portion of the plate 10 to expose the groove 15 and then cutting along the boundary of the individual semiconductor light emitting device Previously, additional metal layers 41, 42 are formed on the bottom surface 17 of the plate 10, excluding the groove 15 region.
  • the additional metal layers 41 and 42 may be made of a metal suitable for soldering such as Cu and the like, and may be formed by a method such as plating or deposition. The additional metal layers 41, 42 are then cut together in the course of cutting the plate 10 and the encapsulant 30.
  • an additional metal layer 41 in a form separated in the lower surface side of the first conductive portion 11 is positioned, and in the form separated in the lower surface side of the second conductive portion 12.
  • An additional metal layer 42 is placed.
  • Such additional metal layers 41 and 42 make it possible to improve the reliability of the bonding when soldering the semiconductor light emitting element to a printed circuit board or the like by soldering.
  • FIG. 39 is a view illustrating another example of a semiconductor light emitting device manufactured by the method according to the present disclosure, in which a lateral chip of the type illustrated in FIG. 1 is used as the semiconductor light emitting device chip 20 ′.
  • the semiconductor light emitting device chip 20 ′ is disposed such that the first electrode 21 ′ and the second electrode 22 ′ are positioned above.
  • the semiconductor light emitting device chip 20 ′ is positioned over the groove 15.
  • the first electrode 21 ' is connected to the upper surface 16 of the plate 10 on the left side of the groove 15 by wire bonding
  • the second electrode 22' is connected to the upper surface of the plate 10 on the right side of the groove 15 ( 16) is connected by wire bonding.
  • the first electrode 21 ' is electrically connected to the first conductive portion 11 by the wire 46
  • the second electrode 22' is connected by the wire 47. It is electrically connected to the second conductive portion 12.
  • the semiconductor light emitting device chip 20 ′ may be disposed so as not to span the groove 15. In this case, only the semiconductor light emitting device chip 20 'is positioned on one of the first conductive part 11 and the second conductive part 12, except that the first electrode 21' is a wire 46. Is electrically connected to the first conductive portion 11 by (), and the second electrode 22 ′ is electrically connected to the second conductive portion 12 by the wire 47.
  • a vertical chip of the type illustrated in FIG. 3 may also be used.
  • the semiconductor light emitting device chip is positioned on the first conductive part 11 or the second conductive part 12, and one electrode positioned below the semiconductor light emitting device chip is the first conductive part 11 and the second conductive part.
  • the other electrode which is directly bonded to one of the portions 12 and positioned on the semiconductor light emitting device chip is bonded to the other of the first conductive portion 11 and the second conductive portion 12 by a wire bonding method. .
  • FIG. 47 and 48 illustrate an example of a metal substrate manufacturing method according to the present disclosure
  • FIG. 49 illustrates an example of a metal substrate manufactured according to the metal substrate manufacturing method according to the present disclosure.
  • a bonding metal layer 30 positioned between each of the metal plate 10 and the metal plate 10 is formed.
  • a plurality of metal plates 10 are bonded to each other to form a laminate 50, and then the laminate 50 is cut to form a metal substrate 100 having a plurality of strip-shaped conductive parts 111 and 112. do.
  • the metal plate 10 may be made of anodizable metals such as Al, Mg, Zn, Ti, Ta, Hf, Nb, and the like, and among them, electrical conductivity, thermal conductivity, reflectance, and ease of oxide film formation.
  • Al aluminum
  • Al aluminum
  • the nonconductive film 20 Prior to joining the plurality of metal plates 10, the nonconductive film 20 is formed on the surface.
  • the non-conductive film 20 may be formed by anodizing the surface of the metal plate 10 or by depositing an insulating material on the surface of the metal plate 10.
  • the non-conductive film 20 may be made of aluminum oxide film (Al 2 O 3 ).
  • the insulator film 20 may be any one of SiO 2 , TiO 2 , SiN, SiON, Al 2 O 3, and Ta 2 O 5 films formed through deposition.
  • the formation of the non-conductive film 20 may be performed on both sides of the metal plate 10, and in this case, the metal plate 10 may include the non-conductive film 20 on both sides.
  • the insulator film 20 may be formed on only one surface of the metal plate 10, and in this case, each metal plate 10 may have the insulator film 20 only on one surface thereof.
  • the joining metal layer 30 is formed on both surfaces of the plurality of metal plates 10 following the insulator film forming step.
  • the bonding metal layer 30 mediates the bonding between the metal plate 10 and the metal plate 10 at the time of bonding, and may be formed on the insulator film 20 by plating, vapor deposition, or the like.
  • the joining metal layer 30 may be formed to be in direct contact with the metal plate 10.
  • the junction metal layer 30 includes at least one metal layer of a metal that enables intermetallic bonding, for example, Sn, Ge, Cr, Ni, Ti, Au, Al, Ag, Zn, Cu, W, TiW, and Pt. can do.
  • the joining metal layer 30 may be made of a single layer, it is preferable that the joining metal layer 30 is made of a plurality of layers from the viewpoint of improving the reliability of the joining.
  • the bonding metal layer 30 is divided into a contact layer 21 having excellent contactability, an intermediate layer 23 which can serve as a diffusion barrier, and a bonding layer 25 having low melting point and easy bonding. It may comprise a plurality of layers which may be.
  • the contact layer 21 may include at least one of Cr and Ti
  • the intermediate layer 23 may include at least one of Cu, Ni, Ti, Al, Ag, W, TiW, Pt, Cr, and Zn.
  • the bonding layer 25 may include at least one of Al, Cu, Sn, Ge, Au, and Zn.
  • the contact layer 21, the intermediate layer 23, and the bonding layer 25 are formed on the surface of the metal plate 10, that is, in the order of the contact layer 21, the intermediate layer 23, and the bonding layer 25 from the non-conductive film 20. Is placed.
  • the junction metal layer 30 does not necessarily have to include all of the contact layer 21, the intermediate layer 23, and the junction layer 25, and is formed of at least one of the contact layer 21, the intermediate layer 23, and the junction layer 25. Can be.
  • the junction metal layer 30 may consist only of any one of the contact layer 21, the intermediate
  • bonding metal layers 30 of different combinations may be provided on both surfaces of the metal plate 10.
  • the contact layer 21 for example, Cr
  • intermediate layer 23 for example, on one side of the metal plate 10 (the upper surface side of the metal plate 10 in FIG. 47)
  • Ni) / junction layer 25 for example, Sn
  • contact layer 21 is provided on the other side of metal plate 10 (lower surface side of metal plate 10 in FIG. 47).
  • a junction metal layer 30 of a Cr) / intermediate layer 23 (for example, Ni) combination may be provided.
  • Such a bonding metal layer 30 may be formed only on one surface side of the metal plate 10 in some cases.
  • the joining process is performed.
  • a plurality of metal plates 10 each having a non-conductive film 20 and a joining metal layer 30 are laminated so as to face each other, and in this state, heat is applied or heat and pressure together.
  • intermetallic bonding occurs. That is, the laminate 50 is formed by bonding the plurality of metal plates 10 through the bonding metal layer 30 positioned between the metal plate 10 and the metal plate 10.
  • specific bonding conditions such as temperature, pressure, process time may be determined.
  • intermetallic joining occurs in the form of a melt joint such as brazing, a solid phase diffusion joint, or an intermediate transition liquid phase diffusion joint, and consequently a plurality of metals.
  • the metal plate 10 of the form the laminated body 50 of the laminated form.
  • a cutting process is performed. As shown in FIG. 48, the laminated body 50 formed as mentioned above is cut
  • the cutting direction X is not necessarily orthogonal to the surface of the metal plate 10, and may be a direction inclined with respect to the direction orthogonal to each other. Cutting of the laminate 50 may be performed in various ways, such as mechanical cutting using a blade, laser cutting, wire cutting, sawing, and the like.
  • the metal substrate 100 formed through the cutting process has a plurality of conductive portions 111 and 112 made of a cut metal plate, and is formed between the conductive portion 111 and the conductive portion 112, respectively.
  • a pair of insulator films 121 and 122 are provided, and a junction metal layer 130 is provided between the pair of insulator films 121 and 122.
  • the pair of non-conductive films 121 and 122 may perform an insulating function between the conductive part 111 and the conductive part 112, and the joining metal layer 130 may bond the conductive part 111 and the conductive part 112. Will be performed.
  • a bonding metal layer 30 of a contact layer 21 (Cr) / intermediate layer 23 (Ni) / bonding layer 25 (Sn) combination is provided on one side of the metal plate 10.
  • the junction metal layer 30 of the contact layer 21 (Cr) / intermediate layer 23 (Ni) combination is provided on the other side of the metal plate 10, when it is made of the metal substrate 100, the conductive part 111 and the conductive part
  • the junction metal layer 130 provided between the portions 112 includes a contact layer 131 (Cr) / intermediate layer 133 (Ni) / joint layer 135 (Sn) / intermediate layer 137 (Ni) / contact layer 139 (Cr). Are arranged in order.
  • the basic order is maintained in the above order, but arranged in a structure in which only the metal layer not included in the order is excluded from the order. Will be.
  • 50 is a view illustrating another example of a metal substrate manufactured according to the metal substrate manufacturing method according to the present disclosure.
  • the non-conductive film 20 when the non-conductive film 20 is provided only on one surface of the metal plate 10, when the non-conductive film 20 is made of the metal substrate 100, one non-conductor is formed between the conductive portion 111 and the conductive portion 112. Only the membrane 121 will be provided. In this case, the junction metal layer 130 is in contact with the non-conductive film 121 on one side between the conductive portion 111 and the conductive portion 112 and the other side is in direct contact with the conductive portion 112.
  • the conductive portion 111 and the conductive portion 112 are joined by the heat-resistant metal bonding layer 130, thereby joining them.
  • the state can be kept stable.
  • at least one non-conductive film 121 and 122 that performs an insulating function is disposed between the conductive part 111 and the conductive part 112, so that the insulating state between the conductive part 111 and the conductive part 112 is stable. Can be maintained.
  • FIG. 51 is a diagram illustrating an example of a semiconductor light emitting device according to the present disclosure
  • FIG. 52 is a diagram partially disassembled and illustrates the semiconductor light emitting device of FIG. 51.
  • the semiconductor light emitting device includes a metal substrate 200, a semiconductor light emitting device chip 250, and an encapsulation portion 270.
  • the metal substrate 200 is formed on opposite sides of the first conductive portion 211 and the second conductive portion 212 and the first conductive portion 211 and the second conductive portion 212 disposed to face the side surface, respectively.
  • the first insulator film 221 and the second insulator film 222, and the junction metal layer 230 disposed between the first insulator film 221 and the second insulator film 222 are provided.
  • the metal substrate 200 has an upper surface 201 and a lower surface 202 opposing the upper surface 201, and the first nonconductive film 221, the bonding metal layer 230, and the second nonconductive film 222 have an upper surface 201. ) Is connected to the lower surface 202.
  • the bonding metal layer 230 performs a function of bonding the first conductive portion 211 and the second conductive portion 212, and the first nonconductive layer 221 and the second nonconductive layer 222 may be formed of the first conductive portion ( 211 and the second conductive portion 212 are electrically insulated from each other.
  • the upper surface 201 of the metal substrate 200 is a portion on which the semiconductor light emitting device chip 250 is placed.
  • the first nonconductive film 221, the junction metal layer 230, and the second nonconductive film constituting the metal substrate 200 are formed. 222 is also partially exposed to the upper surface 201, so that not only the first conductive portion 211 and the second conductive portion 212 but also the first nonconductive layer 221, the junction metal layer 230, and the second nonconductive layer 222 is also exposed to strong light emitted from the semiconductor light emitting device chip 250.
  • the first insulator film 221, the bonding metal layer 230, and the second insulator film 222 may be provided, and the first insulator film 221 may be provided.
  • the bonding metal layer 230 and the second non-conductive film 222 have no risk of discoloration or discoloration even when exposed to strong light. Therefore, the upper surface 201 of the metal substrate 200 may have excellent reflection efficiency without lowering the reflection efficiency caused by the first nonconductive film 221, the junction metal layer 230, and the second nonconductive film 222.
  • the semiconductor light emitting device chip 250 for example, a flip chip type LED chip may be used.
  • the semiconductor light emitting device chip 250 may include a first semiconductor layer having a first conductivity (eg, n-type), a second semiconductor layer having a second conductivity (eg, p-type) different from the first conductivity, and a first semiconductor layer.
  • An active layer interposed between the second semiconductor layers and generating light through recombination of electrons and holes, a first electrode 251 electrically connected to the first semiconductor layer, and a second electrode electrically connected to the second semiconductor layer ( 252).
  • the first electrode 251 is electrically connected to the first conductive portion 211
  • the second electrode 252 is electrically connected to the second conductive portion 212.
  • the semiconductor light emitting device chip 250 may be disposed such that the first electrode 251 and the second electrode 252 are disposed below the upper surface 201 of the metal substrate 200.
  • the semiconductor light emitting device chip 250 is positioned on the upper surface 201 of the metal substrate 200 over the first nonconductive film 221, the junction metal layer 230, and the second nonconductive film 222.
  • the first electrode 251 is bonded to the first conductive portion 211 on the left side
  • the second electrode 252 is the second conductive portion on the right side ( 212).
  • the first insulator film 221, the junction metal layer 230, and the second insulator film 222 are formed on the first surface 201 and the second electrode 252 on the upper surface 201 of the metal substrate 200. It is located in between. Bonding may be performed using Ag paste, or various methods already known in the semiconductor light emitting device field such as soldering may be used.
  • the semiconductor light emitting device chip 250 is in contact with the first conductive part 211 and the second conductive part 212 over a large area, so that the heat generated from the semiconductor light emitting device chip 250 may cause the metal substrate 200 to be removed. Can be effectively released.
  • the semiconductor light emitting device chip may include the first nonconductive film 221, the junction metal layer 230, and the second nonconductive film 222 on the upper surface 201 side of the metal substrate 200. It may be fixed on any one of the first conductive portion 211 and the second conductive portion 212 without the ().
  • the encapsulation part 270 is formed to cover the semiconductor light emitting device chip 250 on the upper surface 201 side of the metal substrate 200.
  • the encapsulation part 270 may include a transparent resin and a phosphor.
  • the semiconductor light emitting device as described above may be manufactured by the following method.
  • 53 to 55 are views illustrating an example of a method of manufacturing a semiconductor light emitting device according to the present disclosure.
  • the semiconductor light emitting device according to the present disclosure can be manufactured using the metal substrate 100 as shown in FIG. 49 manufactured by the method as described above as a disc.
  • the semiconductor light emitting device chip 250 is fixed as shown in FIG.
  • the semiconductor light emitting device chip 250 may be disposed such that the first electrode 251 and the second electrode 252 are disposed below the upper surface 101 of the metal substrate 100.
  • the semiconductor light emitting device chip 250 is positioned over the first nonconductor film 121, the junction metal layer 130, and the second nonconductor film 122.
  • the first electrode 251 is bonded to the conductive portion 111 on the left side of the first nonconductive film 121
  • the second electrode 252 is the second nonconductor. It is bonded to the conductive portion 112 on the right side of the film 122.
  • Such bonding may be performed using Ag paste, or various methods already known in the semiconductor light emitting device art may be used.
  • the encapsulant 270 ′ is dispensed over the entire upper surface 101 of the metal substrate 100 so as to cover all the semiconductor light emitting device chips 250, and the encapsulant 270. Harden ').
  • the encapsulant 270 ' may include a liquid transparent resin material such as silicon and the like.
  • the cured encapsulant 270 ′ and the metal substrate 100 are cut together along the predetermined boundary A of the semiconductor light emitting device on a plane, thereby completing a separate semiconductor light emitting device.
  • the encapsulant 270 ′ forms an encapsulation portion 270
  • the metal substrate 100 used as the original plate is cut to cut the metal substrate 200 of the individual semiconductor light emitting device. Therefore, the metal substrate 200 is formed of the first conductive portion 211 and the first conductive portion 211 facing each other with the first nonconductive layer 221, the junction metal layer 230, and the second nonconductive layer 222 interposed therebetween. 2 conductive parts 212 are provided.
  • the first conductive portion 211 and the second conductive portion 212 are electrically insulated by the first nonconductive film 221 and the second nonconductive film 222.
  • a non-conductive reflective film is a semiconductor light emitting element, characterized in that it is made of a distributed Bragg reflector.
  • the plate has a mirror surface-treated upper surface, characterized in that the semiconductor light emitting device.
  • the plate has a mirror-finished upper surface, and the non-conductive reflecting film is made of a distributed Bragg reflector.
  • a semiconductor light emitting element chip wherein the semiconductor light emitting element is located over the insulating portion on the upper surface side of the plate.
  • the semiconductor light emitting device chip is disposed on the upper surface of the plate such that the first electrode and the second electrode are located below, the first electrode is bonded to the first conductive portion, and the second electrode is attached to the second conductive portion.
  • a semiconductor light emitting device chip comprising bonding pads positioned below a first electrode and a second electrode, respectively, and bonded to a plate by a Jewish bonding method.
  • the semiconductor light emitting device chip is disposed on the upper surface of the plate such that the first electrode and the second electrode are located below, and the non-conductive reflective film covers the entire upper surface of the plate and partially exposes the first conductive portion. And a second through hole for partially exposing the through hole and the second conductive part, wherein the first electrode is electrically connected to the first conductive part through the first through hole, and the second electrode is formed through the second through hole. 2
  • the semiconductor light emitting device chip is disposed on the upper surface of the plate such that the first electrode and the second electrode are located below, and the non-conductive reflecting film is formed to cover the entire upper surface of the plate and penetrates the non-conductive reflecting film.
  • a first connection electrode on the first conductive part and a second connection electrode on the second conductive part wherein the first electrode is electrically connected to the first conductive part through the first connection electrode.
  • the semiconductor light emitting device chip is fixed to the upper surface of the plate such that the first electrode and the second electrode are positioned on the upper side, and the first electrode and the second electrode are respectively wire-bonded to the first conductive portion and the second conductive portion.
  • Semiconductor light emitting device characterized in that electrically connected with.
  • a method of manufacturing a semiconductor light emitting device comprising the steps of: preparing a laminate in which two or more conductive plates are repeatedly laminated with an insulating material interposed therebetween; The laminate is cut to have a first conductive portion and a second conductive portion, each comprising an insulating portion made of an insulating material and a conductive plate, the first conductive portion and the second conductive portion being disposed to face each other with the insulating portion therebetween and electrically insulated by the insulating portion.
  • a disc having a lower surface opposite the upper surface, wherein the insulating portion extends from the upper surface to the lower surface; Forming a non-conductive reflecting film to cover the insulating portion on the upper surface side of the disc; A first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, an active layer interposed between the first semiconductor layer and the second semiconductor layer and generating light by recombination of electrons and holes Fixing a semiconductor light emitting device chip having a first electrode electrically connected to the first semiconductor layer, and a second electrode electrically connected to the second semiconductor layer, on an upper surface side of the original plate; Covering the semiconductor light emitting device chip with an encapsulant; And cutting the disc and the encapsulant together along a predetermined boundary of the semiconductor light emitting device.
  • the non-conductive reflecting film is formed to cover the entire upper surface of the original plate, and is formed to penetrate the non-conductive reflecting film before the step of fixing the semiconductor light emitting device chip to the upper surface of the original plate. And forming a first through hole and a second through hole to partially expose the first conductive part and the second conductive part, respectively.
  • the first conductive part and the second conductive part electrically insulated by the insulating part are disposed to face each one side of the inclined part corresponding to the inclined part of the insulating part with the insulated part having the inclined part and the insulated part interposed therebetween.
  • a non-conductive reflecting film includes a distributed Bragg reflector.
  • a plate is a semiconductor light emitting element, characterized in that the mirror has a top surface treated.
  • the plate has a mirror-finished upper surface, and the non-conductive reflecting film is made of a distributed Bragg reflector.
  • (2-6) A semiconductor light emitting element chip, wherein the semiconductor light emitting element is located over the insulating portion on the upper surface side of the plate.
  • the semiconductor light emitting device chip is disposed on the upper surface of the plate such that the first electrode and the second electrode are located below, the first electrode is bonded to the first conductive portion, and the second electrode is attached to the second conductive portion.
  • a semiconductor light emitting element chip comprising bonding pads positioned below the first electrode and the second electrode, respectively, and bonded to the plate by a Jewish bonding method.
  • the semiconductor light emitting device chip is disposed on the upper surface of the plate such that the first electrode and the second electrode are located below, and the non-conductive reflective film covers the entire upper surface of the plate and partially exposes the first conductive portion. And a second through hole for partially exposing the through hole and the second conductive part, wherein the first electrode is electrically connected to the first conductive part through the first through hole, and the second electrode is formed through the second through hole.
  • a semiconductor light emitting device characterized in that electrically connected to the conductive portion.
  • the semiconductor light emitting device chip is disposed on the upper surface of the plate such that the first electrode and the second electrode are located below, the non-conductive reflecting film is formed to cover the entire upper surface of the plate, and penetrates the non-conductive reflecting film.
  • a first connection electrode on the first conductive part and a second connection electrode on the second conductive part wherein the first electrode is electrically connected to the first conductive part through the first connection electrode, and the second electrode.
  • Silver is electrically connected to the second conductive portion through the second connection electrode.
  • the semiconductor light emitting device chip is fixed to the upper surface of the plate such that the first electrode and the second electrode are located on the upper portion, and the first electrode and the second electrode are respectively wire-bonded to each other to form the first conductive portion and the second conductive portion.
  • Semiconductor light emitting device characterized in that electrically connected with.
  • a method of manufacturing a semiconductor light emitting device comprising the steps of: preparing a laminate in which two or more conductive plates are repeatedly laminated with an insulating material interposed therebetween; The laminate is cut from one side surface side in a lamination direction and an inclined direction, and is formed so as to face each one of the inclined surfaces made of the insulated material and the conductive plate, and each of the one side surfaces formed of the inclined surfaces corresponding to the inclination of the insulation portion.
  • a disc having a first conductive portion and a second conductive portion electrically insulated by the portion, the upper portion having a top surface and a bottom surface facing the top surface, and the insulating portion extending from the top surface to the bottom surface;
  • a first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, an active layer interposed between the first semiconductor layer and the second semiconductor layer and generating light by recombination of electrons and holes
  • Fixing a semiconductor light emitting device chip having a first electrode electrically connected to the first semiconductor layer, and a second electrode electrically connected to the second semiconductor layer on an upper surface of the original plate; Covering the semiconductor light emitting device chip with an encapsulant; And cutting the disc and the encapsulant together along a predetermined boundary of the semiconductor light emitting device.
  • the mirror surface treatment of the upper surface of the disc Before the step of forming the non-conductive reflecting film, the mirror surface treatment of the upper surface of the disc; further comprising a method of manufacturing a semiconductor light emitting device.
  • the non-conductive reflecting film is formed so as to cover the entire upper surface of the disc, and is formed to penetrate the non-conductive reflecting film before the step of fixing the semiconductor light emitting device chip to the upper surface of the disc. And forming a first through hole and a second through hole to partially expose the first conductive part and the second conductive part, respectively.
  • a semiconductor light emitting device comprising: a plate having a first conductive portion and a second conductive portion, and an insulating portion provided between the first conductive portion and the second conductive portion, the plate having a top surface and a bottom surface opposite to the top surface; A semiconductor light emitting device chip disposed on an upper surface of the plate and electrically connected to the first conductive part and the second conductive part, the semiconductor light emitting device having an active layer generating light using electrons and holes; And a protection device provided in a recess formed in a lower surface of the plate to protect the semiconductor light emitting device chip from static electricity.
  • a protection element is provided with two electrodes, and each of the two electrodes is electrically connected to face each of the first conductive portion and the second conductive portion.
  • the semiconductor light emitting device characterized in that the protection device is electrically connected to the semiconductor light emitting device chip using at least one wire.
  • a semiconductor light emitting element comprising a protective element encapsulant for covering the protective element on the recessed portion.
  • the protection element has two electrodes which are electrically connected to face each of the first conductive portion and the second conductive portion, and is provided with an encapsulant for the protective element covering the protective element on the recess.
  • the entire upper surface of the semiconductor light emitting device characterized in that covered by the sealing agent.
  • the protection element is electrically connected to the semiconductor light emitting element chip using at least one wire, and is provided with an encapsulant for the protection element covering the protection element on the ridge portion, and the entire upper surface of the plate is made of an encapsulant.
  • the recessed portion is formed by removing the first conductive portion, the second conductive portion, and the insulated portion.
  • the recessed portion extends at least partially the distance between the first conductive portion and the second conductive portion on the lower surface of the plate.
  • the recess 2001 may be in the form of an open groove on both sides, or may be in the form of a closed groove on the front surface.
  • a semiconductor light emitting element wherein the entire upper surface of the plate is covered with an encapsulant.
  • a method of manufacturing a semiconductor light emitting device comprising: forming a first conductive portion and a second conductive portion, and between the first conductive portion and the second conductive portion to separate the first conductive portion and the second conductive portion; Preparing a plate including a groove; A first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, an active layer interposed between the first semiconductor layer and the second semiconductor layer and generating light by recombination of electrons and holes Fixing a semiconductor light emitting device chip having a first electrode electrically connected to the first semiconductor layer, and a second electrode electrically connected to the second semiconductor layer on an upper surface of the plate; Covering the semiconductor light emitting device chip with an encapsulant; And cutting the plate and the encapsulant together along a predetermined boundary of the semiconductor light emitting device.
  • the semiconductor light emitting device chip is located across the groove.
  • the semiconductor light emitting device chip is disposed on the upper surface of the plate such that the first electrode and the second electrode are located below, the first electrode is bonded to the first conductive portion, and the second electrode is 2 A method for manufacturing a semiconductor light emitting device, characterized in that bonded to the conductive portion.
  • the semiconductor light emitting device chip is fixed to the upper surface of the plate so that the first electrode and the second electrode is located on the upper portion, the first electrode and the second electrode are respectively wire-bonded first conductive portion And a second conductive portion electrically connected to the second conductive portion.
  • (4-7) A method for manufacturing a semiconductor light emitting element, wherein the sealing agent contains a phosphor.
  • (5-1) a step of forming a laminate by joining the first metal layer and the second metal layer through a joining metal layer, wherein the laminate comprises an insulator film on at least one side of the first metal layer and the second metal layer facing each other. Forming a; And cutting the laminate such that the non-conductive film functions as an insulating film between the first metal layer and the second metal layer.
  • a non-conductive film is formed on at least one side of a first metal layer and a second metal layer facing before bonding.
  • the joining metal layer is formed on at least one side of the first metal layer and the second metal layer facing each other after the insulator film is formed before joining.
  • the junction metal layer includes a contact layer containing at least one of Cr and Ti; An interlayer comprising at least one of Cu, Ni, Ti, Al, Ag, W, TiW, Pt, Cr, and Zn; And at least one of Al, Cu, Sn, Ge, Au, and Zn; And at least one of the first metal layer and the second metal layer, in the order of the contact layer, the intermediate layer, and the bonding layer.
  • the method of manufacturing a metal substrate characterized in that the first metal layer and the second metal layer are made of Al, and the insulator film is an aluminum oxide film (Al 2 O 3 ) formed through anodizing.
  • the insulator film is any one of a SiO 2 , TiO 2 , SiN, SiON, Al 2 O 3 and Ta 2 O 5 film formed through vapor deposition.
  • the bonding metal layer includes a first contact layer containing at least one of Cr and Ti; A first intermediate layer comprising at least one of Cu, Ni, Ti, Al, Ag, W, TiW, Pt, Cr, and Zn; And at least one of Al, Cu, Sn, Ge, Au, and Zn; A second intermediate layer comprising at least one of Cu, Ni, Ti, Al, Ag, W, TiW, Pt, Cr, and Zn; And a second contact layer comprising at least one of Cr and Ti; And at least one of: a first contact layer, a first intermediate layer, a bonding layer, a second intermediate layer, and a second contact layer, disposed between the first metal layer and the second metal layer. .
  • a method of manufacturing a metal substrate characterized in that the first metal layer and the second metal layer are made of Al, and the insulator film is an aluminum oxide film (Al 2 O 3 ) formed through anodizing.
  • the insulator film is any one of SiO 2 , TiO 2 , SiN, SiON, Al 2 O 3 and Ta 2 O 5 films formed through vapor deposition.
  • the semiconductor light emitting device wherein the first conductive portion and the second conductive portion are made of Al, and the insulator film is an aluminum oxide film (Al 2 O 3 ) formed through anodizing.
  • the insulator film is any one of a SiO 2 , TiO 2 , SiN, SiON, Al 2 O 3 and Ta 2 O 5 film formed through vapor deposition.
  • the bonding metal layer includes a first contact layer containing at least one of Cr and Ti; A first intermediate layer comprising at least one of Cu, Ni, Ti, Al, Ag, W, TiW, Pt, Cr, and Zn; And at least one of Al, Cu, Sn, Ge, Au, and Zn; A second intermediate layer comprising at least one of Cu, Ni, Ti, Al, Ag, W, TiW, Pt, Cr, and Zn; And a second contact layer comprising at least one of Cr and Ti; And at least one of the first conductive part and the second conductive part, and are disposed in the order of the first contact layer, the first intermediate layer, the bonding layer, the second intermediate layer, and the second contact layer. device.
  • the junction metal layer includes at least one of Sn, Ge, Cr, Ni, Ti, Au, Al, Ag, Zn, Cu, W, TiW, and Pt.
  • a semiconductor light emitting device comprising: a plate having a first conductive portion and a second conductive portion and an insulating portion provided between the first conductive portion and the second conductive portion, the plate having a top surface and a bottom surface opposite to the top surface; A semiconductor light emitting device chip disposed on an upper surface of the plate and electrically connected to the first conductive part and the second conductive part, the semiconductor light emitting device having an active layer generating light using electrons and holes; And an encapsulant covering the plate and the semiconductor light emitting device chip.
  • (6-3) A semiconductor light emitting element, characterized in that the insulating portion is inclined with respect to the upper and lower surfaces.
  • a semiconductor light emitting element further comprising: a protection element that protects the semiconductor light emitting element chip from static electricity in a recess formed in the lower surface thereof.
  • the insulating portion further comprises a non-conductive film.
  • a semiconductor light emitting device having high light extraction efficiency can be provided.
  • a semiconductor light emitting device According to another method of manufacturing a semiconductor light emitting device according to the present disclosure, it is possible to easily provide a semiconductor light emitting device of various arrangements in which a plurality of semiconductor light emitting device chips are connected in series and / or in parallel.
  • the semiconductor light emitting device can be easily disposed when mounted on a printed circuit board or the like.
  • a semiconductor light emitting device having high light extraction efficiency can be provided.
  • a semiconductor light emitting device According to another method of manufacturing a semiconductor light emitting device according to the present disclosure, it is possible to easily provide a semiconductor light emitting device of various arrangements in which a plurality of semiconductor light emitting device chips are connected in series and / or in parallel.
  • the semiconductor light emitting device can be easily disposed when mounted on a printed circuit board or the like.
  • a semiconductor light emitting device having high light extraction efficiency can be provided.
  • a semiconductor light emitting device According to another method of manufacturing a semiconductor light emitting device according to the present disclosure, it is possible to easily provide a semiconductor light emitting device of various arrangements in which a plurality of semiconductor light emitting device chips are connected in series and / or in parallel.
  • the semiconductor light emitting device chip can be protected from static electricity.
  • the present disclosure it is possible to reduce the overall thickness of the semiconductor light emitting device by providing a protection device in the lead frame or the electrode.
  • a semiconductor light emitting device According to another method of manufacturing a semiconductor light emitting device according to the present disclosure, it is possible to manufacture a semiconductor light emitting device using not only a flip chip, but also a lateral chip and a vertical chip.
  • a metal substrate capable of stably maintaining the bonding state between the conductive portion and the conductive portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)

Abstract

본 개시는 반도체 발광소자(LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME)에 있어서, 제1 도전부와 제2 도전부 그리고 제1 도전부와 제2 도전부 사이에 구비된 절연부를 구비하며, 상면과 상면에 대향하는 하면을 가지는 플레이트; 플레이트의 상면에 놓이며, 제1 도전부 및 제2 도전부에 전기적으로 연결되어 있고, 전자와 정공을 이용하여 빛을 생성하는 활성층을 구비하는 반도체 발광소자 칩; 그리고, 플레이트와 반도체 발광소자 칩을 덮는 봉지제;를 포함하는 것을 특징으로 하는 반도체 발광소자에 관한 것이다.

Description

반도체 발광소자 및 이를 제조하는 방법
본 개시(Disclosure)는 전체적으로 금속 기판, 반도체 발광소자 및 이를 제조하는 방법(LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME)에 관한 것으로, 특히 새로운 형태의 리드 프레임 내지 전극, 이들을 구비하는 반도체 발광소자 및 이를 제조하는 방법에 관한 것이다.
여기서, 반도체 발광소자는 전자와 정공의 재결합을 통해 빛을 생성하는 반도체 광소자를 의미하며, 3족 질화물 반도체 발광소자를 예로 들 수 있다. 3족 질화물 반도체는 Al(x)Ga(y)In(1-x-y)N (0=x=1, 0=y=1, 0=x+y=1)로 된 화합물로 이루어진다. 이외에도 적색 발광에 사용되는 GaAs계 반도체 발광소자 등을 예로 들 수 있다.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).
도 1은 종래의 반도체 발광소자의 일 예(Lateral Chip)를 나타내는 도면으로서, 반도체 발광소자는 기판(100), 기판(100) 위에, 버퍼층(200), 제1 도전성을 가지는 제1 반도체층(300), 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(400), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(500)이 순차로 증착되어 있으며, 그 위에 전류 확산을 위한 투광성 도전막(600)과, 본딩 패드로 역할하는 전극(700)이 형성되어 있고, 식각되어 노출된 제1 반도체층(300) 위에 본딩 패드로 역할하는 전극(800)이 형성되어 있다. 버퍼층(200)은 생략될 수 있다.
도 2는 종래의 반도체 발광소자의 다른 예(Flip Chip)를 나타내는 도면으로서, 반도체 발광소자는 기판(100), 기판(100) 위에, 제1 도전성을 가지는 제1 반도체층(300), 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(400), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(500)이 순차로 증착되어 있으며, 그 위에 기판(100) 측으로 빛을 반사시키기 위한 3층으로 된 전극막(901), 전극막(902) 및 전극막(903)이 형성되어 있고, 식각되어 노출된 제1 반도체층(300) 위에 본딩 패드로 기능하는 전극(800)이 형성되어 있다.
도 3은 종래의 반도체 발광소자의 또 다른 예(Vertical Chip)를 나타내는 도면으로서, 반도체 발광소자는 제1 도전성을 가지는 제1 반도체층(300), 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(400), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(500)이 순차로 증착되어 있으며, 제2 반도체층(500)에 제1 반도체층(300)으로 빛을 반사시키기 위한 금속 반사막(910)이 형성되어 있고, 지지 기판(930) 측에 전극(940)이 형성되어 있다. 금속 반사막(910)과 지지 기판(930)은 웨이퍼 본딩층(920)에 의해 결합된다. 제1 반도체층(300)에는 본딩 패드로 기능하는 전극(800)이 형성되어 있다.
도 4는 미국 등록특허공보 제6,650,044호에 도시된 반도체 발광소자의 일 예를 나타내는 도면으로서, 반도체 발광소자는 플립 칩의 형태로, 기판(100), 기판(100) 위에, 제1 도전성을 가지는 제1 반도체층(300), 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(400), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(500)이 순차로 증착되어 있으며, 그 위에 기판(100) 측으로 빛을 반사시키기 위한 반사막(950)이 형성되어 있고, 식각되어 노출된 제1 반도체층(300) 위에 본딩 패드로 기능하는 전극(800)이 형성되어 있으며, 기판(100) 및 반도체층(300,400,500)을 둘러싸도록 봉지제(1000)가 형성되어 있다. 반사막(950)은 도 2에서와 같이 금속층으로 이루어질 수 있지만, 도 5에 도시된 바와 같이, SiO2/TiO2로 된 DBR(Distributed Bragg Reflector)과 같은 절연체 반사막으로 이루어질 수 있다. 반도체 발광소자는 전기 배선(820,960)이 구비된 PCB(1200; Printed Circuit Board)에 도전 접착제(830,970)를 통해 장착된다. 봉지제(1000)에는 주로 형광체가 함유된다. 여기서 반도체 발광소자는 봉지제(1000)를 포함하므로, 구분을 위해, 봉지제(1000)를 제외한 반도체 발광소자 부분을 반도체 발광소자 칩이라 부를 수 있다. 이러한 방법으로 도 4에 도시된 바와 같이 반도체 발광소자 칩에 봉지제(1000)가 도포될 수 있다.
도 5는 종래의 반도체 발광소자의 또 다른 예를 나타내는 도면으로서, 반도체 발광소자는 기판(100), 기판(100) 위에 성장되는 버퍼층(200), 버퍼층(200) 위에 성장되는 n형 반도체층(300), n형 반도체층(300) 위에 성장되는 활성층(400), 활성층(400) 위에 성장되는 p형 반도체층(500), p형 반도체층(500) 위에 형성되며, 전류 확산 기능을 하는 투광성 도전막(600), 투광성 도전막(600) 위에 형성되는 p측 본딩 패드(700) 그리고 식각되어 노출된 n형 반도체층(300) 위에 형성되는 n측 본딩 패드(800)를 포함한다. 그리고 투광성 도전막(600) 위에는 분포 브래그 리플렉터(900; DBR: Distributed Bragg Reflector)와 금속 반사막(904)이 구비되어 있다.
도 6 및 도 7은 미국 등록특허공보 제6,650,044호에 도시된 반도체 발광소자의 제조 방법의 일 예를 나타내는 도면으로서, 먼저 필름 또는 플레이트로 된 장착면(10) 위에, 반도체 발광소자 칩(20)이 놓인다. 다음으로, 격벽(82; Partition)과 개구부(81)가 구비된 스텐실 마스크(80)를, 반도체 발광소자 칩(20)이 노출되도록 장착면(10) 위에 놓는다. 다음으로, 봉지제(40)를 개구부(81)에 투입한 다음, 일정 시간 봉지제(40)를 경화한 후, 스텐실 마스크(80)를 장착면(10)으로부터 분리한다. 스텐실 마스크(80)는 주로 금속 재질로 이루어진다.
도 8은 종래의 반도체 발광소자의 또 다른 일 예를 나타내는 도면으로서, 도 1에 도시된 반도체 발광소자 칩(1)가 장착된 패키지를 도시하고 있다. 패키지는 리드 프레임(4,5), 리드 프레임(4,5)을 고정하고 오목부(7)를 형성하는 몰드(6)를 구비한다. 반도체 발광소자(1; 반도체 발광소자 칩)가 리드 프레임(4)에 장착되어 있으며, 반도체 발광소자 칩(1)을 덮도록 봉지제(1000)가 오목부(7)를 채우고 있다. 주로 봉지제(1000)는 형광체를 포함한다. 이 경우에, 기판(100)이 아래에 놓이게 되며, 기판(100)의 두께가 80~150um에 이르게 되므로, 빛을 생성하는 활성층(400)이 이보다 높은 위치에 놓이게 되어, 오목부(7) 내에서 빛을 전체적으로 고르게 발광할 수 있게 되며, 봉지제(1000)에 형광체가 구비되는 경우에 이 형광체를 잘 여기할 수 있게 된다. 그러나 도 2에 도시된 반도체 발광소자가 패키지에 장착되는 경우에, 기판(100)이 위를 향하게 되므로, 빛을 생성하는 활성층(400)이 패키지 바닥으로부터 20um를 넘지 않는 범위 내에 위치하게 되며, 오목부(7) 내에서 빛을 전체적으로 고르게 발광하기가 쉽지 않으며, 봉지제(1000)에 형광체가 구비되는 경우에 이 형광체를 잘 여기하기가 쉽지 않게 된다. 따라서 도 2에 도시된 것과 같은 플립 칩이 사용되는 경우에, 도 8에서와 같이 디스펜서를 이용한 봉지제의 형성보다는 도 4에서와 같이 봉지제(1000)가 반도체 발광소자 칩을 균일하게 덮을 수 있는 방안이 고려되어야 한다.
도 25는 한국 등록특허공보 제10-0748241호에 도시된 반도체 발광소자의 일 예를 나타내는 도면으로서, 정전기 방지를 위한 보호 소자(2000)가 구비된 점을 제외하면 도 8에 도시된 반도체 발광소자와 동일하다. 보호 소자(2000)는 정전기 또는 역방향 전기로부터 반도체 발광소자 칩(1)을 보호하기 위한 것으로, 반도체 발광소자 칩(1)과 역방향으로 병렬연결되어 있다. 보호 소자(2000)로서, 주로 제너 다이오드가 이용되지만, pn 다이오드를 이용하는 것도 가능하다. 이를 위해, 몰드(6)의 하부에도 오목부(9)가 형성되어 있으며, 보호 소자(2000)가 리브 프레임(4)에 재치 및 전기적으로 연결되어 있고, 와이어(8)를 통해 리드 프레임(5)에 전기적으로 연결되어 있다. 필요에 따라, 반도체 발광소자 칩(1), 보호 소자(2000), 와이어(2,3,8)를 보호하기 위하여 오목부(7) 및 오목부(9)에 봉지제(1000)가 구비될 수 있다. 보호 소자(2000)를 리드 프레임 내지 전극(4,5)의 하부에 구비함으로써, 보호 소자(2000)에 의한 빛 흡수를 감소시킬 수 있으나, 반도체 발광소자 전체의 두께가 두꺼워지는 문제점을 가진다.
금속 기판은, 예를 들어 반도체 소자 칩을 이용하여 반도체 패키지를 구성하거나 LED 칩 등과 같은 반도체 발광소자 칩을 이용하여 조명 장치를 구성할 때, 반도체 소자 칩 및 반도체 발광소자 칩을 지지하며, 반도체 소자 칩 및 반도체 발광소자 칩과 인쇄회로기판(PCB) 사이를 전기적으로 연결하는 매개체 역할을 한다.
도 40은 한국 특허공개번호 제2003-0031412호에 나타난 종래기술에 따른 금속 기판의 일 예를 나타내는 도면이고, 도 41는 한국 특허공개번호 제2003-0031412호에 나타난 종래기술에 따른 금속 기판의 다른 일 예를 나타내는 도면이다.
금속 기판(10)은 패키지 형태를 갖는 다수의 반도체 소자를 한 번의 공정에서 동시에 제작할 수 있도록 하기 위한 것으로서, 다수의 단위 금속 기판이 매트릭스 형태로 연결된 구조로 형성된다. 금속 기판(10)은 일반적으로 Cu, Cu 합금, Fe-Ni, Fe-Ni 합금 등과 같은 금속재료로 이루어질 수 있다. 금속 기판(10)은, 예를 들어 반도체 소자 칩이 탑재되는 칩 탑재부(15), 및 반도체 소자 칩과 인쇄회로기판을 전기적으로 연결하는 역할을 수행하는 복수의 외부접속소자(17)를 구비한다.
이러한 금속 기판은 종래 스탬핑법 또는 에칭법에 의해 제조되어 왔다.
구체적으로, 스탬핑법은 금속판을 일정한 모양의 금형틀 내에서 타발하는 방식으로, 도 40에 나타낸 것과 같은 칩 탑재부(15)와 복수의 외부접속소자(17)가 연결된 구조의 금속 기판(10)을 형성한다. 이와 같은 금속 기판(10)의 경우, 연결된 상태의 칩 탑재부(15)와 복수의 외부접속소자(17)는 패키지 형태의 반도체 소자를 제조하는 과정에서 마지막에 예정된 분할선(L)을 따라 절단되는 방식으로 개별 반도체 소자 단위로 분할될 때 전기적으로 분리된다. 이와 같은 스탬핑법은 금형틀의 구조가 복잡할 수밖에 없고 따라서 금형틀 제작에 많은 비용이 소요되는 문제점이 있었다.
에칭법은 금속판의 일정 부분만을 선택적으로 에칭하기 위해서 감광성 물질을 금속판에 도포한 후 미리 제작된 마스크 패턴으로 노광 및 현상하여 일정 부분을 제거하는 방식으로, 도 40에 나타낸 것과 같은 칩 탑재부(15)와 복수의 외부접속소자(17)가 연결된 구조의 금속 기판(10) 또는 도 41에 나타낸 것과 같은 칩 탑재부(25)와 복수의 외부접속소자(27)가 분리된 구조의 금속 기판(20)을 형성한다. 도 41에 나타낸 것과 같은 금속 기판(20)의 경우, 분리된 상태의 칩 탑재부(25)와 복수의 외부접속소자(27)의 배열 형태를 유지하기 위해, 제조 공정 중 에칭을 통한 일정 부분의 제거로 인해 칩 탑재부(25)와 복수의 외부접속소자(27)로 분리되기 이전에 금속판의 일면에 접착 테이프를 붙이는 공정이 선행되어야 한다. 이와 같은 에칭법은 에칭 공정 자체가 여러 복잡한 과정을 거칠 뿐만 아니라 접착 테이프를 붙이는 공정이 추가될 수도 있는 등 공정이 복잡하여 대량생산 측면에서 바람직하지 않은 문제점이 있었다.
도 42 내지 도 44는 한국 특허공개번호 제2012-0140454호에 나타난 종래기술에 따른 금속 기판의 또 다른 일 예를 나타내는 도면이다.
도 42 내지 도 44는 제조공정이 단순하여 대량생산 측면에서 바람직한 금속 기판의 일 예를 나타낸다. 금속 기판(30)은, 도 42에 나타낸 것과 같이 금속으로 이루어질 수 있는 도전성 판재(31)와 절연성 판재(32)를 면 방향에서 교대로 적층한 상태에서, 도 43에 나타낸 것과 같이 이들을 접합하여 적층체(33)를 형성한 다음, 적층체(33)를 적절한 폭만큼 도전성 판재(31)의 면과 직교하는 방향 즉 상하로 절단하여, 도 44에 나타낸 것과 같이 띠 모양의 도전부(34)와 절연부(35)가 교대로 배치된 구조로 형성될 수 있다.
도 45 및 도 46은 한국 특허공개번호 제2012-0140454호에 나타난 종래기술에 따른 반도체 발광소자의 일 예를 나타내는 도면이다.
상기한 바와 같은 금속 기판(30) 위에 도 45에 나타낸 것과 같이 LED 칩 등과 같은 반도체 발광소자 칩(40)을 적당한 배열규칙에 따라 장착하고, 와이어(37) 등을 이용하여 반도체 발광소자 칩(40)과 금속 기판(30)의 도전부(34)를 전기적으로 연결시킨 다음, 도 46에 나타낸 것과 같이 반도체 발광소자 칩(40) 덮도록 봉지부(50)를 형성하고, 이어서 개별 또는 복수의 반도체 발광소자 칩을 포함하는 형태로 절단하여 반도체 발광소자를 제조할 수 있다.
상기한 바와 같은 금속 기판(30)을 제조할 때, 도전성 판재(31)와 절연성 판재(32)를 유기물을 포함하는 접착제로 접합하거나, 도전성 판재(31)와 도전성 판재(31)를 절연성 판재(32) 없이 유기물을 포함하는 절연성 접착제로 직접 접합하는 형태로 적층체(33)를 형성하게 된다. 이와 같은 금속 기판(30)으로 반도체 발광소자를 제조하면, 반도체 발광소자의 사용시, 고열에 의해 접착제가 녹아내려 도전부 간의 접합불량 및 절연불량을 초래하거나, 고열과 빛에 의해 접착제가 변색되어 반도체 발광소자의 광추출 효율을 저하시키는 문제점이 있었다.
이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.
여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).
본 개시에 따른 또 다른 일 태양에 의하면(According to one aspect of the present disclosure), 반도체 발광소자에 있어서, 제1 도전부와 제2 도전부 그리고 제1 도전부와 제2 도전부 사이에 구비된 절연부를 구비하며, 상면과 상면에 대향하는 하면을 가지는 플레이트; 플레이트의 상면에 놓이며, 제1 도전부 및 제2 도전부에 전기적으로 연결되어 있고, 전자와 정공을 이용하여 빛을 생성하는 활성층을 구비하는 반도체 발광소자 칩; 그리고, 플레이트와 반도체 발광소자 칩을 덮는 봉지제;를 포함하는 것을 특징으로 하는 반도체 발광소자가 제공된다.
본 개시에 따른 또 다른 일 태양에 의하면(According to another aspect of the present disclosure), 절연부, 절연부를 사이에 두고 측면을 마주하도록 배치되며 절연부에 의해 전기적으로 절연되는 제1 도전부와 제2 도전부를 구비하며, 상면과 상면에 대향하는 하면을 가지고, 절연부가 상면으로부터 하면으로 이어진 플레이트; 플레이트의 상면 측에서 절연부를 덮는 비도전성 반사막; 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층, 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 이용해 빛을 생성하는 활성층, 제1 반도체층에 전기적으로 연결되는 제1 전극, 및 제2 반도체층에 전기적으로 연결되는 제2 전극을 구비하며, 플레이트의 상면 측에 고정되는 반도체 발광소자 칩; 및 플레이트의 상면 측에서 반도체 발광소자 칩을 덮도록 형성되는 봉지부;를 포함하는 것을 특징으로 하는 반도체 발광소자가 제공된다.
본 개시에 따른 또 다른 일 태양에 의하면(According to another aspect of the present disclosure), 반도체 발광소자를 제조하는 방법에 있어서, 2 이상의 도전판을 절연재료를 사이에 두고 반복 적층한 적층체를 준비하는 단계; 적층체를 절단하여, 절연재료로 이루어진 절연부 및 도전판으로 이루어지며 절연부를 사이에 두고 측면이 마주하도록 배치되고 절연부에 의해 전기적으로 절연되는 제1 도전부와 제2 도전부를 구비하며, 상면 및 상면에 대향하는 하면을 가지고, 절연부가 상면으로부터 하면으로 이어지는 원판을 형성하는 단계; 원판의 상면 측에서 절연부를 덮도록 비도전성 반사막을 형성하는 단계; 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층, 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 이용해 빛을 생성하는 활성층, 제1 반도체층에 전기적으로 연결되는 제1 전극, 및 제2 반도체층에 전기적으로 연결되는 제2 전극을 구비하는 반도체 발광소자 칩을 원판의 상면 측에 고정하는 단계; 반도체 발광소자 칩을 봉지제로 덮는 단계; 및 반도체 발광소자의 예정된 경계를 따라 원판과 봉지제를 함께 절단하는 단계;를 포함하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법이 제공된다.
본 개시에 따른 또 다른 일 태양에 의하면(According to another aspect of the present disclosure), 경사를 가지는 절연부 및 절연부를 사이에 두고 절연부의 경사에 대응하는 경사면으로 이루어진 각각의 일측면이 마주하도록 배치되며 절연부에 의해 전기적으로 절연되는 제1 도전부와 제2 도전부를 구비하며, 상면과 상면에 대향하는 하면을 가지고, 절연부가 상면으로부터 하면으로 이어진 플레이트; 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층, 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 이용해 빛을 생성하는 활성층, 제1 반도체층에 전기적으로 연결되는 제1 전극, 및 제2 반도체층에 전기적으로 연결되는 제2 전극을 구비하며, 플레이트의 상면 측에 고정되는 반도체 발광소자 칩; 및 플레이트의 상면 측에서 반도체 발광소자 칩을 덮도록 형성되는 봉지부;를 포함하는 것을 특징으로 하는 반도체 발광소자가 제공된다.
본 개시에 따른 또 다른 일 태양에 의하면(According to another aspect of the present disclosure), 반도체 발광소자를 제조하는 방법에 있어서, 2 이상의 도전판을 절연재료를 사이에 두고 반복 적층한 적층체를 준비하는 단계; 적층체를 일측단면 측에서 적층방향과 경사진 방향으로 절단하여, 절연재료로 이루어진 경사진 절연부 및 도전판으로 이루어지며 절연부의 경사에 대응하는 경사면으로 이루어진 각각의 일측면이 마주하도록 배치되고 절연부에 의해 전기적으로 절연되는 제1 도전부와 제2 도전부를 구비하며, 상면 및 상면에 대향하는 하면을 가지고, 절연부가 상면으로부터 하면으로 이어지는 원판을 형성하는 단계; 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층, 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 이용해 빛을 생성하는 활성층, 제1 반도체층에 전기적으로 연결되는 제1 전극, 및 제2 반도체층에 전기적으로 연결되는 제2 전극을 구비하는 반도체 발광소자 칩을 원판의 상면에 고정하는 단계; 반도체 발광소자 칩을 봉지제로 덮는 단계; 및 반도체 발광소자의 예정된 경계를 따라 원판과 봉지제를 함께 절단하는 단계;를 포함하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법이 제공된다.
본 개시에 따른 또 다른 일 태양에 의하면(According to another aspect of the present disclosure), 제1 도전부와 제2 도전부 그리고 제1 도전부와 제2 도전부 사이에 구비된 절연부를 구비하며, 상면과 상면에 대향하는 하면을 가지는 플레이트; 플레이트의 상면에 놓이며, 제1 도전부 및 제2 도전부에 전기적으로 연결되어 있고, 전자와 정공을 이용하여 빛을 생성하는 활성층을 구비하는 반도체 발광소자 칩; 그리고 정전기로부터 반도체 발광소자 칩을 보호하도록 플레이트의 하면에 형성된 오목부에 구비되는 보호 소자;를 포함하는 것을 특징으로 하는 반도체 발광소자가 제공된다.
본 개시에 따른 또 다른 일 태양에 의하면(According to another aspect of the present disclosure), 반도체 발광소자를 제조하는 방법에 있어서, 제1 도전부와 제2 도전부, 및 제1 도전부와 제2 도전부 사이에 형성되어 제1 도전부와 제2 도전부를 분리하는 홈을 포함하는 플레이트를 준비하는 단계; 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층, 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 이용해 빛을 생성하는 활성층, 제1 반도체층에 전기적으로 연결되는 제1 전극, 및 제2 반도체층에 전기적으로 연결되는 제2 전극을 구비하는 반도체 발광소자 칩을 플레이트의 상면에 고정하는 단계; 반도체 발광소자 칩을 봉지제로 덮는 단계; 및 반도체 발광소자의 예정된 경계를 따라 플레이트와 봉지제를 함께 절단하는 단계;를 포함하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
본 개시에 따른 또 다른 일 태양에 의하면(According to another aspect of the present disclosure), 제1 금속층과 제2 금속층을 접합 금속층을 매개로 접합하여, 적층체를 형성하는 단계;로서, 마주하는 제1 금속층과 제2 금속층의 적어도 일측에 부도체막을 구비하는, 적층체를 형성하는 단계; 그리고, 부도체막이 제1 금속층과 제2 금속층 사이에서 절연막으로 기능하도록 적층체를 절단하는 단계;를 포함하는 것을 특징으로 하는 금속 기판 제조 방법이 제공된다.
본 개시에 따른 또 다른 일 태양에 의하면(According to another aspect of the present disclosure), 제1 도전부, 제2 도전부, 제1 도전부와 제2 도전부를 접합하는 접합 금속층, 및 제1 도전부와 제2 도전부를 절연하도록 접합 금속층의 적어도 일측에 위치하는 부도체막을 구비하는 금속 기판; 그리고, 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층 및 제1 반도체층과 제2 반도체층을 사이에 개재되며 전자와 정공의 재결합을 통해 빛을 생성하는 활성층을 구비하며, 제1 반도체층이 제1 금속층에 전기적으로 연결되고, 제2 반도체층이 제2 금속층에 전기적으로 연결되는 반도체 발광소자 칩;을 포함하는 것을 특징으로 하는 반도체 발광소자가 제공된다.
이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.
도 1은 종래의 반도체 발광소자의 일 예(Lateral Chip)를 나타내는 도면,
도 2는 종래의 반도체 발광소자의 다른 예(Flip Chip)를 나타내는 도면,
도 3은 종래의 반도체 발광소자의 또 다른 예(Vertical Chip)를 나타내는 도면,
도 4는 미국 등록특허공보 제6,650,044호에 도시된 반도체 발광소자의 일 예를 나타내는 도면,
도 5는 종래의 반도체 발광소자의 또 다른 예를 나타내는 도면,
도 6 및 도 7은 미국 등록특허공보 제6,650,044호에 도시된 반도체 발광소자의 제조 방법의 일 예를 나타내는 도면,
도 8은 종래의 반도체 발광소자의 또 다른 일 예를 나타내는 도면,
도 9는 본 개시에 따른 반도체 발광소자의 일 예를 나타내는 도면,
도 10은 도 9의 반도체 발광소자를 부분적으로 분해하여 나타내는 도면,
도 11 내지 도 16은 본 개시에 따른 반도체 발광소자를 제조하는 방법의 일 예를 나타낸 도면,
도 17은 본 개시에 따른 반도체 발광소자의 다른 일 예를 나타내는 도면,
도 18은 본 개시에 따른 반도체 발광소자의 또 다른 일 예를 나타내는 도면,
도 19는 본 개시에 따른 반도체 발광소자의 또 다른 일 예를 나타내는 도면,
도 20은 본 개시에 따른 반도체 발광소자의 또 다른 일 예를 나타내는 도면,
도 21은 본 개시에 따른 반도체 발광소자의 또 다른 일 예를 나타내는 도면,
도 22는 본 개시에 따른 반도체 발광소자의 인쇄회로기판 위에 고정된 상태를 나타나는 도면,
도 23 및 도 24는 본 개시에 따른 반도체 발광소자를 제조하는 방법의 다른 일 예를 나타낸 도면,
도 25는 한국 등록특허공보 제10-0748241호에 도시된 반도체 발광소자의 일 예를 나타내는 도면,
도 26은 본 개시에 따른 반도체 발광소자의 또 다른 일 예를 나타내는 도면,
도 27은 본 개시에 따른 반도체 발광소자의 또 다른 일 예를 나타내는 도면,
도 28은 도 26 및 도 27에 도시된 플레이트를 제조하는 방법의 일 예를 설명하는 도면,
도 29는 본 개시에 따라 실제 형성한 오목부의 일 예를 나타내는 사진,
도 30 내지 도 34은 본 개시에 따른 반도체 발광소자를 제조하는 방법의 일 예를 나타내는 도면,
도 35는 본 개시에 따른 방법으로 제조된 반도체 발광소자의 일 예를 나타내는 도면,
도 36는 본 개시에 따른 방법으로 제조된 반도체 발광소자의 다른 일 예를 나타내는 도면,
도 37은 본 개시에 따른 방법으로 제조된 반도체 발광소자의 또 다른 일 예를 나타내는 도면,
도 38은 본 개시에 따른 방법으로 제조된 반도체 발광소자의 또 다른 일 예를 나타내는 도면,
도 39은 본 개시에 따른 방법으로 제조된 반도체 발광소자의 또 다른 일 예를 나타내는 도면,
도 40은 한국 특허공개번호 제2003-0031412호에 나타난 종래기술에 따른 금속 기판의 일 예를 나타내는 도면,
도 41는 한국 특허공개번호 제2003-0031412호에 나타난 종래기술에 따른 금속 기판의 다른 일 예를 나타내는 도면,
도 42 내지 도 44는 한국 특허공개번호 제2012-0140454호에 나타난 종래기술에 따른 금속 기판의 또 다른 일 예를 나타내는 도면,
도 45 및 도 46은 한국 특허공개번호 제2012-0140454호에 나타난 종래기술에 따른 반도체 발광소자의 일 예를 나타내는 도면,
도 47 및 도 48는 본 개시에 따른 금속 기판 제조 방법의 일 예를 나타낸 도면,
도 49은 본 개시에 따른 금속 기판 제조 방법에 따라 제조된 금속 기판의 일 예를 나타낸 도면,
도 50은 본 개시에 따른 금속 기판 제조 방법에 따라 제조된 금속 기판의 다른 일 예를 나타낸 도면,
도 51는 본 개시에 따른 반도체 발광소자의 일 예를 나타내는 도면
도 52은 도 51의 반도체 발광소자를 부분적으로 분해하여 나타내는 도면,
도 53 내지 도 55은 본 개시에 따른 반도체 발광소자를 제조하는 방법의 일 예를 나타낸 도면.
이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)).
도 9는 본 개시에 따른 반도체 발광소자의 일 예를 나타내는 도면이고, 도 10은 도 9의 반도체 발광소자를 부분적으로 분해하여 나타내는 도면이다.
반도체 발광소자는 플레이트(110), 비도전성 반사막(130), 반도체 발광소자 칩(150) 및 봉지부(170)를 포함한다.
플레이트(110)는 절연부(113)와, 절연부(113)를 사이에 두고 측면을 마주하도록 배치되는 제1 도전부(111)와 제2 도전부(112)를 구비한다. 플레이트(110)는 상면(116)과 상면(116)에 대향하는 하면(117)을 구비한다. 제1 도전부(111)와 제2 도전부(112) 사이에 위치하는 절연부(113)가 상면(116)으로부터 하면(117)으로 이어지며, 따라서 제1 도전부(111)와 제2 도전부(112)가 절연부(113)에 의해 전기적으로 절연된다.
제1 도전부(111)와 제2 도전부(112)의 재질은 도전성 금속 또는 전도성 반도체라면 특별한 제한이 없으며, 이러한 재료로 W, Mo, Ni, Al, Zn, Ti, Cu, Si 등과 같은 재료 및 이들 중 적어도 하나를 포함하는 합금 형태를 들 수 있고, 전기 전도성, 열 전도성, 반사율 등을 고려했을 때, Al을 적합한 예로 들 수 있다. 물론, 도전성 재료라면 특별한 제한이 없으며, 도전성을 가진다면 비금속 재료 또한 사용될 수 있을 것이다.
절연부(113)는 유색 또는 투명의 절연재료로 이루어진다. 절연부(113)는 점착성을 가지는 절연접착제로 이루어질 수도 있다. 절연부(113)는 제1 도전부(111)와 제2 도전부(112)를 전기적으로 절연하는 역할 뿐만 아니라, 플레이트(110)를 형성할 때 제1 도전부(111)와 제2 도전부(112)를 서로 접합시키는 역할 또한 수행하게 된다.
플레이트(110)의 상면(116)은 반도체 발광소자 칩(150)이 놓이게 되는 부분으로서, 플레이트(110)를 구성하는 절연부(113) 또한 상면(116)으로 부분적으로 노출된다. 절연부(113)의 플레이트(110) 상면(116)으로 노출되는 부분은 반도체 발광소자 칩(150)에서 방출되는 강한 빛에 노출되는 부분으로서, 탈색 및 변색에 취약하다. 절연부(113)가 탈색되거나 변색되면, 반도체 발광소자 칩(150)에서 방출된 빛의 플레이트(110) 상면(116)에서의 반사효율이 저하될 수 있다.
비도전성 반사막(130)은, 절연부(113)의 탈색 및 변색에 따른 반사효율 저하를 개선할 수 있도록 한 것으로서, 플레이트(110)의 상면(116) 측에서 절연부(113)를 덮도록 형성된다.
비도전성 반사막(130)은 절연부(113)을 덮어 절연부(113)의 탈색 및 변색을 방지함으로써 플레이트(110) 상면(116)에서의 반사효율 저하를 방지할 뿐만아니라, 비도전성 반사막(130) 자체에 의한 반사효율 향상효과를 얻을 수 있도록 한다.
비도전성 반사막(130)은 반사막으로 기능하되, 빛의 흡수를 방지하도록 투광성 물질로 구성되는 것이 바람직하다. 비도전성 반사막(150)은 예를 들어, SiOx, TiOx, Ta2O5, MgF2, SiN, SiON, Al2O3 등과 같은 투광성 유전체 물질로 구성될 수 있다. 비도전성 반사막(130)은, 예를 들어, SiOx, 및 TiOx 등과 같은 투광성 유전체 물질로 구성되는 단일 유전체 막, 굴절율이 다른 이질적인 복수의 유전체 막(예: SiO2/TiO2, SiO2/Ta2O5, SiO2/TiO2/Ta2O5 등), 바람직하게는 예를 들어 SiO2와 TiO2의 조합으로 된 단일의 분포 브래그 리플렉터(Distributed Bragg Reflector: DBR) 또는 유전체 막과 분포 브래그 리플렉터의 조합 등 다양한 구조로 이루어질 수 있다.
분포 브래그 리플렉터는 보다 많은 양의 빛을 반사시킬 수 있으며 특정 파장에 대한 설계가 가능하여 발생되는 빛의 파장에 대응하여 효과적으로 반사시킬 수 있다. 따라서, 비도전성 반사막(130)이 분포 브래그 리플렉터를 포함할 경우, 반사효율을 더욱 향상시킬 수 있다. 분포 브래그 리플렉터는, 예를 들어 TiO2/SiO2의 조합으로 이루어지는 반복 적층 구조를 구비할 수 있으며, 물리 증착법(PVD; Physical Vapor Deposition), 그 중에서도 전자선 증착법(E-Beam Evaporation) 또는 스퍼터링법(Sputtering) 또는 열 증착법(Thermal Evaporation)에 의해 형성될 수 있다.
예를 들어, 분포 브래그 리플렉터가 TiO2층/SiO2층의 조합으로 구성되는 경우, 각 층은 주어진 파장의 1/4의 광학 두께를 가지도록 설계되며, 그 조합의 수는 4 ~ 20 페어(pairs)가 적합하다. 조합의 수가 너무 적으면 분포 브래그 리플렉터의 반사효율이 떨어지고, 조합의 수가 너무 많으면 두께가 과도하게 두꺼워지기 때문이다. 한편, 각 층은 기본적으로 주어진 파장의 1/4의 광학 두께를 가지도록 설계되지만, 고려 대상의 파장 대역에 따라서 주어진 파장의 1/4 보다 큰 광학 두께를 가지도록 설계될 수 있다. 이와 더불어, 분포 브래그 리플렉터는 각기 다른 광학 두께를 가지는 TiO2층/SiO2층의 조합들로 설계될 수도 있다. 정리하면, 분포 브래그 리플렉터는 반복 적층되는 복수의 TiO2층/SiO2층의 조합을 포함할 수 있고 하며, 복수의 TiO2층/SiO2층의 조합은 각각 서로 다른 광학 두께를 가질 수 있다.
플레이트(110)는 경면 처리된 상면(116)을 구비하는 것이 바람직하다. 예를 들어, 플레이트(110)를 구성하는 제1 도전부(111) 및 제2 도전부(112)가 Al로 이루어지고, 폴리싱(polishing) 등과 같은 방법으로 경면 처리가 수행되면, 플레이트(110)의 상면(116)은 높은 반사율을 가지게 된다.
따라서, 플레이트(110)의 상면(116) 측에서, 비도전성 반사막(130)에 의해 절연부(113)의 탈색 또는 변색이 방지됨에 따라 절연부(113)의 탈색 또는 변색으로 인한 반사효율 저하가 방지되고, 비도전성 반사막(130)으로 덮인 영역의 경우 비도전성 반사막(130) 자체에 의해 높은 반사율을 가지게 되며, 이와 더불어 비도전성 반사막(130)으로 덮이지 않은 영역의 경우에도 플레이트(110)의 상면(116)이 경면 처리에 의해 향상된 반사율을 가지게 되어, 반도체 발광소자는 더욱 향상된 반사효율을 가지게 된다.
반도체 발광소자 칩(150)은, 도 2, 도 4 및 도 5에 예시된 형태의 플립 칩으로서, 제1 도전성(예: n형)을 가지는 제1 반도체층(종래도면 참조), 제1 도전성과 다른 제2 도전성(예: p형)을 가지는 제2 반도체층(종래도면 참조), 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 이용해 빛을 생성하는 활성층(종래도면 참조), 제1 반도체층에 전기적으로 연결되는 제1 전극(151), 및 제2 반도체층에 전기적으로 연결되는 제2 전극(152)을 구비한다. 반도체 발광소자 칩(150)은, 제1 전극(151) 및 제2 전극(152)이 하부에 위치하여 플레이트(110)의 상면(116)과 마주하도록 배치된다. 반도체 발광소자 칩(150)은 플레이트(110)의 상면(116) 측에서 절연부(113)에 걸쳐서 위치하게 된다. 달리 표현하면, 반도체 발광소자 칩(150)은 비도전성 반사막(130)에 걸쳐서 위치하게 된다. 구체적으로, 플레이트(110)의 상면(116)에서, 제1 전극(151)은 비도전성 반사막(130) 좌측의 제1 도전부(111)에 접합되고, 제2 전극(152)은 비도전성 반사막(130) 우측의 제2 도전부(112)에 접합된다. 따라서, 비도전성 반사막(130)은, 플레이트(110)의 상면(116) 위에서, 제1 전극(151)과 제2 전극(152) 사이에 위치하게 된다. 접합은 Ag 페이스트를 이용하여 수행되거나, 납땜 등 반도체 발광소자 분야에 이미 알려진 다양한 방법이 사용될 수 있다. 반도체 발광소자 칩(150)은 제1 도전부(111) 및 제2 도전부(112)와 넓은 면적에 걸쳐 접촉하게 되며, 따라서 반도체 발광소자 칩(150)에서 발생한 열은 플레이트(110)를 통해 효과적으로 방출될 수 있다.
봉지부(170)는 플레이트(110)의 상면(116) 측에서 반도체 발광소자 칩(150)을 덮도록 형성된다. 봉지부(170)는 투명재질의 수지와 형광체를 포함할 수 있다.
상기한 바와 같은 반도체 발광소자는 다음과 같은 방법으로 제조될 수 있다.
도 11 내지 도 16은 본 개시에 따른 반도체 발광소자를 제조하는 방법의 일 예를 나타낸 도면이다.
도 11에 나타낸 것과 같이, 2 이상의 도전판(101)을 절연접착제(103) 등과 같은 절연재료를 사용하여 접착하는 방식으로 반복 적층하여 적층체(105)를 준비한다.
이와 같은 적층체(105)를 절단하여, 도 12에 나타낸 것과 같이, 절연접착제(103)로 이루어진 절연부(113') 및 도전판(101)으로 이루어진 도전부(111',112')가 반복되는 구조의 원판(110')을 형성한다. 원판(110')에서, 도전부(111')와 도전부(112') 사이에 절연부(113')가 위치하게 되며, 인접한 두 도전부(111',112')는 절연부(113')에 의해 전기적으로 절연된다. 원판(110')은 상면(116') 및 상면(116')에 대향하는 하면(117')을 구비하게 되며, 절연부(113')는 원판(110')의 상면(116')으로부터 하면(117')으로 이어지게 된다.
이후, 도 13에 나타낸 것과 같이, 원판(110')의 상면(116') 측에 절연부(113')를 덮도록 비도전성 반사막(130')을 형성한다. 비도전성 반사막(130)의 형성에 앞서 폴리싱 등과 같은 방법으로 원판(110')의 상면(116')에 대한 경면 처리가 수행될 수 있다.
이와 같이 준비된 원판(110') 위에, 도 14에 나타낸 것과 같이, 반도체 발광소자 칩(150)이 고정된다. 반도체 발광소자 칩(150)은, 제1 전극(151) 및 제2 전극(152)이 하부에 위치하여 원판(110')의 상면(116')과 마주하도록 배치된다. 반도체 발광소자 칩(150)은 절연부(113')에 걸쳐서 위치하게 된다. 구체적으로, 원판(110')의 상면(116')에서, 제1 전극(151)은 절연부(113') 좌측의 원판(110') 상면(116')에 접합되고, 제2 전극(152)은 절연부(113) 우측의 원판(110') 상면(116')에 접합된다. 이러한 접합은 Ag 페이스트를 이용하여 수행되거나, 반도체 발광소자 분야에 이미 알려진 다양한 방법이 사용될 수 있다.
다음으로, 도 15에 나타낸 것과 같이, 모든 반도체 발광소자 칩(150)을 덮도록 원판(110')의 상면(116') 전체에 봉지제(170')를 디스펜싱하고, 이 봉지제(170')를 경화시킨다. 봉지제(170')는 실리콘 등과 같은 액상의 투명한 수지 재료와 형광체를 포함할 수 있다.
이어서, 도 16에 나타낸 것과 같이, 평면상에서 반도체 발광소자의 예정된 경계(A)를 따라 경화된 봉지제(170') 및 원판(110')를 함께 절단하여, 개별적인 반도체 발광소자로 완성된다. 도 9에 나타낸 것과 같은 완성된 반도체 발광소자에서, 봉지제(170')는 봉지부(170)를 이루게 되고, 원판(110')은 플레이트(110)를 이루게 되며, 플레이트(110)는 절연부(113) 및 절연부(113)를 사이에 두고 절연부(113)에 의해 절연되는 제1 도전부(111)와 제2 도전부(112)를 구비하게 된다.
도 17은 본 개시에 따른 반도체 발광소자의 다른 일 예를 나타내는 도면으로서, 반도체 발광소자 칩(150)은 제1 전극(151) 및 제2 전극(152) 아래에 각각 위치하는 본딩 패드(141,142)를 구비할 수 있다. 본딩 패드(141,142)는 금속재료로 이루어질 수 있다. 이러한 본딩 패드(141,142)를 이용하여, 반도체 발광소자 칩(150)은 유태틱 본딩 방식으로 플레이트(110)에 접합될 수도 있다. 따라서, 완성된 반도체 발광소자에서, 제1 전극(151)과 플레이트(110)의 제1 도전부(111) 사이에 본딩 패드(141)가 위치하고, 제2 전극(152)과 플레이트(110)의 제2 도전부(112) 사이에 본딩 패드(142)가 위치하게 된다.
도 18은 본 개시에 따른 반도체 발광소자의 또 다른 일 예를 나타내는 도면으로서, 비도전성 반사막(130)은 플레이트(110)의 상면(116) 전체를 덮도록 형성될 수 있다. 그리고, 제1 전극(151) 및 제2 전극(152)이 각각 제1 도전부(111) 및 제2 도전부(112)와 전기적으로 연결될 수 있도록 하기 위한 것으로서, 비도전성 반사막(130)은 제1 도전부(111)를 부분적으로 노출시키는 제1 관통구멍(121) 및 제2 도전부(112)를 부분적으로 노출시키는 제2 관통구멍(122)를 구비한다. 제1 관통구멍(121)과 제2 관통구멍(122)은 각각 제1 전극(151) 및 제2 전극(152)이 삽입될 수 있도록 하기 위해, 제1 전극(151) 및 제2 전극(152)이 놓일 위치에 제1 전극(151) 및 제2 전극(152) 보다 조금 크게 형성된다. 이와 같이, 비도전성 반사막(130)이 플레이트(110)의 상면(116)에 넓게 형성됨으로써, 더욱 향상된 반사효율을 달성할 수 있다.
한편, 플레이트(110)가 경면 처리된 상면(116)을 구비하고 이러한 경면 처리된 플레이트(110)의 상면(116)에 비도전성 반사막(130)이 형성될 경우, 경면 처리되지 않은 플레이트(110)의 상면(116)에 비도전성 반사막(130)이 형성될 경우와 비교하여, 상대적으로 얇은 두께의 비도전성 반사막(130)으로도 동등한 반사효율을 달성할 수 있다. 즉, 플레이트(110)의 상면(116)을 경면 처리함으로써, 비도전성 반사막(130)을 얇게 구성할 수 있게 된다.
도 19는 본 개시에 따른 반도체 발광소자의 또 다른 일 예를 나타내는 도면으로서, 마찬가지로 비도전성 반사막(130)은 플레이트(110)의 상면(116) 전체를 덮도록 형성될 수 있다. 그리고, 제1 전극(151) 및 제2 전극(152)이 각각 제1 도전부(111) 및 제2 도전부(112)와 전기적으로 연결될 수 있도록 하기 위한 것으로서, 비도전성 반사막을 관통하는 형태의 제1 연결전극(131) 및 제2 연결전극(132)이 구비된다. 제1 연결전극(131)은 제1 도전부(111) 상부에서 비도전성 반사막(130)을 관통하도록 형성되고, 제2 연결전극(132)은 제1 도전부(112) 상부에서 비도전성 반사막(130)을 관통하도록 형성된다. 따라서, 제1 전극(151)은 제1 연결전극(131)에 접합되어 제1 연결전극(131)을 통해 제1 도전부(111)와 전기적으로 연결되고, 제2 전극(152)은 제2 연결전극(132)에 접합되어 제2 연결전극(132)을 통해 제2 도전부(112)와 전기적으로 연결된다. 마찬가지로, 비도전성 반사막(130)이 플레이트(110)의 상면(116)에 넓게 형성됨으로써, 더욱 향상된 반사효율을 달성할 수 있다.
도 20은 본 개시에 따른 반도체 발광소자의 또 다른 일 예를 나타내는 도면으로서, 반도체 발광소자 칩(150)으로 도 1에 예시된 형태의 레터럴 칩이 사용되었다. 반도체 발광소자 칩(150')은 제1 전극(151') 및 제2 전극(152')이 상부에 위치하도록 배치된다. 플레이트(110) 위에 고정할 때, 반도체 발광소자 칩(150')은 절연부(113)에 걸쳐서 위치하게 된다. 제1 전극(151')은 제1 도전부(111)에 와이어 본딩 방식으로 연결되고, 제2 전극(152')은 제2 도전부(112)에 와이어 본딩 방식으로 연결된다. 따라서, 완성된 반도체 발광소자에서, 제1 전극(151')은 와이어(156)에 의해 제1 도전부(111)에 전기적으로 연결되고, 제2 전극(152')은 와이어(157)에 의해 제2 도전부(112)에 전기적으로 연결된다. 다만, 비도전성 반사막(130)이 플레이트의 상면(116) 전체를 덮도록 형성될 경우, 제1 전극(151) 및 제2 전극(152)은, 도 18에 나타낸 것과 같은 제1 관통구멍(121) 및 제2 관통구멍(122)을 통하거나, 도 19에 나타낸 것과 같은 제1 연결전극(131) 및 제2 연결전극(132)을 통해, 제1 도전부(111) 및 제2 도전부(112)와 각각 와이어 본딩 방식으로 연결될 수 있을 것이다.
별도로 도시하지는 않지만, 플레이트(110) 위에 고정할 때, 반도체 발광소자 칩(150')은 절연부(113)에 걸치지 않도록 배치될 수 있다. 이 경우, 반도체 발광소자 칩(150')은 제1 도전부(111) 및 제2 도전부(112) 중 어느 하나의 위에 위치하게 된다는 것만 다를 뿐, 제1 전극(151')이 와이어(156)에 의해 제1 도전부(111)에 전기적으로 연결되고, 제2 전극(152')이 와이어(157)에 의해 제2 도전부(112)에 전기적으로 연결되는 것은 동일하다.
한편, 역시 별도로 도시하지는 않지만, 도 3에 예시된 형태의 버티컬 칩 또한 사용될 수 있다. 이 경우, 반도체 발광소자 칩은 제1 도전부(111) 또는 제2 도전부(112) 위에 위치하고, 반도체 발광소자 칩의 하부에 위치하는 하나의 전극은 제1 도전부(111) 및 제2 도전부(112) 중 어느 하나에 직접 또는 간접적으로 접합되고, 반도체 발광소자 칩의 상부에 위치하는 다른 하나의 전극은 제1 도전부(111) 및 제2 도전부(112) 중 나머지 하나에 와이어 본딩 방식으로 접합된다.
도 21은 본 개시에 따른 반도체 발광소자의 또 다른 일 예를 나타내는 도면으로서, 플레이트(210)는 경사진 절연부(213)와, 절연부(213)를 사이에 두고 일측면을 마주하도록 배치되는 제1 도전부(211)와 제2 도전부(212)를 구비한다. 제1 도전부(211)와 제2 도전부(212)의 마주하는 일측면은 절연부(213)의 경사에 대응하는 경사면으로 이루어진다. 플레이트(210)는 상면(216)과 상면(216)에 대향하는 하면(217)을 구비한다. 제1 도전부(211)와 제2 도전부(212) 사이에 위치하는 절연부(213)가 상면(216)으로부터 하면(217)으로 이어지며, 따라서 제1 도전부(211)와 제2 도전부(212)가 절연부(213)에 의해 전기적으로 절연된다.
절연부(213)가 경사지게 형성됨에 따라, 제1 도전부(211)와 제2 도전부(212)는 상면 측과 하면 측의 면적이 다르게 된다. 예를 들어, 제1 도전부(211)는 상면(216) 측이 좁고 하면(217) 측이 넓게 형성되며, 제2 도전부(212)는 상면(216) 측이 넓고 하면(217) 측이 좁게 형성된다. 따라서, 제1 도전부(211) 및 제2 도전부(212)는 서로 다른 방열성능을 가지게 된다.
한편, 반도체 발광소자 칩(150)에 구비되는 제1 전극(151)과 제2 전극(152) 중 상대적으로 발열량이 많은 전극이 존재할 수 있다. 예를 들어, p형 반도체층과 전기적으로 연결되는 p측 전극은 n형 반도체층과 전기적으로 연결되는 n측 전극보다 더 많은 양의 열을 방출할 수 있다. 이와 같이, 발열량이 서로 다른 두 전극이 존재할 경우, 상대적으로 높은 발열량의 전극을 제1 도전부(211) 및 제2 도전부(212) 중 방열성능이 우수한 어느 하나에 접합하고, 상대적으로 낮은 발열량의 전극을 제1 도전부(211) 및 제2 도전부(212) 중 나머지 하나에 접합하는 방식으로 반도체 발광소자 칩(150)이 고정될 수 있고, 이를 통해 반도체 발광소자 칩(150)에서 발생하는 열을 더욱 효과적으로 외부로 방출할 수 있게 된다.
도 22는 본 개시에 따른 반도체 발광소자의 인쇄회로기판 위에 고정된 상태를 나타나는 도면으로서, 반도체 발광소자는, 솔더 랜드(solder land)와 같은 회로 패턴(235)을 구비하는 인쇄회로기판(240)에 실장될 수 있다. 이와 같은 실장시, 반도체 발광소자가 경사진 절연부(213)를 구비함에 따라, 반도체 발광소자의 배치가 용이해질 수 있다. 구체적으로, 인쇄회로기판(240) 상에서, 반도체 발광소자가 고정될 바람직한 위치가 있지만 회로 패턴(235)이 해당 위치에서 떨어져 위치함에 따라 반도체 발광소자가 바람직한 위치에 놓이지 못하는 경우가 존재할 수 있다. 이와 같은 경우, 경사진 절연부(213)로 인해 제1 도전부(211) 및 제2 도전부(212)의 상면(216) 측과 하면(217) 측에서 절연부(213)의 위치가 상이한 것을 이용하여, 반도체 발광소자는 바람직한 위치에 고정되면서도 제1 도전부(211) 및 제2 도전부(212)가 치우친 위치의 회로 패턴에 정확하게 연결할 수 있다. 또한, 절연부(213)의 경사를 조절함으로써, 회로 패턴의 치우친 정도에 대응할 수 있다.
도 21에 나타낸 것과 같은 반도체 발광소자는 다음과 같은 방법으로 제조될 수 있다.
도 23 및 도 24는 본 개시에 따른 반도체 발광소자를 제조하는 방법의 다른 일 예를 나타낸 도면으로서, 도 11에 나타낸 것과 같이 마찬가지로, 2 이상의 도전판(201)을 절연접착제(203) 등과 같은 절연재료를 사용하여 접착하는 방식으로 반복 적층하여 적층체(205)를 준비한다.
그러나, 경사진 절연부(213')를 형성하기 위해, 적층체(205)는 일측단면(207) 측에서 적층방향(x)과 경사진 방향(c)으로 절단된다. 이와 같은 방식으로 적층체(205)를 절단함으로써, 도 24에 나타낸 것과 같이, 절연접착제(203) 이루어진 경사진 절연부(213') 및 도전판(201)으로 이루어진 도전부(211',212')가 반복되는 구조의 원판(210')을 형성한다. 원판에서, 도전부(211')와 도전부(212') 사이에 절연부(213')가 위치하게 되며, 두 도전부(211',212')는 절연부(213')에 의해 전기적으로 절연된다. 절연부(213')를 사이에 두고 마주하는 각 도전부(211',212')의 일측면은 절연부(213')의 경사(α)에 대응하는 경사면으로 이루어진다. 원판(210')은 상면(216') 및 상면(216')에 대향하는 하면(217')을 구비하게 되며, 경사를 가진 절연부(213')는 원판(210')의 상면(216')으로부터 하면(217')으로 이어지게 된다.
적층체(205)를 절단할 때, 적층방향(x)과 절단방향(c) 사이의 경사(α)를 조절하여 절연부(213')의 경사(α)를 조절할 수 있고, 이와 같은 경사 조절을 통해 반도체 발광소자로 완성했을 때, 제1 도전부(211) 및 제2 도전부(212)의 상면(216) 측과 하면(217) 측에서 절연부(213)의 위치 차이를 조절할 수 있다.
경사진 절연부(213)를 형성하기 위해 원판(210')을 형성하는 방법이 달라진다는 것을 제외하면, 반도체 발광소자 칩의 고정, 봉지제의 형성 및 완성된 반도체 발광소자로 절단 등은, 도 13 내지 도 16에 나타낸 반도체 발광소자를 제조하는 방법과 동일한 방식으로 이루어질 수 있다.
한편, 도 21에 나타난 것과 같은 경사진 절연부(213)를 구비하는 반도체 발광소자에도, 이상에서 설명한 바와 같은 다양한 구조의 비도전성 반사막(130)이 적용될 수 있으며, 레터럴 칩 등 다른 구조의 반도체 발광소자 칩(150')이 적용될 수 있다. 나아가, 레터럴 칩 또는 버티컬 칩이 적용될 경우, 반도체 발광소자 칩은 플레이트(210)의 상면(216) 측에서 절연부(213)에 걸치지 않고 제1 도전부(211)와 제2 도전부(212) 중 어느 하나의 위에 고정될 수도 있다. 이때, 제1 도전부(211)와 제2 도전부(212) 중 방열에 유리한 제1 도전부(211) 위에 반도체 발광소자 칩이 놓이는 것이 바람직하다.
도 26은 본 개시에 따른 반도체 발광소자의 또 다른 일 예를 나타내는 도면으로서, 플레이트(110)의 하면(117)에 오목부(2001)가 구비되어 있으며, 오목부(2001)에 반도체 발광소자 칩(150)을 정전기 또는 역방향 전류로부터 보호하기 위한 보호 소자(2000; 예: 제너 다이오드, pn 다이오드)가 구비되어 있다. 보호 소자(2000)를 플레이트(110) 내에 구비된 오목부(2001)에 위치시킴으로써, 보호 소자(2000)를 구비함에도 불구하고, 제1 도전부(111) 및 제2 도전부(112)의 두께 이상으로 반도체 발광소자의 전체 두께가 두꺼워지지 않는 이점을 가질 수 있게 된다. 도 25에 도시된 반도체 발광소자에서, 보호 소자(2000)는 리드 프레임 또는 전극(4,5) 위에 배치되고 오목부(9)를 형성하기 위하여 몰드(6)가 별도로 하부로 돌출되어야 하지만, 도 26에 도시된 반도체 발광소자에서는 이러한 필요가 없다. 도 26에서, 보호 소자(2000)는 제1 도전부(111) 및 제2 도전부(112)에 Ag 페이스트, 유테틱 본딩 등 반도체 발광소자 분야에 잘 알려진 방법들로 본딩될 수 있다. 전기적 연결에 와이어 본딩을 이용하지 않으므로써, 와이어에 의한 두께의 증가 또한 감소시킬 수 있게 된다. 이를 위해, 보호 소자(2000)의 제1 전극(2002)이 제1 도전부(111)와 대면하여 연결되고, 보호 소자(2000)의 제2 전극(2003)이 제2 도전부(112)와 대면하여 연결되어 있다. 반도체 발광소자 칩(150)과 보호 소자(2000)는 도 25에 도시된 바와 같이, 전기적으로 역방향 병결연결된다. 이러한 연결을 위해, 제1 도전부(111), 제2 도전부(112) 및 절연부(113)가 제거되어 노출되어 있고, 이 노출된 제1 도전부(111) 및 제2 도전부(112)에 제1 전극(2002)과 제2 전극(2003)이 연결된다. 플레이트(110)의 상면(116)에서 반도체 발광소자 칩(150)의 제1 전극(151)과 제2 전극(152)이 보호 소자(2000)와 전기적으로 역방향 병렬연결되도록 제1 도전부(111)와 제2 도전부(112)에 전기적으로 연결된다. 바람직하게는, 오목부(2001)에 보호 소자용 봉지제(2005)가 구비되어 보호 소자(2000)를 보호한다. 보호 소자용 봉지제(2005)는 봉지제(117')와 동일한 재질로 이루어질 수 있다. 보호 소자(2000)를 플레이트(110)에 형성된 오목부(2001) 내에 구비함으로써, 보호 소자(2000)의 구비에 따른 반도체 발광소자의 두께 증가를 플레이트(110)의 두께 범위 내로 최소화할 수 있게 된다. 또한 반도체 발광소자 칩(150)으로부터 발생한 빛이 보호 소자(2000)에 의해 흡수되어 광 효율이 떨어지는 것을 방지할 수 있게 된다. 전술한 실시예들에서와 마찬가지로, 플레이트(110)의 상면(116) 전체가 봉지제에 의해 덮혀 봉지부(170)가 형성되어 있다. 그러나 반드시 상면(116) 전체에 봉지부(170)가 형성되어 있어야 하는 것은 아니다. 상면(116)에서 절연부(113: 일반적으로 100㎛이내의 폭을 가짐)를 사이에 두고, 반도체 발광소자 칩(150)이 short 불량 없이 제1 도전부(111)와 제2 도전부(112)에 큰 문제없이 전기적으로 접합될 수 있지만, 하면(11)에서는, 절연부(113)를 사이에 두고, 제1 도전부(111)와 제2 도전부(11)가 외부와 전기적으로 접합될 때(예: SMT 본딩), short 불량의 가능성이 높다. 오목부(2001)를 구비함으로써, 이러한 불량의 가능성을 줄일 수 있게 된다. 이 경우, 오목부(2001)를 도면을 관통하는 형태의 홈(groove)으로 형성될 수 있음은 물론이다. 따라서, 오목부(2001)는 보호 소자(2000)의 크기 및 이러한 short 불량 방지 등을 고려해서 그 폭과 깊이 그리고 형상이 설계될 수 있다. short 불량의 관점에서 본 개시에 따른 오목부(2001)는 보호 소자(2000)의 구비와 관계 없이 발명의 특징을 구성한다. 먼저, 오목부(2001)는 예를 들어 밀링 작업을 통해 형성될 수 있으며, 이때 CNC(Computer Numerical Control) 설비, MCT(Machining Center Tool)과 같은 밀링 장비가 이용될 수 있다. 구체적으로, 플레이트(110)의 하면(117)에 오목부(2001)가 형성될 위치를 CAD작업으로 설정한 다음, 설정된 CAD 도면을 밀링 장비에 동기화하고, MCT 설비의 Vaccuum Jig 위에 플레이트(110)를 장착한 다음, V-shape 절삭 공구를 사용한 밀링 작업을 통해 오목부(2001)를 형성할 수 있다. 도 29에 실제 형성한 오목부의 일 예를 나타내었다.
도 27은 본 개시에 따른 반도체 발광소자의 또 다른 일 예를 나타내는 도면으로서, 보호 소자(2000)의 일측이 와이어(2005)에 의해 제2 도전부(112)에 전기적으로 연결되어 있으며, 보호 소자(2000)의 나머지 일측은 제1 도전부(111)와 직접 도통한다. 이외에도 도 8에서와 같이, 보호 소자(2000)가 두 개의 와이어를 이용하여 제1 도전부(111) 및 제2 도전부(112)와 도통하는 것도 가능하다.
도 28은 도 26 및 도 27에 도시된 플레이트를 제조하는 방법의 일 예를 설명하는 도면으로서, 도 13에 제시된 공정 단계에서, 비도전성 반사막(130')을 형성하는 것 대신에, 또는 비도전성 반사막(130')의 형성 전 또는 형성 후에, 원판(110')에 오목부(2001)를 형성한 다음, 여기에 보호 소자(2000)를 본딩하고, 이어서 보호 소자용 봉지제(2004)로 보호 소자(2000)를 덮으면 된다.
도 26에 제시된 오목부(2001)가 도 9, 도 17, 도 18, 도 19, 도 20, 도 21에 도시된 플레이트에도 적용될 수 있음은 물론이다.
도 30 내지 도 34은 본 개시에 따른 반도체 발광소자를 제조하는 방법의 일 예를 나타내는 도면이다.
도 30에 나타낸 것과 같이, 금속 재질의 플레이트(10)를 준비한다. 다수의 반도체 발광소자를 한 번의 공정에서 제조하기 위해, 플레이트(10)는 복수의 홈(15)을 구비하며, 따라서 플레이트(10)의 상면(16)은 다수의 영역으로 분할된다. 홈(15)은 습식 식각 또는 건식 식각을 통한 제거방식이나, 블레이드 또는 와이어를 사용한 기계적 절단방식을 통해 일정 깊이를 가지도록 형성될 수 있다. 플레이트(10)의 재질은 도전성 금속 또는 전도성 반도체라면 특별한 제한이 없으며, 이러한 재료로 W, Mo, Ni, Al, Zn, Ti, Cu, Si 등과 같은 재료 또는 이들 중 적어도 하나를 포함하는 합금 형태를 들 수 있으며, 전기 전도성, 열 전도성, 반사율 등을 고려했을 때, Al을 적합한 예로 들 수 있다.
이와 같이 준비된 플레이트(10) 위에, 도 30 및 도 31에 나타낸 것과 같이, 홈(15)을 따라 다수의 반도체 발광소자 칩(20)이 고정된다. 반도체 발광소자 칩(20)은, 도 2, 도 4 및 도 5에 예시된 형태의 플립 칩으로서, 제1 도전성(예: n형)을 가지는 제1 반도체층(종래도면 참조), 제1 도전성과 다른 제2 도전성(예: p형)을 가지는 제2 반도체층(종래도면 참조), 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 이용해 빛을 생성하는 활성층(종래도면 참조), 제1 반도체층에 전기적으로 연결되는 제1 전극(21), 및 제2 반도체층에 전기적으로 연결되는 제2 전극(22)을 구비한다. 그리고, 반도체 발광소자 칩(20)은, 제1 전극(21) 및 제2 전극(22)이 하부에 위치하여 플레이트(10)의 상면(16)과 마주하도록 배치된다. 반도체 발광소자 칩(20)은 홈(15)에 걸쳐서 위치하게 된다. 구체적으로, 플레이트(10)의 상면(16)에서, 제1 전극(21)은 홈(15) 좌측의 플레이트(10) 상면(16)에 접합되고, 제2 전극(22)은 홈(15) 우측의 플레이트(10) 상면(16)에 접합된다. 이러한 접합은 Ag 페이스트를 이용하여 수행되거나, 유태틱 본딩(eutectic bonding) 등과 같은 반도체 발광소자 분야에 이미 알려진 다양한 방법이 사용될 수 있다.
다음으로, 도 32에 나타낸 것과 같이, 모든 반도체 발광소자 칩(20)을 덮도록 플레이트(10)의 상면(16) 전체에 봉지제(30)를 디스펜싱하고, 이 봉지제(30)를 경화시킨다. 봉지제(30)는 실리콘 등과 같은 액상의 투명한 수지 재료와 형광체를 포함할 수 있다.
이어서, 도 33에 나타낸 것과 같이, 플레이트(10)에 구비된 홈(15)이 플레이트(10)의 하면(17) 측으로 노출되도록 플레이트(10)의 하부를 부분적으로 제거한다. 즉, 플레이트(10)를 하면(17) 측에서 연마 및/또는 랩핑하여, 홈(15)이 플레이트(10)의 하면(17) 측으로 노출되도록 한다. 예를 들어, 플레이트(10)는 250~300um의 두께를 가질 수 있으며, 랩핑을 통해 50um 정도의 두께로 얇아질 수 있다. 이와 같이 홈(15)이 플레이트(10)의 하면(17) 측으로 노출되어 개방됨에 따라, 하나의 홈(15)을 사이에 두고 측면을 마주하는 플레이트(10)의 두 부분은 서로 전기적으로 절연된다.
이후, 도 34에 나타낸 것과 같이, 평면상에서 반도체 발광소자의 예정된 경계(A)를 따라 경화된 봉지제(30) 및 플레이트(10)를 함께 절단하여, 개별적인 반도체 발광소자로 완성된다.
이하, 상기한 바와 같은 방법으로 제조된 반도체 발광소자에 관해 설명한다.
도 35는 본 개시에 따른 방법으로 제조된 반도체 발광소자의 일 예를 나타내는 도면이다.
반도체 발광소자는 금속 기판(10'), 반도체 발광소자 칩(20) 및 봉지부(30')를 포함한다.
금속 기판(10')은, 홈(15)을 구비한 플레이트(10)의 하부를 홈(15)이 노출되도록 제거하고 개별적인 반도체 발광소자의 경계를 따라 절단함으로써 형성되는 것으로서, 하방으로 개방된 홈(15)에 해당하는 틈(15')과, 틈(15')을 사이에 두고 측면을 마주하는 제1 도전부(11) 및 제2 도전부(12)를 구비하게 된다. 금속 기판(10')에서, 제1 도전부(11)와 제2 도전부(12)는 틈(15')에 의해 전기적으로 절연된다.
반도체 발광소자 칩(20)은 제1 전극(21) 및 제2 전극(22)이 하부에 위치하여 금속 기판(10')의 상면(16)과 마주하도록 배치된다. 금속 기판(10')의 상면(16)에서, 제1 전극(21)은 제1 도전부(11)와 접합되고, 제2 전극(22)은 제2 도전부(12)와 접합된다.
봉지부(30')는 반도체 발광소자 칩(20)을 투명재질의 수지와 형광체를 포함하는 봉지제(30)로 덮고, 봉지제(30)를 경화시킨 다음, 경화된 봉지제(30)를 반도체 발광소자의 경계를 따라 절단함으로써 형성된다.
플레이트(10)와 봉지제(30)의 절단은 동시에 수행되며, 따라서, 도 35에 나타낸 것과 같이, 이러한 절단에 의해 형성되는 봉지부(30')의 외측면(33)과 금속 기판(10')의 외측면(13)은 절단면으로 된 연속면을 형성하게 된다.
도 36는 본 개시에 따른 방법으로 제조된 반도체 발광소자의 다른 일 예를 나타내는 도면으로서, 반도체 발광소자 칩(20)은 제1 전극(21) 및 제2 전극(22) 아래에 각각 위치하는 금속 재질의 본딩 패드(31,32)를 구비할 수 있다. 이러한 본딩 패드(31,32)를 이용하여, 반도체 발광소자 칩(20)은 유태틱 본딩 방식으로 플레이트(10)에 접합될 수도 있다. 따라서, 완성된 반도체 발광소자에서, 제1 전극(21)과 금속 기판(10')의 제1 도전부(11) 사이에 본딩 패드(31)가 위치하고, 제2 전극(22)과 금속 기판(10')의 제2 도전부(12) 사이에 본딩 패드(32)가 위치하게 된다.
도 37은 본 개시에 따른 방법으로 제조된 반도체 발광소자의 또 다른 일 예를 나타내는 도면으로서, 플레이트(10)에 구비되는 홈(15) 내부, 즉 금속 기판(10')의 틈(15') 내부에 충진제(40)가 구비될 수 있다. 충진제(40)는 반도체 발광소자 칩(20)을 플레이트(10)에 고정하기 이전에 홈(15) 내부에 채워진다. 틈(15')은, 도 37에 나타낸 것과 같이, 완전히 충진제(40)로 채워질 수도 있고, 일부만 채워질 수도 있다. 충진제(40)는 절연 재료로 이루어져야 한다. 충진제(40)는 형광체를 함유할 수 있다. 한편, 충진제(40)는 형광체와 함께 또는 형광체를 대신하여 백색 수지를 함유할 수도 있다. 이러한 충진제(40)로 인해, 반도체 발광소자의 반사효율이 향상될 수 있다.
도 38은 본 개시에 따른 방법으로 제조된 반도체 발광소자의 또 다른 일 예를 나타내는 도면으로서, 플레이트(10)의 하부를 홈(15)이 노출되도록 제거한 다음 개별적인 반도체 발광소자의 경계를 따라 절단하기 이전에, 홈(15) 영역을 제외한 플레이트(10)의 하면(17)에 추가의 금속층(41,42)이 형성된다. 추가의 금속층(41,42)은 Cu 등과 같은 납땜에 적합한 금속으로 이루어질 수 있으며, 도금이나 증착 등과 같은 방법으로 형성될 수 있다. 추가의 금속층(41,42)은 이후 플레이트(10)와 봉지제(30)를 절단하는 과정에서 함께 절단된다. 따라서, 완성된 반도체 발광소자에서, 제1 도전부(11)의 하면 측에 분리된 형태의 추가의 금속층(41)이 위치하게 되고, 제2 도전부(12)의 하면 측에 분리된 형태의 추가의 금속층(42)이 위치하게 된다. 이와 같은 추가의 금속층(41,42)은 반도체 발광소자를 인쇄회로기판 등에 납땜으로 고정할 때, 접합의 신뢰성을 향상시킬 수 있도록 한다.
도 39은 본 개시에 따른 방법으로 제조된 반도체 발광소자의 또 다른 일 예를 나타내는 도면으로서, 반도체 발광소자 칩(20')으로 도 1에 예시된 형태의 레터럴 칩이 사용되었다. 반도체 발광소자 칩(20')은 제1 전극(21') 및 제2 전극(22')이 상부에 위치하도록 배치된다. 플레이트(10) 위에 고정할 때, 반도체 발광소자 칩(20')은 홈(15)에 걸쳐서 위치하게 된다. 제1 전극(21')은 홈(15) 좌측의 플레이트(10) 상면(16)에 와이어 본딩 방식으로 연결되고, 제2 전극(22')은 홈(15) 우측의 플레이트(10) 상면(16)에 와이어 본딩 방식으로 연결된다. 따라서, 완성된 반도체 발광소자에서, 제1 전극(21')은 와이어(46)에 의해 제1 도전부(11)에 전기적으로 연결되고, 제2 전극(22')은 와이어(47)에 의해 제2 도전부(12)에 전기적으로 연결된다. 별도로 도시하지는 않지만, 플레이트(10) 위에 고정할 때, 반도체 발광소자 칩(20')은 홈(15)에 걸치지 않도록 배치될 수 있다. 이 경우, 반도체 발광소자 칩(20')은 제1 도전부(11) 및 제2 도전부(12) 중 어느 하나의 위에 위치하게 된다는 것만 다를 뿐, 제1 전극(21')이 와이어(46)에 의해 제1 도전부(11)에 전기적으로 연결되고, 제2 전극(22')이 와이어(47)에 의해 제2 도전부(12)에 전기적으로 연결되는 것은 동일하다.
한편, 별도로 도시하지는 않지만, 도 3에 예시된 형태의 버티컬 칩 또한 사용될 수 있다. 이 경우, 반도체 발광소자 칩은 제1 도전부(11) 또는 제2 도전부(12) 위에 위치하고, 반도체 발광소자 칩의 아래에 위치하는 하나의 전극은 제1 도전부(11) 및 제2 도전부(12) 중 어느 하나에 직접 접합되고, 반도체 발광소자 칩의 위에 위치하는 다른 하나의 전극은 제1 도전부(11) 및 제2 도전부(12) 중 나머지 하나에 와이어 본딩 방식으로 접합된다.
도 47 및 도 48는 본 개시에 따른 금속 기판 제조 방법의 일 예를 나타낸 도면이고, 도 49은 본 개시에 따른 금속 기판 제조 방법에 따라 제조된 금속 기판의 일 예를 나타낸 도면이다.
본 개시에 따른 금속 기판 제조 방법에 따르면, 복수의 금속판(10)을 면과 면이 마주하도록 적층한 상태에서, 금속판(10)과 금속판(10) 사이에 각각 위치하게 되는 접합 금속층(30)을 매개로 복수의 금속판(10)을 접합하여 적층체(50)를 형성한 다음, 적층체(50)를 절단하여 띠 형태의 복수의 도전부(111,112)를 가지는 구조의 금속 기판(100)을 형성한다.
도 47에 나타낸 것과 같이, 금속판(10)은 Al, Mg, Zn, Ti, Ta, Hf, Nb 등과 같은 아노다이징 가능한 금속으로 이루어질 수 있으며, 그 중에서도 전기 전도성, 열 전도성, 반사율 그리고 산화막 형성의 용이성 등을 고려할 때, 알루미늄(Al)으로 이루어지는 것이 바람직하다.
복수의 금속판(10)은 접합에 앞서, 표면에 부도체막(20)이 형성된다. 부도체막(20)은 금속판(10)의 표면을 아노다이징하는 방식으로 형성되거나, 금속판(10)의 표면에 절연물질을 증착하는 방식으로 형성될 수 있다. 구체적으로, 금속판(10)의 재질이 Al로 이루어지고 아노다이징을 통해 금속판(10)을 표면처리할 경우, 부도체막(20)은 산화알루미늄막(Al2O3)으로 이루어질 수 있다. 또한, 부도체막(20)은 증착을 통해 형성되는 SiO2, TiO2, SiN, SiON, Al2O3 및 Ta2O5 막 중 어느 하나일 수도 있다.
이와 같은 부도체막(20)의 형성은 금속판(10)의 양면에 모두 수행될 수 있으며, 이 경우 금속판(10)은 양면에 부도체막(20)을 구비하게 된다. 물론 부도체막(20)의 형성은 금속판(10)의 일면에만 수행될 수도 있고, 이 경우 각 금속판(10)은 일면에만 부도체막(20)을 구비하게 된다.
도 47에 나타낸 것과 같이, 부도체막 형성 공정에 이어, 복수의 금속판(10)의 양면에 접합 금속층(30)이 형성된다. 접합 금속층(30)은 접합시 금속판(10)과 금속판(10) 간의 접합을 매개하는 것으로서, 부도체막(20) 위에 도금, 증착 등의 방법으로 형성될 수 있다. 금속판(10)의 일면 측에만 부도체막(20)을 구비하는 경우, 접합 금속층(30)은 금속판(10)과 직접 접촉하도록 형성될 수도 있다. 접합 금속층(30)은 금속간 접합을 가능하게 하는 금속, 예를 들어 Sn, Ge, Cr, Ni, Ti, Au, Al, Ag, Zn, Cu, W, TiW, Pt 중 적어도 하나의 금속층을 포함할 수 있다.
접합 금속층(30)은 단일층으로 이루어질 수도 있지만, 접합의 신뢰성을 향상시킨다는 관점에서 복수의 층으로 이루어지는 것이 바람직하다. 접합 금속층(30)은, 접촉성이 우수한 접촉층(21), 디퓨전 배리어(diffusion barrier) 역할을 수행할 수 있는 중간층(23), 및 낮은 융점을 가져 접합이 용이한 접합층(25)으로 구분될 수 있는 복수의 층을 포함할 수 있다. 구체적으로, 접촉층(21)은 Cr 및 Ti 중 적어도 하나를 포함할 수 있고, 중간층(23)은 Cu, Ni, Ti, Al, Ag, W, TiW, Pt, Cr 및 Zn 중 적어도 하나를 포함할 수 있으며, 접합층(25)은 Al, Cu, Sn, Ge, Au 및 Zn 중 적어도 하나를 포함할 수 있다. 접촉층(21), 중간층(23) 및 접합층(25)은 금속판(10)의 표면, 즉 부도체막(20)으로부터 접촉층(21), 중간층(23) 및 접합층(25)의 순서로 배치된다. 접합 금속층(30)이 반드시 접촉층(21), 중간층(23) 및 접합층(25)을 모두 포함해야하는 것은 아니며, 접촉층(21), 중간층(23) 및 접합층(25) 중 적어도 하나로 이루어질 수 있다. 예를 들어, 접합 금속층(30)은, 접촉층(21), 중간층(23) 및 접합층(25) 중 어느 하나로만 이루어질 수도 있고, 접촉층(21)/중간층(23), 중간층(23)/접합층(25), 및 접촉층(21)/접합층(25) 조합으로 이루어질 수도 있다. 또한, 금속판(10)의 양면에 서로 다른 조합의 접합 금속층(30)이 구비될 수 있다. 예를 들어, 도 48에 나타낸 것과 같이, 금속판(10)의 일측(도 47에서는 금속판(10)의 상면 측)에 접촉층(21: 예를 들어, Cr)/중간층(23: 예를 들어, Ni)/접합층(25: 예를 들어, Sn) 조합의 접합 금속층(30)이 구비되고, 금속판(10)의 타측(도 47에서는 금속판(10)의 하면 측)에 접촉층(21: 예를 들어, Cr)/중간층(23: 예를 들어, Ni) 조합의 접합 금속층(30)이 구비될 수 있다. 이와 같은 접합 금속층(30)은 경우에 따라 금속판(10)의 일면 측에만 형성될 수도 있다.
부도체막 형성 공정 및 접합 금속층 형성 공정을 거친 후 접합 공정이 수행된다. 도 48에 나타낸 것과 같이, 우선 부도체막(20) 및 접합 금속층(30)을 각각 구비하는 복수의 금속판(10)을 면과 면이 마주하도록 적층하며, 이 상태에서 열을 가하거나 열과 압력을 함께 가하여, 금속간 접합이 일어나도록 한다. 즉, 금속판(10)과 금속판(10) 사이에 위치하게 되는 접합 금속층(30)을 매개로 복수의 금속판(10)을 접합하여 적층체(50)를 형성하게 된다. 접합 금속층(30)을 이루는 금속의 종류에 따라, 온도, 압력, 공정시간 등 구체적인 접합 조건이 결정될 수 있을 것이다. 접합 금속층(30)을 이루는 금속의 종류 및 그에 따른 접합 조건에 따라, 브레이징(brazing)과 같은 용융접합, 고상 확산접합, 또는 중간 형태인 천이 액상 확산접합 형태의 금속간 접합이 일어나고, 결과적으로 복수의 금속판(10)이 적층된 형태의 적층체(50)를 이루게 된다.
접합 공정에 이어 절단 공정이 수행된다. 도 48에 나타낸 것과 같이, 상기한 바와 같이 형성된 적층체(50)를 예를 들어 금속판(10)의 면과 직교하는 방향(X)에서 절단하여 판상의 금속 기판(100)을 완성하게 된다. 절단 방향(X)은 금속판(10)의 면과 반드시 직교할 필요는 없으며, 직교하는 방향에 대해 경사진 방향이 될 수도 있다. 적층체(50)의 절단은, 블레이드 등을 사용한 기계적 절단, 레이저 절단, 와이어 컷팅, 쏘잉(sawing) 등 다양한 방식으로 수행될 수 있다.
절단 공정을 통해 형성되는 금속 기판(100)은, 도 49에 나타낸 것과 같이, 절단된 금속판으로 이루어지는 복수의 도전부(111,112)를 가지게 되며, 도전부(111)와 도전부(112) 사이에 각각 한 쌍의 부도체막(121,122)이 구비되고, 한 쌍의 부도체막(121,122) 사이에 접합 금속층(130)이 구비된다. 한 쌍의 부도체막(121,122)은 도전부(111)와 도전부(112) 사이에서 절연 기능을 수행하게 되고, 접합 금속층(130)은 도전부(111)와 도전부(112)를 접합하는 기능을 수행하게 된다.
구체적으로, 도 47에 나타낸 것과 같이, 금속판(10)의 일측에 접촉층(21: Cr)/중간층(23: Ni)/접합층(25: Sn) 조합의 접합 금속층(30)이 구비되고, 금속판(10)의 타측에 접촉층(21: Cr)/중간층(23: Ni) 조합의 접합 금속층(30)이 구비되는 경우, 금속 기판(100)으로 제조되었을 때, 도전부(111)와 도전부(112) 사이에 구비되는 접합 금속층(130)은 접촉층(131: Cr)/중간층(133: Ni)/접합층(135: Sn)/중간층(137: Ni)/접촉층(139: Cr)의 순서로 배치된다. 금속판(10)에 구비되는 접합 금속층(30)의 구성이 달라질 경우에는, 금속 기판(100)으로 제조되었을 때, 기본적인 순서는 상기한 순서를 유지하되 포함하지 않는 금속층만 순서에서 제외되는 구조로 배치될 것이다.
도 50은 본 개시에 따른 금속 기판 제조 방법에 따라 제조된 금속 기판의 다른 일 예를 나타낸 도면이다.
도 50에 나타낸 것과 같이, 금속판(10)의 일면에만 부도체막(20)이 구비되는 경우, 금속 기판(100)으로 제조되었을 때, 도전부(111)와 도전부(112) 사이에 하나의 부도체막(121)만 구비될 것이다. 이 경우, 접합 금속층(130)은 도전부(111)와 도전부(112) 사이에서 일측은 부도체막(121)과 접촉하게 되고 다른 일측은 도전부(112)와 직접 접촉하게 된다.
이상과 같은 방법으로 금속 기판을 제조하면, 금속 기판(100)이 고온 환경에서 사용되더라도, 도전부(111)와 도전부(112)가 열에 강한 금속 접합층(130)에 의해 접합됨에 따라, 접합상태를 안정적으로 유지할 수 있다. 또한, 도전부(111)와 도전부(112) 사이에는 절연 기능을 수행하는 적어도 하나의 부도체막(121,122)이 위치하게 되어, 도전부(111)와 도전부(112) 사이의 절연상태를 안정적으로 유지할 수 있게 된다.
도 51는 본 개시에 따른 반도체 발광소자의 일 예를 나타내는 도면이고, 도 52은 도 51의 반도체 발광소자를 부분적으로 분해하여 나타내는 도면이다.
본 개시에 따른 반도체 발광소자는 금속 기판(200), 반도체 발광소자 칩(250) 및 봉지부(270)를 포함한다.
금속 기판(200)은 측면을 마주하도록 배치되는 제1 도전부(211)와 제2 도전부(212), 제1 도전부(211)와 제2 도전부(212)의 마주하는 측면에 각각 형성되는 제1 부도체막(221) 및 제2 부도체막(222), 및 제1 부도체막(221)과 제2 부도체막(222) 사이에 배치되는 접합 금속층(230)을 구비한다. 금속 기판(200)은 상면(201) 및 상면(201)과 대향하는 하면(202)을 가지며, 제1 부도체막(221), 접합 금속층(230) 및 제2 부도체막(222)은 상면(201)으로부터 하면(202)까지 이어져 있다. 접합 금속층(230)은 제1 도전부(211)와 제2 도전부(212)를 접합하는 기능을 수행하며, 제1 부도체막(221) 및 제2 부도체막(222)은 제1 도전부(211)와 제2 도전부(212)를 전기적으로 절연하는 기능을 수행한다. 한편, 제1 부도체막(221) 및 제2 부도체막(222)을 모두 구비하는 것이 절연 기능의 측면에서 더욱 바람직하지만, 둘 중 하나만 구비할 수도 있다.
금속 기판(200)의 상면(201)은 반도체 발광소자 칩(250)이 놓이게 되는 부분으로서, 금속 기판(200)을 구성하는 제1 부도체막(221), 접합 금속층(230) 및 제2 부도체막(222) 또한 상면(201)으로 부분적으로 노출되며, 따라서 제1 도전부(211) 및 제2 도전부(212) 뿐만 아니라 제1 부도체막(221), 접합 금속층(230) 및 제2 부도체막(222) 또한 반도체 발광소자 칩(250)에서 방출되는 강한 빛에 노출된다. 접합 및 절연을 위해 유기물을 포함하는 접착제가 사용되는 대신에 제1 부도체막(221), 접합 금속층(230) 및 제2 부도체막(222)이 구비되며, 이와 같은 제1 부도체막(221), 접합 금속층(230) 및 제2 부도체막(222)은 강한 빛에 노출되더라도 탈색 또는 변색의 위험이 없다. 따라서, 금속 기판(200)의 상면(201)은 제1 부도체막(221), 접합 금속층(230) 및 제2 부도체막(222)에 의한 반사효율저하 없이, 우수한 반사효율을 가질 수 있다.
반도체 발광소자 칩(250)은, 예를 들어 플립 칩 형태의 LED 칩이 사용될 수 있다. 반도체 발광소자 칩(250)은 제1 도전성(예: n형)을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성(예: p형)을 가지는 제2 반도체층, 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 통해 빛을 생성하는 활성층, 제1 반도체층과 전기적으로 연결되는 제1 전극(251) 및 제2 반도체층과 전기적으로 연결되는 제2 전극(252)을 구비한다. 제1 전극(251)은 제1 도전부(211)에 전기적으로 연결되고, 제2 전극(252)은 제2 도전부(212)에 전기적으로 연결된다.
반도체 발광소자 칩(250)은, 제1 전극(251) 및 제2 전극(252)이 하부에 위치하여 금속 기판(200)의 상면(201)과 마주하도록 배치된다. 반도체 발광소자 칩(250)은 금속 기판(200)의 상면(201) 측에서 제1 부도체막(221), 접합 금속층(230) 및 제2 부도체막(222)에 걸쳐서 위치하게 된다. 달리 표현하면, 금속 기판(200)의 상면(201)에서, 제1 전극(251)은 좌측의 제1 도전부(211)에 접합되고, 제2 전극(252)은 우측의 제2 도전부(212)에 접합된다. 따라서, 제1 부도체막(221), 접합 금속층(230) 및 제2 부도체막(222)은, 금속 기판(200)의 상면(201) 위에서, 제1 전극(251)과 제2 전극(252) 사이에 위치하게 된다. 접합은 Ag 페이스트를 이용하여 수행되거나, 납땜 등 반도체 발광소자 분야에 이미 알려진 다양한 방법이 사용될 수 있다. 반도체 발광소자 칩(250)은 제1 도전부(211) 및 제2 도전부(212)와 넓은 면적에 걸쳐 접촉하게 되며, 따라서 반도체 발광소자 칩(250)에서 발생한 열은 금속 기판(200)을 통해 효과적으로 방출될 수 있다.
한편, 별도로 도시하지는 않지만, 상기한 플립 칩 뿐만아니라 레터럴 칩 및 버티컬 칩 등 다른 구조의 반도체 발광소자 칩이 적용될 수도 있다. 이와 같이, 레터럴 칩 또는 버티컬 칩이 적용될 경우, 반도체 발광소자 칩은 금속 기판(200)의 상면(201) 측에서 제1 부도체막(221), 접합 금속층(230) 및 제2 부도체막(222)에 걸치지 않고 제1 도전부(211)와 제2 도전부(212) 중 어느 하나의 위에 고정될 수도 있다.
봉지부(270)는 금속 기판(200)의 상면(201) 측에서 반도체 발광소자 칩(250)을 덮도록 형성된다. 봉지부(270)는 투명재질의 수지와 형광체를 포함할 수 있다.
상기한 바와 같은 반도체 발광소자는 다음과 같은 방법으로 제조될 수 있다.
도 53 내지 도 55은 본 개시에 따른 반도체 발광소자를 제조하는 방법의 일 예를 나타낸 도면이다.
본 개시에 따른 반도체 발광소자는, 상기한 바와 같은 방법으로 제조된 도 49에 나타낸 것과 같은 금속 기판(100)을 원판으로 사용하여 제조될 수 있다.
원판으로 사용될 금속 기판(100) 위에, 도 53에 나타낸 것과 같이, 반도체 발광소자 칩(250)이 고정된다. 반도체 발광소자 칩(250)은, 제1 전극(251) 및 제2 전극(252)이 하부에 위치하여 금속 기판(100)의 상면(101)과 마주하도록 배치된다. 이때, 반도체 발광소자 칩(250)은 제1 부도체막(121), 접합 금속층(130) 및 제2 부도체막(122)에 걸쳐서 위치하게 된다. 구체적으로, 금속 기판(100)의 상면(101)에서, 제1 전극(251)은 제1 부도체막(121) 좌측의 도전부(111)에 접합되고, 제2 전극(252)은 제2 부도체막(122) 우측의 도전부(112)에 접합된다. 이러한 접합은 Ag 페이스트를 이용하여 수행되거나, 반도체 발광소자 분야에 이미 알려진 다양한 방법이 사용될 수 있다.
다음으로, 도 54에 나타낸 것과 같이, 모든 반도체 발광소자 칩(250)을 덮도록 금속 기판(100)의 상면(101) 전체에 걸쳐 봉지제(270')를 디스펜싱하고, 이 봉지제(270')를 경화시킨다. 봉지제(270')는 실리콘 등과 같은 액상의 투명한 수지 재료와 형광체를 포함할 수 있다.
이어서, 도 55에 나타낸 것과 같이, 평면상에서 반도체 발광소자의 예정된 경계(A)를 따라 경화된 봉지제(270') 및 금속 기판(100)을 함께 절단하여, 개별적인 반도체 발광소자로 완성된다. 도 51에 나타낸 것과 같은 완성된 반도체 발광소자에서, 봉지제(270')는 봉지부(270)를 이루게 되고, 원판으로 사용된 금속 기판(100)은 절단되어 개별 반도체 발광소자의 금속 기판(200)을 이루게 되며, 따라서 금속 기판(200)은 제1 부도체막(221), 접합 금속층(230) 및 제2 부도체막(222)을 사이에 두고 측면을 마주하는 제1 도전부(211)와 제2 도전부(212)를 구비하게 된다. 제1 도전부(211)와 제2 도전부(212)는 제1 부도체막(221) 및 제2 부도체막(222)에 의해 전기적으로 절연된다.
이하 본 개시의 다양한 실시 형태에 대하여 설명한다.
(1-1) 절연부, 절연부를 사이에 두고 측면을 마주하도록 배치되며 절연부에 의해 전기적으로 절연되는 제1 도전부와 제2 도전부를 구비하며, 상면과 상면에 대향하는 하면을 가지고, 절연부가 상면으로부터 하면으로 이어진 플레이트; 플레이트의 상면 측에서 절연부를 덮는 비도전성 반사막; 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층, 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 이용해 빛을 생성하는 활성층, 제1 반도체층에 전기적으로 연결되는 제1 전극, 및 제2 반도체층에 전기적으로 연결되는 제2 전극을 구비하며, 플레이트의 상면 측에 고정되는 반도체 발광소자 칩; 및 플레이트의 상면 측에서 반도체 발광소자 칩을 덮도록 형성되는 봉지부;를 포함하는 것을 특징으로 하는 반도체 발광소자.
(1-2) 비도전성 반사막은 분포 브래그 리플랙터로 이루어지는 것을 특징으로 하는 반도체 발광소자.
(1-3) 플레이트는 경면 처리된 상면을 구비하는 것을 특징으로 하는 반도체 발광소자.
(1-4) 플레이트는 경면 처리된 상면을 구비하고, 비도전성 반사막은 분포 브래그 리플랙터로 이루어지는 것을 특징으로 하는 반도체 발광소자.
(1-5) 반도체 발광소자 칩은 플레이트의 상면 측에서 절연부에 걸쳐서 위치하는 것을 특징으로 하는 반도체 발광소자.
(1-6) 반도체 발광소자 칩은 제1 전극 및 제2 전극이 하부에 위치하도록 플레이트의 상면 위에 배치되고, 제1 전극은 제1 도전부에 접합되고, 제2 전극은 제2 도전부에 접합되는 것을 특징으로 하는 반도체 발광소자.
(1-7) 반도체 발광소자 칩은 제1 전극 및 제2 전극 아래에 각각 위치하는 본딩 패드를 구비하여, 유태틱 본딩 방식으로 플레이트에 접합되는 것을 특징으로 하는 반도체 발광소자.
(1-8) 반도체 발광소자 칩은 제1 전극 및 제2 전극이 하부에 위치하도록 플레이트의 상면 위에 배치되고, 비도전성 반사막은 플레이트의 상면 전체를 덮고, 제1 도전부를 부분적으로 노출시키는 제1 관통구멍 및 제2 도전부를 부분적으로 노출시키는 제2 관통구멍을 구비하며, 제1 전극은 제1 관통구멍을 통해 제1 도전부에 전기적으로 연결되고, 제2 전극은 제2 관통구멍을 통해 제2 도전부에 전기적으로 연결되는 것을 특징으로 하는 반도체 발광소자.
(1-9) 제1 전극은 제1 관통구멍을 관통하여 제1 도전부에 접합되고, 제2 전극은 제2 관통구멍을 관통하여 제2 도전부에 접합되는 것을 특징으로 하는 반도체 발광소자.
(1-10) 반도체 발광소자 칩은 제1 전극 및 제2 전극이 하부에 위치하도록 플레이트의 상면 위에 배치되고, 비도전성 반사막은 플레이트의 상면 전체를 덮도록 형성되며, 비도전성 반사막을 관통하는 제1 도전부 상부의 제1 연결전극 및 제2 도전부 상부의 제2 연결전극을 더 구비하며, 제1 전극은 제1 연결전극을 통해 제1 도전부에 전기적으로 연결되고, 제2 전극은 제2 연결전극을 통해 제2 도전부에 전기적으로 연결되는 것을 특징으로 하는 반도체 발광소자.
(1-11) 반도체 발광소자 칩은 제1 전극 및 제2 전극이 상부에 위치하도록 플레이트 상면에 고정되며, 제1 전극 및 제2 전극은 각각 와이어 본딩 방식으로 제1 도전부 및 제2 도전부와 전기적으로 연결되는 것을 특징으로 하는 반도체 발광소자.
(1-12) 반도체 발광소자를 제조하는 방법에 있어서, 2 이상의 도전판을 절연재료를 사이에 두고 반복 적층한 적층체를 준비하는 단계; 적층체를 절단하여, 절연재료로 이루어진 절연부 및 도전판으로 이루어지며 절연부를 사이에 두고 측면이 마주하도록 배치되고 절연부에 의해 전기적으로 절연되는 제1 도전부와 제2 도전부를 구비하며, 상면 및 상면에 대향하는 하면을 가지고, 절연부가 상면으로부터 하면으로 이어지는 원판을 형성하는 단계; 원판의 상면 측에서 절연부를 덮도록 비도전성 반사막을 형성하는 단계; 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층, 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 이용해 빛을 생성하는 활성층, 제1 반도체층에 전기적으로 연결되는 제1 전극, 및 제2 반도체층에 전기적으로 연결되는 제2 전극을 구비하는 반도체 발광소자 칩을 원판의 상면 측에 고정하는 단계; 반도체 발광소자 칩을 봉지제로 덮는 단계; 및 반도체 발광소자의 예정된 경계를 따라 원판과 봉지제를 함께 절단하는 단계;를 포함하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(1-13) 비도전성 반사막을 형성하는 단계 이전에, 원판의 상면을 경면 처리하는 단계;를 더 포함하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(1-14) 적층체를 준비하는 단계에서, 절연접착제가 절연재료로 사용되는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(1-15) 비도전성 반사막을 형성하는 단계에서, 비도전성 반사막은 원판의 상면 전체를 덮도록 형성되며, 반도체 발광소자 칩을 원판의 상면에 고정하는 단계 이전에, 비도전성 반사막을 관통하도록 형성되어 제1 도전부와 제2 도전부를 각각 부분적으로 노출시키는 제1 관통구멍 및 제2 관통구멍을 형성하는 단계;를 더 포함하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(1-16) 반도체 발광소자 칩을 원판의 상면에 고정하는 단계 이전에, 제1 관통구멍 및 제2 관통구멍 내부에 각각 구비되는 제1 연결전극 및 제2 연결전극을 형성하는 단계;를 더 포함하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(2-1) 경사를 가지는 절연부 및 절연부를 사이에 두고 절연부의 경사에 대응하는 경사면으로 이루어진 각각의 일측면이 마주하도록 배치되며 절연부에 의해 전기적으로 절연되는 제1 도전부와 제2 도전부를 구비하며, 상면과 상면에 대향하는 하면을 가지고, 절연부가 상면으로부터 하면으로 이어진 플레이트; 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층, 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 이용해 빛을 생성하는 활성층, 제1 반도체층에 전기적으로 연결되는 제1 전극, 및 제2 반도체층에 전기적으로 연결되는 제2 전극을 구비하며, 플레이트의 상면 측에 고정되는 반도체 발광소자 칩; 및 플레이트의 상면 측에서 반도체 발광소자 칩을 덮도록 형성되는 봉지부;를 포함하는 것을 특징으로 하는 반도체 발광소자.
(2-2) 플레이트의 상면 측에서 절연부를 덮는 비도전성 반사막;을 더 포함하는 것을 특징으로 하는 반도체 발광소자.
(2-3) 비도전성 반사막은 분포 브래그 리플랙터를 포함하는 것을 특징으로 하는 반도체 발광소자.
(2-4) 플레이트는 경면 처리된 상면을 구비하는 것을 특징으로 하는 반도체 발광소자.
(2-5) 플레이트는 경면 처리된 상면을 구비하고, 비도전성 반사막은 분포 브래그 리플랙터로 이루어지는 것을 특징으로 하는 반도체 발광소자.
(2-6) 반도체 발광소자 칩은 플레이트의 상면 측에서 절연부에 걸쳐서 위치하는 것을 특징으로 하는 반도체 발광소자.
(2-7) 반도체 발광소자 칩은 제1 전극 및 제2 전극이 하부에 위치하도록 플레이트의 상면 위에 배치되고, 제1 전극은 제1 도전부에 접합되고, 제2 전극은 제2 도전부에 접합되는 것을 특징으로 하는 반도체 발광소자.
(2-8) 반도체 발광소자 칩은 제1 전극 및 제2 전극 아래에 각각 위치하는 본딩 패드를 구비하여, 유태틱 본딩 방식으로 플레이트에 접합되는 것을 특징으로 하는 반도체 발광소자.
(2-9) 반도체 발광소자 칩은 제1 전극 및 제2 전극이 하부에 위치하도록 플레이트의 상면 위에 배치되고, 비도전성 반사막은 플레이트의 상면 전체를 덮고, 제1 도전부를 부분적으로 노출시키는 제1 관통구멍 및 제2 도전부를 부분적으로 노출시키는 제2 관통구멍을 구비하며, 제1 전극은 제1 관통구멍을 통해 제1 도전부에 전기적으로 연결되고, 제2 전극은 제2 관통구멍을 통해 제2 도전부에 전기적으로 연결되는 것을 특징으로 하는 반도체 발광소자.
(2-10) 제1 전극은 제1 관통구멍을 관통하여 제1 도전부에 접합되고, 제2 전극은 제2 관통구멍을 관통하여 제2 도전부에 접합되는 것을 특징으로 하는 반도체 발광소자.
(2-11) 반도체 발광소자 칩은 제1 전극 및 제2 전극이 하부에 위치하도록 플레이트의 상면 위에 배치되고, 비도전성 반사막은 플레이트의 상면 전체를 덮도록 형성되며, 비도전성 반사막을 관통하는 형성되는 제1 도전부 상부의 제1 연결전극 및 제2 도전부 상부의 제2 연결전극을 더 구비하며, 제1 전극은 제1 연결전극을 통해 제1 도전부에 전기적으로 연결되고, 제2 전극은 제2 연결전극을 통해 제2 도전부에 전기적으로 연결되는 것을 특징으로 하는 반도체 발광소자.
(2-12) 반도체 발광소자 칩은 제1 전극 및 제2 전극이 상부에 위치하도록 플레이트 상면에 고정되며, 제1 전극 및 제2 전극은 각각 와이어 본딩 방식으로 제1 도전부 및 제2 도전부와 전기적으로 연결되는 것을 특징으로 하는 반도체 발광소자.
(2-13) 반도체 발광소자를 제조하는 방법에 있어서, 2 이상의 도전판을 절연재료를 사이에 두고 반복 적층한 적층체를 준비하는 단계; 적층체를 일측단면 측에서 적층방향과 경사진 방향으로 절단하여, 절연재료로 이루어진 경사진 절연부 및 도전판으로 이루어지며 절연부의 경사에 대응하는 경사면으로 이루어진 각각의 일측면이 마주하도록 배치되고 절연부에 의해 전기적으로 절연되는 제1 도전부와 제2 도전부를 구비하며, 상면 및 상면에 대향하는 하면을 가지고, 절연부가 상면으로부터 하면으로 이어지는 원판을 형성하는 단계; 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층, 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 이용해 빛을 생성하는 활성층, 제1 반도체층에 전기적으로 연결되는 제1 전극, 및 제2 반도체층에 전기적으로 연결되는 제2 전극을 구비하는 반도체 발광소자 칩을 원판의 상면에 고정하는 단계; 반도체 발광소자 칩을 봉지제로 덮는 단계; 및 반도체 발광소자의 예정된 경계를 따라 원판과 봉지제를 함께 절단하는 단계;를 포함하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(2-14) 원판을 형성하는 단계에서, 적층체의 절단시 적층방향과의 경사를 조절하여 절연부의 경사를 조절하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(2-15) 적층체를 준비하는 단계에서, 절연접착제가 절연재료로 사용되는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(2-16) 반도체 발광소자 칩을 원판의 상면에 고정하는 단계 이전에, 원판의 상면 측에서 절연부를 덮도록 비도전성 반사막을 형성하는 단계;를 더 포함하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(2-17) 비도전성 반사막을 형성하는 단계 이전에, 원판의 상면을 경면 처리하는 단계;를 더 포함하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(2-18) 반도체 발광소자 칩을 원판의 상면에 고정하는 단계 이전에, 원판의 상면을 경면 처리하는 단계;를 더 포함하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(2-19) 비도전성 반사막을 형성하는 단계에서, 비도전성 반사막은 원판의 상면 전체를 덮도록 형성되며, 반도체 발광소자 칩을 원판의 상면에 고정하는 단계 이전에, 비도전성 반사막을 관통하도록 형성되어 제1 도전부와 제2 도전부를 각각 부분적으로 노출시키는 제1 관통구멍 및 제2 관통구멍을 형성하는 단계;를 더 포함하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(2-20) 반도체 발광소자 칩을 원판의 상면에 고정하는 단계 이전에, 제1 관통구멍 및 제2 관통구멍 내부에 각각 구비되는 제1 연결전극 및 제2 연결전극을 형성하는 단계;를 더 포함하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(3-1) 반도체 발광소자에 있어서, 제1 도전부와 제2 도전부 그리고 제1 도전부와 제2 도전부 사이에 구비된 절연부를 구비하며, 상면과 상면에 대향하는 하면을 가지는 플레이트; 플레이트의 상면에 놓이며, 제1 도전부 및 제2 도전부에 전기적으로 연결되어 있고, 전자와 정공을 이용하여 빛을 생성하는 활성층을 구비하는 반도체 발광소자 칩; 그리고, 정전기로부터 반도체 발광소자 칩을 보호하도록 플레이트의 하면에 형성된 오목부에 구비되는 보호 소자;를 포함하는 것을 특징으로 하는 반도체 발광소자.
(3-2) 보호 소자는 두 개의 전극을 구비하며, 두 개의 전극 각각이 제1 도전부 및 제2 도전부 각각과 대면하여 전기적으로 연결되어 있는 것을 특징으로 하는 반도체 발광소자.
(3-3) 보호 소자는 적어도 하나의 와이어를 이용하여 반도체 발광소자 칩과 전기적으로 연결되는 것을 특징으로 하는 반도체 발광소자.
(3-4) 오모부에 보호 소자를 덮는 보호 소자용 봉지제가 구비되는 것을 특징으로 하는 반도체 발광소자.
(3-5) 플레이트의 상면 전체가 봉지제에 의해 덮혀 있는 것을 특징으로 하는 반도체 발광소자.
(3-6) 보호 소자는 제1 도전부 및 제2 도전부 각각과 대면하여 전기적으로 연결되어 있는 두 개의 전극을 구비하며, 오모부에 보호 소자를 덮는 보호 소자용 봉지제가 구비되어 있고, 플레이트의 상면 전체가 봉지제에 의해 덮혀 있는 것을 특징으로 하는 반도체 발광소자.
(3-7) 보호 소자는 적어도 하나의 와이어를 이용하여 반도체 발광소자 칩과 전기적으로 연결되며, 오모부에 보호 소자를 덮는 보호 소자용 봉지제가 구비되어 있고, 플레이트의 상면 전체가 봉지제에 의해 덮혀 있는 것을 특징으로 하는 반도체 발광소자.
(3-8) 오목부는 제1 도전부, 제2 도전부 및 절연부가 제거되어 형성되어 있는 것을 특징으로 하는 반도체 발광소자.
(3-9) 오목부는 플레이트의 하면에서 제1 도전부와 제2 도전부 사이의 간격을 적어도 부분적으로 확장되는 것을 특징으로 하는 반도체 발광소자. 도 26에서 오목부(2001)는 양쪽이 열린 홈의 형태일 수도 있고, 전면이 닫힘 홈의 형태일 수도 있다.
(3-10) 플레이트의 상면 전체가 봉지제에 의해 덮혀 있는 것을 특징으로 하는 반도체 발광소자.
(4-1) 반도체 발광소자를 제조하는 방법에 있어서, 제1 도전부와 제2 도전부, 및 제1 도전부와 제2 도전부 사이에 형성되어 제1 도전부와 제2 도전부를 분리하는 홈을 포함하는 플레이트를 준비하는 단계; 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층, 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 이용해 빛을 생성하는 활성층, 제1 반도체층에 전기적으로 연결되는 제1 전극, 및 제2 반도체층에 전기적으로 연결되는 제2 전극을 구비하는 반도체 발광소자 칩을 플레이트의 상면에 고정하는 단계; 반도체 발광소자 칩을 봉지제로 덮는 단계; 및 반도체 발광소자의 예정된 경계를 따라 플레이트와 봉지제를 함께 절단하는 단계;를 포함하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(4-2) 절단하는 단계 이전에, 홈이 플레이트의 하면 측으로 노출되도록 플레이트의 하부를 부분적으로 제거하는 단계;를 더 포함하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(4-3) 고정하는 단계에서, 반도체 발광소자 칩은 홈에 걸쳐서 위치하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(4-4) 고정하는 단계에서, 반도체 발광소자 칩은 제1 전극 및 제2 전극이 하부에 위치하도록 플레이트 상면 위에 배치되어, 제1 전극은 제1 도전부에 접합되고, 제2 전극은 제2 도전부에 접합되는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(4-5) 반도체 발광소자 칩은 제1 전극 및 제2 전극 아래에 각각 위치하는 본딩 패드를 구비하여, 유태틱 본딩 방식으로 플레이트에 접합되는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(4-6) 고정하는 단계에서, 반도체 발광소자 칩은 제1 전극 및 제2 전극이 상부에 위치하도록 플레이트 상면에 고정되며, 제1 전극 및 제2 전극은 각각 와이어 본딩 방식으로 제1 도전부 및 제2 도전부와 전기적으로 연결되는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(4-7) 봉지제가 형광체를 함유하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(4-8) 플레이트를 준비하는 단계에서, 홈 내부에 충진제가 구비되는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(4-9) 충진제가 형광체를 함유하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(4-10) 충진제가 백색 수지를 함유하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(4-11) 제거하는 단계에 이어서, 제1 도전부 및 제2 도전부 아래에 각각 위치하도록 추가의 금속층을 형성하는 단계;를 더 포함하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(5-1) 제1 금속층과 제2 금속층을 접합 금속층을 매개로 접합하여, 적층체를 형성하는 단계;로서, 마주하는 제1 금속층과 제2 금속층의 적어도 일측에 부도체막을 구비하는, 적층체를 형성하는 단계; 그리고, 부도체막이 제1 금속층과 제2 금속층 사이에서 절연막으로 기능하도록 적층체를 절단하는 단계;를 포함하는 것을 특징으로 하는 금속 기판 제조 방법.
(5-2) 부도체막은 접합 이전에 마주하는 제1 금속층과 제2 금속층의 적어도 일측에 형성되는 것을 특징으로 하는 금속 기판 제조 방법.
(5-3) 접합 금속층은 부도체막 형성 후 접합 이전에 마주하는 제1 금속층과 제2 금속층의 적어도 일측에 형성되는 것을 특징으로 하는 금속 기판 제조 방법.
(5-4) 접합 금속층은, Cr 및 Ti 중 적어도 하나를 포함하는 접촉층; Cu, Ni, Ti, Al, Ag, W, TiW, Pt, Cr 및 Zn 중 적어도 하나를 포함하는 중간층; 및 Al, Cu, Sn, Ge, Au 및 Zn 중 적어도 하나를 포함하는 접합층; 중 적어도 하나를 포함하며, 제1 금속층 또는 제2 금속층으로부터, 접촉층, 중간층 및 접합층의 순서로 배치되는 것을 특징으로 하는 금속 기판 제조 방법.
(5-5) 제1 금속층 및 제2 금속층은 Al로 이루어지며, 부도체막은 아노다이징을 통해 형성되는 산화알루미늄막(Al2O3)인 것을 특징으로 하는 금속 기판 제조 방법.
(5-6) 부도체막은 증착을 통해 형성되는 SiO2, TiO2, SiN, SiON, Al2O3 및 Ta2O5 막 중 어느 하나인 것을 특징으로 하는 금속 기판 제조 방법.
(5-7) 접합 금속층은, Cr 및 Ti 중 적어도 하나를 포함하는 제1 접촉층; Cu, Ni, Ti, Al, Ag, W, TiW, Pt, Cr 및 Zn 중 적어도 하나를 포함하는 제1 중간층; 및 Al, Cu, Sn, Ge, Au 및 Zn 중 적어도 하나를 포함하는 접합층; Cu, Ni, Ti, Al, Ag, W, TiW, Pt, Cr 및 Zn 중 적어도 하나를 포함하는 제2 중간층; 및 Cr 및 Ti 중 적어도 하나를 포함하는 제2 접촉층; 중 적어도 하나를 포함하며, 제1 금속층과 제2 금속층 사이에서, 제1 접촉층, 제1 중간층, 접합층, 제2 중간층, 제2 접촉층의 순서로 배치되는 것을 특징으로 하는 금속 기판 제조 방법.
(5-8) 제1 금속층 및 제2 금속층은 Al로 이루어지며, 부도체막은 아노다이징을 통해 형성되는 산화알루미늄막(Al2O3)인 것을 특징으로 하는 금속 기판 제조 방법.
(5-9) 부도체막은 증착을 통해 형성되는 SiO2, TiO2, SiN, SiON, Al2O3 및 Ta2O5 막 중 어느 하나인 것을 특징으로 하는 금속 기판 제조 방법.
(5-10) 제1 도전부, 제2 도전부, 제1 도전부와 제2 도전부를 접합하는 접합 금속층, 및 제1 도전부와 제2 도전부를 절연하도록 접합 금속층의 적어도 일측에 위치하는 부도체막을 구비하는 금속 기판; 그리고, 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층 및 제1 반도체층과 제2 반도체층을 사이에 개재되며 전자와 정공의 재결합을 통해 빛을 생성하는 활성층을 구비하며, 제1 반도체층이 제1 금속층에 전기적으로 연결되고, 제2 반도체층이 제2 금속층에 전기적으로 연결되는 반도체 발광소자 칩;을 포함하는 것을 특징으로 하는 반도체 발광소자.
(5-11) 제1 도전부 및 제2 도전부는 Al로 이루어지며, 부도체막은 아노다이징을 통해 형성되는 산화알루미늄막(Al2O3)인 것을 특징으로 하는 반도체 발광소자.
(5-12) 부도체막은 증착을 통해 형성되는 SiO2, TiO2, SiN, SiON, Al2O3 및 Ta2O5 막 중 어느 하나인 것을 특징으로 하는 반도체 발광소자.
(5-13) 접합 금속층은, Cr 및 Ti 중 적어도 하나를 포함하는 제1 접촉층; Cu, Ni, Ti, Al, Ag, W, TiW, Pt, Cr 및 Zn 중 적어도 하나를 포함하는 제1 중간층; 및 Al, Cu, Sn, Ge, Au 및 Zn 중 적어도 하나를 포함하는 접합층; Cu, Ni, Ti, Al, Ag, W, TiW, Pt, Cr 및 Zn 중 적어도 하나를 포함하는 제2 중간층; 및 Cr 및 Ti 중 적어도 하나를 포함하는 제2 접촉층; 중 적어도 하나를 포함하며, 제1 도전부와 제2 도전부 사이에서, 제1 접촉층, 제1 중간층, 접합층, 제2 중간층, 제2 접촉층의 순서로 배치되는 것을 특징으로 하는 반도체 발광소자.
(5-14) 접합 금속층은, Sn, Ge, Cr, Ni, Ti, Au, Al, Ag, Zn, Cu, W, TiW, Pt 중 적어도 하나를 포함하는 것을 특징으로 하는 반도체 발광소자.
(6-1) 반도체 발광소자에 있어서, 제1 도전부와 제2 도전부 그리고 제1 도전부와 제2 도전부 사이에 구비된 절연부를 구비하며, 상면과 상면에 대향하는 하면을 가지는 플레이트; 플레이트의 상면에 놓이며, 제1 도전부 및 제2 도전부에 전기적으로 연결되어 있고, 전자와 정공을 이용하여 빛을 생성하는 활성층을 구비하는 반도체 발광소자 칩; 그리고, 플레이트와 반도체 발광소자 칩을 덮는 봉지제;를 포함하는 것을 특징으로 하는 반도체 발광소자.
(6-2) 절연부를 덮는 비도전성 반사막;을 더 구비하는 것을 특징으로 하는 반도체 발광소자.
(6-3) 절연부가 상면 및 하면에 대해 경사진 것을 특징으로 하는 반도체 발광소자.
(6-4) 절연부가 홈에 의해 형성되어 있는 것을 특징으로 하는 반도체 발광소자.
(6-5) 하면에 형성된 오목부에 반도체 발광소자 칩을 정전기로부터 보호하는 보호 소자;를 더 포함하는 것을 특징으로 하는 반도체 발광소자.
(6-6) 절연부는 부도체막;을 더 포함하는 것을 특징으로 하는 반도체 발광소자.
본 개시에 따른 하나의 반도체 발광소자에 의하면, 높은 광추출 효율을 달성할 수 있다.
본 개시에 따른 다른 하나의 반도체 발광소자에 의하면, 비도전성 반사막을 통해 반사 효율 저하를 방지할 수 있다.
본 개시에 따른 또 다른 하나의 반도체 발광소자에 의하면, 반도체 발광소자 칩이 놓이는 플레이트의 상면을 경면 처리하여, 얇은 비도전성 반사막으로도 높은 반사효율을 달성할 수 있다.
본 개시에 따른 또 다른 하나의 반도체 발광소자에 의하면, 우수한 방열 성능을 달성할 수 있다.
본 개시에 따른 하나의 반도체 발광소자를 제조하는 방법에 의하면, 광추출 효율이 높은 반도체 발광소자를 제공할 수 있다.
본 개시에 따른 다른 하나의 반도체 발광소자를 제조하는 방법에 의하면, 복수의 반도체 발광소자 칩이 직렬 및/또는 병렬로 연결되는 다양한 배치구조의 반도체 발광소자를 용이하게 제공할 수 있다.
본 개시에 따른 하나의 반도체 발광소자에 의하면, 높은 광추출 효율을 달성할 수 있다.
본 개시에 따른 다른 하나의 반도체 발광소자에 의하면, 우수한 방열 성능을 달성할 수 있다.
본 개시에 따른 또 다른 하나의 반도체 발광소자에 의하면, 인쇄회로기판 등에 실장할 때 반도체 발광소자를 용이하게 배치할 수 있다.
본 개시에 따른 또 다른 하나의 반도체 발광소자에 의하면, 비도전성 반사막을 통해 반사 효율 저하를 방지할 수 있다.
본 개시에 따른 또 다른 하나의 반도체 발광소자에 의하면, 반도체 발광소자 칩이 놓이는 플레이트의 상면을 경면 처리하여, 얇은 비도전성 반사막으로도 높은 반사효율을 달성할 수 있다.
본 개시에 따른 하나의 반도체 발광소자를 제조하는 방법에 의하면, 광추출 효율이 높은 반도체 발광소자를 제공할 수 있다.
본 개시에 따른 다른 하나의 반도체 발광소자를 제조하는 방법에 의하면, 복수의 반도체 발광소자 칩이 직렬 및/또는 병렬로 연결되는 다양한 배치구조의 반도체 발광소자를 용이하게 제공할 수 있다.
본 개시에 따른 하나의 반도체 발광소자에 의하면, 높은 광추출 효율을 달성할 수 있다.
본 개시에 따른 다른 하나의 반도체 발광소자에 의하면, 우수한 방열 성능을 달성할 수 있다.
본 개시에 따른 또 다른 하나의 반도체 발광소자에 의하면, 인쇄회로기판 등에 실장할 때 반도체 발광소자를 용이하게 배치할 수 있다.
본 개시에 따른 또 다른 하나의 반도체 발광소자에 의하면, 비도전성 반사막을 통해 반사 효율 저하를 방지할 수 있다.
본 개시에 따른 또 다른 하나의 반도체 발광소자에 의하면, 반도체 발광소자 칩이 놓이는 플레이트의 상면을 경면 처리하여, 얇은 비도전성 반사막으로도 높은 반사효율을 달성할 수 있다.
본 개시에 따른 하나의 반도체 발광소자를 제조하는 방법에 의하면, 광추출 효율이 높은 반도체 발광소자를 제공할 수 있다.
본 개시에 따른 다른 하나의 반도체 발광소자를 제조하는 방법에 의하면, 복수의 반도체 발광소자 칩이 직렬 및/또는 병렬로 연결되는 다양한 배치구조의 반도체 발광소자를 용이하게 제공할 수 있다.
본 개시에 따른 또 다른 하나의 반도체 발광소자에 의하면, 반도체 발광소자 칩을 정전기로부터 보호할 수 있게 된다.
본 개시에 따른 또 다른 하나의 반도체 발광소자에 의하면, 리드 프레임 내지 전극 내에 보호 소자를 구비하여 반도체 발광소자의 전체 두께를 줄일 수 있게 된다.
본 개시에 따른 하나의 반도체 발광소자를 제조하는 방법에 의하면, 반도체 발광소자 칩을 균일하게 덮는 봉지부 및 외부 전극 역할을 하는 금속 기판을 일체화한 반도체 발광소자를 제조할 수 있게 된다.
본 개시에 따른 다른 하나의 반도체 발광소자를 제조하는 방법에 의하면, 플립 칩 뿐만 아니라, 레터럴 칩 및 버티컬 칩을 사용한 반도체 발광소자를 제조할 수 있게 된다.
본 개시에 따른 또 따른 하나의 반도체 발광소자를 제조하는 방법에 의하면, 방열 성능이 우수한 반도체 발광소자를 제조할 수 있게 된다.
본 개시에 따른 하나의 금속 기판 제조 방법에 의하면, 고온 환경에서 사용되더라도 도전부와 도전부 사이의 접합상태를 안정적으로 유지할 수 있는 금속 기판을 제공할 수 있다.
본 개시에 따른 다른 하나의 금속 기판 제조 방법에 의하면, 도전부와 도전부 사이의 절연상태를 안정적으로 유지할 수 있는 금속 기판을 제공할 수 있다.
본 개시에 따른 다른 하나의 금속 기판 제조 방법에 의하면, 금속 기판의 대량생산에 유리하다.
본 개시에 따른 하나의 반도체 발광소자에 의하면, 높은 광추출 효율을 달성할 수 있다.
본 개시에 따른 다른 하나의 반도체 발광소자에 의하면, 우수한 방열 성능을 달성할 수 있다.

Claims (6)

  1. 반도체 발광소자에 있어서,
    제1 도전부와 제2 도전부 그리고 제1 도전부와 제2 도전부 사이에 구비된 절연부를 구비하며, 상면과 상면에 대향하는 하면을 가지는 플레이트;
    플레이트의 상면에 놓이며, 제1 도전부 및 제2 도전부에 전기적으로 연결되어 있고, 전자와 정공을 이용하여 빛을 생성하는 활성층을 구비하는 반도체 발광소자 칩; 그리고,
    플레이트와 반도체 발광소자 칩을 덮는 봉지제;를 포함하는 것을 특징으로 하는 반도체 발광소자.
  2. 청구항 1에 있어서,
    절연부를 덮는 비도전성 반사막;을 더 구비하는 것을 특징으로 하는 반도체 발광소자.
  3. 청구항 1에 있어서,
    절연부가 상면 및 하면에 대해 경사진 것을 특징으로 하는 반도체 발광소자.
  4. 청구항 1에 있어서,
    절연부가 홈에 의해 형성되어 있는 것을 특징으로 하는 반도체 발광소자.
  5. 청구항 1에 있어서,
    하면에 형성된 오목부에 반도체 발광소자 칩을 정전기로부터 보호하는 보호 소자;를 더 포함하는 것을 특징으로 하는 반도체 발광소자.
  6. 청구항 1에 있어서,
    절연부는 부도체막;을 더 포함하는 것을 특징으로 하는 반도체 발광소자.
PCT/KR2014/003888 2013-04-30 2014-04-30 반도체 발광소자 및 이를 제조하는 방법 WO2014178666A1 (ko)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR1020130048110A KR101426433B1 (ko) 2013-04-30 2013-04-30 반도체 발광소자를 제조하는 방법
KR1020130048116A KR101428774B1 (ko) 2013-04-30 2013-04-30 반도체 발광소자 및 이를 제조하는 방법
KR10-2013-0048113 2013-04-30
KR10-2013-0048110 2013-04-30
KR10-2013-0048116 2013-04-30
KR1020130048113A KR20140130270A (ko) 2013-04-30 2013-04-30 반도체 발광소자 및 이를 제조하는 방법
KR10-2013-0066526 2013-06-11
KR1020130066526A KR101523664B1 (ko) 2013-06-11 2013-06-11 금속 기판 제조 방법 및 이 방법으로 제조된 금속 기판을 포함하는 반도체 발광소자
KR10-2014-0015466 2014-02-11
KR1020140015466A KR101561199B1 (ko) 2014-02-11 2014-02-11 반도체 발광소자

Publications (1)

Publication Number Publication Date
WO2014178666A1 true WO2014178666A1 (ko) 2014-11-06

Family

ID=51843710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003888 WO2014178666A1 (ko) 2013-04-30 2014-04-30 반도체 발광소자 및 이를 제조하는 방법

Country Status (1)

Country Link
WO (1) WO2014178666A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110767795A (zh) * 2019-12-27 2020-02-07 华引芯(武汉)科技有限公司 一种微型led发光器件及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222830A (ja) * 2010-04-12 2011-11-04 Sony Chemical & Information Device Corp 発光装置の製造方法
JP2012243822A (ja) * 2011-05-16 2012-12-10 Citizen Electronics Co Ltd Led発光装置とその製造方法
JP2013004922A (ja) * 2011-06-21 2013-01-07 Mitsubishi Chemicals Corp 半導体発光装置用樹脂パッケージ及び該樹脂パッケージを有してなる半導体発光装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222830A (ja) * 2010-04-12 2011-11-04 Sony Chemical & Information Device Corp 発光装置の製造方法
JP2012243822A (ja) * 2011-05-16 2012-12-10 Citizen Electronics Co Ltd Led発光装置とその製造方法
JP2013004922A (ja) * 2011-06-21 2013-01-07 Mitsubishi Chemicals Corp 半導体発光装置用樹脂パッケージ及び該樹脂パッケージを有してなる半導体発光装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110767795A (zh) * 2019-12-27 2020-02-07 华引芯(武汉)科技有限公司 一种微型led发光器件及其制备方法
CN110767795B (zh) * 2019-12-27 2020-05-05 华引芯(武汉)科技有限公司 一种微型led发光器件及其制备方法

Similar Documents

Publication Publication Date Title
WO2017191923A1 (ko) 발광 다이오드
WO2016076637A1 (en) Light emitting device
WO2018117382A1 (ko) 고 신뢰성 발광 다이오드
WO2017065545A1 (en) Compact light emitting diode chip and light emitting device including the same
WO2015190817A1 (ko) 반도체 발광소자
WO2011145794A1 (ko) 파장변환층을 갖는 발광 다이오드 칩과 그 제조 방법, 및 그것을 포함하는 패키지 및 그 제조 방법
WO2015053595A1 (ko) 반도체 발광소자
WO2016039593A1 (ko) 반도체 발광소자의 제조 방법
WO2014014298A1 (ko) 반도체 발광소자의 제조 방법
WO2015186972A1 (ko) 반도체 발광소자 및 이의 제조방법
WO2014014299A2 (ko) 반도체 발광소자
WO2019054547A1 (ko) 발광소자 패키지 및 이를 포함하는 조명장치
WO2016047950A1 (en) Light emitting device and method of fabricating the same
WO2016129873A4 (ko) 발광소자 및 발광 다이오드
WO2019045167A1 (ko) 발광소자 패키지 및 이를 구비한 광원 장치
WO2020159068A1 (ko) 발광 다이오드
WO2015122694A1 (ko) 반도체 발광소자
WO2017155282A1 (ko) 반도체 발광소자 및 이의 제조방법
WO2019059703A2 (ko) 발광소자 패키지 및 조명 모듈
WO2016013831A1 (ko) 광원 모듈과 이를 구비한 표시 모듈, 장신구 및 미러
WO2018106030A1 (ko) 발광소자
WO2019066372A4 (ko) 발광 다이오드, 발광 다이오드 모듈 및 그것을 갖는 표시 장치
WO2018139770A1 (ko) 반도체 소자 및 반도체 소자 패키지
WO2019045277A1 (ko) 픽셀용 발광소자 및 엘이디 디스플레이 장치
WO2021112648A1 (ko) 반도체 발광소자를 제조하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14791643

Country of ref document: EP

Kind code of ref document: A1